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ABSTRACT 

 

A study on the chlorination of Basic Oxygen Steelmaking (BOS) by-product dusts 

followed by water leaching was conducted. The samples used for the studies sourced from 

the earth works and beneficiation of BOS byproduct from the stockpile. Comprehensive 

reports resulted from the excavation, beneficiation, physical and chemical analysis are 

reported. Zinc and iron removal studies from BOS by-product were investigated by means 

of chlorination roasting.  

 

Chlorination roasting of the BOS material by means of pyrometallurgical extraction was 

undertaking, assessing parameters such as roasting temperature, roasting time and chemical 

stoichiometry. A preliminary study was carried out using a solid chlorination agent, 

Ammonium Chloride (NH4Cl) in a muffle furnace for a 3 stage roasting conducted for 15 

minutes to 180 minutes at 450C to 750C.  Selected studies were carried out with 1-stage 

roasting. Further experimental studies then took place for chlorination using gaseous 

Cl2/N2 mixture gas in the tube furnace with 5 times chemical stoichiometry for a roasting 

time from 5 minutes to 90 minutes, with various temperatures from 150C to 750C.  A 1 

times and 2 times stoichiometry were added in selected procedure to foresee the effects of 

starvation agent. Additional surface area affects were also added to the chlorination with 

Cl2/N2 gas using bigger sample boat. Water leaching for 1 hour and 24 hours were 

conducted on the sample roasted with Cl2/N2 to investigate the leachability of Zn to assist 

further removal.   

 

The chemical and mineralogical composition of the BOS stockpile varied widely. The pH 

value were highly alkaline ranging from 10.2 – 13.5, while the moisture content showed a 

very wide range from 6 – 43%. The particle size analysis of the earth works excavation on 

the study site established five stockpile particle size fraction, ranging from as fine as 

<0.8mm to >38.22 mm. The composition of zinc ranging from 2.78% - 5.96%, while the 

iron content ranging from 41.36 to 62.18% respectively.  This amount of iron has the 

potential for recovery and reused within a steel making process.  

 

It is possible to recover 97% of Zn and 30% Fe by roasting at 750C for a period of 135 

minutes with NH4Cl salt. Roasting with 3 stages of NH4Cl addition proved to be more 

appropriate to increase the percentage of zinc removal. 97% Zn are removed Cl2/N2 gas for 

a period of 30 minutes roasting. The water leaching was conducted More than 90% Zn are 

recovered using bigger surface area sample boat with only 2.5 times stoichiometry. The 

extraction of Zn was greatly enhanced by the water leaching following the chlorination 

roasting using Cl2/N2 gas. 95% of Zn was leached while only 7% Fe was extracted after 

chlorination at 650C for 20 minutes roasting. It is possible to leach up to 98% Zinc after 

the chlorination roasting at 450C at 20 mins. 

 

The research has demonstrated that chlorination extraction has potential application in the 

steel sector for removal of Zn from steelmaking BOS dusts. In conducting the chlorination 

roasting, operational parameters such as temperature, roasting, chlorine agent 

stoichiometry, and surface area are important in determining the best operational condition. 

Hybrid process of chlorination roasting with leaching could highly assist in the further 

removal of Zn from BOS dust.  
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Chapter 1 INTRODUCTION 

 

1.1 Introduction 

 

 Industrial growth has led to a significant amount of waste accumulated in the 

environment. These wastes made up either in the form of organic or inorganic in nature, 

biodegradable or non-biodegradable, hazardous or non-hazardous waste which depends on 

the nature of the industries (Aziz, 1997). The hazardous waste component, although small 

in volume, can cause serious environmental and health problems. Industrial waste 

treatments are extremely varied, and generally all waste management technology separates 

hazardous waste  from Municipal Solid Waste (MSW) (Agamuthu, 1997). The subject of 

hazardous waste has gained public concern because of its direct impacts on the people, 

government and the environment (Shaaban, 1997) 

Recovery of materials especially non-biodegradable types can yield substantial 

reductions in energy and raw materials requirements. Generally in the manufacturing 

sector this is always the desire, however, as raw material costs increase this is gaining 

increased impetus. There are also significant possibilities for resource recovery from non-

biodegradable industrial waste, and again a range of recovery options should be considered 

to give the best possible returns. By recovering these entities, two important objectives are 

achieved, 1) a valuable resource has been made available for reuse and 2) a valuable void 

space  in a landfill has been gained to extend its service life (Aziz, 1997). The limited 

utilization of by-products may be due to high transportation costs, the need for processing 

or pre-treatment and inadequate data on their geotechnical and environmental properties 

and hence their impact.  

Within an integrated steelworks environment there is a large amount of iron bearing 

wastes that are further contaminated by small amounts of hazardous materials that render 

these unsuitable and hence a financial penalty due to its lack of recycling may occur due to 

its poor utilisation. One of the most common practice’s has been disposed the waste 

material to a landfill close to the production units. But nowadays in most industrial 

countries, iron and steelmaking waste are considered to be harmful as they contain toxic 
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metal elements. Thus, they must be stored in specially designated landfill sites, which 

makes the disposal expensive. If the hazardous materials are not recovered there will be a 

financial burden associated with its disposal including landfill tax and additional landfill 

operator costs. From both an economic and environmental point of view it is desirable to 

recover the valuable material  and utilize these wastes as additional resources (Stefanova 

and Aromaa, 2012). Landfill tax in the UK increases year on year. In 2010/2011 the cost 

for landfilling active waste was £48 per tonne, increasing to £72 per tonne in April 2013 

and to £80 per tonne from April 2014. The cost for inactive waste such as such as building 

fabric and excavated earth is £2.50 per tonne as January 2014 (Eminton et al., 2014).  

 Due to the high landfill fees, a range of processes that were once deemed 

uneconomic are now showing good potential signs of usage. The drawback is the lack of 

fundamental data to which reliable commercial decisions and process viability can be 

made. The recovery of metals from these by-products/wastes, for example dusts and 

sludges, becomes more and more important as European Union Waste Framework 

Directive  requirement demand for a thorough utilization. As existing landfill capacities, as 

well as primary resources become scarce and the long term rising prices for metals make 

such an utilisation economically attractive (Frohling and Rentz, 2010). By-product from 

the steel industry usually contain considerable amounts of valuable metals and reuse of 

these is essential not only for conserving metals and minerals resources but also for 

protecting the environment (Das et al., 2007). 

Recycling, resource recovery, waste management and environmental protection are 

amongst the major concerns in almost all extraction and process industries. The greatest 

opportunities for environmental improvements for the recovery of iron (Fe) within the steel 

sector will result in increasing energy efficiency, reductions in emissions and minimisation 

of waste. The principal value components of steelmaking dust are iron (Fe), zinc (Zn), and 

calcium (Ca), their recovery from effluent streams would improve the sustainability of the 

steel making process. As the amount of Zn and Ca by-product can be reduced from iron 

rich dusts then economic reuse in the manufacturing process can take place.  

Many heavy industries use metals in their production process and as a result 

extracted dust from the process contains these metals/materials. An issue of increasing 

importance and attention in mineral and metallurgical industries has been the waste 

management of materials containing metals. This is due mainly to two factors. Firstly,  the 
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requirement to reduce environmental problems and secondly the economic need to 

optimize the use of non-renewable resources (Túnez et al., 2011). 

Iron and steel production generates significant quantities of  solid wastes in the 

form of dusts and sludge and are generally showing an increasing  trend year on year 

(Stefanova and Aromaa, 2012). Similarly, various kinds of wastes such as dusts, sludges 

and slags are inevitably generated through the various stages of iron and steel manufacture. 

The recycling and utilisation of these by-products has long been promoted by industry. 

These wastes must be treated safely or recycled completely (Sakamoto et al., 1995). This 

produces several benefits: i) reduces the exhaustion of the earth’s limited natural resources, 

(ii) to reduce pollution produced by untreated waste discharges, (iii) to directly save energy 

and iv) reduce raw material costs  (SU et al., 2004). However, direct recycling of dust back 

to steel manufacture is not possible because they often contain metals and compounds that 

can impact on the quality the primary processes. Thus these materials need cost effective 

pre-treated (Palencia et al., 1999). 

 At present, steelmaking dust from a blast furnace (BF) for example, has been 

recycled as sinter or cold pellets for reuse (Oda et al., 2006), or as a flux in the steelmaking 

process (Fu and Zhang, 2008). However, it is difficult to use the entire volume of this 

material because of the limits on the permissible amount of Zinc constituents for example 

that can be reused without adversely affecting quality (Oda et al., 2006). Thus the surplus 

dust is usually stockpiled or landfilled. The steelmaking stockpile can be a heterogeneous 

mixture of different materials such as heavy metal bearings, limestone, dolomite, 

steelmaking dusts and steelmaking slags since all these streams would feed into the same 

site. The elemental composition is subject to considerable variation in terms of time and 

location within a stockpile.  

The element that has already been identified as causing the most problem is zinc. 

The element readily vaporizes due its relatively low melting point and condenses within 

steel production fumes ending up in the flue dust or sludge usually as an oxide or ferrite. 

Its content in stainless steel dust is in the range of 1.0-16.4 % ( Leclerc, 2002; Nyirenda, 

1991). The use of galvanized steel scrap in steel production has been increasing, which has 

led to the increase of zinc content in the dusts and this trend will likely continue. 

Nevertheless, these flue dusts cannot be reused in zinc smelters as the zinc content is too 

low and they contain high amounts of impurities (Stefanova and Aromaa, 2012). Since 

some of these dusts cannot be recycled directly or used as a general  landfill, it is necessary 
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to consider the recovery of valuable elements from them and to obtain residue that can be 

reused or safely disposed-off without affecting the environment (Palencia et al., 1999). The 

extracted dust contains a high iron content that could be recycled back into the steel 

making process thereby reducing costly material imports.  

Determining the quantity of recoverable by-product generated, by whatever method 

of separation and extraction, first requires a determination of what is to be considered 

recoverable and how one measures recovery performance. Separation of the lean metal 

values from the large amount of gangue (a combination of mineral matter of no 

commercial value) is the first goal for a successful strategy for their extraction (Rajmohan 

and Jacob, 1992). Recovery is an indefinable concept about which everyone thinks they 

have a clear understanding until they began to consider its practical applications (Aziz, 

1997). 

The fact that it is not possible to recycle zinc-bearing waste directly or to reject it at 

general landfills makes the recovery and separation vitally important. Elements especially 

that of zinc from Basic Oxygen Steelmaking (BOS) dust has practical impacts within 

steelmaking sector.  Hence the drive is to obtain a non-hazardous residue which can be 

recycled or stored without problems (Veres et al., 2010). Efforts have been made to 

consider the development and application of various processes to remove zinc from the 

dusts for example. The steel industry is in need of a novel solution to deal with the Zn 

arising within the complex process route (Kumar and Liu, 2011).  

Zinc has been found to be the cause of many problems in BF operation such as 

refractory failure, scaffold formation of the charge and complete filling of the gas off-take. 

The zinc content must not exceed 150 to 200 g/T of hot metal (Rome, 1996) and therefore, 

there is a need to supply a blast furnace with very low Zn content material (Nyirenda, 

1991). To exceed the maximum amount of Zn can cause problems because it vaporises and 

condenses at low temperature. Zinc that is not oxidizes stays in the furnace where it builds 

up on and reacts with the refractory walls of the furnace (Beckmann et al., 1995). 

Moreover, according to Van Herek et al (2000), the condensed zinc also prevent the 

descending of the furnace loads such as charged iron ores, additives and cokes. The aim is 

to remove the Zn, this then allows the iron rich dusts to be recycled within the process, 

whilst producing a valuable Zn by-product.  
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Sustainable development relies on the productive use of human and materials 

resources. Extractive metallurgy represents a promising area for further research and 

development (Túnez et al., 2011). The major current industrial standard techniques are via 

pyrometallurgical or hydrometallurgical process routes. Any technique applied should aim 

to recover the Zinc whilst maximizing the iron return, thus avoiding any severe cost 

implications. Generating two pure streams with little contamination will improve 

productivity and reduce further processing costs. The drawback is the lack of fundamental 

data on which reliable commercial decisions and process viability can be made. 

Chlorination roasting is one of the pyrometallurgical techniques that can be used to 

recover metal oxides (Brocchi and Moura, 2008b). Chlorination agents may be added in 

gaseous, liquid or solid form. Examples of gaseous reagents are chlorine (Cl2), hydrogen 

chloride (HCl) and phosgene (COCl2). There are many promising separation and extraction 

methods for metals such as zinc, lead, cadmium, copper, zirconium, vanadium and 

titanium by using a chlorination agent to recover the precious metals in the form of their  

chlorides (Chan et al, 1996).  

At present, it is difficult to find literature on the chlorination reactions using iron 

rich BOS dust. Even though there are studies conducted on other types of steelmaking dust 

such as Blast Furnace and Electric Furnace Dusts, chlorination of BOS dust and 

particularly of stockpiled material are not currently available in the literature. The 

chlorination process is of interest, it not only selectively recovers the valuable heavy 

metals from waste, but also converts the waste from potentially hazardous into non-

hazardous material for recycling or its safe disposal in a landfill.   

1.2 Aims and Objectives.  

 

The research aim is to provide a novel and fundamental analysis of a process for the 

recovery of zinc, whilst reducing the percentage of iron constituents lost from iron bearing 

dust such as that generated via the BOS process. The aims seek to add valuable knowledge 

in the pyrometallurgical method, particularly via chlorination and provide 

recommendations to the steel manufacturing sector. In particular to consider an alternative 

route for metal recovery and as a cobsequence by-product treatment and management.  

These aims are achieved by the following objectives;  
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1) To investigate the variety of processes needed to separate and prepare the stockpile 

material prior to a removal process, through earth works and beneficiation. Further 

characterization and classification of stockpile to be carried out via physical and 

chemical characterization such as pH value, chemical composition, heterogeneous 

composition and particle size distribution.  

2) To investigate chlorination mechanisms towards such complex and heterogeneous 

material housed in steelmaking stockpiles. Existing chlorination reactions used in 

various industrial by-product provided extremely limited information on the 

chlorination mechanism of steelmaking waste, particularly BOS dust. The outcome 

of the findings will add value to the knowledge of extraction with different types of 

steelmaking dusts.    

3) To develop a thermal treatment method for the removal of Zn from 

stockpiled/process material so that the decontamination could aid recycling within 

the production route or safe disposed. The experimental design and development of 

robust protocols to assess key parameters and/or reactions that can influence 

recovery are simulated at laboratory scale, The goal of this research was to improve 

the fundamental knowledge and behaviour of the critical parameters to different 

external stimuli for a range of iron bearing wastes. 

 

1.3 Thesis Outline  

 

Chapter 1- This section is an introduction that outlines the background and scope of the 

research. The aim and objectives are stated. 

