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Abstract

Background: West Nile Virus (WNV) is an emerging global health threat. Transmission risk is strongly related to the
abundance of mosquito vectors, typically Culex pipiens in Europe. Early-warning predictors of mosquito population
dynamics would therefore help guide entomological surveillance and thereby facilitate early warnings of transmission
risk.

Methods: We analysed an 11-year time series (2001 to 2011) of Cx. pipiens mosquito captures from the Piedmont
region of north-western Italy to determine the principal drivers of mosquito population dynamics. Linear mixed
models were implemented to examine the relationship between Cx. pipiens population dynamics and environmental
predictors including temperature, precipitation, Normalized Difference Water Index (NDWI) and the proximity of
mosquito traps to urban areas and rice fields.

Results: Warm temperatures early in the year were associated with an earlier start to the mosquito season and
increased season length, and later in the year, with decreased abundance. Early precipitation delayed the start
and shortened the length of the mosquito season, but increased total abundance. Conversely, precipitation later
in the year was associated with a longer season. Finally, higher NDWI early in the year was associated with an
earlier start to the season and increased season length, but was not associated with abundance. Proximity to rice
fields predicted higher total abundance when included in some models, but was not a significant predictor of
phenology. Proximity to urban areas was not a significant predictor in any of our models. Predicted variations in
start of the season and season length ranged from one to three weeks, across the measured range of variables.
Predicted mosquito abundance was highly variable, with numbers in excess of 1000 per trap per year when late
season temperatures were low (average 21°C) to only 150 when late season temperatures were high (average 30°C).

Conclusions: Climate data collected early in the year, in conjunction with local land use, can be used to provide early
warning of both the timing and magnitude of mosquito outbreaks. This potentially allows targeted mosquito control
measures to be implemented, with implications for prevention and control of West Nile Virus and other mosquito
borne diseases.
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Background
West Nile virus (WNV) is a flavivirus of emerging public
health relevance in Europe [1]. In nature it is maintained
in enzootic cycles between avian reservoir hosts and mos-
quitoes. Humans are dead-end hosts in which infection
can induce symptoms from mild flu-like fever to severe
neurological syndromes such as meningitis, encephalitis,
and acute flaccid paralysis [2].
Prevention by vaccination has been possible for horses

since 2003, but a human vaccine is not yet available [3].
Discovered originally in Uganda in 1937 [4], WNV is
now found on every continent except Antarctica [5].
Several epidemics have been documented in European
countries during the last 4 years [1], and this recent up-
surge in outbreaks within endemic areas, as well as the
spread of the virus throughout the New World since
1999, have led to increasing health concerns [6]. Effect-
ive prevention and control policies are dependent on
both a clearer understanding of the risk factors associ-
ated with infection, and advance warning of likely
outbreaks.
Adequate mosquito density is critical for effective WNV

transmission, and has a strong correlation with the num-
ber of human cases [7,8]. However, implementing mos-
quito control measures in response to reports of human
cases typically is ineffectual because most humans have
been infected by this time and cases appear at the end of
the mosquito season, when populations are already in de-
cline [1,9]. Early warnings of mosquito outbreaks would
provide a much needed prediction of spill-over risk
[10-12], enabling more timely control measures to be im-
plemented, especially within WNV circulation areas.
Mosquitoes belonging to the Culex pipiens complex

are thought to be the most efficient vectors for spread-
ing WNV among birds, and from birds to humans and
other mammals in the United States [13,14] as well as in
Europe [15]. They are also involved in the transmission
of other human and animal pathogens such as Usutu
virus [16], avian malaria and filarial worms [17].
Cx. pipiens mosquitoes lay their eggs in water, and lar-

val stages are aquatic. Aquatic habitats are therefore a
prerequisite for mosquito populations, and rainfall is im-
portant in creating and maintaining suitable larval habi-
tats [18], thus strongly affecting the abundance of adult
mosquitoes [19]. Temperature also strongly influences
distribution, flight behaviour and dispersal, and abun-
dance of mosquitoes [18]. Specifically, temperature im-
pacts on several aspects of the Cx. pipiens life cycle
including development rates [20,21], gonotrophic cycle
length [22] and diapause duration [23] as well as the
duration of the extrinsic incubation period of the virus
[24]. Urban infrastructure often provides key habitats for
Cx. pipiens, reflecting its affinity for stagnant water and
urban areas where artificial containers of water are
numerous [12,25]. Vegetation density is also important,
due both to a positive correlation with abundance of
preferred avian host species [26], and because trees and
shrubs may offer resting habitats and sugar sources to
adults [27]. Mosquito population density therefore re-
flects a complex interaction among climate, land use
and vegetation coverage.
In order to develop robust statistical models to predict

