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Abstract 

 

The design and proper operation on the above-ground drainage systems can be challenging in a 

densely populated city like Hong Kong.  

 

Discharge loading imposed to a single vertical stack can be large enough that those systems 

without a proper design, installation or maintenance would suffer problems such as backflow of 

foul water, contaminated foul air, or even soil waste to the sanitary fitments at lower floors. Any 

of these nuisances can be regarded as failure because the soil and waste water cannot be 

properly disposed away from a building. The risk of such a failure would be higher in densely 

occupied tall buildings. SARS outbreak in 2003 revealed that the consequence of failing to 

properly manage the drainage system can be as serious as a fatal disaster.  The contaminated 

aerosols, with water droplets with the microorganisms are fatal to human like the SARS virus 

since it will flow back to the living environment. 

 

This research aims at proposing advanced design and monitoring practices upon the drainage 

system and its components, to minimize the risk of failure and nuisances occurrence. A brief 

review on several types of failure will be gone through.  Besides, a simulation model has been 

established to predict the air pressure in drainage system.  The result will be compared with 

those from real 1:1 test-rig experiments. This assists the development of innovative inventions 

of system components such as 8S twin drainage stack which is designed to self-balance air 

pressure generated by falling water discharge in drainage stack. It ensures better protection of 

water seal in traps. Smart trap is available to enlarge retention time of water seal due to 

evaporation. Regarding the management of existing installed drainage system, a protocol has 

been proposed to troubleshoot the nuisances.  It includes remote-control air pressure monitoring 

and statistical analysis with the development of probability density functions to decide future 

remedial engineering measures. All of these are integrated as a risk management model aimed 

to reduce the risk of occurrence of the nuisances. 
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Chapter 1 Introduction 

 

1.1 SARS Outbreak:  Drainage system can kill? 

In year 2003, a disease outbreak occurred in a residential estate, named Amoy 

Gardens, in Hong Kong. The pathogen to be responsible for the disease is a new 

virus, abbreviated as SARS-CoV {“SARS” stands for Severe Acute Respiratory 

Syndrome and “CoV” stands for coronavirus}. The transmission of this virus has 

induced a total of 1,755 infected cases in Hong Kong, with fatalities. In the 

private residential estate Amoy Gardens alone, the Department of Health in 

Hong Kong announced that there are 321 confirmed cases occurred with 42 

fatalities reported during the epidemic period i.e. between March and April in 

2003. 

 

Environmental investigation has been conducted by the World Health 

Organization (WHO) in that residential estate afterwards.  Their investigation 

report (WHO 2003) advised that one of the hypotheses to explain the Amoy 

Gardens outbreak was the virus transmission through a contaminated drainage 

stack.  Besides, it was believed that the seal in water traps has dried up and thus, 
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lost their function to isolate the drainage pipework from the occupants’ living 

space. As a result, design of the drainage systems has attracted attention among 

the public after the outbreak, when it was widely aware that a dried-up water 

trap can be risky and that the fatal virus may enter their flats via a dried-up trap. 

 

Apart from the water trap, other abnormalities observed from building drainage 

system also caught attention among the public.  In a Hong Kong Government 

Press Release (2004), there are complaints from public housing tenants that their 

flats share communal drainage pipes with adjacent units and so, they are 

suffered from cross-flow of sewage to (or from) the adjacent unit after toilet 

flushing. In response to these complaints, the Housing Authority, the 

governmental department responsible for the management of public housing 

estates, launched a “Drainage Ambassador” scheme that door-to-door inspection 

of the indoor drainage facilities of public housing units was conducted. During 

this exercise, damaged or leaking pipelines were found and repaired, together 

with other maintenance working such as replacing pipe brackets, and repairing 

or replacing water traps.  
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At the same time, operation and maintenance engineers, who were working in 

buildings with different types of use, had some other findings. The complaints 

they received were mainly related to drainage system performance, such as flow 

problems in the drainage system and components like water overshoot from 

water closets, cross-flow among adjacent fitments, or foul smell in rooms 

installed with drainage pipeline or sanitary fitments. 

 

This research is conducted to identify an effective approach to manage risks of 

contamination in the drainage system to occupants in high-rise buildings due to 

abnormalities on sewage water flow, or improper operation and maintenance of 

the system. 

 

1.2  Research Questions  

The overarching research question in this thesis is: 

In order to enhance the performance of drainage system in high-rise building 

and hence to prevent recurrence of fatal incident like SARS disease outbreak, 

what can be done in order to rectify the current practice, if needed, for future 
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design; and what can be done to troubleshoot common pitfalls in existing 

drainage system? 

 

To answer this overarching research question, the following lines of research 

questions in the subset of overarch are to be addressed: 

1. Is the drainage system really responsible for the spread of virus in the SARS 

outbreak case? Which system component(s) appears to be more 

“responsible” to the viral transmission? 

2. What are the possible causes or mechanisms of environmental contamination 

imposed from the drainage systems? 

3. What are the typical abnormalities encountered during the use of high-rise 

drainage system, particularly in Hong Kong? How do these abnormalities 

come out? 

4. Can any design or management solutions be provided to suit the engineering 

practices in Hong Kong, and to minimize the risk of environmental 

contamination by the building drainage system, in order to reduce the chance 

of abnormalities occurrence and indoor environment contamination? 
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1.3 Research Objectives 

To answer each of the research questions, it is necessary to outline the objectives 

to be achieved in this study: 

 

1. To identify the critical drainage system component that is responsible for the 

contamination to the indoor environment. 

2. To identify the causes and mechanisms of environmental contamination 

imposed from the drainage systems. 

3. To identify typical abnormalities encountered when the drainage system is in 

use. 

4. To propose new design and management solutions, which are applicable to 

Hong Kong, to reduce occurrence of abnormalities and indoor environment 

contamination and hence, to minimize the risk of pathogen transmission via 

building drainage system as well as the risk of disease outbreaks within 

residential buildings in future. 
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1.4 Review of Main Background Literature 

1.4.1 Sewage Disposal System, Public Health, and SARS Outbreak 

Sewage disposal system has played a significant role on public health (Weiss 

and McMichael 2004). As early as year 1850, disease outbreak via vehicle 

transmission was identified (Hardy 1993, Boobyer 1896, Parkes 1892).  From a 

macroscopic perspective, there is a concern that in today’s developed countries, 

urbanized cities can be served as a “highway” for microbial traffic (Morse 1995) 

which may facilitate the transmission of pathogens and increase the risk of 

infectious disease outbreaks (Weiss and McMichael 2004).  And, Hong Kong 

has no exception (figure 1.1 and 1.2).  

 

 

 

 

 

 

 

 

 

Figure 1.1 shows a congested railway cabin where illnesses can be easily spread 

out via air.  None of the people has prepared mask to prevent breath infection. 
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Some researchers, like Alirol et al. (2007), has proposed that urban environment 

could offer favourable grounds for the spread of epidemics mainly because of 

high population densities (Alirol et al. 2011). However, different opinions have 

been observed with this respect.  The epidemiological analysis reported by Lau 

et al. (2004) on the case of SARS outbreak in Hong Kong reviewed that the 

available evidences did not indicate that frequent visits to crowded area lead to a 

higher likelihood of community-acquired infection. Their analysis also advised 

that even if a person lives in a residential estate with a reported SARS patient, 

this is not a significant factor to the spread.  For the Amoy Gardens infected 

Figure 1.2 Congested buildings in Mong Kok, red circles show 

backlands where very short distance between buildings 
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cases, environmental contamination (the sewage system is, again, the suspected 

source) was probably attributed to the outbreaks. 

 

The exceptional Amoy Gardens outbreak incident was mainly confined within a 

single building block (Block E). It implies that the existence of a route of 

environmental contamination within the same building have played a more 

significant role.  A densely populated setting would probably shorten the time 

required for the virus to reach another person, or allows the infectious pathogens 

to reach a larger number of “patients” along such environmental route. Rather 

than solely blaming on the population density as a cause, there is research which 

supports that the mechanism of environmental transmission would be far more 

important in terms of infection control and prevention. Even though people can 

avoid visiting crowded area, they cannot avoid visiting toilets.  Hence, there is 

no surprise that people have more concerns on the drainage side during the 

outbreak. 

 

Due to shortage of land, there are a significant number of high-rise buildings in 

Hong Kong.  For sewage disposal, it is a common practice to install vertical 
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drainage stack to collect and deliver waste water and soil from the high-rise 

building to the government sewer, to which the public sewer is connected with 

the building drainage system. Since they are interconnected, the building 

drainage part is considered as the “sewage system” as nominated by the 

epidemiological field professions. 

 

1.4.2 A closer look to the building drainage part  

The prevailed hypothesis is that the aerosolized droplets, possibly contaminated 

with the SARS virus, were sucked from the Water Closet to the bathroom via the 

empty trap, and flowing back to the bathroom (Lee 2003), and Yu et al. (2003) 

found that such droplets were discharged to the re-entrant through the exhaust 

fan, and spread to the adjacent flats. In such case the virus travelled in the 

drainage pipework at 16/F of Amoy Garden.  There is concern whether the virus 

travelled only at 16/F or, it also spread to the drainage pipework at other floors 

via the vertical stack.  

 

Hung, Chan and Law et al. (2006) concur to the hypothesis of the vertical 

drainage stack transmission.  Tests have been conducted, by tracer gas technique, 
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to prove that the airflow in the drainage stack can bring the contaminant from 

the 16
th

 floor to reach to 37
th

 floor in a similar high-rise residential building, 

when the water traps at both floors are emptied.  Their study has assumed that 

the aerosolized water droplets behave like gases. Further research conducted by 

Lim et al. (2010) demonstrated that pathogens that can be airborne would exist 

in various particle forms that can float in air.  Its nano-scale size allows them to 

move like gas molecules through the air as Brownian motion. Furthermore, in 

the text book “Fluid Mechanics” authored by Douglas et al. (2005), the 

possibility of upward air transport via drainage stack was also discussed with the 

supports of computer simulation results. Both the tracer gas experiment and 

computer simulation match the epidemiological pattern among flats 7 of the 

above index case. 
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1.4.3 Plumbing Risk Management Guide from World Health Organization 

After the SARS outbreak in 2003, World Health Organization (WHO) has 

issued a document in 2006 on the health aspects of plumbing systems and SARS 

outbreak in Hong Kong has been quoted as one of the reference case. The role of 

plumbers in risk assessment and risk management, including risk recognition, 

risk evaluation and analysis, risk abatement, risk acceptance and risk transfer, 

was discussed.  The WHO risk management guidance mainly focus on the water 

supply side although the document covers both water supply and sanitary 

removal in buildings.  

 

After reviewing the above literature, it is anticipated to focus this research on the 

drainage side.  Risk recognition and risk abatement are applied as a basis to 

achieve the objective of this research which is to minimize the risk of pathogen 

transmission via building’s drainage system as well as the risk of disease 

outbreaks in residential buildings in future. 
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1.5 Risk Management Model of this Research 

O’Donovan (1997) defines the term ‘risk management’ as: “A process where an 

organization adopts a proactive approach to the management of future 

uncertainty, allowing for identification of methods for handling risks which may 

endanger people, property, financial resources or credibility”. On the risk 

management of drainage system operation, the core processes are grouped 

together by developing a risk management model including risk recognition, risk 

control and abatement, risk acceptance and monitoring. Figure 1.3 (in next page) 

shows the structure of the risk management model. In the next section, the items 

shown in the figure will be discussed separately and the methodology adopted 

will be explained. 

 

1.6 Research Methodology 

1.6.1 Risk recognition 

On the risk recognition concerning drainage flow, Chan et al. (2005) reported a 

review on the contemporary drainage engineering practices in Hong Kong, 
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Unnecessary bending(s) was found at the high-rise drainage stacks of some 

residential buildings in Hong Kong. Hydraulic jump would be created at the 

bending(s) of the stack toe to create positive air pressure at the stack (Wise and 

Swaffield 2002). This increases the risk of depletion of nearby water trap seal in 

floor drain traps and water closets. 

This research started by an investigation on the drainage stack in Hong Kong 

high-rise residential building to observe how serious the positive air pressure 

 

Figure 1.3 shows flowchart in Risk Management on Drainage Stack  



14 

problem can be. To explore how a change on the ventilation pipe design can 

prevent positive air pressure problem, 1:1 drainage test rigs were built for field 

investigation. The details will be discussed in chapters 2 and 3. ‘Pearpoint’ push 

rod CCTV system was used to assist the visualization of flow pattern within the 

stack and included in chapter 3. 

 

1.6.2 Modelling the drainage system flow mechanism 

Jack et al. (2005) presented a research on the investigation of the system flow 

mechanism by using the AIRNET model as a tool for interactive flow modeling 

to observe the water curtain behaviour at various air speeds, in particular the 

duration of “closing” of water curtain.   

 

In this research, a different approach has been taken because the main focus is to 

observe how a change on ventilation pipe design would affect the stack pressure, 

to fulfill our objective.  Computational Fluid Dynamics (CFD) simulation is 

found to be more useful with this respect.  It can be applied to observe the 

outcome flow pattern at the vertical section of the stack. In Chapter 4, the flow 
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visualization during field investigation has been incorporated to compare the 

simulation outcome pattern with the real flow pattern.  

 

1.6.3 Risk Abatement (I): Innovative invention on sewage stack ventilation 

Cheng et al. (2008) from Taiwan introduced various design options on zoning 

and also various options on ventilation pipe connections.  A dedicated stack was 

proposed for each zone.  Zoning can effectively reduce the loading on the 

sewage stack.  However, the residential buildings are tightly packed in Hong 

Kong.  The pipework for even a single sewage stack provision is already too 

congested (see figure 1.4) and so, adding extra sewage stack(s) for higher zone(s) 

may not be feasible, especially for residential buildings with 50 storeys or more 

which is usually divided into 3 zones. 

 

 

 

 

  
 

Figure 1.4 shows a congested pipework arrangement. In addition, an opening of 

ventilation pipe where emits foul smell 
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In addition, the facade installed with water pipework is very congested in Hong 

Kong.  If extra sewage stack(s) is provided due to zoning division, more 

bending(s) may be needed to accommodate the pipework, as manifested in the 

case described by Chan et al. (2005), which violates their advice that bending(s) 

should be avoided.   

 

In view of the above concerns, in order to cater for the congested environment in 

Hong Kong, an alternative design approach is needed. A patented new stack 

design named as “8S stack” (twin stack) is developed for this research. Chapter 

4 will explain how CFD model is employed to predict the performance of 8S 

twin stack.   Field measurement for the drainage test rigs will be introduced in 

Chapter 3 although the contemporary stack has been removed and replaced by 

the newly developed 8S twin stack. Further details will be given in chapter 5. 

 

1.6.4 Risk Abatement (II): Water trap seal retention 

After the SARS outbreak, the importance on water trap seal retention attracts 

more attention between the engineering sector and the public. Alternative piping 

and floor drain trap arrangement was proposed by local researcher. It has been 
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proposed to connect the discharge pipe from wash basin to the floor drain’s 

water trap (Yuen et al. 2003) such that a larger portion of water will still flow 

downward to the vertical stack. It is also found that a small portion of water will 

flow to the opposite direction to the floor drain water trap near the basin 

discharge pipe. The drawback of this design is that, if the floor drain is 

unattended, the water in the floor drain trap will be a dead-end.  Water will be 

gathered and becomes stagnant.  It is undesirable because there is no mechanism 

to flush away the floor drain trap water “automatically” (i.e. occupants are not 

required to pour water to the floor drain). 

 

In Singapore, the governmental Sewerage Department’s Code of Practice has 

recommended a “common trap” connection that the floor drain trap acts as a trap 

to the horizontal pipe.  Water from wash basin and the bath will be “collected” 

upstream of floor drain trap.  Water will then pass through the floor drain trap 

and, flows to the vertical stack via the horizontal pipe downstream the floor 

drain trap.  However, there are problems with this design.  The first one is flow 

out of the floor drain grating - water will “flood” to the floor surface near the 

drain grating (Yuen et al. 2003, Lee 2006).  The second problem is water loss 
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due to evaporation still exist.  In case if an occupant leaves a flat for weeks due 

to overseas trip, the wash basin and floor drain will be unattended and dried up 

and, contamination is still possible.  

 

This research focuses on the test of evaporation loss of a trap with a typical 

alternative design. The trap water surface area in contact with air can be 

minimized by the design, as detailed in chapter 5. 

 

1.6.5 Risk Monitoring by Remote Communication System 

Regarding the remote air pressure measurement of drainage system, Gormley et 

al. (2011) has reported a research on the use of a remote system to test whether 

defective water trap seal exists by inducing pressure transient.  The transient 

reflection and the transmission of pressure waves were detected and monitored. 

Remote pressure transient generators, together with pressure traducers were 

installed to the stacks for the detection of feedback signal. According to the 

author team, the operation of pressure transient generation and detection system 

was conducted outside the building.  

 



19 

This sheds light on the development of a set of remote air pressure monitoring 

system which is installed with air pressure sensors along a stack in the selected 

floor levels. In addition to air pressure monitoring, this research takes one more 

step by conducting a probability density functions analysis to evaluate the range 

of air pressure that the vertical sewage stack may be encountered. The level of 

“risk acceptance” or the air pressure level that can be accepted becomes possible 

to be determined, say, by observing at which pressure level the water closets at 

the floors near the stack toe will or will not, have backflow or water seal 

overshooting problem. The remote air pressure monitoring system then serves as 

a tool to assist engineers to decide whether remedial measure should be 

implemented. Chapter 6 will present this part of the research. 

 

Some of the research method and tools will be used in more than one section as 

stated in the above. Table 1 shows the chapter which a single method and tool 

will be demonstrated. 
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Table 1.1 Research method or tool that shared by more than one chapter 

Item Chapters employed the items 

Drainage test rigs 

Ch. 3: Primary Investigation on 

 stack performance 

Ch. 4:  Estimation of air pressure 

 by CFD 

Ch. 5: 8S twin stack development 

Flow visualization: 

(‘Pearpoint’ push rod CCTV system) 

Ch. 3: Primary Investigation on 

 stack performance 

Ch. 4:  Estimation of air pressure 

 by CFD (result comparison) 

Ch. 6: Remote monitoring 

CFD simulation and results 

Ch. 4: Estimation of air pressure 

 by CFD 

Ch. 5: 8S twin stack development 

 

 1.7 Thesis Structure 

This thesis consists of seven chapters. Chapter 1 introduces the research 

background which covers the main research questions and the objectives, the 

literature review on a wider perspective regarding sanitary drainage, its 

influence to public health, and also the possible transmission mechanism on the 

spread of virus in drainage system. A feasible methodology for the study and the 

thesis structure would be developed.  
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Chapters 2 to 6 constitute the main body of the thesis, which are focused on the 

investigation of the flow pattern inside drainage stack and its performance under 

various alternative design options.  They are made by means of simulation, 

experimental set-up and field measurement. Detail of these methods will be 

discussed in the methodology section.  

 

Chapter 2 focuses on risk recognition from the characteristics of drainage water 

and air flow.  There is a review on the formation of hydraulic jump, problems 

arises from the excessive air pressure in drainage stack and the variation of air 

pressure during the discharge process. Malfunction of traps due to various 

reasons, including the influence from the air pressure fluctuation in the system, 

is also discussed in this chapter. 

 

Chapter 3 covers a more detailed investigation on the flow pattern of water 

discharge in a drainage stack, and the performance evaluation. The drainage test 

rig, developed for testing the performance of stack design is also introduced in 

this chapter. 
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Chapter 4 aims to develop, by means of Computation Fluid Dynamics (CFD) 

simulation.  It is a prediction method on air pressure inside a drainage stack 

ventilated under a specific design of the ventilation pipe arrangement (if vent 

pipe is provided). Observations on flow pattern in chapter 3 are adopted as a 

reference. Field measurement is conducted by the installation of stack (and 

ventilation) pipe with similar size and ventilation arrangement to the design that 

is simulated by the CFD. Comparison between simulation results and field 

observation is presented. 

 

Chapter 5 introduces the development of an innovative invention for the control 

of air pressure inside drainage stack. The evaporation testing of a new water trap 

design is also presented. The new design approaches serve as risk abatement 

measures on indoor contamination from drainage pipe caused by flow 

abnormalities aroused by excessive pressure, or those by dried-up water traps. 

 

Chapter 6 covers the risk monitoring of the determination on level of acceptance, 

by developing data communication and drainage stack monitoring techniques. 

