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Abstract

This thesis presents work that I have done with Egor Muljarov and Wolfgang Lang-

bein in order to extend an existing perturbation theory for open systems describable

by a scalar equation to 3D systems which cannot be reduced to effectively lower di-

mensions. This perturbation theory is called the resonant-state expansion (RSE).

The RSE is derived from properties of the dyadic tensor Green’s function (GF) of

the unperturbed system written in terms of resonant states (RSs). Hence to extend

the RSE it was necessary for us to derive this spectral form of the GF in terms of

normalised RSs for arbitrary 3D systems. To process the numerical output of the

RSE, we develop and evaluated algorithms for error estimation and their reduction

by extrapolation.

In the case of planar systems the RSE can be compared with other methods

such as the scattering matrix or transfer matrix methods. It is also possible to solve

the boundary conditions analytically to provide transcendental equations that can be

solved by the Newton-Raphson method. We study these systems for that reason since

we can validate the numerical calculations of the RSE by showing the convergence of

perturbed solutions to the exact result found from these other methods. We study

the planar systems both zero and non-zero in-plane wavevector.

As an intermediate step to a fully 3D perturbation theory for open systems

we make an implementation of the RSE in 2D. We use as a basis the analytically

known RSs of the infinitely extended homogeneous dielectric cylinder. We find that

the unperturbed GF contains a cut in the complex frequency plane, which must be

included in the RSE basis for the accuracy of the perturbation theory. Zero frequency

longitudinal modes are found to be formal solutions of Maxwell’s wave equation which
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also must be included in the basis for the accuracy of the method. Zero frequency

modes occur for systems of all dimensionality when considering the TM modes, modes

with electric field component normal to the interfaces.

In the penultimate chapter of this thesis we apply the RSE to fully 3D open

systems. We use as a basis the analytically known RSs of the homogeneous dielec-

tric sphere. This advance was non-trivial due to a general mixing of transversal

and longitudinal electro-magnetic modes. We compare the performance of the RSE

with available commercial electromagnetic solvers. In the case of 3D perturbations,

we find that the RSE provides a higher accuracy than the finite element method

(FEM) and finite difference in time domain (FDTD) for a given computational effort,

demonstrating its potential to supersede presently used methods.

At the end of the penultimate chapter we introduce a local perturbation

method for RSE, which is a unique capability of the RSE compared to FEM or FDTD,

and allows to calculate small perturbations of a system with a small computational

effort.
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Chapter 1

Introduction

It is in most cases not possible to solve eigenvalue problems analytically. Perturbative

methods and various expansions into complete sets of functions are currently being

used to solve eigenvalue problems, as we will discuss in Sec. 1.2. At the beginning

of my PhD the perturbation method named resonant-state expansion (RSE) allowed

for the expansion of the eigenstates of arbitrary electrodynamic systems in terms of

sets of analytically known solutions of similar problems differing from the system of

interest by some perturbation. However at that time the RSE was only rigorously

proven and implemented for systems reducible to a scalar equation. In this thesis

I will present work that I have undertaken with my supervisors Egor Muljarov and

Wolfgang Langbein to extend the RSE to systems of two and three dimensions.

In this thesis the RSE will be shown to be useful for the calculation of whisper-

ing gallery modes in bio-sensors and photonic wave guides. The Lorentzian frequency

linewidth of these resonant modes is twice the imaginary part of the complex fre-

quency. The finite linewidths of resonances are typical for open systems and are due

to energy leakage from the system to the outside. This leakage can be enhanced

by various structural imperfections and scatterers. In particular, when an object is

placed inside or in close proximity to the cavity, the resulting modification of the

electromagnetic susceptibility perturbs the cavity resonances, changing both their

position and linewidth, most noticeably for high quality modes (i.e narrow-line) res-

onances. This effect is the basis for resonant optical biosensing [1–3]. The changes
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in the spectral properties of resonators in the presence of perturbations can be used

to characterise the size and shape of the attached nanoparticles [4, 5]. The WGM

resonances in the microdisks and spherical microcavities have already been used in

the characterisation of nanolayers [6], DNA [7] and nano particle detection [8, 9]. Re-

cently, optical resonances have become the core element of a more accurate modeling

of multimode and random lasers [10, 11] and of light propagation through random

media [12]. In nanoplasmonics, the resonances of metal nanoparticles are used to

locally enhance the electromagnetic field [13].

The RSE can also be applied to optical waveguides, which we also studied in

this thesis. Optical waveguides are a basic building block for optical technology owing

to their low loss guiding of light. Planar WGs with one-dimensional confinement,

such as the dielectric slab, and fibre WGs with two-dimensional confinement, are

widely used in fibre optic cables for telecommunications, photonic crystal fibres [14],

integrated optical circuits [15], and terabit chip to chip interconnects [16].

There already exists numerical techniques for finding eigenmodes such as fi-

nite element method (FEM) [17] and the finite difference in time domain (FDTD)

method [18] to calculate resonances in open cavities. However determining the effect

of perturbations which break the symmetry presents a significant challenge as these

popular computational techniques need large computational resources [19] to model

high quality modes.

Much of this thesis is taken up with numerical simulations with which we have

established the value of the RSE. We have used these numerical results to make com-

parisons of the RSE performance with available commercial electromagnetic solvers

based on FEM or FDTD. Our findings are that the RSE is a few orders of mag-

nitudes more computationally efficient. It therefore has the potential to supersede

these presently used methods. To improve the efficiency of the RSE we introduced

a local perturbation method for RSE, which is a unique capability of the RSE com-

pared to FEM or FDTD, and allows to calculate small perturbations of a system with

a small computational effort. This is especially relevant for sensing or optimization

applications. The local perturbation method is an algorithm for selecting modes for

inclusion in the basis which make the biggest contribution to the perturbed states of
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interested, in order to minimise the basis size and computational work load of the

RSE.

1.1 Resonant states (RSs) and their normalisa-

tion

The concept of resonant states (RSs) was first used by Gamow in 1928 in order

to describe the process of radioactive decay, specifically the escape from the nuclear

potential of an alpha-particle by tunnelling [20]. Mathematically this corresponded to

solving Schrödinger’s equation for outgoing boundary conditions (BCs). These states

have complex frequency ω with a negative imaginary part meaning their time depen-

dence exp(−iωt) decays exponentially, thus giving an explanation for the exponential

decay law of nuclear physics. The further from the decaying system at a given instant

of time the greater the wave amplitude, this is a consequence of the exponential decay.

An intuitive way of understanding this divergence of wave amplitude with distance is

to notice that waves that are further away have left the system at an earlier time when

less of the particle probability density had leaked out. Therefore the integral square

modulus of the field over all space is infinite, making normalisation a non-trivial task.

RSs are a key concept in the understanding of the GF. Furthermore, in order

to use the unperturbed GF expressed as a spectrum of RSs to expand the perturbed

RSs in the basis of unperturbed RSs they must be properly normalised.

Our understanding of RSs was greatly improved when we made the observation

that the solution to Maxwell’s, Schrödinger’s, and Dirac’s equation are all a source

convoluted with their corresponding GF. This immediately allowed us to see RSs and

their analytic continuations in the proper place with regard to GF theory. We ob-

served that the analytic continuation of a RS is a solution constructed by convolution

between a GF and a source whose frequency tends to that of a pole of the GF with

outgoing BCs, where the source amplitude tends to zero in such a way as to exactly

compensate the divergence of the GF at that pole. It is clear that in the limit of the

source becoming zero the analytic continuation becomes the RS. These observations
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were our starting point for the derivation we developed of the general 3D normalisa-

tion formula for RSs appearing in the spectral GF (see Sec. 2.1 for derivation). The

general normalisation formula was first proposed by Muljarov et al in Ref.[21] where

a proof for GF equations which are reducible to a scalar form was also included.

In the case of effectively 1D radially symmetric quantum systems described

by Schrödinger’s equation with only s-wave excitation i.e. the spherically symmetric

case excited by a δ source, such as

[

∂2

∂r2
+ [k2 − V (r)]

]

G(r, r′) =
2m

~2
δ(r − r′) , (1.1)

it was rigorously proven in Ref.[22] that the GF G(r, r′) can be written as

G(r, r′) =
2m

~2

∑

n

un(r)un(r
′)

2kn(k − kn)
, (1.2)

with the normalisation

1 =

∫ a

0

u2ndr + i
u2n(a)

2kn
(1.3)

where the un(r) are the RSs of Eq. (1.1) without a source. The surface term in

Eq. (1.3) compensates the divergence of the volume integral due to the exponential

growth of the RSs with large r. The surface term exponentially increases with a to

cancel the exponential increase of the volume integral with increasing a, thus keeping

the sum of the terms on the right hand side Eq. (1.3) constant. This was proven by

Zel’dovich [23] after considering the integral

lim
α→0

∫ ∞

0

un(r)e
−α/r2dr (1.4)

and the asymptotics of un(r) as r → ∞.

At the start of my PhD the tensorial equivalent of Eq. (1.2) for 3D systems

not reducible to a scalar equation was lacking derivation. For this thesis we have

derived the tensorial equivalent of Eq. (1.2). That derivation began with our idea to

investigate convolution of the GF equations and its corresponding Mittag-Leffler GF

with a finite oscillating current having a frequency tending to a GF pole. The details

7



of this derivation are given in Appendix B.

The lack of a 3D GF for arbitrary resonators in term of RSs at the start of

my PhD was caused by the derivations of such spectral GFs coming from the poles

and residues of the analytic GF. The effect of these limitations on the RSE method

was that at that time it was only a rigorously proven method for systems reducible

to a scalar equation. For systems that can be reduced to a scalar GF equation such

as Eq. (1.1) the analytic GF is given by,

G(r, r′) =
φL(r<)φR(r>)

W
(1.5)

where φL(r<) and φR(r>) are the left and right solutions of Eq. (1.1) without the

delta inhomogeneity. The left (right) solution of the homogeneous equation satisfy

the boundary conditions for r → 0 (r → ∞). The Wronskian W = φL(r)φ
′
R(r) −

φR(r)φ
′
L(r) in the denominator takes care of the delta inhomogeneity Eq. (1.1). To

prove Eq. (1.5) simply substitute it in Eq. (1.1) and integrate over the homogeneity to

show it satisfies the GF equation. No equivalent of Eq. (1.5) was known for systems

which cannot be reduced to a a scalar GF. In fact it is not even always possible in 1D

to derive the left and right solutions in Eq. (1.5) analytically, this was the motivation

for other authors to develop perturbation methods for effectively 1D systems, we will

give details of these theories in the next section.

Another analytic approach to finding the GF of open spherically symmetric 3D

systems is found in [24]. The approach is to expand the δ inhomogeneity in Eq. (1.1)

into spherical harmonics and the GF into eigenstates of different polarisations and

angular momenta. It is then possible to make use of the orthogonality of these

eigenstates at real frequencies in order to calculate the expansion coefficients occurring

in this GF. Unfortunately this GF is only valid at real frequency as the orthogonality

required is the square modulus of the field integrated over all space without surface

terms, so is not applicable for the normalisation of complex frequency poles.

A numerical normalisation of RSs for arbitrary three dimensional electrody-

namic systems is available in [25]. The approach is to use a perfectly matched layer

8



to absorb the exponentially growing tails of the RSs and thus make numerical vol-

ume integrals finite. However we show in this thesis that numerical methods such as

FDTD and FEM can be several orders of magnitude less efficient than the RSE for

the examples considered (see Sec. 5.2.3).

One approximate solution to the problem of normalising the modes in the

spectral representation of the GF for non-symmetric resonators has been to approx-

imate the high quality modes as having real wave vectors outside the resonator [26].

The consequence of this approximation is that the integral of the square modulus

of the field is finite, allowing a normalisation by taking just a volume integral of the

resonant mode’s field inside the resonator only. Such infinitely high quality modes are

suitable for lasing modes in lasers and are referred to as constant flux states because

the total flux coming from any surface surrounding the laser at lasing threshold is

constant. Such an approach is possible since the quality factor for a mode at lasing

threshold is infinite. The concept of constant flux states has been used in [27, 28].

For general RSs which have a large range of imaginary parts of their wavevector this

approach is not suited.

The normalization constants we find in Sec. 5.1 for a homogeneous sphere are

equal to those in Ref.[29] (Eqs. 3.31-3.33), where they are claimed to be resulting from

a general formula for the normalization of modes in spherically symmetric systems,

Eq. (3.12). However, this formula is different from our normalisation formula, and

we found that it diverges for the TE and TM modes, showing that it is incorrect and

does not result in Eqs. (3.31-3.33).

1.2 Development of the resonant-state expan-

sion (RSE)

In Ref.[30] More exploited the Dyson equation to express perturbed eigen-

functions of the quantum-mechanical Eq. (1.1) which we label ûn(r) with a potential
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modified by a radially symmetric perturbation ∆V (r) as

ûn(r) =
∑

m

um(r)

2km(k̂m − km)

∫ ∞

0

um(r)∆V (r)ûn(r)dr (1.6)

with perturbed eigenvalues are k̂m. The summations over perturbed resonant states

in the perturbed spectral Green’s functions was eliminated by letting k → k̂m and

comparing residues in the Dyson equation.

In Ref.[31] the completeness of the resonant states allows to write

ûn(r) =
∑

m

cmum(r) (1.7)

was used to turn Eq. (1.6) into a linear eigenvalue problem,

cm(k̂m − km) =
∑

n

cn

∫ ∞

0

um(r)∆V (r)un(r)

2km
dr . (1.8)

Prior to my PhD the similarities between Schrödinger’s equation and Maxwell’s

wave equation had already been used to translate the quantum mechanical results

we have just touched upon into a similar method for electrodynamics [21]. This

perturbation method for electrodynamic RSs is now referred to as the resonant-state

expansion (RSE). I note here that applying Eq. (1.8) directly to electrodynamics does

not lead to a linear eigenvalue problem.

1.3 Plan of this thesis

In the next chapter we detail our original mathematical derivation of the RSE

for arbitrary finite 3D systems. We derive first the spectral representation of the

dyadic tensor GF in terms of RSs. We then use this result to derive the normalisa-

tion of the RSs. With the spectral GF we are able to formulate the matrix equations

for finite systems that can be solved to expand the perturbed RSs in terms of the

unperturbed basis which is well know from scalar theories. The RSE for systems
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invariant in one direction is also developed. Chapter 2 ends with a section detail-

ing the algorithm for error estimation and reduction by extrapolation which we use

throughout this thesis to analyse the numerical RSE results.

With this derived method we are able in Chapter 3 to validate the RSE in

effectively 1D planar systems with and without an in-plane component of the wave

vector. This validation is made possible by the availability of analytic solutions in

1D which we use to calculate the convergence of the RSE to the exact solutions. The

role of RSs in the transmission of a dielectric slab is also studied, and in particular

the WG modes on the slab transmission.

As a next step towards a 3D implementation of the RSE we apply the method

to 2D systems with translational invariance in one direction in Chapter 4. The basis

system used is a homogeneous dielectric cylinder. An interesting feature which we

found is the presence of a cut in the GF along the imaginary frequency axis. For the

accuracy of the RSE the cut must be included in the basis and this is done using a

method of discretising the cut into a finite number of poles. We verify this method

of discretising the cut for homogeneous perturbations by comparison with analytic

solutions and we find that if half the basis is given over to the cut then the error is

not significantly limited by the cut. Inclusion of the zero frequency poles were also

found to be necessary for the accuracy of the RSE method.

We complete the research component of the thesis with the penultimate chap-

ter where we apply the RSE to 3D systems. The application of the RSE to fully

3D systems opens its use to a very important class of problems. This advance was

non-trivial due to a general mixing of transversal and longitudinal electro-magnetic

modes. We compare the performance of RSE with available commercial electromag-

netic solvers based on FEM or FDTD method, and find that the RSE is a few orders

of magnitudes more computationally efficient. It therefore has the potential to su-

persede these presently used methods. We develop the local perturbation method for

the RSE, which is a unique capability of the RSE compared to FEM or FDTD, and

allows to calculate small perturbations of a system with a small computational effort.

This is especially relevant for optimisation of resonant bio-sensors.
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Chapter 2

Formulation of the RSE

In this chapter we will derive the spectral representation of the electrodynamic tensor

GF in terms of RSs. We will then consider such a representation of the GF for an

unperturbed system and use it to write a matrix equation for the eigenfunctions and

eigenfrequencies of a system differing from the unperturbed system by a perturba-

tion to its dielectric profile. We will formulate the RSE both for finite open optical

resonators and planar waveguides.

The basis of unperturbed RSs is countably infinite, therefore for the numerical

calculations it must be truncated. As the size of the basis is increased the perturbed

RSs generated by the RSE converge to the exact solution. At the end of this chapter

we develop an algorithm for error estimation and reduction by extrapolation.

2.1 Normalisation of RSs and the spectral rep-

resentation of the Green’s function (GF)

We will in this section derive a new method for calculating the GF of an

open electrodynamic system. This method is required to formulate the RSE with

mathematical rigour.

For an electrodynamic system with local dielectric permittivity tensor ε̂(r)

and permeability µ = 1, where r is the three-dimensional spatial position, Maxwell’s
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wave equation for the electric field E(r) with an oscillating current source J(r) is

−∇×∇× E(r) + k2ε̂(r)E(r) = ik
4π

c
J(r) . (2.1)

The time-dependent part of the field is given by exp(−iωt) with the complex eigen-

frequency ω = ck, where c is the speed of light in vacuum.

The Green’s function (GF) of an open electromagnetic system is a tensor Ĝk

which satisfies Maxwell’s wave equation Eq. (2.1) with a δ function source term,

−∇×∇× Ĝk(r, r
′) + k2ε̂(r)Ĝk(r, r

′) = 1̂δ(r− r′) , (2.2)

where 1̂ is the unit tensor. Later we use the GF to formulate a matrix equation for

the RSs of a perturbed system. In order for the perturbed RSs generated to have

outgoing BCs we must use a GF with the same BCs. Physically, the GF describes the

response of the system to a point current with frequency ω = ck, i.e. an oscillating

dipole.

The importance of Ĝk comes from the fact we can see from Eq. (2.2) that

Eqs. (2.1) can be solved for E(r) by convolution of Ĝk with the current source J(r),

E(r) = ik
4π

c

∫

Ĝk(r, r
′)J(r)dr′ . (2.3)

Assuming a simple-pole structure of the GF with poles at k = kn and out

going BCs, and taking into account its large-k vanishing asymptotics, the Mittag-

Leffler theorem [30, 32] allows us to derive the following expression for the GF

Ĝk(r, r
′) =

∑

n

Q̂n(r, r
′)

k − kn
. (2.4)

as detailed in Appendix A. In Appendix B we show that

Q̂n(r, r
′) = En(r)⊗En(r

′)/2kn , (2.5)

in which the vectorial nature of the field and the symmetry of the kernel Eq. (B.12)
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were taken into account and a normalisation constant 2kn was introduced. The direct

vector product ⊗ is defined as c(a ⊗ b)d = (c · a)(b · d), for any vectors a, b, c,

and d.

The functions En(r) are the resonant state eigensolutions of the Maxwell wave

equation

∇×∇× En(r) = k2nε̂(r)En(r) , (2.6)

which satisfy the outgoing wave boundary condition, the r = |r| dependence is given

by

En(r) → r−(D−1)/2eiknr for r → ∞ , (2.7)

where D is the space dimensionality. RSs are either stationary or time-decaying

solutions of Maxwell’s equation. The wave numbers kn of time-decaying RSs lie in the

lower half of the complex k-plane and come in pairs, having opposite real and equal

imaginary parts. Indeed, if En(r) and kn corresponding to RS n satisfy Eqs. (2.6)

and (2.7), taking the complex conjugate of Eq. (2.6) we find that E(r) = E∗
n(r) and

k = ±k∗n also satisfy the same equation. Only −k∗n has a negative imaginary part as

required for time-decaying solutions since the time dependence is given by the factor

exp(−icknt). Here we label the resulting RS with index −n, so that k−n = −k∗n.

Combining Eq. (2.4) and Eq. (2.5) we find

Ĝk(r, r
′) =

∑

n

En(r)⊗ En(r
′)

2kn(k − kn)
. (2.8)

Substituting Eq. (2.8) in Eq. (2.2) gives

ε̂(r)
∑

n

(k + kn)En(r)⊗ En(r
′)

2kn
= 1̂δ(r− r′) . (2.9)

Convoluting Eq. (2.9) with a finite field D(r) which is only non-zero inside the res-

onator, gives

∫

Ω

(

ε̂(r)
∑

n

(k + kn)En(r)⊗ En(r
′)

2kn

)

D(r′)dr′ = D(r) . (2.10)
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Letting k → ∞ in Eq. (2.10) we see that

∫

Ω

(

∑

n

En(r)⊗En(r
′)

2kn

)

D(r′)dr′ = 0 . (2.11)

Since Eq. (2.11) is true for all D(r) it follows that,

∑

n

En(r)⊗ En(r
′)

2kn
= 0 . (2.12)

Combining Eq. (2.8) and Eq. (2.12) yields

Ĝk(r, r
′) =

∑

n

En(r)⊗ En(r
′)

2k(k − kn)
. (2.13)

Combining Eq. (2.9) and Eq. (2.12) leads to the closure relation

ε̂(r)

2

∑

n

En(r)⊗ En(r
′) = 1̂δ(r− r′) , (2.14)

which expresses the completeness of the RSs, so that any function can be written as

a superposition of RSs.

For any open system, the RSs form an orthonormal complete set of eigenmodes.

It follows from Eq. (2.7) that solutions decaying in time grow exponentially in space

as r → ∞. When we derive the orthonormality relation this divergence of the volume

integral as r → ∞ is dealt with by involving the electromagnetic energy flux through

a surface surrounding the system.

Following Ref.[21] we multiply Eqs. (2.6) by Em, repeating the process with m

and n exchanged, subtracting the two expressions and integrating the dot product by

parts over an arbitrary volume V which includes all system inhomogeneities of ε(r)

the orthogonality of RSs for n 6= m has the form

0 = (k2n − k2m)

∫

V

drε̂(r)En(r) · Em(r)−
∫

SV

dS

(

En ·
∂Em

∂s
−Em · ∂En

∂s

)

, (2.15)

where the second integral is taken over the surface SV surrounding the volume V and

contains the gradients ∂/∂s normal to this surface.
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The eigenstates with outgoing boundary conditions must be normalised be

used as a basis of the perturbation theory. To this end we consider an analytic

continuation E(k, r) of the wave function En(r) around the point k = kn in the

complex k-plane (kn is the wavenumber of the given RS). We choose the analytic

continuation such that it satisfies the outgoing wave boundary condition and the

Maxwell wave equation

−∇×∇× E(k, r) + k2ε̂(r)E(k, r) = (k2 − k2n)σ(r) (2.16)

with an arbitrary source term corresponding to the current density j(r, k) = σ(r)ic(k2−
k2n)/(4πk). The source σ(r) has to be zero outside the volume of the inhomogeneity

of ε̂(r) for the electric field E(k, r) to satisfy the outgoing wave boundary condition.

It also has to be non-zero somewhere inside that volume, as otherwise E(k, r) would

be identical to En(r). We further require that σ(r) is normalized according to

∫

V

En(r) · σ(r) dr = 1 + δkn,0 , (2.17)

with the Kronecker delta δkn,0 = 1 for kn = 0 and δkn,0 = 0 for kn 6= 0. The integral

in Eq. (2.17) is taken over an arbitrary simply connected volume V which includes all

system inhomogeneities of ε̂(r). The Eq. (2.17) ensures that the analytic continuation

reproduces En(r) in the limit k → kn. Indeed, solving Eq. (2.16) with the help of the

GF and using the GF spectral representation Eq. (2.32), we find

E(k, r) =

∫

V

Ĝk(r, r
′)(k2 − k2n)σ(r

′)dr′ (2.18)

=
∑

m

Em(r)
k2 − k2n

2k(k − km)

∫

V ′

Em(r
′) · σ(r′) dr′ ,

where we have introduced the sub-volume of V , the volume V ′ in which σ(r) 6= 0.

