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Abstract Reverse transcription quantitative PCR is an
established, simple and effective method for RNA mea-
surement. However, technical standardisation challenges
combined with frequent insufficient experimental detail
render replication of many published findings challeng-
ing. Consequently, without adequate consideration of ex-
perimental standardisation, such findings may be suffi-
cient for a given publication but cannot be translated to
wider clinical application. This article builds on earlier
standardisation work and the MIQE guidelines, discussing
processes that need consideration for accurate, reproduc-
ible analysis when dealing with patient samples. By ap-
plying considerations common to the science of measure-
ment (metrology), one can maximise the impact of gene
expression studies, increasing the likelihood of their trans-
lation to clinical tools.
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Introduction

The real-time quantitative polymerase chain reaction (qPCR)
[1], developed from the revolutionary method of polymerase
chain reaction (PCR) pioneered by Kary Mullis in the 1980s
[2–4], has emerged as a widely used method for biological
investigation because it can detect and precisely quantify very
small amounts of specific nucleic acid sequences. This is
coupled to an inherent simplicity that makes qPCR assays
straightforward to design and perform. The characterisation
of gene expression patterns through quantification of messen-
ger RNA (mRNA), by coupling reverse transcription with
PCR, as a surrogate of cell metabolism is a major application
of this technology. Reverse transcription qPCR (RT-qPCR)
makes possible rapid and precise assessment of changes in
gene expression as a result of physiology, pathophysiology or
development [5]. However, for RNA analyses to be clinically
informative, reliable measurements that are reproducible be-
tween laboratories are essential. As much as 30 % of the costs
of medical care budgets are in measurements and tests related
to diagnosis [6]. This necessitates sustained efforts to improve
the reliability of such measurements and tests, which play a
key role in the continual development of effective health care
systems.

In research studies, RT-qPCR has been used to measure
bacterial gene expression [7, 8] or RNAviral loads [9–12], to
evaluate cancer status or to track disease progression and
response to treatment [13–15]. As a consequence, this method
is being applied to the discovery and development of putative
biomarkers. An example of successful translation of an RT-
qPCR method to the patient is the Oncotype Dx assay, which
predicts the potential benefits of chemotherapy and the likeli-
hood of cancer recurrence [16–19] and thus can be used to
stratify patients to different treatment regimens [20].
Furthermore, viral load monitoring using RT-qPCR is now
routine for a number of RNA viruses [21].
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RT-qPCR is used extensively in clinical research investi-
gating putative biomarkers for disease diagnosis as well as for
predictive and prognostic monitoring. However, on review of
the literature, articles published reporting RT-qPCR data fre-
quently do not report all experimental details relating to RT-
qPCR experiments. Fundamental experimental details are of-
ten omitted when reporting gene expression measurements,
including information pertaining to RNA quality, the rationale
for the choice of the normalisation strategy, the location of the
amplicon or detailed descriptions of the reverse transcriptase
and PCR assay conditions [22, 23].

To facilitate good repeatability (measurements made by the
same operator or instrument, and under the same conditions
over a short period of time) and reproducibility (measure-
ments made by different operators or instruments, and/or
under different conditions) [24], key aspects of RT-qPCR
experimental processes need to be reported, as outlined in
the MIQE (from ‘minimum information for publication of
quantitative real-time PCR experiments’) guidelines, which
propose a minimum standard for the provision of information
for publications reporting qPCR experiments [25]. These cov-
er key aspects including sample acquisition, assay design and
validation as well as details about data analysis, enabling other
scientists to easily assess and, if necessary, repeat the experi-
ment [25, 26]. This is fundamental if findings are to be
corroborated, which is in turn crucial for the observation to
be translated into a clinically useful tool.

RNA measurement on a complex biological sample (such
as a tissue biopsy sample) requires a series of steps, each of
which contributes error that is often severalfold greater than
the difference in the mRNA to be measured. Consequently,
determining differences in gene expression in real scenarios
requires consideration of the sources of error and appropriate
normalisation mechanisms to control for them.

Yet measurement claims of biologically significant gene
expression differences are routinely made without apparent
consideration (or reporting) of such technical factors [27].
Consequently, although often statistically significant, these
results may not be due to the biological phenomenon under
investigation and/or may not be reproducible. Without assess-
ment and consideration of the technical variability introduced
at each stage of the experimental process, findings may be of
limited practical use in the clinic because they are difficult to
reproduce.

