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Abstract 

Two main uses of categories are classification and feature inference, and category labels have 

been widely shown to play a dominant role in feature inference. However, the nature of this 

influence is unclear, and we evaluate two contrasting hypotheses formalized as mathematical 

models: the label special-mechanism hypothesis and the label super-salience hypothesis. The 

special-mechanism hypothesis is that category labels, unlike other features, trigger inference 

decision making in reference to the category prototypes. This results in a tendency for 

prototype-compatible inferences because the labels trigger a special mechanism rather than 

because of any influences they have on similarity evaluation. The super-salience hypothesis 

assumes that the large label influence is due to their high salience and corresponding impact 

on similarity without any need for a special mechanism. Application of the two models to a 

feature inference task based on a family resemblance category structure yields strong support 

for the label super-salience hypothesis and in particular does not support the need for a 

special mechanism based on prototypes.  
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Salience not status: How category labels influence feature inference 

 Arguably the most important aspect of categories is that they facilitate the predictive 

inference of hidden features. But how does category membership influence feature inference 

decision making? What does category membership information add? And in what way is this 

information added?  

 It is not surprising that category labels as indicators of category membership should 

receive a lot of attention in the context of feature inference decision making as they are 

clearly markers for a substantial amount of hidden information and knowledge about category 

instances. For example, in their classic experiments Gelman and Markman (1986) contrasted 

the influence of category labels versus perceptual similarity on feature inference. One case 

comprised presenting participants with two instances and a testing item. One instance was 

labelled as a bird, looked like a flamingo and was said to have the hidden feature of a right 

aortic arch, and the second was labelled a bat, looked like a bat and was said to have the 

hidden feature of a left aortic arch. The test case was labelled a bird and looked like a dove, 

so while it had the same category label as the flamingo instance (bird), it was perceptually 

more similar (in the picture) to the bat instance. Participants were then asked to infer whether 

the test case had a right aortic arch, like the matching category instance (bird), or a left aortic 

arch, like the more perceptually similar instance of the bat category. Gelman and Markman’s 

main finding was that most adults and the majority of children inferred a hidden feature 

consistent with an instance’s category label, thus matching a perceptually dissimilar but 

nonetheless identically labelled instance, even though there was another, perceptually more 

similar item but with a different category label. 

 This method of contrasting category membership information with similarity has been 

adapted, notably by Yamauchi and Markman (2000), to the more controlled stimuli in 

perceptual categorization paradigms, on which the present research is based. In overview, 
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Yamauchi and Markman (2000) also found that category labels dominantly influenced 

feature inferences even when overall perceptual similarity indicated a different response. In 

more detail, they used a pure decision making task in which participants were given a 

category summary containing all of the category instances presented simultaneously (similar 

to Fig. 1). The key result was that participants made feature inferences consistent with the 

prototype corresponding to the category label even when the other features in the test case 

were from the prototype of the other category. Put differently, participants made inference 

decisions consistent with the central tendency of the category indicated by the category label 

even when simple similarity was higher to instances of the opposing category. 

 Yamauchi and Markman’s (2000) main conclusion was that their results supported the 

hypothesis that feature inference decision making focuses on the central tendency of the 

category indicated by the instance’s category label. Specifically, “… information about 

category membership molds the way people infer a characteristic [feature] of an object. When 

the category membership of an object is known, people pay particular attention to the feature 

value most prevalent in the members of the corresponding category [the prototype]” (p. 792). 

More generally they summarized their results to “indicate category membership is indeed a 

key determinant of inductive judgment and that category labels are not simply another feature 

on par with other category features” (p. 793). 

 Central to the argument that labels are not the same as other features is that even if labels 

are treated as simply features like other perceptual features they still are able to dominate 

multiple other features to drive feature inference. That is, one label “feature” still dominates 

multiple perceptual features. However from the perspective of simple similarity, this 

argument is based on the assumption that all the features influence similarity roughly equally. 

In the context of simple similarity, one feature might dominate others because it is truly 

different from the others in terms of invoking different cognitive mechanisms, or it might 
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dominate others for the more basic reason that it is perceptually more salient and just has a 

larger influence on similarity than other features but only as a matter of degree. We will 

examine this seemingly subtle distinction between a special mechanism versus simple 

salience below in greater detail, but it is worth emphasizing in advance that it results in 

surprisingly large predicted differences a priori in people’s behavior. 

 To reiterate, category labels should and do have a large influence in decision making 

consistent with their adaptive functionality, but the nature of this influence on decision 

making is not clear. Put more precisely, the critical questions are: Do category labels trigger 

systematic prototype-compatible feature inferences? Or are they just especially salient 

features that have a large effect on similarity assessment to whatever representation is 

available but no special tendency to produce integrative—i.e., prototype-compatible—

decision making? 

 In our experiment, the instances from two categories were presented simultaneously (Fig. 

1), and participants then inferred missing features for test cases (e.g., Fig. 3). This summary 

decision-making methodology was adapted from Yamauchi and Markman (2000) and 

Murphy and Ross (1994; 2005), but has been employed in the study of category-based 

induction (see Murphy, 2002, and Hayes, Heit and Swendsen, 2010, for broad summaries of 

category-based induction) and of course is widely used in decision making research. 

Predictions of the Two Main Hypotheses Formalized as Models 

 The label special-mechanism hypothesis is in part derived from Yamauchi and Markman 

(2000). It assumes that the category label strongly influences feature inference because it 

indicates category membership, invokes the integration of the category prototype from the 

category instances in working memory during decision making, and so results in a strong 

tendency for prototype-compatible feature inferences. This should occur even if none of the 

stimulus features match that prototype’s features. 
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  We have formalized the label special-mechanism hypothesis (Appendix A) in terms of 

prototype representation (Blair & Homa, 2001; Homa, Rhoads, & Chambliss, 1979; Homa, 

Sterling & Trepel, 1981; Posner & Keele, 1968; Smith & Minda, 1998; 2000) as applied to 

feature inference decision making (related to the applications of prototype representation to 

category learning data in Yamauchi & Markman, 1998, and Johansen and Kruschke, 2005). 

