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Abstract

Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or
edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective
immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We
characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed
patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective
immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules,
identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple
alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to
LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous,
dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further
demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells
from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified
epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized
with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.
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Introduction

Whether viewed as a threat to human health in anthrax

endemic regions, as a bioweapon, or as a potentially devastating

pathogen of livestock, there is pressing need to gain better insights

into the immune response to Bacillus anthracis. The urgency has

been underlined by recent clusters of fatal and and near-fatal

anthrax infections among European intravenous drug users [1–4].

The pagA, lef and cya genes encode the three toxins associated

with pathogenicity: protective antigen (PA), lethal factor (LF) and

edema factor (EF). PA binds to the host cell surface receptors,

tumor endothelial marker 8 (TEM8) and capillary morphogenesis

gene 2 protein (CMG2) [5,6], with recent work suggesting that

a4b1- and a5b1-integrin complexes can also bind PA [7]. PA then

complexes with LF to form Lethal toxin (LT), which is

translocated into the host cell cytoplasm. LT is implicated in

several aspects of host immune subversion. It interferes with

antigen presenting cell (APC) function in the priming of adaptive

immunity: expression of the co-stimulatory molecules CD40,

CD80 and CD86 on dendritic cells, essential for the induction of

adaptive immunity in CD4+ T cells, are down-regulated in the

presence of LT [8]. Furthermore, LT can induce selective

apoptosis of activated macrophages by disrupting the TLR

dependant, p38 mediated, NF-kb regulation and expression of

pro-survival genes. LT also has a role in impairing B cell function,

reducing proliferation in response to TLR2, TLR4, BCR, and

CD40 [9]. Natural killer T (NKT) cells are shifted by LT from an

activated to anergic state [10,11].

Vaccination strategies in anthrax infection have been largely

dominated by PA [12,13]. For more than 40 years the major

vaccines used to protect against anthrax have been the AVA

(Biothrax) vaccine in the US, a filtered supernatant from the
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Sterne strain of B. anthracis, and AVP vaccine in the UK, an alum-

precipitated, cell-free culture supernatant of the Sterne strain

containing PA and a variable, minor, amount of LF. Both the

AVA and AVP vaccines require extensive vaccination regimens,

involving annual boosters. With concerns about the levels of

immunity induced by these vaccines and the high rates of adverse

effects [14,15], there have been efforts to design effective next-

generation vaccines with improved immunogenicity and low

reactogenicity [12]. Strategies to develop recombinant protein

vaccines have centered largely on PA [16]. PA based vaccines can

elicit humoral immunity while avoiding the adverse reactions

associated with older, filtrate based vaccines [17–19]. Recent

vaccination programmes have investigated the impact of HLA

polymorphisms, revealing considerable genetic variability in

responses of human donors, notably, the very low response of

HLA-DQB1*0602 individuals [20,21].

However, the rapid decrease in humoral immune responses

against PA observed in both humans and rabbits following the

cessation of boosting with either filtrate based or recombinant PA

(rPA) vaccines suggests that anti-PA humoral immunity induced by

these vaccines may not be long-lasting [22–24]. The development

of PA antibodies has also been shown to vary greatly within

infected human populations [25,26]. This in combination with

evidence that PA-based vaccines may provide protection against

lethal challenge with only select strains of B.anthracis [27], indicates

that the induction of anti-PA antibody responses should not be the

sole strategy for anthrax vaccination. Previous research has also

indicated that co-immunization with a range of B. anthracis

antigens, such as the capsular poly-c-D-glutamic acid, surface

polysaccharides, or toxins may augment the development of

protective immunity [28–30].

Analysis of naturally-infected humans in Zimbabwe showed that

most individuals mounted a response to both LF and PA [31]. We

recently studied the CD4+ T cell immune repertoire in patients

from the Kayseri region of Turkey who had become infected with

B. anthracis and had been hospitalised for cutaneous anthrax

following contact with infected livestock [32]. The study encom-

passed individuals who had suffered severe sepsis and undergone

protracted antibiotic therapy. Contrary to expectation from our

knowledge of immune subversion by LT in experimental settings,

we found robust immune memory to anthrax components, with

particular focus on domain IV of LF. Importantly, we were able to

quantify CD4+ T cell memory responses in naturally exposed

cutaneous anthrax patients and in AVP vaccinees, concluding that

the T cell response in the former group was equally strong in

response to both PA and LF, while in the latter group the major

response was to LF. This prompted us to reappraise CD4+ T cell

immunity to anthrax LF in detail.

For many microbial pathogens there is strong evidence for HLA

polymorphisms as determinants of disease risk, through variable

effects on the strength of immune response [33,34]. Different HLA

class II sequences vary in the anchor residues of the peptide

binding groove, presenting different peptides from a given antigen,

which will have an effect on the responding T cell repertoire [35].

While such studies are clearly pertinent to pathogens such as B.

anthracis which are variably lethal to infected humans, no such

analysis has been prevoiously undertaken.

In the present study, we characterize the CD4+ T cell immune

response to LF in HLA class II transgenic mice and in infected and

vaccinated humans. We observed that LF is highly immunogenic,

and that specific domains and epitopes show variable immuno-

dominance depending on HLA class II expression, with a

hierarchy of response to the toxin determined by HLA class II

polymorphism. This is the first time that such effects have been

described in the context of anthrax. Importantly, we define highly

immunodominant epitopes, common to all HLA types screened.

The CD4+ T cell epitopes were incorporated into a peptide

subunit vaccine and its protective immunity demonstrated in HLA

transgenic mice following live anthrax challenge.

Results

Anthrax lethal factor (LF) primes strong CD4 T cell
immunity with HLA-specific focus on different domains

Different HLA class II molecules vary in their peptide binding

specificity and so present different peptides of a given antigen,

with consequences for the CD4+ T cell repertoire activated

during the immune response. As a reductionist tool for

dissecting the role of individual HLA heterodimers we used

mice transgenic for each of the human HLA alleles, DRB1*0101

(HLA-DR1), DRB1*1501 (HLA-DR15), DRB1*0401 (HLA-

DR4), DQB1*0302 (HLA-DQ8) and DQB1*0602 (HLA-DQ6)

in the absence of endogenous MHC class II expression.

Following immunization with recombinant LF, all HLA

transgenic mice responded to LF protein, but responses to the

four domains of which the protein is composed varied (Figure 1).

Using mouse strains differing only in their expression of human

HLA class II alleles, we found a pronounced hierarchy of

response, with HLA-DR1 transgenics mounting a considerably

larger response than HLA-DQ6, DR15 or DR4 transgenics, and

HLA-DR4 transgenics showing the weakest response

(Figure 1A). This was not a simple reflection of strain differences

in HLA transgene expression or CD4+ positive selection, as the

least responsive strain, HLA-DR4, shows the highest level of

HLA class II expression (data not shown). Of particular interest

with respect to diversity of outcomes during infection of outbred

human populations, expression of different HLA class II alleles

was associated with a focus on different domains of the LF

molecule. LF immunized HLA-DR1 transgenics showed an

elevated response specifically to restimulation with LF domains

Author Summary

Anthrax is of concern with respect to human exposure in
endemic regions, concerns about bioterrorism and the
considerable global burden of livestock infections. The
immunology of this disease remains poorly understood.
Vaccination has been based on B. anthracis filtrates or
attenuated spore-based vaccines, with more recent trials
of next-generation recombinant vaccines. Approaches
generally require extensive vaccination regimens and
there have been concerns about immunogenicity and
adverse reactions. An ongoing need remains for rationally
designed, effective and safe anthrax vaccines. The impor-
tance of T cell stimulating vaccines is inceasingly recog-
nized. An essential step is an understanding of immuno-
dominant epitopes and their relevance across the diverse
HLA immune response genes of human populations. We
characterized CD4 T cell immunity to anthrax Lethal Factor
(LF), using HLA transgenic mice, as well as testing
candidate peptide epitopes for binding to a wide range
of HLA alleles. We identified anthrax epitopes, noteworthy
in that they elicit exceptionally strong immunity with
promiscuous binding across multiple HLA alleles and
isotypes. T cell responses in humans exposed to LF
through either natural anthrax infection or vaccination
were also examined. Epitopes identified as candidates
were used to protect HLA transgenic mice from anthrax
challenge.

