
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/63611/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Blenkinsop, Thomas G. 2015. Scaling laws for the distribution of gold, geothermal, and gas resources. Pure
and Applied Geophysics 172 (7) , pp. 2045-2056. 10.1007/s00024-014-0909-5 

Publishers page: http://dx.doi.org/10.1007/s00024-014-0909-5 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



Pure and Applied Geophysics
 

Scaling laws for the distribution of some natural resources
--Manuscript Draft--

 
Manuscript Number:

Full Title: Scaling laws for the distribution of some natural resources

Article Type: Report-Top.Vol. Fractals and Dynamic Systems in Geoscience

Keywords: Mass dimension;  fractal;  resource;  gold;  percolation;  unconventional gas resource

Corresponding Author: Thomas Blenkinsop
Cardiff University
Cardiff, UNITED KINGDOM

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Cardiff University

Corresponding Author's Secondary
Institution:

First Author: Thomas Blenkinsop

First Author Secondary Information:

Order of Authors: Thomas Blenkinsop

Order of Authors Secondary Information:

Abstract: Mass dimensions of natural resources, established from power law scaling
relationships between numbers of resources and distance from an origin, have
important implications for ore-forming processes, resource estimation and exploration.
The relation between the total quantity of resource and distance, measured by the
mass-radius scaling exponent, may be even more useful. Lode gold deposits,
geothermal wells and volcanoes, and conventional and unconventional gas wells are
examined in this study. The scaling exponents generally increase from the lode gold
through geothermal wells to gas data sets, reflecting decreasing degrees of clustering.
Mass dimensions are similar to the mass-radius scaling exponents, and could be used
as substitutes in the common case that data are not available for the latter. All of these
resources are formed by fluid fluxes in the crust, and therefore percolation theory is an
appropriate unifying framework to understand their significance. The mass dimensions
indicate that none of the percolation networks that formed the deposits reached the
percolation threshold.

Suggested Reviewers: Dave Sanderson
D.J.Sanderson@soton.ac.uk
Expert on fractals and Natural Resources

Pablo Gumiel
Pablo.gumiel@uah.es
Expert of fractals and Natural Resources

Jon Hronsky
jon.hronsky@wesminllc.com
Expert on mineral deposits, exploration and resource estimation

Julian Vearncombe
julian@sjsresource.com.au
Expert on gold and other mineral deposits

Steve Cox
Stephen.Cox@anu.edu.au
First to apply the concept of percolation theory to mineral deposits

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



 1 

 

 

 

 

 

Scaling laws for the distribution of some natural resources  

 

 

Tom Blenkinsop 

School of Earth and Ocean Sciences 

Cardiff University 

Main Building, Park Place 

Cardiff CF10 3AT 

BlenkinsopT@Cardiff.ac.uk 

 

 

Abbreviated title: Scaling laws for natural resource distribution  

Manuscript
Click here to download Manuscript: TGBPAGPaper.docx 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/paag/download.aspx?id=53441&guid=510f664d-0e66-406b-95bf-fee3526cca85&scheme=1


 2 

 

Abstract 

Mass dimensions of natural resources, established from power law scaling relationships 

between numbers of resources and distance from an origin, have important implications for ore-

forming processes, resource estimation and exploration. The relation between the total quantity 

of resource and distance, measured by the mass-radius scaling exponent, may be even more 

useful. Lode gold deposits, geothermal wells and volcanoes, and conventional and 

unconventional gas wells are examined in this study. The scaling exponents generally increase 

from the lode gold through geothermal wells to gas data sets, reflecting decreasing degrees of 

clustering. Mass dimensions are similar to the mass-radius scaling exponents, and could be used 

as substitutes in the common case that data are not available for the latter. All of these resources 

are formed by fluid fluxes in the crust, and therefore percolation theory is an appropriate 

unifying framework to understand their significance. The mass dimensions indicate that none of 

the percolation networks that formed the deposits reached the percolation threshold.  