For a feature inference test case, the model simply calculates the similarity of the probe to the 

prototype which has the same category label as the probe, relative to its similarity to the 

prototypes of all other categories, and then predicts the missing prototype-compatible feature 

to the extent that the probe is similar to that prototype. So the core aspect of this model is that 

the category label for the test case uniquely determines how the representation is accessed, 

unlike other features which merely influence similarity. Overall, this formalization 

corresponds to a strong tendency for prototype-compatible feature inferences, as shown on a 

variety of testing cases which we specify below. 

 The label super-salience hypothesis, on the other hand, is directly related to the similarity 

and attention based account of the role of category labels summarized in part in Sloutsky 

(2003) from a developmental perspective (see also Sloutsky and Fisher (2004; 2011)) and is 

related to the assessments of salience in Yamauchi and Markman (2000) and Deng and 

Sloutsky (2013). The super-salience hypothesis assumes that a physical category label, 

though a marker of category membership, can also be particularly salient compared to the 

other stimulus features. Hence the label may influence inference decision making relatively 

more than the other features due to its greater impact on similarity assessment, without 

directly determining how the representation is accessed. 

 We have formalized (see Appendix A) the label super-salience hypothesis in terms of an 

exemplar model (the generalized context model; Nosofsky, 1984; 1986) as applied to feature 

inference decision making (see also Johansen & Kruschke, 2005; Yamauchi & Markman, 
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1998). For a feature inference test case, the model calculates the similarity of the case to the 

category instances that predict one feature inference relative to similarity to instances that 

predict a contrasting feature inference, with a resulting response probability in proportion to 

those similarities. A significant difference from the special-mechanism model is that the 

category labels are treated just like the other features in determining similarity; their 

influence, like other features, is modulated by the amount of attention they receive, but they 

do not have any special-mechanism invoking property of determining the selected category to 

which similarity is computed. Critically, similarity assessment need not result in any strong 

tendency for prototype-compatible feature inferences. On the contrary, a prototype-

incompatible feature inference may be made if the probe is similar to an exemplar with a 

prototype-incompatible feature. 

 An important difference between the models, which is a major focus of the experiment 

reported here, arises in situations where a feature inference probe is more similar to the 

prototype of one category (category A) than to the prototype of another category (B), but at 

the same time is very similar to an instance of category A which nonetheless has a target 

feature typical of the prototype from the other category (B). Let us denote the modal value of 

category A members for the missing feature as a and the modal value for category B 

members as b. Assuming that attention is evenly distributed across all feature dimensions as 

well as the category label, the super-salience model can predict that participants might infer 

the value b for the missing feature, because similarity to the particular category A instance 

strongly biases the similarity computation. The special-mechanism model, in contrast, will 

predict that the value a is inferred. It does this because the probe’s label invokes the category 

A prototype and therefore inherits the feature value attached to the prototype. 

 Before describing how the experiment contrasted the models for the special-mechanism 

and super-salience hypotheses, it is useful to emphasize the main process differences between 
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the models as summarized schematically in Fig. 2. Both models generate the response 

probability of a particular feature inference (as indicated by “?”) for a given test item with a 

given category label and set of features as indicated by “P(feature 1|given LABEL A and 

feature x?xx)” at the center of the figure. The super-salience model, shown at the bottom of 

the figure, determines the probability of feature 1 via similarity to instances with feature 1 in 

all categories, so instance category labels influence similarity in the same way as other 

features. In contrast, the special-mechanism model, shown at the top of the figure, determines 

the probability of feature 1 via similarity to the prototype corresponding to the category label 

in the test item, Label A in this case, so the category label has the special property of 

determining which prototype similarity is calculated in relation to and hence is handled 

differently from other features. 

 To contrast the label special-mechanism and label super-salience hypotheses, feature 

inference test cases should differentiate category integrated, prototype based responding from 

unintegrated responding based on similarity to particular category instances. To do this we 

have used a family resemblance category structure as shown in Table 1. The 16 category 

instances corresponding to the 16 stimuli in Figure 1 are shown at the top of the table where 

each row indicates a particular category instance. Each instance is associated with a category 

label (A or B) as shown in the first column and has four feature values (1 or 2) one on each of 

four feature dimensions corresponding to the remaining four columns, one for each of the 

four perceptual features composing the stimuli in Figure 1. (See the note in Table 1 for this 

mapping.) The bottom of Table 1 shows that three kinds of test trials were used designated 

Label versus Feature, Exception and NonException trials.  

 Starting by direct analogy with Gelman and Markman’s (1986) classic contrast between 

category labels versus similarity, Label versus Feature trials are so called because they are 

composed of a category label from one category, but more features typical of the other 



Category labels and feature inference 9  

 

category, together with a missing feature. The missing feature is then queried. Consequently, 

the missing feature value as predicted by the prototype corresponding to the category label is 

potentially different from the feature predicted by similarity to the category instances, much 

like in Gelman and Markman’s study. For example in Table 1 the Label vs. Feature test case 

B 11?2 shares more features with the instances of Category A, which have many 1 features, 

than the instances of Category B, which have many 2 features, so instance similarity tends to 

predict a 1 feature response on the ? dimension. However, B 11?2 nonetheless has the label 

for category B, so the category label predicts a 2 feature response matching the category B 

prototype, B 2222. The top of Fig. 3 shows this example where, in particular, the two 

boosters feature corresponds to the prototype associated with the label (Planet B) and the one 

booster feature corresponds to instance similarity for the contrast category. Testing trials of 

this kind featured prominently in Yamauchi and Markman (2000) and are important here as 

well. 

 Exception trials had a response feature predicted by the nearest, most similar category 

instance that was different from the feature predicted by the category prototype 

corresponding to the instance’s category label. For example, the nearest exemplar to the 

feature inference test case B ?222 in Table 1, that is the category instance B 1222, predicts a 

different feature than the category prototype, B 2222, features 1 and 2 respectively. The 

bottom of Fig. 3 show this example where, in particular, the wide wings feature corresponds 

to the prototype associated with the label (Planet B) and the narrow wings feature 

corresponds to the feature from the most similar instance. Yamauchi and Markman (2000) 

did not have testing trials of this type; however, the Exception trials are critical for allowing 

participants the possibility of exhibiting prototype-incompatible feature inferences even in the 

presence of a large emphasis on the category labels as shown in the Label versus Feature 

trials.  
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 Lastly, for NonException trials, instance similarity and the category prototype 

corresponding to the category label predict the same feature. For example, the test case B 

?122 has B 2122 as its nearest instance, which predicts the same missing feature, 2, as the 

category prototype, B 2222. In addition to providing important constraints on the modelling 

assessment, these trials provided a check that participants weren’t simply responding 

randomly in the task. 

