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ABSTRACT

We describe the development of a bolometric receiver designed to measure the

arcminute-scale polarization of the cosmic microwave background (CMB). The

Polatron will be mounted at the Cassegrain focus of the 5.5 m telescope at the

Owens Valley Radio Observatory (OVRO). The receiver will measure both the

Q and U Stokes parameters over a 20% pass-band centered near 100 GHz, with

the input polarization signal modulated at ∼ 0.6 Hz by a rotating, birefringent,

quartz half-wave plate. In six months of observation we plan to observe ∼ 400

2.5 arcminute pixels in a ring about the North Celestial Pole to a precision of

∼ 6 µK/pixel in each of Q and U, adequate to unambiguously detect CMB

polarization at levels predicted by current models.

Subject headings: cosmic background radiation — cosmology: observations —

instrumentation: polarimeters — polarization

1. Introduction

The detailed structure of the angular power spectrum of the cosmic microwave back-

ground is currently being used to constrain a variety of cosmological parameters (see, e.g.,
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Lange et al. (2000)). Thomson scattering of local quadrupole distributions of this radia-

tion at the surface of last scattering should generate linearly polarized signal (Chandrasekar

1960). Consequently, the temperature anisotropies that are induced by density fluctuations

and gravity waves in the early universe should themselves induce measurable polarization of

the CMB (see, e.g., Jaffe, Kamionkowski, & Wang (2000)).

Measurement of the pattern and amplitude of the CMB polarization field should ulti-

mately allow tests of a number of cosmological theories. First, it will enable a check on the

consistency of the theoretical model that describes CMB ∆T fluctuations as arising from den-

sity fluctuations in the early universe; the cosmological models that predict the temperature

angular power spectra predict corresponding polarization angular power spectra. Second,

information gleaned from the polarization angular power spectrum will break degeneracies

between cosmological parameters that arise in interpreting ∆T fluctuations. For example,

it is difficult to use ∆T information alone to distinguish between dilution of signal at large

angular scales due to early reionization and an overall change in the normalization of the pri-

mordial power spectrum. However, early reionization should produce a recognizable signal

— more power at large angular scales — in polarization (see Keating et al. (1998)). Third,

a curl component to the CMB polarization vector pattern would indicate the presence of the

stochastic gravity-wave background predicted by inflation models (Kamionkowski, Kosowsky,

& Stebbins 1997a; Seljak & Zaldarriaga 1997; Kamionkowski, Kosowsky, & Stebbins 1997b).

Should they exist, primordial gravity waves would carry information from an inflationary

era never before open to investigation.

The current observational status of this developing field is analogous to that of temper-

ature anisotropy measurements some ten to fifteen years ago, with even the most sensitive

upper limits an order of magnitude above the theoretically expected signal. This situation

is set to change very soon with the ongoing deployment of a new generation of experiments

specifically designed to measure CMB polarization.

1.1. Polarization Angular Power Spectra

Because of its vector nature, the formalism through which we compare measurement

and theory is more complex for polarization than for intensity anisotropies. We begin with a

CMB photon traveling in the ẑ direction with wavelength λ and frequency ν, with an electric

field vector

−→
E (x, y, z, t) = Ex(t) sin

[

2π
(z

λ
− νt

)

+ φx(t)
]

x̂

+Ey(t) sin
[

2π
(z

λ
− νt

)

+ φy(t)
]

ŷ. (1)
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The degree to which φx(t) and φy(t) are correlated is the degree to which the light is polarized.

Time-averaging over the electric field oscillations, we can describe the polarization with the

Stokes parameters

I ≡ 〈E2
x〉+ 〈E2

y〉, (2)

Q ≡ 〈E2
x〉 − 〈E2

y〉, (3)

U ≡ 〈2ExEy cos(φx − φy)〉, (4)

V ≡ 〈2ExEy sin(φx − φy)〉, (5)

where I refers to the intensity, Q and U describe the linear polarization and depend on the

definition of the (x, y) coordinate system, and V describes the circular polarization of the

photon. Thomson scattering does not produce circular polarization. Hence, the CMB is not

expected to be circularly polarized, and we no longer consider V . The Stokes parameters

are converted from units of flux density to CMB brightness temperature through cross-

calibration with an astrophysical source of known temperature and emissivity.

Maps for which the CMB temperature T is known in each direction n̂ are routinely

analyzed via expansion of the map in terms of the spherical harmonics Ylm:

T (n̂)

Tcmb

= 1 +
∞
∑

l=1

l
∑

m=−l

aTlmYlm(n̂), (6)

where

aTlm =
1

Tcmb

∫

dn̂ T (n̂)Y ∗
lm(n̂), (7)

and Tcmb is the average temperature of the CMB. The auto-correlation function CT
l , defined

by

〈aT ∗
lm aTl′m′〉 = CT

l δll′δmm′ , (8)

is predicted by theory. The multipole moments aTlm are a realization of the underlying

statistical theory that are specific to our universe and our unique viewpoint within it.

Kamionkowski, Kosowsky, & Stebbins (1997a) have developed a formalism very similar

to that described above for the analysis of polarization maps. (A separate and equivalent

formalism has been developed by Zaldarriaga & Seljak (1997).) They define a symmetric,

trace-free tensor Pab(n̂) which describes the linear polarization observed in direction n̂ =

(θ, φ),

Pab(n̂) =
1

2

(

Q(n̂) −U(n̂) sin θ

−U(n̂) sin θ −Q(n̂) sin2 θ

)

. (9)
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By analogy to (6), Pab(n̂) is expanded as a sum of appropriate orthonormal basis functions

on the sphere,

Pab(n̂)

Tcmb
=

∞
∑

l=1

l
∑

m=−l

[

aGlmY
G
(lm)ab(n̂) + aClmY

C
(lm)ab(n̂)

]

, (10)

where

aGlm =
1

Tcmb

∫

dn̂ Pab(n̂)Y
Gab ∗
lm (n̂), (11)

aClm =
1

Tcmb

∫

dn̂ Pab(n̂)Y
C ab ∗
lm (n̂), (12)

and the basis functions Y G
(lm)ab and Y C

(lm)ab are covariant second derivatives on the sphere of

the usual spherical harmonics Ylm, chosen because they are a complete, orthonormal basis

set for symmetric, trace-free tensors. The expansion of the polarization tensor is broken into

two natural sets of basis functions, labeled G and C, since a symmetric, trace-free 2 × 2

tensor such as Pab can be written as a sum of two tensors, one with “electric” or “gradient”

parity (−1)l and one with “magnetic” or “curl” parity (−1)l+1.

The multipole moments aGlm, a
C
lm, and the temperature multipole moments aTlm should

completely describe a map of the CMB in both temperature and polarization. An expanded

set of power spectra is needed to fully characterize the temperature and polarization state

of the CMB:

〈aT ∗
lm aTl′m′〉 = CT

l δll′δmm′ , (13)

〈aT ∗
lm aGl′m′〉 = CTG

l δll′δmm′ , (14)

〈aG ∗
lm aGl′m′〉 = CG

l δll′δmm′ , (15)

〈aG ∗
lm aCl′m′〉 = CGC

l δll′δmm′ , (16)

〈aC ∗
lm aCl′m′〉 = CC

l δll′δmm′ , (17)

〈aC ∗
lm aTl′m′〉 = CCT

l δll′δmm′ . (18)

If the universe prefers no direction for CMB polarization, CGC
l and CCT

l are zero. The

remaining Cl’s encode fundamental cosmological parameters. Generation of temperature

anisotropies through scalar processes such as gravitational collapse will produce only G-type

polarization since there is no preferred handedness or curl direction for such processes. Tem-

perature anisotropies generated through tensor (and vector) processes such as the influence

of primordial gravity waves will produce both G- and C-type polarization (Kamionkowski,

Kosowsky, & Stebbins 1997a; Seljak & Zaldarriaga 1997).

The reader is directed to Kamionkowski, Kosowsky, & Stebbins (1997a) for an extension
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of this formalism which allows for the calculation of multipole moments and variances given

measured polarization two-point correlation functions.

1.2. Measurements to Date

Hedman et al. (2001) have placed the strongest limits on CG
l and CC

l with a ground-

based correlation polarimeter, PIQUE. To simplify the comparison of one experimental result

to another, polarization measurements are often expressed in terms of “flat band power”

temperatures, such that l(l+1)CX
l /2π = T 2

X where X refers to G- and C-type polarization.

In the multipole windows 〈lG〉 = 211+294
−146 and 〈lC〉 = 212+229

−135 they place 95% confidence limits

on the flat band power of the G- and C-type power spectra of 10 and 9 µK respectively, and

a limit on the G-type spectrum of 7 µK if CC
l is assumed to be zero. These results have been

divided by
√
2 to account for the difference between the G & C formalism for polarization

power spectra used here and the E & B formalism used by Hedman et al. (2001). This upper

limit, along with predicted angular power spectra for a chosen cosmological model, is plotted

in Figure 1.

The Saskatoon experiment (Netterfield et al. 1995) put a 95% confidence upper limit

of 16 µK on CMB polarization in the angular scale range corresponding to 50 ≤ l ≤ 100.

At smaller angular scales, 1′ ≤ θ ≤ 3′, Partridge, Nowakowski, & Martin (1988) put a 95%

confidence upper limit of 100 µK on polarization. (These data have not been reanalyzed to

provide meaningful band power limits for inclusion in Figure 1.)

