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This paper is an attempt to gain mathematical insight into the ADIDA (Aggregate-

Disaggregate Intermittent Demand Approach) forecasting framework, by formulating 

it as a multi-rate signal processing system. After a brief synopsis of the framework’s 

background, an alternative way to perceive ADIDA from a systemic viewpoint is 

derived by breaking down its managerial steps into fundamental, well-studied 

components. Mathematical properties stemming from each separate system block are 

then thoroughly explored and their practical effects are exemplified through simulated 

paradigms of common time series patterns. Subsequently, theoretical and practical 

evidence are combined to draw useful conclusions about the framework’s 

performance and make suggestions on its application. Finally, guidelines for further 

research are proposed. 
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1. Introduction 

Aggregate-Disaggregate Intermittent Demand Approach (ADIDA; 

Nikolopoulos et al, 2011) is a methodology originally proposed for forecasting 

intermittent demand data; though it can be invariably used with non-intermittent 

demand. This paper is an attempt to demonstrate a systemic view of the ADIDA 

framework by its mathematical decomposition into fundamental sub-procedures, so as 

to give us understanding of the essential underlying processes that account for the 

properties and effectiveness of the ADIDA framework. 

In brief, the ADIDA methodology can be broken down into four basic stages, as 

follows: 

1. Gathering the original data at a lowermost observation level; 

2. Aggregating at an aggregation level, A; 

3. Forecasting with an extrapolation method, F; 

4. Disaggregating the forecasts according to a disaggregation algorithm, D.  

 

In more detail, the first stage refers to the formation of a time series to forecast 

by collection of relevant data. Subsequently, the observations are serially allocated 

into non-overlapping time buckets of an agreed length, A, starting from the end of the 

series and moving backwards. In case the length of the time series is not a multiple of 

the length of the buckets, the remaining N mod A first samples are discarded. At the 

end of the second stage, the contents of each time bucket are summed to yield an 

aggregate time series, which is then extrapolated at the third stage. Finally, the 

aggregate forecasts are reverted back to the original observation level through a 

process of disaggregation, typically by weighting the forecasts using an appropriate 

set of weights. 



  

The methodology is briefly symbolized as ADIDA(A, F, D), where the 

aggregation level, forecasting method and disaggregation algorithm represent the 

framework’s parameters. The framework is generic in the sense it is not connected to 

a unique combination of parameters. Furthermore, it can describe any forecasting 

method F as ADIDA(A, F, -). However, the optimal choice of parameters has been a 

topic of recent research and discussion. 

In the next section, the relative background literature of the ADIDA 

framework will be presented. The proposed systemic view of the existing framework 

is demonstrated in Section 3 and important mathematical insights derived from this 

formulation are exhibited in Section 4. These results are showcased by graphic 

simulated examples in Section 5. Finally, important conclusions are drawn and 

extensions for future research are proposed in Section 6. 

 

2. Background literature 

ADIDA framework revolves around the concepts of temporal non-overlapping 

aggregation and disaggregation to enhance the mathematical and managerial tools 

available to forecasters and, consequently, the accuracy of the forecasts themselves. 

The instigation for the ADIDA framework stems from the zero values of 

intermittent time-series, which further complicate the series’ processing (forecasting 

included) by rendering common mathematical manipulations impractical or 

ineffective. Intermittency naturally arises in many applications, such as inventory and 

spare parts management, which pose special requirements (Boylan & Syntetos, 2010). 

To tackle with such problems, the framework aims at reducing the series 

intermittency, so that standard tools can be applied efficiently. Apart from the obvious 

fact that the framework can reduce the intermittency of a time series to facilitate 



  

forecasting and the empirical results that have shown the potential of such a practice, 

the mathematical properties of ADIDA have not yet been investigated in depth. 