 We derive predictions from the special-mechanism and super-salience hypotheses for 

these testing trial types in two ways: First we generate predictions from the hypothesis 

definitions. Then we evaluate what the formalized versions of the hypotheses as models can 

predict a priori for this category structure and testing trials across a broad range of parameter 

values. Both the special-mechanism and super-salience hypotheses are consistent with 

strongly label-consistent feature inferences on Label versus Feature trials. However, the 

hypotheses predict this for different reasons that can be differentiated by the Exception trials.  

 The special mechanism hypothesis predicts label-consistent feature inferences because 

the label, unlike the other features, has the unique tendency to invoke prototype-compatible 

feature inferences. The special-mechanism hypothesis can predict differences in the tendency 

for these prototype-compatible inferences as a function of how much attention the instance 

label receives, but to the degree that the label receives a lot of attention then this translates 

into a correspondingly strong tendency to predict prototype-compatible feature inferences for 

the Exception trials. Intuitively, because the label dominates and forces reference to the 

prototypes, there is effectively no way to predict prototype-incompatible features because a 

given prototype does not include any. 

 Despite the apparent intuitive contrast between the hypotheses for this kind of testing 

trial, the super-salience hypothesis can also predict label-consistent feature inferences but as a 

result of the dominant influence of the labels in similarity assessment to the category 
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instances, not the category prototypes. In addition, it also can predict differences in the 

tendency for label-consistent feature inferences as a function of how much attention the 

instance label receives. But critically the super-salience hypothesis is not constrained to 

predict prototype-compatible features on Exception trials but is also consistent with 

prototype-incompatible feature inferences. Intuitively, even if the label is dominant, the test 

case can be so similar to a particular category instance that a prototype-incompatible feature 

inference is predicted. 

Model simulations 

 While the formal models were ultimately fitted to all the inference testing trial responses 

of each participant individually (as reported later), it is useful for visualization to combine 

test trials of a given type together, which we do both here and in the presentation of the 

various experimental data sets. That is, both the model predictions and the data were coded in 

terms of the proportion of label based prototype-compatible responses across the trials of a 

given type. So, for example, for the four Label versus Feature testing trials in Table 1, this 

proportion corresponds to the average proportion of prototype-compatible responses (either 

predicted by the model or observed in the data) consistent with the label present in each 

testing case across all four cases. Likewise, an average proportion of prototype-compatible 

responses can be generated across the four Exception trials in Table 1 (and also for the 

NonException trials). This method of analysis has the important advantage that different 

patterns of feature inference responses across the testing cases in Table 1 can be represented 

as different points in a scatter plot of proportions of prototype-compatible responses on Label 

versus Feature Trials against Exception trials. 

 To test a priori predictions from the models (as specified in Appendix A), we generated a 

large number of simulated participants. Each simulated participant was produced by selecting 

random values for each free parameter in the model from a reasonable range of possible 
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parameter values. These free parameters included a parameter for the amount of label 

attention as well as a separate attention parameter for each of the four feature dimensions. For 

each set of random parameters, the model generated response proportions for each of the 

testing cases in Table 1 based on this category structure, and these were averaged together to 

produce response proportions for each type of testing trial—NonException, Label versus 

Feature, and Exception. The Label versus Feature and Exception proportions were then used 

to generate scatter plots in which each point represents a single simulated participant. 

 The results of 3000 simulated participants for the special-mechanism and super-salience 

models are shown in the top and bottom panels respectively of Fig. 4, where the x-axis is the 

average proportion of prototype-compatible responses on the Exception trials and the y-axis 

is the average proportion of prototype-compatible responses on the Label versus Feature 

trials. In addition the gray-scale value (and shape) of each marker corresponds to ranges of 

average response proportions on NonException trials (tabulated across the four 

NonException trials) as specified in the figure’s key. 

 What is immediately obvious from the simulations illustrated in Fig. 4 is that the models 

predict radically different things in this data space. There is very little overlap in terms of 

what the models can predict except in the middle near guessing and near the top right corner 

which represents high prototype-compatible response proportions on Label versus Feature 

and Exception trials. This corresponds to situations where most of the attention is allocated to 

the category labels and where both models make essentially the same predictions.  

 In addition, the results for NonException trials, coded by symbol gray scale in Fig. 4, 

more subtly indicate a difference between the models. In the top panel the special-mechanism 

model predicts progressively higher average proportions on NonException trials (darker 

markers) as one moves farther to the right in the space, that is higher prototype-compatible 

responding on Exception trials. Put another way, the special-mechanism model appears to be 
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constrained to predict response proportions near 0.5 on NonException trials to the degree that 

the average response proportions on Label versus Feature and Exception trials are near 0.5. 

This is not conceptually surprising in that the special-mechanism model’s ability to predict 

prototype-compatible responding on Label versus Feature and Exception trials constrains it to 

also predict prototype-compatible responding on NonException trials as this is based on the 

same prototypes. The super-salience model, on the other hand, is constrained in almost the 

opposite way in that low NonException proportions (near 0.5, indicated by lighter markers in 

the bottom panel) correspond to Label versus Feature and Exception proportions near the 

center of the space, but high proportions near 1 allow the model to get to a wider range of 

locations in the data space. Conceptually this makes sense in that the super-salience model is 

an exemplar model and hence its ability to predict proportions near 0.5 on NonException 

trials then tends to constrain Label versus Feature and Exception trials also to be near 0.5. So 

overall, NonException trial responding constrains the models in different ways. 

 Intuitively the critical aspects of the difference between the models in this data space arise 

from their different capacities to predict prototype-incompatible responses on Exception trials 

as a result of similarity to specific instances (left-right in this data space) while at the same 

time predicting prototype-compatible responses on Label versus Feature trials as a result of a 

lot of salience-driven attention to the category labels (up-down in the space). To specify the 

qualitative difference between the models in more detail consider the four quadrants of the 

data space: the special-mechanism model can account for a range of responding in the right 

two quadrants (top panel in Fig. 4) while the super-salience model can account for a range of 

responding in the top two quadrants and at least partly into the bottom left quadrant (bottom 

panel of Fig. 4). 