Chapter 2- Review of literature associated with the work are presented. It provides a 

literature on the background of steelmaking dust. Highlights are given to the formation and 

characterization of Basic Oxygen Steelmaking (BOS) dust. Present and previous research 

on the extractive metallurgy including other steelmaking dusts and involving several 

metals other than Zn are also presented. Emphasis is given to thermal chlorination within  

the concept of pyrometallurgical. Finally, the comparison and research queries will be 

discussed and summarized.   

Chapter 3- This chapter describes the methodology, experimental design, analytical 

instruments and apparatus used to conduct the work. The first part presents the background 
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of the research site, the earth works and beneficiation of BOS dust. The second part is on 

the process design of the chlorination studies. The issues faced throughout the 

experimental work undertaken are highlighted. 

Chapter 4- This chapter reports the outcome of the earth works, beneficiation and 

characterization undertaken on site samples used. The overall results are presented in a 

manner that extensively describes the samples used in this research.  

Chapter 5- This chapter presents the results associated with chlorination studies undertaken 

with different chlorinating agents and parameters used. It will present the results of 

preliminary works undertaken through salt roasting that facilitates a chlorination agent that 

led to the design of chlorination studies with chlorine gas. Results of this work are also 

discussed.  

Chapter 6 The conclusion and recommendation of future works.  

Chapter 7 Reference section.  

Appendix A series of Appendices are included as well. 
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Chapter 2 LITERATURE REVIEW 

 

2.1 Introduction 

 

 This chapter provides a review of literature on the background on the understanding 

and processing of steelmaking dust. In the context of this study, emphasis is given to the 

formation and characterization of Basic Oxygen Steelmaking (BOS) and the associated 

dust generation. A literature review on the present and previous research activities related 

to extractive metallurgy particularly pyrometallurgy and hydrometallurgy are presented. 

Published data and information on extraction of valuable metals from BOS dust for 

example is extremely limited. Hence this chapter will also highlight the previous extractive 

metallurgy research studies on other major types of steelmaking dusts namely Blast 

Furnace (BF) and Electric Arc Furnace Dusts (EAF) respectively.  

The extraction of metals from steelmaking dust using the chlorination methodology 

in particular, has a limited literature history. Hence a review of some of the chlorination 

extraction of several non-steelmaking dusts and materials will be highlighted in order to 

demonstrate the suitability of this method with regards to the zinc (Zn) removal for BOS 

dust for example. Moreover, the review of the chlorination techniques will identify some 

extraction of metals other than zinc, by focusing on the appropriate chlorination 

mechanisms. Finally, their comparison and research queries will be discussed and 

summarized.   

 

2.2 STEELMAKING DUSTS 

 

The manufacture process in the iron and steel industry involves a large consumption 

of primary and secondary resources, as well as the formation of significant amounts of by-

products. According to Kumar and Liu, (2011), the iron and steel industry generates over 

30 million tonnes (MT) of dust each year.  It comprises of up to 2 wt% of iron and steel 

produced, containing zinc oxide (ZnO), arising in the various iron and steelmaking units. 

For example the top gas dust of a BF can vary from 2-5 wt% ZnO. Systems are used to 
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reduce this waste stream, however, a more concentrated ZnO fraction for example is 

generated using a hydrocyclone. The BOS accounts for over half the dust produced in the 

steel industry, typically in the form of a slurry containing over 4 wt% ZnO. In some 

operations using the BOS process, the ZnO is concentrated to beyond 30 wt% by repeated 

recycling of the dust so that is it acceptable for further processing by the Waelz kiln 

process.   

As more galvanised steel is returned to a steel plant for recycling, higher amounts 

and a richer concentration of ZnO dust would become available for treatment and/or 

disposal. Steelmakers attempt to avoid zinc and ZnO in their furnaces. This unwanted 

metal/oxide lands up within the process flue dust are a major source of operational 

problems, affecting quality and increases environmental costs. Thus ZnO dust possibly 

used as a reagent for further processing has not been seriously explored. Given the growth 

in galvanised steel, the presence of Zinc in steelmaking is inevitable (Kumar and Liu, 

2011).  

 

2.2.1 Formation 

 

As stated earlier, steelmaking dust is generally emitted by means of three different 

processes as presented in Figure 2-1. Every day within steel making it generates significant 

quantities of dust within blast furnaces (BF), basic oxygen furnace (BOF) and electric arc 

furnaces (EAF), these being the main dust generators. The use of scrap brings other 

elements into furnaces and usually ends up in the dust stream. The steelmaking dusts are 

rich in zinc; in EAF dust the zinc content can be as high as 30 %. While in BF and BOS 

dust is lower, typically around 1 – 3 % and 1.5%, respectively. The main source of zinc is 

associated with the use of galvanized steel scrap used as a raw material input in steel 

manufacture. The use of this kind of scrap in steel production has been increasing, which 

has led to an increase of zinc within these dusts and this trend is likely continue. However, 

the recycling of steel scrap has obvious economic and resource conservation benefits 

(Stefanova and Aromaa, 2012). 

BOS produces steel from molten iron from the BF and ferrous scrap metal (Javaid 

and Essadigi, 2003). About 1 – 2 % of the raw materials fed into furnace are converted into 

dust during the steelmaking process. It is estimated that about 4.3 Mt of flue dust is 
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generated annually in the world using BOS (Stefanova and Aromaa, 2012). In particular, 

BOS produces a large amount of dust that is emitted with the evolved converter gases. The 

production of BOS corresponds to the step where iron and added materials (e.g. scrap and 

limestone) are mixed and purified by an oxygen lance at 1450°C, which is directly targeted 

into a BOS converter, so as to decrease the carbon content. BOS dust are formed mainly 

from melted material ejected by the high velocity oxygen lance (S.M.Hay and Rankin, 

1994). The dust is filtered with a bag house system that retains about 70% of produced dust 

(Formo et al., 2000).   

 

Figure 2-1 Steelmaking processing routes (Energyiron, 2013) 

 

The amount of dust generated is dependent on the blowing practice, the bath 

chemistry, and the composition and granulometry of the input materials. When the heats ( a 

batch of liquid iron discharged into the convertor) are cooled with ore, the dust generation 

varies between 13 and 25 kg/tonne of liquid steel.  But when the heats are cooled with 

scrap, the amount of dust generated increases to  between 21 and 32 kg/ tonne (Ray et al., 

1997). The dust is generally collected as sludge by scrubbing in a wet gas cleaning plant 

(WU, 1999). The BOS dust is an iron rich by-product, which also contains calcium in its 

different forms. This dust also contains varying amounts of zinc, lead and other metals. 

The primary source of these metals as stated earlier is the scrap used in the steelmaking 

process (Roadmap., 2001). Zinc content is higher than in BF dusts due to the scrap used in 
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BOS and will vary depending on the quality of the scrap. The zinc content is usually from 

1 % to 4.0 %  (Kelebek et al., 2004, Rao, 2006).  

The concerns related to BOS dust are the cost of landfilling and difficulties in 

recycling the dust. Recovery of iron is an economic option only if the zinc content can be 

reduced to acceptable levels. It has been suggested that the zinc content of BOS dust 

should be reduced to below 0.4 % (wt-%) in order to be recycled within the steelmaking 

process (Kelebek et al., 2004). Therefore, the dusts are largely stockpiled and/or landfilled, 

containing over 50% iron in the form of oxides. Furthermore, the downstream processing 

mills generate dust most of which is also stockpiled and again contains an average of 30% 

carbon and 30% iron, usually in the form of oxide ((Kemperman, 2010).  

A numbers of processes via pyrometallurgy and hydrometallurgy have been studied 

to remove zinc from BOS dust and some of these processes may be viable in the future. 

The aim is to recycle the BOS dust in the steelmaking process and can be visualized as 

shown in Figure 2-2.  

 

 

Figure 2-2 A Typical BOS dust recycling route (adapted from Kelebek et al., 2004) 

 

Some companies are recycling these dusts directly to steelmaking with other wastes 

from the process. The BOS fumes are mixed and agglomerated with other iron oxide 

materials such as mill scale (Roadmap., 2001). The waste oxides have a cooling effect in a 

BOS converter and its use  can save scrap and/or lump ore (Makkonen et al., 2002). If the 
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zinc content is sufficiently low the BOS dust is recycled directly into the blast furnace via a 

sintering plant (Roadmap., 2001). However, the zinc content is usually high and thus 

prevents the direct recycling. At the same time the Zinc content is too low to economically 

justify further processing for zinc recovery (Rao, 2006). Although zinc accumulates within 

the BOS dust, the content is usually around 2 %. If recycling is installed, it can be 

increased to 25 %. Even then the dusts should be further concentrated if they are to be 

utilized in the zinc industry (Makkonen et al., 2002). Also, if untreated dust is recycled 

directly into the iron and steelmaking process it can increase operating costs and gives rise 

to the build-up of impurities within the furnace burden (Nyirenda, 1991, WU, 1999). The 

presence of zinc in the feed materials of a blast furnace can cause serious damage to the 

refractory lining, which will shorten the furnace life (Roadmap., 2001). 

 

2.2.2 Metallurgical and Characterization 

 

During  steel production different types of dusts are emitted and the composition of 

these varies widely depending on the source of the generation (Das et al., 2007). In 

general, zinc-bearing materials charged into both the BF and BOS converters are vaporized 

within a reducing atmosphere and discharged from these furnaces as very fine dusts 

together with other elements. The chemical composition of the dust fluctuates remarkably, 

depending on the operating conditions. The metallic iron and carbon content in the BF dust 

are higher than those found in the BOS dust, as a result of different operating processes. 

Since there is a difference between these standard processes, BOS dust is finer than BF 

dust, but generally contain more than 2% of zinc elements. Again as stated earlier these 

dusts cannot be used directly as a blast furnace burden due to the charging limit of zinc 

(Sakamoto et al., 1995).  

BOS off-gas dusts are both physically and chemically complex. The composition of 

flue dust is extremely variable as it can be attributed to the inconsistent nature of the 

charge material. The change in the raw material is due to the scrap portion of the charge. 

The more lead and zinc containing scrap is charged, the more these elements will be 

discharged as dust in the off gas steam. Because of this fact it is not possible to give a 

definitive list of the dust composition, however, the range has been highlighted earlier.   
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2.2.2.1 Particle size.  

 

The BOS dust consists mainly of very fine-grained spherical particles. Using 

scanning techniques, it has been observed that the BOS dust shape could be approximately 

spherical with some agglomerated (Sakamoto et al., 1995); Veres at al., 2010; Wu, 1999; 

Hay and Rankin, 1994). The spherical particles are believed to have formed by 

volatilization and condensation mechanism (Wu, 1999). Figure 2-3 show a typical 

Scanning Electron Microscopy (SEM) picture of BOS dust. 

 

 

Figure 2-3 An SEM picture of BOS dust particles (Veres et al., 2010) 

Table 2-1 shows the particle size characterization as reported in the literature. The particle 

sizes of BOS dust ranged from as small as 1 µm to less than 100 m.  

 

Table 2-1 Particle size characterization as reported by various literatures 

Reference  Particle size  

Kelebek et al., 2004 5 μm -  1 mm 

Mikhail and Turcotte, 1998 <100 µm 

Veres et al, 2010 a fine grain (1-10 µm) and a 

coarser fraction (10-36 µm) 
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2.2.2.2 X-Ray Diffraction (XRD) Pattern 

 

XRD is a useful tools for determining the mineral phases of dust. Table 2-2 lists the 

XRD pattern as reported in the literature. Zinc Ferrite, zincite, magnetite, hematite, 

franklinite, iron oxide and elemental iron are the common elements found with trace 

elements of calcium hydroxide and calcium carbonate (Mickail and Turcotte, 1998; Veres 

at al, 2010). According to Wu (1999), BOS dust contains mainly iron, iron ferrite, calcium 

(magnesium) oxide, calcium (magnesium) carbonate, and also some other metal oxides. 

Iron is present in different phases mainly as FeO, Fe2O3 and Fe3O4.  

 

Table 2-2 XRD pattern as reported by various literatures 

Reference  XRD pattern   

Mikhail and Turcotte, 1998 iron oxides (Fe2O3 and Fe3O4, minor 

amounts of calcium hydroxide (Ca(OH)2), 

calcium carbonate (CaCO3), zinc oxide 

(ZnO), franklinite (zinc ferrite,),  

 

Wu , 1999 Fe, iron ferrite, calcium (magnesium) oxide, 

calcium (magnesium) carbonate) 

Veres et al , 2010 zincite (zinc oxide, ZnO). While iron is in 

the form of magnetite (Fe3O4), hematite 

(Fe2O3), ZnFe2O4, FeO iron oxide, Fe. 

 

2.2.2.3 Metal composition  

 

BOS dust is  rich in iron consisting  of typically 30 - 85 %, while zinc is ranging between 

<0.2 to 1.7% ( (Wu, 1999; Hay and Rankin, 1994) depending on the type and amount of 

scrap used. BOS dust can also contain some harmful species such as heavy metals, i.e. 

cadmium (Cd), chromium (Cr), lead (Pb) , manganese (Mn) and  nickel (Ni) (Roadmap., 

2001). Table 2-3 summarizes the iron and zinc determined by various researches. The 

trend highlighted is that Iron is the largest fractions within the dust and hence has an 

economic value to the industry. 

 



17 
 

 

Table 2-3 Iron and Zinc composition in BOS dust as reported by various literatures 

Reference  Iron (%) Zinc (%)  

Wu, 1999  55.7 -73 0.2 

Hay and Rankin, 1994 40.8 1.7 

Jalkanen et al, 2005 30-85 <0.2 

Veres et al, 2010 49.87 9.4 

 

Zinc as previously highlighted, is the element that causes the most problems when 

treating BOS dusts and also hinders the direct recycling of dust back into steelmaking 

process. The presence of zinc in the steelmaking process leads to a decrease in the steel 

quality. Zinc vaporizes easily and condenses within the steel production fumes ending up 

as flue dust or sludge. When vaporized zinc is carried out from the furnace with other 

gaseous products, reaction products can form from the steel production, producing zinc 

compounds such as zincite (ZnO) and zinc ferrite (ZnFe2O4), which is also known as 

franklinite. The zinc ferrite is formed when zincite particles are in contact with iron at 

elevated temperatures under oxidizing conditions. 50 – 80 % of zinc is present as ZnO, rest 

balanced mainly as compounds with Fe in a mixed zinc-iron ferrite spinel (Stefanova and 

Aromaa, 2012).  