Two satellite-borne observatories intended to measure temperature anisotropies, but

which also have sensitivity to polarization, are under construction. NASA’s Microwave

Anisotropy Probe (MAP, see map.fsgc.nasa.gov), to be launched in 2001, and ESA’s Planck

Surveyor (see astro.estec.esa.nl/SA-general/Projects/Planck), to be launched in 2007, will

create full-sky maps in polarization at many frequencies. The High Frequency Instrument

(HFI) on the Planck Surveyor should be sensitive enough to allow polarization angular power

spectroscopy.

In advance of these observatories, many projects are planned or already underway. Ex-

perimental techniques vary greatly, with significantly different detector systems (incoherent,

coherent correlation, and coherent Dicke-switched polarimeters), polarization analyzers (or-

thomode transducers, wire grids, polarization-sensitive bolometers, and wave plates), observ-

ing frequencies (between 15 and 400 GHz), telescopes (upward-looking horns, single on- and

off-axis dishes, and interferometers), beam sizes (from 7◦ to 2.5’), observing sites (balloon-

and satellite-borne as well as ground-based), and scan strategies (switched, scanned, and
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drift-scanned; observations of rings, patches, or the entire sky). For a review of some current

polarization experiments, see Staggs et al. (1999).

2. The Polatron: Experimental Overview

The Polatron is a bolometric polarimeter for the 5.5 m telescope at the Owens Valley

Radio Observatory (OVRO) designed to measure CMB polarization on angular scales where

the signal is expected to be highest, in a spectral band where galactic foregrounds are ex-

pected to be lowest. The radiometer shares many elements of design with the SuZIE and

Boomerang experiments (Holzapfel et al. 1997; de Bernardis et al. 1999) and ESA’s Planck

Surveyor. A single entrance feed is coupled to an orthomode transducer (OMT), which sep-

arates the two states of linear polarization. Each OMT output is spectrally filtered and then

terminated in a silicon-nitride micromesh bolometer. The bolometer signals are electroni-

cally differenced, producing a signal that is proportional to the difference in optical power

in the two arms of the OMT. A half-wave plate placed in front of the receiver continuously

rotates the incoming plane of polarization, allowing us to alternate between measurements of

Q and U from the sky at a modulation frequency we choose. A synopsis of the experimental

specifications can be found in Table 1. A schematic of the polarimeter can be found in Figure

2.

2.1. Optics Design

The design of the Polatron optics aims to minimize background loading and systematic

polarization effects while efficiently coupling the detectors to the sky with a beam matched

to angular scales of scientific interest. The OVRO 5.5 m telescope is ideally suited for such

observation. From 1992 to 1997, this telescope was dedicated to measurements of primary

and secondary CMB anisotropies as described in Herbig et al. (1995), Myers et al. (1997),

Leitch et al. (2000), and Mason, Myers, & Readhead (2001). As part of this program, the

telescope was modified to minimize the warm ground emission that couples into the receiver

by scattering from the secondary mirror support legs, resulting in a measured ground spillover

temperature of 9 K (Lawrence, Herbig, & Readhead 1994).

The telescope has never before been used at wavelengths < 1 cm. Although the surface

is sufficiently smooth on wavelength scales, large-scale dish deformities might distort and/or

dilute our beam. The dish consists of sixteen panels, each of which is deformable and

supported in nine places with bolts and calibrated brass shims. When the telescope was
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assembled at its original Table Mountain site, the surface was measured and set to 0.20 mm

rms accuracy. When the telescope was later disassembled and moved to the Owens Valley,

the shim thicknesses were recorded and reproduced, but upon reassembly no new surface

measurement was made. In February, 1999, we measured the shape of the dish with an

array of high-resolution capacitive sensors mounted on a rotating parabolic arm. On & 10

cm length scales, the measured surface rms accuracy was 0.24 ± 0.02 mm or ∼ λ/13 for

λ = 3 mm. Removal and addition of shims under the surface allowed us to reduce the rms

surface accuracy to 0.15± 0.02 mm or ∼ λ/20.

Upon reflection off a metal surface, unpolarized light becomes partially polarized in a

direction along the reflecting surface (Hecht & Zajac 1982). For the type of off-axis telescopes

favored for low-background CMB ∆T measurements, large polarization offsets arise which

may depend on pointing direction and dish temperature. In order to minimize the number

of reflections, particularly off-axis reflections, the Polatron receiver will be placed directly at

the Cassegrain focus of the telescope.

A single corrugated entrance feed illuminates the primary mirror with an edge taper

of –20 db, reducing expected emission from ground spillover to < 5 K. Together with the

f/3.2 optical design of the telescope, this requires use of a large entrance feed, 4.1 cm

in aperture diameter and 16.3 cm in length. In front of the entrance feed is a rotating,

ambient temperature, birefringent, crystalline quartz half-wave plate 7.6 cm in diameter

and 3.26 cm thick. The wave plate generates a π phase retardation between electric field

vectors with wavelength ∼ 3 mm incident on the fast and slow refraction axes of the quartz.

Consequently, the polarization pattern from the sky is rotated about the optic axis at four

times the physical rotation rate of the wave plate. This modulation technique is employed

routinely in millimeter-wave polarimetry as it allows both Stokes parameters Q and U to be

measured with a single horn (Glenn 1997; Murray et al. 1992).

2.1.1. Polarization Efficiency

The polarization efficiency of an optical element is the degree to which a 100% polarized

signal will remain polarized on passage through the element. Two effects are expected to

reduce the polarization efficiency of the wave plate. First, observations are made over a

broad spectral band, while the wave plate is fundamentally chromatic. Second, the optics of

the telescope are moderately fast, f/3.2. Different parts of our beam travel different path

lengths through the quartz, so a phase retardation other than π will result for those parts

of the beam. In order to mitigate this second effect, the wave plate is placed in the near

field of the feed horn, where the beam is most collimated. One can calculate the extent to
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which an input polarized signal from the sky will be depolarized by these two effects. In this

system such a calculation predicts approximately 97% polarization efficiency (see Appendix

A). This efficiency effect can be measured and corrected for with greater accuracy than

our anticipated overall calibration uncertainty, and should not be confused with sources of

systematic polarization discussed later.

2.2. Spectral Filtering

Bolometers are sensitive to radiation over a broad range of frequencies. We have chosen

a 20% FWHM spectral bandpass centered on 96 GHz. The 88 GHz low-frequency edge of our

band is set by a > 3λ length of waveguide at the exit aperture of the feed horn. It is difficult

to match the corrugated throat of the entrance feed to such a small diameter, so the exit

aperture of the feed is reduced to the choke diameter in quarter-wavelength steps. The 106

GHz high-frequency edge of our band is set by a metal-mesh resonant grid filter (Lee, Ade,

& Haynes 1996). The filters are more efficient in free space than in waveguide, so we couple

the outputs of the OMT to the grid filters via rectangular-to-circular waveguide transitions

and f/4 conical feedhorns. A second f/4 conical feedhorn for each channel reconcentrates

the radiation into integrating cavities containing the bolometers. High density polyethylene

(HDPE) lenses at the large aperture of each f/4 feed collimate the radiation for passage

through the filter at high incidence angle and also ensure that the two feeds couple efficiently

(Church et al. 1996). The gap between the two f/4 feeds also allows us to cool the majority

of the focal plane to 4 K while the bolometer back-end is cooled to 0.25 K; a similar thermal

gap in waveguide would present optical alignment difficulties.

The band-defining metal-mesh filters typically have a leak at twice their edge cut-off

frequency, so an additional metal-mesh filter with an edge at 160 GHz is included. A further

low-pass alkali-halide filter coated with black polypropylene blocks radiation above 1650

GHz. Both of these filters are cooled to 4.2 K. Large diameter low-pass metal-mesh filters

with edges at 240 and 300 GHz are placed in front of the feedhorn, at 77 K and 4.2 K, in

order to limit the thermal load from the entrance window on the band-defining filters and

the cryogenic stages. The entrance window itself is a piece of HDPE with thickness tuned

to prevent reflective loss.

None of the spectral filters is expected to produce systematic polarization of incoming

signals. However, the polarization properties of the band-defining filters are immaterial, since

the two polarization components of the incoming radiation have already been separated by

the OMT. Systematic polarization induced by the two blocking filters and window in front of

the feed horn will remain fixed with respect to the instrument while the polarization pattern
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from the sky rotates with the wave plate. As discussed later, this effect is removed upon

demodulation of our signal at four times the wave plate rotation frequency.

2.3. Detectors

The Polatron uses silicon-nitride micromesh (“spider-web”) bolometers placed in an AC-

bridge (Wilbanks et al. 1990). They are sine-wave biased at 200 Hz. The relative bias levels

can be adjusted to trim out gain mismatch between the two channels. The output signals

are buffered by a matched, 120 K, low-noise JFET pair, then differenced and demodulated

in ambient temperature, low-noise amplifier electronics, producing a signal proportional to

the difference in optical power in the two polarizations:

VDIFF = S × ηoptηpol [Q cos(2π × 4fwp t)

+ U sin(2π × 4fwp t)] + Vnoise. (19)

Here, S is the detector responsivity, ηopt is the band-averaged optical (photon) efficiency of

the instrument, ηpol is the polarization efficiency, Q and U are fixed to the sky and convolved

with our beam, fwp is the physical rotation rate of the wave plate, and Vnoise is the sum

of detector noise and noise from the JFET amplifier. An additional two bolometers with

the same thermal and electrical properties and amplifier chain, but which are not exposed

to light, are included in the system. These “dark” bolometers are a useful diagnostic for a

number of systematic effects that could impair our measurement.