Field application case study is also presented. 
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Chapter 7, the final chapter, summarizes the major research findings and draws 

conclusions relating to the research questions as stated in the beginning of this 

thesis. Based on the findings, recommendations are then made for future design 

revolutions and new monitoring techniques for monitoring the flow in building 

drainage system and water retention condition in traps. 
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Chapter 2 Risk Recognition 

 

2.1 High Discharge Loading to the Vertical Stack and its Risk  

In a high developed community and dynamic working place like Hong Kong, 

people spend long time in their working space due to the long working hours 

culture in Hong Kong. Most of the commercial buildings in Hong Kong are 

usually taller than 20 storeys and the maximum can reach more than a hundred 

storeys.  Quite many of them are occupied for a long time during business days. 

Peak utilization depends on the usage pattern of the occupants, while usually in 

day time, particularly near lunch hour.  For some premises such as shopping 

mall, night time is also the peak period. Utilization is reduced in mid-night 

sleeping hours. Distribution of peak time among different buildings for different 

purpose may vary, even if the nature of premises is similar. It is even worse 

when the vertical drainage stack encounters high discharge loading that the risk 

of internal surface scaling can be higher.  It may occur earlier in high-rise 

buildings when compared to lower-rise premises.  The stack is difficult to be 

accessed to conduct cleansing of the internal surface, which raise the risk of 
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partial blockage (cross sectional area of the stack reduced partly) or, risk of 

increased pressure inside to be higher. 

 

As high-rise buildings are closely packed in Hong Kong, the discharge loading 

on both the under-ground and above-ground drainage system is very high. 

Within a commercial complex, the usage pattern varies among different zones. 

The upper tower of the complex is usually office blocks while the lower zone 

podium floors are mainly occupied by shops and restaurants.  Discharge from 

office floors occurs mainly during business hours, while the discharge quantity 

of restaurant floors is larger during meal time, i.e. lunch and dinner hours. High 

usage of sanitary appliances results in a heavy waste water discharge loading to 

building drainage system, at a high discharge flow rate. Risk of pathogen 

transmission occurs in toilets is significant because of high usage of sanitary 

system.  As a result, there is higher chance of air or water backflow from 

drainage pipework to the sanitary fitments inside the occupied area of toilet.  It 

may be distributed to the air by atomization of water into aerosol mist when 

flushing the water closets, or by air flow via emptied floor drain traps. This kind 

of cross-contamination would be much more complicated to deal with, when 
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comparing with contact-borne transmission. Contacts on surface inside toilets, 

say when locking the doors of toilet compartments or, using water tap (if the 

switch is not the automatic sensing type), may be relatively “visible” and draw 

more concerns among the public.  But, the risk of infection by surface contact 

can be reduced by cleaning the surface at risk in toilets more frequently. 

 

The risk of cross-contamination is the lowest when the soil and sewage can be 

completely contained solely within the building drainage system to the 

government sewer without travelling to other occupied location in the building. 

The common causes of failing such confinement include water backflow, 

blockage of pipes and ducts, and leakage or a flow of foul air from the drainage 

system or its vent (Wong et al. 2008a). When these scenarios occur, the risk of 

leakage or backflow of air or water to occupied space by airflow or atomized 

water mist at flushing will be higher. Foul air from drainage system can also 

transmit the pathogen via human bio-waste. As such, the source does not 

necessarily come from adjacent users but also the foul air flow or leakage from 

the drainage stack.   
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2.2 Risk due to failure in retaining water seal in traps   

Unstable water seals of water closet and floor traps as well as leakage of 

drainage pipe and sanitary appliances are common causes of failures to contain 

the waste and foul air within the drainage system but flows back to indoors. 

Whether a water seal can function properly depends if the height of water 

“column” in trap is sufficient to block the smell come from drainage pipe to 

atmosphere.  The trap fails to function if water seal is unstable. To protect the 

water seal at sanitary appliances, it is very important to stop smells and foul air 

coming from the drainage stack. 

 

2.2.1 Trap seal loss due to air pressure transients at the stack nearby 

‘Positive’ & ‘Negative’ air pressure usually exist simultaneously inside the 

drainage stack. They affect water seal of traps in two ways. One is suction of 

water seal back into the drainage system due to negative air pressure. Another 

way is a positive air pressure built-up which pushes out the water seal from the 

trap.  Both of them cause unstable water seals and smells will easily be emitted 

from drainage system to the atmosphere. Figure 2.1 shows water seal suction 

under negative air pressure in drainage stack. Figure 2.2 shows how positive air 
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pressure pushes out water seal to the atmosphere. They exist together in the 

drainage stack and are the main issues addressed in this research. 

 

 

    

 

 

 

 

 

In figure 2.2, the formation of positive air pressure is always found at the toe of 

drainage stack. The smell flows from high air pressure to low pressure zone and 

goes into the atmosphere via the water closet and related sanitary equipment. If 

harmful virus invades our living environment say, our office, our apartment or, 

the related public areas, infectious diseases will be transmitted.  

 

Figure 2.1 shows negative air pressure and 

causes unstable water seal 

Figure 2.2 shows positive air pressure and causes 

unstable water seal 
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2.2.2 Causes of excessive stack air pressure near the traps 

Excessive air pressure is raised due to several causes which includes blockage of 

drainage pipes, excessive discharge to the drainage system, and under sizing of 

pipes and ducts.  However, they have the same outcome: water seal inside the 

trap becomes unstable and smell is released from sanitary appliances. 

 

2.2.3 Importance of water trap seal retention 

The SARS epidemic in 2003 taught us that the drainage system plays an 

important role for environmental public health.  Empty U-traps and excess 

positive and negative air pressure inside drainage stacks are the main concern   

for risk management of building drainage systems (BDS). A healthy system 

requires effective design, careful installation and good maintenance to minimize 

these risks.  
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2.3 Risks Formation Investigation 

2.3.1 Formation of Hydraulic Jump and the Associated Risks  

Formation of a hydraulic jump can be explained by the conservation of energy, 

which includes a hydraulic equation of continuity and conservation. As shown in 

figure 2.3, when there is no leakage of water from the drainage system, water 

downfall flow rate Qt (L/s) inside the vertical stack is the same as flow rate of 

horizontal pipe Qh (L/s). This complies with the hydraulic equation of continuity. 

 

The velocity of downfall inside the stack, Vt, is greater than the velocity of 

horizontal flow Vh. i.e. Vt>Vh. The residual energy is transformed from kinetic 

energy to potential energy. Hydraulic jump occurs at the toe of drainage stack. 
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Water jump at the bottom horizontal main pipe blocks the air flow path and so, a 

positive compressed air pressure zone is built up at the bottom of the stack. The 

positive air pressure forces the water seal in the U-trap to splash back and enters 

the indoor environment. Hydraulic jump becomes a water curtain to stop air 

passing downstream, which results in the accumulation of air at the bending of 

the stack, to build up positive pressure. 

 

Equations 2.1 and 2.2 below demonstrate the comparison between vertical speed 

and horizontal speed of discharge flow. If the vertical speed is larger than the 

velocity flow in an inclined discharged pipe (eq 2.3, Manning’s equation), 

 

Figure 2.3 Front view shows the formation of hydraulic jump and positive air pressure at 

the bottom of drainage stack. 
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hydraulic jump will occur. The equations* for terminal velocity and discharge 

height are shown as below (Zhu 2006, Wang and Zhang 2009): 

 

Vt = 10.7 (Qw/d)
2/5        

(eq 2.1) 

Lt  = 0.1706 Vt
2       

(eq 2.2)
 

Vh = 1/n R
2/3

S
1/2       

(eq 2.3) 

Vt Terminal velocity        m/s 

Lt           Terminal Length to reach terminal velocity m 

Vh  Manning equation 

Qw            Discharge flow (Qt, Qh)             L/s 

d           Diameter of stack        mm 

n Manning number (use 0.015) 

R Hydraulic Radius (assume 1/2 bore flow, use) 

S Gradient (use 0.01)    

*  Also reference to derivation of equations 3.5 and 3.6  in Chapter 3. 
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If water is discharged to a stack at which the diameter is 100mm, water falls 

down.  After passing the bend, the water flow direction changes to the horizontal, 

starting from the toe of the vertical drainage stack. The declined slope of the 

horizontal pipe is 0.01 using 0.015 as the coefficient n for waste water, and R is 

hydraulic radius (0.375 by assuming half full bore). By using equations 2.1 to 

2.3, Vt and Vh are estimated to be 2.4 m/s and 0.9 m/s respectively. Such a 

velocity difference induces hydraulic jump, accumulating positive pressure at 

the toe of stack. Vt is formed below Lt (1m approx.) the below discharge point. 

 

Normally, a small variation of air pressure within Building Drainage System 

(BDS, less than 1 mbar, i.e. 10 mm water pressure) is normal and within 

expectation.  However, for a BDS with high discharge loading, a higher air 

pressure inside the drainage stack will be induced, to break and suddenly destroy 

the water seal inside those traps that are located near the bottom bending end of 

the stack. Figure 2.4 shows water splash from a building’s water closet which is 

a result from excess positive pressure at the stack. 
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Water splash is one kind of energy transfer caused by excessive positive air 

pressure accumulation at the toe of drainage stack. Moreover, air bubbles can 

last for a longer period of time in water seals when air pressure is lower. Figure 

2.5 shows air bubbles coming slower from the water seal of a water closet. 

 

 

 

 

 

 

 

 
Figure 2.4 shows positive air pressure which causes water splash from a 

water closet – flying water drops are spreading 

 

Figure 2.5 shows positive air pressure and water bubbles come from  

water seal of a water closet 
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In Chapter 5, an innovative connection of ventilation pipe will be presented to 

solve the problem of excessive air pressure. Moreover, a creative invention of 

drainage stack is introduced. The patent invention can replace ventilation pipe 

and is now in application. 

 

2.3.2    Malfunction of trap 

A BDS review should not only consider how much air pressure will be 

generated by water discharge, but also to review its defense ability of the system. 

Innovation of type and quality of trap are valuable for further investigation. 

 

To assure the stability of the water seal, air balance within the drainage system is 

necessary. To comply with British Standard BS EN 12056 Part 2 (2000), an air 

ventilation pipe or device is required to protect the water seal of trap. 

Malfunction of trap means that there is no negative air pressure ventilation 

inside the drainage stack.  
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It is a usual practice to install an anti-siphon valve for a basin. The purpose of 

anti-siphon valve is to act as a negative pressure device. It can break the partial 

vacuum created that will cause emptying of the water seal in the trap. When 

there is a fast water flow down the main stack, suction occurs and this draws the 

water seal from the trap and the air from ventilation valve to balance this 

negative air pressure. Moreover, when the soil stack momentarily exceeds the 

design flushing water flow rate, the flush water mass can fill up part of the soil 

pipe. This mass of water compresses the air in front of it and creates a partial 

vacuum behind it. As a result, the pressure at the drain trap outlet always 

fluctuates about the vented atmospheric pressure with transient positive and 

transient negative fluctuation. Partial vacuum on the U-trap can draw up the 

 
Figure 2.6 shows standard of trap with ventilation device 
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sealing water in the U-trap. The water sealing between the drain point and the 

main stack cannot function properly if the U-trap is dried. 

 

Proper installation of U-traps for sealing the floor drains from the main stack is 

important to reduce the risk of foul air release or even the aerosolized pathogen 

from the bio-waste to the indoor living environment, while the air valve of anti-

siphon U-trap can keep closed tightly under the testing positive pressure. 

Although a plastic sealing valve disc has the sealing effect (Chan et al. 2008a),  

the plastic sealing valve disc may deform when it is used for a period of time 

such that the sealing ability is reduced, leading to a malfunction at the trap.  

Figure 2.6 shows the weakness of a moveable non-return valve that can be 

damaged easily due to degradation after use, or due to an inadequate quality 

control during manufacturing.  

 

 

 

 

 

 Figure 2.7  shows A gasket anti-siphon valve disc stained with rust in the U-trap 
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In addition, a smart trap design will be presented to reduce the risk of trap-seal 

loss that the water seal can be retained for a longer period of time. 

 

2.3.3 Field measurement - A case of excessive air pressure in drainage stack 

The building drainage system is used for the discharge foul water and the 

drainage stack is a core member and collects discharge from different flats. For 

foul drainage, the design objectives are to limit the liquid flow and allow a 

greater portion of section area of the pipe for air balancing. According to 

common practice, only 1/4 to 1/3 of the cross sectional area of the pipe or stack 

is occupied by water during the discharge. The drainage stack not only 

discharges water but also serves as a primary ventilation pipe as well.  If all the 

trap seals are depleted, an air path is established since the pipes and stack 

connect all the flats inside the building together. 

 

To verify the possibility of airflow generation from the empty floor drain trap to 

the occupied space, a field investigation was performed by Hung et al. (2006) in 

a vacant 41-storey building. Figure 2.7 illustrates the drainage system serving 

the flats under investigation.
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There are two bathrooms in one flat, which are served by a single drainage stack 

with 150 mm in diameter. The stack is connected with a ventilation pipe of size 

100 mm, installed 3 m apart from the water stack. Horizontal ventilation pipes 

 

Figure 2.8 Vertical schematic of the drainage stack in the field study building. 
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are connected to the sanitary appliances. Such horizontal ventilation pipes are 

connected to the water discharge stack, such that one horizontal ventilation pipe 

will be provided for every four floors. 

 

The condition of the floor drain traps was checked by pushing a wire into the 

bottom of the water trap. If the trap contained any water, the wire end should 

emerge wet. Otherwise, if the wire end was still dry, the floor drain trap was 

considered to be dry. The floor drain trap at the 10th floor was found to be dry 

before the measurement process began. While the cause of this observation is 

still unknown, insufficient water-refilling to the trap during the vacant building 

maintenance process performed by the property management is the most likely 

explanation. During the investigation, a total of nine flats between floors 20 and 

41 along a vertical line were selected for water discharge. Since there are two 

washrooms in each flat (only a single discharge stack is provided to serve both), 

a total of 18 washrooms were selected. 

 

Water was discharged to the stack by turning ON both the bath tub tap and the 

shower head in all these washrooms. All the selected water taps were turned ON 
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to the maximum flow position. The discharge flow rate from each water 

discharge point was estimated using a flow meter cup as shown in Figure 2.9.  

Total water discharge rate to the vertical drainage stack was approximately 2.3 

L/s i.e. the sum of all measured water flows from discharge points, after turning 

ON each of the appliances and the water flow becomes steady. For all water 

discharge fitments, the maximum flow position was fixed during the 

measurement process. Near the 10th floor dry trap, a microprocessor-based 

anemometer was located for air velocity measurement. The instrument, Dantec 

54N50 low velocity flow analyzer, measures air velocity either in centimetres 

per seconds or in metres per seconds. 

 

The velocity range of the instrument is 0-100 cm/s, with a final accuracy of ±1 

cm ±/5% in 5-/100 cm/s, or 0-/5 m/s with a final accuracy of ±5% in 0.25-/5 m/s. 

The toilet door was closed and the exhaust fan was switched OFF. It was 

observed on the 7th to 10th floor washrooms that water was being expelled from 

the water closets (WCs). For this reason, the WCs were covered in order to 

prevent water spillage. 
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Under the above-mentioned conditions, the air velocity near the floor drain was 

measured at 3.56 m/s. A paper strip was placed near the vertical grating of the 

floor drain to verify the air flow direction.  It was found that the air current was 

pushing the paper strip away from the floor drain opening (figure 2.10), which 

showed an airflow direction from the drainage pipe to the washroom. 

 

 

 

 

 

 

 

 

Such a high airflow can be explained by the positive air pressure created at the 

pipe offset immediately below the 7th floor. When the fluid from the upper 

floors impinges upon the offset, a local surcharge condition occurs, which 

propagates a positive air pressure transient, and applies positive pressure to the 

water trap seal. During the case study, the floor drain trap on the 7th floor was 

 

Figure 2.10  Verification of airflow direction by placing a 

paper strip near the floor drain. 

 

Figure 2.9  Discharge flow is measured  

By  the cup 
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filled with water. Such positive pressure was high enough to force the water 

inside the trap to flow back to the toilet floor and lead to flooding in the 

bathroom. In the 10th floor dry trap case, an air flow of 3.56 m/s was measured. 

 

The above experiment concluded that, even without air exhaust due to fan 

operation, the positive pressure generated in the drainage system can induce an 

airflow that drives contaminated air from the stack to the toilet. Instead of sizing 

ventilators in toilets to avoid entraining airflow from the floor drain, the 

investigation showed that it is far more critical to prevent excessive airflow 

within the high-rise drainage stack and the consequent positive pressure created 

at drainage stack offsets. However, the mechanical ventilation does have its 

main function, which is to remove odour and moisture build-up in toilets and 

washrooms. The mechanical ventilation system should not be undersized in 

order to avoid airflow created by the fan. Since airflow can actually be induced 

inside the drainage stack, as observed in our experiment, the best practice is to 

size the exhaust fan according to the toilet ventilation requirement, and adopt a 

self-priming design and positive pressure relieving measures to protect the water 

trap seal.  
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In Hong Kong, provision of ventilation pipework is a regulatory requirement.  It 

is required to set up the ventilation pipe opening above the roof level of the 

building. However, the distance between the opening of the pipe ventilation 

system (e.g. at the roof) and the source of positive pressure transient (e.g. at the 

bottom of the stack) is usually very long, which can be more than 100 m for a 

typical 40-storey building.  As such, it is not rare to find that the venting system 

in some high-rise buildings is incapable to relieve positive pressure transients, 

typically at the bottom end of the stack.  

 

In occasional cases, water expulsion from WCs located on lower floors can be 

experienced. To cater for emergency cases, building operation and maintenance 

engineers should implement pressure relief measures, such as installing pressure 

attenuators near the drainage stack off-set location, or any critical water trap 

under high risk of water seal depletion. There are also rooms for improvement 

on the drainage system in order to reduce the risks. The measurements are not 

only for emergency but also for ease of management. At the design stage of a 

drainage system, the first step is to conduct a reasonable estimation on air 

pressure caused by water discharge in the system. However, it is not a common 
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practice in Hong Kong because the testing and commissioning approaches are 

usually based on past experiences only. There is no provision for testing 

requirements to monitor air pressure profiles even in drainage system for new 

buildings. The common practice among residential buildings in Hong Kong  

hardly monitor the air pressure inside the drainage system continuously to 

predict and alert the excessive air pressure inside the drainage stack during 

occurrence.  Actual cause and the risk of foul air or foul water backflow into the 

flats is usually unknown among the occupants. In the coming chapters, a series 

of steps will be introduced on an estimation of air pressure profile in the 

buildings. 
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2.3.4 Hazards caused by drainage stack 

 

 

 

 

 

 

 

 

 

 

In figure 2.11, 3 possible paths for virus transmission can be observed. Source of 

virus is created from water closet user (A1) of upper floor and reach lower floor 

water closet (A2). The second path is leakage (B) from the drainage stack which 

is degraded. The red path from figure 2.10 is the ventilation pipe, and the virus 

can reach the adjacent floor when traps C1 or/and C2 is/are emptied. All of these 

paths become hazards of the establishment of virus transmission path within the 

drainage system. While virus transmission via the drainage network attracts 

 

Figure 2.11 Verification of hazards are caused by drainage defects 
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more attention among the public in the 2003 SARS outbreak incident, there is 

risk of toxic air poisoning caused by the egress of air from drainage system. This 

issue has been addressed by the Council of Labor Affairs in Taiwan (2007) 

where incidents with death and injuries occurred at works relating to cleaning, 

repairing, or water proofing structures in drainage pipes due to inhalation of 

anaerobic air or sulphurated hydrogen gas. This also reminds building users that 

the risk of egressing poisonous gas from drainage system should not be ignored. 

The result of failure on retaining the water seal to block the foul air can be as 

serious as fatalities. The proposed methods to protect the water seal in traps, i.e. 

the defense line, are so important that the safety and health among occupants can 

be protected.  
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Chapter 3  

Primary investigation on the performance of drainage stack 

 

As mentioned in previous chapters, discharging water can induce a positive or 

negative air pressure in the drainage stack. They exist during a single discharge. 

The positive and negative values fluctuate alternatively within the air pressure 

profile which can be obtained by theoretical prediction, or observed from field 

measurement. 