mosquito population dynamics, detailed data are needed
describing the phenology and abundance of mosquito
populations, and associated environmental data at a suit-
able spatial and temporal resolution to act as predictor
variables. Both the spatial and temporal range and reso-
lution will determine the accuracy and range over which
resulting model predictions can be made. In the Piedmont
area of northern Italy, an extensive mosquito trapping
programme has been in place since 1997, run by the Mu-
nicipality of Casale Monferrato until 2006, and then by
the Istituto per le Piante da Legno e l’Ambiente (IPLA).
The area is at risk from WNV, having suitable vector and
reservoir host populations, and increasing numbers of hu-
man cases of WNV in adjacent areas [28-30].
Detailed environmental data are available at suitable

spatial and temporal resolution across the area, thus
providing an excellent system to test predictors of mos-
quito population dynamics. Similarities of climate and
land use [31] allow model predictions to be cautiously
applied across northern Italy, where WNV has been cir-
culating since 2008 [30].
Previously, part of this dataset (years 2000 to 2006)

was used to test associations between weekly mosquito
abundance (various species) and a range of environmen-
tal data, including land use and weekly averaged climate,
during the time period 10–17 days prior to measures of
mosquito populations [32]. This approach tested for pre-
dictors that immediately preceded short term variation
in weekly mosquito abundance.
Here we followed a different approach, aiming to de-

termine early warning predictors of between year vari-
ation in mosquito population dynamics. We focussed on
Culex pipiens and we extended the dataset for analysis
until 2011. The objective was to identify the best early
warning predictors of annual variation in Cx. pipiens
abundance and phenology, with the ultimate goal to
guide entomological surveillance and thereby facilitate
monitoring of WNV transmission risk.

Methods
The study area encompassed 987 km2 of the eastern Pied-
mont Region of north-western Italy (centroid: 45.07° N,
8.39° E) (Figure 1). There are highly suitable habitats for
avian hosts of WNV, and breeding sites for mosquitoes, in
close conjunction to human habitation. The landscape is
primarily agricultural (mixed agriculture 72%, rice fields



Figure 1 Map of the study area. Trap locations and land use are indicated. The map of Italy (inset) shows the location of the study area in the
north west of the country.
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14%), with areas of deciduous forest on the southern hills,
and riverine habitat in the north (for further details see
[32]). The climate is characterised by cold winters and
warm summers (0.4 and 24°C respectively), and abundant
precipitation (~600 mm/yr) primarily falling in the spring
and autumn [32].

Mosquito data
Mosquitoes were collected using CO2 baited traps, op-
erated by Municipality of Casale Monferrato and the
Istituto per le Piante da Legno e l’Ambiente (IPLA) [32].
Trapping sites were dispersed throughout the study area,
with a minimum distance of 5 km between traps. Specific
placement was based on coverage of all habitats deemed
suitable for mosquitoes, in all participating municipalities,
while enabling estimation of urban nuisance, and avoiding
external disturbing factors (e.g. lighting, CO2 sources).
Further details are provided in [32]. The current study in-
cludes data from 2001 to 2011, collected at 44 different
sites (including 28–40 sites and an average of 37 sites acti-
vated each year) (Figure 1). Although most traps were run
throughout, variation in activation at some sites occurred
depending on the participation of individual municipalities
in the scheme. Alongside monitoring efforts, mosquito
control strategies have been implemented in the study
area since 1998 [32]. However, the target of all treatments
was Ochlerotatus caspius, and analyses (not presented
here) showed that Culex pipiens mosquitoes were not
affected by interventions.
Traps were set one night every week, for a twenty-