From sample to final result: a series of steps

The route from sample to accurate quantification of gene
expression is a multicomponent process, with each process
having its own experimental uncertainty. There can be numer-
ous factors that need to be considered (Fig. 1). Cause-and-
effect diagrams such as that in Fig. 1 are widely used in

measurement uncertainty and the field of metrology [28, 29]
to identify the relationships between sources of uncertainty.
RT-qPCR techniques have the ability to quantify nucleic acids
over a wide dynamic range (at least eight logarithms) and are
precise (DNA and RNA measurements can typically be
optimised to have a coefficient of variation of less than 5 %
or less than 10 %, respectively [30]). But measurements using
this precise technique are only as robust as the upstream
processes used to sample, store and prepare the RNA.
Precision is a measure of the degree of agreement between
replicate measurement results obtained for the same sample
[24, 31]. However, what is often overlooked is that the whole
stepwise procedure contributes to the experimental precision.

It is well known that sample handling affects experimental
variability [26], and source and storage conditions affect it too,
all of which may contribute to variation in measurement,
particularly if samples are obtained and analysed periodically
during a successive long-term study. Consequently, sampling
and subsequent storage should be carefully controlled and
documented in order to preserve the quality and abundance
of the RNA material.

Both biological and technical replicates are recommended
for good experimental design (Fig. 2). Many studies have
shown that variability attributed to reverse transcription is
far greater than the variability contribution of qPCR alone
[26, 32, 33] (Fig. 3). This increased variance may be caused
by factors such as reverse transcriptase efficiency, RNA in-
tegrity and secondary structure. The reverse transcription step
is therefore critical for accurate RNA quantification. Reverse
transcriptase linear dynamic range is another crucial consid-
eration for successful RT-qPCR [32] and should be demon-
strated empirically. However, often it is the PCR rather than
the reverse transcription step that is replicated. This has the
danger of appearing to produce highly precise data, but could
in fact proffer bias by masking true measurement variability.
Consequently, true, meaningful and clinically significant mea-
surement, particularly of small expression fold changes, ide-
ally requires a discussion of the potential different sources of
variance and bias.

The use of distinct instruments, software, reagents, plates
or seals can often lead to underestimated run-to-run differ-
ences that need to be compensated in order to allow data
reproducibility [34]. Since there are so many steps involved
in taking a tissue sample to a ‘quantitative’ result (Fig. 1), it is
not surprising that this variation is problematic [32], and
factors that more comprehensively estimate error will lead to
a better estimation of the variation and increase the likelihood
of making accurate measurements.

Unexpected sources of RT-qPCR variability include the abil-
ity of the thermocycler to maintain a consistent temperature
across all sample wells, as any deviations in temperature will
lead to different reverse transcription and/or PCR amplification
efficiencies [5, 35, 36] and thus contribute to the overall
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variability in measurement. This extends to differences between
different thermocycler platforms, with differences observed in
timing and heat transfer capabilities [36]. Expectation of lot-to-
lot consistency may be a reason for selecting commercially
available kits rather than preparing mixes in-house. In addition,
maintenance of primer/probe stability is often assumed be-
tween different syntheses or suppliers. However, although the
multitude of commercial kits and protocols available offer
undeniable benefits, reagent preparations from distinct batches
have been shown to contribute significant experimental vari-
ability, with up to sevenfold differences in calculated mRNA
quantities observed [32, 37].

For some commercially supplied primers and probes, the
location of the amplicon selected for gene expression is omit-
ted, a fact that makes it difficult to adhere to the MIQE
guidelines. The problem with not providing this information
means the researcher does not know which part of a given
transcript is being detected. This information is fundamental
for any hope of reproducibility due to transcript differences,
including alternative splicing, polyadenylation and alternative
promoters. An amendment to the MIQE guidelines [38] of-
fered a compromise to commercial vendors who do not

disclose this information by alternatively requiring a context
sequence to enable the researcher to locate which portion of a
given sequencewas being detected [25, 26, 38].Where neither
primer information nor a context sequence is provided, re-
searchers using such commercial assays are strongly advised
to sequence the PCR products to obtain the location of the
transcript being measured.

