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Abstract

On-line service delivery undertaken between clients and service providers

often incurs risks for both the client and the provider, especially when such

an exchange takes place in the context of an electronic service market. For

the client, the risk involves determining whether the requested service will be

delivered on time and based on the previously agreed Service Level Agree-

ment (SLA). Often risk to the client can be mitigated through the use of a

penalty clause in an SLA. For the provider, the risk revolves around ensuring

that the client will pay the advertised price and more importantly whether

the provider will be able to deliver the advertised service to not incur the

penalty identified in the SLA. This becomes more significant when the ser-

vice providers outsource the actual enactment/execution to a data centre –

a trend that has become dominant in recent years, with the emergence of

infrastructure providers such as Amazon. In this work we investigate the

notion of “risk” from a variety of different perspectives and demonstrate how
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risk to a service owner (who uses an external, third party data centre for ser-

vice hosting) can be managed more effectively. A simulation based approach

is used to validate our findings.

Keywords: Risk management, Service Level Agreement, Fault tolerance,

Multi-tenancy

1. Introduction

With the emergence of Cloud computing it has become possible to dif-

ferentiate between a software service owner (responsible for updating and

managing a software capability encapsulated as a service) and an infrastruc-

ture provider (primarily offering computational, data and network resources

that may be used to deploy the software service). A service owner can uti-

lize the capability of one or more such infrastructure providers to offer the

capability to clients, whereas an infrastructure provider looks for possible

service owners to offer them managed access to resources, often at a pre-

advertise price, at multiple capacities (small, medium and large instances

in the case of Amazon.com, for instance) and with varying types of Service

Level Agreements. Such differentiation between the service owner and in-

frastructure provider role is useful from a market perspective, as it enables

different combinations of price-performance tradeoffs to be made available,

thereby reducing the barrier to entry within a marketplace (as service owners

no longer need to manage complex infrastructure which often incur signifi-

cant capital cost) whilst also allowing specialist infrastructure providers to

emerge on the market.

Cloud and web applications experience huge and unpredictable variation
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in the load over time. Defining the required amount of instances to cope with

the load experienced in a given moment can incur risks for both clients and

providers. In few cases the load demand is known beforehand thus users could

reserve the required amount of instances – a situation which is cheaper than

acquiring on-demand instances. However, as loads are unpredictable and

variable, users have to combine reserved instances with on-demand instances

as well as balance between cost and utilization of the resources. A variance

in the pattern of utilization by a client gives the provider an opportunity to

offer an on-demand option as a strategy to maximize their profit. Providers

generally offer guaranteed availability based on a pre-agreed Service Level

Agreement (SLA) [20] with a client.

It is therefore important to understand risk from a financial perspective

(expressed as cost and profit) in order to enable service owners to successfully

utilize the resources of an infrastructure provider. In addition, the problem

of risk assessment and cost becomes increasingly important in the context of

open markets where various providers can join and contribute computational

capacity and where clients can place requests for various services [21]

The focus of this paper is to determine how a service owner can balance:

(i) the loss in revenue incurred due to failure, with (ii) the additional cost

of replication needed to prevent SLA violation, in a multi-tenancy environ-

ment. We investigate the problem of service outsourcing from a financial

perspective in a multi-tenancy environments where a number of services can

be combined and deployed over server farms. Determining the number of

replicas to support service replication needs to be balanced with the revenue

achieved through each service instance and the likely penalty that may arise
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due to unavailability (arising from a failure). Section 2 describes the mo-

tivation of this work evaluating risks from different perspectives. Section 3

presents the overall methodology we employ to analyse risk for single ser-

vice outsourcing, extended in section 6 to multiple service outsourcing where

deployment can be across multiple server farms. Section 4 presents the sim-

ulation framework used for conducting the experiments. Section 5 and 6.1.1

provide the evaluation of the work through a number of experiments carried

out with the PeerSim simulator. Section 7 discusses related work in risk

management and virtual appliances with a particular emphasis on financial

risk. We present our conclusions is section 8.

2. Motivation and approach

Utilizing external infrastructure to deploy services incurs risks for both

the service owner and the infrastructure provider. Our focus is primarily

on financial risk, invoking the notion of uncertainty and randomness within

an exchange between a client and a provider. Significant literature exists

about the notion of risk in financial markets, with this term being used syn-

onymously with the “probability of a loss or gain arising from unexpected

changes in market conditions” [7]. Although in a financial market risk is

often associated with a change in market price of a product or derivative,

in the context of this work, we associate risk with the likely financial loss

that a service owner or infrastructure provider will incur due to their in-

ability to deliver an advertised capability. It is therefore necessary for the

service owner to consider one of the following three options: (i) trust the

infrastructure provider and assume a certain degree of fault tolerance and
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resilience; (ii) establish a Service Level Agreement (SLA) to ensure that if

a provider is unable to deliver the advertised capability, the infrastructure

provider incurs a financial penalty that must be payed to the service owner;

(iii) utilize resilience mechanisms directly to ensure that any possible faults

that may arise can be overcome through a pre-identified strategy, thereby

ensuring continued, fault free operation for clients. In (i) when dealing with

trusted participants the process is simplified as there are already a number

of approaches to ensure correct service provisioning. Trust may be estab-

lished based on prior interaction with an infrastructure provider or based on

the general reputation of the provider within the marketplace. This aspect

has been investigated previously by a number of researchers [9, 10]. On the

other hand, in the context of untrusted environments ensuring fault free op-

eration can be difficult due to a variety of possible outcomes that may arise

during operation. This scenario is particularly prevalent when these parties

are unknown to each other and therefore the level of risk associated with the

transaction is considerably increased. Expanding on the three considerations

identified above:

1. Using trust mechanisms – this is applicable when the environment is

trusted and either: (i) clients and service providers have already interacted

with each and have a history of prior (un)successful interactions; (ii) clients

and service providers have access to feedback from other entities they trust

– or through an aggregated reputation service they can access. Reputa-

tion can either be based solely on prior transactions, or be considered as

a multi-dimensional characteristic involving technology, business preferences

and usage/business policy – and their combinations [8]. With (ii), the feed-
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back data provided by others to calculate the reputation may be misleading

and/or sparse – thereby limiting its benefit.

Hence, entities providing feedback can have different types of behaviours

(both truth telling and deception), whereby feedback about a particular

provider may be influenced by particular incentives that a client may have.

