
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/62 0 1 7/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Bru n nock, Roch elle,  Let ting to n,  M a t t h e w  C. a n d  Sc h mid t,  Karl Mich a el  2 0 1 4.  On

s q u a r e  roo t s  a n d  no r m s  of m a t ric e s  wi th  sy m m e t ry p ro p e r ti e s.  Line a r  Algeb r a  a n d  its

Applica tions  4 5 9  , p p .  1 7 5-2 0 7.  1 0.1 01 6/j.la a.20 1 4.06.05 4  

P u blish e r s  p a g e:  h t t p://dx.doi.or g/10.10 1 6/j.la a.2 01 4.06.05 4  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



On square roots and norms of matrices with symmetry

properties.

R. Brunnock, M. C. Lettington and K. M. Schmidt

(On the occasion of the 500th anniversary of Albrecht Dürer’s work Melencolia I)

Abstract

The present work concerns the algebra of semi-magic square matrices. These
can be decomposed into matrices of specific rotational symmetry types, where
the square of a matrix of pure type always has a particular type. We examine the
converse problem of categorising the square roots of such matrices, observing
that roots of either type occur, but only one type is generated by the functional
calculus for matrices. Some explicit construction methods are given. Moreover,
we take an observation by N. J. Higham as a motivation for determining bounds
on the operator p-norms of semi-magic square matrices.

1 Introduction

Traditionally a square matrix M = (mij)i,j∈{1,...,n}, which satisfies the constant row

and column sum symmetry condition

(s1)
n
∑

j=1

mij = c (1 ≤ i ≤ n),
n
∑

i=1

mij = c (1 ≤ j ≤ n),

for some constant number c, is called a semi-magic square with weight c/n (SMS or

type S matrix for short). If all the entries of M are non-negative, then we can write

M = (1/c)H with H a doubly-stochastic matrix.

If, in addition to condition (s1),M also satisfies the associated pairwise symmetry

condition

(s2) mij +m(n+1−i)(n+1−j) = 2c/n (1 ≤ i, j ≤ n),

then M is called an associated magic square [1] with weight c/n, (AMS or type A

matrix for short). In contrast, if M satisfies condition (s1) and the balanced pairwise

symmetry condition

(s3) mij = m(n+1−i)(n+1−j), (1 ≤ i, j ≤ n),

then we say that M is a balanced magic square with weight c/n (BMS or type B

matrix for short). Hence all type A and type B matrices are of type S; a matrix
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which is simultaneously type A and type B must have every entry the same (see

Lemma 2.3).

In [13] the multiplicative properties of these matrix types in the 3 × 3 case are

considered. For general n, the result is as follows (see [8], Lemma 3.1).

Lemma 1.1. Let M and N be n× n type S matrices with respective weights z and

w. Then it follows that

(1) MN is type S with weight nzw.

(2) If M and N are both type A or both type B, then MN is type B.

(3) If M is type A and N is type B, then MN and NM are type A.

(4) If M is invertible, then M−1 is type S with weight 1/n2z.

(5) If M is type B and invertible, then M−1 is type B.

(6) If M is type A and invertible, then M−1 is type A.

Remark. It follows from the above lemma that if M is type A then M r is type A

for all positive odd r and type B for all positive even r. Similarly, if M is type B

then M r is type B for all positive r. (Clearly, if M is also non-singular, then this

holds for all r ∈ Z). It is also clear from Lemma 1.1 (2) that a type A matrix cannot

have any square root of type A or B.

A natural consequence of these relations is that for a given n, the set of all n×n

type A and type B matrices generates an algebra which is contained in the algebra

of type S matrices R(S). In fact, they generate the algebra R(S), as Lemma 2.1

shows. The algebra of all type n × n type B matrices, R(B), is a subalgebra of

R(S). The subset of R(B) containing all matrices N for which there exists at least

one M ∈ R(S) with M2 = N can be partitioned into two sets; those which have

at least one type A square root matrix and those which have only type B square

root matrices. Conceptually this partition can be thought of as being similar to the

partition of R into the positive and negative real numbers.

The motivation for the present paper partially stems from considering the recip-

rocal statement which asks, given an n × n matrix M , if M2 is type B, then must

M necessarily be of type A or type B? Our results show that the answer is not as

straightforward as one might hope and depends on a number of factors.

We begin by outlining fundamental results on representations of these matrices

and give examples of general construction methods including one that always gives

type A matrices M , with M2 symmetric and type B. We show that every type S ma-

trix M with weight w has a natural representation as a sum of a matrix with weight

0 (called its kernel matrix) and a multiple of a universal matrix E. Furthermore the

kernel matrix can always be decomposed uniquely into its type A and type B parts,

both of which also have weight 0.
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We briefly consider matrix equations in the form of non-commutative polynomial

functions of type S matrices. Solving such equations can be extremely complicated,

but it turns out that particular types of equations involving type A and type B

matrices are soluble; their solutions highlight the implicit duality underlying these

matrix types.

We then focus on the question of matrix square roots. We outline the functional

calculus for matrices which extends standard functions, such as the square root

function, to matrices in general (see [6], [5], [4]). We find that if M is a square root

matrix of a type B matrix N obtained using the functional calculus, then M is of

type B; this implies that the type A square roots of type B matrices (which exist)

do not arise in this way.

Furthermore we give conditions on the characteristic polynomial of the square

root matrix M which ensure that M is at least type S.

In the final section of this paper we study the operator p-norms of type S matrices.

The motivation for this line of enquiry stems from the observation by N. J. Higham

that the operator p-norm of a type S matrix whose entries all have the same sign is

invariant with regard to the choice of p. However, if this hypothesis is not satisfied,

the norms depend on p in a significant way, and we provide upper and lower bounds

and discuss their sharpness.

2 Matrix Definitions and Representations

We begin by translating the symmetry conditions (s1), (s2), (s3) of the previous

section into matrix algebraic relations.

Let E be the n × n matrix with all entries equal to 1, and let J be the n × n

matrix with the anti-diagonal entries equal to 1 and 0 everywhere else. When n = 3

this gives

E =





1 1 1
1 1 1
1 1 1



 , J =





0 0 1
0 1 0
1 0 0



 .

Then the n× n matrix M is

(S1) type S with weight w if

ME = nwE = MTE,

(S2) type A with weight w if M satisfies (S1) and

M + JMJ = 2wE,

(S3) type B with weight w if M satisfies (S1) and

JMJ = M.
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The condition (S1) says that the rows and columns ofM sum to nw, and so condition

(S1) is equivalent to condition (s1) with nw = c. Similarly the product JMJ−1 has

the original (i, j) entry of M in row n+ 1− i , column n+ 1− j. Hence conditions

(S2) and (S3) are equivalent to conditions (s2) and (s3), respectively, again with

nw = c.

Examples of a type B matrix with n = 3, w = 4, a traditional type A matrix

with n = 4, w = 17/2, and a type A matrix with n = 4, w = 41/2 are





2 4 6
4 4 4
6 4 2



 ,









16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1









,









8 27 21 26
40 7 13 22
19 28 34 1
15 20 14 33









.

The second example is known as Dürer’s magic square, as it appears in an engraving

entitled Melencolia I by Albrecht Dürer. The date of the engraving is 1514 and

appears in the middle of the bottom row of the matrix.

Lemma 2.1. Any n× n matrix of type S is the sum of a type A matrix with weight

0 and a type B matrix (which has the same weight as the original matrix).

Proof. Let M be a type S matrix; then

M =
1

2
(M − JMJ) +

1

2
(M + JMJ),

and by a straightforward calculation, M − JMJ satisfies (S2) with w = 0, and

M + JMJ satisfies (S3). Both are type S because JMJ is.

Type S matrices have the following natural representation.