 The super-salience model can account for the full, left-right, range of responding on 

Exception trials by adjusting how strongly its responding is determined by similarity to a 
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single nearest instance that predicts a prototype-incompatible feature versus similarity to 

many instances predicting prototype-compatible features. In contrast, the special-mechanism 

model does not have a systematic way to predict a tendency for prototype-incompatible 

responding on these trials, on the left of the space, because its responses are derived from the 

category prototypes and hence correspond to a tendency for prototype-compatible feature 

inferences, hence on the right of the space. Further, these differences between the models on 

Exception trials (left-right in the space) interact differently with the Label versus Feature 

predictions (up-down in the space) in terms of differences in the amount of attention to the 

category labels. 

 Lastly, the hypotheses both imply differential responding depending on the relative 

proportions of attention given to the category label versus other features as formalized in the 

models by free attention parameters for the label and separately for each feature dimension. 

However, the hypotheses also suggest that that these influences might be different across the 

two models, so to assess this we calculated the proportion of label attention to total attention 

(i.e., to both label and features) for each simulated participant in the context of each model. 

These proportions were then tabulated as equivalence bands, e.g., proportions of label 

attention in the range 0.0 to 0.1 were treated as equivalent, 0.2-0.3 as another range, etc.  

 In Fig. 5 the proportion of label attention is coded by the gray-scale key such that more 

attention corresponds to a darker data marker (not to be confused with the gray scaling 

indicating the proportion of NonException trial responding in Fig. 4). For both models, 

increases in label attention, and darker markers, correspond to stronger prototype-compatible 

responding on Label versus Feature trials (up-down in the space) but this interacts differently 

with Exception trial responding for the two models (left-right). Overall, the models make 

strongly contrasting predictions in this data space, and this difference is borne out by sharply 

different predictions for the data from individual participants in the following experiment.  
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Experiment 

 The family resemblance category structure used here (see Table 1) is closely related to the 

category structure used by Yamauchi and Markman (2000). Importantly, it allows the testing 

trial types described above to be contrasted: Label versus Feature, Exception, and 

NonException trials. 

 In addition to the “inference decision making” condition, this experiment included a 

condition designed to clarify the role of the category labels in inference decision making by 

indirectly manipulating their relative salience. In this “feature label” condition, one of the 

feature dimensions in the stimuli, the wings of the rocket ships, was removed from the stimuli 

throughout the entire experiment and replaced with its corresponding written description, 

“WIDE WINGS” / “NARROW WINGS”. Other than the replacement of a physical feature 

with a written descriptor, this “feature label” condition was the same as the feature inference 

condition including the occurrence of category labels and the same relative positioning of the 

category instances in the category summary. 

 In the context of the label super-salience and special-mechanism hypotheses, the purpose 

of the feature label condition was to evaluate the influence of the category label as the only 

word feature in the inference decision making condition by introducing another word feature. 

The intent was to competitively reduce the salience of the category labels as the only word 

features while leaving category membership information intact. This manipulation of having 

two word labels for each instance, only one of which was a category label, was suggested by 

Yamauchi and Markman’s (2000) Experiment 3. Though their manipulation was somewhat 

different in that each instance only had a single label, the results provided some of their most 

compelling evidence for the label special-mechanism hypothesis: for participants in their 

feature inference experiment who were told that the word labels associated with each instance 

indicated a hidden feature, the proportion of prototype-compatible feature inferences was 
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lower than for participants who were told that the labels indicated category membership. This 

result seems consistent with the label special-mechanism hypothesis in that the label 

indicating category membership corresponded to more prototype compatible responding than 

when it indicated a hidden feature. But an alternative, simpler explanation of Yamauchi and 

Markman’s finding is that the instructional manipulation influenced the salience of the 

category labels independent of any special tendency to induce integrated prototype-

compatible inferences. Saying that a label represents an unseen feature might have reduced 

attention to it by implying that it is less important than a category label and comparable to 

other visible features, hence moderating the large expected influence on responding (i.e., the 

super-salience). This might have particularly been the case as the labels “monek” and 

“plaple” sound more like categories than features. 

 In the context of the two hypotheses and corresponding models (Appendix A), if category 

labels have a special status in terms of invoking a tendency for prototype-compatible feature 

inferences then a change in their salience should have little if any influence on this tendency 

as long as their physical salience is sufficient to clearly indicate category membership. But if 

the dominant influence of category labels on feature inference is due to their super-salience 

then the competitive salience of another feature should reduce this influence. So the purpose 

of the feature label condition was to allow a further evaluation of the super-salience and 

special-mechanism hypotheses by using a manipulation designed to reduce the salience of the 

category labels but critically with Exception trials present to allow participants to indicate 

nonintegrative responding. 

Method 

Participants 
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 There were 25 and 31 participants respectively in the inference decision making and 

feature label conditions of this experiment, most of whom were undergraduate psychology 

students at Cardiff University. 

Materials and Procedure 

 All participants were instructed to carefully study the instances from two categories on a 

category summary sheet (Fig. 1). This summary sheet was constantly available during testing. 

Participants were asked to infer a missing feature for each of a series of category instances by 

circling one of the two possible features shown below the instance (e.g., Fig. 3). 

 The abstract category structure and testing cases are shown in Table 1 together with the 

abstract-to-physical-feature mapping for the four stimulus dimensions composing the rocket 

ship stimuli (Fig. 1): wing width, nose cone shape, booster number, and portal orientation. 

For example, B 1?22 indicates an inference test case where the instance was a member of 

category B, had narrow wings, two boosters and an up-oriented portal, and participants were 

asked to infer the missing feature as either a pointed or curved nose. The presentation order 

of the testing trials is shown in column 3 of Table 1.  

 The feature label condition was the same as the inference decision making condition 

except that one of the feature dimensions, the wings, was removed from the physical stimulus 

and replaced by a word label underneath each rocket ship for all of the category summary 

instances and testing items throughout the experiment. That is, a rocket with wide wings had 

the physical wings removed and the written label “WIDE WINGS” placed underneath it, and 

narrow wings were replaced with “NARROW WINGS”. Otherwise the arrangement of the 

instances into categories on the summary sheet (Fig. 1) was the same. 