The empirical application of ADIDA yielded satisfactory results by improving 

forecasting accuracy and acting as a self-improving mechanism for popular 

forecasting methods. In particular, the framework was successfully tested on 5000 

monthly demand inventory time series from stock keeping units of the Royal Air 

Force (Nikolopoulos et al., 2011). In the same study, the framework was tested with 

the SBA (Syntetos & Boylan, 2001) and Naïve forecasting estimators, the former 

being an improvement of Croston’s method for intermittent demand (Croston, 1972) 

and the latter producing the highest forecasting accuracy between the two. A follow 

up research (Babai et al., 2012) verified the initial results and exhibited the robustness 

of the methodology with inventory metrics as well. Furthermore, the impact of 

ADIDA as a self-improving mechanism has been empirically verified for non-

intermittent demand too. Specifically, the framework was tested on the monthly data 

of the M3-competition (Makridakis & Hibon, 2000) and the results portrayed a 

significant reduction of forecasting errors with simpler forecasting methods 

(Spithourakis et al., 2011). The same paper demonstrated the importance of the level 

of temporal aggregation and proposed selection of an appropriate level upon 

minimization of the Mean Square Error (MSE), Bayesian Information Criterion (BIC; 

Schwarz, 1978) or Akaike Information Criterion (AIC; Akaike, 1974). The study 

utilized a deseasonalize-forecast-reseasonalize scheme to deal with time series’ 

seasonality. 

Apparently, the framework is inextricably connected to temporal aggregation. 

Major research work in the subject has been collectively described by Silvestrini & 

Veredas (2008). Proper selection of an appropriate aggregation level seems crucial to 

http://en.wikipedia.org/wiki/Hirotsugu_Akaike


  

the performance of ADIDA and research has revealed the remarkably good results of 

the managerial heuristic approach of setting the aggregation level to a product’s lead 

time plus a review period (Nikolopoulos et al., 2011; Babai et al., 2012). However 

this approach is feasible only in the case of intermittent demand and when the lead 

time for each product is available. Temporal aggregation is also related to the much 

investigated cross-product aggregation, which is routinely implemented in 

hierarchical forecasting frameworks (Strijbosch et al., 2008; Strijbosch & Moors, 

2010; Viswanathan & Widiarta, 2008; Widiarta & Viswanathan, 2008). Temporal 

aggregation can be reversed through disaggregation schemes (e.g. Boot et al., 1967; 

Chan, 1993; Feijoó et al., 2003; Lisman & Sandee, 1964; Wei & Stram, 1990). 

Nikolopoulos et al. (2011) investigated the use of constant weights according to an 

equal (EQW – all weights equal to the inverse of the aggregation level), previous 

(PRW – weights equal to the original-aggregate observations’ ratio of the last time 

bucket) and average (AVW – weights equal to the mean original-aggregate 

observations’ ratio of all time buckets) weights schemes and found that, for their 

dataset, EQW yielded the best results in terms of forecasting accuracy. 

 

3. A systemic view 

Even though the procedural description of the ADIDA framework is easily 

and efficiently implementable from a managerial point of view, it is rather obscure 

from a mathematical standpoint. In fact, aggregation and disaggregation are 

composite procedures whose properties are not readily available for further 

mathematical analysis. An alternative formulation for the ADIDA framework can be 

reached by identifying the following two simple facts. First, temporal aggregation can 

be broken down into a simple moving average followed by down-sampling. Secondly, 



  

disaggregation by a set of constant weights is equivalent to up-sampling and 

subsequently applying a weighted moving average on the data. Without loss of 

generality, we will consider the case that any remaining samples are discarded 

beforehand, so that the numbering for the series’ indices begins from the first used 

sample. 

Indeed, the definition of temporal aggregation at an aggregation level A is 

given by (3.1), which can be viewed as a sequential application of the formulas (3.2) 

and (3.3). The former equation stands for moving summation of A observations and is 

equivalent to a simple moving average (SMA) multiplied by the aggregation level. 