Lemma 2.2. Let M be an n × n matrix of type S with weight w. Then M can be

written in the form M = L+ wE, where L is a type S matrix with weight 0. If M

is of type A or B, L has the same type. E generates an ideal in R(S). Moreover,

M r = Lr + nr−1wrE (r ∈ N). (2.1)

We call L the kernel matrix of M .

Proof. Clearly L := M − wE has the stated properties. From LE = EL = 0n it

follows that the product of M with E (in either order) always gives a multiple of E.

To prove the last statement by induction, we note that

M r+1 = (L+ wE)(Lr + nr−1wnE) = Lr+1 + nrwr+1E,

as E2 = nE.

Lemma 2.3. Let M be an n× n type S matrix with weight w.

(a) If M is both type A and type B, then M = wE.
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Figure 1: Albrecht Dürer’s engraving Melencolia I of 1514.

(b) The decomposition

M = LA + LB + wE,

where LA, LB are kernel matrices of type A and type B, resp., is unique.

Proof. (a) From (S2) and (S3), we have M = JMJ and also M = −JMJ + 2wE,

so 2M = 2wE.

(b) If LA + LB + wE = M = L′
A + L′

B + wE, then LA − L′
A = L′

B − LB, and

from (a) it follows that both are 0E = 0n.

The natural representation for Dürer’s square is

1

2









15 −11 −13 9
−7 3 5 −1
1 −5 −3 7
−9 13 11 −15









+
17

2









1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1









. (2.2)

The following lemma means that in order to find a square root matrix of a type

S matrix, we need only look for a square root matrix of its kernel matrix.

Lemma 2.4. Let M and N be n× n type S matrices with respective weights w and

nw2, and respective kernel matrices LM and LN . Then M is a square root matrix

of N if and only if LM is a square root matrix of LN .
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Proof. To see the sufficiency of this condition let us assume that L2
M = LN , where

LM and LN both have weight 0. Then by Lemma 2.2,

M = (LM + wE)2 = L2
M + nw2E = LN + nw2E = N.

To prove the necessity of the condition we assume M2 = N , which gives the identity

L2
M + nw2E = LN + nw2E. After cancellation we obtain L2

M = LN and hence the

result.

We now show that every type S matrix with weight w can be decomposed into the

sum of a type S symmetric matrix with weight w and a type S antisymmetric kernel

matrix with weight 0. Moreover, by subtracting wE, MS can be decomposed into

the sum of a kernel symmetric matrix of weight 0 and the matrix wE. This allows

us to split the kernel matrix L into two kernel matrices, one of which is symmetric

and the other antisymmetric.

Lemma 2.5. Let M be an n× n type S matrix with weight w and kernel matrix L,

so that M = L+wE. Denote by Ms and Ma, respectively Ls and La, the symmetric

and antisymmetric parts of M and L, so that

Ms =
1

2

(

M +MT
)

, Ma =
1

2

(

M −MT
)

,

Ls =
1

2

(

L+ LT
)

, La =
1

2

(

L− LT
)

.

Then Ms = Ls + wE is type S with weight w and Ma = La is type S with weight 0.

Proof. Denote by r
(s)
j and c

(s)
j the jth row and column sums of the symmetric matrix

Ms, and by r
(a)
j and c

(a)
j the jth row and column sums of the antisymmetric matrix

Ma. By properties of (anti)symmetric matrices we have

c
(s)
j = r

(s)
j , c

(a)
j = −r

(a)
j ,

and using M = Ms +Ma gives

nw = r
(s)
j + r

(a)
j = c

(s)
j + c

(a)
j = r

(s)
j − r

(a)
j .

Hence r
(a)
j = −r

(a)
j , from which we deduce that r

(a)
j = 0 and r

(s)
j = nw. Similarly

we find that c
(s)
j = nw and c

(a)
j = 0.

The full decomposition of Dürer’s square into type A symmetric and antisym-

metric kernels and weight matrix is

1

2









15 −9 −6 0
−9 3 0 6
−6 0 −3 9
0 6 9 −15









+
1

2









0 −2 −7 9
2 0 5 −7
7 −5 0 −2
−9 7 2 0









+
17

2









1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1









.
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We conclude this section with an observation on the centre of mass of semi-magic

square matrices. For a matrix M = (mij)i,j∈{1,...,n} whose entries do not sum up to

0, the centre of mass is defined as
(

∑n
i,j=1 imij

∑n
i,j=1mij

,

∑n
i,j=1 j mij
∑n

i,j=1mij

)

.

Theorem 2.6. The centre of mass of any n× n type S matrix is

(

n+ 1

2
,
n+ 1

2

)

.

Proof. Let M = (mij)i,j∈{1,...,n} be a type S matrix. If M has non-zero weight w, we

find
n
∑

i,j=1

mij = n2w

and
n
∑

i,j=1

imij =

n
∑

i=1

i

n
∑

j=1

mij =
n+ 1

2
n2w

and similarly
n
∑

i,j=1

j mij =
n+ 1

2
n2w.

The matrix E has centre of mass as above; if the matrix M has weight 0, we can

consider its centre of mass the limit of those of M +wE as w → 0, which will again

be as stated above.

3 Methods of Solution and Construction

It is obvious from Lemma 1.1 (2) that a type B matrix may have a type A or a type

B square root matrix. In fact, it may have both.

Lemma 3.1. There are n × n type B matrices which simultaneously have a square

root matrix of type A and a square root matrix of type B.

We illustrate this lemma with examples of the simultaneous case when n = 3 and

also when n = 4 with Dürer’s square. By Lemma 2.2 we need only give examples of

kernel matrices.

As a 3× 3 example, we have





−2 1 1
3 0 −3
−1 −1 2





2

=





−2 1 1
1 −2 1
1 1 −2





2

=





6 −3 −3
−3 6 −3
−3 −3 6



 ,

and as a 4× 4 example, with Dürer’s square









16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1









2

=









15 8 5 6
5 10 11 8
8 11 10 5
6 5 8 15









2

=









341 285 261 269
261 301 309 285
285 309 301 261
269 261 285 341









.
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The first example also shows that the square root matrix of a symmetric type B

matrix need not be symmetric.

We now consider some general forms and construction methods for square root

matrices of a type B matrix.

The case n = 3. The smallest type A matrix that can be constructed such that

not all of its entries are equal is of size 3 × 3. Solving via the symmetry conditions

we find that a 3× 3 type A matrix M has the general form

M =





a b −a− b
−2a− b 0 2a+ b
a+ b −b −a



+ w





1 1 1
1 1 1
1 1 1



 , (3.1)

so M2 is type B and symmetric and of the form

M2 = b(2a+ b)





−2 1 1
1 −2 1
1 1 −2



+ 3w2





1 1 1
1 1 1
1 1 1



 .

Hence any 3 × 3 type B kernel matrix which has a type A square root must be of

the form

N ′ =





−2B B B
B −2B B
B B −2B



 ,

with B = b(2a + b), so that a = (B − b2)/(2b). For any given real number B we

can therefore choose b to be any other non-zero real number and then solve for a,

so that N ′ has an infinite number of type A square root matrices. The choice b = 0

gives type A square roots of 0n.

In a similar fashion we use the symmetry conditions for a 3 × 3 type B matrix

to obtain the general form

N =





a b −a− b
b −2b b

−a− b b a



+ w





1 1 1
1 1 1
1 1 1



 , (3.2)

where we find that both N and

N2 =





2
(

a2 + ba+ b2
)

−3b2 −2a2 − 2ba+ b2

−3b2 6b2 −3b2

−2a2 − 2ba+ b2 −3b2 2
(

a2 + ba+ b2
)



+ 3w2





1 1 1
1 1 1
1 1 1





are type B symmetric. Therefore any 3 × 3 type B kernel matrix which has a type

B square root must be of the form

N ′ =





A B −A−B
B −2B B

−A−B B A



 ,

so that, given values of A and B, our square root matrix parameters are

b = ±
√

−B

3
, and a =

1

2

(

b±
√
2A+B

)

.
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Hence N ′ has four type B square root matrices, which are all real if B ≤ 0 and

2A ≥ |B|.
The case n = 4. Proceeding as in the case n = 3 we use the symmetry conditions

to simplify the solution space of all 4× 4 type A and B kernel matrices. For M type

A, the general algebraic form is given by

M =









a b c −a− b− c
d −a− b− d −a− c− d 2a+ b+ c+ d

−2a− b− c− d a+ c+ d a+ b+ d −d
a+ b+ c −c −b −a









, (3.3)

where setting a = 15/2, b = −11/2, c = −13/2 and d = −7/2 yields Dürer’s square.

