### Adapted Cycling Physical Health Benefits for Children with Cerebral Palsy

Karen Visser, Dawn Pickering, Gabriela Todd, Lyn Horrocks Cardiff University, Cardiff, South Wales





### Outline

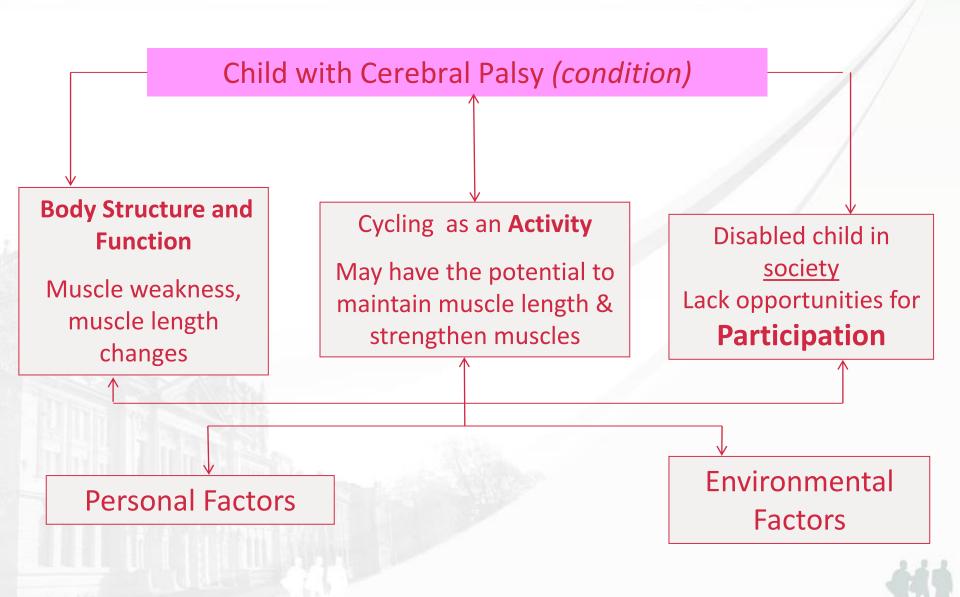


- Introduction and Background
- Methods and Participants
- Results
- Conclusion
- Acknowledgements
- References



# Pedal Power










### ICF (WHO, 2001)







### Methods



- Ethical Approval: School of Healthcare Studies
  Research Ethics Committee, Cardiff University
- Mixed Methods: Different Subject Experimental Design
- Pre- & Post- Intervention assessment
- Mean of 4 bilateral quadriceps & hamstrings within session strength measures (Hand-held dynamometer)
- Mean of 4 Bilateral popliteal angle measures (silicon coach)



## Participants



- 35 children participated
- 18 control group (non cycling group)
- 17 Intervention group (cycling group)
- Inclusion criteria: aged 2-18, GMFCS levels I V,
  Cerebral Palsy, volunteered, informed consent / assent
- Exclusion criteria: ORTHOPAEDIC intervention and / or Botulinum toxin injections within the past 6 months




## Participants: Cycle Assessment







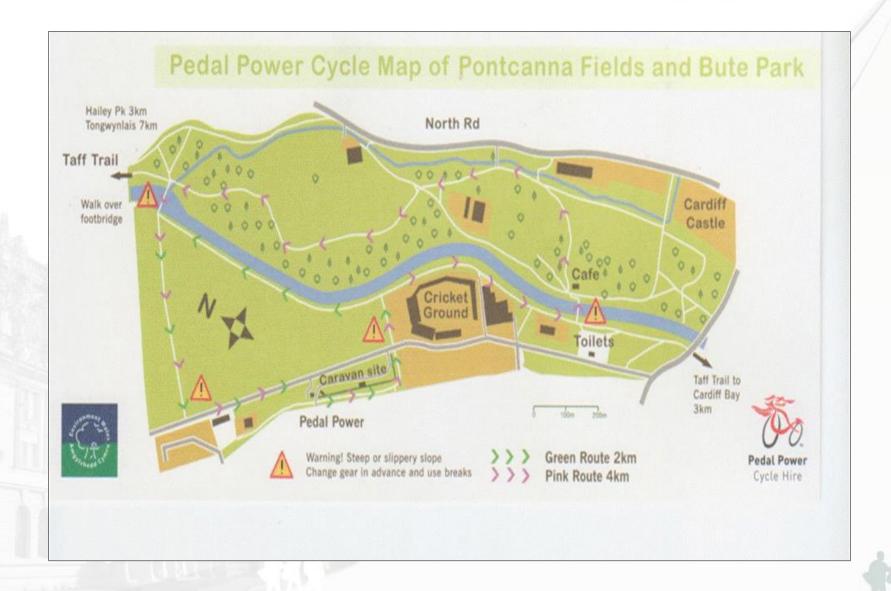


### Measurements





Figures 1 & 2: Quadriceps Strength measured with the Hand-held Dynamometer


Figure 3: Popliteal Angle measured with Silicon Coach





### Intervention







## Participants: Demographics



| Age              | Min | Max | Mean<br>(SD)   | Female | Male |
|------------------|-----|-----|----------------|--------|------|
| Cycling<br>Group | 2   | 17  | 7.12<br>(4.69) | 10     | 8    |
| Control<br>Group | 2   | 13  | 7.67<br>(3.41) | 5      | 13   |