The latter one is the definition for down-sampling by A. This operation is executed by 

simply retaining every A-th observation and discarding all the rest. In all following 

equations, the following naming conventions are used: 

)(nx : initial time series 

)(nd : averaged time series (i.e. series after SMA filtering) 

)(ny : aggregate time series 

)(ˆ ny : forecast model for aggregate series 

)(ˆ nd : downsampled aggregate forecast model 

)(ˆ nx : forecast model for initial series 

Moreover, series are treated as zero-based, that is the first sample is obtained 

at point n=0. 
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According to the ADIDA framework, aggregation is followed by extrapolation 

of the aggregate series by use of a forecasting method, F. Such manipulation is 

analogous to data processing to derive a forecast series from an initial series by 

application of a forecast operator (3.4). 
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Lastly, disaggregation under the simple scheme of constant weights can be 

performed in two steps described by (3.5) and (3.6). The first step refers in fact to a 

process of up-sampling by A, i.e. stretching the series by adding A-1 zeros after each 

real sample. The second equation represents a weighted moving average (WMA) of 

length A, where {wk, k=0,…,A-1} is the set of constant weights by which 

disaggregation is carried out. 
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By taking into consideration the aforementioned break down of aggregation 

and disaggregation into fundamental components, we end up with a systemic 

formulation for the ADIDA framework (Fig. 1), which allows for consistent 

mathematical handling of the framework from the beginning to the end. The 

properties of each of the fundamental components, i.e. moving averages and sample 

rate conversions, have been extensively explored. Moreover, this formulation reveals 

the astounding similarities of the ADIDA framework with multi-rate signal processing 

techniques (Crochiere & Rabiner, 1983; Oppenheim & Schafer, 1999). Such a 

comparison can give useful insight into the function of each individual component, as 

well as the whole process. Specifically, ADIDA methodology is shown to be made up 

of a reduction of data rate, signal processing and increase of the data rate back to the 

initial value. Data rate reduction is achieved by a decimation process, comprising in 

turn down-sampling preceded by a simple moving average, which effectively acts as a 

low-pass anti-aliasing filter. Data processing essentially consists in forecasting the 

series via an extrapolation method. Finally, the aggregate series is interpolated to 

restore the initial data rate, in which case the rate conversion is executed by up-

sampling and a weighted moving average performs reconstruction filtering. In a 

multi-rate signal processing system, the reconstruction filter is typically a low-pass 

filter that suppresses any unwanted spectral duplicates. 

 

 



  

FIG. 1. Managerial and Systemic Viewpoint of the ADIDA framework. 

 

4. Mathematical Insights 

4.1. Aggregation 

Aggregation is the first stage of the ADIDA framework and has been shown to 

be mathematically equivalent to decimation by the aggregation level, A.  

In the time domain, SMA(A) is described by (3.1) with an extra division by A, 

the Z transform of which is shown by (4.1). There, z-1, is the lag (backshift) operator, 

whereas its inverse, z, represents the lead operator. Thus, zA represents a buffer of 

length A. It is clear that SMA can be handled as a linear time-invariant filter. 

Therefore, we derive its frequency response (4.2) by substituting z=ejω in (4.1). The 

frequency response is plotted in Fig. 2 for various aggregation levels. 
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FIG. 2. Frequency response of the SMA(A) filter 

 

The SMA(A) filter presents a low-pass behavior that is reinforced as A 

increases. However, the filter’s response essentially differs from an ideal low-pass 

filter, because the (Α-1) div 2 sidelobes also let part of the higher frequencies pass, 

although with increasing attenuation. Maxima for these lobes occur at frequencies that 

are solutions to (4.3). 
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There are A-1 null points occurring at frequencies 
A

k


2
 , k=1,…,A-1. The 

first null point, i.e. at 
A




2
 , gives a rough estimate of the filters bandwidth. 

Another approximation can be made about the lobes’ maxima, which approximately 



  

occur in the middle between two consecutive nulls, i.e. at 
A

k 

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, so the shape of the initial series is retained. 

To complete aggregation, data must be down-sampled by A according to (3.3). 

If Ts is the sampling period for the initial series, the sampling period for the down-

sampled series is T’s=ATs. To acquire the corresponding Z transform expression 

(A.1), one might consider using the train impulse or shah function (A.2), which equals 

zero everywhere except for where Z
A

n
 holds. Derivation of the relevant equations 

is presented in the Appendix. 