The 0.3 K operating temperature of the bolometers is provided by a triple-stage 4He/3He/3He

sorption refrigerator (Bhatia et al. 2001). The 4He stage condensation point temperature is

set by a 4.2 K cryocooler purchased from APD Cryogenics. A study carried out by Bhatia

et al. (1999) of the susceptibility of bolometer systems to cryocooler microphonics suggests

that cryocoolers are a feasible alternative to liquid He dewars for remote observations.

2.4. Data Acquisition

Signal sampling is triggered by an opto-interrupter which is switched by a 64-tooth

wheel physically attached to the wave plate. As a result, the sampled data is stored in a

coordinate system fixed to the wave plate position, rather than as a timestream, simplifying

data analysis. For a physical waveplate rotation rate fwp ∼ 0.15 Hz, this allows us to sample

the bolometers at ∼ 20 Hz, well above the signal frequency of 4fwp = 0.6 Hz and a factor of

several above a detector bandwidth-defining low-pass filter at 6 Hz. The signal frequency 0.6
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Hz also lies well above the 10 mHz 1/f knee of the readout electronics. The dark bolometers

and two thermistors used to monitor the temperature of the bolometer stage are also sampled

at ∼ 20 Hz. Basic cryogenic and other housekeeping data are sampled at a lower date rate.

The data is stored locally on a ruggedized portable computer located on the telescope, then

transferred via FTP to our data analysis computer nightly.

The experiment is designed to run autonomously for weeks at a time. It is controlled by

UNIX-based scheduling software installed on a PC in a shed near the telescope. Commands

are sent by the scheduler to either the telescope control computer (a VAX system) or to

the portable computer. The portable computer runs Windows and LabVIEW. Upon receipt

of commands from the scheduler, the LabVIEW software carries out such tasks as cycling

the 3He refrigerator for the bolometer stage, taking and storing data, and starting and

stopping the wave plate rotation. The LabVIEW software also returns some data to the

scheduler, so that the scheduler can automatically carry out tasks such as pointing, skydips,

and calibration.

2.5. Anticipated Sensitivity

Four main sources of noise limit the ultimate sensitivity of the Polatron: background

photon noise; detector noise; amplifier noise; and fluctuations in atmospheric emission. We

will estimate the contributions from each of these below; the quantitative results are summa-

rized in Table 2. It is conventional to express the noise in terms of Noise Equivalent Power

(NEP), measured in units of W Hz−1/2.

Photon noise arises from quantum fluctuations in emission from the atmosphere and

receiver environment. The photon noise equivalent power is proportional to the square root

of the number of photons observed, which is in turn proportional to the optical power incident

on the detectors. The optical power is dominated by in- and out-of-band emission from the

118 GHz O2 line, which remains fairly constant over changing weather conditions. The most

variable component is 60 GHz H2O line emission, which is quantified by the precipitable

water vapor column density (ppwv). Between September and May, ppwv for the OVRO site

typically ranges between 3 and 8 mm (see www.ovro.caltech.edu for a snapshot of the current

and 30-day weather conditions).

In the direction of the North Celestial Pole, we estimate a background loading temper-

ature of 60 K for our spectral bandpass. The optical loading on each bolometer is

Popt =

∫ ∞

0

dν
η(ν)

2
(AΩ)Bν(Tload), (20)
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where the factor of 1/2 accounts for the split in polarization, η(ν) is the spectral efficiency,

AΩ = λ2 is the fixed throughput of the single mode feed horn, and Bν is a thermal spectrum.

In the limit of low effective photon occupation number (ηopt < ehν/kTload − 1), the photon

NEP is

NEPphoton ≈
√

Popthν0, (21)

where hν0 is the average photon energy (Richards 1994). This is per detector, so the total

noise will be increased by
√
2 upon differencing the two uncorrelated detectors.

The second component of noise is fundamental thermal fluctuations in the detectors. A

bolometer consists of an absorber, in this case an open mesh of silicon-nitride in a spider-

web shape, coated with a layer of gold; and a thermistor, which is typically a semiconductor

chip with temperature-dependent resistance. The absorber and thermistor are suspended

at temperature T from a thermal bath T0 by some thermal conductivity G. Detector noise

arises as phonon shot noise in the thermal link between the thermistor and the bath or due

to Johnson noise in the thermistor (Richards 1994). For our operating configuration, the

phonon noise dominates:

NEPdetector ≈
√

4kBT 2G, (22)

where kB is the Boltzman constant. As above, this noise will increase by
√
2 upon differenc-

ing.

The third component of noise is amplifier noise in the cold matched JFETs. The mea-

sured differential noise performance of ∼ 4 nV Hz−1/2 is converted to estimated NEP by

dividing by an estimate of the bolometer responsivity under the observing conditions ex-

pected at the telescope.

The final component of noise is 1/f fluctuations of atmospheric water vapor content.

Differencing the two detector signals rejects common-mode fluctuations. This technique is

identical to that used in the Sunyaev-Zel’dovich Infrared Experiment (SuZIE), except that

SuZIE differences the power in two spatial pixels, whereas the Polatron differences the power

in two senses of linear polarization within the same spatial pixel. Since the atmosphere is

not significantly polarized (Keating et al. 1998), atmospheric 1/f noise is limited only by

the common mode rejection ratio (CMRR) of the receiver. Ground-based measurements of

CMB polarization would not be feasible without cancellation of atmospheric fluctuations in

this manner.

The amount of residual atmospheric emission fluctuations can be estimated using the

methods of Church (1995). Since SuZIE and the Polatron have similar beam sizes, the

atmospheric fluctuations observed by SuZIE at 217 GHz from Mauna Kea are scaled to

obtain an estimate of atmospheric fluctuations that will be seen by the Polatron at 100 GHz
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from OVRO. This scaling relies on the following assumptions: that residual atmospheric

noise is dominated by gain mismatches and not beam mismatches; that Zeeman splitting of

O2 lines by the Earth’s magnetic field is negligible; that the gains of the two polarization

channels can be matched on a regular basis to 1%; that fluctuations are due to variations

in water vapor content; and that the OVRO atmospheric fluctuations can be estimated by

frequency scaling Mauna Kea fluctuations as measured by SuZIE. We calculate

NEPatmos =
NEPS

CMRR
× R1R2 ×

(

AΩP

AΩS

)(

νP
νS

)2

×
(

(∆ν/ν)P
(∆ν/ν)S

)(

ηP/2

ηS

)

. (23)

Here, the subscript P refers to the Polatron and S refers to SuZIE. The quantity NEPS is

the atmospheric NEP = 1.0 ×10−15 W Hz−1/2 measured by SuZIE at Mauna Kea in a single

channel at the Polatron observing frequency 4fwp = 0.6 Hz. R1 encodes the difference in

atmospheric opacities at the two sites:

R1 = e−
τS−τP
sin(θ) , (24)

where the zenith opacity τS = 0.07 at Mauna Kea during the SuZIE measurement, τP ∼ 0.5

at OVRO, and the assumed observation angle is (π
2
− θ) ∼ 30◦. R2 = 0.18 is a scaling factor

which takes into account the difference in the contribution to the total atmospheric opacity

due to water vapor at νP = 98 GHz and νS = 217 Ghz (see Danese & Partridge (1989)). A

factor of 1/2 is included to convert the SuZIE data to a single polarization.

The total noise performance of the system is predicted by adding the NEP from each

source in quadrature:

NEP 2
total = NEP 2

photon +NEP 2
detector +NEP 2

amplifier

+NEP 2
atmos. (25)

The NEP is converted to Noise Equivalent CMB Temperature NETcmb, measured in

µKs1/2, as follows. First, we calculate the Noise Equivalent Flux Density (NEFD), measured

in Jy s1/2, which is the flux sensitivity of the receiver in a single second of integration time.

As in (17) above,

NEPtotal ≈ ∆ν
η

2
A×NEFD ×

√
2. (26)

The factor of 1/2 indicates that we are calculating the sensitivity to a polarized signal, A is

the illuminated area of the telescope primary, η ≡ η(ν) is the band-averaged optical efficiency
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of the receiver, ∆ν is the spectral bandwidth, and the final factor of
√
2 accounts for the

conversion from Hz−1/2 to s1/2. The actual CMB flux per beam, Fcmb, measured in Jy, is

Fcmb ≈
2hν3

0

c2
1

ex − 1
× Ω, (27)

where Ω is the beam solid angle and x = hν0/kTcmb. Converting from intensity to CMB

temperature, the NETcmb is then

NETcmb

Tcmb
=

ex − 1

xex
× NEFD

Fcmb
. (28)

Calculated NEFD and NETcmb for different atmospheric conditions are included in Table 2.

2.6. Calibration

Calibration of the absolute responsivity of the instrument is accomplished through

single-polarization observation of largely unpolarized sources, such as planets. Each single-

channel signal will be dominated by the atmospheric fluctuations described above. As before,

the level of such fluctuations observed with the SuZIE receiver can be scaled to predict noise

levels for the Polatron, albeit with no common-mode rejection and no advantage due to the

polarization modulation at 4fwp. A typical drift scan over a calibrator occurs over a time

period of ∼ 30 seconds. We expect a single-channel NEFD on those time scales of ∼ 140 Jy

s1/2. The anticipated flux from a typical calibrator (Mars, for instance) is on the order of

several hundred Jy, so several drifts over the same source may be required in poor weather.