 

2.3 Sampling site investigation and sample beneficiation  

 

2.3.1 Site Investigation  

Some of the principal contamination activities on land involve deposit or burial of 

industrial and domestic waste, demolition of industrial structures and dispersal or burial of 

contaminated rubble and other materials, as well as stockpiling of materials such as mining 

waste. In order to conduct a site investigation and sample beneficiation, several guidelines 

in The British Standards can be adapted. Among those are selected and listed below:  

i. BS5930:1999 – Code of practice for site investigations 

ii. BS10175:2001 – Investigation of potentially contaminated sites- Code of Practice. 
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iii. BS EN15002:2006 – Characterization of waste – Preparation of test portions from 

the laboratory sample 

Site investigation has been used in its wider sense in the British Standard : Code of 

Practice for Site Investigation (British-Standard, 1999). It is often used elsewhere in a 

narrow sense to describe the exploration of the ground, which in this code has been termed 

Ground Investigation. The investigation should be carried out in stages including a desk 

study and site reconnaissance. The desk study is used to evaluate the ground conditions 

based upon existing information such as a general land survey, access to the site and 

ground condition. Among the information needed for the desk study is the history of the 

site and adjoining areas, any previous investigation of the site, potential receptors of 

contamination, the existence of naturally occurring harmful materials and any constraints 

on an intrusive site investigation (British-Standard, 2001). One of the many uses of the 

BS5930:1999 is to investigate waste tips and landfill sites in BS10175:2001 which is 

closest to the description of stockpile.  

The purpose of a reconnaissance is to validate information on the site collected 

during the desk study, to collect additional information, it environs and any potential 

contaminants, pathways and receptor, records observations of aspects of the site not 

revealed by the desk study and assist in the planning of any subsequent phases of field 

investigation by taking into account any constraints to access (British-Standard, 2001).  

In order to conduct the site investigation, the first stage is a background paper 

research into the history of the site to decide any potential problems. The site history 

should be determined using any Ordnance Survey Maps, other published maps, aerial 

photographs and documentary records held by the current (and former) owners of the land, 

trade directories, the local authority and local libraries. A simple walk-over site inspection 

can then be made to examine the visible state of the target area. This can be used to decide 

what actions are necessary and to determine a sampling strategy (Reeve, 2002).  

Aerial photographs and satellite imaginary can be used both in the preparation and 

revisions of maps and plans and for the interpretation of site features or earlier use of the 

site. They can assist in the identification of geological and geomorphological features. 

Accurate, contoured maps can be produced from aerial photographs by competent 

personnel or organization that normally carries out ground control. This is conducted by 

placing markers on the ground that can be identified from the air and also measured in plan 
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and level on the ground. Besides that, aerial photograph can be used to identify features of 

geological lineaments such as strata boundaries, faults, soil and rock types, landforms and 

unstable ground. They are particularly useful in in the study of extended sites where 

ground visibility is limited by obstructions or where access is limited. Significant features 

should be checked on the ground whenever possible. Inspection of historic aerial 

photography can yield valuable information of previous earthworks on site and is an 

essential part of the waste tip sites (British-Standard, 1999). 

 The extent of the investigation is determined by the character and variability of the 

ground and groundwater, the type of project, the amount and quality of existing 

information. The initial investigation might involve widely spaced boreholes, probing or 

trial pits to establish the general geological conditions, the suitability of different methods 

of investigation or an indication of the degree of chemical contamination. The points of 

exploration such as pits should be located such that a general geological view of the whole 

site can be obtained. More detailed information should be obtained at positions of 

important earthworks, at points of importance and where ground conditions are 

complicated. Factors taken into account in selecting the investigation positions include 

location of potential sources, previous site investigation data, topography, geology, 

hydrogeology and underground services. However, it is sometimes not possible to locate 

structures until much of the ground investigations data has been obtained. In such cases, 

the program of work should be modified accordingly (British-Standard, 1999) 

 Although the character of the ground, the objectives and technical requirements are 

the most important aspects in the selection of methods of ground investigation, selection 

may also be influenced by the nature of the site, the availability of equipment and the cost. 

The topography, nature of the ground surface may cause problems of access to the location 

or investigation spot. The type, spacing and depth of investigation points are determined by 

the objectives of the investigation, as well as the prevailing geological conditions, the 

nature and extent of the contamination and the proposed end use. 

 Shallow trial pits can be very useful for obtaining solid samples and are cost 

effective by comparison with other methods such as continuous percussion sampling 

boreholes, light cable percussion boreholes and mechanical augers. Trial pits are usually 

dug using an hydraulic back-hoe excavator. Pits are typically up to 3-4 m deep and are 

often dug by mechanical excavation (Reeve, 2002). By providing access for taking samples 

and carrying out in-situ tests, shallow trial pits permit the in-situ condition of the ground to 
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be examined in detail both laterally and vertically. The field record should include a plan 

giving the location and orientation of the pit with details of which face(s) was logged and a 

dimensioned section of each side and the floor. Whenever possible, the record should 

include photographs (British-Standard, 1999). 

 Several samples should be taken from each sampling position. The number of 

samples should be selected according to site conditions, taking into account the likely 

sources of contamination, the proposed final levels and the prevailing ground conditions. 

Some investigators advocate sampling at specific depths, such as 0.15m, 0.5m, 1.0m, 2.0 m 

and 3.0m for example. Samples should be taken in each different soil horizon, in particular 

from above and below, where there is any change from permeable to low permeability 

soils.  

2.3.2 Sample Beneficiation 

 

The purposes of laboratory testing of sample of soils are to describe and classify samples 

taken, to investigate the fundamental behaviour of the soils and rocks in order to determine 

the most appropriate method to be used in the analysis, and to obtain soil parameters 

relevant to the technical objectives of the investigation. All samples to be tested should be 

described prior to laboratory analysis. The site investigators should ensure that the method 

selected meets the following criteria:  

a) The results should be produced to the required accuracy and precision over the 

concentration range expected. 

b) The effects of likely interferences and matrix effects should be minimized. This is 

particularly important for contaminated ground samples, which are often a 

heterogeneous mixture containing numerous pollutants in a complex matrix. 

c) The technique should have its validity established by repeated testing. 

d) The time taken for analysis should meet the time requirements of the site 

investigation. 

e) The detection limit should be appropriate to the problem.  

Several common laboratory tests for soil are listed in 2-4. 
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Table 2-4 Several common laboratory tests for soil 

Category of test Name of test or parameter measured Source 

Classification test Moisture content or water content BS1377-2 

Particle density BS1377-2 

Particle size distribution (grading) 

a) Sieving 

b) Sedimentation 

BS1377 

BS1377-2 

BS1377-2 

Chemical test Contaminants Varies 

pH value BS1377-3 

Compaction-

related tests 

Dry density BS1377-9 

Standard compaction tests BS1377-4 

 

 Guidelines in the British Standards on the investigation of potentially contaminated 

land or land with naturally enhanced concentrations of potentially harmful materials can be 

adapted. The guidance involves identifying risks due to the presence of contaminants, in 

order that appropriate actions can be taken. Details of the historical setting of the site and 

the potential presence of the contaminants are needed including details of any physical 

characteristics of the site that will affect contaminant movement. Prior to conducting the 

investigation, one must set the objectives, strategy, designing the different phases of the 

investigation, sampling and on-site testing, laboratory analysis and reporting. A strategic 

approach to the design of the site investigation requires careful consideration of the 

objectives of the work, the site constraints and the available investigation techniques 

(British-Standard, 2001).  
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2.4  Extractive Metallurgy  

 

There are possibilities for treating the steelmaking dusts for recovering the valuable 

metals, then recycle them back into the process or placing them in a landfill. However, due 

to the high content of zinc, only small quantities of dust are possible to be charged back to 

the furnace. The common practice has been to discharge the collected dust near to the 

manufacturing facilities into a stockpile. As an alternative to landfill, various processes 

have been developed for treating these dusts. The target for these treatment processes is to 

produce a residue that could be recycled further or safely disposed-of without affecting the 

environment. The most important stage is the separation of non-ferrous metals, such as 

zinc and lead, from iron in the dust (Stefanova and Aromaa, 2012). 

 

A number of pyrometallurgical, hydrometallurgical and similarly combined 

processes have been developed to allow better utilization of steelmaking dusts in primary 

operations (Orhan, 2005, Jha et al., 2001). However, there are still problems associated 

with treatment of these materials and none of the developed processes have been entirely 

satisfactory (D.K. and Pickles, 1999). According to (Pehlke, 1973), extractive and 

purification processing, have been built upon the principles of chemical metallurgy. 

Chemical metallurgy utilizes physical chemistry, draws upon inorganic chemistry and 

electrochemistry, and depends upon some areas of organic chemistry to describe the 

metallurgical system. The removal of any remaining gangue, decomposition of the metallic 

mineral to produce a metal, and subsequent refining of the metal are the functions of 

extractive metallurgy.  

 

 

Extractive metallurgy can be divided into three principal types of processes :  

 

1. Pyrometallurgy, which employs high temperatures to carry out smelting and 

refining reactions and melting operations. 

2. Hydrometallurgy, which employs liquid solvents, usually aqueous, to separate the 

desired metal.  

3. Electrometallurgy, which employs electrical energy, principally for carrying out 

electrolysis to extract and refine metals.  
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Pyrometallurgical and hydrometallurgical approaches are possible for treating BF and BOS 

dusts, though the hydrometallurgical option is viable only when the zinc is present almost 

entirely as an oxide and/or metal since the presence of zinc ferrite and silicates makes 

leaching of zinc difficult (Piret and Miller, 1992). 

A process for the recovery and recycling of the iron units from both residues back 

to the iron-making process may result in a significant energy and raw material savings. 

Substantial environmental benefits may also be achieved through the replacement of virgin 

ores by recycled materials, diverting large amounts of solid residues from landfill sites and 

potentially recovering valuable elements such as zinc(Mikhail and Turcotte, 1998). 

BOS dust can be recycled through the steelmaking process by the manufacture and 

incorporation of waste oxide briquettes (WOBs) made from the waste dusts. Alternatively, 

they can also be recycled through the blast furnace iron making route via a sinter plant 

(Steer et al., 2013). However, one of the major difficulties in the recycling of BOS dust is 

its fine particle size. With an ultimate objective to recycle BOS dust back to the blast 

furnace, it is necessary to process the fine powder into agglomerates or pellets with certain 

physical characteristics,  for example with high temperature strength similar of those of 

iron-ore pellets used as blast-furnace feed (Mikhail and Turcotte, 1998). 

Dusts containing many elements make metal extraction complex and difficult. In 

addition, each dust is unique, which makes finding a suitable treatment process even more 

complicated. The problem in the processing of dusts is the fact that their chemical and 

mineralogical composition varies widely even if the dust has been taken from the same 

process. Because of the wide range of composition it is necessary to make accurate and 

precise analysis of each individual case in order to optimize any recycling or recovery 

process (Stefanova and Aromaa, 2012). Furthermore, flexibility for handling different 

source material is desired from the treatment process.  

 

Although many pyro- and hydrometallurgical processes have been developed, none 

of them have been entirely satisfactory. The reason for failures could be that it is still more 

economical to extract zinc from the naturally occurring raw materials (D.K. and Pickles, 

1999).Therefore, a detailed characterization of the dust becomes an important factor for 

defining the most appropriate recycling strategy (Hagni et al., 1991, Lindblom et al., 

2002). 
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  As previously highlighted, the most harmful element in the steelmaking dusts is 

zinc as it hinders the direct recycling of the dust back into the process route. Still, it is also 

the most valuable element in the dust. The main purpose of treating steelmaking dusts is to 

remove zinc so that iron-containing materials can be recycled and zinc recovered. The 

recovery of zinc from the dust does not only save natural resources, but more importantly 

eliminates environmental problems. Production of zinc from the secondary waste 

materials, such as steelmaking dusts, also consumes less energy. The energy savings can be 

about 30 % compared to manufacturing from primary sources. (Stefanova and Aromaa, 

2012). The process costs and profitability are extremely dependent on the zinc content of 

the waste and on the market price of zinc (Brown et al., 1983).                                                                                              

2.4.1 Pyrometallurgy 

 

Pyrometallurgy is the branch of extractive metallurgy which deals with the 

extraction of metals from their ores by thermal methods (Espinosa et al., 2004), which can 

be highly complex, involving reactions between gas, solid, liquid slag and liquid metal 

(Jones, 1996). It is the most important division of extractive metallurgy, since it is involved 

in the recovery of most metals (Habashi, 1986). According to (Frohling and Rentz, 2010), 

besides the internal recycling options, for example by a re-feeding of dusts onto sinter 

strand, there are other options for recycling, targeted at the utilization of steelmaking 

residues to recover the metals. For examples the DK process, in which ferrous bearing by-

products with smaller quantities of zinc can be utilised to recover iron and zinc and also the 

Waelz process in which the by-product with higher quantities of zinc can be utilized 

(Frohling and Rentz, 2010).  

 

At present, the dust treating processes are predominately pyrometallurgical (Rao, 

2006); Crueels et al., 1992) and they present over 99 % of the recycling capacity. Most of 

these are based on rotary kilns, plasma, and flame reactor processes (Crueels et al., 1992). 

However, these pyrometallurgical route processes are gradually been replaced by 

hydrometallurgical systems  (Rao, 2006).  A short-term solution could be to recycle the 

dust in order to increase the zinc (Zn) content. Sometimes poor wastes  (BOS dusts 

containing 2 to 5 % of zinc) are recirculated into the steel converter until they reach a zinc 

content up to 20 % (Antrekowitsch and Antrekowitsch, 2001).  
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An oxygen-free pyrometallurgical process has been studied to recover metallic Zn, 

Pb, Cd and Fe to convert a hazardous EAF slag to an inert substrate. Successful removal of 

these metals in the metal mixture was achieved when the mixture of EAF, carbon and 

alkali carbonate was heated at 1060C. However, the reduced Zn, Pb and Cd cannot be 

collected in a condenser because the melting points for Zn (419.6C), Pb (327.5C) and Cd 

(320.9C) are very close to each other. Therefore, further processes are needed to recover 

the valuable components with greater separation efficiency (Wang et al, 1990).  

A smelting reduction process was also developed for steel plant dusts. The process 

was based on the reduction of selected metal oxides (such as iron oxides, chromium oxides 

nickel oxides and so on) at a high temperature by means of a carbonaceous or the other 

reducing agent. By this process, the valuable metals could be recovered through forming 

the alloy with the melting iron which could be easily separated from the innocuous slags 

(Huawaei and Xin, 2011).  Laboratory scale reduction smelting studies have been carried 

out using mixtures of stainless steel wastes  (Takamitsu et al., 2004; Takano et al., 2005). 

The results indicate that about 90% of total iron, 95% of chromium, almost 100% of nickel 

in the wastes could be recovered as mixing molten metals by using the proper temperature, 

additives and reductants.  