week period starting at the beginning of May and ending
in mid-September, thus encompassing the main period
of mosquito activity. Traps were collected the following
day, and the catch counted, sexed and identified. Each
year since 2009, mosquitoes captured during a 6–7 night
period at several sites (an average of 5 sites per year)
have been pooled and tested for WNV. Until now no
positive results have been found. For each trap, in every
year, we (i) summed the total number of Cx. pipiens cap-
tured during the twenty-week survey period (TOTAL),
(ii) calculated the week by which 5% and 95% of the
population were captured, these being designated the
start (ON) and end (OFF) of the mosquito season, re-
spectively, and (iii) calculated the number of weeks
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between the arrival of 5% and 95% of the trapped popu-
lation, this designated as season length (SEASL). As in
[33], our definitions of ON and OFF are threshold values
for population abundance, and do not necessarily reflect
the cessation or initiation of diapause. Peak abundance
within years was considered in preliminary analyses as a
fourth measure of population dynamics, but was ill-
defined and unpredictable, therefore results are not pre-
sented here.

Environmental predictors
Environmental predictors were selected based on pub-
lished evidence of their importance to mosquito popula-
tions [19,27,32,34].
All environmental data were processed in GRASS GIS

[35], and extracted from the spatial database at the point
corresponding with trap location. Cx. pipiens have a very
limited dispersal (a few hundred metres [36]), which is
within the pixel size for most spatial data (below), so
data averaging over a wider area was not considered
appropriate.

Climate
Precipitation was measured as total precipitation (TOT_-
PREC) and number of days of precipitation (DAY_PREC)
from the gridded ECA&D (European Climate Assessment
& Dataset, Version 8) [37,38] at approximately 25 km pixel
resolution. Land surface temperature (LST) data were col-
lated from the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) products MOD11A1 and MYD11A1,
recorded twice daily. The original MODIS LST products
were reconstructed at 250 m resolution, i.e. gap-filled to
remove void pixels due to clouds [39,40]. For analyses,
LST data were used to derive two values: (i) weekly mean
LST, and (ii) a cumulative measure of temperature named
here ‘growing degree weeks’ (GDW) (see [41]). This was
derived by taking the positive difference in each week be-
tween mean LST and a threshold of 9°C (mosquitoes fail
to develop below this threshold, see [20]). Weekly differ-
ences were summed cumulatively from the first week of
the year, so that the nth GDW was obtained by summing
the n consecutive differences (negative differences were
assigned a value of zero).

Vegetation and water indices
Normalized Difference Vegetation Index (NDVI) was ob-
tained from the MODIS product MOD13Q1, recorded
every 16 days, and the Normalized Difference Water Index
(NDWI) derived from the MODIS product MOD09A1, re-
corded every 8 days, both at 500 m resolution. For both
the NDVI and the NDWI data, gaps were filled and out-
liers removed using a harmonic analysis of each time series
[42]. These data were used as proxies for vegetation cover-
age (NDVI) [43] and for environmental water (NDWI),
which includes surface water [44] as well as vegetation
water content [43].

Land use
The distance from every sampling site to the nearest
urban centre (DIST_URBAN) and rice field (DIST_RICE)
was calculated using the Corine Land Cover raster dataset
(using the CORINE classes 111 and 112 to map the urban
settlements and 213 for the rice fields, [45], both at 100 m
resolution).

Temporal windows
We built 22 temporal windows by grouping periods of 12
consecutive weeks, starting from the first week of the year
(weeks 1–12) and ending with weeks 22–33 (approxi-
mately the end of May to mid-August). The 22 windows
were divided into two groups: the first ten windows (1–12,
2–13, etc., to 10–21) were designated the ‘early period’ and
latter twelve windows (11–22, 12–23, etc., to 22–33) were
designated the ‘late period’. The start of the mosquito
season, ‘ON’, occurred on average during week 25, so
our definition of early period predictors were those that
were completed at least four weeks prior to this (i.e. ending
weeks 10–21).
For each 12-week window, mean values were calcu-

lated for land surface temperature and vegetation indices
(LST, NDVI and NDWI), whereas precipitation data
were summed (TOT_PREC and DAY_PREC). For GDW,
the cumulative value achieved by the end of the given
window was used. Where these data are described in the
text, the relevant temporal window is denoted in sub-
script, e.g. LST1–12 for mean land surface temperature
during weeks 1–12.
The aggregation of 12 weeks was selected in order to

test the effect of variations at a seasonal timescale and
to avoid errors due to short term variation in mosquito
collections. Comparisons with aggregation windows of
alternative duration (1, 2, 4 and 8 weeks) proved this ap-
proach to be successful; twelve week windows produced
more robust models and higher goodness-of-fit values,
when compared to results obtained by aggregating data
over shorter windows (see section A of Additional file 1
for details).