Immunodominant Anthrax T Cell Immunity
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Figure 1. HLA transgenic mice immunized with LF generate an antigen-specific memory response to the LF protein and domains
which follows an HLA hierarchy and predominantly focuses upon domains II and IV. Mice (3–5 per HLA transgenic group) were
immunised in the footpad with 25 mg LF adjuvanted with Titermax Gold. Popliteal lymph nodes were harvested on day 10 and stimulated with either
(A) 25 mg of whole LF or (B) the individual LF domains. The results, expressed as SI (6 standard deviation) for, HLA-DR1 (n = 4), HLA-DQ8 (n = 4), HLA-
DQ6 (n = 5), HLA-DR15 (n = 4) and HLA-DR4 (n = 4), demonstrated a significant difference between strains. A significantly elevated response to LF was

Immunodominant Anthrax T Cell Immunity
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II and IV (Figure 1B), while the HLA-DQ8 transgenics response

to domain IV was significantly elevated relative to the domain I

response (Figure 1C). HLA-DR15 transgenic mice showed a

significantly elevated response to domain II alone (Figure 1E),

while HLA-DQ6 transgenic mice demonstrated significant

responses to domains II and IV (Figure 1D). HLA-DR4

transgenics respond to all four domains (Figure 1F). All of the

HLA transgenics used in this study generated a memory recall

to domain II of LF (Figure 1B–F). These results confirm that

HLA polymorphisms play a role in the differential response to

the domains of LF, and contrast with the corresponding lack of

response to LF domains in sham immunized HLA transgenic

mice (Supplementary Figure S1A).

LF contains several HLA class II binding regions including
a region of exceptionally high binding affinity across
distinct HLA polymorphisms

A peptide library of overlapping 20-mers representing the

complete anthrax LF sequence was evaluated for binding to seven

common HLA-DR alleles, DRB1*0101 (DR1), DRB1*0401

(DR4), DRB1*1101 (DR11), DRB1*0701 (DR7), DRB1*1501

(DR15), DRB1*0301 (DR3) and DRB1*1301 (DR13) (Table 1).

The region of the LF sequence encompassing amino acids 457–

486 contains at least 2 epitopes able to bind most or all HLA-DR

alleles tested with exceptionally high affinity. A further twelve

peptides, LF101–120, LF171–190, LF241–260, LF251–270, LF261–280,

LF457–476, LF574–593, LF594–613, LF604–623, LF644–663, LF674–693

and LF694–713, showed strong to moderate binding across all seven

HLA-DR alleles.

Characterization of LF CD4+ T cell epitopes demonstrates
the influence of HLA-DR and HLA-DQ polymorphisms
and reveals promiscuous, highly immunodominant
epitopes common to distinct HLA alleles

The immunodominant CD4+ T cell epitopes within LF were

mapped by immunizing HLA transgenics with recombinant LF

protein and restimulating draining lymph node cells with a

peptide library spanning the LF sequence. The resulting

epitope maps reveal a picture of HLA-restricted epitopes in

LF indicating that the immunodominant epitopes were largely

localized to domains II and IV (Figure 2). The immunological

memory to the LF peptides contrasted with the lack of

responses to the peptides in sham immunised HLA-DR4 mice

(Supplementary Figure S1B). The two epitopes shown to be

exceptionally high affinity binders to diverse HLA-DR alleles,

LF457–476 and LF467–486, located in domain II, not only elicited

very sizeable responses, but were both recognised by all LF

immunized HLA transgenics, suggesting that these epitopes

were both immunodominant and promiscuous in their HLA

binding. Whilst promiscuous peptides have been previously

identified which bind strongly to a number of distinct HLA-

DR or HLA-DQ molecules [36–38], the substantial differences

between the binding grooves of HLA-DR and HLA-DQ

isotypes [39–41] have resulted in the identification of a

relatively low number of peptides that can be presented by

such diverse isotypes [42]. These two LF epitopes, able to

stimulate CD4+ T cells at very high frequency and across HLA

class II differences are thus highly unusual and of considerable

interest both for efforts to understand immunity to anthrax and

to design universally stimulatory vaccines.

A number of regions that had shown strong HLA binding

affinity were indeed identified as functional, immunodominant

epitopes, with domain IV especially rich in epitopes able to

induce a strong in vivo response. CD4+ T cell responses to the

domain IV peptide, LF547–567, were identified in HLA-DR1,

HLA-DR4 and HLA-DR15 transgenic lines, indicating that this

epitope was presented solely by HLA-DR alleles. Two more

domain IV epitopes, LF724–743 and LF744–763, were both HLA-

DR4 and HLA-DR15 restricted. While domains II and IV

contained a number of HLA-DR restricted epitopes, the majority

of HLA-DQ8 restricted epitopes were found in domains I and II,

and the HLA-DQ6 restricted epitopes were located only in

domain II.

The greatest number of epitopes identified were DRB1*0101

restricted, with the HLA-DR1 transgenic strain recognising 14

epitopes, this was followed by 13 DQB1*0302 restricted epitopes.

Ten epitopes were DRB1*1501 restricted, and 7 DRB1*0401

restricted epitopes were identified, while only 2 DQB1*0602

restricted epitopes were identified.

Some HLA-restricted peptide epitopes were identified which

lay within regions of the LF protein not previously shown to elicit

a response when provided as a whole protein antigen. LF

immunized HLA-DR1 and HLA-DQ8 transgenics responded to

peptides located within domain I, which as an intact domain did

not elicit memory recall in the respective LF immunized

transgenic mice (Figure 1B and 1C); similarly LF immunized

HLA-DR4 and HLA-DR15 transgenics generated responses to

peptide epitopes in domain IV, which also did not demonstrate a

recall response following stimulation with the whole domain

(Figure 1E and 1F).