The plasma technology used to treat the stainless wastes was also studied. The 

principle of plasma technology is that the fuel gas is dissociated into atoms through high 

temperature (3000
◦
C) produced by the plasma torch. These atoms are fired into the firebox 

and the temperature of central blaze could reach 20000
◦
C (Huawaei and Xin, 2011). Using 

plasma technology, the metal oxides in the stainless steel wastes were deoxidized rapidly 

by the reducing agents under high temperature circumstance and separated in a condenser 

for the different boiling point metals. The stainless steel wastes, solvents and coke were 

mixed according to a certain percentage, were plunged into the plasma furnace with a 

certain degree of feeding system. On average, the chromium recovery was over 90%, 

nickel recovery close to 100% and the zinc and lead were up to 70%. The contents of 

hazardous elements in the stainless steel wastes could reach the standards of landfill after 

the proper treatment (Ye et al., 2003). 
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2.4.2 Hydrometallurgy 

 

The aim of hydrometallurgical treatment of dusts is to recover the valuable 

elements contained in the dust and to obtain a non-hazardous residue that can be stored 

without problem or can be used in agglomeration units within iron-making process. The 

leaching process should produce iron-bearing residue with a maximum of 0.4 – 1 wt-% 

zinc in order to recycle into steel making processes (Jha et al., 2001, Kelebek et al., 2004). 

 

In hydrometallurgical processes metals are extracted by a leaching stage and then 

recovered in metallic form by electro-winning or other reduction methods (Mordogan et 

al., 1999). The hydrometallurgical route could offer an interesting alternative for zinc 

recycling if iron dissolution can be controlled (Dutra et al., 2006, Oustadakis et al., 2010).  

 

Several processes have been developed for extracting zinc compounds from waste 

and dust materials. These includes a) leaching with NH3 and NH4CO3 or with NH4SO4 b) 

by hydrometallurgical leaching with HCl, NaCl, CaCl2, FeCl3 solutions or their mixtures c) 

fuming process in the presence of coke as reducing agents d) treating with H2SO4 followed 

by NaOH and e) leaching with acids (H2SO4 or HCl) (Saleh and Hassan, 2004). The main 

target in the dust treatment is the removal of zinc so that iron containing material can be 

recycled and zinc recovered. Among the hydrometallurgical methods, the advantage in 

alkaline leaching is the selective solubility of zinc compared to iron compounds and thus 

relatively clean and iron-free solution is obtained and the complicated iron removal 

processes is avoided.  

 

Recovery of valuable base metals principally zinc from EAF dust which contains 

about 19% zinc  and 24.8% iron has been conducted by (Caravaca et al., 1994) via 

hydrometallurgical treatment. The EAF flue dust is leached by different leaching reagents: 

acid, basic and complexing and from the different pregnant solutions several approaches 

were proposed to obtain the most valuable metals contained within the solution. These 

approaches included the application of solvent extraction and other hydrometallurgical 

techniques. When a treatment is considered for EAF flue dusts some considerations could 

also be borne in mind which are  i) Normally zinc is present in oxidised form which can be 

leached with relatively ease and  ii) The iron/zinc ratio is high. However, the major 
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restriction in the hydrometallurgical extraction of zinc is the presence of zinc ferrite 

(ZnFe2O4) in the dust, which is a very stable compound (Stefanova and Aromaa, 2012);  

(Leclerc et al., 2003).  

 

The requirements needed for the hydrometallurgical treatment are that the leaching 

step must be selective for zinc, not iron and the leaching reagent must be strong enough to 

leach zinc from the zinc ferrites presented in the flue dust. According to Dutra et al. 

(2006), the most significant zinc recovery rate was 74% after conventional leaching for 4 h 

with a 6M NaOH solution. The leaching process could be only used to the stainless steel 

wastes which contained some specific metals, such as zinc, aluminium, lead and so on. 

Although the hydrometallurgical techniques have lots of advantages, as low energy 

consumption and simple operation, the pyrometallurgical techniques were the main 

methods for recovering the valuable metals from the stainless steel wastes because of the 

special characters and structures of the wastes. 

 

Hydrometallurgical processing could offer an interesting alternative for zinc 

recycling, if iron dissolution is controlled and the structure of zinc ferrites which are 

normally difficult to leach is broken, thus favouring a high recovery of zinc (Dutra et al., 

2006). The presence of zinc ferrites (franklinite ZnFe2O4) in the residue indicates the need 

for some pre-treatment prior to using a more severe leaching conditions in order to 

improve the zinc recovery. In any case, the low iron content in the solution makes the 

process attractive, so that it is possible to recover the metal (zinc) by electrolysis, after a 

simple purification process (Dutra et al., 2006).  

 

Zinc can be extracted from ZnO using hydrometallurgical extraction under 

relatively mild acid or alkaline conditions. However, ZnFe2O4 is very stable and insoluble 

in most acidic, alkaline and chelating media under mild conditions and so it is difficult to 

recover by hydrometallurgical processes. The more aggressive conditions are required to 

extract zinc from the ferrite and often increases the extraction of iron as well, thus reducing 

the benefits of the recovery process (Leclerc et al., 2003).  

 

The zinc oxide can be easily handled with both pyrometallugical and 

hydrometallurgical methods, but the zinc ferrite is extremely stable and significantly 

complex and difficult to break down. Despite the benefits with hydrometallurgical 
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processes there have been very few commercial processes because they are essentially 

dependent on the characteristic of the dust. If zinc in the dust occurs mainly as ZnO high 

recoveries are expected, but if zinc ferrite is the main component the recoveries remains 

low (Nakamura, 2005). 

 

Hydrometallurgical processes are not able to dissolve zinc ferrite effectively. Even 

though the advantage of insolubility of iron oxides in caustic environment, the zinc ferrites 

remain also in the residue. The presence of zinc ferrites in the residue after conventional 

leaching indicates a need for some treatment prior to leaching (or more severe leaching 

conditions) (D.K. and Pickles, 1999). 

 

These ferrites must be broken down to a soluble compound before the zinc can be 

collected and the breaking of the zinc ferrite bond is a key to the recovery of zinc from 

these solid dust materials (Youcai and Stanforth, 2000). When zinc is present mainly as 

oxide, the material can be treated directly, but when a substantial amount is combined as 

ferrite, a more severe alkaline leaching conditions (e.g. high temperature - high pressure 

leaching) or a reduction step may be desirable to maximize recovery (Eacott et al., 1984). 

Zinc ferrites can be very difficult to chemically decompose so that zinc can be recovered 

(Youcai and Stanforth, 2000).  The leaching process could be only used for the stainless 

steel wastes which contained some specific metals, such as zinc, aluminium, lead and so 

on. Although the hydrometallurgical techniques have many advantages, for example, low 

energy consumption and simple operation, the pyrometallurgical techniques were the main 

methods for recovering the valuable metals from the stainless steel wastes because of the 

special characters and structures of the wastes (Huaiwei and Xin, 2011). 

 

2.4.3 Pyrometallurgical versus Hydrometallurgical process routes 

 

Pyrometallurgy employs high temperature techniques and hydrometallurgy 

employs liquid solvents in the process of extractive metallurgy. However, the 

hydrometallurgical option is viable only when the zinc is present almost entirely as an 

oxide and/or metal because other chemical forms are not readily removed using this 

technique (Piret & M. Filler, 1992). Therefore, a dry process of a pyrometallurgical 

technique to remove zinc is potentially cost effective. 
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The advantage of a pyrometallurgical process in comparison to a 

hydrometallurgical method is from the aspects of the hazardous waste generation, in which 

hydrometallurgical substrates usually require further treatment. From the energetic  point 

of view, electrical energy is significantly utilized when such process methods are used. 

Generally, this is not suitable since such processes require electrolysis for metal 

purification (Espinosa, 2004) and hence a considerable cost burden.  

 

Pyrometallurgical processes, such as roasting, can be used to break down the zinc 

ferrites followed by hydrometallurgical process. According to (Youcai and Stanforth, 

2000), zinc ferrites can be decomposed and leaching of zinc could be improved by roasting 

with caustic soda (NaOH) or sodium carbonate (Na2CO3). One of the most promising of 

the combined treatments of roasting and leaching is to convert ferrite into a soluble sodium 

zincate form, typically Na2Zn(OH)4. Both NaOH and Na2CO3 become liquids at 

temperatures used during roasting (Kemperman, 2010). The aim of these hybrid processes 

is to decompose zinc ferrites by pyrometallurgical processes and then recover the non-

ferrous metals by hydrometallurgical techniques (D.K. and Pickles, 1999).  

 

The chemical and mineralogical analyses are important for defining the most 

appropriate recycling strategy. The choice between pyrometallurgical or 

hydrometallurgical processing routes is strongly dependent on the dust characteristics. The 

characterization which includes particle size, amount of valuable elements and 

mineralogical phases may indicate the amount of leachable constituents (Dutra et al., 

2006).  

2.5 CHLORINATION  

2.5.1 Introduction 

 

Chlorine is one of the major inorganic chemicals. It is well known that chlorine 

possesses a high reactivity towards many compounds at relatively low temperatures. This 

property drove the metallurgists to use chlorine for the extraction of valuable elements 

from their bearing materials. Besides, the depletion of high-grade ores and primary sources 

necessitated the treatment of leaner and more complex ores, as well as the recycling of 

secondary materials (Kanari et al., 2009). 
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Chloride metallurgy is emerging as an alternative process, which has been proved 

to be more efficient and cheaper for the extraction and used to refine precious, base and 

refractory materials. Chlorination can be described as reaction between a starting material 

(mineral concentrate or industrial waste) with chlorine in order to produce some volatile 

chlorides, which can then be separated. The most desired chloride is purified and then used 

as a precursor in the production of either the pure metal (by reacting the chloride with 

magnesium) or its oxide (by oxidation of the chloride)  (E.A. and R.C.S, 2011).  

 

Chlorination roasting is one of the pyrometallurgical techniques that can be used to 

recover metal oxides (Eduardo & Francisco, 2008). Roasting has proven to be a very 

important industrial route and can be applied for different purposes. Firstly, the 

chlorination of some important minerals is a possible industrial process for producing and 

refining metals of considerable technological importance, such as titanium and zirconium. 

Also, the same principle is mentioned as a possible way of recovering rare earth elements 

from concentrates (Zhang, 2004) and metals. It is of considerable economic value from 

different industrial wastes, such as tailings (Cecchi, 2009), spent catalysts (Gaballah and 

Djona, 1995), slags (Brocchi and Moura, 2008a) and fly ash (Murase, 1998). The 

chlorination processes are also presented as being environmentally acceptable (Neff, 1995, 

Mackay, 1992). 

 

Knowledge of the effect of different variables upon the system reactivity may lead 

to propose a mechanism that represents the experimental data and contributes to the 

understanding of metal recovery through chlorination roasting.  According to (Kanari et 

al., 2010)  chlorine technology is proved to be an efficient method for the extraction of 

several non-common metals such as Zr, Hf, Nb, Ta, Ti, rare-earth elements, the treatment 

of solid wastes, and the upgrading of lean ores and minerals. The attractiveness of chlorine 

metallurgy is essentially based on: 

(i) high reactivity of chlorine towards almost all metals, many metal oxides and 

sulphides, etc., 

(ii) appreciable differences in the boiling points of metal chlorides and/or 

oxychlorides for a good number of metals, and 

(iii) low boiling points of metal chlorides and/or oxychlorides, etc. 
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2.5.2 Mechanism 

3 Thermodynamics provides a powerful tool for assessing the feasibility of new 

4 Thermodynamics provides a powerful tool for assessing the feasibility of new 

Thermodynamics provides a powerful tool for assessing the feasibility of new 

pyrometallurgical processes. The transformation temperature and Gibbs Energy of 

formation at 1000K (727) of iron and zinc are summarized in Table 2-5. 

Table 2-5 Standard Gibbs' free energy and boiling point for oxides and chlorides of zinc 

and iron (Pankratz,1982; Pankratz, 1984; Wicks and Block, 1963) 

Element Oxides G
o 
Oxide 

(kJ/mol) 

Chloride Boiling 

point (C) 

G
o
 

Chlorides 

(kJ/mol) 

Zn ZnO -248.2 ZnCl2 727 -263.5 

Fe Fe2O3 -561.0 FeCl3 332 -235.0 

 

Pure oxides can be converted to chlorides, since they are easier to reduce to metals, 

than  the corresponding oxides and scrap metal for recovery (Habashi, 1986). The process 

is applied to ores and concentrates to isolate the metal values or convert them into a more 

amenable form. For example metal chloride that is obtained by the reaction of metal oxide 

with a chlorinating agent. When it takes place at high temperatures, specific metal 

chlorides are volatilized and recovered from the gaseous phase by condensation.  

 

The overall reaction of a typical chlorination of an oxide, XO by chlorinating agent, 

YCl2 can be expressed in the Equation 2-1. 

XO + YCl2   XCl2 + YO                                           (Equation 2-1)

           

X being the target metal to be volatilized and recovered, and YCl2 being a chlorinating 

agent. The reaction in Equation 2-1 is possible only if the chloride is more stable than the 

oxides. The differences in affinities of the metals for chlorine and oxygen can be expressed 

by the values of the standard free energy change for the reactions. The three main factors 

that affect the reactions are (i) stability of YCl2 - The more stable the YCl2, the more 

difficult it is for the reaction to proceed toward the right, and the yield of XCl2 is reduced, 
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(ii) the standard free energy change for the reaction - The more negative the G value for 

the reaction , the more favourable is the reaction and (iii) volatilization or the vapour 

pressure of YCl2. If YCl2 is volatile, it can be removed readily, and hence the equilibrium 

of the reaction will shift to the right of equation  2-1 and the yield will be good (Chan, 

1997). 

Many of the base metal chlorides exist in the gaseous form at the roasting 

temperature making it easy to effect separation (Rajmohan and Jacob, 1992). Most 

metallurgical important chlorides volatilize at a relatively low temperature. This property is 

utilized in separating the wanted chlorides from the gangue. With the exception of the 

alkali and alkaline chlorides, most chlorides are difficult to melt or boil because of their 

volatilization. For this reason it is useful to know the variation of their vapour pressure 

with temperature. The vapour pressure of some chlorides are shown in Figure 2-4. From 

the figure, it is shown that the obvious difference in vapour pressure of FeCl3, ZnCl2 and 

FeCl2 will ease the removal of Fe and Zn in a forms of chloride.  

 

 

Figure 2-4 Vapour pressure of selected chlorides (Gupta, 2003) 

According to Gupta (2003), the volatilization of chlorides and the differences in their 

vapor pressure are made use of in separating one chloride from another. Some chlorides 

dissociate at high temperature giving off some of their chlorine. Some chlorine split when 

heated, i.e. they are converted into two chlorides; where one having a lower valency and 

the other of a higher valency. Chlorides can be oxidized by air or oxygen to oxychlorides 

or oxides with liberation of chlorine (Habashi, 1986).  
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Factors influencing the selective chlorination includes the partial pressure of chlorine 

and that of oxygen in the chlorinating gas mixture, the sulphur and carbon content of the 

sample and the temperature of the reaction (Gaballah et al., 1994). The higher the valency, 

the greater the volatility. For example ferric chloride (3
+
 iron valency) has the relatively 

low boiling point of about 320C while ferrous chloride (2
+
 iron valency) has the relatively 

high boiling point of about 1027 C. Thus, ferric chloride is more volatile than ferrous 

chloride.  