| GMFCS            | I | Ш | III | IV | V |
|------------------|---|---|-----|----|---|
| Cycling<br>Group | 4 | 4 | 2   | 6  | 1 |
| Control<br>Group | 3 | 8 | 4   | 3  | 0 |

| СР            | Hemiplegia | Diplegia | Quadriplegia |
|---------------|------------|----------|--------------|
| Cycling Group | 1          | 8        | 8            |
| Control Group | 7          | 4        | 7            |



## Results: Popliteal Angles



| Groups  | Right<br>Baseline | Right<br>Post-<br>Intervention | Left<br>Baseline | Left<br>Post-<br>Intervention |
|---------|-------------------|--------------------------------|------------------|-------------------------------|
| Cycling | 44.87°            | 44.21°                         | 39.64°           | 42.2°                         |
| Group   | ± 14.47           | ± 9.95                         | ± 13.57          | ± 10.32                       |
| Control | 50.53°            | 49.57°                         | 49.14°           | 46.73°                        |
| Group   | ±9.06             | ±10.64                         | ±12.72           | ±11.83                        |

Data: No significant difference in baseline measures

between group

An unpaired samples T-Test:

R: p=0.233

L: p=0.067

No significant difference between groups





### Results: Strength Measures



#### Baseline Mean Strength Measures and Standard Deviations

| Group         | R Quadriceps | L Quadriceps | R Hamstrings | L Hamstrings |
|---------------|--------------|--------------|--------------|--------------|
| Cycling Group | 39.73 N      | 33.41 N      | 33.77 N      | 33.69 N      |
|               | (± 22.78)    | (± 17.06)    | (± 18.44)    | (± 15.00)    |
| Control Group | 60.56 N      | 59.74 N      | 45.16 N      | 48.76 N      |
|               | (± 30.03)    | (± 34.57)    | (± 21.07)    | (± 25.54)    |

#### Quadriceps Strength Changes

|               | R Leg                            | L Leg                             |
|---------------|----------------------------------|-----------------------------------|
| Cycling Group | Increased by 12.14 N<br>(± 6.50) | Increased by 15.56 N<br>(± 13.87) |
| Control Group | Decreased by 3.62 N<br>(± 4.73)  | Decreased by 0.41 N<br>(± 1.40)   |

#### Hamstring Strength Changes

|               | R Leg                           | L Leg                           |
|---------------|---------------------------------|---------------------------------|
| Cycling Group | Increased by 5.19 N<br>(± 3.50) | Increased by 4.23 N<br>(± 5.94) |
| Control Group | Decreased by 1.03 N<br>(± 0.06) | Decreased by 1.05 N<br>(± 3.05) |

## Results: Cycling Group



### Within cycling group strength changes

- Wilcoxon ranks sign Test
- Statistically significant increase in quadriceps strength
- Right: p = 0.018
- Left: p = 0.021
- No significant change in hamstring strength





### Results: Between Groups



- Significant differences in baseline measures between groups
- Comparisons made using ANCOVA (SPSS18)
- No significance in Quadriceps strength between groups
- Right: p = 0.08
- Left: p = 0.79



### Conclusion



- Adapted cycling has potential health benefits
- Strength increased with cycling and decreased in the group not cycling
- Strength trends deserve further investigation with larger sample sizes and longer intervention periods
- Therapists, educators and policy makers should consider providing adapted cycling opportunities for children with disabilities



### References



- Lauer et al (2008) Lower extremity muscle activity during cycling in adolescents with and without cerebral palsy *Clinical Biomechanics* 23: 442 449
- Williams and Poutney (2007) Effects of a static bicycling programme on the functional ability of young people with cerebral palsy who are non-ambulant Developmental medicine and Child Neurology 49: 522 – 527
- Bottos et al (2001) Functional status of adults with cerebral palsy and implications for treatment of children *Developmental medicine and Child Neurology* 43: 516 - 528
- Colver et al (2010) Study protocol: Determinants of participation and quality of life of adolescents with cerebral palsy: a longitudinal study (SPARCLE 2) BMC Public Health 10:280
- Palisano et al (1997) Development and reliability of a system to classify gross motor function in children with cerebral palsy *Developmental Medicine and Child Neurology* 39: 214 - 223



# Acknowledgements



### thank you \* danke \* thank you \* danke \* thank you \* danke

- Children, young People and families
- Nancie Finnie Charitable Trust
- Pedal Power Voluntary Organisation
- SOHCS, Cardiff University
- Jenx, Ltd
- Fellow Researchers

Karen Visser: visserks@cardiff.ac.uk