Hence, calibration uncertainty will be dominated, as it is in the SuZIE experiment, by the

uncertainty in the brightness of the calibrators themselves. We expect to flux calibrate to

the 5-10% accuracy typically achieved for CMB observations.

2.7. Systematic Polarization

Until recently, millimeter-wave polarimetry has consisted mainly of the study of mag-

netic fields through the measurement of the polarization patterns of molecular clouds and

compact dusty sources. The quantity of scientific interest for these studies has been the

degree of polarization (or, simply, polarization) of a source, a vector-like quantity which has

an alignment direction θsource, modulo rotation by 180◦, and positive fractional magnitude

0 < psource < 1 for every observed position (θ, φ) on the sky. This quantity is often denoted

psource(θ, φ); maps of this pseudo-vector field are often overlaid on emission intensity contours
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so that the relationship between the magnetic field and the emissive structure of the source

is demonstrated.

Typical dust sources are polarized at the 1− 10% level, so a clean measurement of such

should be accurate to < 1%. A useful quantity to define is the fractional systematic polariza-

tion, psys, of a system, which is the percentage polarization measured when an intrinsically

unpolarized source is observed. By definition this quantity does not vary with source bright-

ness. It is usually caused by, and fixed with respect to, the telescope and receiver. It can be

measured through observation of a known unpolarized source over a period of time such that

the parallactic angle of the source rotates with respect to the telescope. The polarization as

a function of time measured in the telescope’s coordinate frame should describe a circle with

radius psource and center offset by psys from the origin. Once psys is measured in this way it

can be simply subtracted pixel by pixel from maps of observed polarization pobs(θ, φ):

psource(θ, φ) = pobs(θ, φ)− psys. (29)

In the low signal-to-noise regime, polarization percentage can be a difficult quantity to

analyze, since it is not Gaussian-distributed about a mean of zero. To remedy this, reduced

(fractional) Stokes parameters q = Q/I and u = U/I are introduced, with Q and U the

measured Stokes parameters and I the measured source intensity. The quantities q and u

can be positive or negative. The systematic polarization adds in the same way as before:

qsource(θ, φ) = qobs(θ, φ)− qsys, (30)

usource(θ, φ) = uobs(θ, φ)− usys. (31)

The polarization pattern can still be recovered since psource =
√

q2source + u2
source and θsource =

1
2
tan−1(U/Q).

For measurements of bright, polarized sources such as dust and molecular clouds, this

characterization of systematic errors relating to polarization is adequate. CMB polarization

measurements, however, are different. The non-normalized Stokes parameters Q and U are

of interest, rather than the fractional polarization p or the reduced parameters q and u. The

underlying intensity distribution is bright, with temperature 2.728 K, and extremely uniform,

but varying across the sky with some likely unknown amplitude ∆T/T ∼ 10−5. Hence, given

a measurement of systematic polarization qsys from observation of a polarized source, the

resultant systematic Qsys(θ, φ) = qsysT (θ, φ) cannot be simply calculated and subtracted

from the data, since T (θ, φ) is, as yet, unknown. Since we are looking for fluctuations

∆Q/T ∼ 10−6, we require qsys and usys . 0.01 to ensure that we are not systematically

polarizing ∆T fluctuations. An observing strategy which measures the polarization of a

single pixel at different parallactic angles allows this systematic polarization to be subtracted

to < 1% even if the underlying intensity distribution is unknown.
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Signal pick-up in the far sidelobes of the main beam can affect faint-background mea-

surements if the source in the sidelobes is bright enough. The sun, the moon, the galaxy, and

the horizon are examples of such sources. In addition, for polarization measurements, the

two components of linear polarization will have different beam shapes, since the polarization

analyzer (in our case the OMT) defines a set of coordinates with respect to the receiver,

telescope, and telescope surroundings. The differential pick-up from the source in the two

beams should not be greater than the expected CMB polarization signal. The observation

strategy, then, is subject to a certain set of restrictions on the angle between the observed

region of sky and these various sources. Observation near the North Celestial Pole mitigates

all of these effects.

2.7.1. Systematic Polarized Flux

In contrast to the systematic polarization described above, which amounts to a percent-

age polarization acquired by an observed unpolarized source, the Polatron will observe a

variety of systematic polarized fluxes which are independent of the brightness of an observed

source. For instance, thermal radiation from the surrounding environment will scatter from

the telescope feed legs into our system, picking up some polarization during the scattering.

This type and most types of polarized flux will vary slowly, and will be removed from the

data as a DC-level while drift-scanning. While actively scanning the telescope, spurious sig-

nals can be removed by referencing them to the telescope’s surrounding environment, while

astrophysical sources will rotate about the North Celestial Pole.

The wave plate itself is a source of systematic polarized flux. As a consequence of

the method used to produce birefringence, the two crystal axes of the wave plate incur

differing loss tangents. Unpolarized sky radiation incident on the plate will be converted to

a systematic flux. This signal, however, will be modulated at 2fwp and will not contribute

to the signal after lock-in at 4fwp.

2.7.2. Receiver Polarization

Gain mismatches between the two bolometer channels generate a fractional systematic

polarization such that an unpolarized source of intensity I(t) incident on the receiver will

produce a signal Q′
rec(t) = q′recI(t) which is not modulated by the wave plate at frequency

4fwp. The magnitude of the receiver polarization is inversely related to the common mode

rejection ratio of the instrument: |q′rec(t)| = 1/CMRR. If the input intensity I(t) varies
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on time scales t ∼ 1/4fwp, then the demodulated signal at 4fwp will include components

of I(t). An example of this effect was treated earlier (§2.5) for the case of unpolarized sky

fluctuations. As was shown, the receiver polarization can be reduced to beneath 1% by

adjustment of the relative gains of the two channels.

Another source of common-mode signal is variation in the temperature of the bolometer

stage. Variations at frequency 4fwp will be recorded as signal. Because the gain differs

for optical signals incident on the receiver as opposed to thermal signals at the bolometers

themselves, a specific relative gain adjustment which trims out common-mode optical signals

is not likely to also trim out common-mode temperature fluctuations. For this reason the

bolometer stage will be temperature controlled to ∼ 100 nK Hz−1/2 stability using methods

described in Holzapfel et al. (1997).

2.8. Astrophysical Foregrounds

The Polatron spectral band is close to the minimum of contamination estimated to arise

from observing through our own galaxy. Polarized foreground processes include synchrotron

emission, free-free emission, thermal dust emission, and, perhaps, emission from spinning

dust grains.

Galactic synchrotron emission is likely to be highly polarized. Bouchet et al. (1999)

point out that spectral index and polarization information obtained from long-wavelength

observations of galactic synchrotron might not extend to millimeter wavelengths. Neverthe-

less, by making the assumptions that the emission is 44% polarized and has the same spatial

distribution as the unpolarized emission at long wavelengths, they predict at 100 GHz the

following angular power spectra between galactic latitudes 30◦ and 75◦:

Csynch
G = 0.9 l−3 µK2 (32)

Csynch
C = 0.9 l−3 µK2 (33)

Observations of galactic dust regions at 100 µm indicate that where dust emission is

bright, the level of polarization is of order 2% (Hildebrand & Dragovan 1995) apart from a

few small regions in which the polarization rises to 10%. However, the degree of polarization

of high latitude cirrus emission is unknown. A model for high-latitude galactic dust polarized

emission has been created by Prunet, Sethi, & Bouchet (2000). This model assumes that

cirrus is traced by observed H I emission and that the dust grains are similar in shape to

those observed by Hildebrand & Dragovan (1995). A 17.5 K Planck spectrum with emissivity

proportional to ν2 is assumed. The dust grains are expected to align with the galactic
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magnetic field; an unfavorable orientation for the magnetic field is used. The assumed

intrinsic dust polarized emissivity of ∼ 30% is reduced due to projection effects. At 100 GHz,

the angular power spectra predicted by Bouchet et al. (1999) between galactic latitudes 30◦

and 75◦ are

Cdust
G = 8.9× 10−4 l−1.3 µK2 (34)

Cdust
C = 10.0× 10−4 l−1.4 µK2 (35)

Free-free emission in H II regions, like the CMB, can pick up some small polarization

through Thomson scattering. This is likely to generate a level of polarization much lower

than that of synchrotron radiation. Likewise, the spinning dust grains proposed by Draine

& Lazarian (1998) should not be polarized at or near the level of synchrotron emission.

Neither of these is likely to contaminate our measurements. The galactic synchrotron and

dust polarized emission at 100 GHz is more than an order of magnitude below the CMB

signal over the l-range to which the Polatron is sensitive (see Figure 3).

2.9. Observing Strategy

The choice of observing strategy for the Polatron is dictated by numerous practical

observing constraints, such as limited observing time and telescope design. For a CMB

polarimeter, the observing strategy should provide the capability to detect both Stokes pa-

rameters Q and U . All three polarization power spectra, CGG
ℓ , CCC

ℓ and CGT
ℓ , depend on

the polarization tensor Pab (see (9)), which is a function of both Q and U . Without mea-

surement of both Q and U it is therefore impossible to obtain model-independent detections

of the power spectra needed to statistically characterize the CMB, and ultimately, to draw

conclusions on the underlying cosmological parameters of interest. The Polatron will si-

multaneously measure both Q and U , and is therefore able to detect all three polarization

power spectra in a model-independent fashion. In this section, we reduce the available phase-

space of experimental observing strategies to a tractable number of parameters which can

subsequently be systematically investigated.