Some metal oxides can be converted to volatile chlorides in the presence of chlorine 

or chlorine releasing agents at high temperature. This method of chlorination has been 

described by Alcock and Habashi (Alcock, 1976).  An advantage of the chlorination 

process is the low melting and boiling points of the generated chlorides, as well as the 

difference between their vapour pressures in the explored chlorination temperature range. 

The selective separation of valuable metal chlorides (CuCl2, PbCl2 and ZnCl2) from those 

of ferric and suphur chloride was feasible due to the difference in vapour pressure between 

the two groups of chlorides at 300C (Kanari et al., 2009). 

Chlorination roasting particularly towards BOS dust was carried out by Chan 

(1997). In his work,  Chan (1997) reported the promising results of his core study in the 

volatilization of almost total metal removal (>98%) of Zn and Pb from MSW incinerator 

fly ash using solid chlorination agent, CaCl2 and gaseous chlorination agent, Cl2. Fly ash 

was deemed to be reasonable similar to that of BOS dust. The outcome led to further 

investigation in determining the applicability of the same roasting procedures towards BOS 

dust. Samples were dried prior to being used in the experiment with 11.5% moisture. The 

works carried out showed that it was possible to remove more than 80% of Zinc under the 

roasting temperature of 1000C with the a ratio of 1:10 CaCl2/BOS dust  (Chan, 1997). 

 (Gaballah et al., 1994) conducted metal recovery from spent catalysts. Their 

outcome  suggested that reaction temperature, time and partial pressure was a key factor 

for the selectivity of the chlorination. They discovered that it was possible to recover up to 

98% of Ni and Co as chlorides from the chlorination residue, about 98% of the Mo, Ti and 

W and 80% of vanadium compounds in the condensates. The unroasted samples have a 

higher reaction rate than that of the roasted ones, decreasing the temperature will diminish 

the chlorination affect. The exhausted gases were purified by an aqueous NaOH solution 

before their release to the atmosphere. 
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Zinc sulphide is insoluble in most solvents, but with an oxidizing roast they can be 

converted to water soluble sulphates, and roasting the ore with salt can convert the metallic 

material to a water-soluble chloride (Pehlke, 1973). The vapourisation of FeCl3 is not so 

simple in the presence of sulphide minerals containing Cu, Ni and Fe. FeCl3 which exists 

in the gaseous phase mainly as Fe2Cl6 (g) dissociates above 500C. Gaseous ferric 

chloride, FeCl3 when reacted with sulphide minerals containing iron, is reduced to FeCl2 

(s) which subsequently impedes the progress of the reaction. At relatively low 

temperatures, FeCl3 may dissolve in the simple chlorides of metals such as copper and 

nickel and facilitate the chlorination reaction (Nair et al., 1988). 

  

 The chlorination in the presence of oxygen (oxychlorination) was sometimes 

used to separate selectively a group of elements. The presence of oxygen in the system 

could lead to different thermodynamic feasibility of the specific oxychlorination reactions. 

As shown in Figure 2-5, the chlorination of ZnO at 750C by a mixture Cl2 + O2 (Cl2/O2 = 

1) will generate ZnCl2 (g) as the predominant phase, while hematite seems to be a stable 

phase under these conditions. This property of oxychlorination was used to selectively 

remove  zinc from jarosite. Similarly oxychlorination can successfully be applied for Zinc 

recovery from electric arc furnace dust.  

 

 

Figure 2-5 Phase stability diagrams of (Fe, Zn)-O-Cl system at 750C (Kanari et al, 2009) 
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2.5.3 Process design 

 

Dry chlorination extraction can be conducted in two ways. Firstly, through 

liberation of chlorine gas by solid chloride and secondly by direct chlorination gas purging. 

Chlorination tests were conducted at independent and different apparatus.  

Chlorination methods applied to recover refractory metals from tin slags was 

conducted by Brocchi and Moura (2008). The experiments were carried out using 

conventional system with controllers for temperature, gas flow rates and chlorine partial 

pressure. Part of the generated chlorides was collected in the bottom of the furnace. The 

sample was allocated inside the furnace and an inert gas flow was admitted during the 

heating up phase. When reaching the target temperature, the flow of inert gas was 

interrupted with the purging of a chlorine flow. The chlorination reaction starts and after 

defined period of time, the sample was removed for weighting, washing, calcination and 

chemical analysis. Both temperature and reaction time are the most important variables in 

terms of determining the oxides conversion levels  

Kanari et al., (2001) conducted a study on the chlorination-volatilization process 

for the treatment of chalcopyrite concentrates. The apparatus for the chlorination roasting 

composed of a gas metering unit followed by a gas purification system and a horizontal 

furnace. Several grams of sample were spread uniformly in a quartz boat (10 cm long, 1 

cm wide and 1.5 cm deep). This boat with the metal sulphide was placed into the reactor 

and heated to the desired temperature in a nitrogen atmosphere. Once the sample’s 

temperature was attained, the nitrogen flow was turned off and the chosen chlorinating gas 

mixture was introduced in the reactor. At the end of the experiments, the solid condensates 

were recovered from the reactor wall because of the natural temperature gradient. The 

composition of the chlorination reaction products was determined by scanning electron 

microscopy (SEM), X-ray diffraction (XRD) and inductively coupled plasma-atomic 

emission spectrometry (ICP-AES). As the boat used for the experimental tests was 

relatively long, attempts were made to measure the temperature profile of the sample. 

Thus, the temperature of the furnace was fixed at a desired value varying between 200C 

and 600C and the temperature at the sample furnace was recorded by a thermocouple 

inside the reactor. Similarly, the inner temperatures of the entire reactor and condenser 

were measured. The tests were carried out under a nitrogen atmosphere.  
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According to (Habashi, 1986), when chlorination involves volatilization, the 

volatilized chlorides are collected in condensers. The exhaust gases from chlorination 

cannot be emitted directly into the atmosphere because of the presence of chlorine which is 

highly poisonous; the gases must first be scrubbed with a NaOH solution to remove 

chlorine.  The main problems encountered in chlorination are in condensing and collecting 

the reaction products rather than in the formation of the chlorides. The difficulties originate 

from the following sources:  

1) Carry over of fine dust that contaminates the reaction product. This can be 

eliminated to a large extent by careful preparation of charge and close regulation of 

gas flow. 

2) Plugging of condenser lines due to the condensation of crystalline chloride. This 

can be avoided by heating the lines to a certain temperature.  

3) Corrosion of the condensing system with chlorine and hydrochloric acid (HCl).  

4) Leakage of air and moisture into the system, especially near the reaction zone, 

causes oxidation or hydrolysis of the chlorides and the formation of HCl. These 

effects can be minimized by thorough drying of the charge and by maintaining the 

system under a slight positive pressure. 

 

Most chlorides are sensitive to moisture and undergo hydrolysis forming 

oxychlorides or hydroxides. The reactions are sometimes so vigorous that once the 

material is exposed to the atmosphere at room temperature it fumes as a result of reaction 

with the humidity in the air. Therefore, the handling of chlorides requires special 

precautions to avoid contact with moisture (Habashi, 1986).  

 A study towards the recovery of rare earth (RE) elements  from bastnasite by 

ammonium chloride roasting with fluorine deactivation was conducted by Zhu and Chi 

(1999). The formed RE chloride produced was soluble in water. Therefore, the RE 

elements can be recovered by hot water leaching processes. Based on thermodynamics 

analysis, other elements consists in the origin of the RE, which are aluminium (Al), iron 

(Fe) and silica (Si) converted to Al2O3, Fe2O3 and SiO2 in the bastnasite concentrate cannot 

be chlorinated, and remain nearly unchanged under the applied roasted environment. This 

would suggest that the above roasting process has a high degree of selectivity, and can 

effectively facilitate the separation of rare earth products from Al, Si and Fe elements in 

the downstream leaching process (Zhu and Chi, 1999; Zhu et al., 2000).  
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 In the experiments, during roasting process, HCl is in the form of gas, generated 

from the decomposition of ammonium chloride. To achieve complete chloride reactions, 

the materials have to be well mixed during chloride roasting. The objectives is to make 

sure whenever there is HCl gas coming from the ammonium chloride decomposition, it can 

react with the oxide to form chloride immediately. In addition, to save operating costs and 

enhance recovery, a suitable amount of ammonium chloride should be added for 

maximizing the reaction efficiency. Recovery increased with increased addition of 

ammonium chloride. During the chloride roasting process, the reaction time is critical for 

RE recovery. A too short a roasting time could result in an incomplete chloride reaction, 

and an excessive long roasting time could give rise to the reversal of the already formed 

chloride to oxide, thereby reducing the recovery. The rare earth recovery was calculated 

from the weight ratio of the rare earth oxide in the obtained final rare earth oxide product 

to the amount of the rare earth oxide in the original bastnasite concentration (R.Chi et al., 

2004a). 

2.5.4 Roasting agents 

 

Chlorination agents may be added in gaseous, liquid or solid form(Habashi, 1986). 

There are many promising separation and extraction methods for metals such as zinc, lead, 

cadmium, copper, zirconium, vanadium and titanium by using a chlorination agent to 

recover the precious metals as chlorides (Chan et al, 1996).  

Common solid chlorinating agents, such as CaCl2 , MgCl2 , NaCl, AlCl3 , NH4Cl 

(R.Chi et al., 2004b) have been tested for their effectiveness (Chan and Kirk, 1999, R.Chi 

et al., 2004b). Sublimation of these solid agents to facilitate gaseous chlorinating agents is 

depending on their melting points. Sodium chloride and calcium chloride need a higher 

decomposition temperature for hydrogen chloride generation (Fan et al., 2010). Table 2-6 

shows the solid chlorinating agents and melting points to facilitate gaseous chlorinating 

agents.  
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Table 2-6 Typical Melting point of several chlorinating agents (Patnaik, 2003)  

Solid agents Melting point 

CaCl2 772C 

MgCl2 714C 

NaCl 801C 

AlCl3 192 C 

NH4Cl 338 C 

 

Examples of gaseous reagents stated by (Chan et al., 1996b) are chlorine, hydrogen 

chloride and phosgene (COCl2). Liquid reagents are carbon tetrachloride (CCl2) and suphur 

chloride (S2Cl2) and both are sometimes used in the gaseous state.  

Ammonium chloride roasting technique has been successfully applied to the Panxi 

weathered rare earth deposit in China with a high degree of rare earth selectivity and 

recovery. (Chi et al., 2004) conducted recovery of rare earth from bastnasite by ammonium 

chloride roasting with fluorine deactivation. NH4Cl decomposes, or sublimes into gaseous 

HCl under heating conditions. At temperature above 325
o
C, ammonium chloride 

decomposes to ammonia and hydrochloric acid. In the study the samples were well mixed 

with NH4Cl and place in muffle furnace. 

Even though chlorine gas is the common chlorination agent, its use is often 

restricted because of the associated hazards. Chlorine gas is classified as toxic, corrosive 

and is known to cause severe irritation to the respiratory system, skin and eyes. Hence, use 

of liquids and solids that liberate gaseous hydrogen chloride as the chlorination agent are 

preferable. (Habashi, 1986) stated that the most commonly used solid reagents are NaCl 

and CaCl2. Another compound that can be used to liberate gaseous HCl by heating is 

ammonium chloride (NH4Cl). 

 (Terakado et al., 2010) studied the chlorination process for recovery of indium 

selectively from dental metal recycling sludge which contains considerably high amount of 

indium. The process is based on the utilization of ammonium chloride, NH4Cl, as the 

chlorination reagent. It was found that indium could be successfully recovered from the 
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sludge in the form of volatile indium chloride by heating the mixture of sludge and NH4Cl 

at the temperature of 400C under an inert atmosphere.  

 

To achieve complete chloride reactions, the materials have to be well mixed during 

chlorination roasting. In addition, to maximise recovery, a sufficient amount of NH4Cl 

should be added for the complete reaction to take place. It has been shown that metal 

recovery increases with increased addition of NH4Cl (Chi et al., 2004). 

By roasting NH4Cl above 325C, the compound sublimes into gaseous form as 

shown in (Equation 2-2. 

NH4Cl + heat       NH3 + HCl (g)       (Equation 2-2) 

(Túnez et al., 2011) has conducted chlorination of indium oxide using 99.9% pure 

chlorine gas as the chlorinating agent. The study indicated that sufficient Cl2 must be used 

in order to assure the excess of reactive gaseous. 

 

In the presence of sufficient chlorine, the chlorine reactions for zinc and iron can be 

presented as in Equation 2-3 and Equation 2-4 and follows :   

  

2ZnO + 2Cl2(g)  2ZnCl2(g) + O2(g)    (Equation 2-3) 

2FeO + 2Cl2(g)  2FeCl2(g) + O2(g)     (Equation 2-4)  

 

Roasting of molybdenum spent catalyst has been carried out using sodium chloride at 

optimum conditions for its extraction have been established (Kar et al., 2005). Various 

parameters like temperature, time and NaCl addition are included. From the study, it was 

possible to recover 90% molybdenum at 900C with 20 wt% sodium chloride when roasted 

for a period of 60 minutes.  

(Chi et al., 2004) carried out the recovery of rare earth from bastnasite. They used 

ammonium chloride to facilitate chlorinating agent. At temperature above 325C, 

ammonium chloride decomposes to ammonia and hydrogen chloride.   
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 NH4Cl = NH3 + HCl (g)                       (Equation 2-5) 

 

When roasting the decomposed products from the bastnasite concentrate, RE2O3 (or 

Ce2O3) reacts with gaseous HCl to form rare earth chloride: 

 

 RE2O3 + 6HCl (g) = 2RECl3 + 3H2O                                                (Equation 2-6) 

 

Comparison of using solid  and gaseous agents to volatilized chlorides may be represented 

by the examples stated by (Chan and Kirk, 1999), where CaCl2 and Cl2 were used as 

chlorinating agents. They stated that a metal oxide can react with solid agents in two 

possible ways :  

 

a) Direct chlorination, where direct contact between the two reaction exists, such as  

 

MO + CaCl2  MCl2 (g) + CaO           (Equation 2-7) 

 

b) Indirect chlorination, where the overall reaction is separated into two stages. 

 

2CaCl2 + O2 2 CaO +2 Cl2         (Equation 2-8) 

2 MO + 2 Cl2  2 MCl2 (g) +  O2                   (Equation 2-9) 

 

 

2.5.5 Roasting temperature 

 

Temperature is an influential factor in chlorination. In the case of titanium recovery 

for example, when chlorination is conducted in the temperature range 100 - 600
o
C, the 

metal chlorides formed are usually non-volatile and the metals are recovered by leaching 

with water. The desired metal chlorides are volatilized in the temperature range 600-

1000C and can be recovered by condensation (Chan, 1997) 

It can be observed that a noticeable increase on the reaction rate is produced with 

the increase of temperature (Túnez et al., 2011). Depending on the roasting temperature 

some of the chlorides will be in the condensed state and others will be present in the gas 

phase (Rajmohan and Jacob, 1992). 
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2.5.6 Roasting time 

 

Treatment of steelmaking dust with gaseous hydrogen chloride at 900°C enables 

zinc to be removed practically completely as ZnCl2. Time of the reaction should be well 

adjusted because after zinc removal, iron is attacked again. It is a promising way for 

employment of large deposits of dangerous waste material for recycling of iron and zinc 

(Wichterle* et al., 2010). 