The issues described above highlight the importance of
including appropriate controls, designed to enable researchers
to identify and account for these differences, and
harmonisation of experimental design [39, 40]. There are a
number resources that support experimental design as basic
guides [41] and as extensive repositories of information [42],
as well comprehensive software tools, including GenEx [43],
Qbase [44] and RealTime StatMiner [45].

Accuracy and measurement uncertainty

Accuracy is essentially how close the measurement is to the
truth and is influenced by both precision and bias [24]. The
challenge when measuring patient samples is that the truth is

Fig. 1 Cause and effect: uncertainty contributions for gene expression
analysis. The central arrow represents the experimental process from
RNA to the quantification method. Branches feeding into experimental
progression characterise sources of variability that contribute to uncer-
tainty at various stages of the process. There are numerous methods

available for the final quantification step. conc concentration, HPLC
high-performance liquid chromatography, ICP-OES inductively coupled
plasma optical emission spectroscopy, NGS next-generation sequencing,
qPCR quantitative PCR, RT reverse transcription
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often a moving target that can vary from patient to patient and
within a patient, over time. The added danger with RT-qPCR
is that its high precision can lead to considerable bias. This can
produce results that are difficult to reproduce, either simply as
a result of repeated measurements providing different estima-
tions of the truth or, potentially worse, results that are repro-
ducible but still biased and therefore all incorrect; this situa-
tion is problematic because agreement between laboratories
leads to further confidence that the wrong result is correct.

To further understand measurement accuracy, consider-
ations of uncertainty should be applied to indicate scientific
confidence. Uncertainty has two components: systematic and
random variation. Systematic errors lead to bias in the mea-
surement. These error components are fixed and predictable
and may be inherent to various instruments and methods.
Random variation occurs when making repeated measure-
ments (related to precision; a measure of the degree of agree-
ment between replicate measurement results obtained for the
same sample). Contributing factors are multitude and include
issues of sampling, different analysts and each stage of the
stepwise protocol necessary for a measurement [31].

The concept of accuracy includes the effect of both preci-
sion and bias and describes how close a single result is to the
true value. Although it cannot be given a numerical value,
measurement results are said to be ‘more accurate’ when
measurement errors are reduced. Results with a small bias

that are also very precise are considered highly accurate; that
is, the average result is close to the true value and the data
spread (standard deviation) is small. Equally, methods gener-
ating data with a large bias (large difference between the true
value and the average value of the results), or imprecision
(large variance), or both, would be considered inaccurate.

RT-qPCR is typically performed either by estimating copy
number using a calibration curve or by simply assessing the
fold changewithout considering the absolute abundance of the
respective RNAs; the latter is termed the ΔCq (or ΔCt)
method [46, 47]. Considerations aroundwhat is accurate differ
between the two methods. The former has the added challenge
of how appropriate and transmutable the choice of calibrator
is. A calibration curve provides an estimation of the magni-
tude and dynamic range of a given measurement, but can
reduce or increase bias of the estimated copy number (depend-
ing on the initial value assignment).

A calibration curve also provides an estimation of the PCR
efficiency, which is an important source of bias when estimat-
ing both copy number and fold change. Consequently, al-
though the ΔCq method ignores magnitude, PCR efficiency
should ideally be estimated [47] to avoid biases. Where PCR
efficiency is not routinely estimated, which is commonest for
theΔCq method [46], biases could be avoided by factoring in
additional uncertainty to account for the unknown PCR effi-
ciency. This would reduce the chance of measuring a

Fig. 2 Different experimental
designs representing biological
versus technical replication.
Generally, data variability
increases as replication is
included from higher stages
within the experimental process.
For example, to ascertain true
patient variability, replicate
biological samples must be
analysed (different samples from
one patient, samples from
different tissues from the same
patient, or samples from different
patients). The RNA extraction
and reverse transcription
components of the process may
contribute more variability to the
final measurement than
quantitative PCR (qPCR) alone.
Definition of all sources of
technical variability allows the
actual biological variability to be
discerned, and as such, more
confidence can be conferred to the
results when this variability is
included. cDNA complementary
DNA, RT reverse transcription
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significant difference, but increase the chance that when a
difference is significant, it is real.