 

3.1    Review Assessment Methodologies for Drainage Stack  

3.1.1 Discharge Units 

The total discharge flow rate from a building to the sewer depends on the usage 

of sanitary appliances. Every sanitary appliance has its own discharge flow rate, 

which can be determined by the flow volume and the time duration of the 

discharge of such flow volume. The structure of discharge grating is also 

influential. For different sanitary appliances, say basin and bath, their discharge 

unit is different because both their discharge pipe size, discharge volume and 

duration are different. 
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The design method published by the Institute of Plumbing (IOP, 2002) is widely 

adopted.  It introduced a great change that unit of discharge unit is defined on 

discharge volume over discharge time and, the discharge flow rate of a sanitary 

appliance can be easily found. The discharge flow rate can be obtained from the 

total discharge unit directly (see equation 3.1).  

                                    

Unit of Q: L/s (eq 3.1)  

 

K is a variable factor with dependence mainly on the frequency of fitment usage. 

This value is dimensionless and ranges from 0.5 to 2. These values are adopted 

from the British Standard BS EN 12056 (2000) and IOP design manual (IOP, 

2002). If there are 240 water closets (WC) connected to the stack, and for each 

single WC the flow rate is 1.82 L/s; according to IOP design manual, K = 0.5 

and Q can be calculated as 10.5 L/s. While the coefficient suggested by BS EN 

12056 for discharge estimation is different from the IOP manual, the results 

come from the above two different standards are reasonably agree with each 

other. Nowadays, both the IOP manual and BS EN 12056 are widely used in 

Hong Kong for drainage pipe design. 

 

http://library.polyu.edu.hk/search~S6?/aInstitute+of+Plumbing+%28Great+Britain%29/ainstitute+of+plumbing+great+britain/-3,-1,0,B/browse
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Estimate the discharge flow is difficult because even for the same sanitary 

appliance with same discharge water volume and same discharge pipe size, the 

grating pattern can be different.  It means that the discharge duration can also be 

different. This also results in different discharge units. Figure 3.1 shows grating 

B has a higher discharge unit. 

 

 

 

 

 

 

The occupants’ behavioural characteristic on the use of sanitary appliances can 

also affect the total discharge rate in the vertical stack, and this may cause flow 

problems due to a change in air pressure with changing discharge rate. 

 

 

Grating A 

 

Grating B 

 

Figure. 3. 1   Grating B has higher discharge flow rate than grating A 
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3.1.2 Formation of falling water volume 

Water discharges from the branch and reaches the drainage stack with a velocity 

(0.5m/s is expected for 100mm branch pipe).  Figures 3.2 and 3.3 show water 

falling from branch to a drainage stack. 

 

 

 

 

 

 

 

 

 
 

Figure 3.2  A branch jet of water striking the solid wall of a test transparent stack pipe  
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From figure 3.3,  

Vt = Terminal velocity      (m/s) 

Lt         = Terminal Length to reach terminal velocity (m) 

dj           = Diameter of stack        (mm) 

 

Once the falling water volume reaches its terminal velocity and attaches to the 

internal wall of the drainage stack with a thickness et, the falling water volume 

looks like a uniform red ring as shown in figure 3.4: 

 

 

Figure 3.3  A branch jet of water flows into drainage stack and generate different velocities 
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In Figure 3.4, friction P and gravity force W are reacted,  

F = ma = W – P      (eq3.2) 

where m is mass of water volume passing in ∆t 

W = mg = Qwρ∆t g        (eq 3.3) 

P = friction =τπdj ∆L     (eq 3.4) 

whereτ is friction in N/m
2
 

For terminal velocity, velocity will be constant and acceleration a = 0, that is 

  

Substitute equations 3.2 to 3.4 into the derivative procedures adopted by 

previous study (Wang and Zhang 2009) gives 

Vt = 10.7 (Qw/d j)
2/5

       (eq 3.5) 

Lt  = 0.1706 Vt
2
      (eq 3.6) 

  Equations 3.5 and 3.6 are same of equation  

Figure 3.4  A water ring falls a depth       L and reach a constant falling velocity Lt 
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During a single water discharge, the water volume can have different falling 

velocities. The initial velocity is assumed to be zero and will increase to Vt after 

falling a height of Lt. In reality, the water volume is not falling along the internal 

wall of a drainage stack at all. Volumetric shape is also not necessary to be a red 

ring. The actual shape can be observed from visual inspection method as below. 

3.1.3 Visual inspection on falling water volume 

A visual inspection was conducted inside a 100mm diameter drainage stack 

which is installed in a domestic building. The building is 35-storey in height and 

the drainage stack is installed at flat 11 as shown in the layout plan (figure 3.5). 

The building is a typical domestic building in Hong Kong. There are 18 flats at a 

single floor and can accommodate a total of almost 100 persons at a single floor. 

For flat number 11 of the building, the service area is about 30m
2
 and a 100 mm 

diameter drainage stack is provided for the bathroom.  The stack serves along 

the whole vertical column of flat number 11, from the topmost 35 floors to the 

first floor at the bottom. The vertical height of the whole drainage stack is about 

107 m. The drainage stack CCTV survey was conducted at various locations 

between the rooftop and G/F. 
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Figure 3.5,  A typical domestic building in high population density  

 

 

 

Figure 3.6  A ‘Pearpoint’ push rod CCTV system for drainage stack investigation 
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A push rod system (Pearpoint system, figure 3.6) was employed for this 

inspection. The push rod was attached with a camera head. The camera can be 

moved forward or backward (i.e. reverse direction) by pushing the rod and it can 

pass through the bending of the pipe. 

 

A visual investigation had been conducted at chainage 100.9 m (near the toe of 

drainage stack, and chainage 0 m is the roof level). From the captured pictures 

(figures 3.7 to 3.9), size of water volume portion is smaller at the beginning of 

the discharge (front of water volume heading downward) and near the end (rear 

of water volume) part of the discharge. It is obvious that the largest size of water 

volume portion is at the middle of the whole falling water volume.  

 

During the fall of the water volume, a thin water ring can be observed and, water 

falls along the surface of drainage stack. However, a large portion of water 

volume is shifted from the wall surface. 

 



57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.7 Head of falling water volume at 100.9 m, picture shows the 

head of falling water which is smaller than 30% sectional area 

of drainage stack 

 

 

 

 

 

   

 

 

Figure 3.8 size of falling water volume is increasing at the middle of falling water 

which is greater than 60% sectional area of drainage stack 
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As stated in section 3.1.1, the whole water volume, falling downward, is 

assumed to move along the internal surface of drainage stack and, the shape is 

assumed as a water ring with thickness et at terminal velocity Vt. 

 

In the captured images above, it can be observed that the water volume is 

divided into two half ellipses during the fall and not in a rectangular water ring 

as assumed. Section of water volume can be adjusted and shown in figure 3.10: 

Figure 3.9 size of falling water volume is decreasing at the end of falling water 

which is smaller than 30% sectional area of drainage stack 
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From this visual inspection, the real shape of the falling water volume can be 

obtained. This observation, together with the information on terminal velocity 

and terminal distance that are available from previous mathematical derivation, 

provides basic concept and for further development by the CFD simulation, 

which will be discussed in the coming chapter. 

 

As observed from CCTV images from figures 3.7 to 3.9, falling water volumes 

are divided into different parts which possess different falling velocity. The 

terminal velocity represents the minimum falling velocity only. In normal cases, 

the falling velocity in a 100 mm diameter drainage stack does not exceed 4 m/s 

for a water volume flow rate at 4.8 L/s (Douglas et al. 2011). Such a discharge 

 

Figure 3.10 Section of water ring can be changed from rectangle to half ellipses  
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flow rate of 4.8 L/s is approximately equal to a simultaneous flush of 100 Water 

Closets (9L capacity) together at the same time. 

3.1.4 Air Pressure inside Drainage Stack 

In Chapter 2, the hydraulic jump phenomenon has been introduced. This occurs 

at the toe of a drainage stack (Figure 3.11). One of the risks is that it can create 

positive air pressure. This pressure results in drainage water and/or foul air 

backflow to an occupied indoor area or the atmosphere and impose a risk of 

contamination in indoor environment.  Hence, the worst consequence can be a 

spread of pathogenic micro-organisms that can endanger our human health. In 

this chapter, the energy principles of this phenomenon are discussed and, 

illustrations under different velocities will be provided. 

 

 

 

 

 

  

Figure 3.11 Hydraulic jump is found at the toe of drainage stack 
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Air pressure is the critical monitoring index to determine whether the drainage 

stack is under the risk of sewage water or foul air backflow towards the 

occupant’s indoor space. The unit of pressure value can be shown as mm which 

is usually applied to height of water seal. 5 mbar air pressure equals to 50 mm 

H2O height difference when observing from the U tube. It is comparable to the 

height of water seal inside the trap of sanitary appliances. If air pressure inside 

the stack is 50mm H2O or larger, it is a significant signal that there is unstable 

water seal at the sanitary fitment side.  The air pressure in the stack can also 

“press” the air to the branch and then press the water “column” inside the trap to 

force the trap water flow up to the floor grating for the floor drain case, or 

overshoot of water at the water closet. Air pressure inside the stack will not be 

static but fluctuating because the quantity of water discharged to the stack is 

changing. This can be verified by means of observation on water discharge in 

real system, and also by CFD simulations. 
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3.2 Drainage Research Platforms 

The development of a drainage research rig is critical for this research in order 

to understand the flow characteristics and to pretest a newly designed drainage 

system component as well as a new arrangement on piping connection. The rig 

also facilitates field experiments for comparison against simulation model that 

the embedded assumptions and operating parameters in computation model will 

be referred accordingly when modifying the rig setup. While one may consider 

conducting field measurements in a real occupied building, the flexibility is 

limited when comparing with test rig.  The operating parameters are less 

controllable and it may not be permitted to retrofit the system according to the 

simulation inputs or piping arrangement. A drainage research test rig offers 

more flexibility to adjust the quantitative discharge in a more precise manner for 

data verification. Two such drainage research rigs have been established - one is 

in Hong Kong, while the other is in Japan.  Their tests’ data are valuable to 

verify the results which are generated from the coming CFD simulations.  
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3.2.1  Discharge Test in Drainage Research Rig 

A 3-storey drainage test rig was built and located in the Industrial Centre of a 

local University in Hong Kong (Wong et al. 2008b). On the test rig, the 

transparent sewage pipe, ventilation pipe and cross-vent connections were 

demountable and the water flow could be adjustable.  This test rig is a 1:1 full-

scale facility for teaching and research purposes.  The major topic was positive 

air pressure phenomenon in building drainage system.  According to the 

experience from Hong Kong high-rise buildings, the risk of failure of the system 

as a result of excessive positive pressure occurred quite frequently. Calibrated 

data from test rig experiment could also be obtained for further investigations. 

The height of test rig was 7 meters (as shown in the schematic diagram figure 

3.1) and equipped with a transparent drainage stack which was unique in Hong 

Kong.  A series of access points along the stack was specified during the 

construction of this rig. Pressure sensors could be installed at these access points 

to record the air pressure profile for the whole system. Down-flow water 

discharge rate could be varied to observe the difference on the air pressure 

profile. The variation on air pressure along the transparent stack, at different 

water discharge flow rate, could also be obtained. The transfer tank at the 
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ground floor was the water source for down-flow test.  The flow rate could be 

varied by operating the two pumps at different mode: single model or twin mode. 

By pumping water to the 50 mm diameter riser, the water flow pass through a 

regulator which could adjust the water flow rate within the range between 150 

L/min to 300 L/min. Water entered a stainless steel discharge box. The 100 mm 

diameter opening at the bottom of the box was connected with a 100 mm 

diameter transparent stack (Fig.3.2) 

  

 

 

 

 

 

 

 

 

 

 

Figure. 3.12 Schematic Drawing of Drainage Rig in the HKPolyU 
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Air pressure transducers manufactured by WIKA are installed to the test rig and 

the accuracy is ±50Pa. ADAM data logger was used to receive signals from the 

transducers and the data was recorded. 

In figure 3.5, the discharge flow was set at angular and water fall down along the 

transparent internal pipe wall. The centre core of the cross-section of vertical 

stack was air.  The air could reach the top of the stack and the open atmosphere 

if the airflow direction was upward. 

 

 

 

Air   

 Water  

 

Figure. 3.13 Water discharge from a tank installed at the ceiling 

Water  

 

100  Transparent 

 Drainage Stack 

75 Air Ventilation Pipe 

Is connected to atmosphere 

Water discharge box is 5.5 m 

above the toe of the stack 
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3.2.2 Discharge Test in a 17-storey drainage research rig 

Since the vertical drainage stack was transparent, the 3-storey rig facilitated a 

microscopic observation on different hydraulic discharge cases and the 

associated variation on stack air pressure. However, to compare the high-rise 

drainage system in Hong Kong, a higher test platform would be more 

representative. 

 

Another drainage test rig was established by the Japan by the China National 

Engineering Research Centre (CNERC) in 2006 at a 17-storey building in Shiga 

(Zhang and Chen 2006), as shown in figure 3.14.  

 

 

 

 

 

 

 

 

Figure 3.14   17-storey Drainage Research Tower in Shiga, Japan 
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This rig facilitated discharge tests according to the Japan testing standard. 

Pressure sensors (Valcom – VPRN-A3), data transmitter and data loggers 

(OMNIACE – RT3424) with filters (9B02 - 3 Hz) were all calibrated with reference 

to the corresponding Japanese standard. 

 

One set of testing data were conducted by CNERC and will be referred in this 

research in a later chapter. In addition, one set of air pressure profile data were 

collected from this research for mathematical simulation in the next chapter. The 

water discharge flow rate was 2.5 L/s from 17/F (as shown in figures 3.5 & 3.6).

Figure 3.15 –Configuration in research rig  and a flow  

test discharge on the 17/F 

 

Figure 3.16 –Air pressure profile along the 

17/ F drainage stack. 
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3.2.3 37-storey Drainage Research Tower in China  

In summer 2012, a taller drainage research tower (Fig. 3.7) started to operate in 

China for research purpose (Zhang and Zhan 2012). The total height of the 

tower was 123m with 37 storeys (3m high for each storey) from the ground, with 

an additional storey underground (4.5m high for the underground storey).  All 

the testing devices and accessorial devices were selected to fulfil international 

standards. 

 

Advanced operating systems were incorporated to this testing tower. The PAC 

control system (Fig. 3.8) could realize PID adjustment of constant flow solenoid 

valve. A variety of switches and electric valves were also installed to control the 

water flow to be constant when needed.  By controlling the water supply 

pump(s), water could be supplied to the lower and higher tanks automatically. 

Three meteorological stations were established to record the atmospheric wind 

speed, air temperature and relative humidity, together with solar radiation data 

via Modbus link to PAC controller on every level in the system.



69 

 

 

 

 

 

 

 

 

For constant flow experiments, the pressing sensors were set to have a 

measurable range between -10000Pa to +10000Pa with a resolution of 5Pa, with 

response cycle of 20Hz; and wave filtration of 3Hz. 

 

Studied parameters includes the air pressure in horizontal pipes, air velocity in 

the vent system of the stack, surface level of water when passing through the 

floor drain, and the water surface level of the flow within the horizontal pipe. A 

pressure range of ±400Pa has been defined for the system as the control 

parameter, and the actuation control can be achieved with reference to the 

feedback signal from flow meter and constant flow solenoid control valve, to 

 
 

Fig.3.7  123 m height of drainage 

research Tower is located at 

Dongguan,  

Guandong China 

Fig. 3.8 Precise automatic valve can discharge exact water 

flow volume into the drainage stack and test  



70 

deliver the desired constant flow output. Other available functions of this 

drainage rig include: 

 Facilitates constant flow experiment 

 Support ware drainage experiments 

 Data acquisition 

 Data analysis 

 Monitoring and control 

 

Research results from this tower are more representative to the real situation in 

typical high-rise buildings in Hong Kong.  The tower is the only experimental 

institute in China that allows technical tests for high-rise and super high-rise 

buildings.  It plays an active role for the enhancement on drainage engineering 

in the Chinese housing industry. In our coming research, experimental data 

received from the above rigs is adopted for further simulation study and data 

verification. 
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Chapter 4  

Estimation of air pressure inside drainage stack 

 

4.1 Computer fluid dynamic (CFD) estimation 

This chapter will investigate some relevant hydraulic models and simulation 

methods which are suitable for this study to investigate the performance of 

drainage stack. Computation fluid dynamics (CFD) simulation and some 

numerical assessments have been executed. The results from the various 

approaches will be compared with the results obtained from drainage rigs 

experiments. 

 

4.1.1 Navier-Stokes Equations used in CFD 

Based on the Euler equations, Claude Louis Marie Henry Navier and George 

Gabriel Stokes modified and created the Navier-Stokes equations, or named as the 

N-S equations (Lappa 2009). This provides groundwork as the foundation of 

computational fluid dynamics (CFD) simulation which is commonly adopted in 

complex fluid flow modeling by breaking down the geometry into cells that to 

comprise a mesh. At each cell an algorithm is applied to the computation on fluid 
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flow within the individual cell. Depending on the nature of the flow, Navier-Stokes 

equations can be applicable. 

 

According to the study by Orhan (2004), these equations arise from applying 

Newton's second law of fluid motion, together with an assumption that the fluid 

stress is the sum of a diffusing viscous term (which is proportional to the gradient of 

velocity) and a pressure term. Although the original Navier-Stokes equations (NS 

equations) only refer to the equations of motion (conservation of momentum), it is 

commonly accepted to include the equation of conservation of mass as well. These 

four equations all together fully describe the fundamental characteristics of fluid 

motion. 

Velocity vector:    

Del operator:   

Gradient of a scalar field, f: 

NS equations provided motion formula as stated are: 

for   continuity  

                                                                             for  momentum 

where ρ is fluid density,       is flow velocity vector,      is stress tensor 
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is body forces and       is del operator, σ are the normal stresses and τ are 

shear stresses acting on the fluid.  

 

Since NS equations are used as three-dimensional system, the resulting equations 

would be very complex and would require considerable amount of field data with 

spatial variants. 

 

FLUENT is a computational fluid dynamics (CFD) software package for 

computer use, and employs NS equations to simulate fluid flow problems. The 

software employs a calculation model on water volume which is assumed to 

have a constant shape and not affected by air. A finite-volume method is 

adopted to solve the governing equations for a fluid. It provides the capability to 

use different physical models such as incompressible or compressible flow, 

inviscid or viscous flow, and also laminar or turbulent flow. In the study, air is 

considered as an incompressible idea gas. Geometry and grid generation is 

conducted by using GAMBIT, the preprocessor bundled with FLUENT. 
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4.1.2 Air movement in drainage stack 

On the simulation of air movement within drainage stack, a change of velocity is 

considered by Fluent, and the N-S equations employed are shown as below: 

           (eq. 4.3) 

where u is velocity, p is static pressure,  is pressure, µ is  dynamic viscosity,  

  (specific volumetric dilatation) 

             

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The following is the explanation on the equation: 

                         is acceleration of air flux 

             f  is body force act on unit mass of air flux 
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The equation employs the standard k –  model (turbulence kinetic energy, k and 

turbulent dissipation rate ). The simulation is applied on the two dimensional 

grid, which represents the air flow conditions (Steve and Chia 2013). 

 

4.2 Assessment on Stack Pressure by CFD Simulation and Experiments 

 4.2.1 Principle for the air movement inside the stack 

When water is discharged from the branch pipe and falls to the drainage stack, 

the water flow could be viewed as a formation from numerous small water 

curtains. They fall down due to gravity and are compressed downward to the air 

zone in the drainage stack. Since hydraulic jump obstructs the passage of air 

flow, compressed air will flow upward from the bottom of the stack. FLUENT is 

employed to simulate this phenomenon, and GAMBIT is also employed as the 

associated software with FLUENT. For this drainage research, 2-dimensional 

simulation is employed and the related grids are prepared by GAMBIT for 

simulation. The following represents a typical case of an installed drainage 

system, and to be simulated by means of CFD in this research.  
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The system consists of a single stack with 100 mm diameter and is 5.5 m in 

height. There is no ventilation pipe connection along the stack and, water falls 

from the top of stack.  