Reaction time is an important parameter to be considered in process development. 

A study carried by Chan (1997) towards the chlorination roasting of MSW fly ash 

indicated that at holding time zero (t = 0), the evaporation of metals had already begun, as 

some volatilization took place during the heating period from 500  to 1000
o
C, which lasted 

about 40 minutes.  

 

2.5.7 Surface area 

 

Kanari et al (2001) conducted a chlorination study towards chalcopyrite 

concentrates. Prior to the chlorination process, it was observed that the weight of the 

sample used was decreased during its heating under a nitrogen atmosphere at temperature 

> 475C. This is due to the partial or complete thermal decomposition of chalcopyrite and 

pyrite. Residues of chlorination were significantly agglomerated. Due to the formation of 

metal chloride layer that covers the unreacted agglomerated material. The layer acts as  

diffusion barrier and is probably responsible of the incomplete chlorination. 

 

2.5.8 Post Chlorination Roasting Leaching 

 

Often a hydrometallurgical or a mineral beneficiation process is inserted, usually 

occurs after the preliminary treatment (Habashi, 1986). An improved process including the 

chlorination roasting followed by water leaching was employed to extract lithium from 

lepidolite. A lithium leaching efficiency of 92.86% could be reached according the 
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optimized condition. The results indicate that chlorination roasting temperature, time and 

mass ratio of chlorinating agents affects the efficiency (Qun-xuan et al., 2012). 

Kemperman (2010) conducted a study on water washing of two samples, namely Zinc 

A and zinc B. The aim for water washing of Zinc was removal of chlorides by dissolution. 

The recovery of chloride from Zinc A was only 65% and Zinc B was 74% when water 

washing the material at 50˚C with liquid/solid ratio of 5 for 1 hour. This is insufficient 

because total removal of chlorides was intended. For future experiments it was 

recommended that water washing should be done at a higher temperatures using a higher 

Liquid:Solid ratio (Kemperman, 2010).  

 

2.6 SUMMARY  

 

Dusts from iron and steel manufacturing are generated in blast furnaces (BF), basic 

oxygen steelmaking furnaces (BOS), and electric arc furnaces (EAF).  There are 

limitations in the available knowledge and research on the extraction of BOS dust to 

remove metals in particular. The literature presented indicated several successful metal 

extraction via pyrometallurgical removal and chlorination roasting. Chlorination roasting 

shows a  promising way to remove impurities such as Zn in the BOS dust due to selectivity 

of the process towards partial pressure and boiling point. Operational roasting parameters 

in chlorination roasting include roasting temperature, roasting time and chemical 

stoichiometry which will enhance the volatilization ability, whilst controlling the amount 

of iron needed in  steelmaking. However, most volatilization reported was conducted at 

higher temperature >1000C. Therefore, an attempt to use lower temperature with the 

adjustment of operating parameters is of great interest. 

 

 The total recoveries of zinc are limited in hydrometallurgical methods due to the 

presence of zinc ferrite (ZnFe2O4) in the dust. If the zinc ferrite content in the dust was 

high, the zinc recoveries remain low. For breaking down the zinc ferrite, pyrometallurgical 

processes, such as roasting, can be used prior to leaching. Much of the literature showed  

successful leaching with an acid or alkaline solution, but very few findings on the 

extraction of leachable metal by using water at ambient temperature have been reported. 

This is interesting as the novel yet supposedly simple techniques could show promising 

results.  
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Both the pyrometallurgy and hydrometallurgy processes have been originally 

developed for treatment of rich zinc and lead ores, frequently used for non-ferrous metals 

under the conditions when iron is a minor constituent in the solution. In such cases the 

processes are evidently viable. For separation of smaller percentage of the volatile metals 

from high percentage of iron in materials like steelmaking dust are rather expensive.  

 

The hydrometallurgy treatment is technically feasible; however, the main difficulty 

lies in the facts, that vast volumes of the liquids and chemicals are required for iron 

precipitation and followed by filtration of fine particles of the precipitate is painfully slow. 

It brings also a high level of hazard situations during manipulation with dissolved harmful 

heavy metals (Wichterle et al, 2010).  Pyrometallurgical and hydrometallurgical processes 

are very often combined in practice to exploit the best features of both.  Thus, chlorination 

offers a process route that warrants further investigation, especially when considering dusts 

with mixtures of zinc and iron. The goal is to keep as much iron within the substrate and 

remove the zinc fraction by chlorination. 
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CHAPTER 3 : METHODOLOGY &  EXPERIMENTATION 

 

3.1 Introduction 

 

In this chapter the materials, methods and systems used to perform this research work are 

discussed in four sections :  

 

 3.2 :  Beneficiation of BOS Stockpile 

 3.3 :  Chlorination with chlorination agent, NH4Cl 

 3.4 :  Chlorination with chlorination agent, Cl2-N2 gas mixture 

3.5  :  Post chlorination roasting leaching  

3.2 Beneficiation of BOS Stockpile 

 

 

Figure 3-1 Research Site - Formerly known as Corus Strip Products UK, Port Talbot 

 

Samples used for the whole investigation for this study  were sourced from the 

Basic Oxygen Steelmaking (BOS) by-product which was historically stockpiled in TATA 

Steel Strip (previously known as Corus Strip) Products UK, Port Talbot, South Glamorgan, 

UK located about 30 miles from the city of Cardiff, Wales as shown in Figure 3-1. As 
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mentioned in Section 2.3.2 of Chapter 2, the methodologies used to carry out the earth 

work and stockpile beneficiation are in accordance with the several British Standards 

mentioned previously. The works was done with adjustment to the equipment, tools and 

facilities available.  The sections of this thesis associated with the beneficiation of the BOS 

stockpile and the analysis were extracted from the works previously carried out by the 

author as part of the Corus Centre of Excellence, Cardiff University (Report No 3181) – 

BOS Stockpile and Analysis Report.  

 

3.2.1 Introduction 

 

Tata Steel Strip Products, UK (TATA Steel) converts iron ore into steel and using 

high tech casting and rolling, produces intermediate steel shapes (blooms, billets, etc). Dust 

produced during the basic oxygen steelmaking process (BOS) is removed by water 

scrubbers in the off gas system. The water and dust mixture is piped to clarifiers where the 

solid particulates settle to the bottom to produce BOS dust slurry. This slurry is used in the 

briquetting plant to produce waste oxide briquettes (WOBs). When there is insufficient 

demand for briquetting this slurry is collected and transferred to the stockpile area shown 

in Figure 3-2.  

 

Figure 3-2 Top View : Location of BF Plant, Sinter Plant, BOS Plant, Sinter Plant & 

Stockpile disposal area 
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3.2.2 Overview 

 

Figure 3-3 shows the stockpile, located 200 m north of the BOS plant. It has a base planar 

area of 67,631m
2
, stands at 25.3m above sea level and has an average depth of 12.4m. 

According to Tata, previous surveys have estimated that it contains around 1.5Mt of 

material, but there are no detailed records if how much has been dumped on this area and 

its composition.  

 

Figure 3-3 View of the stockpile looking north east along the Kress run 

 

The stockpile has an access road from the Kress run at the southern end onto the 

elevated flat plateau shown in Figure 3-3 where recent arisings are dumped. The picture in 

Figure 3-4 shows very clearly that the stockpile is a mixture of materials ranging in colour 

from white, to pink and black with little order to the dumping that has taken place. The 

aerial photograph of the stockpile in Figure 3-5 has been dated by Tata Steel staff circa 

2007 by the foundations of the recently built central workshop.  
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Figure 3-4 View of the stockpile plateau with recent arising around the perimeter 

 

 

Figure 3-5 Aerial photograph of BOS Stockpile ca. 2007 

In comparison, the earlier aerial photograph shown in Figure 3-6 which was in 2004, 

appears more consistent in its colour and more organised in its structure with visible bays.  
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Figure 3-6 Aerial photograph of BOS stockpile before 2004 

 

Beneficiation as stated earlier in Chapter 2 in Section 2.3.2 involves the chemical or 

physical properties of the ore so that metal may be recovered, profitably. The intention is 

to maximize the amount of valuable metal contained in waste material that is actually made 

available for use. Mineral engineering, the major step in the extraction of metals, involves 

the separation and concentration of ores. These concentration techniques, which are 

primarily physical or mechanical separations are referred to as mineral dressing (Pehlke, 

1973).  

Therefore, to recover the total mass of zinc and iron from the stockpile might  

require classifying the stockpile particles and grinding those that are too large to a suitable 

size for processing. The investigation will take into account the issues for the recovery and 

handling of stockpile material such as high pH value, heteregoneous composition and a 

wide particle size distribution.  
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3.2.3 Aims & Objectives 

 

The aims were to survey the BOS stockpile, determine its volume and to excavate 

samples from trial pits to measure the density, particle size distribution and metal content. 

With the composition data generated, the mass of potentially recoverable zinc and iron can 

be calculated to give a potential value for the metals (Steer and Griffiths, 2009).  

The following objectives were set to achieve those aims :  

1) To excavate a series of trial pits and remove samples at various depths for analysis 

of density, particle size distribution and metal concentration;  

2) To conduct a survey of the BOS stockpile and produce a topographic map to 

calculate the total area and volume. These data with measurement of sample 

density are used to calculate an indicative mass of the stockpile;  

3) To calculate the area and volume of the region where the samples were taken to 

determine whether the sample matrix planned will represent the whole site of the 

area;   

4) To compare the physical form of the trial pits and samples;   

5) To make visual observations and comparisons of sample composition with a view 

to metal recovery and processing.   

 

Those aims are carried out by physical analyses; to investigate the density, moisture 

content, pH of samples and particle size distribution; by chemical analysis to determine the 

concentration of metals and their variation between pits and within the pits to calculate 

potential recoverable value and through stockpile survey to investigate recent surface 

topography and estimating overall volume and mass of the stockpile.  
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3.2.4 Earthwork & Sampling 

3.2.4.1 Surveying 

 

The area was surveyed using a handled TOPCON GMS-2 Global Positioning System 

device (GPS) with an accuracy of 6-15 cm and with a datum set to Ordinance Survey to 

determine the survey co-ordinates and the site elevations. The stockpile boundary consists 

of a road, railway track and Kress run, the sides of the stockpile rise from this boundary in 

a non-uniform manner to the highest point which is a flat plateau. The survey involved 

walking the perimeter of the stockpile as well as the perimeter of the elevated plateau area 

and taking 66 spot measurement of easting’s, nothing’s and height. These measurements 

were input into the SURFER 7 surveying software package to obtain a topographic map 

and calculate the area and volume. 

3.2.4.2 Sampling 

 

The original sampling plan was to take 10 samples from the stockpile each separated 

by about 100 m as shown in Figure 3-7.  A circular outline was superimposed over the 

stockpile and sample points were arranged as equidistant as possible, 2 points on the inside 

of the circle were repositioned so that they were not on the perimeter sample slopes.  

 

Figure 3-7 Overlay of planned sample pits 
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However, only the elevated plateau area could be accessed by an excavator so 

consequently this dictated where the samples could be taken and the original sample plan 

had to be abandoned. The changes of sampling point are shown in Figure 3-8. 

 

Figure 3-8 Plan view of stockpile, plateau and trial pits, involved digging 7 trial pits across 

the stockpile plateau 

 

Each pit was dug to a depth of around 3.7m. 2.5 litre samples were taken at approximately 

1m depth intervals. This gave 33 samples in total which were labelled by their pit number 

location (1-7) and their sample number depending on the depth of the pit where sample 1 is 

the closest to the surface. 
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3.2.5 Physical & Chemical Characterisation 

 

Sample preparation:  

The sample preparation was carried according to various BS mentioned earlier in 

Section 2.3.2. The first tests carried out on the samples ‘as received’ were the bulk density, 

maximum compaction density and pH. Since pH can only be defined as the hydrogen ion 

concentration in solution, then the pH of solid sample is the pH of water in equilibrium 

with that particular soil. This is called paste pH. At the very least, a thick paste of solid and 

water is necessary to measure the pH where the added water should be such that there is 

minimum disturbance to the solution equilibrium (Reeve, 2002). The sample:water ratio 

for the paste pH was 1:10. The mixture was then left for at least 30 minutes. The pH meter 

was then used to measure the pH of the mixture.   

 

Samples were then dried at 105C overnight to determine the moisture content. The 

moisture content (MC) expressed in percentage was calculated based on Equation 3-1 

below :   

 

MC = 100 x  (MW - MD)/Mw       (Equation 3-1) 

                   

where:  

  MD is the mass of the dried test portion (kg) ; 

Mw is the mass of undried test portion (kg). 

   

The next step was to dry sieve and classify the samples into 5 different particle 

sizes for further analysis (<0.8 mm; 0.8-9.5 mm; 9.5-15.9 mm; 15.9-38.2 mm; >38.2 mm). 

This produced a total of 165 sub-samples. Each size classification was weighed to 

determine the mass percentage of the sample and averaged to produce a particle size 

distribution for the stockpile in the sampled plateau area.  

 The two finer particle size classifications (0.8 – 9.5mm and <0.8m) were selected 

for metal analysis (all trial pits at all the depths) because BOS slurry, containing high 

percentages of zinc and iron, is expected to be in these particle size ranges.  

The total of 66 samples were analysed, 33 samples from the <0.8mm classification 

and 33 samples from the 0.8-9.5mm range. The latter required grinding to a fine particle 
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size using a Tema mill to produce homogenous samples for metal analysis by Inductively 

Coupled Plasma (ICP) spectrophotometry after first dissolving in acid. From the coarse 

size particle classification, 4 samples were milled and analysed to compare against the fine 

particle size results.  

For comparison, the samples taken at different depths from Trial Pit 1 were also 

wet sieved to investigate any fine particle agglomeration, or if fine particle are retained on 

larger porous particles and are not accounted for in the dry sieve analysis.  

 

3.3 CHLORINATION ROASTING  

 

The chlorination roastings were carried out in two parts with two different chlorination 

agents.  The first part (preliminary work) was conducted in a muffle furnace, using NH4Cl 

salt to provide the HCl. The second part was by using Cl2/N2 gas mixtures where the 

roasting was carried out in a tube furnace.  The procedure carried out for material 

preparation and composition analysis for both chlorination with NH4Cl and CL2/N2 gas are 

stated below. The procedures undertaken are following the standard procedure practiced in 

the laboratory, following the guidelines of laboratory standard BS EN 15002- 2006.    

3.3.1 Material  

 

Two different samples were used in the preliminary chlorination roasting with 

NH4CL. The first sample was weathered BOS material taken from an historic stockpile 

(sample with smallest fraction size, <0.8 mm) with highest Zn assay from one of the 

excavated pits. The second sample was fresh BOS dust (non-weathered dust) obtained 

from the clarifier at the end of the BOS off-gas dust collection system.  