 

Key words. Mass dimension; fractal; resource; gold; percolation; unconventional gas resource 

 

 

1. Introduction 

 

    Scaling laws have been applied to many aspects of natural resources. Mandelbrot (1983) 

suggested that mineral distribution in the Earth might be a fractal dust, and this idea has been 

followed up for hydrothermal mineral deposits (e.g. Carlson 1991; Blenkinsop 1994, 1995; 

Raines, 2008; Carranza 2009) and petroleum deposits (Barton and Scholz 1995). Fractal 

relations between ore grade and tonnage were described by Turcotte (1986), and fractal aspects 
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 3 

of structures in vein-hosted deposits have been described by Sanderson et al. (1994), Roberts et 

al. (1999), Johnston and McCaffrey (1996) and Nortje et al. (2006) among others. Fractal 

applications of geochemistry to natural resources have been well documented (e.g. Agterberg 

1995; Agterberg et al. 1996; Cheng et al. 1994; Cheng 1999a, b, c, d). Describing the 

distribution of natural resources is useful in order to estimate total resources (e.g. Barton and 

Scholz 1995), and also has important implications for exploration strategies (e.g. Ford and 

Blenkinsop 2008), and for processes by which natural resources form (e.g. Arias et al. 2011).  

 

The box counting method has been widely applied to quantify the distribution of natural 

resources, for example mineral deposits: 

 

N()~ -Db
 

 

Where N() is the number of boxes of side  required to cover the deposits. Db is the box-counting 

dimension, which is a measure of clustering (e.g. Carlson 1991). Uniform or random distributions 

have Db = 2; increasing degrees of clustering have smaller values of Db. A more useful 

description of resource distribution may be given by the relation: 

 

M(r) ~ r
-Dm

 

 

where M(r) is the mass of resource within a circle of radius r (e.g. La Pointe, 1995). If the mass of 

each resource occurrence is unity, this law describes the mass dimension Dm of the resource.  Dm 

is also simply interpreted as a measure of the clustering of the resource distribution. The mass-

radius relationship is sometimes expressed as the radial density function: 
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 4 

 

d(r)~ r
-Dm-2

 

where d(r)  = M(r)/r
2
 is the density of deposits as a function of r (e.g. Raines 2008).  

 

However, the mass of resources typically varies at each location. This can be quantified by a 

general scaling law: 

M(r) ~ r
-Dmr

 

Dmr is referred to here as the mass-radius scaling exponent. This exponent can have values greater 

than 2, and is potentially a more complete description of the distribution of natural resources 

because it measures variations in mass of resource at each locality. 

 

Mass dimensions have been investigated in diverse research fields, including astrophysics (e.g. 

Duval et al. 2010), neurobiology (e.g. Caserta et al. 1995), particle science (Liao et al. 2005), and 

texture analysis (e.g. Backes and Bruno 2013), but they have not been widely applied to natural 

resources. Box counting and mass dimensions have been determined for gold deposits (e.g. 

Carlson 1991; Blenkinsop 1994, 1995, Carranza 2009; Carranza et al. 2009; Carranza 2010; 

Carranza and Saghedi 2010) and for petroleum deposits (Barton and Scholz 1995), but mass-

radius scaling exponents are hardly reported in the literature. The aim of this paper is to 

investigate mass dimensions and the suitability of the mass-radius scaling exponent to describe the 

distribution of some natural resources. Hydrothermal gold deposits, geothermal wells and volcanic 

vents, and gas wells are considered in this study. Each of the data sets represents the product of 

fluid flow systems in the crust; hence the relevance of percolation theory to the results is also 

considered. 
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 5 

2. Data and Methods 

 

Mass dimensions and mass-radius scaling exponents have been determined in this study for 

Archean gold deposits in Zimbabwe (Figs. 1, 2), divided into a data set for the whole craton and a 

more detailed data set from the Masvingo area. Geothermal wells and volcanoes in Oregon (Fig. 

3), and conventional and unconventional gas production in Pennsylvania (Figs. 4, 5, 6) were also 

analysed. Details of the data and sources are given in Table 1. In the Pennsylvania data, 

unconventional wells are considered as those drilled “for the purpose of or to be used for the 

production of natural gas from an unconventional formation” 

(https://www.paoilandgasreporting.state.pa.us/publicreports/Modules/DataExports/DataExports.as

px). All conventional wells are vertical, but most unconventional wells are horizontal. Virtually all 

unconventional wells, and by far the majority of conventional wells, produced gas only; there was 

some oil production from a few conventional wells. 