 

The flow volume is approximately 2.5 L and formed by 2 half ellipse as shown 

in figure 4.1, with major axis of 200mm in length (a = 200 mm) and the minor 

axis is 95 mm (b = 95mm). The water volume is assumed to fall along the wall 

of stack and the smallest air core is 5 mm in diameter of water volume. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 shows water 

volume in drainage stack 

This is a 2-dimensional case. Assume the third 

dimension unit length is 1 m, water volume 

Vwater=1/4×π·ab×1m，stack volume Vpipe=d×

1m×L，L is length of drainage stack. Real volume 

of stack volume is circular shape so that real pipe 

volume Vreal-pipe=1/4×πd
2×L 

Since Vwater：Vpipe= Vreal-water：Vreal-pipe， 

 

Get Vreal-water= Vwater×Vreal-pipe/ Vpipe 

=1/16×π2·ab·d 
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From equation 1.1 and 1.2, terminal velocity = Vt = 10.08  = 10.08 

= 2.3 m/s and terminal drop distance for the terminal velocity Lt = 

0.1706  = 0.1706 = 0.9m. For a water volume of 5 L/s, Vt  is 3m/s and 

Lt  is 1.5m. 

 

The worst scenario is considered for this simulation, at which the terminal 

velocity does not exceed 4m/s. The falling time of the water volume is also set 

accordingly during the simulation. Assume the initial velocity of the water 

volume is zero and the friction is set to be positive corresponding to the size and 

falling velocity of the water volume, the friction force of pipe and gravity force 

are balanced when the terminal velocity is set to be 4 m/s. 

 

Assume the relationship between friction (Ff ) of internal wall of drainage stack 

to maximum velocity (Vmax )  is Ff  = k Vmax = mg, then  

Flow rate = Vˊ=Vreal-water/0.5=1/8×π2•ab•d 

 

 = 1/8×π2•0.2 •0.095•0.1 = 0.00235 m3/s =2.4 L/s 
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k =  =  

     

   Dv = (9.8 – 2.45. v).dt, by integration, a velocity equation becomes, 

 V= 4.(1-e
-2.45t

) m/s 

 

The velocity of the initial fall is zero and the maximum velocity is 4m/s 

(normally is approximately 3m/s when water flows down along the surface of 

drainage stack). These are applied to the computer simulation.  A number of 

iterations have been run over. For this 5.5m height drainage stack simulation, it 

covers 30000 grids as prepared by GAMBIT.  As the time step is very small, 5 x 

10
-4

 second is used as time steps and, several iterations have been conducted. 

 

Overall air pressure distribution could be observed from figure 4.2 and the 

hydraulic jump was set as shown in figure 4.3. Result shows that pressure 

distributions vary with time, as indicated in figure 4.4. Four peaks of negative 

air pressure could be observed from FLUENT simulation result. Step effect of 

air pressure at the centre core of water volume (figure 4.4) at time t = 0.5 second 
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is found to be -220 Pa, the least negative value; at t = 1 second, air pressure is -

350 Pa; at t = 1.3 seconds, air pressure is -360 Pa and at t = 1.5 seconds, air 

pressure is -380 Pa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 shows air pressure distribution 

inside the drainage stack when water volume 

has fallen 0.5 second 

Figure 4.3 shows 100 mm dia. x 5.5 m height 

drainage stack. Noted that hydraulic jump 

obstruct 80% air passage in horizontal pipe. 
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The result demonstrates a high air velocity in the air core of water volume. As 

step effect is shown to change the air pressure within discharge volume at 

different velocity and also different height of stack as well as time, the air 

pressure at different height of the stack and time should be adjusted. 

.  

 

 

 

 

While simulation is conducted on the water volume that falls in a single volume, 

the water volume could be regarded as undertaking continuous flow which 

results in different pressure profiles with step effects. 

Figure 4.4 shows different air pressure profiles at different height, different 

time inside water volume. 

Air pressure profile at  t = 0.5s  

Air pressure profile at  t = 1.0s  

Air pressure profile at  t = 1.5s  
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From figure 4.4, a continuous flow could be observed and the effect on pressure 

is identified from 3 water volumes at 0.5 second, 1.0 seconds and 1.5 seconds. 

 

In actual discharge, the flow pattern should be a continuous flow and the size of 

volume blocks should be uneven, rather than blocks of water volume with fixed 

size as assumed in simulation. From figure 4.5, air pressure at zone 2 is the least 

because the air velocity is extremely high and this agrees with the Bernoulli’s 

principle. 

 

 

 

2 

1 

Figure 4.5 shows air pressure distribution details near water volume at t = 0.5 

second. There are 3 pressure zones. Zone 3 is higher air pressure and Zone 1 is 

lower pressure zone 

3 
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Air pressure at zones 3 and 1 are higher because the flow velocity within these 

zones is lower. Both of the zones encounter changes on air volume in the stack 

and the air pressure profile for the water volume could be identified. Air 

pressure at zone 2 in the stack is just a step value rather than an air pressure 

profile. Grid size of zone 2 is 0.25mm for x direction and 5 mm for y direction, 

and the time unit is 0.001 second. There are over 30,000 grids in the profile and 

4 hours are needed for the iteration process. Since there are 3 simulated water 

volumes in steps, air pressure values at the steps could be extracted from 

successive pressure profiles in figure 4.4. 

 

At t = 0.5 second, air pressure of water volume 1 (V0.5) at zone 1 is  P1-1 = -

10Pa，and at zone 2 P1-2 = -210Pa at, and at zone 3 P1-3 = 90Pa; By the  step 

effect, at 1 second,  the air pressure of water volume 2 (V1.0) at zone 1 is  P2-1 = 

P1-3 = 90Pa; at zone 2 P2-2 = P2-1+ΔP2-21 = -240Pa; and at zone 3 P2-3 = P2-1+Δ

P2-31 = 220Pa. Similarly, at t = 1.5 seconds, air pressure of water volume  3 (V1.5) 

at zone 1 is P3-1 = P2-3 = 220Pa; at zone 2 P3-2 = P3-1+ΔP3-21 = -150Pa; and at 

zone 3 P3-3= P3-1+ΔP3-31 = 360Pa；In air pressure profile diagram, 4 points (air 
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pressure Pa, height m) could be located, they are （ -10，4.9），（90，

3.5），（220，1.7）and（360，0.35）as plotted on figure 4.6. 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.6 shows air pressure profile of water discharge volume 

Air pressure profile at  t = 0.5s  

Air pressure profile at  t = 1.0s  

Air pressure profile at  t = 1.5s  

Consolidated air  

pressure  profile  

by discharge 
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The trend equation could be identified from the regression: 

 

 

From the regression equation in figure 4.7, when x (height of drainage stack) = 0, 

air pressure is 389 Pa. Air pressure at the bottom of stack has been found. There 

are 5 points available to plot the completed air pressure profile. They are  

（-10，4.9），（90，3.5），（220，1.7），（360，0.35）and (389, 0) 

 

 

 

 

 

 

 

 

 

 Figure 4.7 shows regression method to find a trend equation of air pressure 

profile 
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A complete air pressure profile is simulated as followed. 

 

 

 

 

 

 

 

 

 

 

This research provides an innovative method to obtain the air pressure profile by 

CFD simulation using Fluent software. It is two-dimensional and also more 

convenient to handle while the required simulation time is more than 10 hours 

(when time step is set to be 5.0e-4s). 20 iterations are needed and 3000 time 

steps from 0s to 1.5s are simulated. 

 

Figure 4.8 shows a simulated air pressure profile of drainage stack.  

Consolidated air  

pressure  profile  

by discharge 

Air pressure profile at  t = 0.5s  

Air pressure profile at  t = 1.0s  

Air pressure profile at  t = 1.5s  
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In addition to the air pressure contour, air velocity vectors could be observed 

from CFD simulation results as well. The information on air flow direction and 

the magnitude are particularly useful. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 shows air vectors in the stack. Red colour arrows represent high 

velocity and blue colour is lower velocity. 

 Falling Water volume  
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4.2.2 Data verification for CFD simulation in drainage research rig 

For the field measurement conducted at the Hong Kong PolyU Drainage 

Research Rig (figure 4.10 in the next page), pressure sensors (WIKA) were 

installed at various measurement points as indicated in figure 4.11, and the data 

was logged by the ADAM controller connected to a computer. This experiment 

demonstrates an on-site testing and commissioning method to assess the air 

pressure profile of a drainage stack.  One set of data is obtained by specifying a 

water discharge of 2.5 litre/s in continuous flow from the top of the stack. The 

water source for this demonstration is a tank located at the ceiling which is 5.5 

m above the toe of the stack.  Air flow was extracted from the centre of the stack. 
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Between points 1 to 4, a typical pressure profile (air pressure in Pa against 

height m) is obtained and shown in Table 4.1, at which the air pressure is found 

to be negative at the discharge point and positive at the toe of the stack and, this 

is the location with maximum value. Point 5 locates at the crown of hydraulic 

jump and the air pressure is less than that of point 4.  It shows that air could not 

pass through the hydraulic jump (point 5) via a fully opened cross-sectional area 

of the horizontal pipe but only via a largely reduced cross-sectional area due to 

the jump, while the largest positive pressure occurs at a location near point 4 

 

100  Transparent 

 Drainage Stack 

5.5 m height 

Discharge box 

Figure 4.10 Air pressure measurement points 1~6 are installed along transparent 100 dia. 

drainage stack and horizontal pipe  in HKPU  drainage research rig 

 



89 

(See figure 4.10). Pressure at point 6 is determined based on the air velocity of 

horizontal flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The air pressure value is the mean value obtained from 3000 values (1 reading 

per second as set at ADAM and recorded for 5 minutes in the computer). 4 

points are selected to verify simulation results and shows in Figure 4.12. 

11Point Air  pressure    

(pa) 

Height  

(m) 

1 -50 4.7 

2 50 3.6 

3 200 0.9 

4 390 0.3 

5 80 0.05 

6 140 0.04 

 

4 

5 

6 

3 

Figure 4.11  Hydraulic jump occurs when vertical and horizontal speeds are 

different, trapping air at the bend 

 

Discharge down flow qw = 2.5 L /s 

 

Table 4.1  Experiment data record in the PolyU Drainage Research Rig  
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Frankly speaking, using FLUENT for drainage air pressure assessment is a 

relatively new approach and the simulation in this research is a small scale 

exercise. Although more investigation is still being carried, and the method will 

be further developed for stacks in higher storeys to get more reference data for 

the real applications.  Meanwhile, numerical investigation has been prepared in 

earlier stage. It is found that the flow in a drainage stack could be approximated 

as a one-dimensional process. With the assistance from drainage research 

 

Figure 4.12 shows comparison between 2 air pressure profiles between 2 

discharge flows. Red profile is estimated to 2.4 L/s flow rate and Black profile 

is 2.5 L/s discharges from top of stack. 

 

Air pressure profile at  t = 0.5s  

Consolidated air  

pressure  profile  

by discharge 

Air pressure profile at  t = 1.0s  

Air pressure profile at  t = 1.5s  
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platforms, data obtained from numerical investigation evaluate the applicability 

and feasibility of mathematical models for drainage stack air pressure prediction.  

 

4.3 Numerical Assessment - Mathematical model of Air Pressure in Drainage 

Stack 

 Numerical assessment study is a traditional route for years and many respective 

researchers have developed and contributed their efforts in building service 

engineering problems. The Saint Venant equations, derived in the early 1870s by 

Barre de Saint-Venant, were possibly obtained through the application of control 

volume theory to investigate velocity, pressure and density of drainage air 

(Sleigh et al. 1998).  

 

4.3.1 St Venant Equations 

To simulate the air flows in drainage pipes or stacks, Swaffield and Jack (2004) 

developed a model based on St. Venant equations,  which are commonly 

adopted to obtain numerical solutions of air flow inside the stack (Swaffield and 

Jack 2004).  At a particular location along the stack, the air flow rate is 

considered as a function of time.  
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At first, the flow variables are considered to be function of space and time 

considered as a function of space and time. These variables are used in the 

equations of continuity and momentum which are based on below assumptions:  

 The flow is one-dimensional 

 Hydrostatic  pressure prevails and vertical accelerations are negligible 

 The resistance effects follow Manning’s equation. 

 The stack air flow is compressible. 

 

As shown in Figure 4.13, using infinitesimal element analysis, we have 

Q2-Q1 = (  

 

 

 

 

Where ∂Q = (ρ∂u + u  ∂ρ). A, because product of ∂u and  ∂ρ is neglected. 

∂u and  ∂ρ  are the changes of velocity and density respectively in the 

infinitesimal element of stack length. A is the stack sectional area assumed to be 

a constant. 

 

δx 

Q1 Q2 

A A 

Figure 4.13  Schematic for equation of continuity 
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After some algebraic manipulation, the continuity equation could be written as 

                                (eq 4.1) 

For the momentum equation, applying the 2
nd

 law Newton to the infinitesimal 

length of stack pipe, we have 

  

 

 

      

This means, F1 – F2 – F3 =ρAδx     

where F1 = pA and F2 = (p + δp)A where p is  the pressure forces and  F3 (=τ

Pδx ) is shear force. P is wetted perimeter (A/P =D/4), τ=1/2fρu
2
 . Therefore, for 

the momentum equation, its partial differential form could be written as          

                (eq4.2)  

where  is density of air, x is space coordinate, u is air velocity, D is the 

diameter of stack and f is a function of location and discharge variables. These 

are the equations for the prediction of drainage stack air pressure. By using a 

δx 

F1 

 

Figure 4.14  Schematic for equation of momentum 

 

F2 

A A 

F3 
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numerical grid method, simulations with different boundaries and conditions 

could be carried out, as reported by Swaffield and Jack (2004). 

 

 4.3.2 One-Dimensional Characteristic Lines 

In a drainage stack, air pressure varies dynamically, since any small disturbance 

in the stack  can spread at sound speed (Rotty, 1962). 

The St Venant equations described in the above subsection cannot be solved 

explicitly except by making some simplified assumptions which are generally 

unrealistic for most situations. Therefore, numerical techniques have to be used. 

One useful and related convenient technique is one-dimensional characteristic 

line method, which is briefly introduced below. 

 

 

  

 

 

 

 

Downstream 

Figure 4.15 shows movement of air caused by water discharge, 2 

transients exist at same time but in opposite direction     

 

Upstream 
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As illustrated in figure 4.15, there are two characteristic lines, which are denoted 

by C
+
 and C

- 
. C

+
 runs from point L to point P, and C

-
 runs from point L to point 

P. If x is space coordinate, t is the time, the two characteristic lines C
+
 and C

-
, 

plotted as functions of x and t, are shown in figure 4.16 

 

 

 

 

 

 

At the time level  ntt  , at the points L and R, the velocity and pressure are 

know. The two charcteristic lines can be simply decribed by   = u .  

Hence, at the time level  ttt nn 1
, the velocity and pressure at point P can 

be obtained by using property of characteristic line: there is an invariant along 

each line. Using characteristic lines and relevant initial and boundary conditions, 

the numerical solutions can be obtained. 

. 

 

Figure 4.16 C+ and C-form 2 characteristic lines 
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An example, as seen in Figure 4.17, is demonstrated, the values of flow 

variables at the point 10 can be calculated by interpolating the characteristic 

lines. 

 

 

 

 

 

 

In the next subsections, a new mathematical model’s validation and application 

potential will be presented.  Some related content could be found in the Ref. (Li, 

Wong and Zhu, 2013b). 

 

4.3.3 Mathematical Model – Characteristic Line Method (CLM) 

In this subsection, a new mathematical model is presented.  It is useful for 

predicting stack air pressure of high-rise buildings as reported elsewhere (Wong, 

et al.,2013a;  Li et al., 2013b). This model can be treated as an appropriate 

extension of the St. Venant-equation model. 

 

Figure 4.17  points are obtained by characteristic lines C+ and C 
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In the new model, step function used to describe the influence from the 

entrained air flow from branch pipes and an additional term are introduced to 

represent the gas-liquid interphase interaction of the flow.  It also represents the 

top and base effects at the stack. Based on this model, a time-splitting based 

characteristic line method (TSCLM) is used to solve the governing equations. 

The calibration provides possible values of model parameters by using the data 

measured by Zhang and Chen (2006) in a real scale high-rise building test 

platform (HBTP) with constant water flow from branch pipes.  The effects of the 

additional terms and the stack top and bottom conditions can be investigated 

numerically. The spatio-temporal evolutions of velocity and pressure are 

presented and discussed as follow. 

 

The new model can predict the drainage stack base-top effects so that the stack 

air pressure in the HBTP can be validated and predicted. 

 

 4.3.4 Governing Equations & Application on BDS 

As reported in a relevant study (Wong, et al., 2013a), any small disturbance 

could propagate the air at sound speed. As reported by Rotty (1962), the 
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propagation depends on air pressure and density. Inside a building drainage 

system, even the small pressure disturbances induced by water discharge, the 

gas-liquid phase interaction at the pressure disturbances, and the base conditions 

of the stack could influence the propagation of air inside the stack, leading to 

pressure fluctuations. The water discharge draws air from branch pipes into the 

stack, which creates an entrained air flow. The base effect at the stack leads to a 

rise on mean air pressure and a reduced gas flow speed, and possibly results in a 

reverse gas flow at the base region. These air flow behaviours in the stack could 

be described by the conservations of mass and momentum. 

 

Following the approach suggested by Swaffield and Campbell (1992a, 1992b), it 

is assumed that the water flow in the vertical stack is annular and so, the air 

flows in the stack core for convenient modeling. The friction factor describes the 

viscous damping mechanism of the air flow when the air flow speed is larger 

than the terminal speed of the discharged water. There is an accelerating effect 

when the air flow speed is lower than the terminal speed. The discharged water 

could result in an air entrainment from the branch pipe into the stack. 

Considering the stack air pressure to be one-dimensional and unsteady, and 
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assuming the pressure variation is thermodynamically isentropic, the air pressure 

in the stack ( p  ) could be represented by Const/ p , where 

4.1/  vp CC  which is the ratio of specific heat at constant pressure to the 

specific heat at constant volume, and   is the air density. Stack range is defined 

as ),0( Hx , where H  is the building height. Based on the conservation of 

mass and momentum on the stack air flow within a building drainage system, as 

reported in Refs (Wong, et al., 2013a, Li et al., 2013b), the governing equations 

of the stack air flow should be 

 

and 

    

 

while the mass flow rate is 

  

 

 

(eq 4.5) 

 

 

(eq 4.6) 

 

 

  (eq 4.7) 
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The water discharged from a branch pipe located at kx  results in a gaseous 

entrainment at a speed of )( kk xv . The step function )( kxxS   has a value of 

zero when kxx  , and equals to unity when kxx  . It reflects the effect of 

discharged water, as seen in figure 4.19(a), with the total entrained air speed 

)]([ kk k xxSvv  . Different from the St. Venant equations, an additional 

parameter f1 is introduced in equation 4.6 to take into account the complex 

interphase interaction and also the stack base effect. Defining the top of stack as 

x = 0, and the time step in simulation as , if the stack base has relatively 

significant effect on the air motion when x > H1, the x- dependent parameter f1 

may be expressed by 

 

   

          

 

 

where σ0 and σ1 are model parameters for adjusting air flow velocity.  Eq. 4.8 

indicates that f1 is assumed to be linear with coordinate x. The larger the σ0 , the 

more intensive effect is found for the interphase interaction and stack base. 

While σ1 should be negative, the branch water discharge can result in the stack 

  (eq 4.8) 
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top air flowing downward, causing the stack top air pressure be less than 

ambient air pressure. Hence, the smaller the σ1 , the larger effect is for the stack 

top.  

 

When σ0 = σ1 = 0, the form of governing equations returns to the St Venant type. 

The parameter xN is used to define the stack top region, its value is assigned with 

respect to water discharge the high-rise building testing platform (HBTP). The 

value H1 is assigned according to the convenience of numerical validation which 

calibrated well with measured data from the study conducted by Zhang and 

Chen (2006). 

The illustration of the entrained air flow speed v, as well as the terminal speed of 

water flow Vt,  is provided in figure 4.18.  

 

 

 

 

 

 

Figure 4.18: Entrained air flow speed v and terminal speed  for the case of Qw(x1) = 2.5 and 

 Qw(x2) =2l/s. 
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                          (eq 4.9) 

 

where ks is the roughness of stack wall, tc(= Qw=¼DVt) is the thickness of 

annular water flow, Qw is the water flow rate, and Vt is the terminal speed of 

water flow in the stack. D represents the stack diameter; f denotes the friction 

factor of the air flow, which can be calculated by the following according to 

Jack (1998). 