The evaluation of background-normalised qPCR data can
be subjective; for example, assessing the quality of a curve, or
determining the perfect starting point of the exponential phase
and where to assign the threshold for Cq generation. These
elements are subject to personal judgment. For this reason,
digital PCR is seen as a promising alternative, where a digital
output is produced (presence or absence of target) [16, 48] and
the ambiguity associated withCq measurement is negated. For
RT-qPCR measurements, calibration-curve-estimated copy
number or fold changes should be reported rather than Cq,
which is an arbitrary measure, and assay efficiency should
ideally be taken into account.

Experimental replication serves to improve confidence as it
provides a better estimation of the mean provided by a given
technique. Nevertheless, replication cannot assist where sys-
tematic errors are present, and may serve to make matters
worse by increasing the confidence in the biased result. For

RNAmeasurement, bias can be reduced by aiming to replicate
the experimental steps that afford the highest variance from
sample to analysis. This will reduce precision, but will also
reduce bias. Another essential method for reducing measure-
ment uncertainty is to apply normalisation.

The use of normalisation and reference genes

Normalisation is an essential component of a precise mRNA
measurement. Its purpose is to remove technical error.
However, as with the measurement of the genes of interest,
normalisation strategies are also influenced by variance and
bias, and so must be used with caution. Current normalisation
methods include standardising tissue weight, tissue volume,
cell count and RNA concentration, or using reference genes
and external reference panels [39, 49–51]. A standard ap-
proach relies on reducing gross variation by ensuring samples
are of comparable size, with subtler variation (crucial to fine

Fig. 3 Variability observed between complementary DNA (cDNA) and
RNA standard curves. The green points represent the standard curve. The
variability of qPCR is relatively low when compared with reverse tran-
scription variability. As a result, a standard curve generated from the
dilution of cDNA indicates the variability associated with the qPCR step
alone and does not represent variability associated with the reverse
transcription step. Alternatively, a standard curve generated from an
RNA dilution series incorporates the variability attributable to the reverse

transcription step, which is intrinsically more variable than qPCR. Con-
sequently, the range within which the unknown sample measurement can
reliably lie is greater when using an RNA-based standard curve and
smaller when using a DNA-based standard curve. The RNA curve will
therefore provide a more accurate estimate of uncertainty, offering greater
confidence in a result. Sample fold changes discerned when using this
approachmore likely represent ‘true’measurement differences rather than
insufficiently apportioned uncertainty
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measurements) being further removed using (preferably mul-
tiple) internal reference genes, and/or synthetic internal posi-
tive controls.

Challenges associated with representative sampling of clin-
ical samples are discussed in detail in the following sections,
but ensuring samples are comparable can be a further chal-
lenge. Under controlled conditions of reproducibly extracted,
good-quality RNA, initial gene transcript number is ideally
standardised to cell number, but accurate enumeration of cells
is often precluded when starting with solid tissue [49].
Another frequently applied normalisation scalar is RNA con-
centration. Following RNA extraction, the quantity and qual-
ity of extracts may be measured [26, 39, 52].

Normalisation to RNA quantity

There are a number of methods for RNA quantification.
Fluorescent nucleic acid binding dyes, such as RiboGreen
(Life Technologies), exploit the increase in fluorescence seen
on association with RNA. The reagent literature states that
RiboGreen does not detect significant sample contamination
by free nucleotides and thus more accurately measures the
amount of intact RNA in potentially degraded samples than
A260. Measuring the absorbance at 260 nm using spectropho-
tometry is a common and simple method for RNA quantifi-
cation. Studies have shown both A260 and RiboGreen analysis
methods generate comparable results when the RNA concen-
tration exceeds a minimum of 100 ng/μL. Although A260

analysis becomes less reliable at lower RNA concentrations
[32], it should be remembered that methods that use fluores-
cent dyes typically require a calibration curve and that the
calibrator used for this must also be assigned a value (usually
by A260 measurement). As with any measurement, these ap-
proaches have their own inaccuracies when used for estimat-
ing nucleic acid concentration [32, 53–57].

When using RNA concentration for normalisation, RNA
quality is also an important consideration. Methods for esti-
mating RNA quality based primarily on the detection of
ribosomal RNAs (rRNAs) are very popular. Agarose gels or
‘lab-on-a-chip’-based capillary electrophoresis platforms al-
low RNA sample quality assessment, with the latter also
offering an estimation of quantity [32]. Ribosomal RNA
(rRNA) ratios, with additional electrophoretic trace features,
are used to calculate total RNA integrity (e.g. RNA integrity
number and RNA quality indicator). However, it should be
noted that rRNAs yielding similar RNA integrity numbers/
RNA quality indicators generated by these instruments can
contain mRNAs that differ significantly in their integrity [58],
so good-quality rRNA is not necessarily indicative of good-
quality mRNA. In some instances it is impossible to quantify
this parameter; for example, when minimal RNA is available
from microdissected tissues [49]. A further drawback to the

use of 18S or 28S rRNA molecules as standards is their
absence in purified mRNA samples.