Using Eq. (2.16), Eq. (2.17), Eq. (2.18) and Maxwell’s boundary conditions we obtain

that for all r

lim
k→kn

E(k, r) = En(r) .
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In the case of a Green’s function made up of degenerate modes the derivation of the

normalisation of mode n is modified by making use of orthogonality of the degenerate

modes to choose σ(r) to satisfy Eq. (2.17) and,

∫

V

Em(r) · σ(r) dr = 0 , (2.19)

for m 6= n and mode m is degenerate with n.

We now consider the integral

In(k) =

∫

V
(E · ∇ ×∇× En −En · ∇ ×∇ ×E)dr

k2 − k2n
(2.20)

and evaluate it using Eqs. (2.6) and (2.16) for En and E, respectively, and the source

term normalization Eq. (2.17)

In(k) =

∫

V
(k2nE · ε̂En − k2En · ε̂E)dr

k2 − k2n
+ 1 + δkn,0 . (2.21)

On the other hand, rearranging the integrand in Eq. (2.20) and using the divergence

theorem, we obtain

(k2 − k2n)In(k) =

∮

SV

dS

(

En ·
∂E

∂s
− E · ∂En

∂s

)

(2.22)

with SV being the the boundary of V . Here, we used that for two arbitrary vector

fields, a(r) and b(r), we can write

a · ∇ × ∇× b− b · ∇ ×∇ × a =

a · [∇(∇ · b)−∇2b]− b · [∇(∇ · a)−∇2a] =

∇ · [a(∇ · b)− b(∇ · a)] +
∑

j=x,y,z

∇ ·
(

−aj∇bj + bj∇aj
)

.

The divergence theorem therefore allows us to convert all volume integrals in Eq. (2.20)

into surface integrals over the closed surface SV , the boundary of V . The surface SV

lies in the region where ε̂(r) is homogeneous, so that both ∇·E and ∇·En vanish on

that surface leaving only the integral shown in Eq. (2.22). Finally, using Eq. (2.21) in
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Eq. (2.22) and taking the limit k → kn we obtain the normalization condition

1 + δkn,0 =

∫

V

drEn(r) · ε̂(r)En(r) + lim
k→kn

∮

SV

dS

(

En ·
∂E

∂s
−E · ∂En

∂s

)

k2 − k2n
, (2.23)

The limit in Eq. (2.23) can be taken explicitly for any spherical surface as

found by Muljarov et al in Ref.[21]. In fact, outside the system, where ε̂(r) = 1̂ (or an

isotropic constant) the wave function of any kn 6= 0 mode is given by En(r) = Fn(knr),

where Fn(q) is a vector function satisfying the equation

∇q ×∇q × Fn(q) = Fn(q) (2.24)

and the Maxwell boundary conditions at system interfaces and at q → ∞. The

analytic continuation of En(r) can be therefore taken in the form

E(k, r) = Fn(kr) . (2.25)

As in Ref.[21] we may use a Taylor expansion at k = kn to obtain

E(k, r) ≈ Fn(knr) + (k − kn)r
∂Fn(kr)

∂(kr)

∣

∣

∣

∣

k=kn

= En(r) +
k − kn
kn

r
∂En(r)

∂r
(2.26)

and
∂E(k, r)

∂r
≈ ∂En(r)

∂r
+
k − kn
kn

∂

∂r
r
∂En(r)

∂r
, (2.27)

where r = |r| is the radius in the spherical coordinates. Choosing the origin to coincide

with the center of the sphere of integration SV = SR we note that ∂/∂s = ∂/∂r in

Eq. (2.23). Substituting Eqs. (2.26) and (2.27) into Eq. (2.23) and taking the limit

k → kn explicitly leads for kn 6= 0 modes to

1=

∫

VR

drEn · ε̂En +
1

2k2n

∮

SR

dS

[

En ·
∂

∂r
r
∂En

∂r
− r

(

∂En

∂r

)2
]

(2.28)
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where r = |r|, with the origin at the center of the chosen sphere. Static kn = 0 modes,

if they exist in the GF spectrum, are normalized according to

2 =

∫

drEn · ε̂En . (2.29)

Their wave functions decay at large distances as 1/r2 or quicker, and the volume

of integration in Eq. (2.23) can be extended to the full space for which the surface

integral is vanishing.

2.2 Formulation of the RSE for finite struc-

tures

In this section we consider an unperturbed electrodynamic system for which

the RSs are analytically known, and use properties of the GF to make the derivation

of the matrix equations for the unknown RSs of a perturbed system written in terms

of the RSs of the unperturbed system, this method is the RSE [21]. To make our

formulation of the RSE mathematically rigorous we make use of the spectral GF

derived in the last section.

The completeness of RSs allows to treat exactly a modified (perturbed) prob-

lem

∇×∇× Eν(r) = κ
2
ν

[

ε̂(r) + ∆ε̂(r)
]

Eν(r) , (2.30)

in which the RS wave vector κν and the electric field Eν are modified as compared

to kn and En, respectively, due to a perturbation ∆ε̂(r) with compact support. This

problem is treated by (i) solving Eq. (2.30) with the help of the GF,

Eν(r) = −κ
2
ν

∫

dr′Ĝκν
(r, r′)∆ε̂(r′)Eν(r

′) , (2.31)

(ii) using in Eq. (2.31) the spectral representation Eq. (2.13),

Eν(r) = −κ
2
ν

∑

n

En(r)

∫

dr′En(r
′) ·∆ε̂(r′)Eν(r

′)

2κν(κν − kn)
, (2.32)
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and (iii) expanding the perturbed wave functions into the unperturbed ones,

Eν(r) =
∑

n

bnνEn(r) (2.33)

This is the RSE method. The use of the of the unperturbed GF with outgoing

BCs is an essential element of the RSE as Eq. (2.31) guarantees that the perturbed

wave functions satisfy the same outgoing BCs. The result of using Eq. (2.33) in

Eq. (2.32), and equating coefficients of the same basis functions, we obtain a linear

matrix eigenvalue problem

κν

∑

m

(δnm + Vnm/2)bmν = knbnν , (2.34)

which is reduced, using the substitution bnν = cnν
√

κν/kn , to the matrix equation

(

∑

n

δnm
km

+
Vnm

2
√
knkm

)

cmν =
1

κν

cnν . (2.35)

This allows us to find the wave vectors κν and the expansion coefficients cnν of the

perturbed RSs by diagonalizing a complex symmetric matrix. The matrix elements

of the perturbation are given by

Vnm =

∫

En(r)∆ε̂(r)Em(r) dr . (2.36)

In spite of the exponentially growing En outside the system, the perturbation ∆ε̂(r) 6=
0 only inside the system so that Vnm is always finite.

2.3 Formulation of the RSE for planar wave

guides

In the previous section the RSE was applied to finite resonators. When a res-

onator has translational invariance it is possible for electromagnetic waves to prop-

agate along the directions of this invariance, in which case the system becomes a
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waveguide. In this section we present the perturbation theory for resonators with

translational invariance in two dimensions and non-normal incidence at the interface,

characterized by an in-plane wave vector component p 6= 0. The previously used

spectral representation of the GF in the frequency domain contains a cut for p 6= 0,

however this can be removed by mapping the problem onto the complex normal wave-

vector space k. We will discuss this cut in Sec. 3.1, Sec. 3.3, and Sec. 3.4. Therefore

the RSE is reformulated in the complex k-plane.

Following the approach of the previous section first the spectral representation

of the GF is established, which will then be used to formulate a matrix equation for

the perturbed RSs. This matrix problem which can be solved to expand the perturbed

RSs in terms of unperturbed RSs is known as the RSE for inclined geometry. Future

development of the RSE for inclined geometry will include extending this treatment

to systems with one dimension of translational invariance to provide an efficient al-

gorithm for calculating the optical modes in fibers and waveguides, such as photonic

crystal fibers with complex structures.

The electric field E satisfies Maxwell’s equation Eq. (2.1) and Maxwell’s bound-

ary conditions on the dielectric/vacuum interfaces. We limit the treatment here to

TE modes. For an incoming plane monochromatic wave with the transverse-electric

(TE) polarization along ŷ (ŷ is the unit vector along the y-axis) and real frequency

ω, the electric field in the system takes the form

E(r, t) = ŷe−iωt+ipxE(z) , (2.37)

in which p is the in-plane projection of the wave vector, which is taken to be in the x

direction without loss of generality. For the component E(z) of the electric field and

J(r) = 0, Eq. (2.1) results in the 1D wave equation

[

d2

dz2
− p2 + ε (z)

ω2

c2

]

E(z) = 0 , (2.38)
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and the GF satisfies the equation

[

d2

dz2
− p2 + ε(z)(k2 + p2)

]

Gk(z, z
′) = δ(z − z′) . (2.39)

The spectral representation of the GF of an infinite planar system with an in-plane

momentum p 6= 0 has the form

Gk(z, z
′) =

∑

n

En(z)En(z
′)

2kn(k − kn)
, (2.40)

where En(z) is the electric field of the nth RS and kn the normal projection of its

wave vector, defined as an eigensolution of Eq. (2.38) with an arbitrary profile of ε(z)

within a finite interval |z| < a, with a vacuum in the region |z| > a, satisfying the

outgoing wave BCs

En(z) ∝ eikn|z| for |z| > a (2.41)

and orthonormality conditions derived using the method of Section 2.1, following from

Eq. (2.23),

∫ a

−a

ε(z)En(z)Em(z) dz −
En(−a)Em(−a) + En(a)Em(a)

i(kn + km)
= δnm. (2.42)

Following the derivation in the last section we arrive at the sum rule:

∑

n

En(z)En(z
′)

kn
= 0 . (2.43)

For p = 0 the right-hand side of the above sum rule is replaced by i, due to the k = 0

pole of the GF which is not present in the spectrum for p 6= 0 [21]. Using Eq. (2.43),

we can write Eq. (2.40) as

Gk(z, z
′) =

∑

n

En(z)En(z
′)

2kn

[

1

k − kn
+ F (k)

]

, (2.44)

where F (k) is an arbitrary function which will be appropriately chosen later, in order

to linearize a resulting matrix eigenvalue problem of the RSE.
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An arbitrary perturbation ∆ε(z) of the dielectric constant inside the resonator

is now considered. The perturbed RS with electric field Eν(r) and normal component

of wave vector κν is related to the unperturbed one via

Eν(r) = −(κ2
ν + p2)

∫

dr′Ĝκν
(r, r′)∆ε̂(r′)Eν(r

′) , (2.45)

Substituting Eq. (2.44) into Eq. (2.45) results in the following relationship between

unperturbed and perturbed modes

Eν(z) = −
(

κ
2
ν + p2

)

∑

n

En(z)

2kn

[

1

κν − kn
+ F (κν)

]
∫ a

−a

En(z
′)∆ε(z′)Eν(z′)dz′ .

(2.46)

Note that the perturbed modes Eν(z) satisfy Maxwell’s equation with ε(z) replaced

by ε(z)+∆ε(z) and the BCs Eq. (2.41) with normal incidence wavevector component

kn replaced by κν . In the interior region |z| < a which contains the perturbation, the

perturbed RSs can be expanded into the unperturbed ones, exploiting the complete-

ness of the RSs inside the resonator:

Eν(z) =
∑

n

bnνEn(z) . (2.47)

Substituting this expansion into Eq. (2.46) and equating coefficients at the same basis

functions En(z) results in the matrix equation

bnν = −κ
2
ν + p2

2kn

[

1

κν − kn
+ F (κν)

]

∑

m

Vnmbmν , (2.48)

where

Vnm =

∫ a

−a

∆ε(z)En(z)Em(z) dz (2.49)

is the matrix of the perturbation in the basis of unperturbed RSs.

Equation (2.48) is a matrix eigenvalue problem which can be solved numer-

ically in order to find the wave vectors κν and the corresponding eigenfrequencies

of the perturbed RSs, as well as their expansion coefficients bnν in terms of the un-

perturbed ones. However, this problem is generally nonlinear in κν , as can be seen
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by choosing F (k) = 0. Nonlinear eigenvalue problems are known to take longer to

solve and demand more computer memory while at the same time being prone to

instabilities and spurious solutions. These problems are avoided by choosing

F (k) = − k

k2 + p2
= −kc

2

ω2
, (2.50)

explicitly depending on the in-plane wave vector p, in order to linearise the eigenvalue

problem. Indeed, with the substitution cnν = bnν
√

kn/κν , the eigenvalue problem

Eq. (2.48) is given by

∑

m

(

δnm
kn

+
Vnm

2
√
knkm

)

cmν=
1

κν

∑

m

(

δnm− p2Vnm

2kn
√
knkm

)

cmν (2.51)

which is linear and can be solved by inverting the matrix on the right-hand side of

Eq. (2.51) and diagonalizing the resulting non-symmetric matrix on the left-hand side,

in order to obtain its eigenvalues 1/κν . Alternatively, we can solve Eq. (2.51) by em-

ploying a variety of software libraries available for generalized linear matrix eigenvalue

problems. Note that the matrix equation of the RSE for normal incidence previously

derived in Ref.[21] is restored by choosing p = 0 in Eq. (2.51). The perturbation

method in this section will be applied in Chapter 3

2.4 Convergence and extrapolation

It will be shown throughout this work that as the number of basis states

N used to calculate a given perturbed RS is increased there is convergence to the

exact solution. It was noted earlier [21] that for a uniform perturbation of a wide

layer of a 1D slab this convergence was following a N−3 scaling. We show in the

next chapter that for the 1-dimensional case the convergence is following a power

law in the basis size, which allows to estimate the remaining error for finite basis

sizes. Furthermore, an extrapolation algorithm is developed which uses this scaling

to significantly improve the accuracy of the RS frequencies.

First we assume that the absolute error, i.e the difference between the RS wave
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number calculated via the RSE κ
(N)
ν and its exact value κ

(exact)
ν scales as a power law

in the basis size N :

κ
(exact)
ν − κ

(N)
ν ≈ KνN

αν . (2.52)

We make a second assumption that the exponent in the power law (αν) is a real

number, so that the RS wave numbers converge in a straight line in the complex

plane. The extrapolation is only used if these assumptions are met for a range of N

as will be detailed later. The model for the numerical error given by Eq. (2.52) is only

used if the power law is being followed by the convergence of the RSs sufficiently well

so as for extrapolation by this model to improve the accuracy of the RSs.

To determine Kν , αν and κ
(exact)
ν in Eq. (2.52) from the RSE, κ

(N)
ν is needed for

a minimum of three different N . In order to estimate the error of the extrapolation,

we uses two triplets, namely {N1, N2, N4}, yielding K ′
ν , α

′
ν , and {N2, N3, N4}, yielding

K ′′
ν , α

′′
ν . This allows to calculate Kν , αν twice for the purposes of estimating the error

from the reproducibility of these parameters. We choose the sizes as

N1 ≈ η4N4 , N2 ≈ η2N4 , N3 ≈ ηN4 , (2.53)

with the factor 0 < η < 1, yielding analytic expressions as shown later.

For each basis size the set of RS is calculated with the RSE. The RSs are

matched between the four sets sequentially, i.e. first {κ(N4)
ν } to {κ(N3)

ν }, then {κ(N3)
ν }

to {κ(N2)
ν }, and finally {κ(N2)

ν } to {κ(N1)
ν }. In doing this, the following matching

algorithm (MA) is used between the two sets of wave numbers, {κ(A)
ν } and {κ(B)

ν }:

(a) Determine the distance between the complex wave numbers of all pairs with

one element from {κ(A)
ν } and one element from {κ(B)

ν }.

(b) Select the pair with the shortest distance, store it, and remove all pairs con-

taining one of the elements of the selected pair from the sets.

(c) Repeat (b) until {κ(A)
ν } or {κ(B)

ν } is empty.

This procedure results in N1 vectors (κ
(N1)
ν ,κ

(N2)
ν ,κ

(N3)
ν ,κ

(N4)
ν ) of RS wave numbers.
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The specific factors chosen between N1, N2, N3, and N4 allow for the following an-

alytical expressions for two sets of coefficients and exponents in Eq. (2.52), for each

state ν:

α′
ν =

1

2 ln η
ln





∣

∣

∣

∣

∣

κ
(N4)
ν − κ

(N1)
ν

κ
(N4)
ν − κ

(N2)
ν

∣

∣

∣

∣

∣

− 1



 , (2.54)

α′′
ν =

1

ln η
ln





∣

∣

∣

∣

∣

κ
(N4)
ν − κ

(N2)
ν

κ
(N4)
ν − κ

(N3)
ν

∣

∣

∣

∣

∣

− 1



 , (2.55)

K ′
ν =

κ
(N4)
ν − κ

(N2)
ν

N
α′

ν

2 −N
α′

ν

4

, (2.56)

K ′′
ν =

κ
(N4)
ν − κ

(N3)
ν

N
α′′

ν

3 −N
α′′

ν

4

. (2.57)

For extrapolation of eigenvalues and estimation of errors we use the mean values

αν =
α′
ν + α′′

ν

2
, KνN

αν

4 =
K ′

νN
α′

ν

4 +K ′′
νN

α′′

ν

4

2
. (2.58)

In order to test the quality of our power law fit, we estimate for each state ν

the relative extrapolation error which we define as

Fν = Φ(K ′
νN

α′

ν

4 , K ′′
νN

α′′

ν

4 ) , (2.59)

where 2Φ(X, Y ) = Γ(X, Y ) + Γ(Y,X) and

Γ(X, Y ) =

∣

∣

∣

∣

X

Y
− 1

∣

∣

∣

∣

. (2.60)

We find from algebra in the complex plane that Fν has the meaning of a relative error

in the power law approximation of the distance κ
(exact)
ν −κ

(N4)
ν deduced from the two

sets of power law parameters. If this error is sufficiently small, Fν < Fmax, and the

power law converges sufficiently fast (αν < αmax), we can improve the result calculated

for the largest basis size N4 by extrapolating it towards the exact value, κ
(N4)
ν → κ

(∞)
ν ,

26



where the extrapolated wave vector κ
(∞)
ν is defined according to Eq. (2.52) as

κ
(∞)
ν = κ

(N4)
ν +KνN

αν

4 . (2.61)

Otherwise, the power law is not describing the convergence well. In that case we then

use the absolute variation scaled to the system size

Mν = max
i=1,2,3

∣

∣

∣
κ

(N4)
ν − κ

(Ni)
ν

∣

∣

∣
a , (2.62)

to evaluate if the state has sufficiently converged.

We will use state ν for the calculation of the Greens function and/or transmis-

sion if its relative or absolute error is sufficiently small, i.e. if one of the two selection

criteria (SC) is met:

1. extrapolation error Fν |KνN
αν

4 |a < Mmax provided that Fν < Fmax and αν <

αmax ;

2. absolute error Mν < Mmax .

For the results shown in this thesis we used Mmax = 0.1, Fmax = 1, αmax = −0.5, and

η = 2−1/4.

We estimate the resulting numerical complexity of this method as follows. For

a sufficiently large basis size N , the numerical complexity calculating the RS wave

numbers is governed by the time required for diagonalization of an N × N complex

matrix scaling as N3. To produce the four sets of RS used above, the complexity is

(1 + η3 + η6 + η12)N3
4 ≈ 2N3

4 .

The method of analysing results presented in this section is used for all the

numerical results shown in the subsequent chapters.

2.5 Summary

In this chapter we have formulated the RSE for open optical systems. To this

end we use a GF for the unperturbed system and the perturbation to formulate a
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matrix equation which can be solved to give an expansion of the perturbed RSs in

terms of a basis of unperturbed RSs. This was achieved by expressing the spectral GF

in terms of normalised resonant states. The key idea that unlocked this theoretical

development was the use of a Mittag-Leffler expansion of the GF to analytically

express RSs and their corresponding analytic continuations.

In addition to these theoretical developments we have also developed algo-

rithms which can be used to estimate the error in the RS wavenumbers, and to ex-

trapolate them. This is possible because the perturbed RS wavenumbers of the RSE

converge to the exact solution as the number of RSs used in the RSE is increased.
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Chapter 3

RSE applied to one-dimensional

open optical systems

In this chapter, the RSE is applied to calculate RS and transmission/scattering prop-

erties of an open optical system, and its performance is investigated on several planar

structures for which analytic and numerical solution of high accuracy are available

for comparison.

The spectrum of RSs for normal incidence consists only of lossy Fabry-Perot

(FP) modes. However for waveguides (WGs) the spectrum includes WG and anti-

waveguide (AWG) modes, as well as a continuum of modes due to a cut of the

Green’s function in the complex frequency plane. The modes on the cut contribute

significantly to the optical spectra and are required for the completeness of the RS

basis. They present a challenge in the technical implementation of the RSE which

is dealing with discrete states. In this chapter, the cut is eliminated in the planar

systems with p 6= 0 by going from the frequency representation of the system to the

normal wave-vector representation.

For the planar system with normal incidence in Sec. 3.2 we investigate the ac-

curacy with which eigenfrequencies, eigenfunctions, the Green’s function, and trans-

mission can be reproduced. We apply the RSE to a perturbed dielectric slab in

Sec. 3.2 with two different types of perturbations: a wide-layer perturbation, and a

δ-perturbation. We find that the RSE converges to the exact solution with a power
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law in the basis size. As a prelude to later chapters where whispering gallery mode are

treated, we treat a Bragg mirror microcavity in Sec. 3.2.5, an example of a structure

with a sharp resonance and show that in this case the RSE reproduces results of the

scattering matrix method.

For p 6= 0 a study is made in Sec. 3.3 of the transmission of a homogeneous

slab in the complex frequency and normal wave vector plane, in order to analyse

the contributions of different types of RSs to its optical spectra. In Sec. 3.4 we treat

different planar structures and compare results with available exact solutions. In

particular, we examine in Sec. 3.4.1 the basis of RSs for a homogeneous slab in inclined

geometry and then use it for calculation of optical modes of a homogeneous slab with a

different refractive index in Sec. 3.4.2 and of a Bragg-mirror microcavity in Sec. 3.4.3.

3.1 Eigenmodes of a homogeneous dielectric slab

as basis for the RSE

In this section we will give the eigenmodes of the homogeous 1D planar slab

which are used as the basis for the RSE throughout this chapter. We consider elec-

trodynamic systems with both zero and non-zero in-plane momentum.

The unperturbed system can be any convenient system. In the discussed 1D

case, a dielectric slab in vacuum having a thickness 2a and a real dielectric constant

ε(z) =











ǫs for |z| < a

1 otherwise
(3.1)

is the simplest 1-dimensional system, and has an analytic solution. In this chapter it

is taken as the unperturbed system.

For the transverse-electric (TE) polarisation we use symmetry in 1D to write

the solution to Maxwell wave equation for the RSs, Eq. (2.30), as

En(r) = ŷe−icknt+ipxEn(z) , (3.2)
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since for the component of En(z) of the electric field, Eq. (2.30) transforms to a 1D

wave equation. The in-plane projection of the wave vector is p and the projection

normal to the planar structure is kn.

[

d2

dz2
− p2 + ε (z)

ω2

c2

]

E(z) = 0 . (3.3)

We are dictated by the formalism of the RSE to use outgoing boundary conditions

for the RSs.

In 1D the electric field of RS n is normalized according to Eq. (2.23), which in

1D takes the form

∫ a

−a

ε(z)En(z)Em(z) dz −
En(−a)Em(−a) + En(a)Em(a)

i(kn + km)
= δnm , (3.4)

The solutions for the RSs in Eq. (3.3) with the profile of the dielectric constant

ε(z) given by Eq. (3.1) take the form

En(z) =























(−1)nAne
−iknz , z 6 −a ,

Bn[e
iqnz + (−1)ne−iqnz] , |z| 6 a ,

Ane
iknz , z > a ,

(3.5)

where the normal wave-vector space eigenvalues kn satisfy the secular equation

(kn − qn) e
iqna + (−1)n (kn + qn) e

−iqna = 0 , (3.6)

with qn =
√

ǫsk2n + (ǫs − 1)p2. We use here an integer index n which takes even (odd)

values for symmetric (anti-symmetric) RSs, respectively. The normalization constants

An and Bn are found from the continuity of En, the continuity of the tangential

magnetic field across the boundaries, and the normalization condition Eq. (3.4). They
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take the form

An =
e−ikna

√

a(ǫs − 1)

√

ǫsω2
n/c

2 − p2

ǫsω2
n/c

2 + ip2/(kna)
, (3.7)

Bn =
(−i)n

2
√

aǫs + ip2/(knω2
n/c

2)
, (3.8)

where ω2
n/c

2 = k2n + p2.