2.9.1. Observing Parameters

The Polatron will measure the polarization of the CMB in two operational modes.

Initially, we will observe in the ‘initial detection’ mode, in which the goal of the experiment

is to unambiguously detect the polarization signal. Following detection we will enter the
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‘ℓ-space spectroscopy’ mode, in which the goal is to measure the angular power spectra CG
ℓ

and CC
ℓ . In this section we primarily concentrate on the former observing mode, but will

address concerns relevant to the latter as well.

The 5.5 m telescope mount at OVRO is a conventional altitude-azimuth platform most

recently used in a study of the Sunyaev-Zeldovich effect in galaxy clusters (Mason, Myers,

& Readhead 2001). The size of the telescope prevents the implementation of ground screens

typically used to minimize the effect of ground spillover. Our first level of sidelobe contam-

ination mitigation is provided by an edge taper of -20 dB. In addition, we will restrict the

telescope’s elevation to a single zenith angle and minimize the azimuthal scan amplitude of

the telescope. These constraints motivate us to scan rings about the North Celestial Pole

(NCP), which also gives us the ability to observe in an anti-solar direction during daylight

observations. In the following subsection we consider the optimization of the ring opening

angle.

2.9.2. Using CMB Anisotropy as a Prior

At present, there exist no detections of the polarization of the CMB. However, our

pursuit of an initial detection can be guided by the numerous robust detections of CMB

anisotropy that appear in the literature (see, for example, Lange et al. (2000)). The strong

correlation between CMB temperature anisotropy and polarization (Zaldarriaga & Seljak

1997; Hu & White 1997) provides one method for optimizing a CMB polarimeter’s ob-

servation strategy. In addition, given a high signal-to-noise temperature anisotropy map,

temperature-polarization cross-correlation may be easier to detect than the polarization

auto-correlation (Crittenden, Coulson, & Turok 1995).

Given a well sampled temperature map one can determine regions where the temperature-

polarization cross-correlation is expected to be large. These regions are not at the location

of hotspots and coldspots in the anisotropy as the cross-correlation function vanishes at zero-

lag due to isotropy considerations. Rather, maximum correlation occurs in regions where

the photon-baryon fluid’s velocity at last-scattering is large, which roughly translates into

regions where the CMB anisotropy displays a large spatial gradient.

In addition to the cross-correlation approach, which is dependent on an underlying CMB

temperature anisotropy map to correlate with, the second use of temperature anisotropy

detections is statistical. As the generation of CMB polarization is a causal process which

is completely dependent on the CMB anisotropy, there is an intimate relationship between

the spectral behavior of polarization and anisotropy. By designing our observing strategy
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carefully, using the anisotropy power spectrum as a guide, we can maximize our chances for

a positive detection of CMB polarization.

2.9.3. CMB Polarization: Initial Detection Observing Mode

For the initial detection observing mode, we place control over systematic effects at

a premium. Therefore, we are led to consider observing strategies that produce the most

robust detection of the variance or amplitude of the polarization power spectrum. The cost

of this approach is that we lose details of the precise shape of the spectrum. This approach

is justified for an experiment, such as the Polatron, which seeks to make an initial detection

of CMB polarization.

In order to obtain the highest signal-to-noise ratio per pixel in a fixed amount of ob-

serving time, we should restrict our sky coverage to a small number of pixels. It is also

advantageous to fix the elevation angle of the telescope to eliminate differential ground

spillover from multiple elevation pointings. These factors motivate us to observe rings about

the NCP of radius θo. This could be accomplished in several different ways. The simplest

method is to fix the telescope in elevation and execute a drift scan in this position for the

duration of the observing campaign. Each pixel on the ring is observed only once per day and

is only referenced to pixels that are adjacent to it along the ring. This mode of observation

is thus susceptible to the effects of long time-scale correlations between pixels caused by low

frequency drifts in the instrument response, which would lead to time-variable offsets in the

final map reconstruction (Tegmark 1997).

A preferable observing mode is to fix the telescope in elevation, θo, and “nod” in azimuth

by an amount ∆φ across the North Celestial Pole at a frequency higher than the residual

1/f knee of the instrumental response after lock-in at the wave plate rotation frequency. The

Stokes parameters at (θo, φ) are differenced from those at (θo, φ+∆φ) which removes residual

correlated noise occurring at timescales longer than the “nod” timescale. A similar strategy

was chosen for the Ring 5m and Ring 40m campaigns (Leitch et al. 2000; Myers, Readhead,

& Lawrence 1993), and has the virtue that the telescope is never moved in elevation, which

reduces the modulated side lobe power entering the receiver.

To analyze this observing mode we use the small-angle, flat-sky limit, which is justified

for θo ≤ 10◦. We will follow Zaldarriaga (1998) and Delabrouille, Gorski, & Hivon (1998)

and work with Fourier transforms instead of spherical harmonic transforms. The data set is

a map of Qj and Uj , measured at N pixels along the ring, indexed by position angle along
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the ring φj = 2π j−1
N

. The maps of Qj and Uj are spectrally decomposed into Fourier modes,

Qk =
1

N

∑

j

Qje
−ikφj

= −
∑

ℓ≥|k|

√

(2ℓ+ 1)/4πBℓk[a
G
ℓkF1,ℓk(θo) + iaCℓkF2,ℓk(θo)]

+Nk
Q, (36)

and

Uk =
1

N

∑

j

Uje
−ikφj

= −
∑

ℓ≥|k|

√

(2ℓ+ 1)/4πBℓk[a
C
ℓkF1,ℓk(θo)− iaGℓkF2,ℓk(θo)]

+Nk
U , (37)

where Bℓk is the Fourier transform of the instrumental beam, Nk
Q, N

k
U are the contributions

to the experimental noise in the k-th mode of Q,U , such that 〈Nk
SN

k′

S′〉 = w−1δk,k′δS,S′, where

w−1 = σ2/N = NET 2/tobs, with σ being the pixel noise, NET being the noise equivalent

temperature (defined in section 2.5) measuring each Stokes parameter S, S ′ ∈ {Q,U}, and
tobs is the total observation time. The functions F1,ℓk, F2,ℓk account for the behavior of

the Stokes parameters under rotations on the celestial sphere and can be written in terms

of ordinary Legendre polynomials (Kamionkowski, Kosowsky, & Stebbins 1997a). These

functions, in combination with the Bℓk, determine the “window” in multipole space to which

each Fourier mode, k, is sensitive.

The correlation matrix of the mode expansion of the Stokes parameters is (Zaldarriaga

1998),

〈QkQk′〉 = δk,k′
∑

ℓ

(2ℓ+ 1)/4π(W1,ℓkCG,ℓ +W2,ℓkCC,ℓ)

+δk,k′w
−1, (38)

and similarly for

〈UkUk′〉 = δk,k′
∑

ℓ

(2ℓ+ 1)/4π(W2,ℓkCG,ℓ +W1,ℓkCC,ℓ)

+δk,k′w
−1, (39)

where the window functionsW1,ℓk = B2
ℓkF

2
1,ℓk andW2,ℓk = B2

ℓkF
2
2,ℓk determine the contribution

of the ℓ-th mode of the power spectra to a given ring k-mode.



– 21 –

Following Zaldarriaga (1998), we now obtain approximations for the window functions

in the small-scale (flat-sky) limit. The maps can be expanded in two dimensional Fourier

transforms as,

Q(θo, φ) = (2π)−2

∫

d2ℓeiℓθo cos(φ−φℓ)[G(~ℓ) cos 2(φ− φℓ)

−C(~ℓ) sin 2(φ− φℓ)], (40)

and

U(θo, φ) = (2π)−2

∫

d2ℓeiℓθo cos(φ−φℓ)[G(~ℓ) sin 2(φ− φℓ)

+C(~ℓ) cos 2(φ− φℓ)]. (41)

Here, G(~ℓ) and C(~ℓ) are the two dimensional Legendre transforms of the grad and curl

fields, respectively, and ~ℓ indexes the mode with polar representation |ℓ|eiφℓ. The statistical

properties of the grad and curl fields are defined by 〈G(~ℓ1)G(~ℓ2)〉 = (2π)2CG
ℓ δ(~ℓ1 − ~ℓ2),

〈C(~ℓ1)C(~ℓ2)〉 = (2π)2CC
ℓ δ(~ℓ1 − ~ℓ2), and 〈C(~ℓ1)C(~ℓ2)〉 = 0. Fourier transforming from (θo, φ)

space to k space and calculating the correlation matrix for the k modes yields,

〈QkQk′〉 = δk,k′

∫

ℓdℓ

2π
{CG

ℓ
1
4
[Jk+2(u) + Jk−2(u)]

2

+CC
ℓ [Jk+2(u)− Jk−2(u)]

2}, (42)

and similarly,

〈UkUk′〉 = δk,k′

∫

ℓdℓ

2π
1
4
{CC

ℓ [Jk+2(u)− Jk−2(u)]
2

+CG
ℓ [Jk+2(u) + Jk−2(u)]

2}. (43)

The window functions in the small-scale limit are therefore given by:

W1,lk =
1
4
B2

ℓk[Jk+2(u) + Jk−2(u)]
2, (44)

and

W2,lk =
1
4
B2

ℓk[Jk+2(u)− Jk−2(u)]
2. (45)

The noise per pixel is assumed to be independent of pixel and uncorrelated between Q

and U , which, in terms of the noise per mode (also uncorrelated between Q and U) leads to

〈N̄k∗
Q N̄k′

Q 〉 = w−1δk,k′,

where w−1 ≡ σ2/Npix, with σ being the pixel noise.
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Given a theoretical model (characterized by its temperature and polarization angular

power spectra) we calculate the sum of the signal-to-noise eigenmodes for both Q and U .