Normalisation to reference genes

RT-qPCR analysis of mRNA should also be normalised
using internal reference genes. Their suitability must be
validated experimentally for particular tissues or cell types
on an experimental-specific basis [59]. Ideally, normalisa-
tion should be performed against validated multiple refer-
ence genes. Further support for reference gene selection
may be found using algorithms such as geNorm [49],
NormFinder [60] or BestKeeper [61]. In general, using
fewer than three reference genes is not advisable [25, 49,
62–64]. Single reference genes may be used if the mea-
surement of small differences is not necessary, but the
target chosen must be validated across the range of ex-
perimental conditions under investigation [65]. Crucially,
any difference that is measured would need to be suffi-
ciently greater than the inherent variation of the single
reference gene measurements (incorporating all the steps
from sampling to measurement) used to normalise the
data, to be sure the observation is due to the gene of
interest and not due to the reference gene or a combina-
tion of both.

It is increasingly evident that a number of classically des-
ignated reference genes demonstrate inconsistent expression
between different tissues and treatment regimens [25, 49, 50,
59, 64, 66, 67]. For example, despite continuing reports for
more than a decade that emphasise the problems associated
with its use, glyceraldehyde 3-phosphate dehydrogenase con-
tinues to be used as a normaliser [32, 68, 69]. It is well
documented that glyceraldehyde 3-phosphate dehydrogenase
mRNA levels are not always constant [63, 67, 70], and it
contributes to diverse cellular functions, such as nuclear
RNA export, DNA replication, DNA repair, exocytotic mem-
brane fusion, cytoskeletal organisation and phosphotransfer-
ase activity [71]. Although contemporary publications still fail
to use appropriate reference gene(s), since the publication of
the MIQE guidelines there has been an escalation in the
number of publications directly evaluating reference gene
validation [66, 72–74].

A recently described alternative normalisation technique
targets expressed repetitive elements (expressed Alu repeats)
[58] that are abundant in the human genome (approximately
one million copies). This strategy uses Alu repeat sequences
embedded in the untranslated regions of mRNAs, to estimate
the global mRNA quantity. As a result, it has the potential to
be used as a ‘universal’ internal target; that is, it is suitable to
use for normalisation in all human RT-qPCR experiments.
However, further work is needed to assess the validity of this
proposed method.
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Other sources of bias: extraction and inhibition

There are several sources of bias in an RNA measurement by
RT-qPCR; the main causes are summarised in Table 1. The
presence of inhibitors has the potential to increase measure-
ment bias, reduce assay sensitivity and produce false-negative
results in both RT-qPCR and reverse transcription qualitative
PCR assays. Inhibitors can come from many sources, includ-
ing co-purified cellular or tissue components, carry-over com-
ponents from storage buffers and the extraction process, and
the reverse transcription reaction. For example, biological
samples from different sources (human plasma from two
different patients) may comprise distinct protein profiles.
The inconsistency between these different ‘background matri-
ces’ may alternately influence experimental outcomes due to
differential target recovery and co-purified inhibition effects.
Furthermore, calibration curves that are prepared in a reaction
that is not affected by the inhibitor may yield biases.
Recognising the importance ofmatrix-specific standards helps
to identify the influence of the sample matrix on the accuracy
of analytical results [75] and ensures that temporally separated
measurements may be compared meaningfully.

Studies show that PCR inhibition can be assay-specific,
with an inhibitor completely inhibiting one assay but having
no effect on another [76], so where internal positive controls
are used they need to be representative of the targets of
interest. The SPUD assay has been developed to estimate the
extent of qPCR inhibition by measuring an external spike-in
from potato (Solanum tuberosum) in control (water) versus
target samples [77]. This can be applied as DNA or RNA [78].
Analysis ofCq and assay efficiency between control and target
samples for the SPUD assay indicates the extent of matrix
inhibition [16, 77]. Another simple method for evaluating
inhibition is to perform a serial dilution of the sample of
interest. A reducedΔCq at higher concentrations is suggestive
of reversible inhibition.