Results and Discussion 

Inference Decision Making Condition 
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 The prototype-compatible response proportions for the NonException, Label versus 

Feature, and Exception trials in the inference decision making condition are shown on the left 

of Fig. 6 with standard error bars, averaged across the trials of a particular type (Table 1). All 

testing trial data were coded in terms of prototype-compatible responding, that is, in reference 

to the category label present for each testing case and the category prototypes, A 1111 and B 

2222. So for example, 0.92 of the participants in this condition responded to the testing case 

A ?211, which asked for a response on the first feature dimension, with the prototype-

compatible feature 1 from the category prototype A 1111. 

 Not surprisingly most participants responded to the NonException trials with the 

prototype-compatible feature, 0.97. This is similar to the 0.89 for this trial type from 

Experiment 1 of Yamauchi and Markman (2000).  

 For Label versus Feature trials, most participants responded consistently with the label-

based prototypes, 0.77. This indicates even more prototype-compatible responding than on 

the Label versus Feature trials from Yamauchi and Markman (2000), 0.52.  

 Lastly, the Exception trials resulted in less than half of the participants’ responses, 0.41, 

being consistent with the label-based prototype. Yamauchi and Markman (2000) did not have 

trials of this kind. 

 In contrast to the conclusions of Yamauchi and Markman (2000), the Exception trial 

results do not support a special mechanism being invoked by the category label in terms of 

responding in reference to the category prototypes: More than half of the responses were 

contrary to the prototype corresponding to the category label even though the majority of 

other features also matched that prototype. On the other hand, this result is consistent with the 

label super-salience hypothesis: High salience merely means that the category label has a 

larger impact on decision making than the other feature dimensions. But if that process is 
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referencing a nearest exemplar, the label and other features both contribute to similarity to 

that exemplar and hence agree, predicting the same feature. 

 The Exception trial results do not provide compelling evidence for the special-mechanism 

hypothesis. But with the average data response proportion of 0.41 fairly close to 0.5, the 

result is also not clearly different from two-response guessing. This suggests consideration of 

individual participant data.  

 The individual data indicate that participants were not just guessing on the Exception 

trials. Each participant responded to four different Exception trials (Table 1), and the 

response distribution on the left in Fig. 7 shows the proportion of participants who made a 

given number (0, 1, 2,...) of prototype-compatible responses across these four trials. The 

dashed lines in the distribution provide a reference for chance responding as determined by 

the binomial distribution for each possible number of prototype-compatible responses out of 

four (based on a response probability of 0.5 for each of the two possible responses on a given 

trial, p(success)=0.5). The response distribution was strongly bimodal and differs 

dramatically from the binomial distribution reference lines that roughly correspond to 

guessing. At minimum, these data indicate little evidence of guessing.  

 Using the data space from the a priori model predictions in Fig. 4, a more detailed way of 

looking at the individual participant data can be had from a scatter plot of the average 

Exception trial response proportions from Fig. 7 against the average proportions for the four 

Label versus Feature trials specified in Table 1. This scatter plot in the top panel of Fig. 8 

(with identical points slightly offset to indicate data density) suggests quite strong constraints 

on where participants do and do not tend to fall in this data space. In particular, the pattern of 

data bears a noticeable resemblance to the a priori predictions of the super-salience model at 

the bottom of Fig. 4 while being in marked contrast to the a priori predictions of the special-

mechanism model at the top of Fig. 4.  
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 The results of fitting the special-mechanism and super-salience models (Appendix A) to 

the data from each participant individually are reported in the same Exception against Label 

versus Feature data space (see Fig. 9). Specifically the data from the top panel in Fig. 8 

appear as small diamonds in Fig. 9 while the model fit predictions are shown as circles whose 

size and gray-scale indicate the RMSD fit value: a large black circle spatially separated from 

the data diamonds indicates poor predictions while a small white circle centered on a data 

diamond indicates perfect predictions. Identical model predictions for identical data points 

are offset slightly to indicate data density (as with the data in the top panel of Fig. 8). 

 The special-mechanism model (top of Fig. 9) was able to account for the data in the top 

right hand corner of the data space as was the super-salience model. However, the special-

mechanism model was unable to account for the bulk of the data which lie on the left in the 

scatter plots. Note though that there was one unusual data point in the bottom right corner of 

the data space which the special-mechanism model accounted for perfectly and the super-

salience model accounted for poorly. However overall, the super-salience model accounted 

for the data at the level of individual participants significantly better than the special-

mechanism model (average RMSD 0.16 versus 0.34, t(48) = -3.73, p < 0.001) and again even 

the super-salience model’s poorer accounts of some specific individuals still fall in parts of 

the data space that contain almost all the data unlike the special-mechanism model which 

failed qualitatively for most of the participants. 

 Finally, the top panel of Fig. 10 shows the proportion of label attention given by the 

super-salience model when accounting for each participant in the data space (Fig. 8, top 

panel), again consistent with the a priori predictions at the bottom of Fig. 4. The proportion 

of label attention was highest in the top right corner and lowest toward the bottom left. (Note 

that the super-salience model was not able to account for the strange data point at the bottom 

right hand corner anyway as discussed above so its label attention parameter should be 
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largely ignored here.) Although only observed in some participants, the “super-salience” of 

the category label should be considered a potential mechanism to account for the dominance 

of the category label via salience driven selective attention. 

Feature Label Condition 

An important result for the feature label condition that needs to be emphasized at the outset 

arises from modelling analysis reported in detail below: the category label attention 

parameter in the super-salience model was significantly smaller for fits of participants in the 

feature label condition compared to the inference condition (0.19 versus 0.36 average 

attention weight parameters, t(37) = -2.23, p < 0.032, assuming unequal variance). Hence the 

feature label manipulation did have an influence on the amount of attention the category 

labels received and by implication their salience. However, the results specifically for the 

label versus feature trials, as shown on the right in Fig. 6, indicate that the proportion of 

prototype-compatible responses was not lower than in the standard inference condition on the 

left. In fact it was (insignificantly) higher. But the Exception trials here resulted in marginally 

fewer prototype-compatible responses than the decision making inference condition (t(37.55) 

= 1.871, p=0.069, assuming unequal variance, or Mann-Whitney U = 310.5, p = 0.183). And 

more tellingly, the distribution of Exception trial responding illustrated on the right in Fig. 7 

shows a lack of the bimodality found in the inference decision making condition indicating 

less prototype-compatible responding. In addition, the data space scatter plot in the bottom 

panel of Fig 8 clearly resembles the a priori model predictions in Fig. 4 of the super-salience 

model much more than those of the special-mechanism model. 

