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Abstract
Diamond is one of the hardest and most difficult to polish materials. In this paper, the polishing
of {111} and {100} single crystal diamond surfaces by standard chemical mechanical polishing,
as used in the silicon industry, is demonstrated. A Logitech Tribo Chemical Mechanical
Polishing system with Logitech SF1 Syton and a polyurethane/polyester polishing pad was used.
A reduction in roughness from 0.92 to 0.23 nm root mean square and 0.31 to 0.09 nm rms for
{100} and {111} samples respectively was observed.
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1. Introduction

Diamond has long been used for cutting and polishing
applications due to its extreme hardness, high thermal con-
ductivity and chemical inertness. However, properties such as
a large band gap, high resistivity, high electron mobility, low
dielectric constant, and low thermal coefficient of expansion
make diamond an excellent candidate for high power–high
frequency electronics [1, 2], and optical devices [3, 4]. With
the advancement of technology it is now possible to eco-
nomically synthesize high quality large area single crystal
diamonds through homoepitaxial chemical vapor deposition
(CVD) [5, 6]. However, to prevent defects and surface
damage from the substrate from propagating into the CVD
layer a polishing step is required [7, 8]. Recent experiments
have also pointed to the presence of two dimensional hole gas
on the surface of hydrogen terminated diamond [9]. To har-
ness this phenomenon, and to fully utilize the properties of
diamond in the applications mentioned above it is also
important to have atomically flat, defect free top surfaces—
necessitating an efficient polishing technique.

For the polishing of diamond, while many techniques
exist including thermo-mechanical, ion beam, and thermal
annealing, mechanical polishing has traditionally prevailed
[10–15]. Mechanical polishing is typically done through the
use of a fast rotating metal scaife charged with a diamond grit
and olive oil binder. The sample is polished by applying it
under pressures of 2.5–6.5 MPa for grinding and 1–2.5 MPa
for polishing to a fast rotating cast iron scaife, resulting in

linear velocities of approximately −50 m s 1 [16]. However, the
polishing of diamond is highly anisotropic with two orders of
magnitude difference in removal rate between hard and soft
polishing directions for the {100} and {110} plane groups
[17]. Along soft directions, polishing is the result of shearing
between diamond chips on the scaife and the sample surface

driving a phase conversion to non-sp3 material [18]. As a
result ‘nano-grooves’ are found on the surface with lengths of
20–1000 nm dependent on the grit used and depths of up to
20 nm, whereas, polishing along hard directions leads to
fracturing along the {111} plane producing a rough ‘hill and
valley’ type surface [19]. Polishing of the {111} plane
meanwhile remains difficult [20], with only slight anisotropy
between hard and soft directions [3]. Due to the inherent
mechanical nature of this technique subsurface damage
occurs, with fractures at the surface propagating into the bulk
[21]. This problem of poor surface quality is often seen in the
techniques mentioned above, preventing full use of the
properties of diamond [22].
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In order to reduce these polishing artifacts several
methods have been proposed as a finishing technique,
including chemo-mechanical [23–25] or tribochemical pol-
ishing [26], reactive ion etching [21], and UV photon based
etching [8, 27]. In chemo-mechanical polishing a molten
oxidizer is added, typically KNO3 (potassium nitrate), NaNO3

(sodium nitrate) [23], or H2O2 (hydrogen peroxide) [24].

Between the scaife and diamond sample hot spots of 360° C
are reached driving a conversion to CO and CO2 [23]. While
this method achieves low roughness values, the use of scaife
and elevated temperatures makes the process complicated and
very different to that used in the silicon based electronics
industry [28].

Previous work by the authors have shown chemical
mechanical polishing (CMP), a technique used in the pol-
ishing of gate dielectrics in integrated circuit (IC) fabrication,
can successfully be used to polish nanocrystalline diamond
(NCD) films with a rate of −16 nm h 1 [29]. In this technique
the sample is swept across a polyester/polyurethane based
polishing pad doused with colloidal silica polishing fluid
(Syton), without the use of any diamond grit or elevated
temperatures. Drawing parallels with the mechanism used to
describe the polishing of SiO2 [30], it was tentatively sug-
gested that wet oxidation of the diamond increases the
hydroxide content on the surface, facilitating the binding of
silica particles within the slurry. Should an asperity on the
rough pad then create a sufficient shearing force on the silica
particle, the particle and attached carbon atom will be
removed, polishing the surface.