Due to limited quantities of samples available and to ensure sufficient samples for 

further chlorination roasting with Cl2/N2 gas, a mixture of BOS sample  from the stockpile 

beneficiation was prepared, namely Stockpile Mixtures (SM). The mixture was done by 

choosing the same sample size fractions from various pits as per samples used in the 

preliminary work. The samples selected to make up the mixture were based on the highest 

Zn assay as well as the amount available. The selection of the samples to make up the 

sample mixtures are shown in Table 3-1.   
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Table 3-1 Selection of stockpile sample  (<0.8mm) sample mixtures 

Sample Zn (%)  Fe (%) 

C079 6.28 59.42 

C080 4.99 52.40 

C091 5.13 48.99 

C093 6.57 49.09 

C095 6.84 48.46 

 

3.3.2 Sample preparation & Characterization 

 

3.3.2.1 pH & Moisture Content 

 

Paste pH procedure and moisture content as explained in Section 3.2.5 was applied to 

measure the pH of the sample.  Samples were spread on evaporating dish and dried in an 

oven at 105C for a period of 2 hours. After cooling in a desiccator, the sample was 

reweighed. The weight loss due to evaporation of moisture in the sample was recorded. 

Further drying of the sample in the oven did not result in further loss of weight.  

 

3.3.2.2 Grinding 

 

The weathered samples and samples mixtures were ground in a Tema mill to 

obtain homogeneous samples. The non-weathered samples did not require grinding as 

they were already fine particle size and homogenous. All samples were then stored in 

sealed bags and labelled accordingly.  

 

3.3.2.3 Particle Size Analysis 

 

Particle size analysis was performed using Malvern Mastersizer 3000 which provides 

a size distribution based on the volume of individual particles. The information of sample 

density was used for the purpose. This method was used for the dust in preference to 
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standard laboratory sub-sieve sizing by cyclosizing because of the very fine nature of the 

dust.  

 

3.3.2.4 Material composition with Inductively coupled plasma –atomic emission 

spectroscopy (ICP-OES)  

 

To calculate the metal removal percentage, the metal composition of raw and 

roasted sample needs to be determined. This was achieved with ICP-OES analysis. 

Samples were dried at 110C for 24 hours. Prior to roasting the sample was weighed and 

Zn and Fe constituents were determined by ICP-OES (PerkinElmer Optima 4300 DV). 

Acid digestion was performed prior to  the analysis in an Anton Parr microwave digester to 

obtain the final samples for elemental analysis. 8 ml of Aqua Regia (HCl/HNO3 mixture) 

with a vol/vol mixture of 1:1 HNO3/HCl was added to a 0.1 g sample in a Teflon vessel 

before placing them into the digester. The microwave was programmed to digest the 

sample under ‘Steve Rock’ sample setting by heating to 200C. It takes about 20 minutes 

to get to 200C and once the temperature set, the digestion takes about 40 minutes. The 

tubes in the vessels need to be cooled before being removed from the digester. The whole 

process starting from the temperature setting and microwave digester takes about 2 hours. 

Finally, deionised water was added to the digested solution to make a 50 ml solution in a 

conical flask before being transferred to a 40ml plastic bottle for loading to the ICP-OES 

probe.  

 

3.3.2.5 X-Ray Diffraction (XRD) 

 

X-Ray Diffraction was carried out on the powdered samples.   Scans were run using 

the Philips PW1710 Automated Powder Diffractometer using Cu K radiation at 35kV and 

40mA, between 5 and 70 °2 at a scan speed of 0.04 °2/s.   The peaks for each phase are 

marked on the diffractograms.  From the scans, phases were identified using Philips PC-

identify software and from the peak areas, semi- quantitative analysis was performed and a 

percentage of each phase present calculated 
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3.3.2.6 Chemicals 

The chemicals used for the chlorination roasting are listed in Table 3-2 below:  

Table 3-2 Chlorination regime and chlorination agent 

Procedures Chemicals 

Chlorination with NH4Cl salt NH4Cl salt, general purpose grade 

Chlorination with Cl2/N2    gas Cl2/N2    (50%) gas mixtures 

NaOH powder (made up to 10 – 20% 

concentration as scrubber solution).  

 

3.4 Chlorination with chlorination agent, NH4Cl salt. 

3.4.1 Equipments 

 

Equipment and apparatus used in the experiment are shown in Figure 3-9.  

 

 

 

 

 

 

 

 

 

 

 

 

Desiccator to transit 

crucible and sample prior 

to roasting and cooling 

Muffle Furnace Analytical balance for sample 

weight measurement 

50g crucible with lid 

Figure 3-9 Equipments and apparatus used in chlorination roasting with NH4Cl 
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3.4.2 Chlorination roasting procedures 

 

NH4Cl (general purpose grade) has been used as the means of HCl production in 

this study. Experiments were carried out in 50 g (25cm
3
) crucibles. To achieve maximum 

reaction of sample with chlorination agent in such small crucibles, small quantities of both 

BOS dust and NH4Cl salt were mixed thoroughly by hand; placed in to the crucibles and 

reacted in a muffle furnace. The conditions and duration of each experiment are given in 

Table 3-3. Each experiment was carried out in triplicate. The three samples were 

recombined in order to obtain sufficient roasted samples for ICP-OES analysis.  

 

 The roasting was conducted in one or three stages which are described in Table 

3-3. The sample:salt ratio was calculated to provide stoichiometric excess for maximum Zn 

removal based upon the reaction in Equation 3-2 below.  

 

2NH4Cl + ZnO   2NH3 + ZnCl2 + H2O    (Equation 3-2) 

 

For the three extraction stages a total ratio of 0.5g of sample to 0.9 g of NH4Cl was 

used. If the ZnO content contained in the sample is a maximum of 10%, this would 

represent 0.05 g of its mass. Based on the reaction in Equation 3-2, 0.9 g of NH4Cl  would 

react with 0.45 g of ZnO. Therefore, for a chosen sample to NH4Cl ratio of 1:1.8, the 

NH4Cl is present in excess. Volatilisation of HCl is rapid, hence the reason for staged 

addition of the chloride salt the roasted samples were subsequently analysed for Zn and Fe 

by ICP-OES. 
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Table 3-3 Procedure for 3-stage chloride roasting at 750C for 1 hour. 

STAGE PROCEDURE 

1 

Add 0.166 g of BOS dust to the crucibles. 

Add 0.1 g of NH4Cl to the crucibles and mix with 

BOS dust 

Put the lid to cover the sample mixture. 

Place the crucibles into the muffle furnace at 750°C 

Leave for 1 hour 

Remove the crucibles and allow to cool for at least 

15 minutes 

2 Using product from Stage 1, add 0.1g NH4Cl and 

repeat  

3 Using product from Stage 2, add 0.1g NH4Cl and 

repeat 

Sample Analysis 

Weigh and record final weight of crucibles and lid 

Combine calcine from all crucibles, assay the calcine 

(calcine was placed in a desiccator prior to analysis) 

 

 

3.4.2.1 Percentage Metal Removal, E 

 Percentage of metal removal, E is expressed as in Equation 3-3.  

 

E (%) = 100  x  (Mo – Mf)/Mo       (Equation  3-3) 

    

where;  

 

Mo  = Mass in unroasted sample, g  

Mf   = Mass in roasted sample, g 
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3.4.2.2 Roasting Regime  

 Roasting regimes (stages, times, temperature and agent ratio) for this study were as 

shown in Table 3-4. The description and sample preparation for weathered and non-

weathered sample used was explained earlier in Section 3.3.1 and Section 3.3.2. All the 

experiments were conducted using the weathered sample. The non-weathered sample was 

selectively used for preliminary experiments with 3-stage roasting at 750C for 180 

minutes (60 minutes per stage) and for 1-stage roasting at 750C for 10 and 15 minutes  to 

compare extraction against the weathered sample. The 1-stage and 3-stage roasting was 

conducted with a mass ratio of 1:0.6 of sample:NH4Cl and 1:1.8 of sample:NH4Cl 

accordingly for a period of 10 and 15 minutes. 

Table 3-4 Roasting regimes for weathered and non-weathered sample 

Roasting Regime Samples 

3-stage, 180 minutes (60 minutes per stage) at 

750C 

Weathered & Non weathered 

3 stage, 180 minutes (60 minutes per stage), 450- 

750 C 

Weathered 

3 stage, 15 – 180 minutes (60 minutes per stage), 

750 C 

Weathered 

1 stage, 10 & 15 minutes at 750C 

3-stage, 10 & 15 minutes at 750 C 

Weathered & Non weathered 

Weathered & Non weathered 

 

 The initial weight of crucibles and lids were recorded. Approximately 0.2g 

(accurately known) of BOS dust was used in each experiment. A stoichiometric excess of 

NH4Cl was added to the crucibles and mixed. The crucibles were placed into the muffle 

furnace at a range of designated temperatures (450
o
C, 550

o
C, 650

o
C, 750

o
C) and reaction 

times (10, 15, 30, 45 minutes). The crucibles were removed and air cooled for at least 15 

minutes.  
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3.5 Chlorination with chlorination agent, Cl2-N2 gas mixtures.  

3.5.1 Chlorination rig 

 

In this section chlorination rig design and commissioning are described.  

 

3.5.1.1 Rig design 

 

The literature review, presented in Chapter 20, Section 3.5.2 was used as the basis 

for the development of the chlorination roasting rig. Schematic layout for the chlorination 

roasting is as shown in Figure 3- while the actual set up is shown in Figure 10.   

 

The rig consisted of a chlorination reactor fitted in a tube furnace, (Carbolite Model 

MTF 1200) with a programmed temperature controller, a stainless steel tube, a stainless 

steel boat, N2 and N2/H2 mixture gas inlet with rotameter,  thermocouple for the inner heat 

measurement, two Dreshcel bottles containing 10% and 20% NaOH solution as scrubbers 

to adsorb the unreacted chlorine gas and volatile metal chlorides scrubber solution to 

neutralize toxic gases.    

 

Figure 3-10 showed the schematic diagram of the proposed chlorination roasting rig. 

The schematic diagram is important to visualize the rig set up to be placed in a fume hood. 

The smallest size of the CL2/N2 gas cylinder are chosen to be able to place the cylinder in a 

fume-hood. 
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Figure 3-10 Schematic layout for the experimental rig 

Rotameter 

Sample tube 

  

N2 + Cl2 gas 

Tube Furnace 

Scrubber solution 
(NaOH) 

To exhaust 

Scrubber solution 
(NaOH) N2 + Cl2 gas 

N2 gas 

N2  

Cl2  
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3.5.1.2 Rig development 

 

 

Figure 3-11 Chlorination roasting rig 

 

  

 Figure 3-11 above showed the actual rig for the chlorination roasting according to 

the schematic diagram.  Due to the nature of the CL2/N2 toxic and corrosive characteristics, 

all equipments and apparatus as shown in Figure 3-12 are placed in fume hood for safety 

purposed. Proper signs are placed to notice the laboratory user about the rig and 

experimental set up taking place.  
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a) Cl2/N2 gas with 

regulator 

b) Dreschel bottle contain NaOH 

solution for scrubber 

c) Jenco temperature in line monitor 

to be used with K-type 

thermocouple  

e) 3 K-type thermocouple positioned at different 

point to measure inner temperature and temperature 

gradient in the tube 

d) Rotameter for N2 and Cl/N2  

 

 

Figure 3-12 a) - e) Apparatus fitted to tube furnace for chlorination roasting procedures 
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Figure 3-13 Sample Tube and Sample boat  
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3.5.1.3 Sample tube and sample boat 

 

The sample tube and sample boat as initially proposed were according to the schematic 

drawing shown in Figure 3-13.  Figure 3-14 and Figure 3-15 show the customized sample 

tube and sample boat. However, parallel with the modification of the rig and material the 

sample tube design was changed which explained in Section 3.7: Accuracy and Errors.   

 

3.5.1.4 Chlorination rig components 

 

 

 
Figure 3-14 Stainless steel tube 

Figure 3-15 Stainless Steel boat 



66 
 

The principal components of the rig are listed as follows: 

 

1. A gas feed system with inlet for N2 and Cl2/N2  gas 

2. Non return valves for both gases suitable with their compatibility.  

3. Two rotameters, with the following specifications,  

a. Flow meter nitrogen variable 0.06-0.6 L/min Influx 

b. Flow meter gas mix (Cl2 compatible) variable 0.05 – 0.6 L/min Influx 

4. Two gas wash bottles, Quickfit Dreschel borosilicate glass 250 ml  

5. Chlorine 50% Nitrogen Balance, 10 L Cylinder Steel, 11 Bar, 110L 

6. Single stage stainless steel regulator; Outlet pressure range: 0-10bar; Inlet 

connection: BS15, Outlet connection: 1/4" NPT Female 

7. Customized quartz sample boat, sizing;  

a. Flow meter nitrogen variable 0.06-0.6 L/min Influx 

b. Flow meter gas mix (Cl2 compatible) variable 0.05 – 0.6 L/min Influx 

8. Customized quartz sample tube, sizing 34mm OD x 31mm ID x 550mm long 

9. Silicon rubber tubing for Cl2/N2    outlet  

10. Silicon rubber tubing for gas was bottles outlet to fume cupboard extractor 

11. PTFE thread seal tape for stainless steel outlet/caps sealant 

 

 

3.5.1.5 Extensive Risk Assessment Study prior to rig commissioning with the use of Cl 2-

N2 gas mixture 

 

Before conducting any experimental procedure with chorine gas, due to its 

toxic characteristic, an extensive Risk Assessment was required. The additional 

information needed in order to pass the Risk Assessment are as in Appendix 6.   

 

3.5.1.6  Rig commissioning and reproducibility 

 

Prior to experimental operation, the rig was tested with regard to safety and 

consistent operation. The preparation procedures for the set-up were as follows:  
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i. Assemble the rig and ensure that all joints were securely fixed as well as 

venting the exhaust to the extraction system.  

ii. NaOH scrubber solution in the 250 ml Dreschel bottles were put in place.  

 

iii. Before testing with actual Cl2/N2 gas, all gas pipe lines and tubes were checked 

for leakage by purging with N2 at 0.3 l/min for 10 minutes. This flow rate was 

sufficient to create positive pressure, high enough to cause detectable leaks.  

iv. At the beginning of the commissioning of the rig, no bubbles appeared in the 

Dreshcel bottle, indicating there was not enough gas flowing and filling the rig. 

Hence, leak detector spray was used to detect whether there were any leaks in 

the system. It was found that the joints of the gas input to the reactor were not 

securely fastened, thus N2 gas was escaping into the fume cupboard. The 

checking and fastening were repeated several times with the lowest flowrate 

until  the bubbles appear,  indicating gas flow in the Dreshcel bottle.  This step 

is very important particularly for the safety and security reason before 

commissioning the rig with Cl2/N2    gas.  

v. The connection of the Cl2/N2   gas regulator to the tube furnace was tested. 