The HLA specific epitopes identified in mice transgenic for

DR1, DR4 and DQB1*0302 are modeled on the LF crystal

structure in Figure 3. Despite the heterogeneity which can be

observed in the range of LF peptides presented by the HLA

transgenics, there were identifiable areas rich in allele specific

immunodominant peptides, presumably indicative of structural

accessibility to cleavage by antigen processing enzymes. The T cell

responses to epitopes located in the catalytically active domain IV

were overwhelmingly dominated by HLA-DR presentation, as

only a single DQB1*0302 restricted epitope (LF594–613), and no

DQB1*0602 restricted epitopes, were identified in this substrate

recognition and binding domain. It is also possible to identify,

within the VIP2-like domain II, the cluster of epitopes containing

seen in HLA-DR1 compared to DQ6, DR15 and DR4 (p = 0.0013, One-way ANOVA, with Bonferroni’s multiple comparison). Cell cultures from mice
transgenic for (B) DR1, (C) DQ8, (D) DQ6, (E) DR15 and (F) DR4 were stimulated for 3–5 days with LF domains; proliferation was measured by 3H-
thymidine incorporation after 5 days stimulation (B, C & D), IFNc production was assayed by ELISpot development and enumeration after 3 days
stimulation (E & F). In HLA-DR1 transgenics (B) responses to domain I were significantly lower than responses to domains II and IV (p = 0.0081, Kruskal-
wallis, with Dunn’s multiple comparisons), while HLA-DQ8 transgenics (C) only showed a significant difference in response between domains I and IV
(p = 0.0174, Friedman with Dunn’s multiple comparisons). The response to the individual domains in HLA-DQ6 (D) showed significant variance
(p = 0.0002, One-way ANOVA with Tukey’s multiple comparisons) with the responses to domains II and IV significantly greater than the responses to
domains I or III. The response to the individual domains in HLA-DR15 (E) also differed significantly (p,0.0001, One-way ANOVA with Tukey’s multiple
comparisons), however, only the response to domain II was elevated compared to domains I, III and IV). Data is represented as the stimulation index
(SI) calculated as the mean cpm or IFNc production of triplicate wells in the presence of peptide divided by the mean cpm or IFNc production in the
absence of antigen. Results are given as the mean 6 SD/SEM.
doi:10.1371/journal.ppat.1004085.g001
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the immunodominant peptides LF457–476 and LF467–487, which

were presented by all the HLA transgenics.

Domain III, which has marked structural similarity to domain

II, possibly due to its origins as a duplication of this domain,

displays none of the immunogenicity associated with domain II

[43,44]. We observed no immunodominant T cell epitopes within

this domain in any of the HLA transgenic strains utilised in the

epitope mapping (Figures 1 and 2).

Figure 2. Epitope-rich, immunodominant regions of LF and epitopes common to diverse HLA polymorphisms. Popliteal lymph nodes
from mice transgenic for DRB1*0101 (A), DRB1*0401 (B), DRB1*1501 (C), DQB1*0302 (D) and DQB1*0602 (E) (n = 5) were harvested 10 days after
immunization with 25 mg LF adjuvanted with Titermax Gold and stimulated with 25 mg of each 10mer peptide in the LF peptide library (LF31–809).
Responses were considered positive if the response was $2 SD above the cells plus medium control. Data is represented as scatter plots, showing the
responses of individual mice as the stimulation index (SI) calculated as the mean cpm or IFNc production of triplicate wells in the presence of peptide
divided by the mean cpm or IFNc production in the absence of antigen. Results are given as the mean 6 SD/SEM.
doi:10.1371/journal.ppat.1004085.g002

Figure 3. Regions HLA-DR and DQ-presented anthrax LF epitopes mapped onto the LF protein structure reveals clustering of
immunogenic epitopes. The structural domains of LF protein are indicated in Roman numerals (A). Immunodominant epitopes identified in this
study from mice transgenic for DRB1*0101 (B), DRB1*0401 (C), and DQB1*0302 (D) are superimposed on the LF crystal structure (Protein Data Bank
accession code 1J7N). Roman numerals indicate the structural domains. Ribbon diagrams were generated using the Accelrys discovery studio client
2.5 program.
doi:10.1371/journal.ppat.1004085.g003
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T cell responses to LF in naturally infected anthrax
patients or AVP-vaccinees

While we had previously investigated responses of human

donors to epitopes within domain IV [32], it was important to

obtain a comprehensive picture of the immune responses of

human donors following either natural infection or vaccination.

Having shown in the more reductionist context of HLA

transgenics expressing single HLA class II heterodimers that LF

is highly immunogenic and epitope rich, one would expect an even

more complex picture in, heterozygote humans carrying multiple

HLA class II isotypes. We found a heterogeneous response, spread

across domains I–III of the entire protein, which was distinct

according to the nature of exposure to anthrax: epitopes that were

predominantly a feature of the response of vaccinees were rarely

recognized by the majority of infected donors or healthy controls,

and vice versa (Table 2).

In the AVP vaccinated individuals the immunodominant

response encompassed five epitopes. Of these peptides, LF41–60,

LF417–436, and LF437–456 did not induce a response in any of the

HLA transgenics (LF337–356 was identified as a cryptic epitope

which was identified in the HLA-DQ8 transgenics, data not

shown). The T cell responses to the domain I peptide LF101–120

was confirmed as an HLA-DQ8 specific response in the transgenic

mice.

In the naturally infected donors from Kayseri, however, the T

cell response was focused on two LF peptides. In parallel with the

epitope hierarchy identified in the AVP vaccinees, a peptide

epitope, LF281–300, was also identified which did not induce a

response in any of the HLA transgenics. The remaining domain II

peptide, LF467–487, had previously been identified as an immuno-

dominant HLA-promiscuous epitope, capable of eliciting a T cell

response from all the HLA transgenics.

We have previously documented immune responses to domain

IV in humans [32], however it is interesting to note that, of the

epitopes identified in that previous study, in AVP vaccinees,

LF674–693 has been confirmed as an immunodominant epitope in

both HLA-DR1 and HLA-DR15 transgenics, and the peptides

LF574–593, LF654–673 and LF694–713 were all identified as

immunodominant epitopes in this study, which each elicited a T

cell response in a single HLA transgenic strain. Furthermore, the

domain IV epitopes previously reported in Turkish naturally

infected anthrax patients, LF694–713 and LF714–733 have both been

identified as immunodominant epitopes in HLA-DR15 trans-

genics. Although the domain IV peptide LF584–603 which was a

feature of the AVP vaccinee’s immune response, did not induce

any response in any of the HLA transgenics in this study.

There was very little overlap in responses of the infected and

vaccinated human cohorts: the immunodominant, strongly bind-

ing epitope, LF467–486, was recognized by a high proportion of

naturally infected donors, but not vaccinated individuals. This

suggests that the peptide is processed and strongly immunogenic

during infection, but is not recognized in the response to the

protein antigen during immunization. Could epitope differences

between the cohorts be explained by the fact that the individuals

come from different geographical regions and express different

HLA class alleles? We report the HLA-typing of the donors, and

indeed the common HLA class II alleles present in the studied

region of Turkey are not substantially different from the common

alleles in the studied cohort regions of the UK. Ultimately, the

number of individuals in this study, powered for functional rather

than genetic association studies in its inception and design, is too

low to draw conclusions about the possibility that different HLA

allele frequencies may drive different preferences for immunodo-

minant epitopes.

The majority of HLA class II restricted epitopes characterised

by this study were identified by more than one experimental

system (Figure 4A). The most notable epitope, LF467–486 showed

strong or moderate HLA-DR binding affinity across a range of

alleles, and was immunogenic in HLA-transgenics and infected

humans.

A comparison of HLA-DR restricted peptides, showed the

overlapping subsets of allele specific and promiscuous epitopes

Table 2. Frequent, large CD4 T cell epitope responses to anthrax LF domain I–III peptide panel in immune human donors.