Vt  = (
0.4

                                                             (eq 4.10) 

Note that it has not been ascertained on how to give the air entrainment from 

branch pipe accurately yet, since the air entrainment is related to the gas-liquid 

interface, and also related to the water flow speed in the branch as well. 

Therefore, for a convenient numerical verification, a simple approximation is 

adopted. 

 

The branch water flow is considered to fill the pipe partially, and the cross 

sectional area of the region filled with water can be expressed as 

          (eq 4.11) 

f = 0.0303  

Ab =  
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As shown schematically in figure 4.19, the discharged water carries air from the 

branch pipe into the main stack, leading to a pressure drop on air at the 

corresponding locations connected to the branch pipe.  

          (eq 4.12) 

 

 

 

 

 

 

 

If the air speed
bgv  in the branch can be assumed to be the same as water flow  

The cross sectional area for the air flow region in the branch pipe is expressed as, 

speed bwv [ Figure 4.19(a)], the velocity kv  can be approximated as 

 

 

The inclined angle   is used together with angle    to determine the entrained 

air flow rate. The initial air speed u and relative air pressure in the stack are both 

assumed to be zero.  

(eq 4.13) 

 

 

 =  

 

Figure 4.19: (a) Schematic of the branch discharging, and (b) schematic of partial water flow in a branch 

pipe. Note that the branch water flow leads to the entrained air in the branch pipe flows into the stack. 

 

 

(a) 

 

(b) 

 

vk = 4(  
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The intermediate height H1 indicates a partition which divides the stack into the 

upper part and the lower base part. The base part of the stack is stagnant for the 

air flow, leading to an increase on mean air pressure in the lower base part. 

Since the top and the base parts are respectively associated with the model 

parameterσ1 and σ0, a time splitting based characteristic line method (TSCLM) 

can be utilized for air pressure prediction, which will be described in details in 

the following sections. 

 

 4.3.5 Numerical Method 

The air pressure inside a building stack is usually calculated by seeking the 

solutions of the St Venant equations by characteristic line method. The previous 

studies have implicitly considered the effect of air entrainment by imposing 

proper boundary conditions. However, the present governing equations (eqs 4.5 

- 4.6) have explicitly reflected the effects on the stack air pressure p due to the 

water discharge process, as well as the interface interaction and the stack base 

condition. The mass balance of gaseous flow in the stack is described in a 

conservative form. 
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To predict the air pressure inside the drainage stack by using time splitting 

algorithm suggested by Abarbnel and Gottlieb (1981), which also suggested by 

Karniadakis (1991), the governing equations  (4.5-4.6) can also be written in the 

form of Euler equations: 

 

 0









xt

Fu
 

at which 

 

Together with the additional equations 

     0



S

u

t
 

In which  

                                 S  = 
T  

= 
T
 

The superscript T denotes the matrix transposition. The corresponding Jacobian 

matrix is as follow, which has two eigenvalues. 

 

 

(eq 4.14) 

 

 

(eq 4.15) 

 

 

(eq 4.16) 

 

 

(eq 4.17) 

 

 

 (eq 4.18) 
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where  /pc  which is a speed of sound,  

 

According to the previous work by Swaffield et al. (2004), the friction factor f in 

the source term (S) has to be negative, if the air flow speed (q/ρ) is less than the 

terminal speed (Vt), and the term S has to be positive when q/ρ is larger than Vt. 

The time-splitting based characteristic line method (TSCLM) is detailed and 

used to solve the Euler-type equations (3.25), and the characteristic line method 

(CLM) can be used together with the above. Hence, the solutions can be sought 

as follows: 

 

 

where c is the sound speed, and  and  are defined by 

 

                                                                     

(eq 4.19) 

 

 

(eq 4.20) 

 

 

(eq 4.21) 
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which are respectively the first and second invariance along the characteristic 

lines: 

 

 

 

 

 

 

 

 

Figure 4.20: Schematic of CLM, Point B is solved by characteristic line CL1 and CL2 

 

 

Let  ζ1 =α ,ζ2 =β , In fact, we see that along the characteristic line CL1: α =Const , 

while for characteristic line CL2: β =Const . As shown schematically in Fig.4.20, 

we have 

αB =αA + Δt/ Δt1 (αj-1 –αA) 

B = A + Δt/ Δt2 ( j+1 – A), where 

 , 

Where M1=  

(eq 4.22) 
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and  

 =  - ), 

and 

 =  - ), 

 

Noted that a1 and a2 are two eigenvalues of Jacobian matrix A given by 

equations 4.18 and 4.19. Therefore, equation of 4.20 can be arrived. 

Based on equation (4.16), the time splitting algorithm indicates that the 

following equations can be applied to further improve the accuracy of the 

solution. 

 

 

Assume the ambient pressure and density are respectively p0 and 0, let  

A =  ,   , it is seen that 

 

(eq 4.23) 
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                                             (eq. 4.24) 

 

where (c)j  and            are the CLM-based solutions of Euler-type equations as 

given by Eq. (4.20). 

 

The boundary conditions are stated as the following. At x = 0, we assume 

 ,              (eq. 4.25) 

 

At x = H + Lx, the relative pressure and mass flow rate can be expressed by 

 

 

 

where 0b is the time-averaged bottom pressure, and 1b  is the magnitude of 

bottom pressure fluctuation.  is the phase angle, and  is the 

speed of sound under ambient condition. The CLM method can be used 

afterwards, to predict the values of ρ and q at x = H can be predicted. 

(eq. 4.26) 
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The time-splitting based characteristic line (TSCLM) method described in the 

foregoing section is used to predict the gaseous pressure in a drainage stack 

installed at a high-rise building testing platform with 17 floors, and the flow 

rates of water discharged from the branch pipes are set to be constant. As shown 

in figure 4.21, the measured stack air pressure and its peak values (suggested by 

Zhang and Chen 2006) are referred to calibrate the model parameters such as , 

, ,  

 

For the experiment conducted at the high-rise building test platform 

encompassed by Zhang and Chen (2006) in Shiga of Japan, the experimental 

data was recorded in 2006; and the relevant calibration on the apparatus was 

conducted with reference to the Japanese standard given by the Engineering 

Societies there. The air pressure was measured by pressure sensors VPRN-A3 of 

VELCOM. Using the digital signal transmitter 9B02 of COLIN with a filter of 3 

Hz, the collected pressure signals were recorded by the data logger OMNIACE-

RT3424 of COLIN. The calibrated parameter values are given in Table 4.2, 

where  are the discharging angles at xk(k = 1, 2), and the values 
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 of other parameters such as the stack roughness and diameters are also given. 

observed that the use of parameter during computation can definitely make of 

average pressure curve (and also the pressure peak curves) closer to the 

measured data at the top region of the stack. The peak pressure values are 

expected to be Pav   where Pav  and σp, are respectively the time-average 

pressure and its root-mean square value, because the approach of peak value 

prediction is absolutely correct if the stack air pressure oscillates in a harmonic 

mode. 
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P0 = 1.0 x 10
5
 Pa  = 1.25 kg/m

3
 

 
ks = 1 mm 

Lx = 0.56 m D = Db = 100 mm 

  

  

  

  

  

  

  

 

Figure 4.21 shows the comparison of pressures with experimental data. The 

differences in between are mainly due to the stack air pressure due to the top and 

base effects, and also the gas-liquid interphase interaction. The St Venant 

equations can just be taken as a simplified model in predicting the air pressure 

inside building drainage stack system. 

Table  4.2:  Parameters used in the numerical analysis. 
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. 

  

 

The potential of the present model can be further recognized by observing the 

parameters’ sensitivity in the proposed mathematical model, and the spatial and 

temporal evolutions of air pressure and velocity in the stack, which will be 

discussed in details in the subsections below. 

 

Figure 4.21: Comparison of air pressures with experimental data. The peak 

pressures (Pmin, Pmax) are calculated by Pav     σp, where σp denotes the root mean 

square value of the pressure fluctuation. The number of floor is calculated by Nf = 

(H - x) / (10Lx) + 1, where H denotes the building height, Lx = 0.28m represents the 

length scale used in the simulation. Air pressure unit is mmH2O is same as 10 mBar 

 



114 

4.3.6 Sensitivity Factors to   and   

As discussed in previous sections, the sensitivity of numerical solutions to the 

two parameters  and β can be explored by comparing the distribution of time-

averaged relative pressure and the pressure peaks plotted as functions of the 

number of floors Nf = 1 + (H - x)/(10Lx). The effect of the velocity-adjusting 

parameter ( ) on the distribution of peak pressures can be observed in figure 

4.22, while the values of other parameters are listed in Table 4.2. As observed 

from figure 4.22,  is the dominant parameter for the time-averaged pressure 

distribution in the stack. The larger the value of σ0, the smaller the pressure peak 

values, and this indicates that σ0 can be used as a key parameter during the 

calibration of stack air pressure. 

 

The distribution of peak pressure can also influenced by branch entrainment, 

which depends on angle  when angle  takes the values as given in Table 4.2. 

Figure 4.23 shows that angle  has a significantly impact certainly, when 

accounting the stack air pressure and its peak. 
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The suction pressure increases with the increment of , which indicates that the 

stack pressure is sensitive to the air entrainment from branch pipes. 

 

 Figure 4.22: Parameter σ effect on predicted peak pressures in the 

stack 
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4.3.7. Evolutions of velocity and pressure 

The distributions of time-averaged peak pressures in the stack are closely related 

to the velocity and pressure evolutions in the stack, as shown in figures 4.22 and 

4.23. Using the parameters listed in Table 4.2, the simulation can incorporate a 

temporal evolution of pressures at two locations within the stack, as illustrated in 

figure 4.24(a). For t > 1, the time-dependent pressure fluctuates approximately 

in harmonic and quasi-periodic waves, while the time-average value and the 

oscillation amplitude are evidently depend on the stack location x/Lx. The time 

period of pressure fluctuation is approximately . Since the pressure 

oscillation is quasi-periodic, as shown in figure 4.21, the peak pressures can be 

 Figure 4.23: Parameter  effect on predicted peak pressures in the 

stack. 
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approximated by multiplying the root mean square of pressure fluctuation  

with a factor of  because it is clear that  = . 

 

Corresponding to the pressure fluctuation given in 4.24(a), the velocity 

fluctuation history in the time range of t ∈  (1, 5) is shown in figure. 4.24 (b). 

According  to entrained speed v given in figure 4.18 with respect to the blue- 

curve, the total velocity q/ρ  at the bottom of the stack would have a positive 

peak velocity of about 2.0 m/s.  With respect to the dashed-black curve, at the 

location of x = H1,  the minimum value of q/ρ velocity is closed to - 1.0m/s. 

Approximately the harmonic and quasi-periodic fluctuating behaviour can also 

be found in the speed u-evolutions. Figure 24 also reveals that the pressure peak 

corresponds to u-velocity valley at a given location, and vice-versa. 
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The spatiotemporal evolutions of pressure and velocity are shown in figures 

4.25-4.26. Both figures are shown in a flood mode. Using the calibrated 

parameter σ0/Δt= 0.01, the air entrainment leads to a decrease of stack air 

pressure P(x, t), as shown in figure 4.25. 

Figure 4.24: Evolutions of pressure P (a) and velocity u (b) at different locations in the building stack. 
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The pressure is calculated by (p - p0)/10, and the unit is mmH2O (1 mmH2O 

equals to 10Pa). The absolute pressure p is calculated by assuming the gaseous 

Figure 4.25 Spatiotemporal evolution of pressure in the time range of t 2 (0, 5). Note 

that the pressure contours are labeled by -60, -30, 0, and 30mmH2O. For the blue color 

zone, P <-60mmH2O;- For the cyan color zone, P [-60, -30 )mm)H2O; for the green 

color zone, P [ -30, 0 )mm)H2O,; for the yellow color zone, P [ -30, 0 )mm)H2O ;and 

for the read color zone, P 30mmH2O.  

 

 

FIGURE 4.26: Spatiotemporal evolution of u(x, t) in the time range of t 2 

(0, 5). The u�contours are labeled by -0.5, 0, 1, and 1.5m/s. 
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flow to be isentropic, i.e.   . The P - contours are labeled by -

60, -30, 0, and 30, indicating that when t > 1, the stack air pressure P varies with 

the time in a quasi-periodic mode due to the boundary conditions adopted in the 

calculation. Stack air pressure P also varies with time in a quasi-periodic mode 

as a result of the boundary conditions adopted in the calculation. This spatial-

temporal P – evolution indicates the gas flow in the building stack is oscillating 

under the influences of the branch discharging, gas-liquid interphase interaction, 

and stack top and base. 

 

Figure 4.26 illustrates the evolution of u(x, t) (= q/ρ - v). The speed u-contours 

show that the velocity is generally positive on the floors when Nf    15, and t > 

1, it is oscillating around zero (m/s), and its value slightly depends on the stack 

location. 

 

In summary, from the present mathematical and numerical work, it is found that 

the traditional St Venant equations model can be extended appropriately, so that the 

stack air pressure can be predicted favorably.  
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4.4. Comparison between CFD and Mathematical Model  

CFD simulation by FLUENT employs two-dimensional analysis to deal with 

real discharge scenario in drainage stack, which produces air pressure 

distribution diagram, air velocity diagram and velocity vector diagram at 

different time steps. In this research, the air pressure of water volume at t = 0 

second, 0.5 second, 1.3 second and 1.5 second are considered and the 

corresponding air pressure values are obtained. At each time step, there are three 

water volumes. As the water volume is falling in the stack, the highest air 

pressure is found at the head of water volume and the lowest is at the rear 

portion. All of them can be graphically presented. Maximum air velocity can be 

found in the centre of water volume. 

 

Data measured from the 3-storey drainage research rig generally agrees with the 

results from simulation. However, the simulation requires a very long duration 

on calculation not only because of the iteration process, but also the adjustment 

required to refine the whole simulation model. A typical case is that air pressure 

can be induced due to the fall of water volume. In the simulation model, falling 

water volume is separated into different volumes with same size at different 
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locations inside the drainage stack at different time with different velocity. Air 

pressure, between the water volumes, is connected to form a pressure profile. In 

addition, preparation works are required to create the geometry (by using 

GAMBIT to form grids and to define related simulation boundaries) and the 

calculation time is extremely long that 20 iterations are needed for each case, 

and total iteration time requires is longer than 10 hours. 

 

As introduced, N-S equation is adopted in this CFD simulation, thus the flow 

should match with the assumptions governing the N-S equations. Advanced 

mathematical theories are applied to develop mathematical model to support the 

research. CLM method is one dimensional and considers only the movement of 

air transient. These can speed up the analytical and calculation process. The 

accuracy can be further improved by considering more details regarding the flow, 

in particular for the details that are not addressed by the simulation tool adopted 

in this research. 
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FORTRAN is a traditional program language which is widely applied in 

engineering simulation. Users can define the equations and settings according to 

their own need.  The result has to be obtained in different files by this approach, 

which requires more time to prepare the outcome presentation. 

 

Drainage stack simulation is used to predict air pressure profile for a high rise 

building. This simulation integrates computation programming and field 

measurement data on air pressure obtained from real site, to enhance the 

accuracy of simulation. More flexibility can be gained from the mathematical 

model. The number of branches in drainage system which undergoes multi-

discharge can also be edited to make the simulation agrees more closely to the 

real situation. The limitation for this research is that more field measurement 

data from other high-rise drainage rigs is needed to refine the simulation. In our 

case, the highest research rig in China can provide more testing data for the 

simulation. In fact, the drainage system installed in most of the real buildings 

can be served as test rigs to build up more valuable data to form a database. 

Super-high-rise buildings are easily found in Hong Kong and the drainage 
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system inside is the best test rig for the simulation research for those super high 

buildings. 

 

One may ask the reason of carrying out both the CFD simulation and the 

numerical studies in this research. CFD is relatively easier to be handled by 

more people for drainage research and therefore, benefits more people. In the 

coming chapter, the research will focus on the risk abatement by relieving the 

excess air pressure inside vertical drainage stack by adopting new design, 

including smart trap connection to prevent dry by evaporation, smart connection 

of stacks, and also 8S design that is patented and owned by the Hong Kong 

Polytechnic University. For existing buildings, the model developed in this 

chapter can be employed to understand the problem of excess air pressure when 

it occurs. The case in a 18-storey core building of the Hong Kong Polytechnic 

University, named Li Ka Shing Building, will be presented in chapter 6 to 

demonstrate how the model can be used for the aid of risk assessment in 

drainage stack problem. By integrating all of these, the risk management model 

can be implemented to address drainage failure in buildings.
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Chapter 5 

Control of Air Pressure inside Drainage Stack 

 

The case investigation in section 2.3.3 of Chapter 2 shows how the drainage 

system fails to drain away the sewage safely and results in sewerage and foul air 

backflow to other flats when there is excess air pressure in the stack. The 

simulation study in chapter 4 offers a tool to predict the air pressure in a stack 

and hence allows a qualitative anticipation on the risk of failing to drain away 

the sewerage safely without cross-contamination to other flats. Proper prediction 

on stack air pressure can also assist the anticipation on the stability of water 

seals in a trap. As the height of the water seal is typically 50 mm, this also 

means the air pressure to be exerted onto the water seal in traps should not 

exceed 5 mBar. Otherwise, foul air or even infectious virus (if any) will travel 

from the trap to the indoor air. 

 

From the risk management point of view, prevention by enhanced design and 

problem remedial are both important and should not be neglected. In this chapter, 
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prevention by enhanced design will be addressed, including the use of a Smart 

Connection and Smart pipe. 

 

5.1 Smart Pipe Connection     

There is no doubt that water discharge will induce air flow inside the drainage 

stack. Air flows from higher air pressure zone to lower air pressure zone. As 

water discharge goes downward and its boundary attracts the air from 

atmosphere to enter the stack via the topmost opening. 

 

5.1.1 Usage of ventilation pipe 

A ventilation pipe is critical to drainage discharge system. In the Hong Kong 

Legislation CAPS 123I, regulation 30 requests every trap should be connected to 

a ventilation device. The ventilation device should be installed within 300 mm 

from the trap’s outlet to protect stability of water seal. In normal case, water seal 

is 50mm in height, which can resist an air pressure of 500 Pa. Ventilation pipe is 

a major device to balance the excess air pressure inside drainage stack. From 

experience in Hong Kong, a 50 mm diameter ventilation pipe always meet the 

minimum requirement and is generally regarded as acceptable; while in this 



127 

scenario, air pressure can easily exceeds 500 Pa in the drainage stack. In this 

case, foul air may come out from the stack and contaminate the living space. As 

a general practice, cross-ventilation pipe should always be provided for every 5 

storeys to meet the design requirement. However, such a common practice may 

not be adequate, especially for the lower floors. 

 

5.1.2  Principle of smart cross ventilation pipe connection 

The principle of smart connection is simple with the installation of an additional 

cross ventilation pipe at an appropriate location of BDS. A demonstration of the 

effect of a cross ventilation pipe on stack air pressure is performed by FLUENT. 

As the number of cross ventilation pipes has increased, loop length of ventilation 

pipe is shorter which increase air pressure balance inside BDS.   Air pressure 

inside BDS will be decreased. 

Using the case in chapter 4 (figure 4.3), the system is single stack system. Water 

discharge flow rate is 2.4 L/s and the maximum positive air pressure at toe of 

stack (0.3 m height) is about 400 Pa. FLUENT will be used to prepare different 

cases for drainage rig of  HKPolyU: Case 1 is to install ventilation pipe only, 

case 2 is to add a cross ventilation pipe near the top of stack and the last case to 
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install one more cross ventilation at the middle of stack. Different pressure 

profiles are listed to compare their capacity of air pressure balancing. Obviously, 

air pressure balance capacity is increasing due to additional provision on cross 

ventilation to the system. All of them can release air pressure by means of 20 

mm passage (suppose hydraulic jump which blocks 80% of 100 drainage pipe). 

5.1.2.1    Case 1 –Install ventilation pipe only (time = 0.5 second) 

 

 

 

 

 

 

 

 

 
Figure 5.1 FLUENT simulates a 50 mm ventilation pipe which installed at the toe of 

drainage stack to form a one pipe system. Pressure diagram shows air pressure can 

be released by ventilation pipe. 

 

100 mm 

Stack 

 
50 mm 

Ventilation 

Stack 

 



129 

Similar to the methodology adopted in Chapter 4, air pressure profile is prepared 

from four points.  