By using existing trust mechanisms such malicious intent (based on incor-

rect feedback) can bias the overall trust establishment within a community

of clients and service providers and trust values may change with the number

of clients involved in the community and with those providing feedback [11].

2. Using Service Level Agreements – this is applicable when the participants

are unknown to each other – and therefore untrusted – with the behaviour

of the participants being regulated through a previously agreed SLA. Such

agreements can be particularly efficacious for mediating business transac-

tions providing a useful reference point for monitoring capability exchanged

between a client and provider (given that monitoring is carried out by ei-

ther a trusted third party or through a pre-trusted component known to the

client and the provider). An SLA may be used to specify Quality of Service

(QoS) terms, the measurement criteria, reporting criteria and penalty/reward

clauses between participants. Within an electronic market, an SLA may be

used for: (i) an economic expression/proof of debts as well as credits – debts

to the client and credits to the service provider; (ii) as a token of exchange

between participants; (iii) as an identification of responsibilities of partic-

ipants involved (such as the client and service provider). Establishing an

SLA between two parties (client & service provider) implies that the service

provider has agreed to provide a particular capability to the client subject
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to some QoS constraints. In return, the client must provide a monetary pay-

ment (most often) or credit (Bitcoins or other alternative currency) to the

provider once the service has been delivered (subject to a penalty, often also

monetary, in case the quality of service terms have not been adhered to) [1].

3. Using fault tolerance techniques – this is applicable when dealing with

unknown participants whose behaviour cannot be predetermined. Although

a client (the service owner) may have an SLA with the provider, the client

may still wish to minimise risk by ensuring that suitable fault tolerance

strategies are available. For instance, establishing SLAs with entities that

may exhibit faulty behaviours may represent a high risk. In order to mitigate

these risks we propose a fault tolerance mechanism where various services are

replicated among a number of peer-nodes.

In the context of service provision, fault-tolerance has moved from hard-

ware to software, making failure a ”normal” event that has to be managed

efficiently. Referring to hardware failures within a cluster of 1,800 servers

that Google uses as the building block for its infrastructure, Miller (2008) [22]

proves that dependability of failures in large scale datacentres can affect sig-

nificantly the availability of multiple cluster units.

Our approach tries to provide a comprehensive solution by determining

how a service owner can control the loss in revenue incurred due to failure

and the costs with replication. We focus on the optimisation of costs and

profits within the system showing how replicas can be deployed considering

the load of demand received from clients and the revenue achieved through

each service instance.

Assumptions: In the context of this work we make the following assump-
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tions:

• An SLA is a contract between two parties, a client and a provider. The

object of the contract can be a single service as identified in ”Single

service outsourcing“ section or a combination of services (defined as a

service type) as identified in the ”Multiple service outsourcing“ section.

• A request of service refers to an event issued by a client for acquiring

a resource available at the provider. This resource can be embedded

into: (i) a single service or (ii) a generic type of services (which is a

combination of multiple individual services). Both of these requests are

eventually defined as a functional SLA, the only differentiation factor

represents the service based on which the request has been placed.

• The SLA creation process starts when a client (the initiator) sends a

request to a potential provider. The provider issues an SLA template,

specifying agreement terms and obligations – containing service level

objectives, quality terms and business values associated with particular

service level objectives. Penalties and rewards are also parts of the SLA

template. The initiator fills the template with the required service,

asking the provider for a price. The agreement is finalised when the

initiator accepts the price from the provider. The underlying protocol

can be found in the WS-Agreement specification [23].

3. Single service outsourcing

When establishing an SLA, the service provider agrees to provide a partic-

ular capability to the client subject to some QoS constraints – referred to as
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Service Level Objectives in the WS-Agreement specification. But when the

service providers replicate their services (within one or more infrastructure

provider(s) or data centre(s)), there are three important aspects to consider:

(1) Risk from the service owner’s perspective i.e. how many instances of

each service should be replicated taking into account: (i) the cost associ-

ated with deploying each replica, and (ii) the penalty that must be paid if a

service is unavailable (i.e. no working replica is available when a request is

sent by a client).

(2) Risk from the infrastructure provider’s perspective, i.e. determine how

to optimise service replication in order to reduce deployment (hardware and

software) costs and any penalties that may arise due to SLA non-compliance.

(3) Risk from the client’s perspective i.e. how to construct/negotiate the

SLA considering that a service owner may be unable to deliver the service.

Within these risks, the SLA can be encoded with WS-Agreement stan-

dard. After receiving a service request from node A, node B responds with

a WS-Agreement template which node A is expected to complete with the

following information:

• Name/ID: a unique identifier for the agreement;

• Context: metadata associated with the agreement, such as the agree-

ment initiator, agreement responder, the expiration time etc.

• Service terms: details about the service being provided.

• Guarantee terms: details such as service level objectives, qualifying

conditions for the agreement to be valid, penalty terms, etc. The guar-

antee terms specify which the obligated party is and to which service
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this guarantee applies, the service level indicators and service level ob-

jectives as an assertion over service descriptions and the business value

associated with these objectives.

Consider a server farm SF containing a collection of peer-nodes

Pe={pe1, pe2, pe3, ..., pen}, some of which can be used for replicating a set

of services S. S is a collection of services S={s1, s2, s3, ..., sn} deployed

on the server farm SF . A subset Sk ⊆ S defines a collection of services

Sk={ss1, ss2, ss3, ..., ssm},m < n owned by a provider Prk where each service

si has a number of replicated instances Ik. The set Ik identifies a set of in-

stances for one service si, Ik={i1, i2, i3, ..., im}. The associated costs of set of

instances Ik is the set of costs Ck={c1, c2, c3, ..., cm}; hence pairs (ii, ci) are

associated with service si with ci representing the cost of deploying instance

ii.

...

   PROVIDER

(Service Owner)

CLIENT

SERVER  FARM

pe1

pe2

pe3

pen

[SLA]

[request]

[SLA]

[deploy]

[service]

Figure 1: Service Provision Scenario
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For defining the cost and profit for clients, providers and farm owners we

use the following notations: Cost represents the cost, Profit represents the

profit, Cl represents the client, Pr represents the provider and Fo represents

the farm owner. From Figure 1, a client sends a request to a provider which

then outsources the service execution to a specialised server farm. Based

on the provider requirements the server farm will accommodate an amount

of replicas for the requested service on the number of available peer-nodes

(identified as pe1, pe2, pe3, ..., pen in Figure 1) in the farm.