Data analysis
We investigated the association between Cx. pipiens abun-
dance (TOTAL) and seasonality (the start of the mosquito
season, ON, and season length, SEASL, as defined above),
and a range of environmental predictors. All statistical
analyses were performed using R version 3.0.2 [46].
Dependent variables were transformed prior to analysis in
order to normalize their distribution, following the Box-
Cox method [47]. Transformations applied were x1.3 for



Rosà et al. Parasites & Vectors 2014, 7:269 Page 5 of 12
http://www.parasitesandvectors.com/content/7/1/269
ON and x0.2 for TOTAL while data for season length were
normally distributed.

Preliminary analyses
Linear mixed effect models were used to ascertain, for
each climatic variable, vegetation index and water index
in turn, (i) which of the early period windows proved to
be the best predictor of the start of the season (ON),
and (ii) which of all the time windows (early and late)
proved to be the best predictor of mosquito abundance
(TOTAL) and season length (SEASL). In all models, trap
identification number was included as a random vari-
able. Models were ranked using the Akaike Information
Criterion (AIC) [48], and for each climatic variable and
vegetation/water index, the time window producing the
lowest AIC was selected for inclusion in subsequent full
models. For NDWI the first eight time windows were
not included in preliminary analyses due to the poten-
tial presence of snow cover, which can dramatically
alter the reliability of satellite acquisition of this param-
eter [49,50]. Terms that were not significant for any of
the early or late time periods were not included in the
full model. Variance Inflation Factor (VIF) [51] was
used to test for collinearity between all explanatory vari-
ables. Where collinearity was significant (VIF values > 4,
[51]), the variable producing the higher AIC was excluded.
This led to the exclusion of GDW and total precipitation
from further analyses. Vegetation and water indices were
not correlated; however, NDVI was not significant in any
of preliminary models, thus it was excluded from further
analyses.

Full models
Following exclusion of collinear and non-significant vari-
ables, we developed linear mixed models including the
remaining environmental variables, each measured over
the optimum time window as selected through prelimin-
ary analyses. All two-way interaction terms were in-
cluded in full models. In addition, we included distance
to urban areas and to rice fields, and again included trap
identification number as a random variable. Models were
fitted in turn to predict (i) the start of the mosquito sea-
son (using early period predictors only), (ii) season
length and (iii) mosquito abundance (modelled initially
using only early period predictors, and then again using
both early and late period predictors, in order to assess
the additional variance explained by inclusion of the lat-
ter period).
Multi-model inference [52] was used to compare all

possible models using the R package ‘MuMIn’ [53].
Models were ranked using AIC, and differences in AIC
(ΔAIC) between consecutively ranked models were used
to calculate weights and relative evidence ratios for each
variable. The best models were selected using a threshold
of ΔAIC ≤ 4 [52]. All variables included in the best models
were ranked according to their importance (weight), i.e.
the cumulative Akaike weight (wAIC) of the models that
include that explanatory variable [53,54]. This provides an
idea of the frequency with which the predictor was in-
cluded in the most likely models, and not directly the im-
portance of its effect on the predicted variable. Average
coefficient for each variable was calculated following mod-
elling average procedure [52].
In order to quantify the effect size of each predictor

variable, predictions were made from the best models
for each significant predictor variable in turn. For pre-
dictive models, all variables but one were fixed at their
average values, and predictions made across the full
range of the selected variable. For example, to test the
association between temperature and the start of the
mosquito season (ON), in a model where temperature,
precipitation and NDWI were significant predictors, pre-
cipitation and NDWI were entered into the model as
constants (fixed at their average measured value), while
values for temperature were allowed to vary within their
observed range. Models and plots were created using
transformed data (for ON and TOTAL); predictions de-
scribed in the text use back-transformed values to aid
interpretability.