They are points of (-7, 4.9), (52, 3.5), (99, 1.7), (151, 0.35) and (158, 0) 

 

 

 

 

 

 

5.1.2.2    Case 2 –Install ventilation pipe and one cross ventilation pipe (time = 0.5 

second) 

 

Simulation will be conducted and more cross ventilation pipe(s) would be 

provided for an enhancement on design between drainage stack and vertical 

ventilation stack (similar to the modified one pipe system). Normally, one 

drainage cross-ventilation pipe will be installed at every 5 storeys and the 

vertical distance between two cross ventilation pipes is approximately 15 m. For 

 

Figure. 5.2  shows air pressure profile of one pipe system (case 1). It is a large 

reduction of positive air pressure which is compared with single stack system 

(figure 4.7)  

Air pressure profile at  t = 0.5s  

Air pressure profile at  t = 1.0s  

Air pressure profile at  t = 1.5s  

Consolidated air  

pressure  profile  

by discharge 
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a better performance on relieving air pressure, the vertical distance will be 

decreased to 5 m for case 2 and 2.5 m for case 3 as described below.   

 

5.1.2.2    Case 2  – Install cross ventilation pipe to one pipe system (t = 0.5 s) 

 

Case 2 is one pipe system with one cross ventilation pipe, drainage stack is 

ventilated and form a ventilation pipe circuit. 

 

 

 

 

 

 

 

 

 

Figure 5.3 shows the one pipe system which is installed a cross ventilation pipe near 

top of drainage stack 

(case 2). 
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Similar to the methodology in Chapter 4, air pressure profile for case 2 (figure 

5.4) is plotted at four points. They are points (-5, 4.9), (45, 3.5), (93, 1.7), (141, 

0.35) and (148, 0).  

 

These points provides a plot on air pressure profile as case 1 and the vertical 

distance between cross ventilation and toe of ventilation connection is 5 m. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4, air pressure profile of case 2 – one pipe system with one cross ventilation pipe 

Air pressure profile at  t = 0.5s  

Air pressure profile at  t = 1.0s  

Air pressure profile at  t = 1.5s  

Consolidated air  

pressure  profile  

by discharge 
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From the air pressure profile for case 2, air pressure inside the drainage stack 

decreases slightly when compared with case 1. In case 3, one more cross 

ventilation pipe is to be added at 2.5 m height level of drainage stack. 

 

5.1.2.3    Case 3 –Install ventilation pipe and 2 cross ventilation pipes (t=0.5s) 

for one pipe system 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 shows the one pipe system which is installed two cross ventilation pipes near top 

and middle height of drainage stack (case 3). 
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Similar to the methodology in Chapter 4, air pressure profile is plotted from four 

points. They are points of (-5, 4.9), (30, 3.5), (87, 1.7),  (133, 0.35) and (140, 0) 

 

 

 

 

 

 

 

 

 

 

 

From the air pressure profile of case 3, slight improvement on decreasing air 

pressure inside the drainage stack is observed, when comparing with case 2. 

 

Based on FLUENT simulation from previous cases, air pressure deduction can 

be achieved by means of adding ventilation devices.  

 

Figure 5.6, air pressure profile of case 3 – one pipe system with two cross 

ventilation pipes 

 

Air pressure profile at  t = 0.5s  

Air pressure profile at  t = 1.0s  

Air pressure profile at  t = 1.5s  
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pressure  profile  

by discharge 
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Once the single drainage stack (without ventilation pipe) becomes one pipe 

system (ventilation pipe installed), there is a significant decrease for the air 

pressure inside the drainage pipe.  Figure 5.7 shows air velocity vector diagram 

at toe of the stack and at the horizontal branch pipe.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 shows that a water volume at 1.5 seconds can release the air pressure 

at toe of stack by ventilation pipe. This case assumes a 20 mm gap can functions 

to release air at 100 mm diameter horizontal pipe. For case 2 and 3, cross 

Figure 5.7 shows the air velocity vector at toe of 100 drainage stack and connect 

a ventilation pipe  
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ventilation pipes are installed at drainage stack, it shows gradual improvement 

on decreasing the air pressure of the main stack. 

 

5.1.2 Data verification 

Verification of air pressure reduction can be conducted by adding related air 

pressures into a chart. Smart connection of cross ventilation pipes is applied at 

suitable position of drainage stack. It solves the problem of excess air pressure 

effectively. 
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Different ventilation drainage systems are plotted in figure 5.8. A single stack 

system is the minimal provision for ventilation and drainage stack serves as both 

a ventilation stack and a water discharge stack. For a one-pipe system, there are 

two vertical stacks, one is the drainage stack; and another is the air stack which 

is connected to the toe of drainage stack. A one-pipe system with a cross 

ventilation pipe provision is a modified one-pipe system. The number of cross 

 
P / pa 

h / m 

Figure 5.8, air pressure profile of different systems are shown, they include single stack, 

one pipe system, one pipe system with one cross ventilation  and one pipe system  with 

two ventilation pipes  

 

Great improvement of air pressure 

deduction from single stack to one pipe 

system (with ventilation stack) 

 

Gradually 

improvement 

by more cross 

ventilation pipe  
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ventilation pipe can be defined as the Density of Cross Ventilation Pipe (DCVP) 

as an index at a typical floor. For a single stack system, DCVP is 0. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

For the installation as shown in figure 5.9, the vertical distance between the 

cross ventilation pipes is 5.5 m (3 floors), and hence DCVP = 1/3. From 

previous simulations, it is no doubt that by increasing DCVP the air pressure 

problem of BDS can be solved more effectively. Figure 5.10 shows a typical 

case to reduce the positive air pressure excessively. DCVP is 1 (1 cross 

ventilation pipe per floor). 

Figure 5.9, shows a real case that cross ventilation pipes have vertical spacing 5.5 m 

Cross ventilation 

pipes are separated 

5.5 m 
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The connection is functional balanced air pressure. However, it is not a popular 

design today. Although it can improve the performance of air ventilation aid, 

more pipe works are required.  Even though the aged drainage stack is scaled 

and its internal diameter is reduced, problem of excessive air pressure can still 

occur. Increase DCVP seems to be a solution to solve air pressure problem but 

this will occupy more space. 

 

 

Figure 5.10, shows a real case that cross ventilation pipes have vertical spacing 2.8 m 

 

Cross ventilation 

pipes are separated 

2.8 m 
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For a special case, if a water closet is found to have a water seal suffering 

vibration and depletion. A smart connection is suggested to increase its DCVP to 

2 (2 cross ventilation pipes per floor). Excessive air pressure accumulation at the 

water closet can be solved if the discharge point at drainage stack is within the 2 

cross ventilation pipe.  

 

 

 

 

 

 

 

 

 

However, if DCVP = 2, it may not be acceptable from the architect’s point of 

view because there are too many pipes connected.  As such, too much space is 

occupied by the pipes, which may result in a negative appearance of building. 

Figure 5.11 shows a simulated case for DCVP =2. 

 

Cross ventilation pipes 

are separated 1.4 m 

Figure 5.11, shows a simulated case that cross ventilation pipes have vertical spacing 1.4 m 
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5.2 Innovation of a Twin Drainage Stack System (8S) 

This section describes an innovative drainage stack named “8S”. “8” presents 

twin pipe and “S” stands for stack (drainage stack).  Comparing with BDS with 

ventilation pipe provision, 8S can thoroughly solve the problem of excessive air 

pressure in drainage stack and also reduce the space occupied by pipe. It is 

because 8S has its own ventilation pipe and the DCVP of this stack design 

exceeds 100. 

 

5.2.1 Idea of 8S twin stack 

8S is run in a self-balance of air pressure. Theoretically, when water volume 

falls down, it generates higher air pressure and lower air pressure (Chapter 4, 

figure 4.6 zone 3 and zone 1 respectively). Air pressures can self-compensate 

and do not affect water seal of sanitary appliances.  

 

8S is a drainage stack and its shape looks like the shape ‘8’ from plan view. 

Actually, 8S is formed by a twin drainage stacks connected with central-

ventilating channel (CVC), as shown in figure 5.12.  
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Once discharge occurs in high-rise building drainage system (HBDS), the twin 

stack performs its dual functions at each side - one is drainage stack and the 

other is ventilation pipe at the same time. 

 

 

 

 

 

 

ϕ 

 

The CVC is actually same as a Cross Ventilation Pipe (CVP) but DCVP is over 

100. 

Air balancing depends on its two arms to maintain equilibrium. In 8S, CVC is 

the arm to balance the air pressure with higher efficiency. Figure 5.12 shows top 

views of 8S - LHS is for drainage discharge, RHS is for air stack and CVC is the 

balancing device for air pressure. 

 

Figure 5.12, shows plan view of 8S 

 

CVC  

Drainage  

Stack 

Air  

Stack 

100ϕ 

100ϕ 
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As air flows from higher pressure zone to lower pressure zone, an ideal scenario 

is that the air will follow the route P2  P3 P4 P1. Air pressure at various 

positions is induced when the water volume falls downward, the pressure at 

various positions trends to “cancel out” within them. 

 

Figure 5.13, shows structure of 8S which drainage stack and ventilation stack are connected 

by CVP 

 

Falling Water Volume 

Air pressure self - balance  

ΔP  P2 – P3  P3 – P4  P4 – 

P1  

 

100 Air Stack 

100 Drainage Stack 

Cross Ventilation Pipe  
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 5.2.2 CFD simulation for 8S 

Similar to previous chapters’ simulation, FLUENT is used to simulate whether 

the twin drainage stacks can perform the expected function when there is a water 

fall from the horizontal branch to the vertical stack. Three types of systems are 

under investigation: single stack, one pipe system and, modified one pipe system. 

The third type has two different arrangements on the cross ventilation pipe: with 

1 cross ventilation pipe and 2 cross ventilation pipes. Height of the water flush is 

5.5 m height and for all types of drainage system arrangements, the discharge 

quantity is set to be the same (2.4 L/s). Finally, the 8S twin stack system should 

also undergoes the same simulation process as well, for comparison with 

traditional design options.. 
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The simulation was conducted in the similar manner as Chapter 5.  Water 

volume falls from the height level of 5.5 metres at the drainage stack, but the 

difference is that ventilation stack is connected to the top region of drainage 

stack. The summit of drainage stack is 6 m in height. This set up is similar to the 

traditional one pipe system but it equips with a large number of  shapes cross 

ventilation channels (CVC).  

 

Figure 5.14, shows structure of 8S which drainage stack and ventilation stack are 

connected by CVP 
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From figure 5.14, it can be observed that positive air pressure is induced at the 

head of falling water volume at t = 1 second after falling. Air pressure can be 

well digested by all ventilation devices within the 8S twin stack, including the 

ventilation stack and CVC.   

 

Figure 5.15, shows the zoom-in diagram for the water volume. Air pressure 

values at various locations (i.e. P1 to P4) are listed as below: 

P1 = - 4 Pa,  

P2 = 5 Pa, 

P3=  3 Pa, and  

P4=  - 1.8 Pa 

The results follow exactly the desired pattern P2 > P3 > P4 > P1.  
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From the result of simulation, CVCs would encounter an extremely low pressure. 

Those CVCs contact the head of water volume and induce a local negative 

pressure. The air pressure is very small but agrees with the assumption. 8S twin 

stack performs very well to release the air pressure within the drainage stack.  

 

 

 

 

 

 

 

 

 

 

From figure 5.16, air is well ventilated via the CVCs at the head of falling water 

volume at falling time t = 1 second. Positive air pressure at the water volume can 

be released along the fall and no positive air pressure would be “accumulated” at 

the lower drainage stack. A large portion of air flow vectors are ventilated via 

Figure 5.15, shows air pressure contour near falling water volume at falling 

time t = 1 second 

 

 

P1 

 

P4 

 

P2 

 

P3 
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the ventilation stack, while the CVCs are observed to allow a small portion of 

the air flow vectors to flow across. In order to show that 8S twin stack possess 

allows a larger degree of air ventilation. 

 

 

 

 

 

 

 

 

 

 

 

In figure 5.17, another simulation is conducted with a larger discharge volume 

of the water fall. The water discharge flow rate is 5 L/s during this part of 

simulation. It doubles the quantity of previous discharge trials (2.4 L/s), and 

moreover, the diameter of ventilation stack decreases to 50 mm. When time t = 

 

Figure 5.16  shows air velocity vector diagram which is near falling water 

volume at falling time t = 1 second 
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0.5 seconds after the falling of water volume, air pressure self-balancing can be 

achieved obviously in figure 5.17 

 

 

 

 

 

 

 

 

 

 

 

P1 = - 14 Pa,  

P2 = 34 Pa, 

P3= 9 Pa, and  

P4= -8 Pa 

This also follows the expected pattern P2 > P3 > P4 > P1 

 

P1 

P2 

P3 

P4 

Figure 5.17, shows air pressure self-balance effect when ventilation stack = 50mm, water 

volume = 5L per second and falling time t = 0.5 second 
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From the above results, 8s twin stack has been proved to possess self-air balance 

capacity again, which is also large enough to self-balance an unexpected air 

transient induced inside the drainage stack. 

 

According to typical local basic design thinking, the quantity of water discharge 

flow of 2.4 L/s & 5 L/s can be perceived in the following discussion. From the 

design manual of the Institute of Plumbing (2002), the quantity of discharge 

flow can be expressed as 

Q =  

Where Q is the discharge flow and K is the frequency constant.  

Suppose in a commercial building complex, K = 0.7 according to IOP design 

manual (Tildsley et al. 2002), if the discharge appliance is a water closet and the 

highest water consumption is assumed to be a 9L cistern, the discharge unit 

(D.U.) approach can be adopted.  

Since the discharge unit is 2 L/s for commercial building, 2.4 L/s and 5 L/s 

water discharge flows equal to respectively 6 and 26 water closets flushing 

simultaneously inside a real building.  In reality the case of 5 L/s occurs rarely 

but the probability of occurrence is definitely not zero.  
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For a twin stack consist of a pair of 100 mm drainage and ventilation stacks 

together, the test of the 5 L/s simulation and its set-up is the same as 2.4 L/s 

discharge test. Although their discharge quantity is doubled, test results indicate 

that the air pressure contour (figure 5.18 and figure 5.19) for 5 L/s water 

discharge is almost the same as 2.4 L/s discharge simulation. This shows that the 

8S twin stacks perform its function even whe the water discharge flow rate is 

abnormally high. 

Figure 5.18, shows air pressure contour of drainage stack at falling time t = 1 

second and discharge  

volume = 5 L/s 
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Figure 5.19, shows air pressure contour diagram which is near falling water 

volume at falling time t = 1 second and discharge volume = 5 L/s 
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5.2.3 Comparison between 8S and other connection CFD simulation. 

The air pressure result of water volume (2.4 L/s) is shown in figure 5.20 

 

 

 

 

 

 

 

 

 

 

In the pressure diagram (figure 5.20), when water volume falls at time t = 1 

second, the air pressure at (35, 2.4) decreased suddenly from 35 Pa to 10 Pa. 

CVC is anticipated to play a role on releasing the air pressure. 35 Pa is discarded 

and the latter value of 10 Pa is considered regarding the pressure profile data. 

The air pressure profile for the 8S twin stack can be plotted from the following 

related points (0, 6), (-1, 5.5), (-1,4.7), (7 ,3.5), (20, 1.7), (37, 0.35) and (41, 0). 

Figure 5.20, shows air pressure diagram in the 8S drainage 

stack 

 

(35, 2.4) 

Air pressure profile at  t = 0.5s  

 

Air pressure profile at  t = 0.5s  

Air pressure profile at  t = 1.0s  

Air pressure profile at  t = 1.5s  

Consolidated air  

pressure  profile  

by discharge 
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As the discharge volume and height are 2.4 L/s and 5.5 m respectively, which   

are the same settings of other connections; the plot of air pressure profiles 

diagram is similar to figure 5.8.    

  

 

 

 

 

 

 

 

 

 

 

Figure 5.21 shows the air pressure profile diagram which compare different 

drainage connections options. In the 1
st
 case, positive air pressure occurs at the 

toe of drainage stack, and for this single stack system its greatest value is 390 Pa. 

   

 

Figure 5.21, shows air pressure profile of 2.4 L/s discharge in 8S drainage stack 
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Once the drainage stack is equipped with ventilation stack, the system becomes 

a one pipe system. This is the 2
nd

 case that positive air pressure at toe of stack 

decreases to 158 Pa. For 3
rd

 and 4
th

 cases which is installed with cross 

ventilation pipe between the drainage and ventilation stacks.  Here, the air 

pressures further reduce to 148 Pa and 140 Pa respectively. It shows the 

importance of ventilation provision to the main drainage discharge stack, which 

dominates a large part air pressure reduction (232 Pa). Cross ventilation pipe is 

effective to balance air pressure but its capacity is not enough and just to 

decrease 10~20 Pa. The ventilation ability also depends on their distance of 

separations between the cross pipes, 5 m separation between cross ventilation 

pipes can decrease 10 Pa and 2.5 m separation reduces 20 Pa.   

The 8S twin stack has CVC (about 250 ventilation channels) which is provided 

along the drainage stack and ventilation stack. From the results, air pressure at 

the toe is 41 Pa.  It shows that 8S twin stack achieve an outstanding efficiency to 

release positive air pressure and, a sharp deduction is observed when comparing 

to one pipe system (the positive air pressure is reduced by more than 120 Pa). 
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The simulation results of 8S twin stack show its merit while it is far more 

important to conduct field verification by a real water discharge process at a real 

installation. The tests are not only conducted at the 5.5m drainage research rig 

but also conducted at a 18-storey real building. 

 

5.2.4 Validation in Drainage Research Rig and real building 

A series of tests have been conducted to verify the performance of 8S stack.  

 

5.2.4.1   Comparison with Drainage Research Rig of the Hong Kong PolyU 

A series of hydraulic tests have been held in the Drainage Research Rig in the 

Hong Kong Polytechnic University. 

Height of water discharge is 5.5 m and the water volume would be slightly 

greater than the simulation value (2.4 L/s).  
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Flow (L/s) Point 1 (pa) Point 2 (pa) 

3.3 50 20 

4.2 80 50 

  

 

Figure 5.22, shows the setting up of 

8S in Drainage Research Rig of HK 

PolyU 

 

Figure 5.23, shows small air 

pressures which are observed at 

the toe of stack 

 

1 

 

Discharge Point 

Table 5.1, shows low air pressures which are found at the toe of the stack 

 

 

2 
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The air pressure transducers are located at the toe of 8S. The configuration of the 

test is the same as the previous test mentioned in section 4.2.2. Observed from 

the simulation result, the positive air pressure at the toe is 41 Pa for a 2.4 L/s 

water discharge flow rate, which agrees generally with the measurement result at 

the toe of 8S twin stack (positive air pressure of 50 Pa for a 3.3 L/s water 

discharge).  Moreover, figure 5.23 shows that no hydraulic jump can be 

observed during the whole discharge process. There is no doubt that 41 Pa is 

very small and it equals to 4 mm water pressure head which can be considered 

as zero or negligible air pressure. 

 

8S twin stack can effectively solve the problem of excess positive pressure, and 

additional tests will be conducted in a real building. 
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5.2.4.2 Comparison with a real building 

The building has 18 storeys which is a typical residential building in Southern 

China.  The test configurations are listed as below: material of 8S twin stack is 

uPVC with a wall thickness of 3 mm.  Internal diameter of the whole twin stack 

is 2 x 100 mm which are connected together by a 100 mm width CVC. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Stations Heights  
(m) 

Toe of 

Stack 
0 

1/F 1.5 

5/F 13.8 

11/F 28.6 

 

Table 5.2, shows station 

points of pressure 

transducers 

 Figure 5.24, shows station points 

of pressure transducers 
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There are 3 pressure transducers installed at the drainage stack. The 

specification of these transducers is WIKA  , IP65 (figure 5.26). The 

logger ADAM 6017 (figure 5.27) is used. 

 

 

 

 

 

 

Figure 5.25, shows 8S setting-up for a domestic building in Dongguan, China 

 

8S 
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As shown in figure 5.25, there is one water closet per floor and the closets from 

all floors (within a zone) are connected to the 8S twin stack.  Every water closet 

discharges water at a flow rate of 1.5/s. The water discharge rate is controlled by 

the electrical box as shown in figure 5.28. All water closets can be operated to 

flush at same time and for a definite input time period.   

 

In order to deliver a maximum discharge to the drainage system, all water 

closets are set to discharge with a controlled time delay for successive floors. 

Water volumes from each floor combine in the stack to form a single larger 

water volume.  