3.0.1. Clients

A client searches for a service owner able to deliver a required capability,

subject to a set of QoS constraints. We use SLAPr
Cl to identify the provider

commitment to deliver a service to the client, where the SLA encodes the

particular constraints that have been agreed between the two parties. Such

an SLA may encode characteristics for a single or multiple services from a

provider. It is also necessary to identify the cost Cost(Cl) that a client must

pay to the provider Pr in order to acquire a needed service si. The cost of

the client is calculated as:

Cost(Cl) = Price(SLAPr
Cl (si)) (1)

that is the price paid by a client to the provider for enacting services according

to a particular SLA.

3.0.2. Providers

For providers, deploying a single instance of si on the server farm incurs

a cost ci. As more instances are deployed, the cost can change based on
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the following function: f(c) : Ik → Ck, where Ik refers to instances ii which

correspond to various replicas of service si and Ck={c1, c2, c3, ..., ck}, where

ci is the cost of deploying the ith replica. The cost function f(c) depends on

the particular type of infrastructure that is being used in the server farm(i.e.

deploying a replica varies from a server farm to another based on certain

hardware configuration or software specifications).

A server farm SFk has a failure rate frk calculated as the number of

requests successfully processed within a time interval. In particular, we use

an SLA (see figure 1) – SLAPr
Cl as an agreement between the client and the

provider where the provider Pr seeks to minimise a cost function f(c), to

ensure that agreement SLAPr
Cl is complied with, while the client Cl seeks

to receive the service capability described in SLAPr
Cl (si). In case of non-

compliance with SLAPr
Cl , the penalty mechanism is applied.

Cost for providers are represented by: (i) The penalties PEN – based on

non-compliance with SLAPr
Cl (si); (ii) the price P (SLAFo

Pr) paid to the server

farm owner (Fo), for deploying replicas. Hence:

Cost(Pr) = PEN(SLAPr
Cl (si)) + Price(SLAFo

Pr(si)) (2)

Profit for providers is represented by the difference between the price of car-

rying out the execution in accordance with the SLA and the cost associated

with outsourcing and deploying the service on the server farm. Therefore:

Profit(Pr) = Price(SLAPr
Cl (si))− Price(SLAFo

Pr(si))− PEN(SLAPr
Cl (si))

(3)

12



3.0.3. Server Farm Owner

Each server farm SFi has a failure rate such as fri = rk′/rk where rk′

defines the rate of unsuccessful requests of SFi over the interval ∆t and rk

represents the number of total requests. We consider that a provider Pr acts

as a client for the server farm owner. Between the providers and farm owners

we use SLAFo
Pr(si) as an agreement which specifies terms and conditions for

deploying service replicas on the server farm – hence the cost for server farm

owners is based on: (i) the loss with penalties PEN imposed by SLAFo
Pr(si);

(ii) the cost incurred for deploying n instances based on SLAFo
Pr(si). This

leads to the relation:

Cost(Fo) = PEN(SLAPr
Cl (si)) + n ∗

n∑

i=1

(ci(ii)) (4)

Profit for farm owners is represented by the difference between the price

paid for the SLA and the cost based on the number of instances needed for

replication. Hence,

Profit(Fo) = Price(SLAFo
Pr(si))− n ∗

n∑

i=1

(ci(ii))− PEN(SLAPr
Cl (si)) (5)

Latency represents an important factor in the context of service outsourcing.

When a failure occurs, either the instance fails completely (fail stop failure),

or the server farm operator undertakes some fault tolerance measures to

restart the service – we use latency also as a measure the time it takes to

have the service available again. According to the value of the latency, a

mechanism of penalties is applied leading to additional costs not only for the

server farms but also for the providers due to their pre-established SLAs with

clients.
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Algorithm 1: Latency Calculation

1: for i = 0; i < instancesNr; i + + do

2: SELECT node ni

3: for j = 0; j < totalRequests; j + + do

4: requestIssuingTime = getClientIssuingTime();

5: requestExecutionTime = getExecutionTime();

6: requestExecutionLatency = requestExecutionTime -

requestIssuingTime;

7: if requestExecutionT ime > 0 then

8: averageRequestExecutionLatency +=requestExecutionLatency;

9: numberOfExecutedRequests++;

10: else

11: numberOfPendingRequests++;

12: end if

13: end for

14: averageRequestExecutionLatency =

averageRequestExecutionLatency/numberOfExecutedRequests;

15: end for

This is therefore significantly important not only because of the addi-

tional costs that can occur but especially because of the faults that lead to

SLA violations. In our approach we consider that the cost for an individual

instance increases with latency. The cost of an instance clri is calculated

as a product of the price of instance plri and the latency of response li:

clri = plri ∗ li. This helps server farm owners to deal with an increasing

queue size of service requests. We consider this cost as an incentive for the
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server farm to deploy additional replicas, which might be slower due to ex-

isting high load, instead of simply rejecting the requests due to inadequate

performance or insufficient resources. The methodology for calculating the

latency of an instance is presented in algorithm 1.

Cost

Number of Instances

0

c1

i1 i2

c2

r3

r1

r2

r31

r21

Cmax

Imax

Figure 2: Cost models

3.1. Cost models

The relation between the cost per replica, depicted on the Y-axis of Fig-

ure 2, and the amount of instances deployed, depicted on the X-axis, can

change depending on the cost model used. The cost is related to the amount

of instances being created in the server farm, thus the cost can variate over

the capacity interval of the server farm. Hence, the cost per replica can

change in accordance with a:

(a) Linear Model – defines a proportional increase in cost for each new

instance deployed. In figure 2 this is identified by curve r1. In the linear
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model an increase in the number of instances over intervals [0, i1] and [i1, i2]

produces an increase of costs identified as [0, c1] and [c1, c2];

(b) Decay Model – in this instance the cost of deploying new instances

decreases (per instance) and eventually becomes stable after a threshold num-

ber of instances have been deployed. This implies that as more replicated

instances are added for each service (up to the capacity available in the server

farm), the system management and deployment costs do not increase. In fig-

ure 2 this is identified by curve r21. In the decay model increasing instances

over interval [0, i1] leads to an increase in costs over [0, c1], with a subsequent

reduction of costs [c1, c2] for instances [i1, i2];

(c) Mixed Model – identifies a mixture between the linear model and the

decay model. In figure 2 this is identified by curves r1 and r2. The mixed

model can identify either an increase of costs ci ∈ [c1, c2] when a number

ii ∈ [i1, i2] of instances are requested – the case of r1 or a reduction of costs

cd ∈ [c1, c2] when instances id ∈ [i1, i2] are requested– the case of r2. We

consider that r3 and r31 are part of an exponential cost model that we do not

consider in the paper. We only consider the decay model, linear model and

mixed model. The particular cost model that is applicable depends on the

infrastructure being used within a server farm. For instance, in a virtualized

environment, adding more virtual machines (VMs) – up to a threshold limit

– to each physical machine may not incur any additional cost (especially

where replicas are being considered). There is an initial cost of transferring

and instantiating a machine image, initiating and deploying the VM, etc.