External positive controls can be used more extensively to
evaluate biases associated with the extraction step. In clinical
virological load monitoring, control viruses can be added to
the sample prior to extraction [79, 80]. Extractionmethods can
purify different amounts of template with different variances,
so this is an important step to replicate [81, 82]. Quantifying
total RNA is a simple method for controlling for varying
yields when measuring mRNA, with the accepted potential

Table 1 Factors contributing bias to a reverse transcription quantitative PCR (RT-qPCR) measurement

Source of bias Details Solution

RNA extraction Poor extraction efficiency. Limited amount of RNA
available. Bias towards more abundant targets, with
minority species potentially measured as absent

Optimise extraction process by comparing different
procedures

RNA quality RNA degradation will lead to a reduced abundance of
mRNA species. Biased cDNA production and
reduced detection sensitivity, with some species being
measured as absent. May affect some targets more
than others

Avoid multiple freeze–thaw cycles; use of multiple
aliquots of RNA/cDNA is cumbersome but essential to
reduce the impact of freeze–thaw. Use RNase/DNase-
free plastics and RNase decontaminating solutions and
sprays and molecular grade distilled water. Change
gloves frequently. Estimate sample quality where
possible. Consider multiple measurements ofmRNA at
different locations on transcript

RNA/cDNA storage RNA/cDNA degrades over time Empirically evaluate stability of RNA under the storage
conditions during the study period

Non-linearity of method Caused by inhibition, enzyme inefficiency (e.g. resulting
in not all RNA being converted to cDNA in the
reverse transcription reaction), etc

Validate reverse transcriptase for sample type. Include
appropriate controls. Aim not to add too little/toomuch
RNA or widely differing amounts of RNA in reverse
transcription reactions

Inappropriate calibrator For example, DNA standard is used when measuring
RNA. Calibrator prepared in different background
material/matrix to unknown samples

Where possible, ensure that calibrators are validated as
appropriate for sample type and sample matrices are
spiked with them

Instrument Reverse transcription reactions and PCRs performed
with differing efficiency at different positions on the
thermocycler owing to variations in temperature,
ramping and thermal overshoot

Ensure instrument maintenance and calibration is up to
date. Rearrange distribution of samples when
performing replicate experiments (for both reverse
transcription and PCR) by performing plate
randomisation

Pipettes Poorly calibrated pipettes can lead to considerable
systematic bias

Routine calibration of pipettes is essential. Where
accuracy is paramount, gravimetric dilution will further
reduce systematic bias, even with calibrated pipettes

cDNA complementary DNA, mRNA messenger RNA
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problems discussed above. However, if further rigour is re-
quired, then external RNA standards can be used. An example
of such a resource is the External RNA Controls Consortium
panel of synthetic RNA oligonucleotides, which has been
developed for this purpose [83].

Although external RNA standards added to biological
samples may provide an assessment of the variability within
the proceeding experimental steps, they cannot account for
any variability upstream (e.g. sampling or cell lysis). Also,
purified RNAs may not always be compatible with a given
extraction method. Consequently, application of external stan-
dards needs to be validated empirically, and a combined
approach in conjunction with validated reference genes may
be most effectual.

Clinical measurement

RT-qPCR is an important tool that may assist in the under-
standing of the molecular events underlying human diseases,
but it also offers a method for measuring biomarkers for the
identification and stratification of a range of diseases [32, 84].
Studies have reported applying RT-qPCR for the identification
of micrometastases or minimal residual disease in colorectal
cancer [85], neuroblastoma [86], prostate cancer [87] and
leukaemia [88]. It has been used to distinguish different types
of lymphoma [89], for the analysis of cellular immune re-
sponses in the peripheral blood [90, 91], for the detection of
bacterial [92] and viral [93] RNA signatures in clinical sam-
ples and for monitoring the response of human cancer to
treatment [13]. Other clinically relevant applications include
its use for the analysis of tissue-specific gene expression [94],
identifying cytokine gene expression on ex vivo stimulation of
peripheral blood mononuclear cells [95] and for cytokine
mRNA profiling [96]. Novel gene expression approaches are
constantly being evaluated for diagnostic purposes for numer-
ous human diseases.