For N type B, the general form is given by

N =









a b c −a− b− c
d e −b− c− e b+ c− d

b+ c− d −b− c− e e d
−a− b− c c b a









, (3.4)

and the special choice b = d ensures that N is symmetric. In the 3 × 3 case the

squares of both general forms were symmetric and for simplicity we continue with

this restriction and look for square roots of symmetric type B matrices. We find that

any 4× 4 type B symmetric kernel matrix N ′ which has a type A square root must

be of the form

N ′ =









−A−B −
√
AB A B

√
AB

A −A−B +
√
AB −

√
AB B

B −
√
AB −A−B +

√
AB A√

AB B A −A−B −
√
AB









.

For given values of A and B the corresponding type A square root matrix M ′ is

given by fM (M as in (3.3) and f a scalar, possibly imaginary) where a takes an

arbitrary value and setting

b = −a±
√
B, c = −a±

√
A, d =

−2a2 − 2ab− 2ac− b2 − bc

2a+ b+ c
, f =

√

2a+ b+ c

2(b+ c)
.

(assuming that 2a + b + c, b + c 6= 0) yields (M ′)2 = N ′. Hence N ′ has as infinite

number of type A square root matrices.

Employing similar methods we find that if N is a type B square root of the

symmetric type B matrix N ′, then N ′ must be of the form

N ′ =









A B B −A− 2B
B A −A− 2B B
B −A− 2B A B

−A− 2B B B A









.

For given values of A and B the corresponding type B square root matrix M ′ is

given by (3.4) with b an arbitrary value, d = b and e = −a− b− c with

c = −b±
√
−B, and a = −1

2

(

±
√
−B ±

√
2A+ 3B − 4bc

)

.
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Therefore there also exist an infinite number of symmetric type B square root ma-

trices of N ′.

For larger values of n similar general solutions can be obtained but the formulae

become more complicated. To conclude this section we therefore focus on construc-

tion methods which work for all n×n matrices. Specifically we give one method for

construction of symmetric type B square roots and one for construction of type A

square roots of symmetric type B matrices. The type B construction is a generali-

sation of the above case.

Lemma 3.2. Let N ′ and N both be type B matrices with weight zero defined by

N = (a− b)I + (c− b)J + bE, N ′ = (A−B)I + (C −B)J +BE,

where N and N ′ are related by

C = −A− (n− 2)B b = −
√

−B/n

a =
1

2
(−(n− 2)b+

√
A− C) c = −a− (n− 2)b.

Then N2 = N ′.

Proof. Writing N = (a− b)I + (c− b)J + bE, we find that

N2 =
(

(a− b)2 + (c− b)2
)

I + 2(a− b)(c− b)J + (b2n+ 2b(a − 2b+ c))E,

and using the identities

(i) (a− b)2 + (c− b)2 = A−B,

(ii) 2(a − b)(c − b) = −A− (n− 1)B,

(iii) b2n+ 2b(a− 2b+ c) = B,

we deduce that N2 = (A−B)I + (−A− (n− 1)B)J +BE = N ′.

Remark. With a bit more work it can be shown that N is a primary square root

matrix of N ′, as defined in Section 5.

We now describe a construction of matrices from permutations of the canonical

basis vectors. Let σ be a permutation on the integers 1, 2, 3, . . . n, so that

σ : (1, 2, 3, . . . , n) 7→ (σ(1), σ(2), σ(3), . . . , σ(n)).

Let e1, e2, . . . , en be the unit vectors (1, 0, · · · )T , (0, 1, 0, · · · )T , · · · , (0, · · · , 0, 1)T , so
that I = (e1, e2, . . . , en).

We consider the permutation σ acting on the rows of I and define the permu-

tation matrix Pσ = (eσ(1), · · · , eσ(n))T . A permutation of the n rows m1, · · · ,mn

of an n × n matrix M can be accomplished by the product PσM , whose rows are

mσ(1), · · · ,mσ(n). Similarly MPσ has columns kτ(1), · · · ,kτ(n) where k1, · · · ,kn are



11

the columns of M , and τ is the permutation inverse to σ. With E and J defined as

previously, J is the matrix with rows en, en−1, · · · , e1, and we define K to be the

matrix with rows e2, · · · , en, e1; e.g. when n = 3,

K =





0 1 0
0 0 1
1 0 0



 .

The matrices J and K (under multiplication) generate the dihedral group D2n. We

call any matrix that can be expressed as a linear combination of products of powers

of J , K and E diagonally expressible. In fact we can form the diagonally expressible

type A and type B basis matrices as follows.

Definition. For n = 2m+1, let K be the n×n permutation matrix as above; then,

for r ∈ Z, Kr gives a cyclic permutation of n elements. Let

Ar = K2r−1 −K−(2r−1) and Br = K2r +K−2r. (3.5)

Then JArJ = −Ar and JBrJ = Br, so that Ar, JAr are both type A with weight 0

and Br, JBr are both type B with weight w = 2/n. Furthermore AT
r = −Ar = A1−r,

BT
r = Br = B−r, where Am+1 = 0n and B0 = 2I, which together imply that Ar

is an anti-symmetric type A kernel matrix and Br is a symmetric type B matrix.

This means that A2
r and B2

r are both symmetric type B matrices. They obey the

identities

ArAs = Br+s−1−Br−s, ArBs = Ar+s+Ar−s, BrBs = Br+s+Br−s. (3.6)

Using the above notation, we have the following lemma.

Lemma 3.3. Let

M =

[n/2]
∑

r=1

(αrI + βrJ)Ar + γE, and N =

[n/2]
∑

r=0

(αrI + βrJ)Br + γE.

Then M is a type A matrix with weight γ and anti-symmetric kernel matrix, and

N is symmetric and type B. Moreover, M r and N r are symmetric type B for all

positive even r and M r is type A with anti-symmetric kernel for all positive odd r.

The following is an example of such a type A square M and its inverse matrix

M−1, as stated in [8].

For natural number m, let n = 2m+1, and let a three-parameter family of n×n

type A matrices be defined as

M(z, y, x) = (zI − yJ)

m
∑

r=1

(m+ 1− r)Ar + (m(z + y) + x)E. (3.7)

Then the (type B) square of the type A matrix M(z, y, x) is given by

M2(z, y, x) = n(m(z + y) + x)2E

+ (z2 − y2)





m(m+ 1)

2
I +

m(m+ 1)

6
E −

m−1
∑

q=1

(m+ 1− q)(m− q)

2
Bq



 ,



12

and the inverse matrix has the simple structure

M−1(z, y, x) =
(zI − yJ)

n(z2 − y2)
A0 +

E

n2(m(z + y) + x)
.