Once again, substituting 
jez   produces the Fourier Transform of down-

sampling (4.4). This reveals that down-sampling scales (stretches) the frequency axis 

by A, weights the spectrum by 1/A and creates spectral duplicates shifted by 
A

k2
. 

Accidental overlapping of these duplicates is called aliasing and is a major problem 

that can interfere with the information content of the data by inserting aliasing noise, a 

special case of which is insertion of false frequency patterns. Such noise effectively 

blocks accurate reconstruction of the initial series. Aliasing can be avoiding by cutting 

off content up to a critical frequency, i.e. applying a low-pass filter, before down-

sampling. This critical frequency is found according to the Nyquist-Shannon sampling 

theorem. Assuming baseband series, the new sampling period must satisfy inequality 

(4.5), where B is the single-sided bandwidth of the filtered for anti-aliasing series. 
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As far as the effect of the aggregation level is concerned, important 

conclusions can be reached by identifying it with the length of the SMA. An increase 

of the aggregation level leads to boosting of the moving average’s smoothing and 

noise rejection capabilities. Noise is an inherent component of many time series and it 

manifests as random fluctuations. In the special case of additive white Gaussian noise, 

the noise filtered with an SMA(A) has a mean value and standard deviation given by 

(4.6) and (4.7), respectively; nevertheless the sample independency is lost due to the 

averaging (in fact, the output noise is an MA(A) process). The latter equation reveals 

that the standard deviation of noise is reduced by a factor equal to 1
1


A
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On the other hand, the higher the aggregation level, the heavier the smoothing 

the data are subjected to. However, excess smoothing may suppress non-noise 

features of the series. Furthermore, high aggregation levels introduce substantial 



  

lagging to the filtered series, which makes timely identification of fast changes, such 

as level shifts, harder. 

Alternatively, the choice of an appropriate aggregation level can be viewed as 

selection of the lower sampling rate induced by down-sampling. It is crucial to avoid 

aliasing phenomena. That can be achieved by choosing A according to (4.8). The 

bandwidth B depends on the initial series bandwidth, as well as on the level of 

smoothing introduced by the SMA(A) which functions as an anti-aliasing low-pass 

filter. 
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4.2. Forecasting 

ADIDA framework does not set any restrictions on the extrapolation method 

used. Even though any forecasting method can be applied, time series forecasting 

techniques, such as moving averages, exponential smoothing approaches (Makridakis 

et al., 1998) or Theta method (Assimakopoulos & Nikolopoulos, 2000), are more 

direct and easier to apply. Another important consideration relates to the reduction of 

the number of available observations for model fitting due to aggregation. Poor model 

fitting may arise when one chooses forecast models with many parameters with a 

small number of observations that do not suffice for proper model training. 

 

4.3. Disaggregation 

Disaggregation is the last stage of the ADIDA framework, bearing strong 

resemblance to the mathematical concept of interpolation. 



  

Up-sampling by A is described by (3.5) in the time domain. The frequency 

domain representation (4.9) is derived by use of the Z transform (A.3). If T’s is the 

sampling period of a time series, the sampling period becomes 
A

T
T s

s

'

  after up-

sampling by A, which reverses the change to the sampling rate caused by down-

sampling at the aggregation stage. The equations reveal that up-sampling by A is 

equivalent to scaling (shrinking) the series’ spectrum by 1/A. Up-sampling does not 

relate to the adverse effect of aliasing. 
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The final computational step is the reconstruction of the up-sampled series to 

complete the disaggregation. The simplest way to do so is to use a set of constant 

weights to perform a WMA(A, w). The time domain representation is given by (4.10), 

while the disaggregation weights must satisfy a normalization condition and sum up 

to one. The Z transform of WMA(A, w) (4.11) makes use of the lag operator z-1 and 

perfectly portrays the operation of the moving average as a time-invariant linear filter. 

We observe that there is no need for a buffer. Finally, the frequency response is 

presented in (4.12) and is connected to the filter’s impulse response (4.13) (𝛿[𝑛 − 𝑘] 

stands for the unit impulse (discrete delta) function centered at n=k), which is 

composed by the disaggregation weights. 
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The disaggregation weights essentially shape the form and performance of the 

WMA filter. The weights must add up to one (normalization constraint) and should 

take nonnegative values. However, negative values can arise as a result of the 

disaggregation process, when we end up with negative values in the aggregate series. 