The RS wave vectors in the case of normal incidence p = 0 can be calculated

from Eq. (3.6) and are given by

kn =
1

2a
√
ǫs
(πn− i ln γ), n = 0, ±1, ±2, ... , (3.9)

with

γ =

√
ǫs + 1

√
ǫs − 1

, (3.10)

all having the same imaginary part.
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Figure 3.1: Poles (symbols) and cut (red lines) of the transmission t̃(ω) of a homo-
geneous dielectric slab with ǫs = 9 and in-plane wave vector pa = 5. The poles are
Fabry-Perot (blue crosses), waveguide (black diamonds) and anti-waveguide modes
(open circles) including a leaky mode (open star). The inset shows the absence of
ω = 0 and k = 0 modes.

An example of the poles appearing in the complex frequency plane of a planar
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electrodynamic system with non-zero in-plane momentum is shown in Fig. 3.1. As

in the case of normal incidence, there are a countable infinite number of FP modes

having nearly equidistant real parts and finite imaginary parts. In addition there are

two types of modes on the real ω-axis: WG and AWG modes, which are appearing for

p 6= 0. The WG modes have an evanescent, i. e. exponentially decaying electric field

into the vacuum, while the AWG modes are exponentially growing into the vacuum

and are known in quantum-mechanics as anti-bound states [33]. Finally there is one

leaky mode (LM) at the center of the spectrum which has zero real and negative

imaginary part of ω. Importantly Fig. 3.1 shows a cut in the transmission in ω space

which due to the use of the residue theorem (see Appendix A) would need to appear

in the basis of RSs, if one formulated the RSE in ω space. Fortunately this cut does

not appear in Eq. (3.6), the transcendental equation in terms of the component of the

wave vector projected in the direction normal to the planar system. This explains

why the RSE is formulated in terms of the component of the wave vector projected

in the direction normal to the planar system.

The number of RS in the unperturbed or perturbed systems is countable infi-

nite. Therefore we always deal with a truncation of the basis of the RS made sym-

metrically in the complex plane of k, where k is the component of the wave vector

normal to the planar system. Hence we choose some kmax and select all |kn| ≤ kmax.

This truncation is the only approximation of the theory. We refer to nmax as the

truncation number for the basis so that −nmax ≤ n ≤ nmax. For normal incidence

p = 0 the basis size N is given by

N = 2nmax + 1 . (3.11)

By choosing the basis size N sufficiently large, the results of the perturbation theory

can be produced with any given accuracy.
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3.2 Numerical results for normal incidence

In this section we report results of the RSE applied to a planar open electro-

dynamic system with zero in-plane moment (p = 0). We make use of exact solutions

which are available for these simple geometries to verify the accuracy of the numerical

calculations required in the RSE so as to justify further development of the method

in subsequent chapters of this thesis.

We find the perturbed modes by solving the generalised eigenvalue problem

given by Eq. (2.51). The matrix elements Vnm are given by

Vnm =

∫ a

−a

∆ε(z)En(z)Em(z)dz , (3.12)

where En are given in Eq. (3.5).

3.2.1 Wide-layer perturbation

The perturbation being considered in this subsection is given by

∆ε(z) =











∆ǫ for a/2 ≤ z ≤ a ,

0 otherwise
(3.13)

with ∆ǫ = 10. The profiles of the unperturbed and perturbed dielectric constants are

shown in Fig. 3.2. The analytic solutions of the time-independent Maxwell’s equations

using the RS boundary conditions are given in Appendix C, for perturbed systems,

along with the matrix elements Vnm of the perturbation. Using the procedure intro-

duced in Sec. 2.4 we calculate four sets of perturbed wave numbers and extrapolate κν

according to Eq. (2.61). We also calculate the exact wave numbers κ
(exact)
ν and match

up exact and perturbed states using the matching algorithm described in Sec. 2.4. The

resulting exact and extrapolated eigenvalues κ
(∞)
ν are shown in the inset of Fig. 3.3,

together with the unperturbed wave vectors. We measure the errors in κ
(∞)
ν relative

to κ
(exact)
ν by Γ(κ

(∞)
ν ,κ

(exact)
ν ) and compare it with Γ(κ

(N4)
ν ,κ

(exact)
ν ) to evaluate the

extrapolation method, where the Γ function is defined in Sec. 2.4. The results are
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Figure 3.2: Dielectric constants of the unperturbed slab ε(z) and a slab with a wide
perturbation ε(z) + ∆ε(z).

shown in Fig. 3.3. We see that the relative error of the RS wave number is generally

reduced by extrapolation by more than one order of magnitude.

The coefficients and exponents of the power law fit give us information about

the convergence properties of the perturbed RS. For the wide perturbed layer they

are shown in Fig. 3.4. We see in Fig. 3.4 (a) that states close to the origin in complex

wave number space (and having small state number values) are not described well

by the power law (The estimated relative extrapolation error Fν is larger than Fmax),

even though Fig. 3.3 suggests that these states are well converged. This is reflected

in the small absolute error Mν shown in Fig. 3.4(g),(h), passing the selection criteria

(SC) for extrapolation of Sec. 2.4. We also see that for higher wave-number states

passing the SC the exponent in the power law is close to α = −3 [horizontal lines in

Fig. 3.4 (c),(d)], in accordance with the findings in Ref.[21].

Furthermore, the absolute errors KνN
αν and Mν show universal dependencies

on the normalized state number ν/nmax, as shown in Fig. 3.4 (f) and (h). This provides

us with a scaling law of the absolute errors versus the state number:

Mν ∝ (ν/N)3 . (3.14)

This cubic scaling is shown in Fig. 3.4 (f),(h) by straight magenta lines. The power
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ν ,κ

(exact)
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(N4)
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(exact)
ν ) of the RS wave vec-

tors calculated via the RSE for the perturbation shown in Fig. 3.2, with and without
extrapolation, respectively, for N4 = 801. Inset: unperturbed and perturbed RS wave
numbers; the latter are calculated analytically (empty squares) and via the RSE with
extrapolation (crosses).

law exponent α also shows a universal dependency on the normalized state number,

being α = −3 for ν/nmax . 0.2 as can be seen in Fig. 3.4 (d). In this region the

states pass the relative SC and are extrapolated. An example of how the power law

is applied to extrapolate the wave number of a particular state ν = 63 is given in

Fig. 3.5 (a). Clearly, the extrapolation leads to a considerable improvement of the

accuracy compared to wave numbers calculated with the maximum matrix size N4.

This is due to the good power law convergence as shown in Figure 3.5 (b), seen by the

straight line connecting the “exact” errors |κ(exact)
ν − κ

(Ni)
ν | for the four basis sizes.

The exact errors are only available if the exact solution is known. In a realistic case

for which no such solution is known, one needs to estimate the error of the power law

extrapolation, as we do using the extrapolation SC and Eq. (2.59). In order to check

how good this estimation is, we compare Fν with the exact relative extrapolation

error F
(exact)
ν = Φ(KνN

αν

4 ,κ
(exact)
ν − κ

(N4)
ν ). Such a comparison is shown in Fig. 3.6
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Figure 3.4: Power law parameters and error estimates for the wide perturbation.
(a),(b): Relative extrapolation error Fν . (c),(d): exponent αν in the power law fit.
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63 | for different N (squares) and a power law fit (dashed line).

for all states with αν < −0.5. We can see that the exact error F
(exact)
ν is typically

overestimated by Fν , and for all states with Fν < Fmax we have F
(exact)
ν < 1, i.e.

the extrapolation is improving the error. Fν can thus be used reliably to verify the

convergency and power law extrapolation.

3.2.2 Electric fields

The electric fields (EF) Eν(z) of the perturbed RS calculated via the exact

formula Eq. (C.1) are shown in Fig. 3.7 for a few lowest states in comparison with

En(z), the EF of the unperturbed RS, given by Eq. (3.5). The perturbed RS are

normalized as in Eq. (3.4). In particular, their orthonormality condition reads
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∫ a

−a

εp(z)Eν(z)Eµ(z) dz −
Eν(−a)Eµ(−a) + Eν(a)Eµ(a)

i(κν + κµ)
= δνµ , (3.15)

where εp(z) = ε(z)+∆ε(z) is the perturbed dielectric profile. All unperturbed states

have the same imaginary part of their wave vectors (see the inset in Fig. 2) and thus

their fields have all the same envelope, exponentially growing outside the slab, with

the higher-n states oscillating more rapidly, see Fig. 3.7 (a). In the perturbed system,

the envelopes are different due the varying Imκν . Also, as can be seen in Fig. 3.7(b),

the frequency of the oscillations increases in the perturbed (denser) layer, and their

amplitudes change at the same time.

The perturbation theory fully reproduces the EF of the RS inside the slab.

Inside the slab, the EF is given by the expansion in Eq. (2.33) with the coefficients

cnν diagonalizing the matrix in Eq. (2.35). To quantify how well the perturbation

theory reproduces the EF of a RS, we make use of the root mean square (RMS)
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Figure 3.7: Real part of the normalized electric field of a few lowest energy RS of the
unperturbed slab (a) and of the perturbed slab (b).

deviation within the system defined by

∆ν =

√

√

√

√

∫ a

−a

∣

∣E (N)
ν (z)− E (exact)

ν (z)
∣

∣

2
dz

∫ a

−a

∣

∣E (exact)
ν (z)

∣

∣

2
dz

. (3.16)

The results are shown in Fig. 3.8, where we have matched exact and perturbed RS

using the MA and plotted ∆ν for different basis sizes N . We see that the trend

in accuracy with state number and the basis size is the same as in Fig. 3.4(e),(g),

and the RMS deviation versus the normalized state number also shows a universal

dependence similar to those in Fig. 3.4(f),(h). However, the EF is in general less well

reproduced than the wave numbers and the power law ∆ν ∝ (ν/N)3 is observed only

in the interval of 0.05 < ∆ν < 0.2.
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3.2.3 Green’s function and transmission

The Green’s function (GF) is an important quantity which fully characterizes

the response of an optical system, determining its scattering and transmission. For

the slab with a wide perturbed layer given by Eqs. (3.1) and (3.13), the GF G(z, z′; k)

which satisfies the equation

{ ∂2

∂z2
+
[

ε(z) + ∆ε(z)
]

k2
}

G(z, z′; k) = δ(z − z′) (3.17)

and outgoing boundary conditions can be calculated analytically. Note that when cal-

culating observables, k is real as it is given by the vacuum wave number of an external

driving field. The GF is calculated using its spectral representation, Eq. (2.13)

G(z, z′; k) =
∑

ν

Eν(z)Eν(z′)
2k(k − κν)

, (3.18)

in which the EF Eν(z) and the RS wave numbers κν are calculated numerically via

the RSE. For the wave numbers κν , we use the extrapolated values Eq. (2.61). In
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Figure 3.9: The root mean square deviation in the GF ∆GF as a function of the wave
number of the driving field k, calculated via the RSE for different basis sizes N .

light of the importance of the GF and its further usage for calculation of observables,

we compare G(N), the GF calculated by RSE with basis size N and Eq. (3.18), to its

exact analytic form G(exact), again using the RMS deviation as given by

∆GF =

√

√

√

√

∫ a

−a

∫ a

−a

∣

∣G(N)(z, z′)−G(exact)(z, z′)
∣

∣

2
dzdz′

∫ a

−a

∫ a

−a

∣

∣G(exact)(z, z′)
∣

∣

2
dzdz′

. (3.19)

Such a comparison is shown in Fig. 3.9 for different basis sizes N . Increasing the basis

size has two effects on the GF: (i) it improves the GF error at a given k and (ii) widens

the k-range of the GF with small error. The latter is due to a larger wave-number

range of poles in the GF, Eq. (3.18), being reproduced for large N .

Both expansions Eqs. (2.47) and (3.18), for the EF and for the GF, are valid

only inside the slab or on its borders and are not suitable for the vacuum area where

the EF of the RS grow exponentially. The GF itself is, however, regular on the real

k-axis. Moreover, in vacuum, it always has a simple analytic form of a plane wave

with the amplitude that can be deduced from values inside the slab, Eq. (3.18), using

the continuity of the GF when passing through the interfaces. In this way, the GF

can be calculated at any point of the (z, z′) space, inside or outside the slab. The

δ-function in Eq. (3.17) plays the role of a source of plane waves generated at the
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Figure 3.10: (a) Light transmission through the slab with a wide-layer perturbation
Eq. (3.13). (b) Absolute error in the transmission calculated using the analytic form
of T (k) and numerical values from the RSE for two different simulations.

point z′ and propagating in both directions, away from the source. The GF then has

the meaning of the system’s response to such a plane-wave excitation. This can be

used to derive a formula for the transmission in terms of the GF. To do this, we place

the source of strength 2ik just outside the slab at z′ = −a, in order to produces two

plane wave of amplitude 1. One of these waves is transmitted trough the slab, and

just after the slab at point z = a the amplitude of the EF (which does not change

with further increase of z) is given by

T (k) = 2kiG(a,−a; k) (3.20)

and is called transmission.

We calculate the transmission using Eqs. (3.18) and (3.20) for the GF taken to

be either numerical G(N) or analytical G(exact). This allows us to calculate the absolute

error in the square modulus of transmission, which is shown in Fig. 3.10(b). The
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transmission itself is shown in Fig. 3.10(a) and has a profile which is fully determined

by the pole structure of the GF. The RS which contribute in this frequency range can

be seen in the inset to Fig. 2.

3.2.4 δ-perturbation

We now move from a wide perturbation to a very narrow and strong one, like

a thin metal film on a dielectric. Such a perturbation is described by

∆ε(z) = wǫdδ(z − a/2) (3.21)

with the δ-scatterer strength wǫd = −0.1a. Physically, this perturbation corresponds

to a thin layer of the dielectric constant changed by ǫd, which is placed at z = a/2 and

has a width w much narrower than the shortest wavelength of the resonant modes

used in the basis. The dielectric profile for the system with the δ-perturbation is

shown in Fig. 3.11.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-10

-8

-6

-4

-2

0

2

4

 

 

D
ie

le
ct

ric
 c

on
st

an
t

Distance z/a

 ε(z)
 ε(z)+∆ε(z)

δ-
fu

nc
tio

n

Figure 3.11: Dielectric constants of the unperturbed slab ε(z) and a slab with a δ-
perturbation ε(z) + ∆ε(z). The distance z is in units of the half width a of the slab.

As in the case of a wide-layer perturbation considered in Section 3.2.1 we plot

and compare in Figs. 11–14 the RS wave numbers, calculated exactly and via the RSE

with and without extrapolation, as well as the parameters of the power law fit and
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Figure 3.12: As Fig. 3.3 but for the δ-perturbation shown in Fig. 3.11.

relative and absolute errors which we also need for the quality check of the simula-

tion and extrapolation. The analytic solutions for the δ-perturbation and its matrix

elements are given in the appendix C. We see in Fig. 3.12 that the extrapolation

reduces the relative error by 1-2 orders of magnitude. The integral strength of the

perturbation is almost two orders of magnitude weaker than in the case of the wide

layer considered in Section 3.2.1. However, the convergence is much slower in the

case of the δ-perturbation. We see in Fig. 3.13(c),(d) that for large N the power law

exponent is close to αν = −1. This is to be expected as the δ-perturbation does not

have a finite width. The matrix elements Vnm, though oscillating do not decrease with

increasing wave number (or index n) which leads to a much stronger mixing of states

compared to the wide layer perturbation. Indeed, in the wide layer case, states with

higher indices are less important due to the rapid oscillation of their wave functions,

so that the matrix elements scale as Vnm ∝ 1/n (for n≫ m). Using the second-order

Rayleigh-Schrödinger perturbation theory and the explicit form Eqs. (C.6) and (C.8)

of the matrix elements Vnm, we show that the wave number corrections scale as 1/N

and 1/N3 for the δ- and wide-layer perturbations, respectively, in accordance with
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Figs. 3(d) and 12(d).

In the case of the δ-perturbation, the absolute errors shown in Fig. 3.13(f,h) as

functions of the normalized state number do not display universal curves, for small

ν/N is approaching asymptotically a cubic law in the state number ν (magenta lines).

Thus we conclude that in this case Mν ∝ ν3/N [compare with Eq. (3.14)]. At larger

values of ν/N this dependence transforms into a linear one, Mν ∝ ν/N (blue lines).

Because of the slow (1/N) convergence, the extrapolation gives a huge improvement

as is clear from Fig. 3.14 and demonstrates its necessity in the particular case of the δ-

perturbation. At the same time, the relative extrapolation error is predicted within an
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Figure 3.14: As Fig. 3.5 but for the δ-perturbation shown in Fig. 10 and state number
ν = 28.

order of magnitude, as can bee seen in Fig. 3.15. For the majority of RS, F
(exact)
ν < Fν ,

the exact values F
(exact)
ν being significantly overestimated. However, for a large class

of solutions it turns out to be highly underestimated. The systematic deviation seen
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Fig. 3.15 in estimating the relative extrapolation error though Fν may be a result of

the systematic variation in the power law exponent αν well seen in Fig. 3.13(c),(d).

Hence it is generally advisable when studying convergence with our method to run

simulations with a variety ofN4 parameters in order to establish over what range ofN4

the power law is applicable for the given strength of perturbation. We were also able to
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Figure 3.15: As Fig. 5, but for the δ-perturbation shown in Fig. 10.

simulate a δ-perturbation outside the perturbed slab by taking the unperturbed slab

to include the position of the delta scatterer and thus the perturbation consisting of a

superposition of a δ-perturbation and a wide layer compensating the difference in the

dielectric constants between the vacuum and the unperturbed slab. In this case we did

obtain convergence of the perturbed wave numbers to the exact solution. However,

for a δ-perturbation outside of the unperturbed slab or exactly on the border, the

simulation does not converge to the correct solution. This is to be expected since in

this case the perturbed RS contain waves reflected from the external perturbation,

which are waves propagating towards the slab. Such incoming waves are not part of

the basis of unperturbed RS, and thus cannot be reproduced by an expansion in this

48



basis.

3.2.5 Microcavity

To evaluate the RSE in presence of sharp resonances, we use a Bragg-mirror

microcavity (MC), which consists of a Fabry-Pérot cavity of thickness LC and refrac-

tive index nC surrounded by distributed Bragg reflectors (DBRs). The DBRs consist

of P pairs of dielectric layers with alternating high (nH = 3.0) and low (nL = 1.5)

refractive index. In order to have a sharp cavity mode at a given wavelength λC ,

these alternating layers have to be of quarter wavelength optical thickness, and the

optical thickness of the cavity has to be a multiple of half the wavelength. We take

LC = λC/2. An example of the dielectric profile of such a system with P = 3 is shown

in Fig. 3.16. The RS of a MC are calculated using the RSE. The RS wave vectors
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Figure 3.16: Dielectric profiles of a planar microcavity having P = 3 pairs of Bragg
mirrors on each side (blue line) and an unperturbed dielectric slab (orange line).

and the transmission through the MC are shown in Fig. 3.17(a),(b). For reference,

the unperturbed eigenvalues are also included in Fig. 3.17(a). The unperturbed sys-

tem taken for the RSE is again a dielectric slab whose dielectric constant ε(z) can be

seen in Fig. 3.16. Throughout this section the outer boundaries of the MC and the

unperturbed slab coincide, and we choose ǫs = 5.5 which is between n2
L and n2

H , pro-

viding good convergence. In order to verify the transmission calculated by the RSE,

49



0.0 0.5 1.0 1.5 2.0

-0.003

0.000

0.003

 
 

A
bs

ol
ut

e 
er

ro
r i

n 
|T
(k
)|2

kL
C
n
H
/

(c)

0.0

0.2

0.4

0.6

0.8

1.0

 

 

Tr
an

sm
is

si
on

 |T
(k
)|2

(b)

0.0 0.5 1.0 1.5 2.0

0.00

0.05

0.10

Unperturbed
Perturbed  

 

-I
m
(

L C
n H

/
)

Re( L
C
n
H
/ )

(a)

Figure 3.17: (a) Wave vectors κν of the resonant states of a microcavity with P = 3
pairs of Bragg mirrors on each side calculated via RSE with N = 801. (b) Microcavity
transmission as a function of the normalized wave vector of the incoming light; LC and
nC are the cavity thickness and refractive index. (c) The difference in the transmission
calculated via RSE and using the scattering matrix method [34].

50



0 5 10
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Li
ne

w
id

th
 Im

(2
κ C

L
C
n H

/ π
)

 Analytic
         calculation

 

 

(a)

0 5 10
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 Rejected 
 solutions
 

N=
 51
 101
 201
 401
 801

R
el

at
iv

e 
po

si
tio

n 
 R

e(
κ C

L
C
n H

/ π
) 

-1

 

 

Number of Bragg-mirror pairs P

(b)

Figure 3.18: The FWHM (a) and the position of the cavity mode (b) calculated ana-
lytically and via the RSE for different number of pairs P of Bragg mirrors on each side
of the microcavity. N is the basis size used in the RSE. Where possible, extrapolated
wave numbers have been used. Crossed symbols for N = 51 indicate states which are
rejected by the SC.

we use the scattering matrix method [34] which is a straightforward and precise way

of calculating the optical properties of a planar system. Figure 3.17(c) demonstrates

a good agreement between the two calculations.

Clearly, there is a one-to-one correspondence between the RS wave vectors

in Fig. 3.17(a) and the MC transmission in Fig. 3.17(b). Namely, the real part of

the wave vectors corresponds to the positions of the peaks in the transmission while

the imaginary part gives their line widths. This is well understood in view of the

spectral representation of the Green’s function Eq. (3.18) used for the calculation of

the transmission via Eq. (3.20).

One of the modes shown in Fig. 3.17(a) is rather isolated and has imaginary

part much smaller than the others. This mode, κC , satisfies the Fabry-Pérot res-

onance condition ReκC = π/(LCnC) and is called the cavity mode. For the wave

vector k of incoming light close to this resonance condition, k ≈ π/(LCnC), the
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Greens’ function Eq. (3.18) is dominated by a single term corresponding to this nar-

row mode. As a consequence, there is a sharp peak in the center of a wide stop-band

seen in the transmission in Fig. 3.17(b). For sufficiently large P an analytic approx-

imation for its full width at half maximum (FWHM) of the square modulus of T (k)

is known [35],

∆k =
4next

n2
C

(

nL

nH

)2P
1

LC +
λC
2

nLnH

nC(nH − nL)

, (3.22)

which we use to compare with the RSE calculation. With the refractive index of the

external material next = 1 and using λC = 2LC and nC = nH , Eq. (3.22) reduces to

∆k = 4(nH−nL)(nL/nH)
2P/(LCn

3
H). Comparison of the above formula with the RSE

result for the cavity mode is given in Fig. 3.18, for different number of Bragg-mirror

pairs P and for different basis size N in the RSE. Figure 3.18 demonstrates that RSE

is capable of giving both the correct width and location of sharp resonances in the

transmission profile, if a large enough basis is used, in spite of there being no sharp

resonances in the basis. As the basis size is enlarged, the width and the peak location

of the cavity mode converge to the analytic values. The fact that for a fixed N the

cavity mode position and the width are predicted worse for larger P is explained by

our choice of the unperturbed slab which always has exactly the same thickness as the

Bragg-mirror MC. With the number of Bragg-mirrors increasing, the field inside the

MC oscillates more rapidly (also shifting the cavity mode towards higher frequencies)

that requires a larger number of RS to be taken into account in order to produce

results on the same level of accuracy. We have verified (not shown) that the errors

become independent of P , if one and the same constant width of the unperturbed

slab is used for different values of P .

3.3 Role of waveguide modes in transmission spec-

tra

In this section we will report the study of planar electrodynamic systems with

non-zero in-plane momentum by calculating the contribution in the Mittag-Leffler
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expansion from different types of modes to the transmission. It is shown that the WG

modes have a finite contribution to the transmission due to off resonance excitation.