4 Solving Matrix Equations in R(S)

Theorem 4.1. Let r ∈ N, let Mi (i ∈ {1, . . . , r}) be n×n type S matrices and Mi =

Li + wiE their natural representations. Moreover, let f be an element of the non-

commutative polynomial algebra (free algebra) in r variables with vanishing constant

term, i.e. f(M1, . . . ,Mr) a linear combination of finite products of M1, . . . ,Mr with

at least one factor. Then

f(M1, . . . ,Mr) = f(L1, . . . , Lr) + f(w1E, . . . , wrE). (4.1)

In consequence, M1, . . . ,Mr and k are a solution of the equation

f(M1, . . . ,Mr) = kE (4.2)

if and only if

f(L1, . . . , Lr) = 0n and f(w1E, . . . , wrE) = kE. (4.3)

Proof. For any j, k ∈ {1, . . . , r} we have

MjMk = (Lj + wjE)(Lk + wkE) = LjLk + wjwkE
2,

since LmE = 0n = ELm (m ∈ {1, . . . , r}). Thus any product of matrices Mj splits

into the sum of the corresponding products of matrices Lj and wjE; this gives (4.1).

Hence, if L1, . . . , Lr, w1, . . . , wr satisfy the equations (4.3), then Mj := Lj+wjE

(j ∈ {1, . . . , r}) satisfy (4.2). Conversely, if

f(L1, . . . , Lr) + f(w1E, . . . , wrE) = kE,

then

f(L1, . . . , Lr) = kE − f(w1E, . . . , wrE) = uE

for some number u, since f applied to multiples of E will give a multiple of E.

As products of matrices Lj have weight 0 and the left-hand side is a sum of such

products, it follows that u = 0, and hence (4.3).

Example 1. In the notation of (3.7), consider the Pell type n× n matrix equation

M(a, 0, wa −ma)2 − λM(b, 0, wb −mb)2 = M(c, 0, wc −mc)2. (4.4)

Using the natural representation

M(z, 0, wz −mz) = Lz + wzE (z ∈ {a, b, c}),
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this is equivalent to

(La + waE)2 − λ(Lb + wbE)2 = (Lc + wcE)2,

which, by Theorem 4.1, reduces to L2
a−λL2

b = L2
c and nw2

aE−λnw2
bE = nw2

cE. As

here Lz = zL1 by (3.7), this gives the uncoupled pair of equations

c2 = a2 − λb2, w2
c = w2

a − λw2
b ,

so that any pair (a, b, c) and (wa, wb, wc) of solution triples to Pell’s equation give a

solution to (4.4).

It is interesting to note that as the kernel matrices commute in this instance, we

can write

(La −
√
λLb)(La +

√
λLb) + nw2

cE = L2
c + nw2

cE = M(c, 0, wc −mc)2,

which factorises as

(La −
√
λLb + wcE)(La +

√
λLb +wcE) = L2

c + nw2
cE.

If (La +
√
λLb + wcE)−1 exists then

(La −
√
λLb + wcE) = (La +

√
λLb + wcE)−1(L2

c + nw2
cE),

and using properties of matrix p-norms we have

‖(La −
√
λLb + wcE)‖p ≤ ‖(La +

√
λLb + wcE)−1‖p‖(L2

c + nw2
cE)‖p.

If all entries of a type S matrix are non-negative or non-positive, then its p-norm is

equal to n|w| (see Proposition 7.1 below). Hence if we choose wc > 0 large enough

to ensure that all entries of (L2
c + nw2

cE) are non-negative, then we have the bound

‖(La −
√
λLb + wcE)‖p ≤ nwc‖(La +

√
λLb + wcE)−1‖p.

Example 2. In this example we modify the definitions of M(z, y, x) to obtain the

n× n matrix N(n, a) defined as

N(n, a) = (nI − J)

[n2 ]
∑

r=1

(

na+
[n

2

]

+ 1− r
)

Ar +
2n(n+ 1)a+ (n2 − 1)

2
E;

e.g. when n = 7 and a = 2,

N(7, 2) =





















119 270 15 264 9 258 17
32 120 271 16 265 24 224
225 33 121 272 31 231 39
40 226 34 136 238 46 232
233 41 241 0 151 239 47
48 248 7 256 1 152 240
255 14 263 8 257 2 153





















.
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For fixed values of n, and working with the structure of the characteristic polyno-

mials, it turns out that we can obtain general solutions for equations in N(n, a).

For example, when n = 5 the characteristic polynomial of N(5, a) is given by

(150a − x+ 60)×
(

600(120 + 1200a + 4200a2 + 6000a3 + 3000a4 + x2 + 6ax2 + 10a2x2) + x4
)

,

and the equation

N(5, a)5 + bN(5, a)3 + cN(5, a) = kE

has the general solution given by

a ∈ Z, b = 600(1 + 6a+ 10a2),

c = 600(120+3000a+24000a2+90000a3+165000a4+120000a5−3ab−15a2b−20a3b),

and

k = 1800(85680 + 1068000a + 5316000a2 + 13200000a3 + 16335000a4 + 8047500a5

+26b+ 198ab+ 510a2b+ 445a3b),

where the kernel matrix L(5, a)satisfies

L(5, a)5 + bL(5, a)3 + cL(5, a) = 0n.

5 Existence of Type S Square Roots

In this section we shall use the concept of functional calculus for square matrices,

which can be defined as follows.

Let N be an n× n matrix and Y its Jordan normal form, so

N = ZY Z−1,

where Z is a regular n × n matrix and Y is a block-diagonal matrix. More pre-

cisely, let λ1, λ2, . . . , λp be the eigenvalues of N , repeated according to geomet-

ric multiplicity; then there are m1,m2, . . . ,mp ∈ N with
∑p

i=1mi = n such that

Y = diag(Y1, Y2, . . . , Yp), where the ith Jordan block takes the form

Yi =













λi 1

λi
. . .

. . . 1
λi













∈ C
mi×mi .

Now let f be a function which is defined on the spectrum σ(N) = {λi | 1 ≤ i ≤ p}
and holomorphic in an open neighbourhood of those points λi for which mi > 1; we

shall call such a function suitable.
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Then f(N) is defined as f(N) = Zf(Y )Z−1, where

f(Y ) = diag(f(Y1), f(Y2), . . . , f(Yp))

and

f(Yi) =















f(λi) f ′(λi) · · · f(mi−1)(λi)
(mi−1)!

f(λi)
. . .

...
. . . f ′(λi)

f(λi)















(see [6] page 3).

If f is a polynomial, then this definition coincides with the evaluation of the

polynomial in the matrix algebra. Conversely, given the matrixN , a suitable function

f could clearly be replaced with an interpolating polynomial which, along with the

derivatives up to order mi − 1, coincides with f at the points λi, 1 ≤ i ≤ p.

Theorem 5.1. Let N be an n × n type S matrix with weight w, and f a suitable

function. Then f(N) is type S with weight 1
nf(nw).

Proof. A matrix satisfies condition (S1) if and only if the vector v = (1, 1, . . . , 1)T is

an eigenvector of the matrix and of its transpose, with eigenvalue λ = nw. Hence we

have Nv = λv, so using the Jordan normal form for N , Y y = λy, where y = Z−1v.

Thus y is an eigenvector of Y with eigenvalue λ, and it follows from the structure of Y

that y has non-zero entries only in the top slot of each Jordan block for eigenvalue λ.

From the structure of f(Y ), it is then clear that y is an eigenvector of f(Y ) with

eigenvalue f(λ). Consequently,

f(N)v = Zf(Y )Z−1v = Zf(Y )y = f(λ)Zy = f(λ)v,

so v is an eigenvector of f(N) with eigenvalue f(λ).

We also have NT v = λv, so considering that NT = (Z−1)TY TZT , we find that

Y Tx = λx, where x = ZTv. From the structure of Y T is follows that x has non-zero

entries only in the bottom slots of the Jordan blocks for eigenvalue λ.

Hence, the structure of f(Y )T shows that x is an eigenvector of f(Y )T with

eigenvalue f(λ), so

f(N)T v = (Z−1)T f(Y )TZTv = (Z−1)T f(Y )Tx = f(λ)(Z−1)Tx = f(λ)v.

Therefore v is an eigenvector of both f(N) and f(N)T with eigenvalue f(λ), which

shows that f(N) is type S with weight 1
nf(nw).