As a result of the normalization constraint, the framework will preserve the mean 

level of the original data, as long as the forecasting process accurately estimates the 

mean level of the aggregate series (which is usually required from a forecasting 

technique to have practical application). In other words, a shift by a constant in the 

original data will be carried over to the forecast model, save for any level shift 

induced by the forecasting step. 

As a special case, we can consider the EQW disaggregation algorithm, that is 

to say every weight is equal to 1/A; hence the WMA falls back to an SMA. Because of 

this similarity, the magnitude of the frequency response of the disaggregation SMA is 

again that of a linear-phase low-pass filter, shown by Fig. 2. The usual aim of the 

reconstruction filter is to cut off the processed spectral duplicates induced by the 

down-sampling in the aggregation stage. To be consistent with the multi-rate 

processing theory, the filter must be low-pass, a condition guaranteed by the EQW 



  

disaggregation algorithm. On the contrary, the PRW and AVW algorithms fail to 

guarantee the low-pass nature of the filter. 

 

5. Simulated Examples 

In this section, a few simulated examples will be given to highlight the 

properties discussed in the previous section. In more detail, we will explore the 

behavior of ADIDA with three control signal types, ideally representing typical 

components of a time series. For each case, the investigated component and its 

corresponding forecast model will be plotted, as well as the corresponding in-sample 

mean square error (MSE) for various aggregation levels. 

Firstly, a random series of white Gaussian noise is considered as a model for 

the series’ randomness. The noise series and its ADIDA(A, Naïve, EQW) forecast 

model are presented in Fig. 3.a. Negative values naturally arise, despite the positive 

disaggregation weights, when the corresponding values of the aggregate forecast 

model are negative. For the sake of simplicity, we have selected a zero-mean 

Gaussian noise, yet the results hold for any mean, as ADIDA was shown to preserve 

the mean level of the initial data also in the forecast model. As a result of this 

property, the forecast model has the same mean as the initial noise signal. On the 

other hand, the model has a lower variance than the original input.  Variance is further 

reduced for higher aggregation levels, due to increased smoothing. The output noise is 

stepwise, which reveals that observations are no longer independent. Moreover, the 

in-sample MSE error is plotted in Fig. 3.b. A Monte Carlo simulation scheme calling 

for multiple random noise series with the same properties was used to achieve a 

smoother graph. The in-sample error decreases at a declining rate and finally reaches 

convergence, when the forecast model becomes completely flatted out. 



  

 

 

FIG. 3. (a) White Gaussian noise and its ADIDA models; (b) Corresponding in-

sample MSE for various aggregation levels 

 

Next, the ramp function portrayed in Fig. 4.a is selected to stand for a series’ 

constant trend component. The ADIDA(A, Naïve, EQW) forecast model becomes a 

staircase function that exhibits lagging with respect to the actual trend line. The 

stepwise form results from the equal weights used for disaggregation. Lagging 

becomes an increasingly significant factor leading to poor accuracy, as higher 

aggregation levels are selected. This adverse effect can be observed in the rapidly 

increasing in-sample MSE (Fig. 4.b). 

 

 



  

FIG. 4. (a) Linear trend and its ADIDA models; (b) Corresponding in-sample MSE 

for various aggregation levels 

 

Last but not least, we observe the performance of ADIDA on periodic signals. 

A sine wave (12 points period) is selected to represent an ideal seasonality pattern. In 

this case, the ADIDA model takes a variety of forms according to the selected 

aggregation level. For lower aggregation levels (A<6), the ADIDA model is a lagging 

stepwise rendition of the sine. At A=6, which according to (4.8) is the highest 

possible value the aggregation level can obtain without aliasing occurring, this 

lagging virtually leads to the inversion of the models phase. For larger levels, aliasing 

occurs and ADIDA yields a false estimation of the real seasonality length (sine 

period). Furthermore, excess smoothing tends to suppress the model’s extrema. These 

behaviors are graphically summarized in Fig. 5.b. Initially, lagging results to an 

increasing in-sample MSE that peaks at A=6, because of the phase inversion. As the 

output series gets smoothed out, the error reduces, albeit seasonality information 

would not be correct anymore. 