For the RSs given in Sec. 3.1, we calculate from Maxwell’s BCs that for the

region z > a the electric field for the transmitted plane wave is given by E(z) =

t(ω)eikzE0 where E0 is the amplitude of the incoming wave. The field transmission

through the slab t(ω) has the analytic form

t(ω) =
2ikqe−2ika

2ikq cos(2qa) + (k2 + q2) sin(2qa)
= T (k), (3.23)

in which

k =

√

(

ω

c

)2

− p2 , (3.24)

q =

√

ǫs

(

ω

c

)2

− p2 =
√

ǫsk2 + (ǫs − 1)p2 (3.25)

are the z-components of the wave vector in vacuum and dielectric, respectively.

Eq. (3.23) shows that the transmission t(ω) is a function of the real frequency ω.

We can also express the transmission t(ω) as a function T (k) of the normal wave

vector k, in which k takes only real positive values, as dictated by the outgoing char-

acter of the transmitted wave. The wave vector q inside the slab can be complex for

a dielectric with dissipation and have an arbitrary sign, reflecting the fact that waves

within the slab propagate in both directions. Hence the transmission is insensitive to

the sign of q as seen in Eq. (3.23).

To study the influence of different modes on the transmission, we consider

analytic continuations (ACs) t̃(ω) and T̃ (k) of both functions in the complex ω- and

k-plane, respectively, in order to investigate their pole structure and for each of them

apply the Mittag-Leffler theorem [30, 36]. The AC of the transmission has different

types of poles, which are shown in Fig. 3.1 for pa = 5 and discussed in Sec. 3.1. The

function t̃(ω) has two branch points at ω = ±pc connected by a cut, due to the square

root in Eq. (3.24). We choose the cut going through ω = −i∞ and thus producing

two vertical cut lines as shown in Fig. 3.1. The other square root in the definition

53



of q(ω) does not produce any cuts due to the above mentioned fact that t(ω) is an

even function of q and thus independent of its sign. Integrating t̃(ω′)/(ω− ω′) over a

closed infinite-radius circular contour circumventing the cut, similar to that used in

Ref.[37], we obtain the spectral representation in the frequency domain

t̃(ω) =
∑

n

Res
ω′=ωn

[

t̃(ω′)
]

ω − ωn
+

1

2πi

∑

p′=±p

∫ p′c

p′c−i∞

∆t(ω′)dω′

ω − ω′ . (3.26)

Here the first term represents a sum over residues at all poles of t̃(ω). The second

term is the integral of the step ∆t(ω) in the transmission along the two parts of the

cut shown in Fig. 3.1. Specifically, ∆t(ω) is defined as the difference between the

values of t̃(ω) on the left and right sides of the cut for the given cut point ω.

Using the spectral representation Eq. (3.26) for real frequencies ω, we analyse

contributions of the poles and the cut to the transmission. The transmission is usually

studied for a fixed angle of incidence θ, motivated by experimental constraints. An

example of the calculated transmission through a slab with ǫs = 9 is shown for θ = π/4

in Fig. 3.19 (a). For a fixed θ, the in-plane wave vector p changes with frequency, so

that the contributions of the poles (which are different for different p) are not constant

across the spectrum. Therefore analysis of the spectrum for a fixed p is made, as

shown in Fig. 3.19 (b), in which the contributions of different pole types and the cut

are shown individually, summing up to the analytic transmission Eq. (3.23). Note

that the transmission t(ω) is defined over the angle range 0 < θ < π/2, corresponding

to ω > pc. FP modes dominate for ω ≫ pc giving rise to the oscillations in the

transmission, while the contribution of all other modes and the cut are significant

only close to the threshold ω = pc, corresponding to grazing incidence θ ∼ π/2.

The cut contribution to the spectral representation Eq. (2.40) and to the trans-

mission in Fig. 3.19 (b) produces a continuum of resonances. Such a continuum can

be approximately treated in the RSE by replacing it with a series of poles, as we

did in Ref.[37]. In the present case however, the cut can actually be removed by

going into the wave-vector domain. Indeed, being treated as a function of the normal

wave vector k, the AC of the transmission T̃ (k) has no cuts in the complex k-plane
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and its spectral representation obtained by using the Mittag-Leffler theorem has the

following form:

T̃ (k) =
∑

n

Res
k′=kn

[

T̃ (k′)
]

k − kn
, (3.27)

in which kn =
√

ω2
n/c

2 − p2, with n numbering the poles as in Eq. (2.40). On the real

k-axis, T̃ (k) coincides with the transmission T (k) given by Eq. (3.23) and is shown

in Fig. 3.20 along with the contributions of the different types of modes. We see in

particular that the WG modes, which are not emitting into an outgoing plane wave,

and thus by reciprocity are expected not to be excitable by an incoming plane wave,

have a finite contribution to the transmission, which is possible only due to their

off-resonant excitation. This contribution increases with decreasing the wave vector

k, as the frequency of the incoming wave is getting closer to the resonant frequencies

of the WG modes lying beyond the vacuum light cone.
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3.4 Numerical results for non-normal incidence

In this section results of the RSE for an electrodynamic system with non-zero

in-plane momentum are reported. We make use of exact solutions which are avail-

able for these simple geometries to prove the accuracy of the numerical calculations

required in the RSE so as to justify further development of the method in subsequent

chapters of this thesis.

We find the perturbed modes by solving the linear matrix problem given by

Eq. (2.34). The matrix elements Vnm are given by

Vnm =

∫ a

−a

∆ε(z)En(z)Em(z)dz , (3.28)

where En are given in Eq. (3.5).

3.4.1 Unperturbed resonant states

The frequencies ωn of the RSs of a dielectric slab for pa = 5 and ǫs = 9 were

shown in Fig. 3.1. The normal wave vectors kn of the RSs for a slab with ǫs = 3

versus p are given in Fig. 3.21. All states in the range |Re kna| < 5 and |Im kna| < 5

for |pa| < 5 are shown in Fig. 3.21 (a) and separated into mode types in Fig. 3.21 (b)

and (c). For WG and AWG modes Re kn = 0, therefore Fig. 3.21 (c) shows only

their imaginary part, which is positive for WG modes, corresponding to evanescent

waves, and negative for AWG modes, corresponding to exponentially growing waves

outside the slab. The WG and AWG modes continuously transform into each other

and produce branches similar to those seen also for FP modes. These branches cross

each other at certain points [shown in Figs. 3.21 (b) and (c) by magenta dots] where

two FP modes are transformed into two AWG modes. The AWG mode branch which

starts at p = 0 has no connection to any WG or FP branches; a mode on this branch

was identified in Fig. 3.1 as the leaky mode.

The RSs of the homogeneous slab shown, similar to those shown in Fig. 3.21,

are used as a basis for the RSE in the two examples given next. In general, for any

local perturbation ∆ε(z) which does not change the translational symmetry of the
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as function of the in-plane wave vector p: (a) The complex wave vectors kn of Fabry-
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slab, i. e. does not depend on x or y, the in-plane momentum p remains a good

quantum number. In other words, ∆ε(z) does not mix states with different p, so that

in any such problem solved by the RSE, we can use the basis of RSs with a given

fixed value of p.

3.4.2 Full-width perturbation

To illustrate the accuracy and convergence of the RSE, we consider a homo-

geneous full-width perturbation of the slab, which is given by

∆ε(z) =











∆ǫ for |z| 6 a ,

0 otherwise ,
(3.29)

and for which the exact solution can be obtained by solving the transcendental

Eq. (3.6) with ǫs replaced by ǫs + ∆ǫ. We denote these exact perturbed wave num-

bers as κ
(exact)
ν and compare them with the perturbed values κν obtained by using

the RSE for different basis sizes N . We choose as basis of given size all poles with

|kn| < kmax(N), using a suitably chosen wave-number cutoff kmax(N).

In Fig. 3.22 we compare the RSE wave numbers with the exact wave numbers

for our system in the case of pa = 5. We can see in Fig. 3.22(a) that the RSE is

reproducing the exact solution to a high accuracy, which is quantified by the relative

error |κν/κ
(exact)
ν − 1| shown in Fig. 3.22(b) for the FP modes with Reκν > 0 and in

Fig. 3.22 (c) for the WG and AWG modes. We see that the relative error scales as

N−3. We find in the simulation used to generate Fig. 3.22 for a basis of N = 2000 that

the RSE reproduces about 300 modes with a relative error below 10−8. This error

can be further improved by 1-2 orders of magnitude using the extrapolation method

described in Section 2.4.

3.4.3 Microcavity perturbation

To evaluate the RSE for inclined geometry in the presence of sharp resonances

in the optical spectrum, we use a Bragg-mirror MC, which consists of a FP cavity of
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Figure 3.22: (a) Exact (squares) and calculated by the RSE with N = 2000 (crosses)
resonant state wave numbers of a homogeneous dielectric slab with ǫs = 3 along with
those of the unperturbed slab with ǫs = 9 (circles with a dot). Relative errors in
calculation of Fabry-Perot modes (b) and waveguide and anti-waveguide modes (c)
for different total number of basis states N used in the RSE as labeled. Inset: the
dielectric constant profile of the unperturbed and perturbed systems, with the full-
width homogeneous perturbation of the slab ∆ǫ = −6.
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thickness LC and dielectric constant ǫC = 9 surrounded by distributed Bragg reflec-

tors (DBRs). The DBRs consist of P = 5 pairs of dielectric layers with alternating

high ǫH = 9 and low ǫL = 2.25 susceptibility, as illustrated by the inset in Fig. 3.23.

The alternating layers have a quarter-wavelength optical thickness and the cavity has

a half-wavelength optical thickness. The nominal wavelength which determines the

layer thickness is that of the lowest-frequency CM at normal incidence. As unper-

turbed system we used a dielectric slab with ǫs = 9 as in Sec. 3.4.2.
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Figure 3.23: (a) The same as in Fig. 3.22 (a) but with the perturbed system being the
Bragg-mirror microcavity with the dielectric profile shown in the inset. The lowest-
energy cavity mode is shown by an arrow. (b) Transmission as a function of the
normal component of the wave vector k, for the perturbed (thick black curve) and
unperturbed system (thin red curve) demonstrating the correspondence between the
RS wave numbers in panel (a) and peaks in the transmission.

The unperturbed modes of the slab and the perturbed modes of the MC are
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shown in Fig. 3.23 (a) for pa = 5. We can see how the nearly equidistant FP modes

of the unperturbed system are redistributed in the MC, transforming into a sharp

CM in the middle of a wide stop-band and modes outside of the stop-band. The link

between the peaks in the transmission in Fig. 3.23 (b) and the poles in Fig. 3.23 (a)

is also exemplified by the real part of the poles giving the position of the peaks

in transmission and the imaginary part giving their linewidth. This is discussed in

Sec. 3.2.5 where transmission is defined in Eq. (3.20).
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Figure 3.24: The same as in Fig. 3.21 (b) but for the Bragg-mirror microcavity with
the dielectric profile given by the inset in Fig. 3.23 (a).

The transmission T (k) for a layered planar structure can be calculated using

the transfer matrix method leading to the explicit result

T (k) =
e−i(q0+qM )a

ξ+M
, (3.30)

in which ξ+M is found from the recursive formula

2ξ±j+1 =

(

1± qj+1

qj

)

e−iqjajξ+j +

(

1∓ qj+1

qj

)

eiqjajξ−j (3.31)
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with the starting value

2ξ±1 =

(

1± q1
q0

)

(3.32)

and the normal component of the wave vector in the j-th layer

qj =
√

ǫjk2 + (ǫj − 1)p2. (3.33)

Here ǫj and aj are, respectively, the dielectric constant of the j-th layer and its width,

so that
∑M−1

j=1 aj = 2a. The layers j = 0 and j =M correspond to the vacuum before

and after the MC, respectively, so that q0 = qM = k, and qj > 0 for real ǫj . M gives

the total number of interfaces in the structure, in the present case M = 2(2P + 1).

In Fig. 3.24 we show the evolution of the perturbed poles with p. We see

that one of the modes is separated in the middle of a gap and has an imaginary

part well below the others. This mode is known as the CM. The perturbed Green’s

function which has a spectral representation equivalent to Eq. (2.44) and the corre-

sponding transmission T (k) are dominated by the single term from the CM in this

frequency region, therefore a sharp isolated peak is seen in the center of the stop-band

in Fig. 3.23 (b). Interestingly, the modes in Fig. 3.24 show an almost circular behav-

ior, indicating that the frequency of each mode ων = c
√

κ2
ν + p2 is approximately

constant versus angle θ.

Indeed, we can see in Fig. 3.25 (a) that the CM frequency ωC has a weak

dependence on θ, while the corresponding wave vector κC changes more strongly. In

parallel, the linewidth given in Fig. 3.25 (b) shows a similar behavior both in the ω-

and k-representations, though at θ → π/2 the imaginary part of ωC is one order of

magnitude smaller than that of κC .

Figures 3.25(a) and (b) demonstrate a good agreement between κC obtained

using the RSE and κ
(exact)
C extracted from the linewidth in the transmission calcu-

lated via Eqs. (3.30)–(3.33). Fig. 3.25(c) shows the relative error |κC/κ
(exact)
C − 1| for

different values of N demonstrating convergence of the RSE for the cavity mode with

N−3, the same as for the homogeneous perturbation of the slab. The convergence

behavior depends on the distribution of the perturbation in the wave-vector space as
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discussed in Sec. 3.2. Interestingly, the RSE can reproduce sharp resonances in the

transmission profile, in spite of the absence of sharp resonances in the basis.

We also compare the results in Fig. 3.25(b) with an analytic approximation for

the CM linewidth

ImωC = −2cηext
nCηC

(

ηL/ηH
)2P

LC cos(θC) +
λC

2
ηLηH
ηH−ηL

1
ηC

, (3.34)

which was derived by generalizing the approximation for normal incidence of light

available in the literature [35, 38, 39]. Here nj is the refractive index of layer j, ηj =

nj cos(θj), and θj is the angle to the normal in layer j, given by sin(θj)nj = next sin(θ).

The layers j used are: the external region (ext) which is vacuum in our case, the high-

index (H) layer, the low-index (L) layer of the Bragg mirror, and the cavity layer (C).

The cavity wavelength is given by λC = 2LC cos(θC). Equation (3.34) is exact in

the limit P → ∞, for a structure with Bragg-mirror layer widths strictly equal to a

quarter-wavelength and the cavity layer width to a half-wavelength optical thickness.

This condition depends on the incident angle, and in our fixed structure is fulfilled for

normal incidence only. Nevertheless, Eq. (3.34) reproduces the exact result reasonably

well over the whole angle range, as shown in Fig. 3.25(b).

3.5 Summary

The resonant state expansion has been implemented and validated in planar

open optical systems which represent effective one-dimensional systems. A reliable

method of calculation of resonant states, and in particular their wave numbers, electric

fields, as well as the Green’s function and the transmission of such systems, has been

developed and demonstrated. It includes estimation of the accuracy and convergency

of calculations and in particular extrapolation of the RS-wavevectors towards their

exact values which are generally not available. Particular examples which illustrate

the general method and the developed algorithm include a dielectric slab with wide-

layer and δ-perturbations as well as an optical microcavity using Bragg mirrors. In

these examples, a comparison with exact solutions has been made in order to verify the
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approach. In all three systems the resonant states and the transmission are calculated

to any required accuracy by the resonant state expansion. The extrapolation of the

wave vectors using the power law in the basis size, which has been developed and

demonstrated, significantly improve the accuracy of calculations, by one or two orders

of magnitude.

The RSE has also been generalized to planar optical systems with inclined

geometry. In inclined geometry, the spectrum of a planar system contains a continuum

of resonances originating from a cut of the Green’s function, which we have eliminated

by mapping the frequency into the normal component of the wave vector. The optical

modes and spectra of a perturbed planar system are then calculated by solving a

linear matrix eigenvalue problem containing matrix elements of the perturbation in

the basis of discrete resonant states only. We have verified the method on full-width

homogeneous and Bragg-mirror microcavity perturbations and compared results with

obtained analytic solutions, demonstrating fast convergence of the method towards

the exact result. We expect that it will be possible to extend this treatment to inclined

geometries that are effectively two-dimensional using a similar approach, which would

provide an efficient algorithm to calculate the optical modes in fibers and waveguides,

including photonic crystal fibers having a complex structure.

By examining the transmission using the Mittag-Leffer theorem it was seen

that the WG modes, which are not emitting into an outgoing plane wave, and thus

by reciprocity are expected not to be excitable by an incoming plane wave, have a

finite contribution to the transmission, which is possible only due to their of- reso-

nant excitation. This contribution increases with decreasing the wave vector, as the

frequency of the incoming wave is getting closer to the resonant frequencies of the

WG modes lying beyond the vacuum light cone.
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Chapter 4

RSE applied to two-dimensional

open optical systems

In this chapter we apply the RSE method to effectively two-dimensional (2D) systems

(i.e. 3D systems translational invariant in one dimension) which are not reducible to

effective 1D systems. We limit the treatment to systems with zero wavevector pro-

jection along the translational invariant direction. We use a dielectric cylinder with

uniform dielectric constant in vacuum as the unperturbed system and calculate the

perturbed RSs for homogeneous (i.e. reducible to 1D) and inhomogeneous perturba-

tions, including a half-cylinder, thin-film, and thin-wire perturbation. None of these

inhomogeneous perturbations have known exact analytic solutions which could be

used for verification of the RSE. However, the case of a narrow wire inside a cylinder

allows for an approximate analytic solution suitable for weak perturbations [40, 41].

This solution is compared with the present results of the RSE, demonstrating a good

agreement.

One striking feature of 2D systems, which we reveal in this chapter, is the

presence of a one-dimensional continuum in the manifold of RSs. This continuum

is specific to 2D systems and is required for the completeness of the basis and thus

for the accuracy of the RSE applied in 2D as discussed below in some detail. Such

continua are generally known in the theory of quasi-guided modes in photonic crystal
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structures [42] as potential sources of Wood-Rayleigh anomalies in optical spectra [43–

47]. These continua are similar to those in planar structure with p 6= 0. Technically,

they are caused in that case by the presence of square roots in the photon dispersion

of light propagated and Bragg scattered inside the photonic crystal just as in the

case of a planar structure with p 6= 0. In the case of a dielectric cylinder, which is

used for the RSE in 2D, the continuum originates mathematically from the cut in the

cylindrical Hankel functions solving Maxwell’s equations outside the cylinder.

The spectral representation of the 2D system GF is modified to include this

cut contribution as the integral:

Ĝk(r, r
′) =

∑

n

∫

En(r)⊗ En(r
′)

2k(k − kn)
≈
∑

n̄

φn̄En̄(r)⊗ En̄(r
′)

2k(k − kn)
. (4.1)

In practice, the continuum of non-resonant states is discretised and included as cut

poles in the perturbation basis. We treat this problem in detail in Sec. 4.1. The

combined index n̄ is used to denote both real poles kn and cut poles kα simultaneously.

The weighting factors φn̄ are defined as follows

φn̄ =











φn = 1 for real poles,

φα for cut poles,
(4.2)

After modifying the expansion of the perturbed wave functions to include the

cut poles,

Eν(r) =
∑

n̄

φn̄bn̄νEn̄(r) , (4.3)

we can repeat the derivation of Sec. 2.2 to arrive at the modified the RSE Matrix

equations,

κν

∑

n̄′

(

δn̄n̄′ +
√

φn̄φ′
n̄Vn̄n̄′/2

)

bn̄′ν = knbn̄ν , (4.4)

and
∑

n̄′





δn̄n̄′

kn̄′

+
Vn̄n̄′

2

√

φn̄φ
′
n̄

kn̄kn̄′



 cn̄′ν =
1

κν

cn̄ν , (4.5)
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As always Vn̄n̄′ is given by

Vn̄n̄′ =

∫

En̄(r)∆ε̂(r)En̄′(r) dr . (4.6)

This chapter is organized as follows. In Sec. 4.1 we treat the homogeneous

dielectric cylinder as the unperturbed system. In Sec. 4.1.1 we detail challenges of

calculating the cut poles in the 2D TE polarisation and outline the solution to these

problems. We add the contribution of the cut in Sec. 4.1.3. This is followed by exam-

ples in Sec. 4.2 illustrating the method and comparing results with existing analytic

solutions where they are available. We give details of the general formulation of the

method in 2D, its application, and the calculation of matrix elements for specific

perturbations in Appendices D, E, and F .

4.1 Eigenmodes of a dielectric cylinder as basis

for the RSE

We consider systems in 3D space which are homogeneous in one direction

(along the unit vector ẑ of the z-axis), and thus can be reduced to effective 2D

systems, as their wavevector component along ẑ is conserved and the solution can

be separated into a plane wave exp(ikzz) and the remaining (x, y)-problem which

we express below in polar coordinates ρ = (ρ, ϕ). For such a system, the solutions

of Maxwell’s equations split into two groups with orthogonal polarizations, called

transverse electric (TE) and transverse magnetic (TM), where TE (TM) states have

a electric (magnetic) field orthogonal to ẑ. This nomenclature relates to the theory

of waveguides where the light propagating along ẑ has the dominant component kz

of the wave vector, and the electric (magnetic) field in TE (TM) modes is thus

approximately perpendicular to the wave vector. Although we restrict our treatment

here to the limit of kz = 0, we follow these adopted notations. In this case, however,

the TE (TM) states have the magnetic (electric) field polarization vector strictly

parallel to ẑ and thus normal to the wave vector of light.
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4.1.1 Maxwell’s wave equation for magnetic field

If we examine Maxwell’s wave equation for magnetic field H(r),

−∇×∇×H(r) + ε̂(r)−1∇ε̂(r)× (∇×H(r)) + k2ε̂(r)H(r)

= −∇× J(r) + ε̂(r)−1∇ε̂(r)× J(r) , (4.7)

it would at first sight seem of no use to the RSE. In Eq. (4.7) we can see ∇ε̂(r) which

has prevented us from formulating an equation similar to Eq. (2.31) relating the per-

turbed eigenmodes of magnetic field to their unperturbed GF and perturbation in the

dielectric profile. Therefore as we are considering perturbations in the dielectric pro-

file we are forced to formulate the RSE in terms of electric modes En̄(r) as previously

in Sec. 2.2.

However even in light of the previous paragraph we do need to consider

Eq. (4.7) in this chapter because the cut poles cannot be normalised using Eq. (2.23).

The method of normalisation will thus make use of Eq. (4.7). The reason we cannot

use Eq. (2.23) for the cut poles is that they are not true resonances of the system. This

problem can be intuitively understood if we assume we can normalise a single cut pole

with Eq. (2.23) and observe the resulting logical contradiction. If the discretisation

of the cut is made finer by increasing the number of cut poles by several orders of

magnitude, logically the normalisation of the chosen cut pole should be drastically

reduced as its weight is further shared between many of these extra poles. This final

remark gives the contradiction because the normalisation calculated from Eq. (2.23)

cannot change, it is fixed.

In light of the problems of normalising cut poles we are forced to normalise the

basis modes in this chapter by comparing spectral GFs of the form Eq. (2.13) which

will still hold true for cut poles, with the analytic GF of the electric or magnetic

field calculated in Appendix E. This causes a problem because unlike the TM case

where the analytic GF for the electric field Ĝk(r, r
′) is available, we can only derive

the analytic GF for the magnetic field ĜH
k (r, r

′) in the case of transverse electric

(TE) polarisation. The reason for this is that a scalar GF equation is available for
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ĜH
k (r, r

′) but not for Ĝk(r, r
′) in the TE case. However in Appendix D we have been

able to derive a method of expressing the electric field basis modes En̄ in terms of

the magnetic field basis modes H̄n̄.

The Green’s function for the magnetic component of an electrodynamic system

is a tensor ĜH
k which satisfies the outgoing wave boundary conditions and Maxwell’s

wave equation with a delta function source term

−∇×∇× ĜH
k (r, r

′) + ε̂(r)−1∇ε̂(r)× (∇× ĜH
k (r, r

′)) + k2ε̂(r)ĜH
k (r, r

′)

= 1̂δ(r− r′) . (4.8)

Following the derivation for the spectral representation of Ĝk in Appendix B we find

ĜH
k can be written as

ĜH
k (r, r

′) =
∑

n

φn̄H̄n̄(r)⊗ H̄n̄(r
′)

2k(k − kn̄)
, (4.9)

where the field H̄n̄(r) satisfies,

−∇×∇× H̄n̄(r) + ε̂(r)−1∇ε̂(r)× (∇× H̄n̄(r)) + k2ε̂(r)H̄n̄(r) = 0 (4.10)

with outgoing BCs. In this chapter we will make use of H̄n̄ defined in Eq. (4.8),

Eq. (4.9) and Eq. (4.10) to normalise En̄.