Corollary. Let N be an n×n type S matrix with weight nw2 which has the property

that if 0 is an eigenvalue, then its algebraic and geometric multiplicities coincide.

Then there are 2p
′

distinct type S matrices M of weight w such that M2 = N ;

here p′ is the number of non-zero eigenvalues of N , repeated according to geometric

multiplicity.



16

Proof. The condition on the algebraic and geometric multiplicities of 0 ensures that

the function f , defined to be 0 at 0 and either one of the two square roots in a

neighbourhood of each non-zero eigenvalue of N , is suitable. Hence we can apply

the preceding Theorem to obtain a square root matrix M = f(N) with the required

properties. As there are two possible choices for f in each of the p′ neighbourhoods,

there are 2p
′

such square root matrices.

Remark. We call the square-root matrices obtained by the functional calculus pri-

mary square roots. There may be other, non-primary square roots of N which cannot

be expressed as a function of N ; this is the case if two or more Jordan blocks have

the same eigenvalue. For example,
(

0 −1
1 0

)(

0 −1
1 0

)

=

(

−1 0
0 −1

)

, (5.1)

and
(

0 −1
0 0

)(

0 −1
0 0

)

=

(

0 0
0 0

)

, (5.2)

are both factorisations of type S matrices into non-type S square roots.

Theorem 5.2. Let N be an n×n type B matrix with weight nw2 and M a primary

square root matrix of N . Then M is type B with weight w.

Corollary. Let N be an n × n type B matrix with weight nw2 and M a type A

square root matrix of N . Then M is a non-primary square root matrix of N .

Proof. By Theorem 5.1, M is type S with weight w. A type S matrix is type B if

and only if it commutes with J . Let p(x) be the interpolating polynomial for the

given primary square root of N , so that

p(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0,

and

p(N) = anN
n + an−1N

n−1 + . . .+ a1N + a0I =
√
N = M.

Then

Jp(N) = anJN
n + an−1JN

n−1 + . . . + a1JN + a0J = JM,

p(N)J = anN
nJ + an−1N

n−1J + . . . + a1NJ + a0J = MJ

as JN = NJ , it follows that JN r = N rJ for r ∈ 1, . . . , n. Hence JM = MJ and so

M is type B.

Theorem 5.3. Let N be an n×n type B matrix with weight nw2, and let M be any

n×n matrix such that M2 = N . Let χ(x) =
n
∑

j=0
λjx

j be the characteristic polynomial

of M , and assume that
[(n−1)/2]
∑

i=0

λ2i+1n
2i−1w2i 6= 0. (5.3)
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Then M is of type S with weight w, and its type A and type B kernel matrices LA,

LB anticommute. Moreover, for any natural number r

M r =
r
∑

k=0

σk,r−kL
k
AL

r−k
B + nr−1wrE. (5.4)

Remark. Here σk,l (k, l ∈ N0) are the (−1)-binomial coefficients arising in the

binomial formula for anticommuting terms and defined by the recurrence

σk,l = σk−1,l + (−1)kσk,l−1; σ0,1 = 1 = σ1,0

(cf. sequence A051159 in [9]).

By Lemma 1.1 (2), (3), splitting the sum in (5.4) into the sums with odd and

even k gives the type A and type B kernel matrices for M r, resp. (cf. Lemma 2.3).

Note that the statement of the theorem is false in general if condition (5.3) is

not satisfied, as seen in (5.1), (5.2).

Proof. By the Cayley-Hamilton theorem, χ(M) = 0n, so

−
[(n−1)/2]
∑

i=0

λ2i+1M
2i+1 =

[n/2]
∑

i=0

λ2iM
2i =

[n/2]
∑

i=0

λ2iN
i,

a type B matrix with weight u =
[n/2]
∑

i=0
λ2iw

2in2i−1 (see (2.1)). Defining

U =

[n/2]
∑

i=0

λ2iM
2i, V = −

[(n−1)/2]
∑

i=0

λ2i+1M
2i, (5.5)

we see that U has weight u and V has weight v, which is the negative of (5.3). Then

MV = U , so MVE = UE giving

ME =
nu

nv
E =

u

v
E,

and similarly, from VM = U ,

EM =
nu

nv
E =

u

v
E.

Therefore M satisfies (S1) and thus is type S with weight w = u/(nv).

By Lemma 2.3, M has a unique decomposition into a type A, a type B kernel

matrix and a multiple of E, M = LA + LB + wE, and upon squaring we find

N = M2 = L2
A + L2

B + LALB + LBLA + nw2E;

as N is type B, as are L2
A and L2

B , it follows from the uniqueness (Lemma 2.3) that

the type A part LALB + LBLA vanishes, so

LALB = −LBLA.

The representation (5.4) now follows from (2.1) by rearranging the factors in the

power Lr = (LA + LB)
r after expansion.
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Remark. Since U and V , defined in (5.5), are type B, we have

MV = U = JUJ = JMV J = JMJJV J = JMJV,

so (M − JMJ)V = 0n. Similarly we obtain V (M − JMJ) = 0n. Thus M − JMJ is

a two-sided zero divisor of V ; clearly it is the trivial zero divisor 0n is M is type B.

Corollary. In the situation of Theorem 5.3, let U, V be the type B matrices defined

in (5.5), and LA the type A part of the kernel matrix of M . Then

V LA = 0n = LAV.

If M is type A, then U is a multiple of E.

Proof. Writing M = LA + LB + wE as in Lemma 2.3 (b), we have U = MV =

LAV + LBV + nwvE, so comparing the (unique) type A parts of the kernel matrix

of both sides, we conclude that 0n = LAV . The other identity follows in the same

way from U = VM .

If M is type A, then so is VM (by Lemma 1.1 (3)), and the last statement follows

by Lemma 2.3.

To illustrate this corollary, consider the type A matrix

M(7, 1, 0) = (7I − J)

3
∑

r=1

(4− r)Ar + 24E =





















21 46 15 40 9 34 3
4 22 47 16 41 10 28
29 5 23 48 17 35 11
12 30 6 24 42 18 36
37 13 31 0 25 43 19
20 38 7 32 1 26 44
45 14 39 8 33 2 27





















;

then

3
∑

k=0

76−2k

7− 2k

(

6− k

2k

)

M(7, 1, 0)2k+1 = 168

3
∑

k=0

76−2k

7− 2k

(

6− k

2k

)

M(7, 1, 0)2k

= 633317860933632E = 7× 8× 1684(47 − 37)E,

where the antisymmetric type A part Ma(7, 1, 0) and the symmetric type B part

Ms(7, 1, 0) of M(7, 1, 0) are given by

Ma(7, 1, 0) = −J

3
∑

r=1

(4− r)Ar, Ms(7, 1, 0) = 7

3
∑

r=1

(4− r)Ar + 24E.

We conclude this section with a further observation on the characteristic polynomial

of type S matrices.
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Theorem 5.4. Let N be an n × n type S matrix with weight w, kernel matrix L,

and characteristic polynomial χ(x) =
n
∑

j=0
λjx

j. Then χ(wn) = 0 and

χ(L)− λ0

n
E = 0n.

Moreover, in terms of the type A and type B parts of Lj ,

LA,j =

[(j−1)/2]
∑

k=0

σ2k+1,j−2k−1L
2k+1
A Lj−2k−1

B , LB,j =

[j/2]
∑

k=0

σ2k,j−2kL
2k
A Lj−2k

B (j ∈ N)

(cf. Theorem 5.3) and setting LB,0 := I − 1
n E, we have

n
∑

j=1

λjLA,j = 0n,

n
∑

j=0

λjLB,j = 0n.

Proof. By the Cayley-Hamilton theorem and Lemma 2.2 we have

0n =
n
∑

j=0

λjN
j = λ0I+

n
∑

j=1

λj(L
j+nj−1wjE) = λ0

(

I − 1

n
E

)

+
n
∑

j=1

λjL
j+

n
∑

j=0

λjw
jnj−1E.