 

 

FIG. 5. (a) Periodic sine and its ADIDA models; (b) Corresponding in-sample MSE 

for various aggregation levels 



  

 

6. Conclusions  

In this paper a systemic view of the ADIDA framework was derived. The 

framework was broken down into fundamental sub-procedures and described as a 

multi-rate analogous process. This alternative formulation has been a starting point for 

a number of significant conclusions about the framework’s implications that will be 

summarized in this section. 

The aggregation step of ADIDA was shown to have smoothing properties, 

because of the SMA(A). Higher aggregation levels induce a greater degree of noise 

reduction. However, the same process introduces lagging that delays identification of 

fast signal changes. Besides, excess smoothing may suppress information rich 

variations of the time series. Moreover, the possible aliasing effect caused by down-

sampling with an increased aggregation level may alter the input signal’s frequency 

content. These considerations should be brought in mind when selecting an 

appropriate aggregation level. 

No specific forecasting method is required by the ADIDA framework. 

Forecasters can choose any forecasting method, based on statistical or judgmental 

criteria of their own. It should be noted, however, that ADIDA reduces the number of 

available data points, which may rule out models that require large training datasets. 

Disaggregation of the aggregate forecasts by a set of A constant weights can 

be implemented through up-sampling and filtering with those weights. This process 

does not relate to the adverse effect of aliasing. The simplest disaggregation 

algorithm, EQW, is equivalent to piecewise constant interpolation. 

More practical implications of the abovementioned points were shown through 

simulated examples, considering the effect of aggregation level on the in-sample MSE 



  

of the forecast models. In particular, ADIDA reduces the variance of the output noise 

for white Gaussian noise as input, increasingly with the aggregation level. The 

beneficial effect of higher aggregation level is displayed also by the falling in-sample 

MSE. However, the output noise observations are no longer independent. This 

example exhibited that ADIDA with higher aggregation levels blocks out the series’ 

noise component. 

On the other hand, ADIDA does not perform as well with trending or periodic 

data. In both cases, large aggregation levels may kill the input signal due to excess 

smoothing. Specifically for the ramp input, the in-sample MSE grows rapidly due to 

the lagging induced by the moving average. Therefore, lower aggregation levels 

should be considered. In the case of periodic input, aliasing may lead to false 

identification of the series’ periodicity and lead to increased MSE values. Selection of 

an appropriate aggregation level according to (4.8) is essential for avoiding aliasing. 

Even so, the effect of lagging is still problematic, as it induces undesirable phase 

shifts. Consequently, seasonality should be handled before the ADIDA framework is 

applied. The original series should be deseasonalized so as to remove periodic 

variations. Afterwards, ADIDA may be used to produce forecasts which must then be 

reseasonalized. 

More light should be shed into the mathematical properties of ADIDA and 

their managerial implications. The impact of the aggregation level on the methods 

performance should be further investigated and methods for selection of appropriate 

aggregation levels be proposed. In particular, the existence of optimal aggregation 

levels should be theoretically examined, as well the effect of the framework on 

specific data models. In addition, extrapolation with various forecasting methods 

under ADIDA can be investigated on large datasets, so as to acquire more empirical 



  

data. Finally, alternative disaggregation algorithms should be tested and evidence be 

given about the appropriateness of each scheme. For instance, determination of the 

disaggregation weights according to the given time series, WMA of alternative 

lengths to allow for linear, cubic, etc. interpolation, as well as the possibility of doing 

without the reconstruction filter’s time-invariance are only some of the possible 

scenarios that are worth exploring. 

 

Appendix: derivation of down- and up-sampling frequency equations 

This short appendix presents the derivation of the down-sampling and up-

sampling equations, (4.4) and (4.9), respectively. 

Down-sampling: 
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Up-sampling: 
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