Figs 1 – 6 here 

Expanding circles used to count mass around a point were entirely constrained within the study 

area limits to avoid edge effects, and “mass” was normalized to the total value of the data sets ΣM, 

so that M’(r) = M(r)/ ΣM. Two strategies were investigated for determining the exponents of the 

scaling laws: 

 

1) A grid origin method, in which the mass was summed and averaged from expanding 

circles centred on 100 origins on grid nodes in the central part of the study area (cf. La 

Pointe 1995).  

2) A data point origin method, in which counting circles were centred on data points, and 

average values were taken from every circle used.  
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Both methods were applied to the coordinates of the Koch curve as well as to all data sets. The 

grid origin method produced exponents with values that were all near 2, including for the Koch 

curve, and showed little variation between data sets. By contrast, the data point origin method 

returned a value of 1.26 for the Koch curve (the curve has a fractal dimension of 1.26; e.g. Peitgen 

et al. 2004), and discriminated sensitively between the data sets. Hence it was used for all results 

shown in this study. 

 

Mass dimensions could be calculated for all data sets, and mass-radius scaling exponents could be 

calculated for gold production from the Zimbabwe craton and gas production from Pennsylvania, 

because these data sets included resource figures. Exponents were obtained by regression of log 

M’(r) against log r over the linear part of the scaling relationship, for a range of r of 1 to 1.5 orders 

of magnitude. Lower and upper limits of regression are shown in Table 1.  

 

 

3. Results 

 

Linear parts of all data sets can be defined over at least an order of magnitude (Figs. 7 - 10), 

justifying the above regression technique. The data sets showed two characteristic features. At 

both low and high values of r, the slopes of the log mass-radius relations were less than the central 

part of the data, where the regression was carried out (e.g. Fig. 7). Mass dimensions vary between 

1.2 and 1.8 (Table 2). Standard errors of regression vary from 0.009 to 0.017, indicating that the 

range of mass dimensions measured shows significantly different degrees of clustering between 

different data sets.  

Figs.  7 – 10 here 

The gold deposits of the Zimbabwe craton have the lowest mass dimensions of all data sets 
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 7 

considered, indicating the greatest degrees of clustering (Table 2). The mass-radius scaling 

exponent is within regression error of the mass dimension for the cratonic data set. The mass 

dimension for the Masvingo data set is significantly greater than for the craton data. 

 

The geothermal wells of Oregon have a stepped log mass-radius relation (Fig. 8) in which two 

segments of similar slope are offset from one another. The mass dimension of the larger part of the 

data is 1.23 (Table 2). The volcanic vents of Orgeon have a mass dimension of 1.51 (Fig. 8). 

 

Unconventional gas wells in Pennsylvania have mass dimensions of 1.26 (producing wells) and 

1.45 (all wells) (Table 2). The mass-radius scaling exponent of the producing wells, 1.32, lies 

between these values. The highest values of mass dimension are from conventional gas production, 

(1.57 and 1.63 for all wells and producing wells respectively). The mass-radius exponent of the 

producing wells is the highest value measured, 1.72.  

 

 

4. Discussion 

 

4.1 Consistency with previous results 

Mass dimensions of various types of gold deposit have been presented by Blenkinsop (1994, 

1995), Carranza (2009; 2010) and Carranza et al. (2009). In all these studies, different fractal 

dimensions are given at low and high r values, ranging from 0.54 for the low r values, to 1.52 

(high r). Mass-radius scaling exponents were calculated for nine hydrocarbon plays by La Pointe 

(1995) using area of hydrocarbon fields as a measure of mass, and reported as between 1 and 2. 

The mass dimensions and mass-radius scaling exponent reported here are therefore broadly 

consistent with the few previous results reported in the literature from similar commodities. 
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4.2 Non-linearity of logarithmic mass-radius scaling 

The log mass-radius scaling relations examined are characteristically non-linear at values of r 

generally less than 1000 m, illustrated for the Masvingo data set in Fig. 7, but also seen at lower 

values of r than shown in the other data sets. This non-linearity is similar to the “roll-off” 

observed in box-counting plots at low  values (e.g. Pickering et al. 1995). For gold deposits of the 

Zimbabwe craton, this effect this effect has been attributed to random sampling of a fractal data 

set (Blenkinsop and Sanderson 1999), and it seems likely that the same explanation applies here, 

i.e. that the actual data sets represent samples of a true fractal distribution. The log mass-radius 

relations show less mass at high values of r than predicted by a linear relation. It is noticeable that 

the non-linearity occurs at radii that are about ¼ of the maximum linear dimension of the study 

areas or greater. Counting circles with these large r values are only taken from the centre of the 

study areas: thus, concentrations of resources near the corners will not be included, possibly 

leading to a deficit, in the case of clustering near the peripheries of the study areas.   