Once this has been done, additional VMs may incur less cost.
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3.2. Configuration

In our approach we assume that each SLAPr
Cl (si) relates to a single service

si, however a server farm may be hosting multiple types of services (each of

which may have multiple replicas). When a service request is submitted at

time ti a number of replicas within the system may fail. We investigate

how the system reacts when: (i) a number of services are executed on the

server farms generating a load on the system. Service execution starts at

a particular time interval defined by a frequency ν; (ii) over the simulation

interval, k replicas of a service may fail with probability p; (iii) each provider

replicates service si based on the cost function f(c).

We use latency as a metric to measure the reaction of the system in the

context of a certain load determined by the number of SLAs currently be-

ing provisioned. Latency is calculated based on the number of replicated

instances and the number of requests submitted to the server farm (as shown

in algorithm 1). The number of requests are accommodated on the available

instances of the server farm. For each request we calculate a corresponding

latency. The average latency is then included in the calculation of the overall

cost associated with an instance. The average latency is calculated for each

instance deployed on the server farm. The algorithm uses: (i)function results:

requestIssuingT ime, requestExecutionT ime, where requestIssuingT ime

identifies the time when an SLA is issued whereas the requestExecutionT ime

is associated with the actual execution of the service identified in the SLA.

The resultExecutionT ime value is 0 for all those requests which are pend-

ing; and (ii)output parameters: averageRequestExecutionLatency, where

averageRequestExecutionLatency is then used for obtaining the overall

17



server farm latency.

4. Simulation framework

Validation of our approach has been carried out through simulation, using

a P2P based resource sharing model. P2P systems present two important

features: (i) scalability and (ii) dynamism. We make use of PeerSim [4]

– a scalable simulation environment that enables the definition of a num-

ber of different scenarios. In PeerSim, interaction protocols between peers

may either be implemented using a predefined PeerSim API or they can be

embedded into a real implementation [3]. PeerSim provides a number of pre-

developed modules that can be combined in different ways and provides the

flexibility to support a variety of different system configurations. The P2P

network is modelled as a collection of nodes, where each node has a list of

associated protocols. The overall simulation is regulated through initializers

and controllers – that allow either events to be introduced into the simula-

tion or to enable a particular capability to be added at pre-defined simulation

time points.

The issuing of a service request is a process controlled by different con-

figuration parameters within PeerSim. The transition between the issuing of

requests and the outsourcing to server farms process is performed based on

an execution probability.

The executeprob is a parameter included in the configuration file. Thus,

the number of requests that the system uses during the experiments are

controlled with the executeprob parameter. At the same time, one SLA is

assigned with a ttl (time-to-live) parameter defining the time interval over
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which an SLA is established between nodes. The operation of the algorithm

in terms of issuing and outsourcing is identified in figure 1. These operations

are carried out over a duration specified in the time to live (ttl) parameter.

We consider that penalties are set based on a random distribution with an

interval of [1%-10%]. Failure rates are generated as double variables taking

random values from the interval [0,1]. The cost models that a server farm

may use are assigned based on a random distribution with a set {0,1,2}
where each element of the set identifies a cost model (0-linear, 1-decay and

2-mixed).

4.1. Variation in the system

The level of demand introduced into the system can change over time –

a configuration parameter in the experiment. It is assumed that the level of

demand is based on the number of peers requesting a specific service type

– referred to as view. This process is triggered when the number of peers

requesting service is modified. Our framework is designed to modify the level

of demand when new requesting peers are added to the system in the view

of each participating node.

The price of one specific service type is mapped in accordance with a

demand level: p.typeci+1
= p.typeci

∗ d – where ci represents the ith cycle

of the simulation. The demand is based on the view parameter assigned

to each peer node offering a service of type ti as a set Pssi consisting of

{pss1, pss2, pss3, ..., pssk} indicating the number of peers requesting a specific

service. In particular, the level of demand is varied by changing the view

parameter assigned to a specific type of service.

In order to validate the hypotheses of demand implication on the status
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of the system, PeerSim was chosen as a framework for simulating different

scenarios. Within one configuration file, different simulation events are con-

trolled. The PeerSim simulator uses separate source files for programming

different needed controllers of the simulation process. In particular, our

framework uses three different controllers. The first controller controller1

defines the number of requests scheduled to be used during the simulation;

the second controller controller2 defines the network variation for each sim-

ulation cycle (e.g. how the size changes when injecting new peers) for each

round of the simulation. The last controller (controller3 ) is the observer that

collects the results for each experiment. The configuration file also contains

a number of simulation parameters:

• cycles: defines the maximum number of simulation cycles for each

experiment.

• ttl: defines the time to live for one SLA – i.e. for how long the SLA

is valid with reference to the current time.

• maxnodes: defines the maximum number of nodes that have been sched-

uled to issue requests.

• maxRequests: defines the maximum number of service requests sched-

uled to be issued within the system as a whole.

4.2. Demand configuration

Our framework is designed to handle demand as an economic process that

can induce fluctuation for the value of exchanged objects. For simulating the
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variation of demand within the market, our framework uses several assump-

tions. Therefore, one specific level of demand is simulated by using one view

parameter. The view is assigned to each node within the system. The view of

any one peer is independent of other peers in the system. This parameter is

adjusted (increased or decreased) during each cycle of simulation. A default

value of 1 identifies the case of a regular (stabilised) demand.