This is repeated for a range of observing strategies characterized by the opening angle of the

ring. We utilize CMBFAST (www.physics.nyu.edu/matiasz/CMBFAST/cmbfast.html) to

generate polarization power spectra from a cosmological model that is compatible with the

results of several recent temperature anisotropy measurements (Lange et al. 2000). The grad-

mode power spectrum is shown in Figure 1, and the cosmological parameters are indicated in

the caption of that figure. Though not a true constrained realization (which would utilize the

polarization temperature cross-correlations as well), this method provides a useful first-order

approximation to the true underlying polarization power spectrum. Jaffe, Kamionkowski,

& Wang (2000) have made a similar calculation for observations of square shaped regions

on the sky and find that the optimal sky coverage is rather model-independent for a fixed

Ωb. We expect that our choice of fiducial model will allow us to optimize the sky coverage

for the Polatron as well. Jaffe, Kamionkowski, & Wang (2000) also calculate the optimal

sky coverage as a function of beam size. The detectability (signal to noise ratio) of the

gradient mode signal is found to be strongly dependent on the beam-size, θfwhm, for 0.1
◦ <

θfwhm < 1.0◦. In this regime, smaller beams are found to produce the highest signal to

noise detections. For θfwhm < 0.1◦ the dependence on beam-size is much weaker, as nearly

all of the power in the gradient mode signal is at scales greater than 0.1◦, corresponding to

multipoles ℓ < 2000.

Figure 5 displays the results of the optimization for the ring observing strategy, assum-

ing three weeks of continuous observations. The dotted line displays the performance of a

hypothetical experiment with no 1/f noise; we see that the expected signal-to-noise ratio is

optimized when θ ≃ 0.1◦. This can be translated into a constraint on the number of beam

sized pixels in the map, Npix ∼ 10.

This result can be understood in the initial detection mode as a desire to reduce the

noise variance until a detection is made, which translates into deep integration on a small

number of pixels. Once a detection is made, the area of sky observed should be increased

to reduce the effects of sample (or “cosmic”) variance. This will be treated in the following

subsection.

We note here that two effects can alter the calculation of the optimal ring angle: fore-

grounds and 1/f noise. Little is known about the nature of polarized foregrounds. Heuristi-

cally, if polarized foregrounds follow a falling spectrum ∼ 1/ℓβ (e.g. Prunet, Sethi, & Bouchet

(2000), and §2.8), they will be correlated over large angles on the sky, with a characteristic

size Θfore. In order to subtract the foreground with high precision, we must accurately char-

acterize its correlation properties (or its power spectrum). To reduce the sample variance of
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the foreground measurement, we are driven towards observing a region that contains many

pixel pairs separated by a variety of scales. For a ring observing geometry, increasing the ring

diameter θ0 > Θfore increases the number of pixel pairs, which leads to a higher precision

characterization of the foreground.

A similar effect that also drives us to increase the ring opening angle over the formally

optimal value is the effect of 1/f or “pink” noise. In the presence of 1/f noise, the overall

signal-to-noise ratio decreases and the optimum ring angle increases significantly as shown

in the dashed curves of Figure 5 to > 1◦. Residual 1/f noise increases the noise of the lowest

spatial frequency modes in k space. The signal at a scale k is reduced by an effective k-space

window that falls as wk = k−1. This makes it advantageous to remove the lowest k modes

from the survey. This can be accomplished quite naturally by “nodding” the telescope in

azimuth between two points on the ring separated by 90◦ or 6h in Right Ascension. This

removes the k = 2, or quadrupole, component of the signal power spectrum. Translated

back into ℓ space, this strategy effectively acts as a high-pass filter on CG
ℓ and CC

ℓ . The

signal-to-noise curve for this differencing scheme is indicated by the solid line of Figure 5,

where it is shown that θ ≃ 1◦ yields the optimum signal-to-noise ratio. The nodding allows

the low frequency k-modes of the power spectra to survive at the cost of the quadrupole

component. Although the quadrupole is usually the dominant k-space multipole for a ring

experiment (Zaldarriaga 1998), for a realistic experiment, with 1/f noise, a comparison of the

solid and dashed curves of Figure 5 demonstrates that the quadrupole-differencing strategy

is clearly preferred. The nodding of the telescope, combined with the modulation of the

Stokes parameters via the rotation of the waveplate, makes our observing strategy similar

to a “double-switched” scheme, commonly used in temperature anisotropy measurements.

The effective window function for the combination of all modes (except k = 2) is shown

in Figure 1 along with the polarization power spectra for our fiducial model. The window

function for the combined modes displays the low-pass behavior noted above, and is rather

broad in ℓ-space, which is caused by the narrowness of the ring along the radial direction.

Since the map is only one pixel wide in radius, only one radial mode is present in the 2-

dimensional Fourier transform of the data. This violates the conventional rule of thumb that

suggests that the map dimensions should be comparable in radius and azimuth (Tegmark

1997). A ring observing strategy may also complicate the separation of gradient and curl

modes in the final power spectrum estimates (Tegmark & de Oliveira-Costa 2000). However,

the ring observing strategy is capable of providing an initial, unambiguous, statistical detec-

tion of the variance of the polarization. Since the ring strategy only provides information

regarding the amplitude of the angular power spectrum, after detection we will switch to an

observing strategy that can detect its shape. This could be realized by combining several

rings at different declinations to form a two-dimensional cap or annulus. The simplicity
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of implementation, redundancy of information, and minimization of systematic effects make

the ring strategy a conservative approach for an instrument that is seeking to make an initial

detection of CMB polarization.

The optimum ring opening angle also depends on the integration time of the observing

campaign for a fixed detector noise. Integrating on a small region of the sky for the duration

of the campaign will reduce the pixel-noise variance, but will increase the sample variance of

the observation since fewer pixels are observed. The optimum number of pixels to observe

thus depends on the signal-to-noise regime of the experiment. For short observations, it

is better to observe fewer pixels until a detection is made and then increase the number

of pixels measured to this same sensitivity. Figure 5 assumes a constant detector noise,

with the total observation time increasing between the three panels. The left panel shows

the optimal number of pixels for a short integration (3 weeks) where we find only ∼ 10

pixels should be observed. The middle panel shows an intermediate-length campaign (18

weeks) where a ∼ 2σ detection would occur for the quadrature-differenced data, even in the

presence of 1/f noise. The right-most panel shows a long integration (36 weeks) resulting in

a robust detection with a large number of pixels. This indicates that, as the noise variance

decreases, we should enlarge the area of sky observed in order to reduce the sample-variance

contribution. Ultimately, this leads us to cover a 2-dimensional patch of sky following an

initial detection.

For the initial-detection mode we choose a ring opening angle of θ = 1.8◦ motivated by

these considerations and the desire to observe fields which have also been observed by the

previous successful CMB anisotropy observing campaigns conducted at OVRO: OVRO NCP

(Readhead et al. 1989), Ring 40m (Myers, Readhead, & Lawrence 1993) and Ring 5m (Leitch

et al. 2000). The Ring 40m 20 GHz data were taken on a ring at declination δ = 88◦10′42′′

which corresponds to an opening angle of θ ≃ 1.82◦ with a resolution of 1.8′. The Ring 5m

data, taken with the same telescope as the Polatron at 30 GHz, with a resolution of ≃ 7′ on

the δ ≃ 88◦ ring will provide us with a powerful probe of intrinsic anisotropy, foregrounds,

and point source behavior for our fields.

2.9.4. CMB Polarization: Power Spectrum Detection Observing Mode

The ring observing strategy described above will provide a robust detection of the po-

larization variance, or equivalently, of the amplitude of the polarization power spectrum. In

order to detect the shape of the polarization power spectrum we are led to consider an observ-

ing strategy that allows for higher resolution in multipole-space. For the power-spectroscopy

mode we note that the precision to which a given band of multipoles (or band power Ĉℓ), of
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width L, can be measured is given by (Knox, L. 1995; Hobson, M.P. & Magueijo, J. 1996;

Tegmark 1997),

∆Ĉℓ ≃
√

2

(2ℓ+ 1)Lfsky

[

Cℓ +
fskyw

−1
P

B2
ℓ

]

,

where fsky = Npixθ
2
b/4π, and θb is the instrumental Gaussian beam’s dispersion, which is

related to its full width at half maximum by θfwhm =
√
8 ln 2θb. The optimum sky fraction

for an experiment seeking to detect band power Ĉℓ at ℓ is given by (Tegmark 1997),

f opt
sky ≃

NpixB
2
ℓCℓ

4πσ2
, (46)

where σ is the effective noise per pixel in the final map. We see that the optimum sky fraction

depends on the multipole. The band power that is measured with minimum total variance

(cosmic + noise) occurs at the multipole where the cosmic variance equals the noise variance.