These developments may ultimately lead to the implemen-
tation of truly personalised medicine, whereby the course of
treatment chosen, the response and the prognosis may centre
on molecular measurements. Yet what is ominous is that
despite the vast amount of published clinical research using
RT-qPCR to measure putative mRNA biomarkers, few tests
have as yet been transferred to the clinic for routine use.
Where RNA measurements are routinely used, such as mon-
itoring viral loads in disease states or response to a particular
treatment regime, the measurements made at the beginning of
the study must be compatible with those made at the end; that
is, the measurement standards used to calibrate them must
have long-term stability [6]. These considerations apply
equally to gene expression biomarkers and collectively con-
tribute to measurable improvements in the quality of analyti-
cal results.

In terms of clinical measurement, different capabilities may
be required depending on the measurement need. For exam-
ple, viral load and specific gene signatures, such as the BCR–
ABL fusion transcript, require differentiation between gross
changes of the target, whereas cellular gene expression is
subtler and much more challenging to measure reproducibly.
For example, when measuring HIV viral load, clinicians work
on orders of magnitude (log10 scale), whereas research that
measures normalised gene expression by RT-qPCR frequently
presents much smaller significant differences (e.g. often less
than threefold).

Biological variability

Biological variability is one of the principal unknown entities
in terms of the aforementioned considerations and represents
the final factor determining whether a given RNA measure-
ment will be of clinical value; that is, once the technical factors
have been resolved, the measurement is still dependent on
biology. Previously, it was assumed that the findings of
randomised controlled trials were applicable to all patients.
However, it is becoming increasingly apparent that this is not
the case [97, 98]. Treatment outcomes as well as disease
progression and manifestation have been shown to differ
between patient groups, with women and ethnic minorities
being under-represented in vascular surgery randomised con-
trolled trials [99], and to depend on patient chronotype and its
relationship with cancer treatment schedules [100]. The un-
derlying cause for these findings will be due to physiological
differences, many of which will manifest themselves in the
gene expression profiles, suggesting that many putative sur-
rogate mRNA biomarkers are likely to be similarly variable
between different patient groups.

Gene expression profiles may change on a cyclical basis,
influenced by circadian rhythms, growth and development,
and other environmental factors such as stress, sustenance/
nutrition, physical activity and infection, in conjunction with
variability attributable to gender, race, age and time of sample
collection, to name a few. These factors must additionally be
considered over and above general experimental issues such
as the choice of procedure, sources of error and sample con-
tamination, in order to select a useful biomarker that can yield
reproducible results. Unpicking the sources of biological ver-
sus technical variance is a crucial yet frequently neglected step
in translating a measurement to the clinic.

Sample source and storage

RNA storage and isolation must be performed to ensure both
RNA integrity and removal of contaminating nucleases, ge-
nomic DNA, and reverse transcriptase or PCR inhibitors. This
can be a problem with any sample source, but clinical samples
are of special concern because of their complexity, and
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potential inconsistencies in sample size, collection, storage,
and transport can lead to variable quality of RNA templates
[5]. ThemRNA used for clinical diagnostics and research may
be derived from various tissues, obtained from biopsies, lum-
bar puncture, blood, urine or buccal swabs, each posing their
own challenges for accurate measurement. In each case, the
limitations of sample handling in real-life clinical situations
will be different. It is well known that RNA is sensitive to
degradation by postmortem processes and inadequate sample
handling or storage [84, 101].

The sample source is a major contributor to measurement
variation. RNA extractions and subsequent analyses per-
formed from whole-tissue biopsy samples with little regard
for the different cell types contained within that sample inev-
itably result in the averaging of the expression of different cell
types, and the expression profile of a specific cell type may be
masked, lost or ascribed to and dismissed as an incorrect
measurement [102] because of the bulk of the surrounding
cells [32, 103]. When one is working with versatile tissues
such as blood, the cell number and composition may differ
between two samples (even from the same patient); conse-
quently blood volume may not be an appropriate metric to
begin with, and separation of the different cell types is often
performed. However, it should be remembered that any pro-
cessing of live cells will impact on the cellular physiology and
may directly alter the expression of the genes of interest.