Results
Mosquito indices
The start of the mosquito season (ON) typically occurred
during weeks 24–27 of the year (Figure 2a), and the main
capture period (SEASL) lasted for 56–70 days (Figure 2b).
The number of individuals captured (TOTAL) varied be-
tween 44 and 4648 per trap per year; more precisely, for
one third of the traps the observed abundances varied be-
tween 44 and 500, for another third between 500 and
1000 and the remainder between 1000 and 4648 individ-
uals (Figure 2c).

Model results
Preliminary analyses
For prediction of the start of the season (ON), the
optimum time windows selected for inclusion in the
model were weeks 8–19, 6–17, and 10–21 for temperature
(LST), precipitation (DAY_PREC) and NDWI respectively
(determined by comparison of AICs, see Figure B1 in
Additional file 1). For prediction of season length (SEASL)
using only early period predictors, the optimum windows
for temperature and NDWI were the same as for predic-
tion of ON (8–19; 10–21) but the optimum window for
precipitation was earlier, weeks 2–13. Late period predic-
tors were weeks 16–27 for temperature, 20–31 for precipi-
tation and 11–22 for NDWI (see Figure B1 in Additional
file 1). For prediction of mosquito abundance (TOTAL)
using only early period predictors, the optimum windows



Figure 2 Timing and abundance of the mosquito season. Frequency distributions for (a) the start of mosquito season (the date by which 5%
of total captures were made), (b) season length (the period in days between the collection of 5% and 95% of the captured population) and (c)
the total number of Cx. pipiens captured.
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for temperature and precipitation were weeks 10–21 and
1–12, respectively; NDWI was not significant for any time
window. Additional late period predictors were weeks 21–
32, 15–26 and 22–33 for temperature, precipitation and
NDWI respectively (see Figure B1 in Additional file 1).

Full models
For the start of the season (ON) 32 full models were pro-
duced and a single best model was selected, explaining
26% (R2 = 0.258, Akaike weight = 0.96) of the variance;
remaining models had ΔAIC > 4 and were disregarded
(see section C of Additional file 1 for more details). Model
outputs (Table 1) are therefore based on a single model,
rather than averages from multiple models as elsewhere.
Within the measured range of environmental data,
temperature had the greatest effect on the start of the sea-
son. Higher spring temperatures were associated with an
earlier start to the season, such that an increase of 5°C in
LST8–19 (from 11 to 16°C) predicts the start of the season
some 14 days earlier (a shift in the average ON from day
187 to 173) (Figure 3a). Increasing NDWI also predicts an
earlier start to the season, such that a shift in NDWI10–21
Table 1 Predicting the start of the mosquito season (ON)

Variable Weight Coeff. Std. error z-value Pr(>|z|)

Intercept 1014.19 96.54 10.51 <0.001

LST8–19 1 −17.3 5.6 −3.09 0.002

NDWI10–21 1 −369.07 155.43 −2.37 0.018

DAY_PREC6–17 0.99 2.76 0.88 3.12 0.002

The weight and significance of terms remaining in the best selected model.
from −0.1 to +0.06 led to a start of the season 10 days
earlier (Figure 3b), while more days of precipitation de-
layed the start of the season such that an increase in
DAY_PREC6–17 from 14 to 37 days of precipitation during
the 12 week period led to a delay in the start of the season
of 10 days (Figure 3c). All terms selected in the best
models (LST8–19, NDWI10–21 and DAY_PREC6–17) were
highly important with a predictor weight equal to or very
close to 1 (Table 1). Neither distance to urban area or rice
fields were significant predictors.
When considering only the early period, two models,

out of 32 models produced, were selected to predict sea-
son length, explaining between 13 and 14% (R2 = 0.135,
R2 = 0.141) of the variance, and differed in their inclu-
sion/exclusion of temperature (Akaike weights were 0.21
and 0.77). From model averaging, the early period vari-
ables associated with earlier start of the season (ON,
above) also predict increased season length, so higher
NDWI and temperature predict a longer season (although
note that following averaging procedures temperature is
significant only at a 92% threshold, with p = 0.079), and
more days of precipitation predict a shorter season. Again,
distance to urban areas and rice fields were not significant
predictors, for either of the two best models. For early
period predictors only, an increase in NDWI10–21 from
−0.1 to +0.06 predicts an increase of 14 days in season
length (from 56 to 70 days), while an increase in days of
precipitation from 7 to 30 days during the 12 week period
(DAY_PREC2–13) predicts an eleven day decrease in sea-
son length (from 71 to 60 days) (Figure 4a). An increase of
5°C in LST8–19 (from 11 to 16°C) predicts an extension of
7 days in season length (from 65 to 72 days).