Human
cohorts HLA class II T cell response to anthrax LF domain I–III epitopes, SFC/106 cells

DR1 DRB3/4/5 DQB1
LF 41–
61

LF 101–
120

LF 281–
300

LF 337–
356

LF 417–
436

LF 437–
456

LF 467–
486

Infected
donor 2

4 4 53 53 8 8 0 0 345 0 0 0 323

Infected
donor 3

4 14 52 53 5 8 0 0 218 0 0 0 0

Infected
donor 6

11 13 52 52 6 11 0 0 0 0 0 0 291

Infected
donor 7

4 14 52 53 5 4 0 0 227 0 0 0 633

Vaccinee 3 11 13 52 52 6 7 1275 1357 0 1314 1322 1009 0

Vaccinee 4 15 7 51 53 2 6 473 509 0 0 837 451 0

Vaccinee 5 103 17 52 52 2 5 495 0 0 703 0 0 0

Vaccinee 6 1 13 52 52 5 6 0 0 0 0 0 416 0

Vaccinee 8 1 1 - - 5 5 0 0 0 0 725 0 0

Vaccinee 10 7 15 51 53 2 6 0 423 0 521 0 0 0

Frequent, large CD4 T cell epitope responses to anthrax LF domain I-III peptide panel in immune human donors. Table indicates positive T cell IFNc ELIspot responses
that were seen in 3 or more donors from the human donor cohort described in the Methods, comprising a total of 9 donors in the cutaneous anthrax (Kayseri) group
and 10 donors in the AVP vaccinees (UK) group.
doi:10.1371/journal.ppat.1004085.t002
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identified by binding affinity (Figure 4C) and immunogenicity in

HLA transgenic mice (Figure 4B). Although the binding affinity

assays suggest 21 peptides demonstrated strong or moderate

promiscuous binding to HLA-DR1, DR4 and DR15 (Figure 4C),

only three peptides, LF457–476, LF467–486 and LF547–568 were

immunogenic in all three HLA-DR transgenic strains analysed

(Figure 4B). It is interesting to note that, according to the binding

affinity studies LF467–486 and LF547–568, but not LF457–476, were

strong binders to all three HLA-DR alleles (Table 3), demonstrat-

ing the importance of validating the immunogenicity of T cell

epitopes in vivo.

It is important to recognise the limitations of this study; the

strength of HLA binding is based exclusively on seven HLA-DR

alleles, whilst all of the human cohorts presented the peptides

through a diverse and heterogeneous mixture of HLA class II

alleles. Nonetheless, it is striking that LF467–486 not only showed

strong binding affinity across all HLA-DR alleles assayed, but all 5

HLA transgenic strains and in infected individuals, showed strong

T cell responses to this peptide (Tables 1 and 2), demonstrating a

truly promiscuous HLA class II binding and immunogenic nature.

Immunization of HLA transgenics with an LF fusion
protein or a peptide cocktail of LF T cell epitopes confers
protection from anthrax challenge

The primary importance of humoral immunity in mediating

protection against anthrax has been brought into question by

recent studies suggesting that IFNc producing CD4+ T cells play

an important role in long lasting immunity [32,45]. In addition,

induction of memory CD4+ T cells may feedback not only to

cellular immunity, but also aid in the production of toxin

neutralising antibodies, Ig class switching and B cell affinity

maturation. To determine whether the immunodominant T cell

epitopes identified within LF could be incorporated into an

epitope string vaccine capable of conferring protection against

lethal anthrax challenge in a mouse model, the HLA-DQ8

transgenic mice were immunized with either a fusion protein

comprising HLA-DQ8 restricted epitope moieties expressed

contiguously after a tetanus toxin helper domain, or a cocktail of

the same epitopes as synthetic peptides.

HLA-DQ8 transgenics primed and boosted with 3 doses of an

LF fusion construct containing HLA-restricted LF epitopes were

fully protected against challenge with 106 cfu B.anthracis STI. The

naı̈ve, sham immunized group showed a significantly lower

survival rate than either the group primed and boosted with 3

doses of the pooled peptides which were expressed in the fusion

protein (p.0.01) or the fusion protein (p.0.01) immunized groups

(Figure 5A). Only 2/6 naı̈ve mice survived to day 20 post-

infection, with a median survival time of 6 days in this group. The

bacterial loads recovered from the spleens of surviving mice

showed that the immunized mice appeared to clear the infection

more successfully than the naı̈ve mice, (naı̈ve group (1883.4+/

2317 cfu), peptide cocktail (801.2+/2469 cfu) and LF fusion (153

+/254 cfu)), however it was not possible to detect a significant

difference between groups in terms of bacterial burden (Figure 5B).

The high degree of protection against anthrax infection observed

in both the immunized groups indicated, not only that the LF

fusion protein was capable of conferring the same protective affect

as the individual peptides, but also validated the immunoprotec-

tive effects of the epitopes identified within this study. Evaluation

of peptide-specific responses on a second group of HLA-DQ8

transgenic mice immunized with either LF fusion protein or

peptide cocktail showed that the strongest peptide recall in both

groups was to LF467–486 (data not shown). These data suggest that

LF467–486 and the promiscous epitopes which were included in

these immunisations prime a strong T cell response, playing a role

in protection against anthrax.

Discussion

While considerable attention has been devoted to the profound

immune subversion mediated by anthrax toxins [46], recent

human studies, including this one, show that anthrax infection can

be immunogenic [4]. The role of LT in the disruption of the

MAPK signalling pathways, with its consequences for the

apoptosis of antigen presenting cells, specifically the lysis of

dendritic cells and macrophages, might be expected to subvert

host immunity and promote systemic anthrax infection. However,

investigation of the inverse relationship between sensitivity to LT

and resistance to infection, indicates that mice which possess alleles

encoding an LT-sensitive form of Nlrp1b promote a pro-

inflammatory response predominantly driven by inflamasome-

mediated cell lysis and release of IL-1b [47–50]. The associated

cell infiltration and cytokine milieu seen in early inflammation

may be crucial in driving antigen presentation and T cell priming.

Recent studies ranging from asymptomatic seroconversion of

wool-workers to our own recent work with near lethal anthrax

infection in intravenous drug users, show common themes in terms

of strong induction of adaptive immunity [4,25].

For an infection in which we believe there is a key role of host

Th1 immunity, it would be assumed that IgG2a neutralizing

antibodies would be an important correlate of protection.

However, since the most relevant studies in which this can be

analyzed in detail tend to be primate studies based on protection

by alum-adjuvanted vaccine, it is the vaccine formulation itself

that tends to be the main driver of protective IgG subclasses, both

IgG1 and IgG2a being found in the protective response [51].

LF protein boosts PA-specific antibody responses following co-

administration [30,52], and the incorporation of a truncate

containing the N-terminal region of LF into a PA plasmid

expression vector enhances the PA-specific antibody response [52],

while LF truncated proteins are capable of conferring protection

against B. anthracis aerosol challenge [53,54]. Thus LF-specific

responses may be more important mediators of protective

immunity than previously thought. Previous work by our lab has

identified LF as a major target of T cell immunity in humans [32],

despite the amount of LF released by B. anthracis being one-sixth

that of PA [55].