In this article the use of CMP on {100} and {111} single
crystal diamond is demonstrated through the use of atomic
force microscopy (AFM). The aspects of this adaption from
the IC fabrication industry, including the condition of the
polishing pad and post-polishing cleaning is also discussed.

2. Experimental method

High pressure high temperature single crystal {100} and
{111} samples were obtained from Element Six, with
dimensions of approximately × ×2 2 0.5mm high and

× ×3 3 0.7mm high respectively. Misalingment angles were
stated to be less than °2 . Before use both samples were given
a standard SC-1 clean of 30% H2O2 : NH4OH : deionized

(DI) H2O (1 : 1 : 5) at 75 °C for 10 min, followed by a ultra-
sonic DI H2O bath for 10 min. In preparation for polishing,
samples were bonded within a slight recess on a 2 inch
polymer holder with cyanoacrylate. The recess was then filled
up with Crystalbond 509 to prevent shear forces on crystal
edges, ensuring a stable mounting while leaving only the
surface to be polished protruding. This template was then
placed inside a carrier chuck suitable for use with the CMP
equipment.

CMP was carried out with a Logitech Tribo CMP tool
equipped with a SUBA–X polyester/polyurethane pad and
Syton colloidal silica alkaline polishing fluid (15–50% SiO2,
9.2–10.1 pH, 4–5% ethylene glycol), as described elsewhere

[29]. Before use an electroplated diamond grit conditioning
plate was put into contact with the polishing pad to roughen
the surface of the pad and maximize slurry distribution.
During polishing both holder and pad were kept rotating at
60 rpm in opposite directions as the holder swept across the
pad. Down pressure on the holder was maintained at 4 psi
(27.6 kPa) while a backing pressure of 20 psi (138 kPa) was
applied to prevent bowing of the holder and ensure contact
between the diamond crystal and the polishing pad. The pad
was also conditioned in situ with a second sweeping carrier
chuck rotating at 60 rpm in the same direction as the sample,
but at a reduced pressure of 1 psi (6.9 kPa). After initial
wetting of the plate, the polishing slurry rate was maintained
at −40 ml min 1. Polishing durations for the {100} and {111}
single crystals were 3 and 7 h respectively, judged as the point
at which sufficient removal of the nano-grooves was seen.
After polishing, the samples were cleaned with SC-1 and
hydrofluoric acid in an attempt to remove any organic con-
taminants and remaining silica.

AFM was performed with a Park Systems XE-100 AFM
operating in non-contact mode equipped with NT-MDT
NSG30 tips (320 kHz resonant frequency, −40 N m 1 spring

constant, 10 nm tip radius). Multiple areas of 25 μm2 were
scanned for each sample before and after polishing, with
analysis of data being carried out by WSxM and Gwyddion
SPM analysis software.

For analysis of the polishing pad, samples were taken of:
a fresh pad, a conditioned pad, and a pad that had been
subjected to 7 h of single crystal polishing. Scanning electron
microscopy (SEM) images were taken with the secondary
electron (SE2) detector of a Raith E-line SEM, operating at
10 kV accelerator voltage and 9 mm working distance.

3. Results and discussions

3.1. {100} single crystal

Typical AFM scans of the {100} single crystal before and
after polishing are shown in figures 1(A) and (B), while lines
traces perpendicular to the original polishing direction (1),
and along the polishing direction (2) are plotted in
figures 1(C) and (D). As can be seen in figures 1(A) and (C),
the surface of the sample prior to CMP consists of clearly
defined nano-grooves as a result of phase transformation
along the< 100> soft direction. From the 5 μm perpendicular
line trace it can be seen that the nano-grooves widths are
between 100 and 500 nm, with an average depth of 3 nm.
Meanwhile, for the trace along the polishing direction less
variation is seen with little indication of fracture. Roughness
values are 0.92 nm root mean square (rms) and 0.34 nm rms
for the perpendicular to and along polishing direction line
traces respectively.