Hence

λ0(I −
1

n
E) +

n
∑

j=0

λjL
j = −

n
∑

j=0

λjw
jnj−1E,

and as the weight of the matrix on the left-hand side is 0, it follows that

χ(L)− λ0

n
E = E

n
∑

j=0

λjw
jnj−1 = 0n.

Further,

λ0

n
E = χ(L) = λ0I +

n
∑

j=1

λjL
j = λ0I +

n
∑

j=1

λjLA,j +
n
∑

j=1

λjLB,j ,

and hence

n
∑

j=1

λjLA,j = −
n
∑

j=1

λjLB,j − λ0I +
λ0

n
E = −

n
∑

j=0

λjLB,j ;

the last statement now follows by Lemma 2.3.

6 Dimensionality

The dimension of the vector space of magic squares has long been of interest and

it was shown in 1959 by L. J. Ratcliff that the vector space of n × n semi-magic

squares (type S matrices) is of dimension n2 − 2n+ 2 [3], [10]. If in addition to the

2n linear constraints on the rows and columns, we require that the two principal

diagonals also sum to the row and column constant, then the total number of linear
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Type A Type B Totals

n=2m+1 odd
(n−1)2

2
(n−1)2

2 (n− 1)2

n=2m even
n(n−2)

2
n2−2n+2

2 (n− 1)2

Table 1: Vector space dimensions for kernel type A and type B, n× n matrices.

constraints is 2n+2 and the corresponding dimension of the vector space is n2−2n.

This is the usual definition of a magic square, which we state here for completeness.

The dimension of the vector spaces of n×n kernel type A and type B matrices is

given above for n odd or n even. One can obtain these dimensions diagrammatically

and in the following two tables we give such examples for the dimension of the vector

space of n× n type A matrices. In both tables, once the grey cells are chosen, then

the white cells are determined, and in the second table the final step is to solve the

equations relating to the four remaining cells a, b, c, d.

Table 2: Vector space dimension of n×n (n odd) type A matrices = (n2−2n+3)/2.

Table 3: Vector space dimension of n×n (n even) type A matrices = (n2−2n+2)/2.

It is easy to see that the bounds in Table 1 are exact, for if we omit one of the

grey cells in either table then we are able to construct a matrix that is not of type

A (unless we stipulate the kernel matrix condition of weight zero). For the kernel

matrices the vector space dimension can be represented by removing the central

grey cell in the first table and the top left grey cell in the second table. Hence the
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dimension for the kernel matrices is one less than that of the matrices with non-zero

weight, as expected.

We can use similar arguments to obtain the dimensions of the vector spaces of

kernel type A and type B matrices, with the extra condition that the matrix be either

symmetric or anti-symmetric. For kernel type A symmetric/anti-symmetric we find

respectively, that the second/leading principal diagonal must have each entry 0, and

for kernel type B that both principal diagonals must have each entry 0. In each case,

choosing the possible entries for the first row, determines the first column, nth row,

and nth column. Similarly, the second row determines the second column and the

(n − 1)th row and column. Hence the counting argument proceeds in a concentric

fashion ending up in the centre of the matrix. The resulting dimensions are given

below in Table 4.

Type A Sym Type A A-sym Type B Sym Type B A-sym Totals

n=2m+1 odd
(n−1)2

4
(n−1)2

4
(n−1)(n+1)

4
(n−1)(n−3)

4 (n− 1)2

n=2m even
n(n−2)

4
n(n−2)

4
n2

4
(n−2)2

4 (n− 1)2

Table 4: Vector space dimensions for kernel type A and type B, symmetric and
anti-symmetric n× n matrices.

In both Table 1 and Table 4, it can be seen that each row sums to (n − 1)2,

which is the dimension of the vector space of kernel type S matrices. This confirms

the results of Lemmas 2.1, 2.3 and 2.5, which together imply that every type S

kernel matrix has a unique representation as a linear combination of the four types

of matrix considered in Table 4.

The dimension of the set of all kernel n× n matrices is always one less than the

set of weighted n × n matrices. A nice way of viewing this is to consider the group

M of all non-singular weighted n× n matrices, so that for each matrix M ∈ M we

define the mapping φ such that

φ : M → MIL, where IL =

(

I − 1

n
E

)

. (6.1)

Then φ : I → IL, and ILIL = IL. Using Lemma 2.2 we can write M = L + wE so

that

φ(M) = (L+ wE)

(

I − 1

n
E

)

= L+ wE − 1

n
LE − w

n
E2 = L. (6.2)

Hence φ maps M onto its kernel matrix and similarly it can be seen that φ(L) = L.

As M is non-singular, there exists M−1 ∈ M with kernel matrix L∼1, where

LL∼1 = L∼1L = IL. If we define N to be the image of the set M under φ, then N is

the set of all kernel matrices L that have a pseudo-inverse kernel matrix L∼1, which

satisfy LL∼1 = IL. Under the normal definitions of matrix multiplication we see
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that N forms a group with identity IL, as the inverse of L1L
∼1
2 is given by L2L

∼1
1 ,

which is in N as M1M
−1
2 ,M2M

−1
1 are both in M.

7 Matrix p-Norms

The operator p-norm of an n× n matrix A ∈ R
n×n is defined by

‖A‖p = max
x∈Rn

‖x‖p≤1

‖Ax‖p = max
x 6=0

‖Ax‖p
‖x‖p

, (7.1)

where ‖x‖p =
(

∑n
j=1 |xj |p

)
1
p
(x ∈ R

n) is the usual vector norm defined for p ≥ 1.

For p = ∞, the vector norm is defined as ‖x‖∞ = maxj∈{1,...,n} |xj| (x ∈ R
n). It

is well known that ‖A‖1 is the maximum column sum and ‖A‖∞ the maximum

row sum of the matrix of absolute values of A. For p = 2, there is the relationship

‖A‖2 = ρ(ATA)1/2, where ρ denotes the spectral radius, i.e. the maximal absolute

value of an eigenvalue. For other values of p, no simple expressions of ‖A‖p in terms

of the entries of A are known.

An interesting observation due to N. J. Higham concerning the matrix p-norm of

a semi-magic square is given in the following Proposition 7.1 (see page 115, Problem

6.4 of [4], and also [12]).

Proposition 7.1. Let M = (mij)i,j∈{1,...,n} be a type S matrix with weight w, and

let p ∈ [1,∞].

(a) Then ‖M‖p ≥ n|w|.

(b) If either all entries of M are non-negative or all entries of M are non-positive,

then ‖M‖p = n|w|.
Proof. (a) Using the test vector 1n := (1, 1, . . . , 1)T ∈ R

n, we obtain from (7.1)

that

‖M‖p = max
x 6=0

‖Mx‖p
‖x‖p

≥ ‖M1n‖p
‖1n‖p

=
‖nw1n‖p
‖1n‖p

= n|w|.

(b) By the Riesz-Thorin interpolation inequality (see Theorem IX.17 in [11]),

‖M‖pt ≤ ‖M‖1−t
p0 ‖M‖tp1 , (7.2)

where 1 ≤ p0, p1 ≤ ∞, t ∈ [0, 1] and

1

pt
=

t

p1
+

1− t

p0
.

Specifically for p0 = ∞, p1 = 1 and t = 1/p, this gives

‖M‖p ≤ ‖M‖
1
p

1 ‖M‖1−
1
p

∞ . (7.3)

If the entries of M are non-negative or non-positive throughout, then ‖M‖1
and ‖M‖∞ are both equal to the (constant) column and row sum n|w|, and it

follows that ‖M‖p ≤ n|w|.
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The last result on the p-norm of non-negative type S matrices can be used to

obtain estimates for the p-norm of kernel (i.e., weight 0) matrices L. The following

is a simple upper bound on the basis of convexity.