The variation of the demand was ensured by PeerSim controller2 (see

subsection 4.1), which can inject different numbers of requesting nodes at

each simulation cycle. The following configuration parameters are used by

this controller:

• control.c1 peersim.dynamics.DynamicNetwork

• control.c1.maxsize vmax

• control.c1.add vadd

• control.c1.add vremove

• control.c1.step vstep

• control.c1.from vfrom

• control.c1.until vuntil

The DynamicNetwork is a module provided within PeerSim which helps the

simulation process to work with a differing number of peer nodes at each

simulation cycles. It includes various Java packages initializing a network or

modifying it during simulation. It can also be used to model node churn.

The maxsize parameter represents the maximum number of peer nodes that
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one simulation process can use; the add parameter defines the number of peer

nodes injected at each step and the remove parameter defines the number of

peer nodes removed at each step. The step parameter defines the stage of

the process (i.e. creation/issuing, outsourcing) for each injected peer node.

Table 1: Configuring the simulation
Parameter Value

simulation.cycles 200

network.size 2000

network.maxSize 5000

network.minSize 500

protocol.1 fgcs.Risk

protocol.1.ttl 20

protocol.1.issueprob 0.25

protocol.1.outsourceprob 0.25

protocol.1.failureprob 0 (0 if dynamic, 1 if static)

protocol.1.penalty 0 (0 if dynamic, 1 if static)

protocol.1.costmodel 0 (0 if dynamic, 1 if static)

init.3 fgcs.WireKOut

init.3.protocol 1

init.3.maxrequests 10

init.3.reqfrequency 5

init.3.requestnodes 100

init.3.k 25

control.c1 fgcs.DynamicNetwork

control.c1.maxsize 5000

control.c1.add 50

control.c1.remove 50

control.c1.step 1

control.c1.from 2000

control.c1.until 3000

control.ob1 fgcs.Observer

control.ob1.protocol 1

control.ob1.verbosity 1

The parameter from specifies the starting number of peer nodes to simu-

late while the until parameter defines the maximum limit on the number of

peer nodes that the simulation can use. An example of the configuration file

is provided in Table 1.
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5. Evaluation & Results

We consider a community where clients, providers and server farm own-

ers can establish SLAs to support service provisioning. We evaluate this

community based on the cost incurred by each participant for: (i) acquiring

the service – the primary action performed by clients, (ii) outsourcing the

service – the primary focus of providers and (iii) deploying virtual instances

– the key activity carried out by server farm owners. Each client can request

several services and each service has a number of replicated instances. Ser-

vices are delivered on the basis of pre-established SLAs among peers. In our

experiment we consider two metrics:

1. Cost: C = C(Cl) + C(Pr) + C(Fo) where C(Cl) represents the cost

incurred by the client, C(Pr) is the cost to the provider and C(Fo)

identifies the cost incurred by the server farm owner.

2. Profit: P = P (Pr) + P (Fo) where P (Pr) represents the profit of the

provider and P (Fo) represents the profit of the server farm owner.

We carry out a series of experiments to validate how the costs identified above

are impacted by different system configurations. Each experiment attempts

to evaluate a particular objective. We use a simulation environment with

2000 peer-nodes which are configured as clients, providers or server farm

peer-instances.

Experiment 1 : In this experiment we investigate how the overall cost and

profit within the community is affected when a number of replicas fail – based

on a failure rate parameter. In all the experiments the cost and profit are

illustrated on the X-axis in a predefined order: first bar is cost, second bar
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is profit. Figure 3 illustrates how the cost and profit evolve with different

failure rates. We can observe that the cost and the profit in the system are

significantly affected when a high number of replicas fail. This experiment

considers the failure rate within the following set: {0.01, 0.05, 0.09, 0.5}.
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of demand

It can be observed that the overall cost increases with fault probability.

We observe the difference of cost when considering failure rates over the range

[0.09-0.5]. The cost is considerably increased for 0.5 while the profit remains

stable. This arises because when multiple service instances fail, the penalties

specified in the SLA are applied, leading to an increase in the total cost.

In conclusion the impact on cost and profit is determined by the penalty

mechanism associated with multiple failures.

Experiment 2 In this experiment we identify how the profit/loss is affected

when the demand for services increases. Demand for services in this case

is identified based on the number of services executed based on pre-defined

SLAs. This experiment demonstrates how demand affects the overall com-

munity (service client, owner and server farm owner) in terms of cost and

profit.
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From figure 4 we observe how the distribution of cost and profit evolves in

relation to different levels of demand. When using an initial demand in the

system (demand=0.05), the cost and the profit are low. When increasing the

demand to approximately 30 service requests per time unit (demand=0.3),

there is a significant impact on the cost and profit. This impact is influenced

by the penalties imposed when the number of requests increase. From 0.09

to 0.3 an increase in load leads to increased SLA violations and penalties.

The greatest difference of costs and profits occurs when using a load of 90

service requests per time unit (demand=0.9). From this experiment we can

deduce that there is an increase in the risk associated with service delivery

when demand for services increases.

Experiment 3 : Previous experiments demonstrate how cost and profit within

the system fluctuate when dealing with an increased demand. In this exper-

iment we consider the rate at which new demand can be introduced into

the system. This experiment investigates how a variability in the demand

frequency can affect the cost and the profit.
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Increasing the frequency of service requests over a specific time interval

represents another factor which can affect the cost and the profit in the

system – illustrated in Figure 5. The difference between demand and demand

frequency is determined by the interval when requests arrive. Whereas the

demand refers to the overall interest for a service over a interval of time,

demand frequency refers to the specific time interval when a request appears.

When demand frequency increases, the average latency increases, whereas

when service executions are separated by longer intervals, this leads to lower

costs. We observe that the impact of demand frequency on profit is lower

than on cost. Whereas profit is not significantly affected by frequency, the

cost increases in direct proportion to the demand frequency – as the latter

implies a higher load on the server farm and depends on the amount of

replicas associated with the service request.

Experiment 4 : Previous experiments demonstrate how the system changes

when providers are dealing with a certain number of replicas (see section 3).