4.1.2 Unperturbed basis for 2D systems

In this section we will use the approach outlined in Sec. 4.1.1 to formulate the

basis states for both TE, TM polarizations. We also find that for completeness of

the basis we must include longitudinal electric modes which are curl free static modes

satisfying Maxwell’s wave equation for kn = 0. Longitudinal magnetic modes have

zero electric field, and since we limit ourselves in this work to perturbations in the

dielectric susceptibility only, they are not mixed by the perturbation to other types

of modes and are thus ignored in the following.

Splitting off the time dependence ∝ e−iωt of the electric fields E and D and
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magnetic field H, the first pair of Maxwell’s equations can be written in the form

∇× E = ikH , ∇×H = −ikD (4.11)

where k = ω/c and D(r) = ε̂(r)E(r). Combining them leads to Eq. (2.6) for the

RSs and to Eq. (2.2) for the corresponding GF. For k 6= 0 states the second pair of

Maxwell’s equations,

∇ ·D = 0 and ∇ ·H = 0 , (4.12)

is automatically satisfied, since ∇ · ∇ × A = 0 for all A. However, if k = 0, it is

not guaranteed that solutions of Eq. (4.11) satisfy also Eq. (4.12). The spectrum of

the GF given by Eq. (2.13) however includes all modes obeying Eq. (4.11), no matter

whether Eq. (4.12) is satisfied or not. One finds that the LE modes actually do not

satisfy Eq. (4.12) on the sphere surface, such that Maxwell’s boundary condition of

continuity of the normal component of D across the boundary of the dielectric sphere

is not fulfilled. The LE modes are therefore just formal solutions of Eq. (2.6) not

corresponding to any physical modes of the system. However, they have to be taken

into account for the completeness of the basis used in the RSE.

Following Ref.[48] for kz = 0, the three groups of modes of a homogeneous

dielectric cylinder can be written as

TM : E = fez ,

TE : H = fez ,

LE : E = −∇f ,

where f(r) is a scalar function satisfying the Helmholtz equation

∇2f + k2εf = 0 , (4.13)
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with the dielectric susceptibility of the sphere in vacuum

ε(ρ, ϕ) =











n2
r for ρ 6 R ,

1 for ρ > R .
(4.14)

and

f(r) = Rm(ρ, kn)χm(ϕ) . (4.15)

The angular parts are defined by

χm(ϕ) =























π−1/2 sin(mϕ) if m < 0 ,

(2π)−1/2 if m = 0 ,

π−1/2 cos(mϕ) if m > 0 ,

(4.16)

where there is no m = 0 mode for the TE case. The χm(ϕ) are orthonormal according

to
∫ 2π

0

χm(ϕ)χm′(ϕ)dϕ = δmm′ . (4.17)

The choice of the wave functions in the form of standing waves Eq. (4.16), instead

of eimϕ, is dictated by the orthogonality condition Eq. (2.15), which does not use the

complex conjugate.

The radial components satisfy,

[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2
+ ε(ρ)k2

]

Rm(ρ, k) = 0 (4.18)

and have the form

Rm(ρ, k) =











Jm(nrkρ)/Jm(nrkR) for ρ 6 R ,

Hm(kρ)/Hm(kR) for ρ > R ,
(4.19)

in which Jm(z) and Hm(z) ≡ H
(1)
m (z) are, respectively, the cylindrical Bessel and

Hankel functions of the first kind.

We treat in this work all polarisations, however only TM and LE polarisations
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mix due to the perturbations treated being strictly scalar in dielectric permittivity.

If the perturbation resulted in a tensor dielectric profile then all polarisations could

mix.

The unperturbed RS wave functions factorize as

TM : En(r) = ATMRm(ρ, kn)χm(ϕ)ez ,

TE : H̄n(r) = ATE
m (kn)Rm(ρ, kn)χm(ϕ)ez . (4.20)

We normalized the wave functions from the analytic TM (TE) Green’s function in

Appendix E with normalisation constants A(k)

ATM =
1

R

√

2

n2
r − 1

. (4.21)

ATE
m (kn) =

√

√

√

√

√

√

√

2k
[

Jm(nrkR)
]2

(n2
r − 1)

[

m2

k

[

Jm(nrkR)
]2

+R2k
[

J ′
m(nrkR)

]2

] (4.22)

The two boundary conditions at the surface of the cylinder, the continuity of the

electric field and its radial derivative, produce a secular equation for the RS wave

number eigenvalues kn, which has the form

DTM
m (knR) = 0 , (4.23)

DTE
m (knR) = 0 , (4.24)

where

DTM
m (z) = nrJ

′
m(nrz)Hm(z)− Jm(nrz)H

′
m(z) , (4.25)

DTE
m (z) = J ′

m(nrz)Hm(z)− nrJm(nrz)H
′
m(z) , (4.26)

and J ′
m(z) and H ′

m(z) are the derivatives of Jm(z) and Hm(z), respectively. Here z

represents a complex argument, as opposed to the spatial coordinate used earlier.
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In cylindrical coordinates, the electric vector field E(r) can be written as

E(ρ, ϕ, z) = Eρer + Eϕeϕ + Ezez =













Eρ

Eϕ

Ez













(4.27)

Therefore the TM modes can be written as

ETM
n̄ (r) = ATM















0

0

Rm(ρ, kn̄)χm(ϕ)















. (4.28)

We are considering TE modes of a homogeneous micro-cylinder so we can

calculate the normalised En̄ from the H̄n̄ using the following simple relations derived

in the Appendix D
nr∇× H̄n̄(r)

ε(ρ)kn
= En̄(r) (4.29)

which gives for ρ ≤ R

ETE
n̄ (r) =

nrA
TE(kn)

ε(ρ)kn

















Rm(ρ, kn̄)

ρ

dχm(ϕ)

dϕ

−∂Rm(ρ, kn̄)

∂ρ
χm(ϕ)

0

















(4.30)

The LE modes are derived from the asymptotics of the Bessel function and the nor-

malisation condition for longitudinal modes Eq. (2.29) for ρ ≤ R,

ELE
n (r) =

√

(

2

m(n2
r + 1)

)

ρ|m|−1

R|m|















mχ−m(ϕ)

|m|χm(ϕ)

0















(4.31)

75



4.1.3 The cut in the GF and its discretisation into cut

poles

In this section we explain the origin of the cut in the GF and how it can

in practice be discretised into a finite number of cut poles. The Hankel function

Hm(z) which describes the field outside the cylinder and contributes to Eq. (E.8) is

a multiple-valued function, or in other words is defined on a Riemann surface having

infinite number of sheets due to its logarithmic component. However, only one of

these sheets contains the eigenvalues kn, satisfying Eq. (4.23) or Eq. (4.24), which

correspond to the outgoing wave boundary conditions of RSs. This ‘physical’ sheet of

Hm(z) has a cut in the complex z-plane along the negative imaginary half-axis, as we

show in Appendix E, which in turn gives rise to the same cut in the GF. Consequently,

the Mittag-Leffler theorem used for the spectral representation of the GF needs to be

modified to include the cut contribution, as done in Appendix E.

For both the TM and TE case, treated here, the full GF of the homogeneous

dielectric cylinder, which is defined via Maxwell’s equation with a line current source

term, is given by Ĝk = Gk ez ⊗ ez, in which

Gk(ρ,ρ
′) =

∑

m

Gm(ρ, ρ
′; k)χm(ϕ)χm(ϕ

′) , (4.32)

and the radial components have the following spectral representation

Gm(ρ, ρ
′; k) =

∑

n

[

Am(kn)
]2
Rm(ρ, kn)Rm(ρ

′, kn)

2k(k − kn)

+

∫ 0

−i∞

[

Am(k)
]2
Rm(ρ, k

′)Rm(ρ
′, k′)

2k(k − k′)
σm(k

′)dk′

≡
∑

n

∫

[

Am(kn)
]2
Rm(ρ, kn)Rm(ρ

′, kn)

2k(k − kn)
(4.33)

derived in Appendix E. For TE modes we take Am(k) = ATE
m (k) and for the TM

modes we take Am(k) = ATM
m . The GF is for electric (magnetic) field in the TM

(TE) case. Note that the cut contribution to the GF spectrum in the form of the

integral in the last equation is described in terms of the same functions as those
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used for discrete poles. This implies that the cut of the GF can be understood as

a continuous distribution of additional poles along the negative imaginary half-axis

with the density

σm(k) =
8Jm(nrkR)

2

π2kR2D+
m(kR)D

−
m(kR)

1

Am(k)2
(4.34)

calculated in Appendix E, with Dm(kR) given by Eq. (4.25) in the case of the GF for

TM modes or Eq. (4.26) in the case of the GF for the TE modes. Here D±
m(z) are the

two limiting values of Dm(z
′) for z′ approaching point z on the cut from its different

sides Re z′ ≷ 0. Remarkably, the integrated density of the cut contribution to the GF

is equivalent to half a normal pole:
∫ 0

−i∞ σm(k)dk = (−1)m+1/2.
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Figure 4.1: For the TM polarisation(a): Cut poles kα (stars) representing the cut of
the GF of a homogeneous dielectric cylinder with nr = 2, in the complex wave-number
plane for m = 0, 11, and 20. Normal poles kn (open squares) are also shown. (b): Cut

pole density σm(k) (solid curves) and the cut pole strength φ
(m)
α (stars), for the same

values of m.

To numerically treat the cut contribution in the linear eigenvalue problem

Eq. (2.35), one discretizes the integral in Eq. (4.33) into a finite number of cut poles

77



and adds cut RSs to the basis. These cut poles have non-integer strength φ
(m)
α

determined by the cut pole density σm. The function σm(k) is purely imaginary

and is peaked close to normal poles kn as can be seen in Fig. 4.1 for selected m.

In the numerical calculations we have used cut pole positions and strengths deter-

mined by splitting the cut interval [0,−i∞] into N
(m)
c regions [q

(m)
α , q

(m)
α+1] numbered

by α = 1 , 2 , . . . , N
(m)
c , which are chosen to contain an equal weight according to

∫ q
(m)
α+1

q
(m)
α

√

|σm(k)|dk =
1

N
(m)
c

∫ 0

−i∞

√

|σm(k)|dk. (4.35)

For the numerical results shown later in this section and for the chosen values of N
(m)
c ,

using the weight
√

|σm| in Eq. (4.35) was found to give the best accuracy of the RSE

as compared to other powers of |σm|. Each region [q
(m)
α , q

(m)
α+1] of the cut is represented

by a cut pole of the GF at k = k
(m)
α given by the first moment,

k(m)
α =

∫ q
(m)
α+1

q
(m)
α

kσm(k)dk

/

φ(m)
α , (4.36)

where the cut pole strength φ
(m)
α is defined as

φ(m)
α =

∫ q
(m)
α+1

q
(m)
α

σm(k)dk . (4.37)

An example of cut poles for m = 0, 11, and 20 is given in Fig. 4.1(a) for the

TM case (the TE case gives a similar result). The cut poles contribute to the RSE in

the same way as the normal poles, and the matrix elements with the cut RSs are given

by the overlap integrals Eq. (2.36) expressed in terms of exactly the same functions as

for the normal RSs. In discretization of the linear eigenvalue problem of the RSE, the

only modification caused by the cut is that the matrix of the perturbation is weighted

according to the cut pole strengths φ
(m)
α as shown in Eq. (4.4) and Eq. (4.5) .

In the numerical calculation, the total number of poles Nt used in Eq. (2.35)

determines the computational complexity of the matrix eigenvalue problem, so we

are interested in the number of cut poles in the basis producing the best accuracy

for a given Nt. We have investigated this numerically for the examples given below,
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and found that this is achieved using about 20% cut poles in the basis. Only for

the homogeneous perturbation in Sec. 4.2.1, we used N
(m)
c ∼ N (m), where N (m) is

the number of normal poles in the basis for the given m, in order to demonstrate

the convergence towards the exact solution. For all other numerical results we used

N
(m)
c ∼ 0.2N (m).

4.2 Numerical results

In the following subsections we will give numerical results generated by the

RSE for a range of perturbations to a homogeneous dielectric 2D microdisk in a

vacuum, namely a homogeneous perturbation of the whole cylinder in Sec. 4.2.1, a

half-cylinder perturbation in Sec. 4.2.2, a thin-film perturbation in Sec. 4.2.3 and a

wire perturbation in Sec. 4.2.4. The basis system used will be a homogeneous dielectric

cylinder of radius R and refractive index nr = 2 (ε = 4). We will investigate how the

convergence of the RSE depends on the dimensionality of the perturbation. In the

case of thin wire perturbations Sec. 4.2.4 and homogeneous perturbation Sec. 4.2.1 we

will show that the RSE is reproducing the results of the available analytic solutions.

We give explicit forms of the matrix elements for these perturbations and details of

their calculation in Appendix F.

4.2.1 Homogeneous Cylinder Perturbation

The perturbation we consider in this section is a homogeneous change of ε

over the whole cylinder, given by

∆ε(ρ, ϕ) = ∆εΘ(R− ρ) =











∆ε for ρ 6 R ,

0 for ρ > R
(4.38)

with the strength ∆ε = 4 used in the numerical calculation. For ϕ-independent

perturbations, modes with different azimuthal number m are decoupled, and so are

even and odd (cosine and sine) modes given by Eq. (4.16). We show only the sine

modes here, and use for illustration m = 20.
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We consider both TE and TM polarisations in this section. We calculate

the matrix elements of the homogeneous perturbation analytically, the TM matrix

elements are given by Eqs. (F.3)–(F.4) and the TE elements are given by Eqs. (F.5)–

(F.9). The homogeneous perturbation does not change the geometry of the system, so

that the perturbed modes obey the same secular equation Eqs. (4.23) and (4.24) with

the refractive index nr of the cylinder changed to
√

n2
r +∆ε, and thus the perturbed

wave numbers κν calculated using the RSE can be compared with the exact values

κ
(exact)
ν .

We choose the basis of RSs for the RSE in such a way that for the given

azimuthal number m and the given number of normal RSs N we find all normal poles

|kn| < kmax(N) with a suitably chosen maximum wave vector kmax(N) and then add

the cut poles. We find that as we increase N , the relative error
∣

∣κν/κ
(exact)
ν − 1

∣

∣

decreases as N−3. Following the procedure described in Sec. 2.4 we can extrapolate

the perturbed wave numbers. The resulting perturbed wave numbers are shown in

Fig. 4.2 for the TM modes and Fig. 4.3 for the TE modes. The perturbation is strong,

creating for TM and TE polarisation 3 additional WGMs with m = 20 having up to

4 orders of magnitude narrower linewidths. For N = 800, the RSE reproduces about

100 modes to a relative error in the 10−7 range, which is decreasing by one or two

orders of magnitude after extrapolation. The contribution of the cut is significant:

Ignoring the cut leads to a relative error of the poles in the 10−3 range. The fact that

the relative error improves by 4-5 orders of magnitude after taking into account the

cut in the form of the cut poles shows the validity of the reported analytical treatment

of cuts in the RSE, and the high accuracy of the discretization method into cut poles.

Missing out the LE mode results in several orders of magnitude higher relative error

for the TE modes (see Fig. 4.3).
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Figure 4.2: (a): Perturbed TM modes RS wave numbers for the homogeneous pertur-
bation Eq. (5.17) calculated via the RSE with N = 800 (only sine modes are shown).
The perturbed poles with (+) and without (×) the cut contribution are compared
with the exact solution (open squares). Unperturbed wave numbers are also shown
(open circles with dots). Inset: Dielectric constant profile for the unperturbed and
perturbed systems. (b): Relative error in the calculated perturbed wave numbers
with (heptagons) and without (triangles) contribution of the cut. Relative error for
a simulation including the cut and improved by extrapolation is also shown (crossed
circles).
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Figure 4.3: (a): Perturbed TE modes RS wave numbers for the homogeneous pertur-
bation Eq. (5.17) calculated via the RSE with N = 800 (only sine modes are shown).
The perturbed poles with (+) and without (×) the cut contribution are compared
with the exact solution (open squares). Unperturbed wave numbers are also shown
(open circles with dots). Inset: Dielectric constant profile for the unperturbed and
perturbed systems. (b): Relative error in the calculated perturbed wave numbers with
(heptagons) and without (triangles) contribution of the cut and LE mode. Relative
error for a simulation including the cut and improved by extrapolation is also shown
(crossed circles).
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4.2.2 Half-Cylinder Perturbation

We now consider a bulk perturbation which mixes modes with different m.

The perturbation is given by

∆ε(ρ, ϕ) = ∆ǫΘ(R − ρ)(1− 2Θ(π/2− |ϕ|)) (4.39)

In our numerical simulation we take ∆ǫ = 0.2. The matrix elements of the pertur-

bation are given by Eqs. (F.11)–(F.13) which require a numerical integration. Owing

to the symmetry of the perturbation, the sine and cosine basis modes are still de-

coupled, therefore we treat them separately, see panels (a) and (b) in Fig. 4.4. Due to

a relatively small perturbation (compared to that considered in Sec. 4.2.1), the mode

positions in the spectrum do not change much. However, the quality factors Q of

all WGMs decrease, as the lifetime of the resonances is now limited by an additional

scattering at the step in the dielectric constant of the perturbed cylinder. Due to

isotropy TE and TM modes are decoupled allowing us to treat only TM modes in

this subsection.

To the best of our knowledge, an analytic solution for this perturbation is not

available and thus we cannot calculate the relative error of the RSE result with respect

to the exact solution. However, we can investigate the convergence of the method

in order to demonstrate how the RSE works in this case, which is not reducible to

an effective one-dimensional problem. We do this in Fig. 4.4 showing the perturbed

sine and cosine modes for two different values of basis size N and in Fig. 4.5 where

absolute errors Mν are shown for several different values of N . Following Sec. 2.4, the

absolute error is defined here as Mν = maxi=1,2,3 |κN4
ν − κ

Ni
ν |, where κ

Ni
ν are the RS

wave numbers calculated for basis sizes of N1 ≈ N/2, N2 ≈ N/
√
2, N3 ≈ N/ 4

√
2, and

N4 = N . The results for the cosine and sine modes are quite similar. From Fig. 5.4

we see that the perturbed resonances are converging with increasing basis size.

We were able to see the power law of the convergency, in agreement with

Sec. 3.2. We found that the power law exponent is approximately −2. We found

however that owing to the above mentioned fluctuations, the power law convergence

is not well developed compared to the one-dimensional problems considered so far
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Figure 4.4: Unperturbed (open circles with dots) and perturbed RS wave numbers of (a)
cosine and (b) TM sine modes of a cylinder for a half-cylinder perturbation Eq. (4.39)
with ∆ε = 0.2 and the basis sizes N = 2000 (crosses) and N = 4000 (hexagons). Only
the WGM region is shown. Inset: Diagram showing the regions of increased (solid
blue) and decreased (red striped) dielectric constant.
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Figure 4.5: Absolute errorsMν of the RS wave numbers κν for the TM modes subjected
to the half-cylinder perturbation Eq. (4.39) as functions of Reκν , calculated via the
RSE for different basis sizes N , for cosine (closed shapes) and sine (open shapes)
modes.

(including the example of Sec. 4.2.1). Increasing the basis size N improves the power-

law convergency. This is attributed to the larger number of basis states below a given

|kmaxR| in effective 2D systems compared to effective 1D systems. Thus one needs a

larger basis in order to approximate discrete steps of the basis size by a continuous

power law.

To show how one of the perturbed states is created as superposition of unper-

turbed states, we show by a star in Fig. 4.6 one the perturbed WGMs of Fig. 4.4 (a) as

a superposition which, owing to the perturbation, increases its linewidth by nearly an

order of magnitude. The contribution of the basis states is visualized by circles of a

radius proportional to |cnν |1/3, which are centered at the positions of the wave vectors

kn in the complex k-plane. The expansion coefficients cnν decrease quickly with the

distance to the spectral position of the perturbed mode κν , with the dominant con-

tribution coming from the nearest unperturbed RS, a typical feature of perturbation
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theory in closed systems. Importantly, this demonstrates that if we are interested in

the modes within a small spectral region, one can limit the basis in the RSE to states

close to that region. This result is crucial for the application of the RSE to effective

3D systems which have even larger numbers of basis states below a given |kmaxR|,
as one can significantly reduce the number of basis states needed to calculate the

perturbation of a mode of interest to a given accuracy.

-20 -10 0 10 20

-0.1

0.0

0.1

0.2

5

10

15

20

10-810-610-4
10-2

 

 

   O   Unperturbed
 Perturbed -I

m
(k

R
)

Re(kR)

1

Figure 4.6: Contributions of the basis RSs (black circles) to a given perturbed RS
(blue star), calculated for the cosine TM modes and the half-cylinder perturbation
Eq. (4.39), using N = 4000. All circles and the star are centered at the positions of
the corresponding RS wave numbers in the complex k-plane. The radius of the circles
are proportional to |cnν |1/3. A key showing the relationship between circle radius and
|cnν |2 is given by the dark blue circles.

4.2.3 Thin-Film Perturbation

Here we consider the case of a thin film embedded in the cylinder, correspond-

ing to a line perturbation in the effective 2D system. The perturbation we consider
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in this section is given by

∆ε(ρ, ϕ) = h∆ε
Θ(R− ρ)

ρ
δ(ϕ) , (4.40)

see the inset in Fig. 4.8. In our numerical simulation we take the strength of the

perturbation h∆ε = −0.1R. Physically this perturbation corresponds to a thin metal

film of uniform negative dielectric constant n2
r +∆ǫ and width h much narrower than

the shortest wavelength in the basis. The perturbation leaves the sine modes of the

unperturbed cylinder unchanged. Hence we only include cosine modes into the basis.

The perturbation matrix elements are given by Eq. (F.14). Due to isotropy TE and

TM modes are decoupled allowing us to treat only TM modes in this subsection.

To our knowledge an analytic solution for this perturbation is not known and

we therefore calculate the absolute error as in Sec. 4.2.2. Fig. 4.8 shows the resulting

RS wave numbers and absolute errors for this thin-film perturbation. We see in

Fig. 4.8(b) that the convergence of the RSE is slower than in the case of the half-

moon perturbation. This is expected as the thin film has no geometrical effect on the

wave-vector ky, giving higher contributions of basis states with large ky, similar to

the results in 1D with a delta scatterer perturbation reported earlier Sec. 3.2.4. We

have found that the power law exponent in this case is approximately −1.

4.2.4 Thin-Wire Perturbation

As the last example of the chapter we consider a dielectric cylinder perturbed

by a thin-wire perturbation which is represented by small disk of radius b centered

at the point d on the x-axis (ϕ = 0). We do not use here a delta perturbation, in

order to compare it with an analytic solution available in the literature [41]. The

perturbation is defined as

∆ε(ρ) = ∆εΘ(b− |ρ− d|) , (4.41)

and we choose d = |d| = 0.8R, b = 0.001R, and ∆ǫ = 100 (the unperturbed system

is the same as before having nr = 2.0). This perturbation leaves the sine and cosine
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Figure 4.7: (a): Unperturbed and perturbed RS wave numbers of TM cosine modes for
a thin-film perturbation given by Eq. (4.40) with h∆ε = −0.1R, calculated via the RSE
with the basis sizes N = 2000 (crosses) and N = 4000 (hexagons). The unperturbed
RSs are shown as open circles with dots. (b): Absolute errors Mν as functions of Reκν

calculated for different basis sizes N as labeled. Inset: Sketch showing the location of
the thin metal film perturbation as a red line inside the unperturbed cylinder.
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modes decoupled, and the sine modes approximately unchanged (strictly for d→ 0).