 

 

Figure 5.26, shows a WIKA air 

pressure transducer installed at 8S 

 

 

 

Figure 5.27, shows a ADAM logger and computer 

for data collection 
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Several tests are conducted and table 5.3 shows part of the data obtained from 

the flushing tests. Two set of data were obtained, one set from the 100mm 

diameter drainage pipe test, and the other from the 100 diameter 8S twin stack. 

Water discharge flow rate is between from 4.5 L/s to 25.5L/s, which varies 

according to the number of flushing water closet in the trial. 

 

 

 

 

 

 

 

Figure 5.28, shows control box for flushing of water closets  
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Observed from Table 5.3, it is clear that 8S twin stack installation can 

effectively reduce the large positive air pressure at the lower storeys.  It is 

supported by a reduction of more than 10 mbar negative pressure at 5/F and, a 

reduction of 36 mbar positive pressure at 1/F, compared with the tradition 100 

mm stack. While at 10/F the negative pressure at the traditional stack would 

change to a slightly possible pressure for the 8S twin stack case, the magnitude 

of air pressure at 10/F is still decreased by some 8 mbar. 

 

The 8S twin stack is expected to solve air pressure problem typically in high rise 

buildings. Simulation and field verification show that the 8S twin stack is able to 

perform its expected function. By reducing the magnitude of air pressure within 

the drainage system, risk of failure including foul water back flow and escaped 

 

Table 5.3, shows air pressure reading at different station points for different discharge 

flow 
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air flow from drainage system to the indoor environment can be minimized to 

offer a safe and health indoor environment. 

 

5.3 Smart Floor Trap 

SARS outbreak in 2003 shows the threat on a communicable infection that human 

body has little or no immunity to the new pathogen.  Intensive research is conducted 

on the transmission mechanisms of pathogens inside a building. According to the 

report released to the public from the delegate investigation team from World 

Health Organization (2003) suggested the plague occurred in Amoy Garden could 

be a result of SARS virus transmission via the re-entrants and the drainage stacks of 

the residential buildings. The awareness on the importance of water seal inside the 

trap in drainage systems was raised. The Hong Kong government has advised the 

public frequently that the traps should be filled up by water all the time. 

 

Floor drain traps in the bathrooms and kitchens were often neglected by building 

occupants who fail to keep the traps filled up with water. One reason is that Hong 

Kong people tend to mop the floor during cleaning while wet cleaning is relatively 

seldom.  If the air pressure within the drainage system cannot be properly relieved, 



164 

the water seal could deplete to allow the smelly foul air flows from drainage system 

to the living environment. 

 

5.3.1 Smart water seal refilled floor trap 

A smart pipe connection as shown in figure 5.29 can solve this problem. The floor 

traps will be refilled by a smart tee which delivers waste water to floor trap.  

 

 

 

 

 

 

 

 

 

 

In figure 5.29, a floor trap becomes “smartly connected” that water seal can be 

refilled to ensure that the water seal inside will not lose nor becomes empty. This 

 

Figure 5.29, shows a smart pipe connection to refill water to floor trap 
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reduces the risk of contaminated air flow from drainage stacks into indoor spaces if 

the floor drains can retain the water longer against drying and evaporation, without 

changing the currently adopted design and sizing practice of drainage system. The 

coming research describes a new design of floor traps which reduce the rate of 

evaporation of the water seal. This chapter also describes the method to evaluate the 

performance of smart trap at a test rig. 

 

5.3.2  Smart floor trap 

Smart trap is a bell type floor trap.  The most significant difference compared 

with traditional floor drain trap is that a large buffer space is provided to recover 

the trap depletion (water seal) by evaporation (Chan et al. 2008b). Smart trap 

emphasizes a new principle: Safety of floor trap is not only depends on the 

height of the water seal, but the contact surface of water to atmosphere is equally 

important to resist water loss. An innovative design of minor consumed trap is 

illustrated. The appearance of floor traps in figure 5.30 and figure 5.31 are the 

same, but they vary in the ability of water retention. 
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The operating principle of the smart bell is not complicated. There are two tiers 

of water seals, tier A and tier B in the floor trap. The tier contacts with the 

atmosphere suffer evaporation under an outside air velocity.  More important is 

that the evaporation is caused by temperature difference between the inside and 

outside of the trap as well. Of course outside air velocity is also a factor for 

evaporation. From figure 5.31, the estimated contact area of water seal in tier A 

and tier B in normal bell floor trap is expressed below: 

 

 

  

Figure 5.30   Bell type floor trap 

 

Figure 5.31  Bell type smart floor trap 
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Area of water seal              FA = 22 x 98 x 3.14 = 6769.84mm
2
 

               FB  = 8 x 62 x 3.14 =1557.44 mm
2
 

  

Total area of water seal  FT  = 6769.84 + 1557.44 = 8327 mm
2
 

Total consumption of water seal ωT = FT x 50 = 416364 mm
3
 

Total suction of water seal  ωS  = FA x 50  = 338492 mm
3
 

Daily evaporation of water seal  ωE = FA x 2 = 13539.7 mm
3
 

Residue of water seal after suction     ωR = ωT - ωS = 77872 mm
3
 

Safety period of water seal (no. of day) = ωR / ωE = 77872 / 13539.7 = 5.8 

From the result, the trap is easy to empty and smell will be easy come from the 

drainage system and may cause health problem. 

 

From figure 5.32, Smart trap has a smaller contact area of water seal in tier A, it 

minimize the water loss from the seal. The trap owns a large tier B for refilling 

water seal that is reduced in tier A. Estimation is made for the retention period 

of the water seal which is much longer than the traditional traps as shown in 

figure 5.31.  
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The calculation is shown as below: 

Area of water seal              FA = 8 x 111 x 3.14 = 2788.3mm
2
 

Total area of water seal  FT  = 6769.84 + 1557.44 = 8327 mm
2
 

Total consumption of water seal ωT = FT x 50 = 416364 mm
3
 

Total suction of water seal  ωS  = FA x 50 = 139415 mm
3
 

Daily evaporation of water seal  ωE = FA x 2  = 5576.64 mm
3
 

Residue of water seal after suction     ωR = ωT - ωS  = 276949 mm
3
 

Safety period of seal (no. of days) = ωR / ωE = 276949 / 5576.64 = 49.7 

 

The water seal loss in smart bell trap would be larger if tier A is too large. 

Efficiency of water recovery is also too low in this case. 

 

5.3.3 Verification on the evaporation rate of smart trap 

An experiment has been conducted to verify the evaporation rate of smart trap to 

compare its performance with a traditional P trap. An air chamber is constructed 

for these purposes. 
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5.3.3.1 Evaporation Model 

"Aerodynamic Method" is a widely applied to calculate evaporation (Jensen 

2010). This method is an approximation and adopted in this investigation.  This 

method is documented and requires measurement on temperature and vapor 

pressure at two heights above the surface are required, together with the speed of 

air outside the trap.  

  

The equations for evaporation estimation is: 

 E = - rho * L * k * ustar * (q2-q1) / ln(z2/z1) 

where E is evaporation, rho is air density, L is the latent heat of vaporization, k 

is von Karman's constant, ustar is the friction velocity, (q2-q1) is the specific 

humidity difference between the air and the “air film” near the water surface, ln 

is natural log, z2 is the height of the dew point temperature measurement 

location, and z1 is a height near the water surface.  

rho can be approximated as 0.0012 g/cm**3, where **3 means exponent to the 

3rd power. 

 L is approximated by 598 cal/g. 

 k is 0.38 
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 wind speed is in cm/s. 

 ustar is assumed to be one tenth of the wind speed. 

air pressure is in mBar. 

height of temperature measurement point is in cm; z2. z1 is  also in cm. 

To be determined are: the vapor pressure in mBar (e2) for the air dew point 

temperature (at z2); and the vapor pressure in mBar (e1) for the water 

temperature at z1 (which will be close to the dew point near the water surface 

because the air there is almost saturated) by using the following equation: 

 e = C0 + C1*T + C2*T*T + C3*T*T*T + C4*T*T*T*T + C5*T*T*T*T*T 

      + C6*T*T*T*T*T*T 

  where 

 C0 = 6.11 

 C1 = 0.4437 

 C2 = 0.014289 

 C3 = 0.000265065 

 C4 = 0.00000303124 

 C5 = 0.000000020340809 

 C6 = 0.00000000006136821 
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where the temperature T is in degrees C; it is noted that each coefficient is 

multiplied by as many Ts as the number in the coefficient. 

 

The specific humidity (dimensionless), q2 (at z2) and q1 (at z1) can be estimated 

by the following equation: 

 q = (0.622*e)/(P-0.378e) 

 Using the above information, evaporation can be estimated. 

 

5.3.3.2  Test in an Air Chamber - Evaporation Test 

The inner size of air chamber is 600mm (Length) x 500mm (Width) x 500 mm 

(Height). It possesses a steel case for insulation. The temperature and air flow 

inside the test chamber can be controlled by a heater and an exhaust fan. All 

floor traps are installed below and outside the chamber and accessible such that 

the water seal height inside the trap can be measured. 
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Figures 5.32 and 5.33, shows the test rig the testing. Evaporation occurs due to 

different temperatures which are measured inside and outside of the traps. A 

heater is installed below the steel case to adjust the temperature of air 

surrounding the traps. 

 

  

Figure 5.32  Trap Test Rig 

 

Figure 5.33  An air chamber is for 

trap test 

 

Air Chamber 

Exhaust Fan 

Traps 

Heater 

Exhaust Fan 
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Measurement result is listed below: 

Z2 =  38.1 cm 

Z1 =  21.1 cm  (near water surface) 

T2 =  28ºC 

T1 = 30.7 ºC 

VWind =  100 cm/s 

Evaporation is calculated by model 

EP Trap = 0.01886 cal/cm
2
/s 

   =  789.27 W/m
2
 

 

Measured data: 

Z2 =  19.7 cm 

Z1 =  1.9 cm  (near water surface) 

T2 =  28ºC 

T1 =  31.9 ºC 

VWind =  100 cm/s 

 

 

 

Figure 5.34  P-trap at floor drain 

 

Figure 5.35   Smart Bell floor drain 

trap 
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Evaporation Rate is calculated by, 

E Smart Trap = 0.00711 cal/cm
2
/s 

   =  297.4 W/m
2
 

 

5.3.3 Finding in the test 

The evaporation rates of P trap and Smart trap are compared as follow: 

=  =  = 2.6 

  

From the figure 5.34 (P trap), and figure 5.35 (smart bell type floor trap), 

although the size of Smart trap is larger, its evaporation is 2.6 times less than the 

50 mm diameter P-trap. 

 

The special feature of smart trap, which reduce the contact area of trap seal 

water exposed to the air, is successful to reduce the evaporation and hence,  

reduce the risk of water seal depletion inside the traps at the sanitary fixture. 

Smart trap improves the reliability of drainage system in high-rise building 

because: 
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 The loss of water seal of trap can be minimized.  

 No potential hazard of water loss due to the siphonage effect in the 

system.  

 Two tier of water seals are provided to ensure fast recovery of water. 

 Unlike the outdoor water floor trap, the smart bell trap will be installed in 

indoor area. Only discharge pipe is to make connection between the trap 

to main horizontal discharge pipe.  It means that no floor trap is placed 

outdoor.  It not only avoids depleted water seal but also improves the 

appearance of external pipe connections. The only adverse effect of 

internal floor trap is that it has to be placed in separated floors.  So, it is 

more difficult to carry maintenance if the floors are belonged to different 

owners. 

 

5.4    Some suggestions on future work: identifying emptied traps along a 

stack  

Regarding the emptied trap, it is recommended that for future research, the 

feasibility of automatic detection on depleted water seal in traps can be 

investigated.  Actually, some preliminary research has been started already.  
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Figure 5.36 : schematic diagram for the data transmission system testing 
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Figure 5.38: The schematic diagram of test rig for empty trap detection 
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In figure 5.36, the test rig for sound transmission inside drainage rig is 

established in drainage research rig of the Hong Kong PolyU.  In figure 5.37, 

this schematic drawing shows the set-up that the convenience of regular and 

routine checking of all system traps has been enhanced to prevent any 

unidentified dry or semi-depleted traps before the experiment. The acoustic 

impedance technique with an indication of depleted traps in the pipe system 

would ensure that the system is complied with performance standards. This 

research objective is to perform the simulation (at which the ability can be 

confirmed) using sound impedance and sound transmission loss properties 

within building drainage and vent systems, which may be used to identify those 

defective trap seals. 

 

More research is needed to investigate the sound transmission characteristics of 

the drainage system for various combinations of empty and sealed traps. Finite 

element methods can be employed to solve the unknown parameters by using 

computer software such as MATLAB. The frequency concerned is at the first 

eigenfrequency of the pipe, such that plane wave propagation inside stack and 
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pipes should be sufficiently separated apart from the branches. Although this 

limits the feasibility of the research at present, it is expected that such a research 

is useful to manage the drainage system, once the separation requirement 

between stack and pipes can be reduced in future research. 
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Chapter 6 

Drainage Monitoring and Communication Systems 

 

The effective monitoring on the drainage system at real building requires data 

acquisition of the operating parameters within the system. This chapter describes 

a unique data logging at the drainage stack. It can record air pressure data in the 

stack continuously within the defined logging period. In addition, this chapter 

also introduces an advanced analysis technique on the air pressure data from 

drainage stack.  

 

6.1  Data Collection of Air Pressure inside the Stack 

In Hong Kong, many high-rise buildings suffer problems in drainage system. 

Examples include aged pipes and stacks with scaling, as well as blockage inside 

the pipework.  The may result in an increase on the air and water pressure within 

the system. Risk of leakage may also become higher if the discharge rate 

increase.  At the same time, the internal diameter of pipework gets smaller due 

to scaling and, the pressure inside the scaled pipe will further increase. Different 

from other building services systems such as air-conditioning or electrical 
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system provided with a number of options available in terms of monitoring 

devices and computerized control algorithm, there is a lack of detection devices 

and protocol available for the performance monitoring on drainage system. 

 

6.1.1  Data Collection in a Real Building – Li Ka Shing Building 

The Li Ka Shing building (LKS) is the tallest building in The Hong Kong 

Polytechnic University and is located at the centre of the campus.  There is a 

restaurant at 14
th

 floor, a student computer centre at 3
rd

 floor to 4
th

 floor, and all 

other floors are offices. Utilization of the sanitary appliances at the 3
rd

 and 14
th

 

floors is relatively higher throughout the whole day when compared with the 

other floors. An investigation was made in April 2008 whereby 3 air pressure 

survey points were installed on the main foul-water stack (150mm diameter) of 

the building, on the mezzanine (M) floor, the 6
th

 floor and the 12
th

 floor 

respectively. The objective of the research is to determine the air pressure 

distribution of the main stack and how it varied. This building is used as a 

measurement platform and real pressure values are online logging. 
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Figure 6.1 – Schematic drainage diagram for 150 dia. Main stack and air pressure survey points 

 

Figure 6.2 – WIKA air pressure transducer 

is installed at 6/F 150 drainage stack 

 

Figure 6.3 –WIKA air pressure transducer 

is installed at M/F 150 drainage stack 

 

 



182 

6.1.2 Air fluctuation behaviour in a drainage system in LKS  

The purpose of data analysis not only limit to defining the alarm level from the 

collected data, but also lead to a better understanding on the air pressure 

characteristic of the main drainage stack. 

 

 6.1.2.1   Data collection at M/F of LKS  

As observed from figure 6.4, the average air pressure inside the stack was 1.18 

mbar (with a maximum at 5.57 mbar and a minimum of -0.59 mbar).  The peak 

period of utilization was between 11:45 a.m. to 2:15 p.m., i.e. during the lunch 

period. 

 

 

 

 

  
Figure 6.4 – Air pressure inside 150 stack at M/F, Li Ka Shing Building 
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6.1.2.2     Data collection at 6/F of LKS 

Observed from figure 6.5, the average air pressure is -2.28 mbar (with a 

maximum at 2.38 mbar and minimum of -7.32 mbar).  There is no significant 

variation or maxima at a particular time. Air pressures in the stack at 6/F appears 

to be more stable than that at the M/F. 

 

 

 

 

 

 

 

6.1.2.3   Data collection at  12/F of LKS 

Same as 6/F, 12/F is in a negative pressure zone.  The average of air pressure is -

2.05 mbar (with a maximum of 2.52 mbar and minimum of -12.83 mbar).  There 

is no great variation or maxima at particular times. Air pressures in the stack at 

12/F, like the 6/F, appears more stable than at the M/F. 

 

 

Figure 6.5 - Air pressure inside 150 stack at 6/F, Li Ka Shing Building 
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There are approximately 20 peaks or more high positive air pressures be 

observed between 11:45 and 14:15.  On 10 occasions, the air pressure exceeds 

4.5 mBar, and 5 of these occasions even exceed 5.5 mbar.  It means that a 

number of sanitary appliances are used simultaneously during that period and 

water seal of all traps including water closet are unstable in the 3/F toilets.  From 

Table 6.1, the standard deviations of the 6/F and 12/F data are similar while the 

value for the M/F is much larger, indicating that the air pressure variation is 

much larger at M/F. 

 

 

Figure 6.6 – Air pressure inside 150 stack at 6/F, Li Ka Shing Building 
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6.2  Remote Monitoring in Drainage System  

6.2.1  Communication with the Drainage System 

A network-based pipe monitoring system was installed to the above-mentioned 

drainage system, which facilitates remote monitoring and logging pipe pressure 

through Ethernet. It also generates alarm output when stack (or pipe) air pressure 

exceeds the pre-set value. Data log file can also be downloaded through Internet. 

The whole system includes HMI software, monitoring PC, network-based AD 

converter and the air pressure sensor. 

 

The monitoring PC and network-based AD converter is linked by Ethernet so 

that all logged data can be transferred to a centralized system for analysis. The 

network based AD converter transfers the sensor signal to the monitoring PC 

through Ethernet. Other optional functions include alarm output signal transfer 

when the air pressure over the preset value. The monitoring PC is installed with 

HMI software display and log the data into Excel format obtained from Network 

based AD converter. In addition, FTP and remote desktop software can be 

installed so that the log file of the air pressure can be received by other remote 
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desktop for data analysis. Figure 6.7 shows the schematic diagram for the data 

transfer system to incorporate air pressure monitoring in drainage stack. 

 

 

 

 

 

 

 

 

 

 

 

Human Management Interface (HMI) can be easily used, which can show the 

details of the drainage system. The HMI software can display real-time air 

pressure data and alert signal of the corresponding area received from Network-

based AD converter. Data can be converted to output file ib MS-Excel format 

output by schedule. 

Network based AD converter converts analog sensor signal to digital signal and 

transfer the signals to PC via network. The monitoring interface can also be 

 

Figure 6.7 : schematic diagram for the data transmission system 
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programmed to provide digital output signal when air pressure is detected such 

that the pre-set value is exceeded 

 

Long duration logging on air pressure at 3 survey points were conducted in this 

research, the survey points are located on the existing main foul-water drainage 

stack (150mm dia.) of the building at the mezzanine (M) floor, the 6
th

 floor and 

the 12
th

 floor. The objective is to determine the air pressure distribution of the 

main stack and how it varies in the logging period. 

 

When air pressure exceeds 500 Pa (5 mbar), the warning level of BDS is reached. 

Signal would be sent from the monitoring system to the Building Management 

System.  

 

This kind of communication system should be able to communicate within 

different networks of the building. The monitoring PC and Network based 

converter are connected to building’s router for internet access. Such router 

should have at least 1 public IP and configured the Port forward so that the 

monitoring PC is accessible through the Internet. In this research, the system has 
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some limitations. CAT 5 cables are used for networking, while this limits the 

maximum point to point distance to 100m. Optical cable is recommended when 

developing a wireless transmission. 

 

Long duration monitoring is applied in the LKS building inside the Hong Kong 

Polytechnic University. Data on air pressure inside such drainage foul stack has 

been logged for a few years.  From such a large size database record, it is 

identified that in weekday, highest pressure value is found to occur between 

11:00 am to 3:00 pm., and after mid-night the pressure value is the smallest. 