In this experiment we extend the number of replicas and observe how the

cost and profit are distributed. Figure 6 illustrates the distribution of cost

and profit when increasing the number of replicas by 25%. A corresponding

impact in the profit value is identified each time we increase the number of

replicas. At 75% we observe that the system has an increase in cost while

the profit decreases. An increase in profit can be identified when increasing

the number of replicas by 95%, indicating that the server farm has enough

capacity to deal with these requests. After deploying a number of replicas

the increase of costs is reduced leading to an increase of profits.
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6. Multiple service outsourcing

In this section we analyse the case where service providers can deploy

various combination of services on the server farm in order to reduce cost

and increase profitability. While in section 3 we tackle the scenario where

isolated services are deployed on a number of server instances, in this partic-

ular approach we consider that a service provider can organise capabilities by

deploying various combinations of services – with each combination being re-

ferred to as a “virtual appliance” (as discussed in section 1). We consider the

service delivery scenario of figure 1 where a set of services can be replicated

on a server farm. Each service is represented as a service type and contains a

combination of one or more services. Giving a set of types T={t1, t2, t3, ..., tk}
which can be deployed on a server farm, one type ti can represent a combi-

nation of services such as ti={s1, s2, ..., sn}. Here, each type corresponds to

a virtual appliance.

We consider the service owner acting as a SaaS provider, delivering on-

demand services to the client. Service delivery between the client and the

service owner is regulated by an SLA (identifying the requested QoS proper-

ties, the price paid and penalty). In general, the service owner uses a price

scheme based on time units: e.g. 10$ per hour. In this model, the service

owner uses a server farm to host its services. The server farm might be lo-

cally hosted or deployed over a Cloud infrastructure. On the server farm,

the service owner can deploy a maximum of n instances(virtual instances)

I = {i1, i2, ..., in}, with each instance ii identifying a peer-node pi on which

it is hosted. The infrastructure is unreliable, and each peer node might fail

with probability f - named failure rate. f represents the percentage of failed
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transactions compared to the total transactions deployed at a given peer.

The server owner is able to deliver k isolated services (s1, s2, ..., sk). The

cost of deploying one individual service si on one of the n peers is ci. Instead

of deploying a single service si on some of the peers, the server farm owner can

choose to deploy a combination of services ti. In this case (multi-tenancy),

the equivalent set of costs with such deployment is denoted by (ci1, ci2 , ..., cit).

For financial reasons, the following relation holds, for any two services si1 and

si2 :

ci1 + ci2 ≥ ci1,i2 ≥ ci1 (6)

Running services on each peer, the service owner incurs an operating cost

c, for each time unit of operation. Based on the incoming request, the server

farm owner chooses to deploy only individual service si on the n available

peers, or whether to deploy some combination of services (si1 , si2, ..., sit). To

deal with the peer failure rate f , a server farm owner can decide to replicate

each delivered service m times, but with the constraint that the number of

peers n remains fixed. One or several clients create a demand by placing a

request Ri from the set RT = (R1, R2, R3, ..., Rt), where Ri ∈ RT . A request

Ri refers to a combination of services ti and has a corresponding SLAPr
Cl . By a

service type we refer to a combination of individual services. For instance one

client may ask for a generic service type which needs to have Microsoft Office,

Matlab, a Tomcat Server under a Windows Server operating system. Rather

than deploying individual services the provider will choose to customise a

virtual instance which can provide all these individual services as a generic

service type.
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6.1. Protocol

In our framework we consider profit and cost parameters for each indi-

vidual request Ri, i = 1, n. Therefore, we consider the profit of the service

owner in relation to their respective SLA:

Profit(Ri) = Price(Ri)− Cost(Ri)− Penalty(Ri) (7)

Price(Ri) is calculated as the unitary price p asked by the service owner,

times the t duration of the service contract: Price(Ri) = p ∗ t. Cost(Ri) is

calculated as the cost ci1,i2,...,it incurred by the service owner for deployment

of the requested services on the peers(cost of deployment), plus the unitary

costs of operating the peer(cost of execution) cpi
times t, the duration of the

contract: Cost(Ri) = cij + cp ∗ t. Penalty(Ri) represents the penalty the

service owner has to pay if the SLA delivery fails: penSLA.

Given that the service provider has to deploy services (si1 , si2, ..., sit) in

the server farm based on a request received from a client, an instance is cre-

ated only if the combination (si1 , si2, ..., sit) is already deployed somewhere,

or several instances which individually compose the requested services (si1 ,

si2 ,...,sit). If one of the requested services is not deployed anywhere, then the

server farm can deploy additional instances for accommodating the service

request. We assume that the costs of deploying services differ, as suggested

by eq. 6. Further, if the service owner requests rm replicas, then the server

farm should identify those peers capable of delivering the requested services,

each service being delivered (in isolation or in combination) by pm peers.

In our protocol the SF is created with some instantiation of the services

on the existing n peers. We use the replication rate rm set by the service
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owner. The client injects requests for services, extracted out of the 2p − 1

possible combinations of services. Clients can generate requests uniformly

distributed over the possible combinations, or some combinations might be

identified with higher demand and preferred by the client.

6.1.1. Experiments

To validate the multiple service outsourcing approach, we use a Peer-

Sim [4] based simulation. The simulation is based on the architecture in

figure 1, where peers can play different roles: clients, service providers or de-

ploying peers. We use the experimental configurations presented in Section 4

with specific adaptations for handling multiple types of services. We carry

out a series of experiments to identify how the total profit and average cost

evolve in different simulated scenarios. In our experiments we consider two

metrics:

1. Average cost per request: Cost(Rreq) =

n∑

i=1

[(cik + cp) ∗ t]/n

2. Total Profit: Profit(Rreq) =
n∑

i=1

(Price(Ri)−Cost(Ri)−Penalty(Ri))

where n is the number of requests. We use a simulation environment

with 2000 peer-nodes which are configured as clients, providers or server

farm peer-instances.

Experiment 1 : This experiment explores how the different combination of

services that are deployed in the server farm can impact the status of the

system. Considering that each type is a combination of individual types of

services we look at the relation between the number of services per type

(embedded in a service type) and profit.
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Figure 7: Profit when varying the number of

services per type
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From figure 7 we observe that from a set [2,5,10,15] of possible service

combinations, the highest level of profit occurs when using service types

with 2 and 5 services. When using service types with 10 and 15 services in

combination, the level of profit starts to decrease. From this experiment we

can conclude that there is an optimal number of services to include within

each type. The increase of profit for service types 2 and 5 is a result of

choosing the right amount of services per type.

Experiment 2 : In this experiment we investigate how the profit is affected by

expanding the size of the server farm over the range [0.25, 0.50,0.75,0.90] (i.e.