Cellular separation is more difficult to achieve when
analysing solid tissue samples, but may be important as sig-
nificant differences have been detected in the gene expression
profiles between microdissected and bulk tissue samples [103,
104]. This is particularly relevant when comparing gene ex-
pression profiles in complex tissue with multiple, phenotypi-
cally distinct cell types, within a given tumour or between
normal and cancer tissue where phenotypically normal cells
adjacent to a tumour may exhibit altered gene expression
profiles owing to their proximity to the tumour [32, 105]. It
may be possible to alleviate these pressures of sample source/
cell type by performing single-cell analysis. This rapidly
growing field has much to offer, but also comes with a
multitude of unique challenges associated with sample pro-
cessing, low mRNA abundance and data normalisation
[106–109]. It should also be remembered that cell sizes may
differ between different samples (such as tumour biopsy sam-
ples or where tissues are undergoing hypertrophy as part of
normal physiological processes), which adds an additional
challenge to data interpretation.

Practical clinical challenges

In certain clinical situations, for example where surgical sam-
pling is required, some of the points detailed here will reflect a
utopian view that will not be practical to implement. For

instance, tissue-sampling methods may differ among institutes
and even among individuals within the same institution. This
can be very challenging to standardise with respect to the time
span of surgery, how long it takes for a sample to be fixed or
frozen, etc. To ensure data comparability and increased clin-
ical impact within such challenging circumstances, it is crucial
that such conditions are defined as accurately as possible and
the associated limitations are fully considered within the dis-
cussions around a given finding.

A particular mRNA result may only be possible under a
very specific sampling procedure that is not easily repeatable
(owing to specialist skill and/or equipment). Such findings
may reveal new biological mechanisms, but unless they can be
corroborated, they will be of questionable value. An example
by which this can be performed could be that the samples are
re-analysed (ideally including re-extraction) by a different
laboratory to confirm the measurement. However, such anal-
ysis may never be translated to routine clinical care as bio-
markers, and as mRNAs are frequently measured as surro-
gates for protein-driven physiology, additional confirmatory
experiments considering the proteins and/or physiology in
question are essential.

It is also crucial that other factors within the protocol
(Fig. 1) that can be controlled are detailed within a given
study. Factors that frequently vary but which are easily con-
trolled, and easily reported, such as storage conditions and
duration, may differ among laboratories (e.g. type of freezer,
storage in liquid nitrogen by immersion or by vapour phase),
and so they must be comprehensively described.
Documentation of such factors will facilitate identification of
any associated discrepancies that might arise, a fact that is
particularly pertinent to biobanking, which may comprise
large numbers of samples that may have been stored for
different durations.

Conclusion

Accurate RT-qPCR analysis could improve clinical diagnosis
as well as predictive and prognostic monitoring. Furthermore,
improved analytical measurement sensitivity may offer tools
to detect and quantify disease markers at earlier stages of
progression, facilitating more timely treatment and improved
outcome. Moreover, diagnostic tests conferring superior ac-
curacy and analytical confidence may change the treatment
regimens patients are offered. For example, therapies may be
effective in treating only certain tumour genotypes and may
have serious contraindications. As such, they are offered only
to those patients for whom there is definitive molecular proof
that they harbour the associated specific mutation. Human
epidermal growth factor 2 status in breast cancer is one such
example and is used as a predictive therapy-selection factor
for the humanised monoclonal antibody trastuzumab
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(Herceptin, Genentech) [110]. Current diagnostic methods,
including fluorescent in situ hybridisation and immunohisto-
chemistry, can be subjective and insensitive. Advances in
accurate molecular quantification of RNA [111, 112] could
offer enhanced analytical power for this and many similar
clinical challenges, and may in the future become gold stan-
dards in clinical diagnostics. RT-qPCR currently offers a
powerful tool both to identify and to translate the clinical
use of such biomarkers.

Yet for preclinical research using RT-qPCR to make a trans-
latable impact, accuracy must be seen as more than just good
precision. Accurate clinical measurement must also include
considerations of both potential bias and good technical repro-
ducibility. By application of this notion to the whole stepwise
process from sampling to preparing the RNA sample and
subsequent methods for normalisation, RT-qPCR will become
more reproducible, which in turn will improve the impact and
likelihood that findings will be translated to routine clinical use.
Although accomplishing all the standardisation measures de-
tailed in this review all the time may not always be possible,
particularly in preclinical research, the key is to consider
sources of error so that, where possible, they can be captured
in the experimental design. Such an approach will improve
measurement reproducibility and the likelihood that significant
findings are both real and translatable to routine clinical care.
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