Looking at the 3 h CMP polished AFM image and line
traces of figures 1(B) and (D) a clear difference can be seen
with the removal of the grooved features evident in 1(A) and
(C) to the point at which it is difficult to resolve the original
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polishing direction. The line trace perpendicular to the pol-
ishing direction shows a decrease in the larger undulations of
the nano-grooves to a point at which it is in close agreement
with the trace taken along the original polishing direction,
with roughness values being 0.23 and 0.19 nm rms respec-
tively. It is also worth noting that a lack of polishing debris
can be seen in the polished AFM image, showing the ease of
removal of the polishing slurry used.

3.2. {111} single crystal

In a similar fashion to the {100} single crystal sample,
figure 2 shows typical AFM images of the {111} single
crystal before and after being subjected to 7 h of CMP along
with line traces perpendicular (1), and along the mechanical
polishing direction (2). As can be seen in figure 2(A), the
{111} single crystal has similar, but shallower, grooved fea-
tures as the {100} crystal. Roughness values seen perpendi-
cular to and along the original polishing direction are 0.31 nm
and 0.23 nm rms respectively. After being subjected to CMP
it is again very difficult to determine the original polishing
direction due to the dramatic reduction in the grooved fea-
tures. Looking at the two perpendicular line traces they appear
very similar, reiterating the removal of these grooves.
Roughness values for these traces are significantly lower at

0.09 nm rms for both perpendicular and along the polishing
direction traces.

3.3. Polishing pad

As stated earlier, the tentative model used to describe the
CMP of diamond, and the model to describe traditional CMP
on which it is based, rely on shearing forces being applied to
bound silica particles. Therefore it would be expected that the
condition and properties of the polishing pad heavily dictate
the wear rate [31–34]. In traditional CMP it has been seen that
the removal rate is directly related to the surface roughness
and hence the number of surface asperities [34]. However, the
pad also needs to be porous to allow for slurry distribution
and clearing away of spent material. Therefore, before use
pads are typically ‘run in’ [33] or ‘conditioned’. In this pro-
cess an electroplated diamond grit plate is swept across the
rotating polishing pad abrading the soft polymer material
resulting in an increase in surface roughness and opening up
of pores. Upon use in polishing the pad is then plastically
deformed by the sample, closing pores and reducing the
number of these surface asperities in as little as 10 min [33].
This decrease limits the shearing forces applied to the bound
silica particles, leading to a reduction in the polishing rate.
While the diamond samples themselves will condition the pad

Figure 1. AFM images of a {100} orientated single crystal before (A) and after chemical mechanical polishing (B). Shown in panels (C) and
(D) are line traces perpendicular to the mechanical polishing direction (1) and along the polishing direction (2) of the respective AFM images.
Clear removal of the nano-grooves can be seen in the AFM images, backed up by the dramatic reduction in amplitude of the perpendicular to
polishing direction line trace.
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surface, due to the polishing duration being in the hours rather
than minutes [33], in situ conditioning of the pad is also
needed and has been carried out in the process described
within this article. With the difference in mechanical prop-
erties of diamond and the materials traditionally polished with
these polyester/polyurethane pads, work is needed to char-
acterize the pad during diamond polishing.

Plan view SEM images of an as received SUBA-X pol-
ishing pad, a conditioned pad, and a pad subjected to 7 h of
single crystal CMP can be seen in figures 3(A), (C), and (E).
Also shown in panels (B), (D), and (F) are corresponding side
view schematics of the polishing pad at the different stages of
use. From the fresh pad and the corresponding schematic,
highly orientated polyester strands can be seen to be bound
together by dense polyurethane foam. After being condi-
tioned, the abrasion by the electroplated diamond grit can be
seen; the polyester strands show signs of being severed by the
conditioner while the polyurethane foam has also opened up
and become rougher. It can therefore be assumed that con-
ditioning has increased the surface asperities on a scale closer
to the size of the silica particles within the slurry. After 7 h the
SEM image shows significant wear with most of the polyester
strands being severed and the polyurethane foam appearing
severely abraded, signifying that at this point conditioning is

no longer affective. Pores within the material have also closed
up, preventing efficient slurry distribution and removal of
spent material. Wear tracks were also visible by eye after 7 h,
reiterating this considerable wear.