For an experiment with fixed detector noise and observing time, the noise variance depends

only on the beam size. Since the cosmic variance is proportional to the power spectrum

itself, this optimization suggests that the signal-to-noise ratio per beam-sized pixel should

be approximately unity (Tegmark 1997). The multipole corresponding to the angular scale of

the beam-size is ℓ = 1/θb, which for the Polatron’s θfwhm = 2′ beam implies that maximum

sensitivity to the power spectrum is at ℓ ≃ 4000. Unfortunately, the polarization power

spectrum at ℓ = 4000 is negligibly small compared to the maximum power which occurs at

ℓ < 1000. This leads us to consider enlarging the beam-size, either by co-adding multiple

2′ pixels, or changing the receiver’s feed horn. This latter alternative has the additional

advantage of a more aggressive edge taper which further reduces side-lobe spillover from

the ground. The optimal beam size for power-spectrum detection is 6′ < θfwhm < 20′,

which is three to ten times larger than the beam size for the initial detection mode described

above. The implementation of a larger beam will be implemented after an initial polarization

detection is made.

3. Laboratory Characterization

The optical properties of the Polatron receiver have been characterized in the laboratory.

An Infrared Labs HDL-8 liquid He dewar outfitted with a Chase Laboratories 3He sorption

cooler provides a 0.300 K operating point for the bolometers. Measurements of the spectral

pass-band, optical efficiency, polarization efficiency, sensitivity, and detector properties for

the entire system, including the wave plate, are presented here.
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3.1. Spectral Bands

Spectral bands η(ν) were measured independently for the two polarization channels

using a Fourier Transform Spectrometer (Figure 6). The bands are identical within the 2

GHz spectral resolution of the FTS. The center frequency ν0 of the band when observing a

source of intensity Iν is

ν0 =

∫

dν ν η(ν)
∫

dν η(ν)
. (47)

The measured band centers and widths are ν0 = 98 ± 2 GHz and ∆ν = 17 ± 2 GHz full

width at half maximum (FWHM) for both channels.

We searched for spectral leaks at frequencies above our band with brass thick grill

filters. Thick grill filters (Timusk & Richards 1981) are metal plates with drilled holes that

act as waveguide chokes at wavelengths above 1.7 times the hole diameter. High-frequency

radiation passes through, though with reduced efficiency due to the effective area of the holes.

A chopped 300 K / 77 K blackbody load was placed in front of the receiver and the signal

was demodulated at the chop frequency. A thick grill filter with calculated low-frequency

cutoff at 156 GHz was used. A measured upper limit of 1.0% was placed on out-of-band

power compared to in-band power for each channel.

These measurements can be translated into an upper limit on the out-of-band contri-

bution from dust to the brightness temperature that would be measured by the radiometer.

Since the detailed spectrum of any leak would be unknown, a worst-case scenario is assumed.

We represent high-latitude dust emission by a Rayleigh-Jeans spectrum with anisotropy

temperature 70 µK (following Ruhl (1993)) and 10% polarization, an approximation which

overestimates the expected power at all frequencies. If the emission from the 77 K and 300

K loads is also assumed to be Rayleigh-Jeans at all frequencies, we can use the thick-grill

measurement to set an upper limit of T = 0.07 µK to the out-of-band contribution from

dust.

3.2. Optical Efficiency

The spectral band-averaged optical (photon) efficiency ηopt of the receiver is measured

by filling the beam with 300 K and 77 K blackbody loads, measuring the power on each

detector for each load, and comparing the measured power difference to the expected power

difference,

∆Popt ≈ ∆ν
ηopt
2

(AΩ) [Bν0(300K)−Bν0(77K)] . (48)
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The factor of 1/2 accounts for the split in polarization, AΩ = λ2 is the throughput of

the system, and Bν(T ) is the Planck blackbody spectrum. In this way, we measure band-

averaged optical efficiencies of 20.0%± 2.5% for both channels. Nearly all of the loss in our

optical train takes place in the cold filtering and at the detector itself. The wave plate is

anti-reflection coated to minimize loss, achieving a measured insertion loss of < 1%. The

feed horn, OMT, and associated waveguide components were separately measured warm on a

high-frequency network analyzer and found to generate < 1% return loss across the spectral

band.

3.3. Polarization Efficiency

To measure the polarization efficiency, we constructed a polarized source by placing a 10

cm diameter circular aperture grid of 0.05 mm diameter gold-plated tungsten wire with 0.19

mm grid spacing in front of a chopped 300 K / 77 K blackbody load. A piece of absorbing

material was placed in front of the grid to limit the aperture to ∼ 5 cm circular diameter. The

source was placed on the optic axis, approximately 10 cm from the entrance of the receiver.

Locking-in to the chopped signal, the wave plate was rotated in 128 steps through 360◦ (See

Figure 7). Since > 99.5% polarization is produced by the wire grid (Lesurf 1990), the degree

to which the lock-in signal does not fall to zero is the measured cross-polarization χ = 1−ηpol.

In this way we measure a laboratory polarization efficiency of ηpol = 97.8%± 0.7%, in good

agreement with our calculation (see Appendix A.1).

The polarization efficiency of the receiver optics was measured in a similar manner,

with the wave plate removed and the wire grid source rotated through 360◦. The measured

polarization efficiency was ηpol = 99.5% ± 0.7%, confirming that the dominant source of

cross-polarization in our receiver is the wave plate. The OMT and associated waveguide

components were separately measured warm on a high-frequency network analyzer and found

to generate < 0.03% cross-polarization across the spectral band.

Bolometer responsivity depends on the amount of optical loading. For a large wire-

grid source, rotation of the grid through 360◦ could modulate the amount of power on the

bolometer, since the bolometers can detect their 4 K optics in reflection. This would under-

estimate the polarization efficiency since the bolometers would be more responsive during the

measurement of highest cross-polarization. By limiting the size of the source and measuring

the DC-level of the bolometers (in order to track the responsivity), we could be sure that

the bolometer responsivity remained the same throughout the measurement.
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3.4. Detector Properties

The Polatron bolometers have thermal and electrical properties chosen to provide high

sensitivity under the optical loading conditions and operating temperatures specific to the

experiment. They were previously flown as science detectors aboard the Boomerang payload

in 1998. The bolometers have a measured response time τ = 25 ms, which puts an upper

limit on the allowable frequency of modulation of the signal at f ∼ (2πτ)−1 ∼ 6 Hz. The

measured thermal conductivities G are ∼ 80 pW/K, and the peak electrical responsivities S

are ∼ 3 × 108 V/W (Crill 2000) under loading conditions similar to those expected at the

telescope.

3.5. Sensitivity

The differential noise performance of the test receiver is adequate for optical testing

purposes, but not stable enough for observation at the telescope. For this receiver, the

bolometers are DC-biased, and no efforts are made to mitigate radio-frequency pickup or

microphonic pickup. Furthermore, no trim circuit is available to balance the responsivities

of the detectors, meaning that we are more susceptible to fluctuations in the bolometer stage

temperature and other common mode signal.

The noise spectrum was measured looking into a 77 K blackbody load, which is a fair

approximation to the ∼ 60 K loading temperature expected at the telescope. The low-

frequency signal is dominated by 1/f noise with a knee at ∼ 1 Hz. The measured bolometer

NEP at fwp = 0.6 Hz is ∼ 30 × 10−17 W Hz−1/2. As calculated in §2.5, and under similar

observing conditions, this would amount to an NETcmb ∼ 8 mK s1/2. If we were observing

with this test receiver, we would choose a higher waveplate rotation frequency, out of the 1/f

noise but beneath the low-pass cutoff due to the bolometer response time. Such a minimum

in the noise spectrum exists at 4 Hz. There we measure a bolometer NEP of ∼ 10 × 10−17

W Hz−1/2, which would amount to an NETcmb ∼ 2.5 mK s1/2.

4. Conclusion

We have described the Polatron experiment designed to measure the polarization angular

power spectrum of the cosmic microwave background. The Polatron focal plane is currently

undergoing cryogenic integration and laboratory testing, after which the instrument will be

installed at the OVRO 5.5m telescope.
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A. Half-Wave Plates

In this Appendix we review the optical properties of half-wave plates and calculate the

expected polarization efficiency of our plate.

The wave plate is a cylinder of birefringent, x-cut crystalline quartz. The plate generates

a π phase retardation between electric field vectors of frequency ν0 ∼ 96 GHz (wavelength

λ ∼ 3 mm) incident on the fast and slow refraction axes of the quartz. The measured

difference in index of refraction along the two axes at these wavelengths is ∆n = 0.048,

where n̄ ∼ 2.08. The differential phase shift ∆φ generated between orthogonally polarized

rays aligned with the fast and slow axes of the plate is

∆φ =
2πν

c
∆n× l, (A1)

where l refers to the physical path length the rays travel through the plate. For plane waves

on the optic axis, l is the thickness of the plate t = 32.6 mm, and a phase retardation of π

is achieved for ν = ν0, the center of our band.

Consider a linearly polarized plane wave traveling in the ẑ direction in a coordinate

system (x̂, ŷ) fixed to our polarimeter with electric field

−→
E (x, y, z, t) = [E0xx̂+ E0yŷ] sin(φz,t), (A2)

where φz,t = 2π( z
λ
− νt) is the kinematic component of the phase.

The intensity of such a beam is I = E2
0x+E2

0y, and the Stokes parameters measured by an

ideal polarimeter aligned with this coordinate system are Q0 = E2
0x−E2

0y and U0 = 2E0xE0y.