Figure 3 Association between the start of the mosquito season and environmental variables. Panels a-c show model predictions; panels
d-f show partial residuals. The first column (a,d) shows the association between the start of the season and temperature (LST8–19), the second
(b,e) shows the association with NDWI10–21 and the third (c,f) shows the association with precipitation (DAY_PREC6–17). Note that all plots show
transformed data on the y axis (i.e. x1.3); back transformed values are presented in the text to assist interpretation.
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When incorporating late period variables in addition
to early period, 128 full models were produced and six
of them were selected as best, with R2 between 0.147
and 0.160 and Akaike weights between 0.28 and 0.06.
Improvement to the model fit from inclusion of late
period variables was therefore minimal, when compared
to early period predictors alone (see above). Comparison
of the model terms suggests, however, that precipitation
during the late period (DAY_PREC20–31) has the oppos-
ite effect of precipitation during the early period (DAY_-
PREC2–13) (Figure 4b). More days of precipitation
during the late period predict a longer season, such that
an increase from 12 to 39 days of precipitation (DAY_-
PREC20–31) predicts a seven day increase in season
length, whereas in the early period only model, more
days of precipitation delay the season start and so
shorten season length (as described above). The associ-
ation with late period precipitation is stronger than that
of early period precipitation, so that when both terms
are included in the same model, early period precipita-
tion becomes non-significant with a predictor weight of
only 0.4, as compared to a high significance of p= 0.004
and a weight of 0.79 for late period precipitation
(Table 2). Late period temperatures (LST16–27) have a
marked impact on season length such that a shift of 6°C
(from 19 to 25°C) predicts a lengthening of the season
by 22 days (Figure 5a). As for precipitation, the addition of
late period temperature renders early period temperature
non-significant, with predictor weight of only 0.53, as
compared to late period temperature which is both highly
significant (p = 0.003) and has a high predictor weight
(0.98) (Table 2). The most important model term in terms
of predictor weight was, however, NDWI measured during
the early period (NDWI10–21), which is positively associ-
ated with season length, and retains the same high pre-
dictor weight (1) in both groups of models (early only,



Figure 4 Association between season length and days of precipitation. Panels a-b show model predictions; panels c-d show partial residuals.
The first column (a,c) shows the association with days of precipitation during the early period (DAY_PREC2–13) while the second column (b,d)
shows the association with precipitation in the late period (DAY_PREC20–31).

Table 2 Predicting season length (SEASL)

Model Variable Weight Coeff. Std.
error

z-value Pr(>|z|)

Early Intercept 59.57 15.42 3.86 < 0.001

NDWI10.21 1 85.23 31.52 2.7 0.007

DAY_PREC2–13 0.99 −0.5 0.14 3.65 < 0.001

LST8–19 0.78 1.5 0.85 1.76 0.079

Early +
Late

Intercept −19.11 28.45 0.67 0.501

NDWI10–21 1 104.26 31.36 3.32 0.001

LST16–27 0.98 3.78 1.26 2.98 0.003

DAY_PREC20–31 0.79 0.29 0.1 2.88 0.004

LST8–19 0.53 0.1 1.11 0.09 0.926

DAY_PREC2–13 0.4 −0.28 0.16 1.73 0.083

The average weight and significance of variables remaining in the two best
'Early predictors only' and six best 'Early + Late predictors' models. Note that
terms in italics are significant in some of the selected best models but not in
others, and that overall, weighted model averaging procedures suggest that
they are not significant.
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early + late) (Table 2). An increase in NDWI10–21 from −0.1
to +0.06 predicts an increase in season length of 14 or
17 days (the greater increase being predicted by the
early + late models).
Of the 16 full models produced, two were selected to