Antigen presentation through both HLA-DR and DQ is

important in the induction of immunity, and the allelic diversity

inherent in these class II molecules shapes the T cell repertoire and

influences susceptibility to infection [56]. The reductionist

approach of using transgenic models was deployed here as a

means of defining HLA restricted T cell responses to immunogenic

epitopes of LF. Across the transgenic lines, representing five HLA

class II alleles, along with the expected allele specific epitopes, the

Figure 4. Overview of allele specific and promiscuous epitopes identified by binding affinity, and immunogenicity in HLA
transgenic mice and human subjects. The overlapping relationships of the epitopes identified in the HLA transgenic responses, HLA-DR binding
affinity studies, and in cohorts of vaccinated and infected humans, were demonstrated in a Euler diagram (A). The HLA-DR restricted epitopes
identified in (B) HLA transgenic mice and (C) HLA binding affinity studies were visualised as Venn diagrams, to show allele specific and promiscuous
epitopes.
doi:10.1371/journal.ppat.1004085.g004
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T cell response showed a number of broad similarities. This was

most evident in the response to LF domain II, which produced

immunogenic responses in both HLA-DR and DQ transgenic

mice following stimulation with either the whole domain, or the

individual peptides LF457–476 and LF467–487, which dominate the

T cell response to this domain. These immunodominant epitopes,

which were also found to have a high binding affinity for a wide

range of HLA-DR molecules, therefore comprise ‘public specific-

ities’ or promiscuous epitopes which are efficiently presented by

APCs, to a peptide-MHC specific TCR repertoire, in all HLA

transgenics (Table 3).

The C-terminal domain II of LF shows structural homology

with the ADP-ribosyltransferase found in the Bacillus cereus VIP2

toxin. In conjunction with domains III and IV, domain II forms

the active site which is involved in substrate recognition and

binding [57]. The amino terminus of the MAPK kinases substrates

fit into the LF groove which contains several, conserved, long

chain, aliphatic residues [58]. These residues occur in three

distinct clusters; the first is composed of Ile298, Ile300, Ile485,

Leu494, and Leu514, the second cluster of residues contains Ile322,

Ile343, Leu349, Leu357, and Val362 which lie at the end of the

catalytic groove. The final cluster of aliphatic residues lies close to

the domain IV groove; Leu450, Ile467, Leu677, Leu725, and Leu743

[58]. Both of the immunodominant epitopes LF457–467 and LF467–

487 overlap two of the aliphatic residues, Ile467 and Ile485 which

may have an effect upon the substrate binding of MAPK kinases.

It is tantalising to note that the host response focuses on this active

site, for which the evolutionary cost of mutation would be high for

the pathogen; one must of course note, however, that anthrax is

not an obligate human pathogen, is not commonly spread between

people and can survive in spore form in soil. Thus, this is not an

infection where there is likely to be an overt host-pathogen arms

race.

The T cell responses to the peptide LF547–567, from domain IV,

appeared to be HLA-DR restricted, as only T cells from the DR

transgenics, HLA-DR15, HLA-DR4 and HLA-DR1, not the DQ

transgenics HLA-DQ6 and HLA-DQ8, responded to this peptide.

Domain IV is the catalytically active center of the LF toxin [43],

and its protein folds contain a sequence which shares similarity

with the zinc-dependant metalloproteases found in the toxin

produced by C. tetani [59]. Previous work has indicated that this

homologous region of the tetanus toxin contains a number of

HLA-DR restricted T cell epitopes [60]. The ability of the LF

domain IV to readily provoke a recall response in CD4+ T cells in

the HLA-DR transgenics, suggests that the immune response to

this particular domain of the LF protein is also dominated by

HLA-DR restricted T cells. It has been observed that mutations in

the sequence coding for domain IV disrupts the substrate binding

groove created by domains II, III and IV, eliminating the

peptidase activity of LF, and thereby abrogating its toxicity [61].

The putative zinc binding site [HEFGHAV] which occurs

between the amino acid residues LF686 and LF690 [62] was only

a feature of the HLA-DR1 transgenic response to LF674–693

A number of immunodominant epitopes identified within LF

showed broad HLA binding characteristics, most notably the

domain II epitopes LF457–476 and LF467–487 which showed strong

binding across a range of HLA-DR molecules as well as the

preponderance of epitopes from domain IV which were presented

by HLA-DR. The strength of HLA binding does not however

appear to predict the immunodominance of the peptide epitope.

This contrasted with a number of studies, which have described a

strong correlation between the affinity of binding and the ability of

a peptide to be presented by a particular MHC molecule resulting

in an immunodominant T cell response [63–66].
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Of the five HLA strains challenged with domain I peptides, only

the HLA-DR1 and HLA-DQ8 transgenics showed CD4+ T cell

responses to peptide epitopes from this domain. Domain I binds

with high affinity to the proteolytically active 63 kD PA heptamers

which are responsible for the membrane-translocation of the

anthrax toxins [67]. Over the first 250 residues, this domain shares

significant sequence identity and similarity with domain I of EF

[43]. The N-terminal sequence of both toxins contain a common

domain for PA binding, which in LF has been shown to be

sufficient to act alone as a carrier for delivery of heterologous

proteins across membranes in the presence of PA [68]. The

sequence homology between the two toxins within domain I was

demonstrated by the use of LF induced antibodies which were

cross-reactive with EF [69]. One of the cross-reactive epitopes

LF265–274 (which corresponds to EF257–268), overlapped with the

HLA-DR1 restricted T cell epitopes LF251–270 and LF261–280,

indicating that these epitopes have the potential to induce a

neutralising antibody response to both LF and EF as well as the T

cell response, making them interesting candidates for inclusion in a

polyepitopic anthrax vaccine. In contrast to domain IV peptides,

epitopes in this domain are presented in the context of both DR

and DQ, although there appears to be minimal overlap in the

specific peptides presented.

None of the transgenics showed immunodominant CD4+ T

lymphocyte responses against the individual peptides which make

up domain III. The helix bundle which makes up domain III is

inserted into domain II, and may have arisen from repeated

duplications of a structural element of domain II [40]. Although

these domains share elements of their structure and function, the

CD4+ T cell response to each is very different. Domain III appears

to be a hidden or infrequent target of the immune response.

Most vaccine strategies against anthrax have concentrated on

PA, although the UK AVP vaccine, which contains both PA, and

lower levels of LF, stimulates LF specific antibodies [70–72], while

exposure to natural infection results in a faster, antibody response

to LF than PA [73]. It was discovered that the magnitude of the

CD4+ T cell response to LF antigens was greater in naturally

infected individuals than in vaccinees [32]. The T cell immunity to

LF, particularly domain IV, identified in naturally infected

individuals is in contrast to the expected response to LF exposure,

especially in the context of infection, which might be expected to

impair the T cell memory of B. anthracis in survivors of natural

infection. Taking into account all the HLA-DP, DQ and DR

products, as well as inter and intra isotypic mixed pairs, a

heterozygous human can present peptides for CD4+ T cell

recognition on up to 12 different class II molecules. It is therefore

interesting to note that despite the immunogenetic heterogeneity

seen in human populations, which along with differences in

exposure to the antigen, might be expected to complicate the

pattern of epitopes recognised by the human cohorts studied,

amongst the naturally infected individuals, the immunodominant

promiscuous LF467–487 epitope was one of the main targets of a

strong CD4+ T cell response.