Therefore we show here the perturbation of the cosine modes. Due to isotropy TE and

TM modes are decoupled allowing us to treat only TM modes in this subsection. The

RSE perturbation matrix elements are given by Eq. (F.16). The resulting RS wave

numbers are shown in Fig. 4.8 (a) together with the analytic approximation derived

in Ref.[41], demonstrating a good agreement. The absolute errors Mν are shown in

Fig. 4.8 (b). We see that the convergence in the case of a thin wire is even slower than

for the thin-film perturbation shown in Sec. 4.2.3. This is expected as the thin wire

has no geometrical effect on both kx and ky, giving higher contributions of the basis

states with large |k|. We found that within the basis sizes investigated, the power

law is not well developed, but for weaker (smaller |∆ǫ|) or more spatially extended

(larger b) perturbations a better convergence is observed, as expected.

The analytic solution of Ref.[41] for a point-like scatterer in a 2D disk is not

strict in any physical system. In the case of a delta scatterer, the secular equation is

logarithmically divergent and thus cannot be used, while the accuracy of the model

for a finite size scatterer relies on a number of approximations [40, 41] which require

|nrκνb| ≪ 1, |κνb
√

n2
r +∆ǫ| ≪ 1, and also |Reκν | ≫ |Imκν |, i.e. having a large

Q. In addition to this, the point-like perturbation should not be too close to the

edge of the disk, i.e. |nrκν(R− d)| ≪ 1. While we have chosen the parameters to be

suitable for these approximations, we do not have a quantitative estimate of the error.

Nevertheless, the comparison in Fig. 4.8 (a) of the RSE calculation with the analytic

solution demonstrates a good agreement which is improving as we move closer to the

origin in the complex k-plane, as detailed in Fig. 5.6 (b) where the absolute difference

between the two calculations is shown.

4.3 Summary

We have applied the RSE to effective two-dimensional (2D) open optical sys-

tems with kz = 0, such as dielectric micro-cylinders and micro-disks with perturba-

tions. We have found and treated a cut of the GFs of effective 2D systems – a feature

which to our knowledge has not been mentioned in the literature but turned out to
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Figure 4.8: (a): Unperturbed and perturbed RS wave numbers of TM cosine modes for
a thin-wire perturbation given by Eq. (4.41) with d = 0.8R, b = 0.001R, and ∆ε = 100,
calculated via the RSE with the basis size N = 2000 (crosses) and compared with the
analytic approximation of Ref.[41] (empty squares). The unperturbed basis states are
shown as open circles with dots. (b): Absolute errors Mν in RSE as functions of Reκν

calculated for different basis size N and the absolute difference between the RSE and
the analytic approximation (crosses ×). Inset: Sketch showing the location of the wire
as a red dot inside the unperturbed cylinder.
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be crucial for the RSE as the states on the cut contribute to the completeness of the

basis of RSs needed for the accuracy of the method. We have detailed the formula-

tion of the RSE for a general 2D case treating all polarisations and shown how the

theory is applied to effective 2D systems for which states on the cut are introduced

and discretized for the numerics.

Using the analytically known basis of resonant states (RSs) of an ideal homo-

geneous dielectric cylinder – a complete set of eigenmodes satisfying outgoing wave

boundary conditions – we have treated different types of perturbations, such as half-

cylinder, thin-film and thin-wire perturbations. For all of these perturbations, the

perturbed systems are not reducible to effective 1D ones, so that the present work

demonstrates the applicability of the RSE to general effective 2D perturbations which

mix all basis modes. We investigated the convergency for these perturbations and

compared the RSE results, where it was possible, with available analytic solutions.

In particular, we have made such a comparison for a homogeneous perturbation of a

cylinder, which is reducible to an effective 1D system, and for point-like perturbation

of a disk which presents an essentially 2D system with mixing of all kind of modes in

the given polarization of light. In both situations we have found agreement between

the RSE and the known analytic solutions.
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Chapter 5

RSE applied to three-dimensional

open optical systems

In this chapter we extend the resonant state expansion formulation to arbitrary three-

dimensional (3D) open optical systems, compare its performance with FDTD and

FEM, and introduce a local perturbation approach. The chapter is organized as

follows. In Sec. 5.1 we treat the homogeneous dielectric sphere as the unperturbed

system and the resulting basis for the RSE consisting of normalized transverse electric

(TE) and transverse magnetic (TM) modes, as well as longitudinal zero frequency

modes. This is followed in Sec. 5.2 by examples illustrating the method and comparing

results with existing analytic solutions, as well as numerical solutions provided by

using available commercial software. We demonstrate the performance of RSE as a

local perturbation method for selected modes by introducing a procedure to select a

suited subset of basis states.

5.1 Eigenmodes of a dielectric sphere as basis

for the RSE

To apply the RSE to 3D systems we need a known basis of RSs. We choose

here the RSs of a dielectric sphere of radius R and refractive index nr, surrounded by

vacuum, since they are analytically known. For any spherically symmetric system,
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the solutions of Maxwell’s equations split into four groups: TE, TM, and longitudinal

electric (LE) and longitudinal magnetic (LM) modes [48]. TE (TM) modes have no

radial components of the electric (magnetic) field, respectively. Longitudinal modes

were introduced in Sec. 4.1.3. Owing to the spherical symmetry, the azimuthal quan-

tum number m and total angular momentum quantum number l are eigenvalues of

the angular momentum operator and take integer values corresponding to the number

of field oscillations around the sphere. For each l value there are 2l + 1 degenerate

modes with m = −l..l.

Following Ref.[48], the three groups of modes of a homogeneous dielectric

sphere can be written as

TE : E = −r×∇f and iH =
∇×E

k
,

TM : iH = −r×∇f and E =
∇× iH

εk
, (5.1)

LM : H = −∇f and E = 0 ,

LE : E = −∇f and H = 0 ,

where f(r) is a scalar function satisfying the Helmholtz equation

∇2f + k2εf = 0 , (5.2)

with the permittivity of the dielectric sphere in vacuum given by

ε(r) =











n2
r for r 6 R

1 for r > R .
(5.3)

Owing to the spherical symmetry of the system, the solution of Eq. (5.2) splits in

spherical coordinates r = (r, θ, ϕ) into the radial and angular components:

f(r) = Rl(r, k)Ylm(Ω) , (5.4)

where Ω = (θ, ϕ) with the angle ranges 0 6 θ 6 π and −π 6 ϕ 6 π. The angular
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component is given by the spherical harmonics,

Ylm(Ω) =

√

2l + 1

2

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)χm(ϕ) , (5.5)

which are the eigenfunctions of the angular part of the Laplacian,

Λ̂(Ω)Ylm(Ω) = −l(l + 1)Ylm(Ω) , (5.6)

where Pm
l (x) are the associated Legendre polynomials. The azimuthal functions are

defined by Eq. (4.16). The radial components Rl(r, k) satisfy the spherical Bessel

equation,
[

d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
+ ε(r)k2

]

Rl(r, k) = 0 (5.7)

and have the following form

Rl(r, k) =











jl(nrkr)/jl(nrkR) for r 6 R

hl(kr)/hl(kR) for r > R ,
(5.8)

in which jl(z) and hl(z) ≡ h
(1)
l (z) are, respectively, the spherical Bessel and Hankel

functions of the first kind.

In spherical coordinates, a vector field E(r) can be written as

E(r, θ, ϕ) = Erer + Eθeθ + Eϕeϕ =













Er

Eθ

Eϕ













,

where er, eθ, and eϕ are the unit vectors. The electric field of the RSs then has the

form

ETE
n (r) = ATE

l Rl(r, kn)

















0

1

sin θ

∂

∂ϕ
Ylm(Ω)

− ∂

∂θ
Ylm(Ω)

















(5.9)
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for TE modes,

ETM
n (r) =

ATM
l (kn)

ε(r)knr



















l(l + 1)Rl(r, kn)Ylm(Ω)

∂

∂r
rRl(r, kn)

∂

∂θ
Ylm(Ω)

∂

∂r

rRl(r, kn)

sin θ

∂

∂ϕ
Ylm(Ω)



















(5.10)

for TM modes, and

ELE
n (r) = ALE

l





















∂

∂r
Rl(r, 0)Ylm(Ω)

Rl(r, 0)

r

∂

∂θ
Ylm(Ω)

Rl(r, 0)

r sin θ

∂

∂ϕ
Ylm(Ω)





















(5.11)

for LE modes. They are normalized according to Eqs. (2.23)–(2.29), leading to the

following normalization constants:

ATE
l =

√

2

l(l + 1)R3(n2
r − 1)

,

nrA
TE
l

ATM
l (k)

=

√

[

jl−1(nrkR)

jl(nrkR)
− l

nrkR

]2

+
l(l + 1)

k2R2
,

ALE
l =

√

2

R(n2
rl + l + 1)

. (5.12)

Longitudinal magnetic modes have zero electric field, and since we limit ourselves in

this work to perturbations in the dielectric susceptibility only, they are not mixed by

the perturbation to other types of modes and are thus ignored in the following.

The Maxwell boundary conditions following from Eq. (4.11), namely the conti-

nuity of the tangential components of E and H across the spherical dielectric-vacuum

interface, lead to the following secular equations determining the RS wavenumbers

kn:
nrj

′
l(nrz)

jl(nrz)
− h′l(z)

hl(z)
= 0 (5.13)
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for TE modes and
nrj

′
l(nrz)

jl(nrz)
− n2

rh
′
l(z)

hl(z)
− n2

r − 1

z
= 0 (5.14)

for TM modes, where z = knR and j′l(z) and h′l(z) are the derivatives of jl(z) and

hl(z), respectively. While the LE modes are the RSs easiest to calculate due to a

simple power-law form of their radial functions,

Rl(r, 0) =











(r/R)l for r 6 R

(R/r)l+1 for r > R ,
(5.15)

it is convenient to treat them in the RSE as part of the TM family of RSs. Indeed,

for r 6 R they coincide with the TM modes taken in the limit kn → 0:

ELE
n (r) =

√

l(n2
r − 1) lim

kn→0
ETM

n (r) . (5.16)

Note that kn = 0 is not a solution of the secular equation (5.14) for TM modes.

However, using the analytic dependence of the wave functions of TM modes on kn

[see Eqs. (5.8), (5.10), and (5.12)], the limit in Eq. (5.16) can be taken in the cal-

culation of the matrix elements containing LE modes. The same limit kn → 0 has

to be approached in the matrix eigenvalue problem Eq. (2.35) of the RSE, as the

matrix elements are divergent, due to the 1/
√
kn factor introduced in the expansion

coefficients. It is found that adding a finite negative imaginary part to static poles,

knR = −iδ, with δ typically of order 10−7 (determined by the numerical accuracy) is

suited for the numerical results presented in the following section. We have verified

this by comparing the results with the ones of the RSE in the form of a generalized

linear eigenvalue problem Eq. (2.34), which has no such divergence, but its numerical

solution is a factor of 2-3 slower in the NAG library implementation.
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5.2 Numerical results for 3D systems with scalar

dielectric susceptibility

In this section we discuss the application of the RSE to 3D systems described

by a scalar dielectric function ε̂(r) + ∆ε̂(r) = 1̂[ε(r) + ∆ε(r)]. As the unperturbed

system we use the homogeneous dielectric sphere of radius R with ε(r) given by

Eq. (5.3), having the analytical modes discussed in Sec. 5.1. We use the refractive

index nr = 2 of the unperturbed sphere throughout this section and consider several

types of perturbations, namely, a homogeneous perturbation of the whole sphere in

Sec. 5.2.1, a half-sphere perturbation in Sec. 5.2.2, and a quarter-sphere perturbation

in Sec. 5.2.3. We demonstrate in Sec. 5.3 the performance of the RSE as a local

perturbation method for a chosen group of modes by introducing a way to select a

suitable subset of basis states. Explicit forms of the matrix elements used in these

calculations are given in Appendix G.

5.2.1 Homogeneous sphere perturbation

The perturbation we consider here is a homogeneous change of ε over the whole

sphere, given by

∆ε(r) = ∆ǫΘ(R − r) , (5.17)

where Θ is the Heaviside function, with the strength ∆ǫ = 5 used in the numerical

calculation. For spherically symmetric perturbations, RSs of different angular quan-

tum numbers (l, m), and different transverse polarizations are not mixed, and are

degenerate in m. We show here for illustration the l = 5 modes. The matrix elements

of the perturbation Eq. (5.17) are given by Eqs.(G.1)–(G.5) of Appendix G. The

homogeneous perturbation does not change the structure of the system, so that the

perturbed modes obey the same secular equations Eq. (5.13) and Eq. (5.14) with the

refractive index nr of the sphere changed to
√

n2
r +∆ǫ, and the perturbed wavenum-

bers κν calculated using the RSE can be compared with the exact values κ
(exact)
ν

obtained from the secular equations.

We choose the basis of RSs for the RSE in such a way that for a given orbital
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Figure 5.1: TM RSs with l = 5 (and a fixed m) for the homogeneous perturbation
Eq. (5.17) with ∆ǫ = 5. (a) perturbed RSs wavenumbers calculated using RSE with
N = 1000 with (+) and without (×) the LE mode, as well as using the exact secular
equation (open squares). The wavenumbers of the unperturbed system are shown as
open circles with dots. Inset: Dielectric constant profile of the unperturbed (black line)
and perturbed (red line) systems. (b) Relative error of the perturbed wavenumbers
calculated with (+) and without (×) contribution of the LE mode, as well as with the
LE mode and extrapolation (crossed heptagons).

98



0 5 10 15 20 25 30 35
10

-11

10
-9

10
-7

10
-5

10
-3

10
-1

0

5

(b)

 Not extrapolated

 Extrapolated

 

 

re
la

ti
v
e 

er
ro

r

Re(kR)

10
-3

10
-2

10
-1

0 

10
1

 Unperturbed

 Exact

 Perturbed

(a)

 

 

 

- 
Im

(k
R

)

TE polarisation  l = 5

 
0

ε(r)

∆ε(r)

R

Figure 5.2: As Fig. 5.1 but for TE RSs, for which the LE modes have no influence.

number l and m we select all RSs with |kn| < kmax(N) using a maximum wave vector

kmax(N) chosen to result in N RSs. We find that as we increase N , the relative error
∣

∣κν/κ
(exact)
ν − 1

∣

∣ decreases as N−3. Following the procedure described Sec. 2.4 we

extrapolate the perturbed wavenumbers. The resulting perturbed wavenumbers for

N = 1000 (corresponding to kmaxR = 400) are shown in Fig. 5.1 for the TM RSs and

Fig. 5.2 for the TE RSs. The perturbation is strong, leading to WGMs with up to 2

orders of magnitude narrower linewidths. The RSE reproduces the wavenumbers of

about 100 RSs to a relative error in the 10−7 range, which is improved further by one

to two orders of magnitude after extrapolation. The homogeneous perturbation does

not couple LE modes to TE modes as LE modes have the symmetry of TM modes
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[see Eq. (5.16)] leading to vanishing overlap integrals with TE RSs. The contribution

of the LE-mode RS in the TM polarization is significant, as is shown in Fig. 5.1 by

the large decrease of the relative error by up to 8 orders of magnitude when adding

them to the basis. This validates the analytical treatment of the LE-mode RSs in

the RSE developed in this work. We have verified that taking a finite imaginary

value of δ = 10−7 in Eq. (2.35) for the LE-modes instead of using strict kn = 0 poles

in Eq. (2.34), as done throughout this work, changes the relative error of the TM

mode calculation by less than 10% and within the range of 10−9 only. For practical

applications, this limitation should not be relevant as the error in the measured

geometry will typically be significantly larger.

5.2.2 Hemisphere Perturbation

We consider here a hemisphere perturbation as sketched in Fig. 5.3 which mixes

TE, TM, and LE modes with different l, while conserving m. The perturbation is

given by

∆ε(r) = ∆ǫΘ(R − r)Θ

(

θ − π

2

)

(5.18)

and increases ε in the northern hemisphere by ∆ǫ, while leaving the southern hemi-

sphere unchanged. In our numerical simulation, we use ∆ǫ = 0.2. The calculation

of the matrix elements is done using Eqs. (G.7)–(G.12) of Appendix G which require

numerical integration. Owing to the symmetry of the perturbation, matrix elements

between TM and TE RSs can only be non-zero when the RSs have m of opposite sign

and equal magnitude, i.e. they are are sine and cosine states of equal |m|. Similarly,

matrix elements between two TE RSs or two TM RSs can only be non-zero if both

states have the same m. We can therefore restrict the basis to m = 3 TM states and

m = −3 TE states for the numerical calculations of this section. We treat the LE

RSs as TM modes with knR = −i10−7 and a normalization factor modified accord-

ing to Eq. (5.16). The resulting RS wavenumbers are shown in Fig. 5.3. Due to the

smaller perturbation compared to that considered in Sec. 5.2.1, the mode positions

in the spectrum do not change as much. The imaginary part of most of the WGMs

decreases due to the higher dielectric constant in the perturbed hemisphere. However,
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Figure 5.3: (a) Unperturbed and perturbed RS wavenumbers for a hemisphere pertur-
bation given by Eq. (5.18) with ∆ǫ = 0.2, for |m| = 3, calculated via the RSE with
basis sizes of N = 2000 (crosses) and N = 4000 (hexagons). The unperturbed RSs are
shown as open circles with dots. (b) Absolute errors Mν as function of Reκν calculated
for different basis sizes N as labeled. Inset: Diagram illustrating a dielectric sphere
with the regions of increased (lower hemisphere) and decreased (upper hemisphere)
dielectric constant.
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some of the modes also have an increased imaginary part due to the scattering at the

edge of the perturbation.

To the best of our knowledge, an analytic solution for this perturbation is not

available and thus we cannot calculate the relative error of the RSE result with respect

to the exact solution. However, we can investigate the convergence of the method

in order to demonstrate how the RSE works in this case, for the perturbation not

reducible to an effective one-dimensional problem. We accordingly show in Fig. 5.3(a)

the perturbed modes for two different values of basis size N and in Fig. 5.3(b) the

absolute errors Mν for several different values of N . Following the procedure of

Sec. 2.4, the absolute error is defined here as Mν = maxi=1,2,3 |κN4
ν − κ

Ni
ν |, where

κ
Ni
ν are the RS wavenumbers calculated for basis sizes of N1 ≈ N/2, N2 ≈ N/

√
2,

N3 ≈ N/ 4
√
2, and N4 = N . We see that the perturbed resonances are converging with

increasing basis size, approximately following a power law with an exponent between

−2 and −3.

5.2.3 Quarter-Sphere Perturbation and comparison with

FEM/FDTD methods

We consider here a perturbation which breaks both continuous rotation sym-

metries of the sphere and is thus is not reducible to an effective one or two-dimensional

system. The perturbation is given by

∆ε(r) = ∆ǫΘ(R − r)Θ

(

π

2
− θ

)

Θ

(

|ϕ| − π

2

)

(5.19)

and corresponds physically to a uniform increase of the dielectric constant in a

quarter-sphere area, as sketched in Fig. 5.4. In our numerical simulation, we take

∆ǫ = 1. Again, the calculation of the matrix elements requires numerical integration.

Owing to the reduced symmetry of the perturbation as compared to that treated in

the previous section we now have modes of different l, m, and polarization mixing,

although TE sine (TM cosine) and TE cosine (TM sine) modes are decoupled, owing

to the mirror symmetry of the system. This allowed me to split the simulation of
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Figure 5.4: (a) Unperturbed and perturbed RS wavenumbers for a quarter-sphere per-
turbation given by Eq. (5.19) with ∆ǫ = 1, calculated by the RSE with the basis sizes
N = 4000 (crosses) and N = 8000 (hexagons). The unperturbed RSs are shown as
open circles with dots. A sketch of the perturbation geometry is also shown. (b) Zoom
of (a) showing the splitting of a 2l+1 degenerate WGMs as the m degeneracy is lifted.
Here l = 7. The pole indicated in (b) by an arrow is analyzed further in Fig. 5.6. The
results of FEM simulations using 200k, 100k, 50k and 25k finite elements are shown
for comparison. (c) Absolute error Mν as function of Reκν calculated by the RSE
with different basis sizes N as labeled, for the RSs shown in (b).
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all modes into two separate simulations called A and B, respectively, each of size N .

Simulation A (B) correspond to TE sin mode and TM cos modes (TM sin mode and

TE cos modes). The lifting of the m-degeneracy of the unperturbed modes can be

seen as splitting off resonances in Fig. 5.4(a) and (b). In most cases the splitting in

the real part of the resonant wavenumber is greater than the linewidth of the modes.

The convergence of the RSE is well seen in Fig. 5.4(a) and (b) showing the

perturbed RS wavenumbers for two different basis sizes N . An analytic solution

for this perturbation is not available, so we use the method described in Sec. 2.4 to

estimate the error, and show in Fig. 5.4(c) the resulting absolute errorsMν for several

values of N . A convergence with a power law exponent between −2 and −3 is again

observed, resulting in relative errors in the 10−4 to 10−5 range for N = 8000.

To verify the RSE results, we have simulated the system using the commercial

solver ComSol (http://www.comsol.com) which uses the finite element method and

Galerkin’s method, approximating the openness of the system with an absorbing

perfectly matched layer (PML). We have surrounded the sphere with a vacuum shell

followed by a PML shell of equal thickness D. The results are shown in Fig. 5.4(b)

using D = R/2, and a “physics controlled” mesh with NG = 25k, 50k, 100k and 200k

finite elements. We used the nearest unperturbed RS wave vector as the linearization

point (i.e. the input value) for the ComSol solver, and requested the determination of

40 eigenfrequencies, which we found to be the minimum number reliably returning all

15 non-degenerate modes deriving from the l = 7 unperturbed fundamental WGM.

With increasing NG, the ComSol RS wavenumbers tend towards the RSE poles, with

an error scaling approximately as N−1
G . This is verifying the validity of the RSE

results.

To make a comparison between the RSE and ComSol in terms of numerical

complexity we use the poles computed by an N = 16000 RSE simulation as the “exact

solution” to calculate the average relative errors of the poles shown in Fig. 5.4(b) ver-

sus effective processing time on an Intel E8500 CPU. The result is shown in Fig. 5.5,

including ComSol data for different shell thicknesses D of R/2, R/4, and R/8, reveal-

ing that D = R/4 provides the best performance. This comparison shows that the

RSE is 2-3 orders of magnitude faster than ComSol for the present example, and at
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Figure 5.5: A comparison of the relative error of the perturbed RS wavenumbers shown
in Fig. 5.4(b) calculated by the RSE for different N as labeled versus computational
time. For comparison, the performance of the FEM using ComSol, and FDTD using
Lumerical are given. In the FEM we have used a thickness of the vacuum layer and
the perfectly matched layer of R/2, R/4, and R/8 as labeled, and NG=25k, 50k, 100k,
200k finite elements as labeled. In the FDTD we used different grid spacings from R/8
to R/80 and other parameters as given in the text.

the same time determines significantly more RSs.

The RSE computing time includes the calculation of the matrix elements which

were done evaluating the 1-dimensional integrals (see Appendix G.2) using 10000

equidistant grid points. The computing time of the matrix elements is significant

only for N . 2000, while for larger N the matrix diagonalization time, scaling as N3,

is dominating. We have verified that the accuracy of the matrix element calculation

is sufficient to not influence the relative errors shown.

We also include in Fig. 5.5 the performance of FDTD calculations using the

commercial software Lumerical (http://www.lumerical.com) [49]. They were under-

taken using a simulation cube size from 2.5R to 4R, exploiting the reflection sym-

metry, and for grid steps between R/8 and R/80, with a sub-sampling of 32. The
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simulation area was surrounded by a PML of a size chosen automatically by the soft-

ware. The excitation pulse had a centre wavenumber of kR = 5.1 and a relative

bandwidth of 10% to excite the relevant modes, and the simulation was run for 360

oscillation periods. The calculated time-dependent electric field after the excitation

pulse was transformed into a spectrum and the peaks were fitted with a Lorentzian

to determine the real and imaginary part of the mode. The parameters used were

chosen to optimize the performance, and in the plot the results with the shortest

computation time for a given relative error are given.

We can conclude that the RSE is about two orders of magnitude faster than

both FEM and FDTD for this specific problem, showing its potential to supersede

presently used methods. A general analysis of the performance of RSE relative to

FEM and FDTD will be the subject of our future research.