25% bigger, 50% bigger etc). Figure 8 illustrates profits when expanding the

number of peers in the server farm. From this experiment we can conclude

that additional peers for deploying service types can represent an immediate

profit when there is continuous demand (a number of requests uniformly

distributed over the simulated execution) within the system. It is interesting

to note that when increasing the server farm capacity with 0.25 and 0.50

the profit remains stable. In this case, the profit accumulated from new

requests balances the costs associated with deploying new instances. When
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increasing the server farm capacity by 0.75 (i.e. 75%), the revenue increases

greater than costs determining an increase of profit, unlike the case when the

server farm is expanded by 0.90.

Experiment 3a: In this experiment we identify the distribution of profit when

varying the demand for all service types. Considering a fixed number of ser-

vices that can be combined in service types, we analyse how the demand

for particular types can influence the distribution of profit. Figure 9 illus-

trates various stages of profit in relation to the associated demand levels.

Investigating various levels of demand within the set [0.25,0.50,0.75,0.90], we

observe that the profit increases up to the level of 0.50 (i.e. a 50% increase)

demand. When increasing the demand of service types to 0.75 we observe

that the profit starts to decrease continuously. This decay in profit is in-

duced by the limited number of peers to deploy services. Even if the number

of requests for all service types increases, the capability of the server farm is

limited and therefore the process becomes less profitable.
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Experiment 3b: In this experiment we identify the distribution of the average

cost per request when varying the demand for service types. Keeping the

same configuration as in experiment 9, we analyse the status of the system

from an average cost perspective. The demand for types is varied over the

set [0.25,0.50,0.75,0.90]. From figure 10 it can be observed that an increase

of demand to 0.50 respectively to 0.75, leads to an increase in the averaged

cost per request. This increase of cost is determined by additional penalties

that are incurred when increasing the demand. As identified in the previous

experiment, the effect of demand for particular service types on cost is related

to the limited number of peers to deploy services. In the absence of additional

peers to deploy services, there are no other deployment costs incurred, and

consequently the averaged cost stagnates.

Experiment 4a: This experiment presents the distribution of profit when

varying the failure rate at a fixed demand for service types. Failure is a

process that is controlled by a probability distribution, we vary the rate of

failure over the set [0.25,0.50,0.75,0.90] and observe how profit is distributed.

From figure 11 we observe that profit evolves inversely to the rate of failure.

This decrease in profit is due to the increase in penalties associated with not

meeting SLA targets.

Experiment 4b: In this experiment we identify the distribution of the aver-

age cost per request when varying the rate of failures. Varying the rate of

failure for each replica has a direct impact on the average cost of service type

requests. Figure 12 presents the distribution of the average cost at various

level of failures. As mentioned in the previous experiment, replica failure

translates into an immediate cost for providers in being able to handle the
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current demand. When providers are unable to respond to the amount of

requests, thereby non-complying with pre-established SLAs, a penalty is ap-

plied. With a failure rate varied over the set [0.25, 0.50, 0.75, 0.90], the

highest impact on cost is identified when 0.90 of replicas fail.

7. Related work

Risk assessment mechanisms are critical to increase the trust between

clients and providers especially in distributed environments. The problem of

risk management and associated cost mechanisms within a market of com-

putational resources has been discussed by projects such as AssessGrid [5]

and GridEcon [12]. The AssessGrid project proposed the development of

a brokering mechanism that enabled risk-aware creation of SLAs between

Grid service consumers and providers. The focus of the project was to offer

a risk-aware decision support system allowing individuals to negotiate and

consume Grid resources using SLAs. A utility computing business model was

employed for evaluating the emergent open marketplace. The architecture of
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AssessGrid is divided into three layers, one for each of the actors: end-user,

broker and provider. The end-user layer includes a portal which provides

a number of abstract Grid applications which can interact with each other

through an SLA Broker component (implemented using the WS-Agreement

and WSRF (Web Services Resource Framework) specifications) [6]. The bro-

ker serves as the central actor of the system and can play the role of a

mediator or a contractor on behalf of different participants. By investigating

various scenarios and testing different roles that a provider can adopt, Assess-

Grid provides a risk management framework for supporting reliable service

operations, particularly focusing on the concept of probability of failure of a

provider.

Multiple computing vendors such as HP, Amazon, Sun and IBM out-

source the execution of services on commoditized servers with associated

pricing models. These remotely located resources do not necessarily enable

the end user to undertake specific analysis or to manage the risk of the sys-

tem. Li et al. [7] try to predict availability by introducing risk analysis for

Grids and propose new means to construct Service Level Agreements (SLAs)

by reference to techniques of financial risk analysis. With this theoretical

solution, prediction, quantification of risk, and consideration of liability in

case of failure can be applied for different provision models specifically, re-

lating to the provision of SLAs through resource brokers, and comparable

to markets in other commodities. In addition the model can be applicable

to the configuration and management of related architectures such as those

of P2P systems and Clouds. For enriching the investigation, an analysis is

performed on the potential formulation of a Grid Economy as a commodity

35



market, and extended towards trading and hedging of risk, options, futures

and structured products. This approach involved collecting data about com-

putational resource use within the UK National Grid Service (NGS) and

subsequently using this data in combination with approaches from compu-

tational finance (in particular the idea of Value at Risk (VaR)) to predict

availability of resources and associated insurance against losses (and failures).

Current Cloud provision models typically rely on the use of resource vir-

tualisation in order to enable users to customise their hosting environment

and enable multi-tenancy on resources. This is also often undertaken to im-

prove resource utilization by the provider. Salesforce.com is an example of

a provider offering multi-tenancy support to customers, offering a variety of

on-demand software capability. On the other hand, Amazon.com provides

Web-based APIs for controlling virtualized resources, with Amazon EC2 re-

ducing the cost-barrier to the point where it becomes feasible to have each

customer of a hosted SaaS solution have their own “virtual appliance” in-

stance(s) rather than forcing them to share common instances. A virtual

appliance (popularised by VMWare) is a virtual machine image file with a

pre-configured operating system and a single application. The objective is

to minimise the operating system capability needed to launch and execute

the application, and thereby reduce installation and configuration problems

(associated with driver and software library compatibility). A virtual appli-

ance may also involve aggregation of several services to make these available

as a single offering (at a single price) to a customer. Where licencing is

involved for each service, identifying which services to include in the aggre-

gate bundle is often based on customer demand and can change over time.
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Protector [2] is a probabilistic failure detector for cost-effective Peer-to-Peer

storage. Protector, based on a SuperPeer overlay creation algorithm provides

risk mitigation against transient failures. Protector presents applicability for

group replication where all peers host replicas of the same object by detect-

ing the number of remaining replicas in a group, i.e., the number of replicas

residing on online peers or peers experiencing transient failures. By using

a failure prediction function calculated as the probability that a peer has

permanently failed given an observed failure of d time units, Protector per-

forms an aggregation of failure probabilities across all peers in the replica

group in order to estimate the number of remaining replicas. Simulation is

used to demonstrate that Protector enables the system to maintain objects

in the most cost-efficient manner. Implementing a set of methods such as (i)

leveraging prior failure statistics, and (ii) making estimates across a group

of replicas which balance false positives for some peers against false nega-

tives for others, Protector is validated by deploying a P2P storage system

called AmazingStore – a storage sharing system that enables trusted users

to exchange spare capacity with each other.