 

4.3 Mass dimensions of data sets vs. natural resources 

True mass dimensions of natural resources should reflect resource-forming process. For 

hydrothermal mineral deposits and hydrocarbons, this may include elements of source distribution, 

fluid transport and deposition (trapping mechanisms).  However, mass dimensions estimated from 

resource databases such as those used here will be influenced by the degree of exploration and 

other economic factors. The extent to which the Zimbabwe data are affected by this is discussed in 

Blenkinsop and Sanderson (1999), but how well the other data sets used here reflect the actual 

distribution of resources in the Earth is unknown. The production of gas from horizontal drilling 

(e.g. Arthur et al. 2008) could affect the distribution of wells on a hundred m scale. 
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Despite the possible influence of non-geological factors, the results reported here make geological 

sense. Hydrothermal mineral deposits such as gold are strongly structurally controlled by specific 

deformation zones (e.g. Groves et al. 1998; Wit and Vanderhor 1998; Cox 1999). This leads to 

strong clustering of gold deposits (Blenkinsop 1994, 1995, Caranza 2009). Hydrocarbon 

resources, including gas, are also structurally controlled: the influence of structure in the 

Marcellus Shale can clearly be seen at a small scale (Fig.  6). Source and trap rock types and burial 

history are also very important, and the generally low values of mass dimensions for the gas 

resources of Pennsylvania reflect the presence of the Marcellus Shale under most of the state. 

Shale gas is formed and trapped in situ in shales, so that the host rock is both source and reservoir, 

and thus potentially making large parts of the Marcellus shale that have had the correct burial 

history into unconventional gas sources (Kargbo et al. 2010), and giving a less clustered 

distribution than the gold deposits. 

 

The distribution of geothermal wells is related to geothermal structure, which is a function of 

tectonics. The tectonics of Oregon are dominated by the Cascadia subduction zone, which creates 

the Cascade volcanic arc and determines the location of volcanoes (Priest 1990). Heat flow is 

thought to be influenced by the presence of partial melts in the mid crust at depths of 10 km 

(Blackwell et al. 1990). However, on a more local scale in North-Central Oregon, regional 

groundwater flow modifies the conductive flux by sweeping heat from young elevated rocks into 

adjacent older rocks at lower elevations (Ingebritsen et al. 1989; Blackwell et al. 1990). 

 

4.4 Percolation theory: a unifying framework 

The formation of all the georesources considered above is linked by fluid flow. A possible 

unifying framework for considering the mass dimensions and mass-radius scaling exponents is 

therefore percolation theory. This concept has been applied to the formation of hydrothermal gold 
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deposits (Cox 1999) in the context of fluid flow in fracture networks (e.g. Rivier et al. 1985), and 

there is an extensive literature on applications of percolation theory to primary migration of 

hydrocarbons (e.g. Carruthers and Ringrosem 1998; Carruthers 2003; Corradi et al. 2009). General 

aspects of percolation theory may therefore assist with interpretation of the results presented here 

(cf. Cox 1999). 

 

A percolation network consists of a lattice in which some sites are occupied, with a probability p 

of occupation (Stauffer and Aharony 1994). As the network evolves, p changes. Many aspects of 

percolation networks are fractal, for example the dimensions and numbers of clusters of occupied 

sites, and times for their evolution. As p increases, a critical stage is reached called the percolation 

threshold, defined as the point at which a continuous path of occupied nodes exists from one side 

of the network to the other, and the network changes from closed to open. The percolation 

threshold occurs at a critical probability pc. Fractal dimensions of percolation networks change 

over a considerable range as p increases, but can be simplified into three conditions: p< pc, p = pc 

and p > pc. Two and three dimensional mass dimensions for percolation networks consisting of a 

Bethe lattice (in which every site has the same number of neighbours and there are no closed 

loops) in these three stages are shown in Table 3.  