 The model hypothesis testing results for the feature label condition are shown in Fig. 11. 

Specifically, the super-salience model shown at the bottom of the figure accounted for the 

individual participant data significantly better than the special-mechanism model at the top of 

the figure (average RMSD 0.21 versus 0.44, t(60) = -7.80, p < 0.001). Even the poorer fits of 
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the super-salience model tend to fall in regions of the data space containing the vast majority 

of the data (i.e., on the left of the data space). The one exception to this is the unusual data 

point in the bottom middle of the space (0.5, 025) and neither model was able to account for 

the data of this participant, in the main because their average response proportion for the 

NonException trials was very low, 0.25. (This was the only participant in both conditions to 

score this low on the NonException trials.) Both models were able to account for the data 

point in the top right corner perfectly by attending solely to the category label. However, the 

fewer data points in the top right quadrant here in the feature label condition (one, as shown 

in the bottom panel of Fig. 8) versus in the inference decision making condition (seven, as 

shown in the top panel of Fig. 8) is consistent with less attention to the label. Likewise the 

proportions of label attention in the super-salience model fits to individual participants are 

consistent with this as shown in the data space at the bottom of Fig. 10. Thus the feature label 

manipulation reduced label salience in a way which can be well accounted for by the super-

salience hypothesis. 

General Discussion 

 A category label serves as a marker of category membership, but at least in perceptual 

categorization, a label is also likely to be a highly salient feature which attracts a lot of 

attention. The experiment reported here presented a summary of family-resemblance 

perceptual categories (Fig. 1) and asked participants to make a variety of feature inferences 

(Table 1) in this purely decision making task with the category summary constantly present. 

The Label versus Feature trials pitted the category label from one category against several 

typical features of the other category and showed that category labels have a dominant 

influence on feature inference relative to other features, consistent with prior research (e.g., 

Gelman & Markman, 1986; Sloutsky, 2003; Yamauchi & Markman, 2000; but see Deng & 

Sloutsky, 2013). We have evaluated this influence in the context of two hypotheses and 
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corresponding formal models (Appendix A): The label special-mechanism hypothesis implies 

that the category label invokes the integration of category information in working memory 

during feature inference decision making because it directly indicates category membership, 

unlike other features, and then critically results in a systematic tendency for prototype-

compatible feature inferences. In contrast, the more parsimonious label super-salience 

hypothesis implies that the dominant influence of category labels on feature inference can be 

explained, not by invoking a special mechanism, but by their salience and corresponding 

influence on the similarity assessment process. The additional mechanism of integrative 

decision making producing prototype-compatible feature inferences is not needed. Exception 

test trials were very similar to particular category instances which nonetheless had atypical, 

prototype-incompatible features for the queried feature. The results for these trials in 

particular were consistent with the label super-salience hypothesis and did not support the 

need for the additional processes in the label special-mechanism hypothesis. 

 Most importantly, both the a priori predictions and individual participant fits of models 

formalizing these two hypotheses (Appendix A) strongly falsified the special-mechanism 

hypothesis and were consistent with the super-salience hypothesis. Lastly, an additional 

feature label condition replaced one of the perceptual features of the category instances with a 

word feature so as to compete with the salient category labels as the only words present in the 

inference decision making condition. The modelling results for these feature label condition 

data indicate that the category labels received less attention in this condition compared to the 

inference decision making condition, but in addition these results still strongly falsified the 

special-mechanism model while being consistent with the super-salience model.  

 A constrained view of these conclusions is that they represent an even more focused 

version of non-normative single-category influence on feature inference in the face of 

uncertain categories (Murphy & Ross, 1994) down to single nearest instances for specified 
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category membership, in contrast to the multiple influences prescribed by, for example the 

Rational Model (Anderson, 1991), and normative Bayesian perspectives in general. Further, 

in this context, it can be argued that this nearest neighbour kind of reasoning arises out of the 

affordances of the pure decision making task and its summary presentation of categories 

rather than being indicative of how decision making based on internal representations 

actually works. However, if that is true for the present research then it also quite strongly 

constrains the conclusions, not only of Yamauchi and Markman (2000) specifically, but, 

more generally, the many studies that have evaluated decision making in reference to external 

summary representations. At minimum, the present research suggests that evaluations of 

decision making in reference to an external representation need to measure the possibility of 

nearest neighbour effects especially when drawing conclusions that seem to imply 

representational integration of category information. 

 It is worth emphasizing that the special mechanism view of category labels is intuitively 

compelling in a way that is theoretically challenging and not simply a straw man: It is almost 

impossible to conceive of categories as being adaptive without the ability to mediate hidden 

feature prediction via the integration of instance information. But for categories to be more 

predictive than random sets of instances, it seems unavoidable that they must integrate the 

instance information such that one feature is a more probable inference than another, for 

example if more instances have had that feature. Put even more strongly, this basically 

corresponds to the idea that inferring a missing feature for a category member should 

normatively reference the category prototype because of the special category-indicating role 

of the category label. Murphy’s (2002) summary statement about category-based induction is 

relevant here: “If read literally, almost all the work on category-based induction takes a 

prototype view of concepts” (p. 265). There are, however, several reasons why a normative 

status for prototypes in the context of feature inference is potentially misleading: 
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 Even if a category instance is clearly a member of only a single category, an unlikely 

state of affairs in the real world, there are many cases where high similarity to a particular 

instance of the category should override category level information in terms of making a 

feature inference. For example, having been told that a particular instance is a bird would 

generally make the inference that it flies quite sensible unless the instance was particularly 

similar to a penguin, emphasizing that there are times when membership in some categories 

is best ignored. At least sometimes basing feature inferences on strong similarity to specific 

instances seems very adaptive. 