Some CD4 epitopes identified in human vaccinees were not

seen in the naturally infected individuals; it might be expected that

some epitopes present in the context of vaccination would be lost

on infection. It is unclear whether such changes in antigen focus

reflect differential antigen processing of pathogen proteins

Figure 5. An LF epitope based vaccine which stimulates HLA restricted T cell immune responses may confer protection against B.
anthracis challenge. Groups of HLA-DQ8 transgenic mice were immunised 3 times, on days 0, 14 and 35 by the intra-peritoneal route, with either an
LF fusion construct comprising a tetanus toxin helper domain (aa 865–1120) and 12 confirmed HLA-restricted LF epitopes (n = 6, black diamonds), or
a peptide pool of the LF epitopes expressed in the fusion protein (n = 7, black triangles), a control, sham immunised, group was also included in the
experiment (n = 6, black squares). All groups were challenged with 106 cfu B. anthracis STI by the intra-peritoneal route, on day 77, and monitored
daily for survival (A). The impact of infection upon survival was described using Kaplan Meier estimation (A). Spleens were recovered from surviving
mice at day 21, (LF fusion protein (n = 6, black diamonds), peptide pool (n = 7, black triangles) and sham immunized mice (n = 2, black squares)), and a
mean bacterial count per spleen determined following culture of B. anthracis for 24 hours (B). No statistically significant difference was seen between
the groups in terms of bacterial burden.
doi:10.1371/journal.ppat.1004085.g005
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encountered in vaccination in contrast to infection, or if this

represents an artefact of the repeated AVP vaccinations which

may skew the cytokine environment during induction of the

immune response, impacting upon the T cell epitope repertoire

[74]. Humans exposed to LF following cutaneous anthrax

infection generate robust long-term T cell memory to B. anthracis

epitopes, in many cases several years after the initial infection

event. The T cell response in these naturally infected individuals

showed significantly elevated levels of the pro-inflammatory

cytokines associated with Th1, Th2, Th9 and Th17 subsets

compared to vaccinees and naı̈ve controls [32]. The inhibitory

effects of both LT and ET upon expression of the activation

markers CD25 and CD69 and the secretion of the pro-

inflammatory cytokines IL-2, IL-5, TNFa, and IFNc by human

T cells has been described in vitro [75,76]. Murine lymphocytes

show impaired TCR-mediated activation and T cell dependent

production of IL-3, IL-4, IL-5, IL-6, IL-10, IL-17, TNFa, IFNc
and GM-CSF following exposure to LT and ET [77]. However,

the cellular immunity we have identified within the naturally

infected humans indicates that, although in vitro exposure to ET

has been implicated in immune deviation towards both the Th2

and Th17 pathways [78,79], the human immune response against

LF encompasses a strong IFNy response. It was suggested to the

authors that, since the predominant mechanism of protective

immunity to anthrax toxin is antibody neutralization, it is possible

that T follicular helper cells, characterised by the co-production of

IFNc and IL-21 and vital for B cell help, may be important here.

In response to the reviewer’s suggestion, we have considered the

notion that this is a TFH response by looking for IL-21

accompanying the IFNc response in each of our donor responses,

but, as we now report, detected none; we therefore consider it less

likely that these are predominantly TFH cells.

Despite the presence of many potential peptide epitopes within

LF, the elicited T cell response indicates that immunodominant

LF epitopes are concentrated in domains II and IV. The

immunodominant epitopes identified within these domains appear

to comprise essential residues of LF which are critical for efficient

catalytic activities and the execution of substrate cleavage. We

therefore suggest that a number of the immunodominant epitopes

which we have identified represent regions of the LF protein in

which the cost of mutation to B. anthracis would be too high, due to

the resultant loss of function. The identification of the immuno-

dominant epitope LF467–487, which represents a rare truly

promiscuous antigen, capable of binding strongly to multiple

diverse HLA alleles, and which is also a feature of a robust T cell

response in naturally infected individuals, presented us with a

unique opportunity to develop a polyepitopic vaccine in which

each epitope is promiscuous, or covers a number of HLA alleles.

This increases the chance that each individual in a genetically

heterogeneous population acquires immunity to multiple epitopes

from a pathogen, thus offering increased protection to a

population. We found that the 12 HLA-restricted LF epitopes,

either incorporated as a fusion construct or as a peptide pool,

conferred protection against lethal challenge with B. anthracis. In

addition to their defined role in the T cell response to LF antigens

in vitro, this suggests that the epitopes we have described here are

capable of priming a strong, long-lasting T cell response that play

a role in protection against anthrax. Further work to attribute this

protection to a specific response, through both cellular and

humoral markers, would be of merit in determining the potential

of the LF fusion protein as a future anthrax vaccine candidate.

The nature of anthrax infection and the need to evolve tractable

strategies, notably in a biodefense setting, has necessarily led to a

reliance on a program of PA vaccines tested in primate challenge

studies. Study of immunity in naturally-exposed humans, who

seem to be immune to reinfection, raises the possibility of learning

from these immune repertoires, including the role of LF as a

target.

Materials and Methods

Expression and purification of LF antigens
Recombinant full-length LF (rLF) and individual domains were

produced in an E. coli expression system as previously described

[80]. In brief, the cysteine residue at position 687 was replaced

with glutamic acid to produce a biologically inactive form of LF.

The gene sequence of LF was codon optimized for expression in E.

coli (GenScript, USA) to allow for the high AT nucleotide content

of the protein. Using the pQE30 expression system (Qiagen,

Germany) the full length LF and LF domain sequences were

cloned and expressed from E. coli as recombinant N-terminal

histidine-tagged proteins. Bacterial pellets were disrupted using a

French press, and the target proteins recovered by centrifuging for

20 minutes at 450006g at 4uC. These were then incubated with

Talon metal affinity resin (Clontech, USA) to bind the N-terminal

histidine tag. The proteins were eluted from this resin at 4uC by

washing with protein elution buffer. Protein concentration was

determined using a bicinchoninic acid (BCA) protein assay

protocol (Pierce, Thermo Scientific, USA) and dialyzed against

HEPES buffer, using a 10000 molecular weight cut-off dialysis

cassette (Pierce, Thermo Fisher Scientific, USA), to a final

endotoxin level of ,4 EU/mg. A synthetic peptide panel, HPLC

purified to a purity of $98% purity, comprising of 20mer amino

acids overlapping by 10 amino acids encompassing the full-length

sequence of LF were obtained from a commercial supplier

(Abgent, USA). All peptides were resuspended in DMSO at

25 mg/ml.

HLA transgenic mice
HLA class II transgenic mice carrying genomic constructs for

HLA-DRA1*0101/HLA-DRB1*0101 (HLA-DR1), HLA-DRA1*

0101/HLA-DRB1*0401 (HLA-DR4), HLA-DRA1*0101/HLA-

DRB1*1501 (HLA-DR15), HLA-DQA1*0301-DQB1*0302

(HLA-DQ8) and HLA-DQA1*0102/HLA-DQB1*0602 (HLA-

DQ6), crossed for more than six generations to C57BL/6 H2-

Ab00 mice, were generated and described previously [81–86]. All

experiments were performed in accordance with the Animals

(Scientific Procedures) Act 1986 and were approved by local

ethical review.

Ethics statement
All mouse experiments were performed under the control of

UK Home Office legislation in accordance with the terms of the

Project License granted for this work under the Animals (Scientific

Procedures) Act 1986 having also received formal approval of the

document through the Imperial College Ethical Review Process

(ERP) Committee. Human blood samples for the Kayseri (Turkey)

component of this study were obtained with full review and

approval by The Ethics Committee of the Faculty of Medicine,

Erciyes University; all participants were adults over 18 year old.

Participants were given a full, verbal explanation of the project

and written consent was obtained from all those who elected to

participate. Human vaccinees based at DSTL, Porton Down,

participated in the context of a study protocol approved by the

CBD IEC (Chemical and Biological Defence Independent Ethics

Committee); the subjects were all adults aged over 18 years and all

provided written, informed consent. Healthy control blood
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samples were collected under the approval of Ethics REC

reference number 08/H0707/173.

Live B. anthracis challenge
HLA-DQ8 transgenic mice were challenged intra-peritoneally

with 106 colony forming units of B. anthracis STI strain. The

animals were monitored daily for 20 days post-infection, and post-

mortem spleens were homogenized in 1 ml of PBS prior to plating

out at a range of dilutions onto L-agar plates. Colonies were

counted after 24 hours culture at 37uC, and the mean bacterial

count per spleen was determined.