 

In terms of air pressure pattern within a week, peak value of air pressure is 

noticed on weekday but smaller value is found in weekend, which a typical 

phenomenon for the university’s holiday. All of the data are scanned to identify 

the behaviour of water flushing which is possibly dependent with time, date and 

the usage by building occupants. 
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6.3 Air pressure fluctuation in the Drainage Stack 

A well-functioning drainage system without failure operation should be able to 

convey the soil and waste matter smoothly to the designated location such as a 

manhole or a sewer. Any blockage inside the pipework results in an increased 

air and water pressure. From this consideration, the degree of fluctuation of the 

pressure inside the piping system can be a good indicator on the smoothness of 

soil and waste discharge. Field measurement is necessary and the results can 

also be calibrated and validated by a simulation model. In addition, everyday 

maintenance on the drainage system can be performed more properly by initiate 

acupuncture study, perform signal levels analysis and establish an alarm system 

of the building drainage. Figure 6.8 shows the measurement station in LKS 

building inside the Hong Kong Polytechnic University (PolyU). The station is 

installed at a 150 diameter foul stack.  



190 

 

 

 

 

 

 

 

An acupuncture study on drainage system helps in the selection of the 

representative locations for stack pressure monitoring, to identify if there is any 

drainage problem which includes blockage, noise, vibration, loss of water seal, 

and smell emission. All of them are related to the variation of air pressure 

transient. 

 

 6.3.1 Air fluctuation behaviour in the drainage system 

 

Air pressure fluctuation behaviour in a high‐rise building drainage system 

(HBDS) can be presented by probability density functions (Wong et al. 2011).  

And, statistical analysis can be applied on the measured data obtained from the 

drainage stack in this real‐life case in year 2008. The Li Ka‐Shing (LKS) 

 

Figure 6.8 shows an air pressure sensor in LKS building, the Hong  

Kong Polytechnic University 
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Building in PolyU has eighteen‐floors.  Observation points at the mezzanine (M), 

6th and 12th floors are connected to record the air pressure in the primary 

building stack. (Configuration of LKS building measurement station is shown in 

Figure 6.1). Pressure sensor IP67 in the type of WIKA was used in the 

measurement. It has a measuring range of about ± 100mbar, with an accuracy of 

about 0.25%. Calibration was done using 150mm height U tube manometer, 

which was connected to the pressure sensor and an air pump. The pressure 

sensor can detect the air pressure in the stack of the test building by providing 

electric current signals having unit mA, which are transferred to a set of data 

logger. 

 

 

 

 

 

The logger system at 6/F is shown in Figure 6.9. The data logger has two parts: 

an analog input module used to convert mA signals to digital signals, and a 

programmable logic controller (PLC) used for signal control. The type of the 

 

 

Figure 6.9: PLC measurement station at 6/F, LKS building, the HK PolyU 
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PLC is micrologix-1500. The software named as RS-logix- 500 was used for 

data logging in PLC. Digital signals were sent to the personal computer by using 

the DH485 communication port and cable.  The data for the present statistical 

analysis was recorded in the daytime from 8:00 a.m. on 28 of April in 2008. 

 

The measured data is stored in a personal computer with a sampling interval of 1 

second. The statistical analysis revealed that the air pressure in the real‐life 

HBDS is largely dependent with floor location. The flatness factor of the 

pressure fluctuation increases with the floor number, while the skewness factor 

has a reversed variation tendency.  The value decreases from a positive one in 

the M floor to negative values at higher floors. Probability density functions 

show the pressure fluctuation behaviour is largely different from normal 

distributions. 

The present interest of HBDS is motivated by a previously lack of interest on the 

air pressure data during real-life operation of the building drainage system. 

Considering this situation, the LKS building in Hong Kong PolyU is tested as an 

example.  The air-pressure in the building drainage stack is measured and 
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analyzed to explore the pressure fluctuation behaviours which are crucial in 

drainage system assessment and troubleshooting. 

 

A summary of the statistical analysis of measured air pressure in the primary 

stack of the test building is given in Table 6.1. 

 

 

 

 

The pressure evolutions during 8:00 to 10:00 a.m. on 28 of April of 2008 is 

shown in figures 6.10(a-c).  

 

 

Table 6.1 : Mean pressure, standard deviation, skewness and  flatness factors of pressure fluctuation. 
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The result indicates that the pressure depends mainly on the floor level, as 

reported in our research study (Wong et al. 2008b). At the M floor, the air 

pressure has a positive mean value of approximately 1.2mbar, with a larger 

standard deviation of 0.87mbar. The pressure fluctuation at the M floor has a 

positive skewness factor (CS) of around 0.9, and a flatness factor (CF ) of 3.8, as 

given in Table I.  

 

Figure 6.10 : Evolution of air pressure (a) M floor, (b) 6th floor, (c) 12th floor. 
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6.3.2 Probability density function (PDF) in air pressure fluctuation behaviour 

study  

A PDF is used in research of drainage air fluctuation behaviour study. It is 

density of a continuous random air pressure variable.  It is also a function that 

describes the relative likelihood for this random variable to take on a given 

duration value (Terzaghi 1986).  

 

The values of these statistical parameters also depend on the floor level. In 

particular, the mean stack pressures in the 6th and 12th floors are negative.  The 

standard deviations are roughly third of that in the M floor, may refer that the 

fluctuations have lower intensities. The skewness factors CS  in the 6th and 12th 

floors are negative, indicating that fluctuations with larger amplitude is 

negatively oriented, i.e. large amplitude negative pulsations are more common 

according to the observation on in figures 6.11(a-c). 
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Figure 6.11(b)  PDFs of measured pressures and normal distributions 

with standard deviation C0s. at 6th floor 

 

Figure 6.11(a)  PDFs of measured pressures and normal distributions 

with standard deviation C0s. at  M floor 
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The CS for the 12th floor is about twice of the CS for the 6th floor, showing that 

at the 6-th floor there are more intensified and negatively oriented pulsations. 

The flatness factor CF for the 12th floor is around 75.  It is much higher than that 

of the 6th floor which is 8.6 (from table 6.1), implying the pressure distribution 

is particularly narrowed. As shown in figure 6.11(c), almost all the fluctuations 

are concentrated within the narrow range of pr from -0.15 to 0.2. The probability 

density functions (PDFs) were formulated in terms of measured air pressure in 

the primary stack of the test building, in order to indicate the pressure 

fluctuation behaviours. The rescaled pressure is defined by: 

 

Figure 6.11(c)  PDFs of measured pressures and normal distributions 

with standard deviation C0s. at 12th floor 
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       pr = (p – pm)/[p]  

and pressure variation range 

[p ]= max (p) – min (p) 

Which is shifted so that the midpoint of the range has the mean value  pm. As 

shown in figure 6.11 (a to c), the pressure fluctuations are less similar to the 

PDFs (fp) of normal distributions with standard deviations C0s, 

      fp =  exp {-  }   (eq 6.3) 

Here the parameter of C0 (the standard deviation) was chosen as 0.125, 0.10, or 

0.08 (1/mbar) for the stations at M/F, 6/F and 12/F. The shape of fp  becomes 

narrow with the reduction of C0. In figure 6.11(a), it can be observed that the 

negative pulsations with amplitude beyond 0.25 is scarce, because the air flow 

driven by the drained water in the stack is stagnated at the bottom of the stack.  

 

This fluctuation behaviour determines the standard deviation from a normal 

distribution PDF in relative to the measured PDF increase with the increment of 

(eq 6.1) 

(eq 6.2) 
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1/C0;, The variation trend to be quite different from that of the pressure 

fluctuations observed from the 6th and 12th floors (See figure 6.12). 

 

 

 

 

 

 

 

 

In figure 6.11(b), the measured PDF generally fits a normal distribution. For 

small amplitude of pressure pulsations, large deviation occurs in the tails 

representing larger amplitude oscillations. The standard deviation from normal 

distribution PDF, as shown by the line connected by unfilled circles in Figure 

6.12, has a minima around 1/C0 = 12mbar. In figure 6.11(c), the measured PDF 

cannot fit the normal distributions for 1/C0 in the range from 8 to 13mbar, 

because the standard deviation of PDF is almost over 3, as shown by the line 

linked by filled deltas as shown in figure 6.12. 

 

Figure 6.12 shows Standard deviation between the measured PDF and the normal distribution 

with standard deviation C0s, plotted as a function of 1/C0. Here s denotes the root mean square 

of pressure. 
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In conclusion, the measurements of air pressure in the real-life LKS building 

shows that:  

(a) The air pressure distribution does not fit with a kind of normal distribution 

while the distribution in the M floor appears to have the largest deviation from 

the normal distributions. 

(b) The air pressure in the mezzanine (M) floor has a larger standard deviation 

that it is two to three times larger than in the 6th and 12th floors.  

(c) The air pressures in the 6th and 12th floors have negative skewness factors 

and larger flatness factors. 

 

6.3.3 Visual inspection inside the stack 

The air pressure and the standard deviation at the M/F level inside the stack are 

considerably higher. There is a concern that whether the accumulation of soil 

near the bottom of the stack contributed to an increase of air pressure, since such 

fouling would reduce the actual cross-sectional area of the stack. The visual 

inspection method, introduced in chapter 3, is employed again. Figures 6.13 

shows a typical case that is same as the stack around the 3/F level (1 floor above 

M/F is always suffering positive air pressure).  There is no abnormal reduction 
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on cross-sectional area of the internal part of the stack, nor any sharp increase on 

the thickness on the internal part.  Thus, the hypothesis on soil deposition (or 

fouling) that increases the air pressure is ruled out. 

 

 

 

 

 

 

 

In this research, the objective to record and analyse the air pressure inside a real 

operating 150 mm diameter foul water drainage stack is achieved by means of 

PDF.  Air fluctuation is found and it is a useful mathematic approach for this 

investigation. Larger deviations of data represent larger air fluctuation and this 

led to a recommendation that more attention should be paid within the range of 

stack. More air pressure sensors can be placed within this region (4/F, 5/F) and 

the alarm level can be set in higher resolution. In fact, complaints have been 

 

Water is pressed 

by air pressure 

from stack 

Figure 6.13 shows positive air pressure that always exist in lower  

floors of building (M/F etc.) 

 

Falling water 
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received form 4/F females toilet with smell and overshooting from water closets 

had been found before this research.  

 

 

 

 

 

 

 

 

As M/F has larger air fluctuation and higher PDF, a larger size ventilation pipe 

is recommended if it is possible to retrofit.  However solely retrofitting the 

ventilation pipe may not be enough to solve the problem completely because the 

size of ventilation pipe is just the same as drainage stack (i.e. the vent to stack 

diameter ratio is 1).  The air pressure transmissions coefficient is just 66% as 

only as observed from figure 6.14 (Swaffield, 2010). 

 

Figure 6.14 shows relationship between Vent / Stack Dia. ratio to transmission & reflection 

coefficient of air pressure inside the drainage system. 
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Considering that the drainage stack is installed in a narrow duct room, 8S twin 

stack can be installed to replace the existing stack partially. It provides a number 

of CVC (introduce in Chapter 5) to release excessive air pressure inside the 

drainage stack during discharge. At present, adding air attenuator valve unit (one 

unit can absorb 4L air and reduce air pressure temporary) is another way to 

solve the problem. The PDF results can help to optimize the sizing of stack 

when retrofit works is conducted. 
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Chapter 7 Conclusion 

 

Risk management for the drainage stack consists of a wide range of research. It 

covers research on strategies at various life-cycle stages so that the risk of failure 

or faulty operation of BDS can be reduced. The strategies are decided in the 

design stage.  The innovative design develops system components which include: 

the 8S twin stack, smart trap, and also the smart connection of traps.  It has also 

developed a monitoring system for daily operation of air pressure in the drainage 

system. A simulation model has been developed to predict the outcome of the 

newly developed system, with verification by on-site field measurement during 

real operation.  

 

7.1 Risk Model in Drainage Stack 

In this research, a risk model which includes identification, control, 

communication and monitoring for BDS is covered in the various chapters in 

this thesis: 

 BDS risk investigation is conducted in a real building, with an objective to 

demonstrate a protocol to trace the path of foul air transmission found in 
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existing systems, such that the defective part of the operation failure of BDS 

can be confirmed.  

  One of the research foci, the mathematical model development on air 

pressure prediction, has been completed. The development starts with the 

application of Computational Fluid Dynamics (CFD) simulation to predict 

air pressure profile in drainage systems, and conducting tests at the PolyU 

drainage research rig. The simulation result generally agrees with real 

measurement data from the rig. However, for real building operation, the 

discharge point is not single and can be located at an elevated level. Before 

the completion of higher drainage rigs in Asia, a mathematical model is 

developed for predicting air pressure profile in BDS with higher height of 

service. The research adopts a characteristic line method.  When a high-rise 

drainage research rig in the Asian context is available, measured data from 

a high-rise drainage system will become available for comparison. The 

mathematical model takes into account of the relationship between water 

discharge flow and air pressure inside the drainage stack.  

 The confirmation of the effect on air pressure by increasing cross 

ventilation in drainage pipes leads to a further development step, to create 
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an innovative idea based on the balance concept, and the outcome product 

is the 8S twin pipe vertical stack. The idea is that air pressure caused by fall 

water volume downfall can be balanced by itself within the twin-pipe 

design.  One of the twin pipes is for downfall water discharge and the other 

vertical pipe, is connected with a large number of cross ventilation 

“horizontal pipes” with very short length, providing the required ventilation.  

They are connected by numbers of small cross pipe so that the 8S can 

decrease air pressure effectively. As the ventilation pipe is already 

“packed” in a single stack adjacent immediately to the water downfall 

vertical pipe, once the 8S twin pipe vertical stack is used, there is no need 

to install a separated ventilation stack and related long distance horizontal 

cross ventilation pipe connection. It is no doubt that the new design has 

savings on material cost, man-hour time for installation with a neat 

appearance, and the ability to reduce the space allocation requirement. In 

this research, 8S twin pipe development employs CFD simulation to predict 

its function and capacity. A measurement set-up has also been successfully 

established in the PolyU Drainage Research Rig, with the data verification 

process completed.  In Hong Kong, the 8S twin pipe has already entered the 
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commercial market.  The first installation is already in progress and more 

field measurement data can also be obtained in the near future.  This has 

been an achievement of this research. 

At the same time, air attenuator and admittance devices are also important 

for existing systems, where retrofitting with the 8S twin pipe is not feasible 

due to various reasons.  For example, limited space inside the pipe/duct area 

makes the demolition of old stack impossible, or very costly. The attenuator 

and admittance devices take an important role as remedial measure, and to 

minimize the risk of failure of operation due to excessive air pressure in 

existing installation with the traditional design. 

 For monitoring and risk evaluation, this research provides a BDS 

monitoring systems set up as an active prevention measure. The concept is 

implemented in a real administrative office building in a University campus. 

The air pressure sensors are still sensing and logging data today.  In the near 

future, it can prevent the system failure which is water overshooting 

occurred in water closets of toilets at the lower floors a few years ago. The 

system allows long-term monitoring and ensures that unhealthy operation of 

the BDS can be detected immediately when it happens. An advanced data 
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analysis technique, the Probability Density Function analysis was developed.  

Once the financial issues for some remedial options, e.g. attenuators 

installation, is found to be acceptable and feasible for the site, this analysis 

can help facility managers to size the attenuators with better reference 

information. 

 

7.2  Limitation  

The main research focus has been the problem of excessive air pressure in 

vertical stacks only. The following problems, which lead to an increase on risk 

of operation failure, should actually be considered in real practice, although not 

able to be addressed with research analysis in this thesis. These include:  

 The material of stack, for example, uPVC drainage stacks are used widely in 

above ground drainage system. It is well known that uPVC suffers 

degradation under sun light, such that leakage of foul air or even foul water 

can occur. 

 In risk identification, it is often difficult to identify the spatial location of 

failure, which makes such a work more tedious in real practice. 

 Although traps are of vital importance in BDS, there is a lack of trap 
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monitoring method provided in the research field. While some preliminary 

work has been conducted in this research, injection sound impulse into a 

stack that the effect of sound reflection may help to identify any location 

with empty floor trap (loss of water seal), based on an analogy of playing 

bamboo flute (one of Chinese musical equipments). Tests are conducted at 

the PolyU Drainage Research Rig.  However, empty traps in different 

locations may result in the same sound reflection pattern.  This ambiguity 

problem limits the successful rate on true identification of emptied trap.  

Thus, more research work has to be done when proceeding in this direction 

for empty trap identification. 

 The 8S does not get the interest among most of the real estate developers or 

owner committees.  So, the application in real buildings is very limited at 

present. More works are needed to prove the performance and the 

promotion of merits are needed in order to obtain real operation experience 

for further improvement and enhancement on this invention. 
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7.3 Future Development 

This research on drainage risk management has intensively studied the selected 

aspects in an extensive coverage of life cycle stages on design and operation of 

drainage system.  It strengthens the risk model by linking various attributes 

together for a holistic approach on drainage system design and, operation 

management is to be developed in future.  The attributes are shown in figure 7.1. 

 

7.3.1 Model Enhancement 

In figure 7.1, the model can be improved by adding linkage between risk 

communication and risk control (linkage in brown colour).  More research is 

needed for automation control of risk occurrence. If any invention is 

successfully developed in future, more sensors can serve not only on the 

detection of hazards, but also the control of future drainage system fitments with 

electronic functions. This can solve automatically the typical problems occur in 

drainage system. Other inventions, such as electronic drainage traps will be 

considered, to explore the feasibility on a better detection of empty traps in high-

rise buildings. 
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To prevent virus or pathogen from spreading in the drainage system and entering 

the built environment, only passive control by blocking the entrance routes is 

Figure 7.1: schematic diagram for the data transmission 

system 
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now feasible to reduce the risk of disease outbreak. Ideally, the traps may also 

function actively by introducing the mechanism that it can kill the infectious 

micro-organisms or reduce the infectiousness of virus and other pathogens. 

There is a great room to reduce the risk of disease outbreak caused by pathogen 

transmission via the drainage routes.  More knowledge and resources for further 

development in this area is still required. 

 

On the other hand, an additional connection link is the relationship between risks 

identification and risk monitoring (linkage in green colour in figure 7.1).  The 

updated approach is to develop methods for automatic detection on depleted 

water seal in traps.  This is already mentioned in section 5.4.   The research has 

been started to provide a stepping stone for further investigation on the 

acoustical properties of trap in the drainage system with more complicated 

connections. It is hoped that these preliminary results and experience can 

contribute to future research. Once a protocol for the identification of those 

defective through an acoustics investigation is available, the model plays an 

important role in drainage system operation and maintenance without the need of 

the tedious inspection on traps one-by-one.  It is not only because of the saving 
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on the testing and maintenance cost, but also the clear benefits in simulation 

techniques to facilitate the prediction and identification of defective trap seals.   

Hence, it can prevent the spread of pathogen in disease outbreak through the 

building drainage system as early as possible. 

 

7.3.2 Facilities Management on Drainage System  

The drainage management system and the risk model can be promoted in real 

building in the future. At present, the data communication protocol is applied 

mainly in the context of research only.  Enhancement is needed such as the 

Graphical User Interface (GUI). In particular, the connectivity to Building 

Management System (BMS) is needed to for exploration so that the system 

would become widely accepted among facilities management organizations. 

With the aid from professionals with experience on operation and maintenance 

management, drainage coding and protocols can be further developed. 

Preliminary concept on developing a coding system is presented in the following 

section. 
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7.3.3 Code system for above ground drainage stack 

The condition of drainage stack can be defined as coding. The conditions 

indicating defects, which include the positions of cracks, fractures, deformation, 

broken, dislocated joints, the presence of hole etc. All of them can be observed 

inside the vertical drainage stack by means of CCTV. One type of defect will 

have its own abbreviation for the ease of record and reporting. For example, 

cracks can be classified as CC (crack circumferential), CL (crack longitudinal) 

and CM (crack multiple). Facture is actually similar to crack but its width is 

more than 0.6 mm.  Drainage code is currently applied for underground drainage 

system only and, is rarely used for above-ground drainage.  In fact, when 

defining the drainage code for a vertical stack, it is very difficult to define the 

orientations of the moving and rotating camera.  Possible ways to develop the 

coding system is to be explored in the future. 

 

7.3.4 Experiments Testing in Super High-rise Building 

As mentioned in chapter 4, numerical and CFD techniques are applied to predict 

the air flow inside the drainage stack. It can be verified by the recorded results 

but more important is to get more measurement data from real buildings, 
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especially for high-rise drainage rigs and buildings.  It is amazing that a series of 

drainage testing in a 123m height drainage rig in China will carry on (see figure 

3.6).  More collaboration and resources are needed to carry on the research.   
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