Multi-tenancy based virtual appliances are also increasingly used in data

centers and offer the benefit of resource consolidation, performance and fault

isolation, flexible migration across data center hardware and easy creation of

specialised environments. By deploying a secure multi-tenant virtual service

provision mechanism, each business unit benefits from the transparency of

the virtual environment [15]. Hence, a multi-tenancy architecture enables

the provision of new services quickly and cost effectively by using Service

Level Agreements (SLAs) [17], [14]. The perspective of multi-tenancy en-
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vironments identifies a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interac-

tion. In a multi-tenancy Cloud architecture a software-as-a-service (SaaS)

provider, for example, can run one instance of its application on one instance

of a database and provide web access to multiple customers. In such a sce-

nario, each tenant’s data is (expected to be) isolated and remain invisible to

other tenants.

In order to deliver hosted services to customers, SaaS companies have to

either maintain their own hardware or rent it from infrastructure providers.

Based on this, scalable management of virtual machines residing on dis-

tributed hosts has been developed for allowing maximal utilisation of the

underlying resources and replacing the traditional “one server, one applica-

tion” model with a multi-tenant architecture/model of cloud services [16].

This allows SaaS providers to minimize infrastructure cost and SLA viola-

tions by mapping customer requests to infrastructure level parameters and

handling heterogeneity of virtual machines [17]. Alternatively providers can

overcome the situations when they need to serve only a certain amount of

requests due to restricted amounts of resources by using a cloud federation

technique [18].

Goiri et al. [18] propose a solution to perform a characterisation of providers

operating in a federated Cloud environment, by identifying when outsourcing

is profitable depending on the operating environment. These include when

to outsource to other providers, rent free resources to other providers (i.e.,
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in sourcing), or turn off unused nodes to save power. The experimentation

evaluated parameters such as the providers incoming workload, the cost of

outsourcing additional resources, the ratio of outsourced resources, the ra-

tio of unused resources to be sold, and the cost of keeping the providers

resources operative. Their results show that local resources are preferred

over outsourced resources, though the latter can enhance the providers profit

when the workload cannot be supported locally.

Fito et al. [19] propose a semi-quantitative risk assessment method for

Cloud computing regarding the Business-Level Objectives (BLOs) of a given

organization. Their approach enables an organization to be aware of risks

when using a Cloud system and thereby enable the alignment of the low-level

management decisions with high-level (business) objectives of an organisa-

tion. The approach classifies risks according to their business level objectives

and identifies their potential impact on the overall business context. Through

simulation it was demonstrated in their work that a Cloud Service Provider

is able to maximise profit by transferring a private Clouds provisioning risks

to third-party providers.

The concept of risk has been also specifically applied into a cloud context.

The OPTIMIS project [24] considers hybrid clouds as a future commonplace

where private clouds can interact with a rich ecosystem of public and other

cloud providers. The idea behind OPTIMIS is to allow organisations to

automatically externalize services and applications to trustworthy and au-

ditable cloud providers which can greatly optimise operation of services and

infrastructures. Our approach instead looks at service deliveries in provider

communities from a wider perspective. We consider that risk can be also
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seen as an expression of costs and profits within a community for reflecting a

status among the interacting parties (organisations). In our paper, services

that are outsourced to expert infrastructures (not necessarily clouds) can

identify various bulks of resources that a client may request.

8. Conclusion

The emergence of Cloud computing deployment strategies enables us to

differentiate between a service owner and an infrastructure provider, where a

service owner may utilize the resources of an infrastructure provider to deploy

a service. Where the relationship between these two actors (service owner

and infrastructure provider) is not based on trust (i.e. based on experience

gained in previous interactions), it is often necessary to establish an SLA.

Such an agreement protects the service owner if the infrastructure provider

is unable to deliver their advertised capability. We consider the financial

risk that would be incurred by both the service owner and the infrastructure

provider, based on the price paid for the service by a client, the penalty

incurred due to non-compliance with the SLA and the deployment cost for

running multiple replicas on the infrastructure.

Through simulation we demonstrate that in service provider communities

the number of failures and the level of demand can have significant impact

on the distribution of cost and profit between the actors. We show that the

demand for services represents another factor which can determine the level

of profit/loss within the community. When an SLA is associated with each

service execution, we demonstrate that the higher the frequency of SLA vio-

lations the higher the variation in costs – based on the deployment, penalties
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and replication costs present within the system. We increase the number

of replicas in the system to increase service availability – focusing on a sin-

gle server farm. The approach we present can be extended to multiple server

farms – operating in different geographical data centres (an approach adopted

by Amazon.com as part of their Availability Zones).

In the second part of the paper we tackle the problem of multi-tenancy

proposing several methods to reduce costs. By simulation we demonstrate

that service deployment is influenced by a number of different parameters

such as: service combinations (captured through the notion of “service types”,

demand for types, rate of failure and number of replicas. We show that the

choosing the number of services to include in each type represents an impor-

tant factor which can influence the level of profit/loss. We vary the number of

available peers for replication to increase service availability and observe how

the system reacts when capabilities for replicas increase. Thus, we validate

that the combining services can be an alternative solution for reducing costs

with an infrastructure provider (referred to as a server farm owner/operator).
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➢ We investigate the notion of risk from the perspective of clients and providers
➢ We determine how a service owner can balance the loss and the cost of replication
➢ We discover that combining services in types can impact the level of profit/loss 
➢ We show how a demand for types can impact the overall community