Patient samples
Leukocytes were isolated from human peripheral blood samples

and stimulated as described previously [32]. In brief, sodium

heparinised blood was collected with full informed consent from 9

Turkish patients treated for cutaneous anthrax infection within the

last 8 years. (Ericyes University Ethical Committee), 10 volunteers

routinely vaccinated every 12 months for a minimum of 5 years

with the UK Anthrax Vaccine Precipitated (AVP) vaccine (UK

Department of Health under approval by the Convention on

Biological Diversity Independent Ethics Committee for the UK

Ministry of Defence), and 10 age-matched healthy controls with

no known exposure to anthrax antigens (Ethics REC reference

number 08/H0707/173). PBMCs were prepared from the blood

using Accuspin tubes (Sigma, Dorset, UK) and washed twice in

AIM-V serum free medium (Life Technologies, UK). Cells were

counted for viability and resuspended at 26106 cells/ml.

LF epitope mapping and confirmation
Mice were immunized in the hind footpad with 50 ml of 12.5 mg

rLF, LF peptides, individual LF domains or a control of PBS,

emulsified in an equal volume of Titermax Gold adjuvant (Sigma-

Aldrich, USA). After 10 days, immunized local draining popliteal

lymph nodes were removed and disaggregated into single cell

suspensions. Lymph node cells (3.56106/ml) were challenged with

25 mg/ml of either recombinant full-length LF, the 4 domains

which comprise the LF protein, or the overlapping 20mer peptides

covering the full-length LF sequence. This generated a map of the

entire LF protein sequence. To confirm the immunodominant

epitopes identified by this large scale mapping, mice were then

immunized subcutaneously with 12.5 mg of the individual LF

peptides in Titremax adjuvant. After 10 days the lymph node cells

were challenged in vitro with 25 mg/ml of the recombinant full-

length LF and the immunising and two flanking LF peptides.

In the human T cell assays, the peptide library was prepared in

a matrix comprising 6 peptides per pool, so that each peptide

occurred in 2 pools but no peptides occurred in the same two

pools. This allowed the determination of responses to individual

peptides. The in-well concentration of each peptide was 25 mg/ml

and total peptide concentration per well was 150 mg/ml.

Lymphocyte proliferation assay
Leukocytes were resuspended at 3.56106 cells/ml in HL-1

media (1% L-Glutamine, 1% Penicillin Streptomycin, 2.5% b-

Mercaptoethanol) and 100 ml/well was plated out in triplicate on

96 well Costar tissue culture plates (Corning Incorporated, USA).

The cells were stimulated with 100 ml/well of, appropriate

antigen, positive controls of 5 mg/ml Con A (Sigma-Aldrich,

USA) or 25 ng/ml of SEB (Sigma-Aldrich, USA) or negative

controls of medium alone. The plates were incubated at 37uC, 5%

CO2 for 5 days. Eight hours prior to harvesting, 1 mCi/well of

[3H]-Thymidine (GE Healthcare, UK) was added. The cells were

harvested onto fiberglass filtermats (PerkinElmer, USA) using a

Harvester 96 plate harvester (Tomtec, USA) and counted on a

Wallac Betaplate scintillation counter (EG&G Instruments,

Netherlands). Results were expressed as stimulation index (SI)

(cpm of stimulated cells divided by cpm of negative control cells).

An SI of $2.5 was considered to indicate a positive proliferation

response.

IFNc ELISpot assay
Quantification of murine antigen-specific IFNc levels was

carried out by ELISpot (Diaclone) analysis of T cell populations

directly ex vivo. Hydrophobic polyvinyldene difluoride membrane-

bottomed 96-well plates (MAIP S 45; Millipore) were pre-wetted

with 70% ethanol, washed twice and then coated with anti-IFNc
monoclonal antibody at 4uC overnight. After blocking with 2%

skimmed milk, plates were washed and 100 ml/well of antigen was

added in triplicates. For each assay a medium only negative and a

positive control of SEB (25 ng/ml) were included. Wells were

seeded with 100 ml of 26106cells/ml in HL-1 medium (1% L-

Glutamine, 1% Penicillin Streptomycin, 2.5% b-Mercaptoethanol)

and plates were incubated for 72 h at 37uC with 5% CO2. Plates

were washed twice with PBS Tween 20 (0.1%) then incubated with

biotinylated anti-INFc monoclonal antibody. Plates were washed

twice with PBS Tween 20 (0.1%), and then incubated with

streptavidin-alkaline phosphatise conjugate, washed and then

treated with 5-bromo-4-chloro-3-indolyl phosphate and nitroblue

tetrazolium (BCIP/NBT) and spot formation monitored visually.

The plate contents were then discarded and plates were washed

with water, then air-dried and incubated overnight at 4uC to

enhance spot clarity. Spots were counted using an automated

ELISpot reader (AID), and results were expressed as delta spot

forming cells per 106 cells (DSFC/106) (SFC/106 of stimulated

cells minus SFC/106 of negative control cells). The results were

considered positive if the DSFC/106 was more than two standard

deviations above the negative control.

Human T cell INFc levels were quantified by ELISpot

(Diaclone) as previously described [32]. In brief, the plates were

prepared in a similar manner to the murine ELISpots and

following addition of antigen to the wells (with each peptide

represented in two separate triplicates) they were frozen at 280uC
until use. Wells were seeded with 100 ml of human PBMCs at

26106 cells/ml (range; 1.66106–2.16106 cells/well) in AIM-V

medium and plates were incubated for 72 hours at 37uC with 5%

CO2. 50 ml supernatant was removed from each well for further

determination of cytokines, the remaining plate contents were then

discarded and plates were washed with PBS Tween 20 (0.1%) and

incubated with biotinylated anti–INFc, followed by a further wash

and the addition of streptavidin-alkaline-phosphatase conjugate.

Following a final wash, plates were developed by addition of

BCIP/NBT. Spots were counted using an automated ELISpot

reader (AID), and results were expressed as delta spot forming cells

per 106 cells (DSFC/106) (SFC/106 of stimulated cells minus SFC/

106 of negative control cells). The results were considered positive

if the DSFC/106 was more than two standard deviations above the

negative control and $50 spots. IL-21 release from peptide-

stimulated donor T cell cultures was determined by ELISA

(eBiosciences).