 

The study areas of the Zimbabwe craton, Oregon, and Pennsylvania, have linear dimensions of 

hundreds of km compared to crustal thicknesses of tens of km (Nelson, 1992; Nguuri et al. 2000; 

Eagar et al. 2011). It may therefore be reasonable to compare the mass dimensions of this study to 

those of 2D percolation networks.  All the mass dimensions measured here are below the mass 

dimensions of 2D Bethe lattices at the percolation threshold. In the case of gold deposits, this is 

intuitively reasonable. Once a backbone, network-spanning cluster has formed in a hydrothermal 

system, the localization of fluid flow along this structure would preclude mineralization 
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elsewhere. Mass dimensions of the gas wells are closer to the 2D threshold value, which may be 

reflected in their more distributed pattern (Fig. 9). It is also reasonable that the gas has not attained 

a percolation threshold for the same reason as the gold deposits: once a percolation threshold is 

reached, the reservoir would be breached and no resources would remain. 

 

4.5 The relation between mass dimension and mass-radius scaling exponent 

Mass dimensions and mass-radius scaling exponents have obvious applicability to resource 

estimation (e.g. Barton and Scholz 1995; La Pointe, 1995). However, it is commonly hard to 

measure the mass-radius scaling exponent because accurate data for “mass” (resources) is difficult 

to obtain. The mass dimensions and mass-radius scaling exponents are similar for the three data 

sets in which they could be compared. If this relationship was generally true, an approximate value 

for the mass-radius scaling exponent can be given by the mass dimension.  

 

 

5. Conclusions 

 

Mass dimensions of hydrothermal gold deposits, volcanic vents, geothermal wells and gas wells 

can be determined reliably from appropriate databases. How accurately these values reflect the 

true distribution of natural resources is not known, but the low mass dimensions of hydrothermal 

gold deposits compared to gas wells is consistent with a high degree of localization of the gold 

deposits due to strong structural controls, compared to a relatively dispersed pattern of gas 

accumulations, for which the widespread presence of the Marcellus shale as a source and a host is 

one of the most important factors in determining their distribution. Mass dimensions of volcanic 

vents and geothermal wells are intermediate between the gold and gas values. The mass-radius 

scaling exponent (i.e. the variation of mass with distance including a measure of the resource) was 
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estimated for gold and gas data sets. This exponent is similar to the mass dimension; the latter 

could be used as a proxy for the mass-radius scaling exponent where resource estimates are not 

available. Percolation theory offers a framework for understanding the significance of the mass 

dimension and mass-radius exponents: the percolation threshold may not have been reached for 

the resources considered here. 
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FIGURES 

 

Fig. 1. Gold mines in Zimbabwe, with symbols scaled by log production. From Bartholomew 

(1991). UTM coordinates, WGS84 Datum. 

 

Fig. 2. Gold occurrences in the Masvingo area, Zimbabwe. From Wilson (1964, 1968). UTM 

coordinates, WGS84 Datum. 

 

Fig. 3. Geothermal wells and volcanoes, Oregon County. From  

http://www.oregongeology.com/sub/gtilo/index.htm. UTM coordinates, NAD83 Datum. 

 

Fig. 4. Conventional gas wells in Pennsylvania with producing well distinguished. From 

https://www.paoilandgasreporting.state.pa.us/publicreports/Modules/DataExports/DataExport

s.aspx. All Pennsylvanian maps are UTM coordinates with a WGS84 datum. 

 

Fig. 5. Unconventional gas wells in Pennsylvania, with producing wells distinguished. Source as 

in Fig. 4. 

 

Fig. 6. Detail of distribution of conventional gas wells, showing a structural control. Source as in 

Fig. 4. 

 

Fig. 7. Variation of Logarithm of mass with radius (Logarithmic Mass-radius function) for 

Masvingo and Craton gold deposit data sets, with regression lines used shown. 
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Fig. 8. Logarithmic mass-radius function for Oregon data sets (volcanic vents and geothermal 

wells), with regression lines used shown. 

 

Fig. 9. Logarithmic mass-radius function for Pennsylvania data sets (conventional gas production), 

with regression lines used shown. 