The wave is incident on a half-wave plate with polarization angle θ = tan−1(E0y/E0x)

with respect to the fast axis. θ is restricted to the range [0, π]. A second coordinate system,

(̂i, ĵ), is fixed to the plate’s fast and slow axes, respectively. In the plate coordinates, the
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electric field vector of the incoming wave is

−→
E (i, j, z, t) =

{

[E0x cos(θ) + E0y sin(θ)]̂i + [E0y cos(θ)− E0x sin(θ)]̂j
}

sin(φz,t) (A3)

Upon passage through the plate, the phase of the ĵ component is delayed by ∆φ = 2πν
c
∆n× t

with respect to the î component. For ν = ν0, ∆φ = π and so the ĵ term simply flips sign. In

other words, the polarization vector has been reflected about the fast axis, which is equivalent

to a rotation by ∆θ = −2θ. Converting back to the polarimeter coordinate system,

−→
E ′(x, y, z, t) = {[E0x cos(2θ) + E0y sin(2θ)]x̂+ [E0y cos(2θ)− E0x sin(2θ)]ŷ} sin(φz,t). (A4)

The Stokes parameters are rotated by 4θ:

Q′ = [E0x cos(2θ) + E0y sin(2θ)]
2 − [E0y cos(2θ)− E0x sin(2θ)]

2 (A5)

= Q0 cos(4θ) + U0 sin(4θ), (A6)

and

U ′ = U0 cos(4θ)−Q0 sin(4θ). (A7)

A.1. Wave plate cross-polarization for ν 6= ν0

Consider a polarized beam of intensity I0 incident on the wave plate with polarization

vector ŷ aligned at a 45◦ angle to the fast (̂i) and slow (̂j) axes of the plate. For frequency

ν0 the polarization will be rotated by 90◦, into the x̂ direction, and a polarization detector

aligned with ŷ will measure no signal. For frequencies ν 6= ν0 the wave plate is less efficient,

and some cross-polar signal will be detected. The electric field incident on the plate is

−→
E (i, j, z, t) =

E0√
2
sin(φz,t)

[

î+ ĵ
]

. (A8)

The phase retardation for the polarization component aligned with the slow axis is ∆φ =
2πν
c
∆n× t = π + δφ, where δφ = π((ν/ν0)− 1). Upon passage through the plate,

−→
E (i, j, z, t) =

E0√
2

[

sin(φz,t)̂i + sin(φz,t + π + δφ) ĵ
]

, (A9)

=
E0√
2

[

sin(φz,t)̂i− sin(φz,t + δφ)̂j
]

. (A10)

The projection of this vector along the detector (ŷ) direction is

−→
E · ŷ =

E0

2
[sin(φz,t)− sin(φz,t + δφ)] (A11)

=
E0

2
[sin(φz,t)− sin(φz,t) cos(δφ)− cos(φz,t) sin(δφ)] . (A12)
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The detector is sensitive to the time average of the square of the electric field,

〈|−→E · ŷ|2〉 = I0 ×
1

2
[1− cos(δφ)] . (A13)

The total fractional cross-polarization seen by a detector with spectral response η(ν) aligned

along the ŷ direction is then

χ =

∫∞

0
dν η(ν)I0(ν)× 1

2
[1− cos(δφ)]

∫∞

0
dν η(ν)I0(ν)

. (A14)

With the measured spectral response of the Polatron receiver, Eqn.(A14) predicts a cross-

polarization χ = 0.9%± 0.1% (ηpol = 1− χ = 99.1%± 0.1%), where the error is dominated

by the accuracy of the measurement of the spectral band near the band edges. The same

calculation with a model Gaussian spectral band with band center and width equal to the

measured Polatron values predicts χ = 0.8% (ηpol = 99.2%).

A.2. Wave plate cross-polarization due to converging beam

Placement of the wave plate in a converging beam generates cross-polarization since

different parts of the beam travel through different thicknesses of quartz, and experience

different phase shifts. Modeling this effect can be quite involved, since the wave plate is

in the near field of a single-mode gaussian beam with a changing phase profile. Since the

expected cross-polarization is fairly low, a simple calculation can help us to understand the

basic performance.

Consider a polarized beam of intensity I0 incident on the wave plate at angle θ with

respect to normal, and with polarization vector ŷ aligned at a 45◦ angle to the fast (̂i)

and slow (̂j) axes of the plate. The phase shift upon passage through the plate is ∆φ =
2πν
c
∆n× t csc(θ) = π+ δφ, where δφ = π(csc(θ)−1). The response of a polarization detector

aligned with ŷ is as shown in equation (A13).

The angular response g(θ) of the feed horn at a distance z from the horn phase center

(focus) can be estimated as in Wylde (1984):

g(θ) ∝ e−2θ2(z/w(z))2 , (A15)

where

w(z) = w0 ×
[

1 +

(

λz

πw2
0

)2
]1/2

, (A16)

w0 = 0.64 a, and a is the aperture radius of the feed horn.
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The total fractional cross-polarization seen by the detector is then

χ =

∫
π
2

−π
2
dθ 2πθ g(θ)× 1

2
[1− cos(δφ)]

∫
π
2

−π
2
dθ 2πθ g(θ)

. (A17)

This predicts χ ∼ 2% (ηpol = 98%) for the Polatron receiver. In combination with the

calculation of cross-polarization due to the Polatron spectral bandwidth, a total polarization

efficiency for the receiver of ηpol ∼ 97% is predicted. The measured efficiency is 97.8% (§3.3).
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Table Captions

1. Polatron Instrument Specifications

2. Polatron Anticipated Sensitivity
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Table 1. Instrument Specifications

Telescope: 5.5 m Cassegrain Focus

Polarization Analysis: Rotating Wave Plate and

Orthomode Transducer

Polarization Efficiency: 97.8%

Spectral Band: 88 – 106 GHz

Beam Size: 2.5 arcminutes FWHM

Detectors: Silicon-Nitride Micromesh

Bolometers

Sensitivity: ∼ 700 µK s1/2 to both Q and U

Table 2. Anticipated Sensitivity

ppwv NEP 10−17 W Hz−1/2 NEFD NET

(mm) Photon Detector Amp. Atmos. Total mJy s1/2 µK s1/2

3.0 2.5 2.2 1.0 1.0 3.6 85 610

6.0 2.7 2.2 1.0 1.2 3.9 99 710

8.0 3.0 2.2 1.0 1.4 4.1 101 740
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Fig. 1.— Model Angular Power Spectra. Model angular power spectra generated by

CMBFAST (see www.physics.nyu.edu/matiasz/CMBFAST/cmbfast.html) are plotted for

an Ω = 1,ΩB = 0.05,ΩCDM = 0.27, H = 81Km/s/MPc, nS = 0.97, NT = 1 − nS, and

T/S = 7(1 − nS) = 0.21 universe. Solid line is G-type polarization, dashed line is C-type

polarization, and dotted line is best fit temperature power spectrum to Boomerang data.

Upper limit is from Hedman et al. (2001), assuming CC
l = 0, as described in text.
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Fig. 2.— Polatron Focal Plane Schematic. A single-mode entrance feed is coupled to an

orthomode transducer, which separates the two senses of linear polarization. Each OMT

output is spectrally filtered and then terminated in a “spider-web” bolometer.
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Fig. 3.— Polarization Foreground Spectra. Left panel: predicted polarization flat band

power at 100 GHz as a function of multipole moment l for model CMB G-type fluctuations

(solid line), galactic synchrotron (dashed line), and galactic dust (dash-dotted line). The

dotted line indicates a generic Polatron window function in arbitrary units (see §2.9 for

details.) Right panel: predicted polarization flat band power at l = 1000 as a function of

spectral frequency, same linetype key, with dotted line indicating the chosen Polatron spectral

passband in arbitrary units. Temperatures are stated in Rayleigh-Jeans units. CMB G-type

angular spectrum was generated by CMBFAST for a CDM (Ω = 1,ΩΛ = 0.6,ΩB = 0.05, H =

65) universe.
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Fig. 4.— Polatron Observing Strategy. This figure illustrates the Stokes parameter weight

functions, as described in the text. The functions are shown real space, for both Q and U,

for four example modes. The rings are all centered on the North Celestial Pole (NCP), at

a declination of δ = θ. The azimuthal Right Ascension coordinates of the map pixels are

indexed by φi.
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Fig. 5.— Determination of Ring Opening Angle. Plotted are the Polatron integrated signal

to noise ratio for three different integration times over a range of ring opening angles. The

dotted curves show the performance of an ideal instrument with no 1/f noise that measures

both Q and U simultaneously. The dashed curves show the performance of an instrument

with 1/f noise that measures both Q and U simultaneously, but does not difference pairs of

Stokes parameters separated by 6h in position angle around the ring. The dashed curves show

the performance of an instrument with 1/f noise that measures both Q and U simultaneously,

but does difference pairs of Stokes parameters separated by 6h in position angle around the

ring.
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Fig. 6.— Atmospheric Spectrum and Polatron Passband. Solid line: a model atmospheric

transmission spectrum for the Owens Valley assuming 6 mm of precipitable water vapor.

Dotted line: the Polatron passband, in units relative to peak transmission, as measured on

a Fourier Transform Spectrometer (FTS). The frequency resolution of the FTS is 2 GHz.

The spectral bands for the two orthogonal polarization channels are identical within this

resolution.
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Fig. 7.— Polarization Efficiency Measurement. Depicted is the result of the polarization

efficiency measurement described in §3.3. Error bars are 2-σ. Best fit function is 0.8 +

34.4 sin(4f)−0.2 sin(2f−5.6◦)+0.1 sin(f) mV; the measured polarization efficiency is (97.8±
0.7)%.