HLA peptide binding assay
Competitive ELISAs were used to determine the relative

binding affinity of LF peptides to HLA-DR molecules, as

previously described [87]. Briefly, the HLA-DR molecules were

immunopurified from homozygous EBV-transformed lymphoblas-

toid B cell lines by affinity chromatography. The HLA-DR
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molecules were diluted in HLA binding buffer and incubated for

24 to 72 hours with an appropriate biotinylated reporter peptide,

and a serial dilution of the competitor LF peptides. A control of

unlabeled reporter peptides was used as a reference peptide to

assess the validity of each experiment. 50 ml of HLA binding

neutralisation buffer was added to each well and the resulting

supernatants were incubated for 2 hours at room temperature in

ELISA plates (Nunc, Denmark) previously coated with 10 mg/ml

of the monoclonal antibody L243. Bound biotinylated peptide was

detected by addition of streptavidin-alkaline phosphatase conju-

gate (GE Healthcare, Saclay, France) and 4-methylumbelliferyl

phosphate substrate (Sigma-Aldrich, France). Emitted fluorescence

was measured at 450 nm post-excitation at 365 nM on a Gemini

Spectramax Fluorimeter (Molecular Devices, St. Gregoire,

France). LF peptide concentration that prevented binding of

50% of the labeled peptide (IC50) was evaluated, and data

expressed as relative binding affinity (ratio of IC50 of the LF

competitor peptide to the IC50 of the reference peptide which

binds strongly to the HLA-DR molecule). Sequences of the

reference peptide and their IC50 values were as follows: HA 306–

318 (PKYVKQNTLKLAT) for DRB1*0101 (4 nM), DRB1*0401

(8 nM), and DRB1*1101 (7 nM), YKL (AAYAAAKAAALAA)

for DRB1*0701 (3 nM), A3 152–166 (EAEQLRAYLDGTGVE)

for DRB1*1501 (48 nM), MT 2–16 (AKTIAYDEEARRGLE) for

DRB1*0301 (100 nM) and B1 21–36 (TERVRLVTRHIYNREE)

for DRB1*1301 (37 nM). Strong binding affinity was defined in

this study as a relative activity ,10, and a moderate binding

affinity was defined as a relative activity ,100.

Generation and evaluation of an LF epitope fusion
protein

A fusion protein comprising HLA-restricted T cell epitopes

from LF downstream of the universal T cell helper domain from

the tetanus toxin C fragment (aa 865–1120) was designed and

codon optimized to reflect Salmonella enterica Typhi codon usage

(GenScript Corp). This construct was expressed as a recombinant

N terminal histidine tagged protein on the commercially available

expression system pQE30 in E. coli M15 (Qiagen). The LF

epitopes included in the fusion protein were: LF101–120, LF151–170,

LF261–280, LF467–486, LF547–567, LF574–593, LF614–633, LF654–673,

LF674–693, LF714–733, LF724–743 and LF744–763. Briefly, cultures

derived from a single colony were grown overnight at 37uC in LB

broth with antibiotic selection. Overnight cultures were subcul-

tured in fresh LB broth until they reached an OD600 of 0.550–

0.600. To induce protein expression, isopropyl b-D-thiogalacto-

pyranoside (IPTG) was added to a final concentration of 1 mM.

Cultures were then incubated at 25uC (200 rpm) for 16 hours.

Cells were harvested by centrifugation at 10,000 g at 4uC for

20 minutes. His-tagged fusion proteins were purified from

bacterial pellets under denaturing conditions; all steps were

conducted at 4uC unless otherwise stated. The bacterial pellet

was resuspended in suspension buffer (SB) (50 mM NaH2PO4,

300 mM NaCl, pH 7) by gentle pipetting until a homogenous

suspension was obtained. Phenylmethanesulfonylfluoride (PMSF)

and lysozyme (Sigma- Aldrich, St. Louis, MO) were added to final

concentrations of 1 mM and 0.25 mg/mL respectively. The

suspension was stirred for 20 minutes before the addition of

deoxycholic acid (Sigma- Aldrich, St. Louis, MO) to a final

concentration of 1 mg/mL. The lysate was incubated at 37uC,

with occasional stirring, until viscous, and DNase I added to a

concentration of 0.01 mg/mL. The lysate was stored at room

temperature until no longer viscous before centrifugation at

10,000 g for 20 minutes. The resulting pellet was washed three

times in SB containing 1% Triton X-100, then washed in SB

containing 2M urea before resuspension in SB containing 8M urea

and centrifugation at 13,000 g for 15 minutes. The supernatant

was collected and incubated with Talon metal affinity resin

(Clontech Laboratories) to bind the N terminal histidine tag.

Following washing of the resin with SB containing 6 M urea, the

protein was recovered at 4uC in elution buffer (150 mM

imidazole, 50 mM sodium phosphate and 300 mM NaCl, 6 M

urea, pH 7). Eluate was dialyzed using a 10,000 MW cut off

dialysis cassette (Pierce, Thermo Scientific) in dialysis buffer (DB)

(10 mM HEPES, 50 mM NaCl, 400 mM L-Arginine, pH 7.5)

containing sequentially decreasing concentrations of urea for

1 hour periods. Finally, eluate was dialyzed against 4 L HEPES

buffer (10 mM HEPES, 50 mM NaCl, pH 7.5). Protein identity

was confirmed by SDS-PAGE and Western Blot analysis (Bio-Rad

Laboratories). Protein bands were detected by staining with

Coomassie Blue after electrophoretic transfer onto polyvinylidene

difluoride membranes (Millipore) by Ni-NTA HRP Conjugate

(QIAgen Inc.). The protein was of expected size and was

recognized by specific antibodies. The endotoxin content of the

different protein preparations was determined by the Limulus

amoebocyte lysate linetic-QCL assay according to the manufac-

turer’s instructions (Lonza). Protein concentrations were deter-

mined using a BCA protocol (Pierce, Thermo Scientific) [88].

The complete amino acid sequence of the fusion protein is:

MKNLDCWVDNEEDIDVILKKSTILNLDINNDIISDISGFNS-

SVITYPDAQLVPGINGKAIHLVNNESSEVIVHKAMDIEYN-

DMFNNFTVSFWLRVPKVSASHLEQYGTNEYSIISSMKK-

HSLSIGSGWSVSLKGNNLIWTLKDSAGEVRQITFRDLP-

DKFNAYLANKWVFITITNDRLSSANLYINGVLMGSAEI-

TGLGAIREDNNITLKLDRCNNNNQYVSIDKFRIFCKALN-

PKEIEKLYTSYLSITFLRDFWGSDVLEMetYKAIGGKIYIV-

DGDYVYAKEGYEPVLVIQSSEDYQHRDVLQLYAPEAFN-

YMetDKFKIYLYENMetNINNLTATLGADLENGKLILQR-

NIGLEIKDVQIEYIRIDAKVVPKSKIDTKIQKLITFNVHN-

RYASNIVESAYYLVDGNGRFVFTDITLPNIAEQYTHQDE-

IYEQVHSKGLYVAVDDYAGYLLDKNQSDLVTNSKKFID-

IFKEEGSNLTSYGRSEGFIHEFGHAVDDYAGYLL. Mice trans-

genic for HLA-DQ8 were immunized with 25 mg of fusion protein, or

alternatively with a peptide pool consisting of 25 mg of each peptide

represented in the fusion protein (total concentration 300 mg peptide),

control mice were sham-immunized with PBS. All immunizations were

adjuvanted 1:1 in Titremax Gold and administered by the i.p. route

(0.1 mL). Mice were immunized on days 0, 14 and 35 prior to

challenge with B. anthracis STI strain on day 77.

Supporting Information

Figure S1 HLA-DR4 transgenic mice sham immunized
with a PBS control do not generate a response to either
the LF protein, its domains, or the individual peptides
which make up the entire protein. HLA-DR4 transgenic

mice (n = 3) were immunised in the footpad with PBS adjuvanted

with Titermax Gold. Popliteal lymph nodes were harvested on day

10 and stimulated with 25 mg of either (A) the whole LF protein or

the individual domains or (B) the 10mer peptides in the LF peptide

library (LF31–809). IFNc production was assayed by ELISpot

development and enumeration after 3 days stimulation. Data is

represented as scatter plots, showing the responses of mice as the

stimulation index (SI) calculated as the mean IFNc production of

triplicate wells in the presence of peptide divided by the mean

IFNc production in the absence of antigen. Responses were

considered positive if the response was $2 SD above the cells plus

medium control.

(TIF)
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