 Fundamentally, categories can possess whatever magic ingredient makes them more 

predictive for feature inference than random groupings of instances without having a special 

status in terms of invoking special mechanisms relative to other instance features. That is, 

category labels can be functionally predictive without invoking prototype-compatible 

inferences because categories already represent a higher level of abstraction than their 

instances. But this abstraction is represented by an additional feature corresponding to a 

category label. As such they already have the potential to incorporate additional information 

which allows them to influence similarity assessment in a functional way that still need not 

be qualitatively, mechanistically different than other features. As an example, an instance 

may have the following features some of which are more abstract than others: feathers, 

wings, clever-looking, member-of-bird-category, edible, etc. In terms of inferring a hidden 

feature, the alternative to the special-mechanism hypothesis is that category labels are just 

particularly abstract and perhaps very salient features which are otherwise treated comparably 

to other features in selective attention-driven similarity assessment. 

 While this research does not support a special mechanism view of category labels 

specifically in terms of invoking category prototypes in the context of inference decision 

making, it does not preclude other kinds of special status for category labels relative to other 



Category labels and feature inference 26  

 

features. For example, even high label salience arguably gives the label a special status 

relative to other features. And at a higher level, Yamauchi, Kohn, and Yu (2007) used a 

mouse tracking paradigm to demonstrate that participants spent more time looking at 

category labels than other features. More generally there have been a variety of 

demonstrations that category labels result in behavioral differences from other features (e.g., 

Yamauchi & Yu, 2008; Yamauchi, 2009), and these have been used to support the idea that 

category labels indicate category membership and as such serve as an indicator that a rich 

category structure of featural information is available. Having said that, when category labels 

are not available and/or category membership is uncertain, people often use feature-based 

strategies to drive feature inference (e.g., Griffiths, Hayes, & Newell, 2012). So full 

clarification of the role that category labels play in feature inference will likely require well 

understood category representations and thoroughly evaluated salience and selective attention 

to assess whether special mechanisms are required for feature inference beyond those for 

categorization. 
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Appendix A 

 Specification of the special-mechanism and super-salience hypotheses as formal models 

together with Monte-Carlo simulation and parameter fitting procedures 

 The special-mechanism and super-salience hypotheses were formalized by extending 

exemplar and prototype models of categorization to feature inference decision making as in 

their application to feature inference category learning (Johansen & Kruschke, 2005; 

Yamauchi & Markman 1998). Specifically the super-salience model was adapted from 

Nosofsky’s (1986) Generalized Context Model which embodies exemplar representation, and 

the special-mechanism model was adapted from a multiplicative prototype model (e.g., Estes, 

1986) which of course embodies prototype representation. 

Super-salience model. The super-salience model used Equation 1 to calculate the similarity, 

ij , between a particular test item i in the bottom of Table 1 (e.g., an Exception trial) and a 

particular category instance j in the top of Table 1 (e.g., a member of category A). The 

stimulus feature value for the test item on stimulus dimension k in Table 1, xik in Equation 1,

 












 

respdmk

jkikkij xxwc ||exp    (1) 

is compared to the feature value for the instance in the representation also on dimension k, xjk, 

by taking the absolute differences between them, | xik - xjk |, which is then multiplied by a 

dimensional attention value, wk. These attentionally-weighted dimensional differences are 

summed across the k dimensions where for the category structure in Table 1 k = 5, one 

dimension for the category label plus four other feature dimensions. However, even though 

there were five different dimensions for this structure (Table 1), a given test item only 

included four of them, as indicated by k ≠ respdm for the summation, where the missing 

dimension is the response dimension for that test case (the ?’s in the testing items in Table 1). 

Lastly, the weighted sum is multiplied by –c, a similarity scaling parameter for the similarity 
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space, and exponentiated. In this model the category label therefore functions exactly like a 

feature, although its salience may be greater. 

  The super-salience model generates the response probability of a given feature for a 

particular test trial using Equation 2. The probability of feature 1 for testing case i, P(f = 1 | i),  
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is the sum of the similarities to instances that have f = 1 on the response dimension ( 1 fj

) raised to the power γ, the response determinism parameter, and then divided by the same 

sum as the numerator plus the sum of similarities to instances that have f = 2. (The response 

determinism parameter specifies how strongly a given amount of evidence gets pushed 

toward the response probability extremes of 0 or 1.) 

Special-mechanism model. The special-mechanism model for feature inference also used 

Equation 1. But instead of calculating similarity to each of the category instances (at the top 

of Table 1), it calculates similarity between a test item and each of the category prototypes, A 

1111 for category A or B 2222 for category B. 

 The response probability equation for the special-mechanism model, given in Equation 3, 

looks similar to Equation 2 except with similarity to prototypes rather than exemplars. That 

is, the probability of feature 1 for test instance i, P(f = 1 | i), is the similarity to the prototype 
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with a 1 feature on the response dimension, 1i , raised to power γ, divided by that similarity 

plus the similarity to the prototype with a 2 feature on the response dimension, also raised to 

power γ. 
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 Finally, P(f = 1| i) for each test case was converted to the proportion of prototype-

compatible responding for that test case (to match the tabulation of the participant data in 

Figs. 6 and 7) depending on the category label present for that test case: If the label was for 

category A (in Table 1) then the proportion of prototype-compatible responding was directly 

P(f = 1| i). However, if the category label was for category B (in Table 1) then the proportion 

of prototype-compatible responding was 1 - P(f = 1| i) as there are only two categories in this 

category structure.  

Fitting procedure. As specified above, both models have seven parameters: one label 

attention parameter, four feature attention parameters, one similarity scaling parameter and 

one response determinism parameter. However for both models, the similarity scaling 

parameter is underconstrained/redundant if all five attention parameters are free. 

Alternatively, the similarity scaling parameter can be treated as a free parameter and the five 

attention parameters constrained to sum to 1 with only four of them free parameters. Lastly, 

the response determinism parameter is underconstrained/redundant for the prototype model 

(Nosofsky & Zaki, 2002).  

 The Monte-Carlo simulations for the special-mechanism and super-salience models based 

on the category structure in Table 1 were generated by sampling random values for the free 

parameters in Equations 1-3 for each simulated participant: The label and feature attention 

parameters were randomly sampled from the interval [0,1] while the specificity parameter, c, 

and the response determinism parameter, γ, were sampled from the interval [0,10]. Both 

models were applied to the same simulated participants. The predictions for a given set of 

parameters were tabulated for each set of testing trials—NonException, Label versus Feature, 

and Exception—by averaging across the response proportions for trials of a given type (e.g., 

the four NonException trials in Table 1). The results for these simulations are shown in Figs. 