3.4. Discussion

Looking at the AFM images for the {100} and {111}
orientated single crystals of figures 1 and 2, a clear polishing
effect can be seen. The deep nano-grooves left over from
mechanical polishing have been removed, leaving a smoother

surface over the 25 μm2 image area. The line trace perpen-
dicular to these polishing grooves reiterate this with a
reduction in roughness from 0.92 to 0.23 nm rms and 0.31 to
0.09 nm rms for the {100} and {111} samples respectively.
After polishing the line traces appear very similar to the traces
along original polishing direction, again showing this clear
removal. With regards to polishing rate, it can tentatively be
said these roughness values show faster polishing on the
{100} than the {111} plane, as also seen in mechanical
polishing. To describe this polishing on NCD a model of wet
oxidation of the surface by the slurry, followed by binding of
silica particles and subsequent shearing away has been pro-
posed elsewhere [29]. Given the results presented within this

Figure 2. AFM images of the {111} polished plane before (A) and after chemical mechanical polishing (B). Shown in panels (C) and (D) are
line traces similar in fashion to those seen in figure 1. Once again, a clear removal of grooved surface features can be seen, leading to a very
smooth surface with line trace roughness reducing from 0.31 and 0.23 nm rms for perpendicular to and along original polishing direction to
0.09 nm rms.

4

Sci. Technol. Adv. Mater. 15 (2014) 035013 E L H Thomas et al



paper, it is believed the same model can be used to describe
the CMP of single crystal diamond.

It is worth noting that no attempt was made at polishing
along soft mechanical directions, with the sample being rotated
while sweeping across the pad. Equal time was then spent pol-
ishing along hard and soft polishing directions with no indication
of the fracture damage seen when mechanically polishing along
hard directions [3], showing the gentle nature of the polishing
mechanism used here. The surfaces are also free of polishing
debris or remaining polishing slurry due to the combined use of
SC-1 and HF cleaning after polishing, while it can also be
assumed that there has been little to no increase in subsurface
damage due to the lack of diamond grit being used in the pol-
ishing slurry. Due the difference in properties of diamond and the
materials typically polished with CMP, study of the polishing pad
is needed to optimize the adapted technique. Due to the hardness

of diamond additional abrasion of the pad is seen, as highlighted
in figure 3(E), reducing the life time of the pad.

It has been shown that CMP can be used efficiently to
remove the nano-grooved artifacts brought about through
mechanical polishing of single crystal diamond and provide
low roughness {100} and {111} diamond surfaces. With this
technique polyester/polyurethane pads are used at room
temperature with low applied pressures, without the use of
diamond grit, simplifying the process and making CMP a
promising technique.

4. Conclusion

{100} and {111} orientated single crystal diamond has been
polished with CMP through the use of a polyester/polyurethane

Figure 3. Plan view SEM images of polishing pad samples taken: (A) before use, (C) after conditioning for 1 h, and (E) after 7 h of single
crystal polishing. Shown in panels (B), (D), and (F) are corresponding side view schematics of the polishing pad at the before use,
conditioned, and used stages respectively. Abrasion of the pad by the electroplated diamond grit conditioner can be seen after 1 h of
conditioning, with a general increase in the surface roughness of the polyurethane foam binder. Also visible is the severing of the polyester
strands. After 7 h of use the pad has become severely abraded leading to a reduction in the polishing rate along with nearly all polyester
strands being cut.
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pad and an alkaline colloidal silica polishing fluid. Clear
removal of the mechanical polishing induced nano-grooves can
be seen, with {100} surface roughness values being reduced
from 0.92 to 0.23 nm rms along a 5 μm line trace taken per-
pendicular to the direction of the nano-grooves. Meanwhile, the
equivalent line trace on the {111} sample shows a reduction
from 0.31 to 0.09 nm rms. Therefore with its simplicity due to
the use of materials commonly found in the IC fabrication
industry, along with the lack of diamond grit and elevated
temperatures, CMP is a promising technique for removing
mechanical polishing introduced artefacts.
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