To illustrate how a particular perturbed RS is created as a superposition of

unperturbed RSs, we show in Fig. 5.6 the contributions of the unperturbed RSs to the

perturbed WGM indicated by the arrow in Fig. 5.4(b) with index ν and wavenumber

κν , given by the open star in Fig. 5.6. The contribution of the basis states to this

mode are visualized by circles of a radius proportional to 6
√
∑

|cnν |2, where the sum

is taken over the 2l+1 degenerate basis RSs of a given eigenfrequency, centered at the

positions of the RS wavenumbers in the complex k-plane. The expansion coefficients

cnν decrease quickly with the distance between the unperturbed and perturbed RS

wavenumbers, with the dominant contribution coming from the nearest unperturbed

RS, a typical feature of perturbation theory in closed systems. The unperturbed RS

nearest to the perturbed one in Fig. 5.6 has the largest contribution, and is a l = 7

TE WGM with the lowest radial quantum number. Other WGMs giving significant

contributions have the same radial quantum number and the angular quantum num-

bers ranging between l = 6 and l = 9, see the small stars in Fig. 5.6 corresponding

to l = 7 basis states. This is a manifestation of a quasi-conservation of the angular

momentum l for bulk perturbations like the quarter-sphere perturbation considered

here.

Generally, we see that a significant number of unperturbed RSs are contribut-

ing to the perturbed RS, which is indicating that previous perturbation theories for
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Figure 5.6: (a) Contributions of the basis RSs (blue and red circles) to the perturbed
RS (open star) indicated by an arrow in Fig. 5.5(b), calculated using the RSE with
N = 8000. Small stars show the positions of l = 7 TE modes. All circles and stars are
centred at the positions of the corresponding RS wavenumbers in the complex k-plane.
The radius of the circles is proportional to 6

√
∑

|cnν |2, where the sum is taken over
all m-degenerate RSs of the basis system corresponding to the given eigenfrequency.
A key showing the relationship between circle radius and

∑ |cnν |2 is given as black
circles. (b) A zoom of (a) showing the contribution of RSs close to the chosen perturbed
state. The angular quantum numbers l of the WGMs with the largest contributions
are indicated.
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open systems would yield large errors for the strong perturbations treated in this

work since they are limited to low orders [50, 51] or to degenerate modes only [52].

5.3 Local perturbation

The weights of the RSs shown in Fig. 5.6 indicate that a perturbed mode can

be approximately described by a subset of the unperturbed modes, which typically

have wavenumbers in close proximity to that of the perturbed mode. It is therefore

expected that a local perturbation approach based on the RSE is possible. We develop

such an approach.

We commence with a small subset S of modes of the unperturbed system

which are of particular interest, for example because they are used for sensing. To

calculate the perturbation of these modes approximately, we consider a global basis B
as used in the previous sections, with a size N providing a sufficiently small relative

error. We then choose a subset S+⊂ B with N ′ < N elements containing S, i.e.
S⊂ S+, and solve the RSE Eq. (2.35) restricted to S+. The important step in this

approach is to find a numerically efficient method to choose the additional modes in

S+ which provide the smallest relative error of the perturbed states deriving from S
for a given N ′. Specifically, the method should be significantly faster than the matrix

diagonalization Eq. (2.35).

To develop such a method, we consider here the Rayleigh-Schrödinger pertur-

bation theory based on the RSE and expand the RS wave vector κ up to second

order,

1

κ
=

(

1

κ

)(0)

+

(

1

κ

)(1)

+

(

1

κ

)(2)

+ . . . , (5.20)

where
(

1

κ

)(0)

=
1

kn
,

(

1

κ

)(1)

=
Vnn
2kn

,

(

1

κ

)(2)

= −1

4

∑

n′ 6=n

V 2
nn′

kn − kn′

(5.21)

as directly follows from Eq. (2.35). Note that the second-order result in Eq. (5.21) is

different from that given in Ref.[50].

We can expect that the second-order correction given by Eq. (5.21) is a suited

candidate to estimate the importance of modes. We therefore sort the modes in B
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according to the weight Wn given by

Wn =
∑

n′∈D

∑

n′′∈S

∣

∣

∣

∣

∣

V 2
n′n′′

kn′ − kn′′

∣

∣

∣

∣

∣

, (5.22)

where D is the set of modes degenerate with the mode n in B. The summation over

all degenerate modes is motivated by their comparable contribution to the perturbed

mode, as known from degenerate perturbation theory. We add modes of B to S+ in

decreasing Wn order. Groups of degenerate modes D are added in one step as they

have equal Wn. A special case are the LE modes in the basis of the dielectric sphere,

which are all degenerate having kn = 0. They are added in groups of equal l in the

order of reducing weight.

To exemplify the local perturbation method, we use the quarter sphere pertur-

bation with two different perturbations strengths ∆ǫ = 1 and ∆ǫ = 0.2, and choose

the degenerate l = 7 modes shown in Fig. 5.4(b) as S. The perturbed RSs deriving

from S are shown in Fig. 5.7(a) and (b), as calculated by RSE using either a global

basis B with N = 16000, or a minimum local basis S+ = S with N ′ ∼ 10, or a larger

S+ with N ′ ∼ 100. As in the previous section we show the results separately for each

class of RSs (A and B) decoupled by symmetry. We see that for ∆ǫ = 0.2 (∆ǫ = 1) the

perturbation lifts the degeneracy of S by a relative wavenumber change of about 1%

(5%), and that the minimum local basis S+ = S of only degenerate modes reproduces

the wavenumbers with a relative error of about 10−4 (10−3), i.e. the perturbation ef-

fect is reproduced with an error of a few %. Increasing the local basis size to N ′ ∼ 100

the error reduces by a factor of three, by similar absolute amounts in the real and the

imaginary part of the wavenumber [see insets of Fig. 5.7(a) and (b)].

The relative error of the local-basis RSE is generally decreasing with increasing

basis size, as shown in Fig. 5.7(c). It can however be non-monotonous on the scale of

individual sets of degenerate modes. This is clearly seen for for ∆ǫ = 0.2 and small

N ′, where adding the second group increases the error, which is reverted when the

third group is added. These groups are the l = 6 and l = 8 fundamental WGMs

as expected from Fig. 5.6(b), which are on opposite sides of S (l = 7 WGMs) in the

complex frequency plane. Adding only one of them therefore imbalances the result,
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Figure 5.7: (a) Unperturbed and perturbed RS wavenumbers for a quarter-sphere per-
turbation given by Eq. (5.19) with ∆ǫ = 1, calculated by the RSE using the local basis
sizes N ′ = 7, 8 (+), N ′ = 99, 103 (×) for the parts A,B, respectively, and a global basis
with N = 16000 (hexagons). The unperturbed RSs are shown as a circle with a dot.
The inset is a zoom to the RS with the strongest perturbation. (b) As in (a) but for
∆ǫ = 0.2. (c) Average relative error of the states shown in (a) and (b) versus basis
size for a global basis (squares and crosses), and for a local basis (circles) derived from
a global basis of N = 8000 modes.
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leading to an increase of the relative error.

Comparing results in Fig. 5.7(c) for two different values of ∆ǫ, we see that the

second-order correction dominates the relative error, as in the wide range of N ′ the

error scales approximately like a square of the perturbation strength. The global-basis

RSE, also shown in Fig. 5.7(b), has for a given basis size significantly larger errors.

Furthermore, a minimum basis size is required for the basis to actually contain S, in
the present case N ≈ 500. The local basis thus provides a method to calculate the

perturbation of arbitrary modes with a small basis size.

The local perturbation method described in this section enables the calcu-

lation of high frequency perturbed modes which have previously been numerically

inaccessible to FDTD and FEM due to the necessity of the corresponding high num-

ber of elements needed to resolve the short wavelengths involved and inaccessible to

the RSE with a global basis due to the prohibitively large N required. The example

we used for the illustration shows that a basis of ∼ 100 RSs in the local RSE can

be sufficient to achieve the same accuracy as provided by FDTD and FEM in a rea-

sonable computational time [see Figs. 5.5 and 5.7(c)]. For this basis size, solving the

RSE Eq. (2.35) is 6 orders of magnitude faster than FDTD and FEM, and the com-

putational time in our numerical implementation is dominated by the matrix element

calculation which can be further optimized. A detailed evaluation of the performance

of the local basis RSE and a comparison of selection criteria different from Eq. (5.22)

will be the subject of our future research.

5.4 Summary

We have applied the resonant state expansion (RSE) to general three-dimensional

(3D) open optical systems. This required including in the basis both types of transver-

sal polarization states, TE and TM modes, as well as longitudinal electric field modes

at zero frequency. Using the analytically known basis of resonant states (RSs) of a

dielectric sphere – a complete set of eigenmodes satisfying outgoing wave boundary

conditions – we have applied the RSE to perturbations of full-, half- and quarter-

sphere shapes. The latter does not have any rotational or translational symmetry
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and is thus not reducible to lower dimensions, so that their treatment demonstrates

the applicability of the RSE to general 3D perturbations.

We have compared the performance of the RSE with commercially available

solvers, using both the FEM and FDTD, and showed that for the geometries con-

sidered here, the RSE is several orders of magnitude more computationally efficient,

showing its potential to supersede presently used computational methods in electro-

dynamics. We have furthermore introduced a local perturbation method for the RSE,

which is restricting the basis in order to treat a small subset of modes of interest.

This further reduces computational efforts and improves on previous local perturba-

tion methods.
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Chapter 6

Conclusion

We have further developed the RSE, a new method for calculating the GF of open sys-

tems by expressing it as a spectrum of RSs. The RSs provide a natural discretisation

of a GF. This representation of the GF makes it possible to formulate an equation

relating perturbed RSs to the perturbation and the unperturbed GF. We have used

this equation in the derivation of the matrix equation which can be solved to give the

perturbed RSs as an expansion of the unperturbed RSs. For homogeneous planar,

cylindrical, and spherical systems the RSs can be calculated analytically. Since these

unperturbed RSs are analytic, using them in the RSE can make the calculation of

the RSs for a perturbed system more efficient than FDTD or FEM methods which

are fully numerical.

I will now summarise the theoretical developments in detail that we have

presented in this thesis.

6.1 General formulation of RSE for open sys-

tems

Previous applications of the RSE were limited to systems described by scalar

equations so the key theoretical developments of this thesis are mathematical deriva-

tions and proofs which have allowed the RSE to become a mathematically rigorous

perturbation theory for two and three-dimensional systems.
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As part of the general formulation of the RSE we develop algorithms for mea-

suring and extrapolating this convergence to the exact solution.

6.2 Application to planar systems

Chapter 3 details the application of the RSE to planar open optical systems

such as layered dielectric slabs and Bragg reflector microcavities. It is demonstrated

that the RSE converges with a power law in the basis size. Algorithms for error

estimation and their reduction are evaluated. We calculate relative errors for the

results of RSE by comparison with scattering matrix methods for the fields and also

transcendental equations in the case of eigenfrequencies.

The planar system is then examined further by considering non-normal inci-

dences of light and numerical evaluation of the convergence of RSE to exact analytic

results is made. Interestingly, the spectral analysis of a dielectric slab in terms of

resonant states reveals an influence of waveguide modes in the transmission. These

modes, which on resonance do not couple to external light, surprisingly do couple to

external light for off-resonant excitation.

6.3 Application to two and three-dimensional

systems

In chapter 4 we detail the application of the RSE to 2-dimensional open optical

systems considering all possible polarisations but limited to zero in-line momentum.

We use the homogeneous dielectric cylinder as the basis system. We use GF theory

to show that the RSE basis requires the inclusion of a continuum of resonant states

with imaginary eigenfrequency. This continuum is discretised and included in the

basis. The complex eigenfrequencies are calculated for a selection of perturbations

which are effectively 2-dimensional such as half-cylinder, thin-film, and thin wire. We

show the RSE reproduces the eigenfrequencies of an approximative analytic solution

in the case of the thin-wire perturbation.

114



In Chapter 5 we apply the RSE to three-dimensional open optical systems.

The analytically solvable homogeneous dielectric sphere is used as the basis system.

Since any perturbation which is breaking the spherical symmetry is mixing TE and

TM modes the RSE is extended to use TM modes and the zero frequency pole of the

GF. We investigate the convergence of the RSE for perturbations which sequentially

reduce the number of continuous symmetries of our systems from 2 to 1 to zero . We

find that the RSE provides a higher accuracy than the FEM and FDTD for a given

computational effort, demonstrating its potential to replace presently used methods.

6.4 Local perturbation method

At the end of chapter 5 we develop a local perturbation method for RSE,

which is a unique capability of the RSE as compared to FEM or FDTD. The local

perturbation method makes it in principle practical to use the RSE to calculate weakly

perturbed high frequency modes using just the modes that are contributing strongly

to the perturbed modes of interest. Therefore the local perturbation method in this

section could allow the calculation of high frequency perturbed modes which have

previously been numerically inaccessible by FDTD and FEM due to the necessity of

the corresponding high number of elements needed to resolve the short wavelengths

involved and previously not accessible to the RSE due to the prohibitively large basis

required by that method.

6.5 Future work

Our future RSE research might be a theoretical extension of the method to

treat photonic crystal fibre optic cables with non zero in-line momentum for the

purposes of optimising their loss, dispersion, and bandwidth, important for sensing

and communications technologies. We could then extend the investigations of [53] by

designing the optimum fibres with the RSE as a fast and economical alternative to

experimental studies.
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The RSE also has potential for commercialization, as its performance can su-

persede FEM and FDTD because its efficiency can be orders of magnitude better. The

commercialization of RSE as a new solver for electrodynamic problems will impact

a wide range of additional fields, including also quantum optics, photonic circuits,

photonic materials and nano plasmonics.
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Appendix A

Mittag-Leffler theorem applied to

electrodynamic GF

The residue theorem in mathematics states

Let γ be a contour, and let f be a function holomorphic in an open domain U
containing I(γ) ∪ γ∗, except for finitely many poles c1, c2, ..., cm in I(γ) then

∫

γ

f(z)dz = 2πi
m
∑

k=1

Res(f, ck) (A.1)

where Res(f, ck) is the residue of f at ck.

If we take U to be an open set in the complex plane, then in mathematics a

function f(z) is said to be holomorphic in U if it is differentiable at every point in U .

The definition of differentiability for a complex function at a point c is there

must exist

lim
z→c

f(z)− f(c)

z − c
= f ′(c) (A.2)

where f ′(c) is the derivative of f at c. f ′(c) must be the same if we approach c from

all possible directions.

We find in this thesis that not all the GFs to which we apply the residue

theorem meet this condition on every subspace of the complex frequency plane. We

find the non-differentiable regions are cuts or lines of discontinuity in the GF. We

find that γ must be deformed to avoid these regions.
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We can use the residue theorem to derive the Mittag-Leffer theorem we let

f(k′) =
Ĝk′(r, r

′)

k′ − k
(A.3)

then the residue theorem implies

∫

γ

Ĝk′(r, r
′)

k′ − k
dk′ = 2πiĜk(r, r

′) + 2πi
∑

n

Res(Ĝk′′(r, r
′), kn)

k − kn
. (A.4)

Thus the Mittag-Leffer theorem allows us to write Ĝk(r, r
′) as a function of a contour

integral and its poles or resonances. In our case Ĝk(r, r
′) is the GF satisfying the

electrodynamic GF Eq. (2.2) with outgoing BCs.

In most cases the asymptotic Gk(z, z
′) ∝ k−2 for |k| → ∞ allow us to approx-

imate the path integral in Eq. (A.4) as zero [30, 32].
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Appendix B

Spectral representation of the GFs

of an open system

The Green’s function (GF) of an open electromagnetic system is a tensor Ĝk which

satisfies the outgoing wave BCs and the Maxwell wave equation Eq. (2.1) with a delta

function source term,

−∇×∇× Ĝk(r, r
′) + k2ε̂(r)Ĝk(r, r

′) = 1̂δ(r− r′) , (B.1)

where 1̂ is the unit tensor. Physically, the GF describes the response of the system

to a point current with frequency ω, i.e. an oscillating dipole.

We assuming a simple-pole structure of the GF with poles at k = qn and

take into account its large-k vanishing asymptotics. Therefore the Mittag-Leffler

theorem[30, 32] (see Appendix A) allows us to express the GF as

Ĝk(r, r
′) =

∑

n

Q̂n(r, r
′)

k − qn
. (B.2)

We assume no degeneracy for the mode n. The definition of the residue Q̂n(r, r
′) at

a simple pole of the function Ĝk(r, r
′) is,

lim
k→qn

(k − qn)Ĝk(r, r
′) = Q̂n(r, r

′) , (B.3)
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where we have again assumed Ĝk(r, r
′) to be holomorphic in this neighbourhood of

kn except for at the poles kn so that it has a Laurent series at kn. Substituting the

expression Eq. (B.2) into Eq. (B.3) gives

lim
k→qn

(k − qn)
∑

m

Q̂m(r, r
′)

k − qm
= Q̂n(r, r

′) (B.4)

so that

lim
k→qn

(k − qn)
∑

m6=n

Q̂m(r, r
′)

k − qm
= 0 (B.5)

Substituting the expression Eq. (B.2) into Eq. (B.1) and convoluting with an arbitrary

finite field D(r) over a finite volume V we obtain

∑

n

−∇×∇× Fn(r) + k2ε(r)Fn(r)

k − qn
= D(r) , (B.6)

where Fn(r) =
∫

V
Q̂n(r, r

′)D(r′)dr′. Multiplying by (k − qn) and taking the limit

k → qn yields

lim
k→qn

(k − qn)
∑

n

−∇×∇× Fn(r) + k2ε(r)Fn(r)

k − qn
= lim

k→qn
(k − qn)D(r) = 0 . (B.7)

From Eq. (B.5) we can see,

lim
k→qn

(k − qn)
∑

m6=n

−∇×∇× Fm(r) + k2ε(r)Fm(r)

k − qm
= 0 , (B.8)

so we can drop terms n 6= m from the summation in Eq. (B.7) to give

lim
k→qn

(k − qn)
−∇×∇× Fn(r) + k2ε(r)Fn(r)

k − qn
= 0 . (B.9)

or

−∇×∇× Fn(r) + q2nε(r)Fn(r) = 0 . (B.10)

Due to the convolution with the GF, Fn(r) satisfies the same outgoing wave

BCs Eq. (2.7). Then, according to Eq. (2.6), Fn(r) ∝ En(r) and qn = kn. Note
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that the convolution of the kernel Q̂n(r, r
′) with different functions D(r) can be

proportional to one and the same function En(r) only if the kernel has the form of a

direct product:

Q̂n(r, r
′) = En(r)⊗ En(r

′)/wn , (B.11)

with wn = 2kn, a normalisation factor. The symmetry in Eq. (B.11) follows from the

reciprocity theorem [54], described mathematically by the relation

d1Ĝk(r1, r2)d2 = d2Ĝk(r2, r1)d1 , (B.12)

which holds for any two dipoles d1,2 at points r1,2 oscillating with the same frequency.

Hence Ĝk(r, r
′) is a symmetric tensor.

In the case of a Green’s function made up of degenerate modes we modify the

proof of Eq. (B.11) by making use of orthogonality of the degenerate modes to choose

D(r) such that,
∫

V

Em(r) ·D(r) dr = 0 , (B.13)

for m 6= n and where state m is degenerate with n.
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Appendix C

Analytic RSs and perturbation

matrices for planar open optical

systems

C.1 RSs of a slab perturbed by a wide dielec-

tric layer in the case of normal incidence

The exact solutions of the wave equation Eq. (3.3) with p = 0 for the system

with the perturbation given by Eq. (3.13) and outgoing boundary conditions have the

form

E (exact)
ν (z) =



































Aνe
−iκνz , z < −a ,

Bνe
i
√
ǫsκνz + Cνe

−i
√
ǫsκνz , −a ≤ z ≤ b ,

Dνe
i
√
ǫpκνz + Eνe

−i
√
ǫpκνz , b ≤ z ≤ a ,

Hνe
iκνz , z > a ,

(C.1)

where ǫp = ǫs + ∆ǫ, and b = a/2. We find the coefficients in Eq. (C.1) from the

continuity of the electric field and its derivative and the normalization condition

Eq. (3.15). The complex-valued RS wave numbers κν are found by solving a secular

equation following from the boundary conditions:

βγf(k)g(k)− 1 =
β − γ

βγ − 1

[

βg(k)− γf(k)
]

, (C.2)
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where

β =

√
ǫp + 1

√
ǫp − 1

, (C.3)

γ =

√
ǫs + 1√
ǫs − 1

, (C.4)

and the functions f(k) and g(k) are defined as

f(k) = e−2i
√
ǫsk(a+b) , g(k) = e−2i

√
ǫsk(a−b) . (C.5)

We solve Eq. (C.2) using the Newton-Raphson method to find k = κ
(exact)
ν .

C.2 Matrix elements of the wide-layer pertur-

bation for arbitrary in-plane wavevector

p

Using Eq. (2.36) or Eq. (2.49) and basis functions Eq. (3.5) we calculate Vnm

for the wide-layer perturbation Eq. (3.13) to be

Vnm = ∆ǫBnBm

[

η(qn + qm, z) + (−1)mη(qn − qm, z)

+(−1)nη(qm − qn, z) + (−1)n+mη(−qn − qm, z)
]a

b
,

for n 6= m and

Vnn = ∆ǫB2
n

[

2(−1)nz + η(2qn, z) + η(−2qn, z)
]a

b
(C.6)

for n = m, where η(k, z) = ei
√
ǫskz/ik.
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C.3 RSs of a slab perturbed by a δ perturbation

for p = 0

In the case of a δ-perturbation ∆ε(z) = wǫdδ(z − b) with |b| ≤ a and p = 0,

we find the secular equation for the RS wave vectors takes the form

[

1 + γf(k)
][

1 + γg(k)
]

=
2i
√
ǫs

wǫdk

[

1− γ2f(k)g(k)
]

. (C.7)

where f and g are the functions derived above. Eq. (C.7) is also solved numerically

with the help of the Newton-Raphson method to find k = κ
(exact)
ν .

C.4 Matrix elements of the δ-perturbation

Using Eq. (3.12) and basis functions Eq. (3.5) we calculate Vnm for the δ per-

turbation to be

Vnm = wǫdEn(a/2)Em(a/2) . (C.8)
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Appendix D

Normalised transverse electric

modes of a cylinder expressed in

terms of normalised magnetic

modes

The Green’s function for the magnetic component of an electrodynamic system is a

tensor ĜH
k which satisfies the outgoing wave boundary conditions and Maxwell’s wave

equation with a delta function source term

−∇×∇× ĜH
k (r, r

′) + ε̂(r)−1∇ε̂(r)× (∇× ĜH
k (r, r

′)) + k2ε̂(r)ĜH
k (r, r

′)

= 1̂δ(r− r′) . (D.1)

following the derivation for the spectral representation of Ĝk in Sec. 4.1.1 we find ĜH
k

can be written as

ĜH
k (r, r

′) =
∑

n

βn̄φn̄H̄n̄(r)⊗ H̄n̄(r
′)

2kn(k − kn̄)
. (D.2)

If we only consider the region inside of the optical resonator Eq. (2.2) become

−∇×∇× Ĝk(r, r
′) + k2εĜk(r, r

′) = 1̂δ(r− r′) (D.3)
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where

Ĝk(r, r
′) =

∑

n

αn̄φn̄En̄(r)⊗ En̄(r
′)

2k(k − kn̄)
. (D.4)

Again if we only consider the region inside of the optical resonator Eq. (D.1) become

−∇×∇× ĜH
k (r, r

′) + k2εĜH
k (r, r

′) = 1̂δ(r− r′) (D.5)

We have introduced the normalisation factors αn̄ and βn̄.