4 and 5. 
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 The models were fitted to individual participant data by adjusting the nonredundant free 

parameters in the above equations via a hill-climbing procedure to minimize the discrepancy 

between the data and the model predictions for all of the individual testing trials in Table 1 as 

determined by root-mean-squared deviation. Multiple starting points were used for the hill-

climbing procedure to determine best fitting parameters. Note that although the model 

predictions were tabulated by calculating average response proportions across trials of a 

given type to match the way the data are tabulated in Fig. 8, the models were fitted to all 12 

individual testing trials at the bottom of Table 1 for each participant. 



 

Table 1. Family Resemblance Abstract Category Structure and Test Cases in the Experiment 

 

Abstract features Trial types Trial order 

A  2 1 1 1   

A  1 2 1 1   

A  1 1 2 1   

A  1 1 1 2   

A  2 1 1 1   

A  1 2 1 1   

A  1 1 2 1   

A  1 1 1 2   

B  1 2 2 2   

B  2 1 2 2   

B  2 2 1 2   

B  2 2 2 1   

B  1 2 2 2   

B  2 1 2 2   

B  2 2 1 2   

B  2 2 2 1   

B  1 ? 2 2 NonException 3 

A  ? 2 1 1 NonException 5 

B  ? 1 2 2 NonException 10 

A  2 ? 1 1 NonException 12 

A  2 1 2 ? Label v. Feature 4 

B  1 1 ? 2 Label v. Feature 7 

A  2 2 ? 1 Label v. Feature 9 

B  1 2 1 ? Label v. Feature 11 

A  1 ? 1 1 Exception 1 

A  ? 1 1 1 Exception 2 

B  2 ? 2 2 Exception 6 

B  ? 2 2 2 Exception 8 

Note. The abstract category structure is composed of the 16 instances specified at the top of 

the left column, and the testing items are at the bottom where a “?” indicates the dimension 

on which participants were asked to infer the missing feature. The assignment of abstract to 

physical stimulus dimensions was: category label category (A)=“Planet A” and category 

(B)=”Planet B”; dimension 1 was wing width, 1=narrow and 2=wide; dimension 2 was nose 

cone shape, 1=curved and 2=pointed; dimension 3 was booster number, 1 or 2; and 

dimension 4 was portal orientation, 1=down and 2=up. The second column specifies test 

trials of equivalent types as specified in the main text. The actual order of the test cases is 

specified in the third column.



 

Figure 1. Category summary sheet with instances from two categories corresponding to the abstract category structure in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          



 

Figure 2. Schematic of the difference between the special-mechanism and super-salience 

models. 
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Figure 3. Examples of testing trials from the experiment (Table 1) with a choice between two 

possible response features. 

 

 

 

Label versus Feature test trial (B 11?2 in Table 1) 

 

 

 
 

 
 

 
 

 

 

 

Exception test trial (B ?222 in Table 1) 

 

 
 

 
 

 
 

 

 



 

Figure 4. A priori predictions from the models corresponding to the label special-mechanism 

(top) and label super-salience (bottom) hypotheses for the test cases (Table 1) based on 3000 

simulated participants each using random parameter values as described in Appendix A. p.c. 

= prototype-compatible. The gray-scale of the markers corresponds to average response 

proportion ranges for the NonException trials. 

 

 
  



 

Figure 5. A priori label attention predictions from the models corresponding to the label 

special-mechanism (top) and super-salience (bottom) hypotheses for the test cases (Table 1) 

based on 3000 simulated participants (the same 3000 as in Fig. 4) each using random 

parameter values as described in Appendix A. p.c. = prototype-compatible. The gray-scale of 

the markers is the proportion of label attention, unlike in Fig. 4. 

 
  



 

Figure 6. Results from the inference decision making and feature label conditions in terms of 

average prototype-compatible response proportions by trial type (with standard error bars). 

See the main text for the definitions of the NonException, Label versus Feature, and 

Exception trial types. 

 



 

Figure 7. Distributions of the number of prototype-compatible responses across the four 

Exception trials (Table 1) in the decision making inference and feature label conditions. The 

dashed reference lines indicate the proportion of participants expected to make a given 

number of prototype-compatible responses by chance out of the four Exception trials as 

determined by the binomial distribution, p(success)=0.5, if responding corresponded to 

random guessing between the two possible choices on each of the trials. 

 



 

Figure 8. Average proportion of prototype-compatible (p.c.) responses across the trials of a 

given type, Exception and Label versus Feature (Table 1), plotted against each other for the 

inference decision making (top) and feature label (bottom) conditions. A small, systematic 

offset has been added to some data points that had identical values so data density can be 

seen, for example, the four data points in the top right hand corner of the top panel. 

 

 
 

  



 

Figure 9. Special-mechanism and super-salience model fits to individual participant data from 

the inference decision making condition. The data are indicated by small black diamonds 

while the models’ predictions are indicated by circles whose size and gray-scale shade 

indicate how well the model fit a given participant as measured by RMSD. A model 

accounting for a participant’s data perfectly corresponds to a small light-colored circle 

centered on a small diamond (e.g., the four data points in the top right hand corner). When a 

model did not account for a participant well this corresponds to a large dark circle far away 

from the small diamond indicating the data. Some of the data and model predictions have 

been shifted slightly so as not to obscure each other. p.c. = prototype-compatible. 

 

 



 

Figure 10. Proportion of label attention in different ranges for the fit of the super-salience 

model to the data for each participant in the Exception against Label versus Feature data 

space for the inference decision making condition (top panel), corresponding to the data 

space in the top panel of Fig. 8), and the feature label condition (bottom panel) corresponding 

to the data space in the bottom panel of Fig. 8). 

 

 
  



 

Figure 11. Special-mechanism and super-salience model fits to individual participant data 

from the feature label condition. The data are indicated by small black diamonds while the 

models’ predictions are indicated by circles whose size and gray-scale shade indicate how 

well the model fit a given participant as measured by RMSD. When the model accounted for 

a participant’s data perfectly this corresponds to a small light-colored circle centered on a 

small diamond (e.g., the one data point in the top right hand corner). When a model did not 

account for a participant well this corresponds to a large dark circle far away from the small 

diamond indicating the data. Some of the data and model predictions have been shifted 

slightly so as not to obscure each other. p.c. = prototype-compatible. 

 