 

Fig. 10. Mass-radius function for Pennsylvania data sets (unconventional gas production), with 

regression lines used shown. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure1
Click here to download high resolution image

http://www.editorialmanager.com/paag/download.aspx?id=53431&guid=7759a1be-37c8-4a66-900f-b31d90bbdf60&scheme=1


Figure2
Click here to download high resolution image

http://www.editorialmanager.com/paag/download.aspx?id=53432&guid=17d95f00-3004-447c-83b9-0aaf80db32c5&scheme=1


Figure3
Click here to download high resolution image

http://www.editorialmanager.com/paag/download.aspx?id=53433&guid=b086a49e-8f8d-4cfe-9621-cd50017d2852&scheme=1


Figure4
Click here to download high resolution image

http://www.editorialmanager.com/paag/download.aspx?id=53434&guid=8257e441-87e1-4e1e-9a6e-1db9548702b6&scheme=1


Figure5
Click here to download high resolution image

http://www.editorialmanager.com/paag/download.aspx?id=53435&guid=3d1fdc74-c18a-4aaa-b2bd-550545ea0571&scheme=1


Figure6
Click here to download high resolution image

http://www.editorialmanager.com/paag/download.aspx?id=53436&guid=00d2ecb7-9960-4c33-8d9c-30d51de4e57c&scheme=1


Figure7
Click here to download high resolution image

http://www.editorialmanager.com/paag/download.aspx?id=53437&guid=b17dfbf5-527c-4481-b0ba-303803bb13db&scheme=1


Figure8
Click here to download high resolution image

http://www.editorialmanager.com/paag/download.aspx?id=53438&guid=6ff8f354-043e-4aef-9409-d775fd7891d0&scheme=1


Figure9
Click here to download high resolution image

http://www.editorialmanager.com/paag/download.aspx?id=53439&guid=91b413aa-8f0d-405c-b9ec-15a4b81618e1&scheme=1


Figure10
Click here to download high resolution image

http://www.editorialmanager.com/paag/download.aspx?id=53440&guid=b2db1790-613e-4f0a-9ed6-dc56ee2b5606&scheme=1


Table 1. Data sources for this study. Mcf = million cubic feet. References: 1 

1.Bartholomew 1991, 2. Wilson 1964; 1968, 3. 2 

http://www.oregongeology.com/sub/gtilo/index.htm  4. 3 

https://www.paoilandgasreporting.state.pa.us/publicreports/Modules/DataExports/DataExpor4 

ts.aspx 5 

 6 

 7 

Commodity Data Location N Units Source 

Gold Craton Mine Production Zimbabwe 651 kg 1 

Gold Masvingo Mines Zimbabwe 147 

 

2 

Geothermal 

Energy Geothermal Wells Oregon 5429 

 

3 

Volcanoes Volcanic Vents Oregon 2747 

 

3 

Gas All Conventional Wells Pennsylvania 62931 

 

4 

Gas All Unconventional Wells Pennsylvania 8686 

 

4 

Gas Producing Conventional Wells Pennsylvania 52856 Mcf 4 

Gas Producing Unconventional Wells Pennsylvania 2878 Mcf 4 

 8 
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Table 2. Mass dimensions (Dm) and mass-radius scaling exponents (Dmr) for data sets in this study. OR, PA: Oregon, Pennsylvania. 

E = standard error of regression, R  - Correlation coefficient, L, U – Lower and Upper limits of regression, k 

 

Resource Gold Geothermal Gold Unconvent Gas Unconvent Gas Geothermal Convent Gas Convent Gas 

Data Craton prodn. Wells Mines Prod. Wells All Wells  VolcanicVents All Wells  Prod. Wells  

Region Zimbabwe OR Masvingo PA PA OR PA PA 

Dm 1.05 1.23 1.25 1.26 1.45 1.51 1.57 1.63 

E 0.022 0.009 0.014 0.012 0.017 0.017 0.006 0.005 

R 0.997 1.000 0.999 1.000 0.999 0.999 1.000 1.000 

L 1 12 9 11 1 23 1 1 

U 52 144 103 16 25 779 54 33 

         Dmr 1.02     1.32       1.72 

E 0.019 

  

0.012 

   

0.008 

R 0.998 

  

1.000 

   

1.000 

L 1 

  

1 

   

1 

U 52 

  

16 
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Table 3. Fractal Dimensions of 2 and 3D Bethe Lattices below, at and above the percolation threshold. 

p is the probability of a lattice node being occupied; pc is the probability at the percolation threshold 

(Stauffer and Aharony 1994).  

 

 2D 3D 

p<pc 1.56 2 

p=pc 1.90 2.53 

p>pc 2 3 
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