We now consider two functions F and J which are zero outside of the optical

resonator and on the border. Convoluting Eq. (D.3) with F and Eq. (D.5) with J we

obtain,

−∇×∇× P̂E
k (r, r

′) + k2εP̂E
k (r, r

′) = F(r) (D.6)

−∇×∇× P̂H
k (r, r

′) + k2εP̂H
k (r, r

′) = J(r) (D.7)

We calculate P̂E
k (r, r

′) from the spectral Green’s function Eq. (D.4) to be

P̂E
k (r) =

∑

n

αnEn(r)fn
2kn(k − kn)

(D.8)

We calculate P̂H
k (r, r

′) from the spectral Green’s function Eq. (D.2) to be

P̂H
k (r) =

∑

n

βnH̄n(r)gn
2kn(k − kn)

(D.9)

The constant fn is calculated to be

fn =

∫

V

En(r) · F(r)dr (D.10)

The constant gn is calculated to be

gn =

∫

V

H̄n(r) · J(r)dr (D.11)

We define V to be the volume where J(r) 6= 0 and F(r) 6= 0.

We can see by comparing Eq. (2.1) and Eq. (4.7) that J(r) is proportional to
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∇ × F(r) because J(r) plays the role of the oscillating current in both equations.

Hence without lose of generality we may let J(r) = ∇ × F(r) and use Maxwell’s

equations,

∇× En(r) = iknH̄n(r) (D.12)

∇× H̄n(r) = −iknεEn(r) (D.13)

we find

∇× P̂E
k (br) = i

∑

n

αnH̄n(r)fn
2(k − kn)

(D.14)

Taking the curl of Eq. (D.6) gives,

−∇× (∇×∇× P̂E
k (r, r

′)) + k2ε(∇× P̂E
k (r, r

′)) = ∇× F(r) (D.15)

We can rewrite gn in terms of fn

gn =

∫

V

H̄n(r) · J(r)dr =
∫

V

H̄n(r) · ∇ × F(r)dr

=

∫

S

H̄n(r)× F(r)dS +

∫

V

F(r) · ∇ × H̄n(r)dr. (D.16)

However F(r) = 0 on the surface S, therefore

gn = −iknε
∫

V

En(r) · F(r)dr = −iknεfn (D.17)

Then we see Eq. (D.9) can be written,

P̂H
k (r) =

∑

n

−iβnH̄n(r)εfn
2(k − kn)

(D.18)

Compare Eq. (D.15) and Eq. (D.7) we obtain ∇ × P̂E
k (r) = P̂H

k (r), then equating

coefficients at the pole kn we find,

−βnε = αn (D.19)
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Appendix E

Green’s function of a homogeneous

cylinder

The TM component of the GF ĜTM
k (r, r′) for the electric field in the case of a homo-

geneous cylinder in vacuum satisfies the following equation

−∇×∇× ĜTM
k (r, r′) + k2ε̂(r)ĜTM

k (r, r′) = 1̂δ(r− r′) , (E.1)

The TE component of the GF ĜTE
k (r, r′) for the magnetic field in the case of a

homogeneous cylinder in vacuum satisfies the following equation

−∇×∇× ĜTE
k (r, r′) + ε̂(r)−1∇ε̂(r)× (∇× ĜTE

k (r, r′)) + k2ε̂(r)ĜTE
k (r, r′)

= 1̂δ(r− r′) , (E.2)

where r = (ρ, ϕ, z) and

ε(r) =











n2
r for ρ 6 R ,

1 for ρ > R .
(E.3)

Using the angular basis Eq. (4.16) both TM and TE GFs can be written as

Gk(ρ,ρ
′) =

1√
ρρ′

∑

m

G̃m(ρ, ρ
′; k)χm(ϕ)χm(ϕ

′) , (E.4)
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similar to Eq. (4.32). Note that we redefined here the radial part as G̃m(ρ, ρ
′; k) =

√
ρρ′Gm(ρ, ρ

′; k) which satisfies in the TM case

[

d2

dρ2
− m2 − 1/4

ρ2
+ k2ε(ρ)

]

G̃TM
m (ρ, ρ′; k) = δ(ρ− ρ′) . (E.5)

or in the TM case for magnetic field,

[

d2

dρ2
− m2 − 1/4

ρ2
+

1

ε(ρ)

dε(ρ)

dρ

1

2ρ

]

G̃TE
m (ρ, ρ′; k)+

+

[

k2ε(ρ)− 1

ε(ρ)

dε(ρ)

dρ

d

dρ

]

G̃TE
m (ρ, ρ′; k) = δ(ρ− ρ′) . (E.6)

Using two linearly independent solutions fm(ρ) and gm(ρ) of the corresponding ho-

mogeneous equation which satisfy the asymptotic boundary conditions

fm(ρ) ∝ ρm+1/2 for ρ→ 0 ,

gm(ρ) ∝ eikρ for ρ→ ∞ .

the GF can be expressed as

G̃m(ρ, ρ
′; k) =

fm(ρ<)gm(ρ>)

W (fm, gm)
, (E.7)

in which ρ< = min{ρ, ρ′}, ρ> = max{ρ, ρ′}, and the Wronskian W (f, g) = fg′ − f ′g .

For TM polarization, a suitable pair of solutions is given by

fm(ρ) =
√
ρ ·











Jm(nrρk) , ρ 6 R ,

amJm(ρk) + bmHm(ρk) , ρ > R ,

gm(ρ) =
√
ρ ·











cmJm(nrρk) + amHm(nrρk) , ρ 6 R ,

Hm(ρk) , ρ > R ,
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where for TM modes

aTM
m (k) =

[

nrJ
′
m(nrx)Hm(x)− Jm(nrx)H

′
m(x)

]

πix/2 ,

bTM
m (k) =

[

J ′
m(x)Jm(nrx)− nrJm(x)J

′
m(nrx)

]

πix/2 ,

cTM
m (k) =

[

H ′
m(x)Hm(nrx)− nrHm(x)H

′
m(nrx)

]

πix/2

or for TE modes

aTE
m (k) =

[

Hm(x)J
′
m(nrx)− nrH

′
m(x)Jm(nrx)

]

πix/2nr ,

bTE
m (k) =

[

nrJ
′
m(x)Jm(nrx)− Jm(x)J

′
m(nrx)

]

πix/2nr ,

cTE
m (k) =

[

nrH
′
m(x)Hm(nrx)−Hm(x)H

′
m(nrx)

]

πinrx/2

with x = kR. The Wronskian in the TM case is calculated to be

WTM(fm, gm) = 2iam(k)/π = −xDTM
m (x)

and in the TE case

WTE(fm, gm) = 2in2
ram(k) = −nxDTE

m (x)/π, ,

with DTM
m (x) defined in Eq. (4.25) and DTE

m (x) defined in Eq. (4.26). Inside the cylin-

der, the GF then takes the form

G̃m(ρ, ρ
′; k) =

π

2i

√

ρρ′
[

Jm(nrkρ<)Hm(nrkρ>)

+
cm(k)

am(k)
Jm(nrkρ<)Jm(nrkρ>)

]

, (E.8)

using the TM (TE) version of am(k) and cm(k) for the TM (TE) GF. The GF has

simple poles kn in the complex k-plane which are the wave vectors of RSs, given by

am(kn) = 0, an equation equivalent to Eq. (4.23). The residues Resn of the GF at
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these poles are calculated for the TM modes using

rTM
m (kn) =

cTM
m (k)

d
dk
aTM
m (k)

∣

∣

∣

∣

∣

k=kn

=
2ikn

π(n2
r − 1)[knRJm(nrknR)]2

, (E.9)

and for the TM modes using

rTE
m (kn) = − cTE

m (k)
d
dk
aTE
m (k)

∣

∣

∣

∣

∣

k=kn

=
2i

π(n2
r − 1)

[

m2

kn

[

Jm(nknR)
]2

+R2kn
[

J ′
m(nknR)

]2

] .

(E.10)

In addition to the poles, the GF has a cut in the complex k-plane along the negative

imaginary half-axis. The cut is due to the Hankel function Hm(z) which describes

the field outside the cylinder and contributes to Eqs. (4.23), (4.24) and Eq. (E.8), and

is not uniquely defined. Indeed, it can be expressed as [55]

Hm(z) = Jm(z) + iNm(z) , (E.11)

using a multiple-valued Neumann function

Nm(z) = Ñm(z) +
2

π
Jm(z) ln

z

2
, (E.12)

where Ñm(z) = zmFm(z
2) is a single-valued polynomial [55] while ln z is a multiple-

valued function defined on an infinite number of Riemann sheets. We have verified

that only one such sheet provides the asymptotics Hm(z) ∝ exp(iz)/
√
z for z → ∞,

which is required for the RS wave functions outside the cylinder to satisfy the outgoing

wave boundary conditions Eq. (2.7). This ‘physical’ sheet has a cut going from the

branch point at z = 0 to infinity, and the position of this cut is not arbitrary. To find

the cut position let use the symmetry of the RS wave numbers, k−n = −k∗n, discussed
in Sec. 2.1. Let us also, using properties of cylindrical functions, [55] bring the secular

equation (4.23) to the form

Jm+1(nrz)Hm−1(z) = Jm−1(nrz)Hm+1(z) , (E.13)
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in which z = knR. We note that if z = knR is a complex solution of Eq. (E.13),

then −z∗ is also a solution of the same equation. We take two equations, one is the

conjugate of Eq. (E.13) and the other is Eq. (E.13) itself but taken with the argument

−z∗, and add them up. Substituting there Eqs. (E.11) and (E.12) and using the facts

that [55]

[

Jm(z)
]∗

= Jm(z
∗) = (−1)mJm(−z∗) ,

[

Ñm(z)
]∗

= Ñm(z
∗) = (−1)mÑm(−z∗) ,

we arrive at the condition

ln(−z∗)− (ln z)∗ = πi , (E.14)

which is fulfilled, for any z, only if ln z [and consequently Hm(z)] has a cut along the

negative imaginary half-axis.

Owing to the cut of the Hankel function Hm(z) the GF also has a cut along

the negative imaginary half-axis in the complex k-plane, so that on both sides of the

cut G̃m takes different values: G̃+
m on the right-hand side and G̃−

m on the left-hand

side of the cut. The step ∆G̃m = G̃+
m − G̃−

m over the cut can be calculated using the

corresponding difference in the Hankel function:

∆Hm(z) = H+
m(z)−H−

m(z) = 4Jm(z) .

The result is

∆G̃m(ρ, ρ
′; k) =

π

2i

√

ρρ′Jm(nrkρ<)Jm(nrkρ>)∆Qm(k) (E.15)

where

∆Qm(k) =

[

4 +
c+m
a+m

− c−m
a−m

]

= −
(

4

πkR

)2
1

D+
m(kR)D

−
m(kR)

(E.16)

with Dm(kR) given by Eq. (4.25) in the case of the GF for TM modes or Eq. (4.26)

in the case of the GF for the TE modes.

Let us now use the residue theorem for the function G̃m(ρ, ρ
′; k′)/(k − k′)

integrating it in the complex k′-plane along a closed contour consisting of three parts,
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Im(k' )

Re(k')
k' =k

Figure E.1: Sketch showing the contour of integration in Eq. (E.17) as well as poles
(black dots) and the cut (blue dashed line) of the GF in the complex k′-plane. An
extra pole at k′ = k is shown by a red dot.

see Fig. E.1: A large counter-clockwise circumference with a radius tending to infinity,

two straight lines circumventing the cut and approaching it from both sides, and a

small clockwise circumference around the origin with a radius tending to zero. Since

the GF behaves as k−2 at large values of k and takes finite values or logarithmically

diverges at k = 0, both large- and small-circle integrals vanish, so that the only

remaining integrals are those which are taken along the cut:

∮

G̃m(ρ, ρ
′; k′)

k − k′
dk′ =

∫ −i∞

0

G̃+
mdk

′

k − k′
+

∫ 0

−i∞

G̃−
mdk

′

k − k′

= 2πi
∑

n

Resn
k − kn

− 2πiG̃m(ρ, ρ
′; k) . (E.17)

Note that in the second part of the above equation we have made use of the residue

theorem, expressing the closed-loop integral in the left-hand side in terms of a sum

over residues at all poles inside the contour. Using Eq. (E.17) the GF can be expressed

as

G̃m(ρ, ρ
′; k) =

∑

n

Resn
k − kn

+
1

2πi

∫ 0

−i∞

∆G̃m(ρ, ρ
′; k′)dk′

k − k′
, (E.18)
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which is a generalization of the Mittag-Leffler theorem. This is used in Sec. 4.1 when

applying the RSE to 2D systems with a cut their GF. The residues Resn of the GF

contributing to Eq. (E.18) are calculated as

Resn =
π

2i

√

ρρ′Jm(nrkρ<)Jm(nrkρ>)rm(kn) , (E.19)

where we use rm(kn) found in Eq. (E.9) for the TM modes or Eq. (E.10) for the TE

modes. Given that the spatial dependence of the GF, as described by Eqs. (E.18),

(E.19), and (E.15), is represented by products of the RS wave functions Rm(ρ, kn)

and their analytic continuations Rm(ρ, k) with k-values taken on the cut, we arrive

at the GF in the form of Eqs. (4.33) and (B.13) which are then used in the RSE.
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Appendix F

Matrix elements used in 2D RSE

In this section we give explicit expressions for the matrix elements Vn̄n̄′ of the specific

perturbations considered in this paper. As a starting point we use the following

general formula for the matrix elements of an arbitrary perturbation ∆ε(ρ, ϕ) inside

the cylinder of radius R:

Vnn′ =

∫

En(r)∆ε̂(r)Em(r) dr , (F.1)

in which Rm and χm are the eigenfunctions of the homogeneous cylinder given in

Sec. 4.1.3.

F.1 Homogeneous cylinder perturbation for TM

modes

The homogeneous scalar perturbation Eq. (5.17) does not mix different m-

values or polarisations. The TMmatrix elements between RS with the same azimuthal

number m and TM polarisation are given by the radial overlap integrals

Vn̄n̄′ = ∆ǫ

∫ R

0

Rm(ρ, kn̄)Rm(ρ, kn̄′)ρdρ (F.2)
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yielding for identical basis states (n̄ = n̄′)

Vn̄n̄ =
∆ǫ

n2
r − 1

[

1− Jm−1(nrkn̄R)Jm+1(nrkn̄R)

[Jm(nrkn̄R)]2

]

(F.3)

and for different basis states (n̄ 6= n̄′)

Vn̄n̄′ =
∆ǫ

n2
r − 1

2

nrR(k2n̄ − k2n̄′)

[

kn̄′

Jm−1(nrkn̄′R)

Jm(nrkn̄′R)
− kn̄

Jm−1(nrkn̄R)

Jm(nrkn̄R)

]

. (F.4)

F.2 Homogeneous cylinder perturbation for TE

modes

The homogeneous scalar perturbation Eq. (5.17) does not mix different m-

values or polarisations. The matrix elements between RS with the same azimuthal

number m and TE polarisation are given by the radial overlap integrals

Vn̄n̄′ =
ATE

m (kn̄)A
TE
m (kn̄′)γm(kn̄)γm(kn̄′)∆ǫ

2

[

Im−1(kn̄, kn̄′) + Im+1(kn̄, kn̄′)
]

(F.5)

where ATE
m (kn̄) is defined by Eq. (4.22) and

γm(kn̄) =











√

m(n2
r − 1) for kn̄ = 0 ,

1 otherwise
(F.6)

Ij(kn̄, kn̄′) =

∫

R

Jj(nkn̄ρ
′)Jj(nkn̄′ρ′)ρ′dρ′ (F.7)

yielding for identical basis states (n̄ = n̄′)

Im(kn̄, kn̄′) =
R2

2

[

[Jm(nrkn̄R)]
2 − Jm−1(nrkn̄R)Jm+1(nrkn̄R)

]

(F.8)

and for different basis states (n̄ 6= n̄′)

Rnr

k2n̄ − k2n̄′

kn̄′Jm(kn̄nrR)Jm−1(kn̄′nrR)−
Rnr

k2n̄ − k2n̄′

kn̄Jm(kn̄′nrR)Jm−1(kn̄nrR)

= Im(kn̄, kn̄′) (F.9)
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When kn̄ = 0 we can use the asymptotic form of the Bessel function,

Jm(z) =
(z/2)m

m!
(F.10)

from which we see if kn̄ → 0 then kn̄ cancels out everywhere in Vnm.

F.3 Half-cylinder perturbation for TM modes

The most efficient way of calculating the TM matrix elements of the pertur-

bation Eq. (4.39) is to calculate the angular parts of the integrals analytically and the

radial parts numerically. The matrix elements have the form

Vn̄n̄ = ∆ǫPmm′Qmm′

kn̄kn̄′
, (F.11)

in which the angular overlap integrals Pmm′ are vanishing when taken between modes

of different parity, i.e. between sine and cosine modes, and between same parity modes

corresponding to azimuthal numbers m and m′ of different parity. The non-vanishing

integrals are given by

Pmm′ =

∫ π/2

−π/2

χm(ϕ)χm′(ϕ)dϕ−
∫ 3π/2

π/2

χm(ϕ)χm′(ϕ)dϕ

= smsm′(ψm−m′ ± ψm+m′) (F.12)

with + (−) corresponding to cosine (sine) modes and sm and ψm defined as

sm =











π−1/2 for m 6= 0 ,

(2π)−1/2 for m = 0 ,

ψm =
[

1− (−1)m
] sin(mπ/2)

m
.
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The radial part of the matrix elements of the perturbation is given by the integrals

Qmm′

kk′ =

∫ R

0

Rm(ρ, k)Rm′(ρ, k′)ρdρ (F.13)

=
2

R2(n2
r − 1)

∫ R

0
Jm(nrkρ)Jm′(nrk

′ρ)ρdρ

Jm(nrkR)Jm′(nrk′R)

which we calculate numerically.

F.4 Thin-film perturbation of TM modes

The TM matrix elements of the perturbation Eq. (4.40) are given by the inte-

grals

Vn̄n̄′ = h∆ǫχ2
m(0)

∫ R

0

Rm(ρ, kn̄)Rm′(ρ, kn̄′)dρ , (F.14)

similar to Eq. (F.13), which are calculated numerically.

F.5 Thin-wire perturbation of TM modes

The RSE perturbation TM matrix elements for this system are calculated by

summing I same-strength delta scatterers on a square grid covering a circle. The

perturbation Eq. (4.41) is thus modeled by

∆ε ≈ ∆ǫ
πb2

I

I
∑

i=1

1

ρ
δ(ρ− ρi)δ(ϕ− ϕi) . (F.15)

The matrix elements then have the form

Vn̄n̄′ = ∆ǫ
πb2

I

I
∑

i=1

En̄(ρi, ϕi)En̄′(ρi, ϕi) (F.16)

with En̄(ρ, ϕ) given by Eq. (4.28).
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Appendix G

Matrix Elements used in the 3D

RSE

In this section we give the matrix elements required to reproduce the numerical results

of Chapter 5.

G.1 Homogeneous sphere perturbation

The homogeneous perturbation Eq. (5.17) does not mix different m or l values,

nor does it mix TE modes with TM or L modes. Using the definition Eq. (2.36) we

calculate the matrix elements between TE RSs performing the angular integration

which leads to the lm-orthogonality:

V TE
nn′ =∆ǫ l(l + 1)δll′δmm′(ATE

l )2
∫ R

0

Rl(r, kn)Rl(r, kn′)r2dr.

The radial integration can also be done analytically, so that the matrix elements take

the form

V TE
nn =

∆ǫ

n2
r − 1

[

1− jl−1(x)jl−1(x)

j2l (x)

]

(G.1)

for identical basis states n = n′ and

V TE
nn′ =

∆ǫ

n2
r − 1

2δll′δmm′

x2 − y2

[

yjl−1(y)

jl(y)
− xjl−1(x)

jl(x)

]

(G.2)
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for different basis states n 6= n′, where x = nrknR and y = nrkn′R .

Similarly, for TM RSs have

V TM
nn′ =

∆ǫ l(l + 1)

n4
rknkn′

δll′δmm′ATM
l (kn)A

TM
l (kn′)

×
∫ R

0

{

l(l + 1)Rl(r, kn)Rl(r, kn′)

+
∂[rRl(r, kn)]

∂r

∂[rRl(r, kn′)]

∂r

}

dr ,

and performing analytic integration obtain

V TM
nn =

∆ǫ

n2
r − 1

1

Fl(x)

[

2
l + 1

x2
+
j2l+1(x)

j2l (x)
− jl+2(x)

jl(x)

]

(G.3)

for identical basis states n = n′ and

V TM
nn′ =

∆ǫ

n2
r − 1

1
√

Fl(x)Fl(y)

2δll′δmm′

x2 − y2
(G.4)

×
[

(x2 − y2)
l + 1

xy
+
yjl+1(x)

jl(x)
− xjl+1(y)

jl(y)

]

for different basis states n 6= n′, where

Fl(x) =

[

jl−1(x)

jl(x)
− l

x

]2

+
n2
rl(l + 1)

x2
, (G.5)

x = nrknR , and y = nrkn′R .

Note that L and TM modes are mixed by the perturbation, and non-vanishing

matrix elements between them are calculated using Eqs. (G.3) and (G.4), treating the

L modes as TM modes with kn = 0 and the normalization constants multiplied by
√

l(n2
r − 1), in accordance with Eq. (5.16).

G.2 Arbitrary perturbations

An arbitrary perturbation of the sphere can be treated as a superposition of

homogeneous perturbations in the form of spherical-shell pieces, each piece described
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by

∆ε(r) =















































∆ǫ for

R1 6 r 6 R2

θ1 6 θ 6 θ2

ϕ1 6 ϕ 6 ϕ2

0 otherwise.

(G.6)

The hemisphere perturbations like Eq. (5.18) are then described by Eq. (G.6) with

06r6R, 06θ6π/2 (π/26θ6π), and 06ϕ62π . The quarter sphere perturbation

Eq. (5.19) is given by Eq. (G.6) with 06r6R, 06θ6π/2, and π/26ϕ63π/2 .

Factorizing the radial and angular integrals, the matrix elements of the per-

turbations Eq. (G.6) become

V TE
nn′ = ∆ǫATE

l ATE
l′ (G.7)

×T ll′

1;nn′

(

mm′S−m′

−m Qmm′

1;ll′ + Sm′

m Qmm′

2;ll′

)

between TE modes,

V TM
nn′ = ∆ǫ

ATM
l (kn)A

TM
l′ (kn′)

n4
rknkn′

[

l2(l + 1)2T ll′

2;nn′Sm′

m Qmm′

3;ll′

+T ll′

3;nn′

(

mm′S−m′

−m Qmm′

1;ll′ + Sm′

m Qmm′

2;ll′

)

]

(G.8)

between TM (including L) modes, and

V TE−TM
nn′ = ∆ǫATE

l

ATM
l′ (kn′)

n2
rkn′

(G.9)

×T ll′

4;nn′

(

mSm′

−mQ
mm′

4;ll′ −m′S−m′

m Qm′m
4;l′l

)

between TE and TM (including L) modes. The integrals contributing to Eqs. (G.7),
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(G.8), and (G.9) are given by

T ll′

1;nn′ =

∫ R2

R1

r2drj̄l(nrknr)j̄l′(nrkn′r)

T ll′

2;nn′ =

∫ R2

R1

drj̄l(nrknr)j̄l′(nrkn′r)

T ll′

3;nn′ =

∫ R2

R1

dr
d

dr

[

j̄l(nrknr)
] d

dr

[

j̄l′(nrkn′r)
]

T ll′

4;nn′ =

∫ R2

R1

rdrj̄l(nrknr)
d

dr

[

j̄l′(nrkn′r)
]

Sm′

m =

∫ ϕ2

ϕ1

dϕχm(ϕ)χm′(ϕ)

Qmm′

1;ll′ =

∫ θ2

θ1

dθ
P̄m
l (cos θ)P̄m′

l′ (cos θ)

sin θ

Qmm′

2;ll′ =

∫ θ2

θ1

sin θdθ
d

dθ

[

P̄m
l (cos θ)

] d

dθ

[

P̄m′

l′ (cos θ)
]

Qmm′

3;ll′ =

∫ θ2

θ1

sin θdθP̄m
l (cos θ)P̄m′

l′ (cos θ)

Qmm′

4;ll′ =

∫ θ2

θ1

dθP̄m
l (cos θ)

d

dθ

[
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l′ (cos θ)
]

, (G.10)

where

j̄l(kr) ≡
jl(kr)

jl(kR)
(G.11)

and

P̄m
l (x) ≡

√

2l + 1

2

(l − |m|)!
(l + |m|)!P

|m|
l (x) . (G.12)
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