Corollary. Let L = (lij)i,j∈{1,...,n} be a type S matrix with weight 0 and set

w+ = max
i,j∈{1,...,n}

lij ≥ 0, w− = max
i,j∈{1,...,n}

(−lij) ≥ 0, w0 = min{w+, w−};
(7.4)

furthermore, let α ≥ 1 be such that

{w+, w−} = {w0, αw0}. (7.5)

Then

‖L‖p ≤ nw0

(

α

1 + α
(1 + αp−1)

)
1
p

(7.6)

for all p ∈ [1,∞).

Proof. For the matrix-valued function L(x) = L − xE (x ∈ R), Proposition 7.1

implies that

‖L(x)‖p = n|x| (x ∈ R \ (−w−, w+)).

For each fixed u ∈ R
n \ {0},

‖L(x)u‖pp =
n
∑

j=1

|(Lu)j − xnu|p (x ∈ R)

where u = 1
n

∑n
j=1 uj , is a sum of convex functions, hence convex, and bounded

above by (n|x|)p‖u‖pp on R \ (−w−, w+). Hence

‖L(x)‖p ≤ n

(

w−w+

w+ +w−
(wp−1

− + wp−1
+ ) + x

wp
+ − wp

−

w+ + w−

)
1
p

.

Specifically for L = L(0), this gives (7.6).

To put this upper bound into perspective, we note that for any n× n matrix L,

the trivial bound

‖L‖p ≤ nw0α (7.7)

holds, as can be seen by estimating each matrix entry by its absolute value and

applying Hölder’s inequality in

‖Lu‖pp =
n
∑

j=1

∣

∣

∣

∣

∣

n
∑

k=1

ljkuk

∣

∣

∣

∣

∣

p

.

In the special case α = 1, in particular if L is a type A kernel matrix, (7.7) coincides

with (7.6); moreover, the trivial bond is sharp for type A kernel matrices if 4 | n.
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Indeed, consider the n
2 × n

2 matrix

A =















1 −1 · · · 1 −1
−1 1 · · · −1 1
...

...
. . .

...
...

1 −1 · · · 1 −1
−1 1 · · · −1 1















;

then

L =

(

An −An

An −An

)

is a type A n× n matrix with weight 0 and ‖L‖p ≥ 2nw0, as can be seen using the

test vector u = (1,−1, . . . , 1,−1;−1, 1, . . . ,−1, 1), where the semicolon separates the

first n
2 entries from the rest.

Lemma 7.2. Let L = (lij)i,j∈{1,...,n} be a type S matrix with weight 0 and w0 as in

(7.4). Then

‖L‖1, ‖L‖∞ ≤ (2n− 2)w0, ‖L‖2 ≤ nw0.

These inequalities are sharp.

Remark. The fact that ‖L‖1 and ‖L‖∞ have the same sharp upper estimate in

Theorem 7.2 does not mean that ‖L‖1 = ‖L‖∞ in all cases; for example, the kernel

matrix of Dürer’s square (2.2) has w0 = 15/2, ‖L‖1 = 16, ‖L‖∞ = 24. This example

also shows that the above estimates are not equal to the norm in general.

Nevertheless, there is the following general symmetry between the norms for

conjugate exponents (see [4] eq. (6.21)).

Lemma 7.3. Let M be an n×n matrix and p, q ∈ [1,∞] such that 1
p +

1
q = 1. Then

‖M‖p = ‖MT ‖q.

Proof of Lemma 7.2. We use the matrix IL defined in (6.1). By a straightforward

calculation,

‖IL‖1 = ‖IL‖∞ = 2− 2/n.

Now by (6.2) we have MIL = L, where we take M = L ± w0E (choosing the sign

such that M has all non-negative or non-positive entries), and hence, by Proposition

7.1(b), we obtain

‖L‖p = ‖MIL‖p ≤ ‖M‖p‖IL‖p ≤
(

2− 2

n

)

nw0 = (2n− 2)w0 (7.8)

for p ∈ {1,∞}. For p = 2, we note that IL is a symmetric projector (i.e. idempotent

matrix) with characteristic equation 0 = λ(λ− 1)n−1, so that the spectral radius of

ITL IL is just 1, and so ‖IL‖2 = 1. Estimating as in (7.8), we find ‖L‖2 ≤ ‖M‖ = nw0.

These estimates are sharp, as can be seen by taking L = IL and noting that w0 = 1/n

in this case.
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Comparing the upper estimates in the Corollary to Proposition 7.1 and Lemma

7.2, we see that in the case p = 2, the latter bound is always better. For p = 1 (and

correspondingly p = ∞ in view of Lemma 7.3), however, it will depend on n and α

which of the two upper bounds is smaller.

Taking the smaller upper bounds for p ∈ {1, 2}, using the interpolation inequality

(7.2) with p0 = 2, p1 = 1, t = 2
p − 1 for p ∈ (1, 2) and the symmetry Lemma 7.3, we

arrive at the following bound.

Theorem 7.4. Let L = (lij)i,j∈{1,...,n} be a type S matrix with weight 0, p ∈ [1,∞],

and w0, α as in (7.4), (7.5). Then, reading 0 for 1
∞ ,

‖L‖p ≤ nw0

(

min

{

2− 2

n
,

2α

1 + α

})

∣

∣

∣

2
p
−1

∣

∣

∣

.

The following theorem gives a lower bound for the p-norm.

Theorem 7.5. Let L = (lij)i,j∈{1,...,n} be a type S matrix with weight 0, w0 as in

(7.4), and p ∈ [1,∞]. Then, reading 0 for 1
∞ ,

‖L‖p ≥ 2w0 max{n− 1
p , n

1
p
−1};

in the cases p ∈ {1,∞} this inequality is sharp.

Proof. Let i, j ∈ {1, . . . , n} be such that w0 = −lij, and consider the test vector

v = (1, 1, . . . , 1,−1, 1, . . . , 1)T , where the −1 is in the jth position. Then, using the

fact that the ith row of L adds up to 0, we find that

(Lv)i =
∑

k 6=j

lik − lij = −2lij = 2w0,

so ‖Lv‖p ≥ 2w0; and as ‖v‖p = n
1
p , this implies ‖L‖p ≥ 2n−1/pw0. This is our lower

estimate if p ≥ 2; hence the case p < 2 follows by Lemma 7.3, noting that LT is

another type S matrix with weight 0.

If p ∈ {1,∞}, the lower bound is sharp; indeed, the matrix

L =















1 0 · · · 0 −1
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
−1 0 · · · 0 1















has w0 = 1 and ‖L‖1 = ‖L‖∞ = 2 = 2w0.

There is a widening gap between the upper and lower bounds of Theorems 7.4

and 7.5 as the dimension n of the kernel matrix L grows. For example, for the kernel

matrices of traditional magic squares, we have w0 =
n2−1
2 , so the upper bound grows

like n3 while the lower bound has growth between n3/2 and n2, depending on the

value of p.
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While we know that both estimates are best-possible for p ∈ {1,∞}, one could

hope for some improvement for the other values of p. We expect that there is some

loss in the first inequality of (7.8), since the vector 1n, which is a maximising eigen-

vector for ‖M‖p by the proof of Proposition 7.1, is in the null space of IL. Further-

more, Riesz-Thorin interpolation between p = 2 and p ∈ {1,∞} is very likely to

overestimate the p-norm of IL.

A possible approach to finding the p-norm of a kernel matrix L (or specifically

the matrix IL) is to look for critical vectors of the ratio

r(u) =
‖Lu‖pp
‖u‖pp

,

which will include the globally maximising vector û such that ‖L‖p = r(û)
1
p . This will

involve differentiation of the p-th power of the absolute value function; specifically,

d

dx
|x|p = p x(p−1) (x ∈ R \ {0}),

where x(p) := |x|p−1x is the signed p-th power of x.