predict mosquito abundance (TOTAL) from early period
predictors, explaining between 46 and 49% of the vari-
ance (R2 = 0.464, R2 = 0.488) with Akaike weights of 0.12
and 0.79 respectively. Abundance was best predicted by
early period models including days of precipitation at
the start of the year (DAY_PREC1–12), and distance to
rice fields. An increase in precipitation predicts an in-
crease in abundance (e.g. an increase from 7 to 30 days
rain predicts an increase from approximately 400 to
1000 mosquitoes per trap). Traps closer to rice fields
captured more mosquitoes than those 13 km away (aver-
age 680 mosquitoes per trap year, compared to 560).
The very different prediction weights of the two terms
selected in the early period models (Table 3), however,
indicate that while days of precipitation play an import-
ant role, distance to rice fields has a very limited effect
on early period model predictions. Incorporation of



Figure 5 Association between season length, total abundance and late season temperatures. Panels a-b show model predictions; panels
c-d show partial residuals. The first column (a,c) shows the association between late season temperature (LST16–27) and season length; the second
column (b,d) shows the association between late season temperature (LST21–32) and mosquito abundance. Note that plots in the second column
show transformed data on the y axis (i.e. x0.2); back transformed values are presented in the text to assist interpretation.

Table 3 Predicting mosquito abundance (TOTAL)

Model Variable Weight Coeff. Std.
error

z-value Pr(>|z|)

Early Intercept 1.27 8.4e-03 152.83 < 0.001

DAY_PREC1–12 1 2.8e-02 3.2e-03 8.75 < 0.001

DIST_RICE 0.13 −7.8e-05 1.6e-05 4.78 < 0.001

Early +
Late

Intercept 6.96 0.53 12.97 < 0.001

LST21–32 1 −0.15 0.021 7.24 < 0.001

DAY_PREC1–12 1 1.7e-02 3.1e-03 5.04 < 0.001

NDWI22–33 0.6 −0.886 1.150 0.77 0.441

The average weight and significance of variables remaining in the two best
'Early predictors only' and two best 'Early + Late predictors' models. Note that
terms in italics are significant in some of the selected best models but not in
others, and that overall, weighted model averaging procedures suggest that
they are not significant.
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additional late period predictors did not greatly improve
the model fit; again, two models were selected, out of
128 models produced, and explained 52% of the variance
(R2 = 0.523, R2 = 0.524) with Akaike weights of 0.35 and
0.49 respectively. Days of precipitation at the start of the
year (DAY_PREC1–12) remained a highly significant pre-
dictor, and predicted a similar effect (an increase from 7
to 30 days of rain predicts an increase in total abun-
dance from 420 to 860 mosquitoes per trap year). Dis-
tance to rice fields was not a significant predictor in
early + late period models, while average temperature
during the late period (LST21–32) exerted a significant
negative effect on predictions, such that an increase in
temperature from 21 to 30°C led to a marked decrease
in abundance from approximately 1150 to only 150 mos-
quitoes per trap year (Figure 5b). The days of precipita-
tion measured during the early period (DAYPREC1–12) is
the most important term predicting TOTAL in both groups
of models (early only, early + late) while temperature has a
strong impact on model prediction for the early + late
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model only (Table 3). Late period NDWI (NDWI22–33)
was selected only in one of the best models and follow-
ing model averaging was not significant.

Discussion
The transmission of WNV is strongly linked to the
abundance of the Culex mosquito vector [7,8], and many
studies have focused on describing and quantifying habi-
tat associations and spatio-temporal distributions of the
vector species to guide implementation of effective con-
trol strategies [9,55]. In particular, early predictions of
both the timing and intensity of future mosquito abun-
dance will help to enable decision makers to apply ef-
fective prevention and control plans [10].
The current study aimed to identify early warning pre-

dictors of Cx. pipiens abundance and phenology, with the
ultimate goal of improving entomological surveillance and
focussing interventions to enable early detection of virus
circulation in mosquitoes. To achieve this, we modelled
the association between annual measures of mosquito
abundance and phenology (start of the season and season
length) and a set of environmental predictors.
Environmental predictors were selected based on

published evidence of their importance to mosquito
populations, and were averaged across twelve week pe-
riods in order to test the effect of variation at a sea-
sonal scale, rather than focusing on daily or weekly
fluctuations (e.g. [32]).
Our results indicate that warm temperatures during

the early period (prior to the main mosquito season)
lead to an earlier start, and extend the duration of the
mosquito season (SEASL), but are not associated with a
significant increase in abundance. This is likely to result
from the acceleration of mosquito development rates
driven by higher temperatures [20]. Higher temperatures
during the late period (encompassing the main period of
mosquito host seeking activity) are similarly associated
with increased season length, but also with a decrease in
total abundance. This latter result is opposite to the one
found by [32] but is coherent with the observed cap-
tures: for instance 2003 was the hottest summer during
the current study, and also the year with the least cap-
tures. This is also consistent with results obtained from
laboratory experiments where adult survival and longev-
ity of Cx. pipiens were negatively affected by high tem-
peratures [56]. In addition, when high temperatures
during summer are associated with low precipitation, as
was the case in 2003, the combined effects of very hot
and dry conditions are likely to cause rapid drying of
aquatic breeding sites, with a consequent negative im-
pact on mosquito populations. Recent observations in
north-eastern Italy corroborate the negative impact of
high summer temperatures, revealing a significant de-
cline in populations when temperatures approached the
maximum tolerance for Cx. pipiens over a prolonged
period [57].
Early period precipitation postponed and shortened

the activity of host-seeking mosquitoes, but at the same
time was associated with greater abundance. Conversely,
precipitation during the late period was associated with
an extension of the season. An association between in-
creased abundance and early period precipitation is
probably associated with the increase in formation and
persistence of mosquito breeding sites while more days
of precipitation during the late period would prolong the
existence of breeding pools, thus sustaining mosquito
populations later in the year [19].
Higher values for environmental water (NDWI) during

the early period were associated with an earlier start to
the season and an increase in season length. These re-
sults highlight the importance of suitable breeding habi-
tat, including surface water as well as vegetation water
content [26,43,44]. Good levels of moisture, especially in
the soil, are a fundamental requirement for the forma-
tion and persistence of mosquito breeding sites [43].
Although the two physical distances (to rice fields, and

to urban areas) do not seem to be very important for
Cx. pipiens in the current study, the negative association
between abundance and distance from rice fields sug-
gests that this land use provides important habitat in
north-western Italy. This result was confirmed by larval
collection of Cx. pipiens in rice-fields. Distances to
urban areas were never selected in any of our models,
suggesting that in this region of Italy urban settlements
are not an important breeding habitat for Cx. pipiens, al-
though it is possible that habitat type causes a bias in
trap attractiveness. This is different to a number of other
studies, carried out in the United States and Europe,
where it has been shown that Cx. pipiens prefers urban
settlements [12,25,36]. These preferences in the US may
reflect differences in the ecology of Cx. pipiens in the
Old, versus the New World, or may reflect differences in
the biogeography of the two regions. Alternatively, such
differences may reflect the presence of different forms of
the species. Form pipiens prefers a more rural habitat,
while molestus is more urban [58]. The form present in
the eastern Piedmont area has not been definitively
identified, but the relatively infrequent bites to humans
(pers. obs) makes pipiens (which are predominantly
bird-feeding) the more likely. Although [32] present
spatial analyses (based on the same area as the current
study) in which the highest abundances of Cx. pipiens
were close to urban areas, the term was not significant
in their final model. The equivocal nature of the results
suggested by [32], and the lack of support for urban
preference in the current study, using a longer time-
series, supports a view that urban areas are of limited
importance to Cx. pipiens in north western Italy.
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Conclusions
Although a wide range of environmental and non-
environmental factors are involved in West Nile Virus
outbreaks [5], the current study indicates that basic cli-
matic monitoring data collected early in the year, in con-
junction with local land use, can be used to provide
early warning vector population dynamics, and therefore
potential transmission risk. Overall, our analysis suggests
that the early period of the year (prior to the start of the
mosquito season) is very important to Cx. pipiens popu-
lation dynamics: improvements to model accuracy by in-
clusion of the late period (during the main period of
host seeking activity) were minimal. This result is par-
ticularly important in view of the need for timely imple-
mentation of mosquito control actions. The models
developed are suitable for application in other areas
where climate and land use are similar, while the princi-
ples used in model design can be applied across any area
where mosquito population data and environmental data
can be obtained. This has implications not only for West
Nile Virus, but also for a wide range of other diseases
that could be limited by mosquito control.
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