For any u ∈ R
n \ {0}, the partial derivative of r(u) with respect to uj is

∂jr(u) = ∂j

∑n
k=1 |

∑n
m=1 lkmum|p

∑n
k=1 |uk|p

= ‖u‖−2p
p









n
∑

k=1

p

(

n
∑

m=1

lkmum

)(p−1)

lkj



 ‖u‖pp − ‖Lu‖pp p u(p−1)
j





= p‖u‖−p
p





n
∑

k=1

(

n
∑

m=1

lkmum

)(p−1)

lkj − r(u)u
(p−1)
j



 .

Hence, if u is a (non-null) critical vector for r, then

0 =

n
∑

k=1

lkj

(

n
∑

m=1

lkmum

)(p−1)

− r(u)u
(p−1)
j (j ∈ {1, . . . , n}). (7.9)

Summing the equations (7.9) over all j and using the fact that
∑n

j=1 lkj = 0, we

also find
n
∑

j=1

u
(p−1)
j = 0 (7.10)

for any critical vector u such that r(u) > 0.

Specifically for the matrix IL, a special case of a type S matrix with weight 0

which has lkm = δkm − 1
n , the critical equations (7.9) take the form

0 = (uj − u)(p−1) − r(u)u
(p−1)
j − 1

n

n
∑

k=1

(uk − u)(p−1) (j ∈ {1, . . . , n}), (7.11)

where u := 1
n

∑n
k=1 uk. Clearly, if u = 0, then ILu = 0 and therefore

r(u) =
‖ILu‖pp
‖u‖pp

= 0, (7.12)
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and the ratio is homogeneous, so we can assume w.l.o.g. that u = −1 in the following.

Setting c := 1
n

∑n
k=1(uk +1)(p−1) and vj := u

(p−1)
j , we can then rewrite (7.11) in the

form
(

v
( 1
p−1

)

j + 1

)(p−1)

= r(u) vj + c (j ∈ {1, . . . , n}),

which shows that all vj are abscissae of points where the straight line of slope r(u)

and intercept c crosses the graph of the function

gp(x) = (x(
1

p−1
) + 1)(p−1) =











(x
1

p−1 + 1)p−1 if x ≥ 0

(−(−x)
1

p−1 + 1)p−1 if x ∈ [−1, 0]

−((−x)
1

p−1 − 1)p−1 if x ≤ −1.

By considering the first and second derivatives of gp, we can see the following prop-

erties, assuming p > 2 without loss of generality (see Lemma 7.3). The function gp is

strictly increasing throughout, with derivative g′p(x) ∈ (0, 1) if x < −1. The function

gp is strictly concave in (−∞,−1)∪ (0,∞) and strictly convex in (−1, 0). Moreover,

gp(−1) = 0 = g′p(−1); gp(0) = 1 and g′p(0) = ∞.

Further, we note that ‖IL‖p ≥ 1, since any vector orthogonal to 1n is invariant

under multiplication with IL, so we are only interested in the case r(u) > 1.

Now we observe that a straight line of slope r(u) > 1 can intersect the graph of

gp in at most one point to the left of −1; that such a straight line which intersects

the graph to the left of −1 does not intersect it at all in [−1, 0]; and that any straight

line intersects the graph of gp in no more than two points to the right of 0, due to

strict concavity.

From the fact that
∑n

k=1 uk = −n and from (7.10) we conclude that there must

be some vj < −1 and some vj > 0. Hence we obtain the following theorem.

Theorem 7.6. Let p > 2 and u ∈ R
n \ {0} be a critical vector for the ratio (7.12)

with r(u) > 1. Then the set {uj | j ∈ {1, . . . , n}} has at least two and at most three

elements.

Remark. More precisely, if, in the situation of Theorem 7.6, additionally u = −1,

then {uj | j ∈ {1, . . . , n}} has exactly one negative (in fact, less than −1) and either

one or two positive elements. (7.12) with r(u) > 1 and u := 1
n

∑n
k=1 uk = −1.

Theorem 7.6 shows that the search for a maximising vector for ‖IL‖p only needs

to consider critical vectors with either two or three different values. Moreover, due

to the invariance of IL under simultaneous identical permutations of its rows and

columns, any permutation of the entries of a critical vector will give another critical

vector with the same r(u), so it only matters how often the two or three values are

repeated in the vector.

In the two-value case, the situation is quite clear and can be summarised as

follows.
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Theorem 7.7. If p > 2 and u ∈ R
n \ {0} is a critical vector for the ratio (7.12)

with two different values, repeated k and n− k times, where k ∈ {1, . . . , n− 1}, then

r(u)
1
p = fp

(

k

n

)

,

where

fp(x) = ((1− x)q−1 + xq−1)
1
q ((1− x)p−1 + xp−1)

1
p (x ∈ [0, 1]),

1
p + 1

q = 1.

Clearly fp(1− x) = fp(x) (x ∈ [0, 1]) and fp(
1
2) = 1, so it is sufficient to consider

k ∈ {1, . . . , ⌊n2 ⌋}. Theorem 7.7 gives the following lower bound for the p-norm of IL.

Corollary. For any p ∈ (1,∞) and n ∈ N, n ≥ 2,

‖IL‖p ≥ max
k∈{1,...,n}

fp

(

k

n

)

. (7.13)

Proof of Theorem 7.7. Assume u has the two values a, repeated k times, and −b,

repeated n − k times, where a, b > 0. Then u = k
n a − n−k

n b, and consequently IL

has the two values
n− k

n
(a+ b), −k

n
(a+ b),

repeated k and n− k times, respectively.

From (7.10) we obtain that k ap−1 = (n− k) bp−1, so

a = c (n− k)
1

p−1 , b = c k
1

p−1

with some c > 0. Then

‖u‖pp = k ap + (n− k) bp = cp(k (n − k)
p

p−1 + (n− k) k
p

p−1 )

and

‖IL u‖pp = (a+ b)p (
k(n − k)

n
)p (

1

kp−1
+

1

(n− k)p−1
);

hence

r(u) =
(a+ b)p−1

cp−1

kp−1(n − k)p−1

np

(

1

kp−1
+

1

(n− k)p−1

)

=
1

np

(a+ b)p−1

cp−1
((n− k)p−1 + kp−1)

=
1

np
((n− k)q−1 + kq−1)p−1) ((n − k)p−1 + kp−1),

where we have used

a+ b

c
= (n− k)

1
p−1 + k

1
p−1 = (n− k)q−1 + kq−1

in the last step.
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A lower bound for ‖IL‖p, such as given in Corollary 7, is not helpful in (7.8),

where an upper bound is required. Thus, critical vectors u with three different values

will also need to be considered, as they may conceivably give rise to a higher ratio

r(u)
1
p than the maximum value on the right-hand side of (7.13).

Unfortunately, critical vectors with three different values are much harder to

analyse than the two-value vectors of Theorem 7.7, where equation (7.10) can be

used essentially to linearise the critical equations (7.11). Here we have a system of

three non-linear equations which apparently does not allow explicit solution and

has a variable number of solutions. Through analysis of this equation system and

numerical experimentation, we discovered that in some situations critical vectors

with three different values exist and may have a ratio r(u) greater than that of

any two-value critical vector with the same repeat count for the negative value;

for example, when we take p = 3 and the vector u ∈ R
27 which has entries 4.918

(repeated 6 times), 7.888 and −3.22 (repeated 20 times), then r(u) = 1.15617, while

f3(
7
27 )

3 = 1.15573. However, in dimension n = 27, the maximum ratio, for p = 3,

for two-value critical vectors will be f3(
2
27 )

3 = 1.31476. We do not know of any

example of a three-value critical vector which would raise the norm ‖IL‖p above the

maximum in (7.13).

This leads to the following conjecture:

‖IL‖p = maxk∈{1,...,n} fp(
k
n) for all p ∈ [1,∞] and n ∈ N, n ≥ 2.
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