Prior to the testing, Cl2 detector must be worn by the operator. Another gas 

detector was placed in the tube furnace to detect any leakage of Cl2/N2  gas 

from the cylinder to the regulator, then to the Cl2/N2 gas inlet. Step (iii) above 

was repeated for safety and security purposes by replacing the N2 flow with 

Cl2/N2 flow.  

vi. The tube furnace was tested for operating temperatures. The temperature inside 

the furnace was monitored using a K-Type thermocouple. The controllers were 

set up to 800C and the temperature rise was monitored through the controller. 

The temperature reading by the furnace and the controller were recorded to 

determine temperature difference between the two. These steps are also 

important as the actual temperatures inside the furnace  are slightly lower 

(about 15
o
C)  than the temperature indicated by the controller . Therefore, 

adjustments can be made at the furnace if the thermocouples are not in place.  
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As the boat used for the experimental tests was relatively long, attempts were made 

to measure the temperature gradient of the sample using the thermocouples placed in three 

different points in the tube. The heating system was controlled using a Jenco Digital 

temperature controller with inputs from three K-type thermocouples It was found as 

expected that the  hottest zone was in the middle of the tube. The temperature of the 

furnace was fixed at a desired value, between 150C and 750C.  The tests were carried out 

under nitrogen atmosphere (Kanari et, 2001) . Once the roasting conditions had been 

established, reproducibility of the process could be assessed
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3.5.2 Chemical Stoichiometry 

3.5.2.1  Cl2 stoichiometry with BOS sample 

 

Atomic weight as shown in Table 3-5 are used to calculate the chemical 

stoichiometry for the roasting.  

Table 3-5 Selected molecular and atomic weights 

Metal / Compound Atomic Weight  

Cl 35.5 

Zn 65.4 

Na 22.9 

O 16 

H 1 

NaOH 39.9 

 

 

Use ;  

* Zn+Cl2  ZnCl2        (Equation 3-4) 

*Calculation based on Zinc metal reaction with chlorine gas. Expected oxide metal is 

negligible for the chemical stoichiometry calculation as the percentage of actual metal 

oxide were not determined.   

No of moles  = Mass / Mol relative mass No of moles = Actual mass / Molar Mass 

From the above, 1 mole Zn reacts with 1 mole of Cl2. 

Take 1 g samples contains 0.1 g Zn (10% Zn) ;  Therefore no of moles of Zn ;  

  = 0.1 g / 65.4   

  = 0.001529 moles Zn 

Therefore no of moles Cl2, equivalent to 0.001529 moles Zn 
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To be able to react, excess chlorination is needed , therefore 5 times stoichiometry (500%) 

is in excess.  

So, 500% excess  = 0.076 moles of Cl2 ; Mass of Cl2 needed   

= Moles of Cl2 * MWt Cl2 

   = 0.54 g Cl2 

Use density Cl2 to convert mass to liter of Cl2 gas; Density of chlorine = 3.21 g/L 

Therefore; 0.54 g Cl2 needs 0.17L Cl2.  

5 g samples will be used for each experiment; 0.84 L Cl2 needed. Cl2 supplied in 50% 

Cl2/N2    mixture;  therefore  1.69L Cl2/N2    needed.  

Example of amount of Cl2/N2 gas needed for a single set of experiment from 5 – 60 

minutes are  tabulated in Table 3-6. 

Table 3-6 Amount of Cl2/N2   gas needed 

Sample mass  Time 

Flowrate 

(L/min) 

Total 

volume  

5g 

  

5 0.34 1.69 

10 0.34 3.38 

15 0.34 5.07 

30 0.34 10.13 

45 0.34 15.20 

60 0.34 20.27 

  TOTAL  55.73 

 

From  Table 3-6 above, the flowrate for all roasting regimes for 5 minutes roasting were 

applied for all chlorination roasting procedures. The adjustment for Cl2/N2 flowrate were 

modified for selected experiment to study the flowrate /stoichiometry effects.  
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3.5.2.2 Scrubber solution (NaOH)  

 

Sufficient NaOH solution as scrubber are needed to completely react with all the Cl2 

produced (assuming no reaction took place with BOS dust).  

Cl2+2NaOH  NaCl+ H2O+NaOCl                                                                (Equation 3-5)                                                                             

From, 1 mole Cl2 + 2 moles NaOH   

I mole Cl2 = 5.43g Cl2/MWt Cl2 

   = 5.43g Cl2/ (35.453 *2)  

  = 0.076 moles 

Therefore,  

0.076 moles Cl2 + (0.076*2 moles NaOH)  = 0.153 moles NaOH.  

So, actual NaOH produced = 0.153* MWt NaOH 

= 0.153* 39.9 g NaOH 

= 6.101 g NaOH  

So, for 10% solution  = 6.1 g NaOH in 61 ml DI water 

Use NaOH at least double to give excess ,  

Therefore    = (3.05g*2) in (30.5*2) ml solution 

    = 12 g NaOH in 122 DI water
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3.5.3 Experimental Procedures  

 

1. Place the rig and Cl2/N2 10L cylinder in the fumehood.  

2. Prepare NaOH (10% solution) and place in a Dreschel bottle 

3. Weigh sample boat 

4. Put 5g of BOS stockpile sample on the sample boat. Record the weight of the sample 

boat + sample. 

5. Place the boat inside stainless steel quartz layered tube, at the centre of the tube furnace 

6. Connect outlet tubing of sample tube to the Dreschel bottle containing NaOH scrubber 

solution.  

7. The source for N2 as inert gas to purge in the system before and after experiment is 

from laboratory internal supplies. Make sure proper fitting from the pipe and regulators 

direct to the inlet of the sample boat.  

8. Connect both N2 and Cl2/N2    gas mixture hoses to the sample boat inlet.   

9. Open valve for the N2 gas slowly at a rate of 0.06L/min and raise temperature of the 

furnace to a preset value. 

10. The inner temperature of the furnace will be indicated by the temperature indicated by 

the furnace, plus 15C.  

11. Let the nitrogen passes until reaching the desired temperature.  

12. Switch the nitrogen gas to Cl2 and N2 mixtures (1:1) at 0.06 – 0.6 l/min for the 

chlorination reaction for the desired roasting time.  

13. After achieving roasting duration, shut down the furnace at the end of the reaction and 

cool down the boat for 5 minutes under an atmosphere of N2. Close the valve for the 

Cl2/N2 mixtures and switch to N2 gas during cooling process to assure all remaining Cl2 

escapes from the system.  

14. Any unused gas from the roasting will pass through the NaOH scrubber before exhaust.  

*Personal Cl2 gas detector will also be worn. The short term acute exposure limits for 

chlorine is 0.5 ppm/1.5 mg.m
-3

 

15. Measure the concentration of chlorine gas from the NaOH scrubber outlet to make sure 

chlorine gas is totally released from the system.  

16. Remove sample boat from the tube. Weigh the boat to determine mass changes.  

Because sintering occurred during roasting experiments, a grinding step is necessary 

(Kemperman, 2010). Analyse the Roasted samples by ICP.   
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-  

3.5.3.1 Treatment of roasted product / Purification  

 

Most chlorides are sensitive to moisture and undergo hydrolysis forming oxychlorides or 

hydroxides. The reaction is sometimes so vigorous that once the material is exposed to the 

atmosphere at room temperature it fumes as a result of reaction with the humidity in the air. 

Therefore, the handling of chlorides requires special precautions to avoid contact with moisture 

(Habashi, 1986).  

 

3.6 Post Chlorination Roasting Leaching  

 

Post chlorination leaching was carried out with DI water as per BS EN 12457-2 (BSI, 

2002).  The leaching works for all chlorinated samples were conducted with a 1:20 ratio of 

0.5g:10ml of deionized (DI) water mixed in 40ml sample bottle at ambient temperature. 

Neither adjustment of pH nor temperature of leachant was made.  The contact times chosen 

were 1hr and 24hr mixing on a shaking table at rapid mixing of 180 rpm. After leaching, the 

supernatants were analyzed for Zn & Fe via ICP-OES. The leaching was calculated using the 

formula in the Equation 3-6 below:  

 

A = C x  [(L/MD) + (MC/100)]                                                        (Equation 3-6) 

 

where,  

A  = Release of a constituent, mg/kg 

C  = Concentration of a particular constituent in the leachant (in mg/L) 

L  = Volume of leachant used (in L) 

MD  = MD is the mass of the dried test portion (kg)  

MC  = Moisture content ratio (kg)  

 

The roasted products after all the chlorination regimes were subjected to the  

leaching with DI water. Initially, the leaching regime for all chlorinated samples were 

planned to be conducted at every 4 hours interval from 1hour to 24 hours. Few leaching 
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were carried out initially to foresee the effects of leaching between 1 hr and 24 hrs. The 

initial results shown there were no significant difference between the two, therefore,  due 

to the time constraint to establish all the experimental works and data analysis, the 

leaching time were narrowed down to only 1 hour and 24 hours.  

 

3.7 Accuracy and Errors.  

 

 Along the experimental procedures, there were several amendments done on the 

material rig with regard to chlorination roasting with gaseous Cl2/N2. The issues aroused during 

the experimental works led to the replacement of material and changes in experimental 

protocol.  

3.7.1 Degradation of the rig materials during chlorination 

 

While conducting the preliminary chlorination roasting tests, a significant amount of 

residue was observed to be accumulated at the outlet of the stainless steel tube after the 

repetitive usage. Therefore, an investigation was carried out to explore this problem in greater 

detail. The stainless steel tube was thoroughly cleaned before resuming the chlorination 

roasting without any sample present. After 15 minutes run for 0.34 l/min Cl2/N2 gas flow at 750 

C, the tube was reweigh. The reweigh of the tube revealed that there was a loss of material 

degradation of stainless steel tube. Appreciable amount of residue as shown in Figure 3-16 (a) 

and (b) was collected at the exit end of tube.  

 

Figure 3-16 (a) and (b) showed the residue collected at exit end of sample tube.  
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The details of the weight measurement of the tube are as shown in Table 3-7. The 5.05g 

residue collected and the weight loss of 5.23 are correlated, showed that the degradation of 

stainless steel tube are evident by the residue collected. 

Table 3-7 Stainless Steel tube weight loss measurement 

 Weight (g)  

Clean Stainless Steel tube 2301.16 

After 15 minutes roasting at 750C  2295.93 

Tube weight loss  5.23 

Residue  5.05 

 

To further investigate this matter, a control experiment was carried out to foresee 

whether the residue collected and the samples degradation was caused by the reaction of the 

sample and the gaseous Cl2/N2 agent. A controlled chlorination roasting without sample was 

conducted at 750C for 5 minutes roasting. The analysis carried out shows that even without a 

sample in the sample boat, appreciable amount of residue was collected and sent for XRD 

analysis. Figure 3-17 shows the XRD result for the residue collected without sample.  

 

Figure 3-17 R5 : Control Chlorination roasting, without sample at 750C, 0.34 l/min ,5 minutes 
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As shown in Figure 3-17, the constituents  of stainless steel; chromium, nickel,  silicon 

and  iron are found in FeCr2O4/NiCr2O4 , Cr2O3 and SiC showing evidence of the stainless steel 

degradation being carried over to the tube  outlet. Similarly to the issue encountered with 

stainless steel tube, the repetitive usage of stainless steel boat resulted to the degradation of the 

material as well.  Figure 3-18 below shows the degradation of the customized stainless steel 

boat overtime. It is therefore concluded that stainless steel type 316 used for the stainless steel 

tube and sample boat were incompatible with corrosive gas such as chlorine.  

 

Figure 3-18 Degradation of stainless steel boat 

To partially overcome the incompatibility of stainless steel sample tube and boat with 

chlorine gas, alumina crucibles were used. To avoid cross contamination among the roasted 

samples, a new crucible was used for each new experiment. However, the repetitive use of 

alumina crucibles showed visible cracks and appearance of a green color within the body of the 

alumina boat, indicating the attack of chlorine as illustrated in Figure 3-19. A similar situation 

was faced by Kemperman (2010) where in his works, the excessive additions of Na2CO3 

resulted in violent reactions and for some experiments in loss of material due to spillages. Due 

to repetitive use of crucibles, cracks appeared and resulted in additional loss of material.  
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Figure 3-19 Green colour in the body of alumina crucible indicating chlorine attack 

 

3.7.2 Rig Materials replacement & recommission 

 

In solving the issues associated with the tube degradation, actions were taken and few 

alternatives were listed for tube replacement option. Investigation took place and alternatives 

were as below :  

i) Coating : Information and discussion with local manufacturer suggested the option for  

Kolsterising and S3P surface treatment. They are a case hardening treatment for 

stainless steels and CRA's. However , maximum working temperature for Kolsterising 

coating is circa 450C in normal oxidising environments, after which hardness and 

corrosion resistance will deteriorate. S3P case hardening will not withstand circa 750C 

service temperatures without significantly losing hardness and corrosion resistance 

properties. Therefore, this option was dismissed.  

ii) Hastelloy alloy tube : Hastelloy alloy is compatible with chlorine gas,. However, 

hastelloy alloy tube  could  be supplied in small enough size for the available furnace. 

Therefore, this option is also dismissed.  

iii) Alumina tube :  Based on the deterioration and attack of chlorine gas experienced with 

alumina boat mentioned earlier, alumina tube is not an option for sample tube as it will 

be degraded and cracked over time.  
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iv) Quartz tube : Quartz tube is compatible with corrosive gas such as chlorine. 

Furthermore, it could  be supplied from a local supplier in a customized lab scale size. 

Therefore, quartz type tube was chosen.  

 

After the alternative sample tube material was chosen, the new sample tube was 

customized. A quartz tube surrounded by a stainless steel tube was made. The dimension of the 

quartz tube is 650mm in length and +40mm diameter while the stainless steel tube is + 45mm 

diameter with 750mm length. The new stainless steel tube lined with quartz is as shown in 

Figure 3-20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-20 New stainless steel tube lined with quartz tube 
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With the modification of the rig, the thermocouple were no longer attached to the tube as 

shown in Figure 3-21. Therefore, the set point temperature for the furnace was adjusted to be  

15C higher than the  required temperature at the sample boat for each experiment. 

 

 

As mentioned earlier, the repetitive alumina crucible usage led to the cracking of the material. 

Therefore, two quartz sample boats were customized duplicating the stainless steel  and 

alumina boats used previously as details below and shown on Figure 3-22;  

a) Dimension : 8.5cm (L) x 1.1cm (W) x 1.2cm (H), Surface are : 41.74cm
2
, Capacity : 

11.2cm
3
 

b) Dimension : 12cm (L) x 2cm (W) x 1.2 cm (H), Surface area : 81.6cm
2
, Capacity : 28.8 

cm
3
, 

 

 

 

 

                                 

  Chlorination roasting protocols amendment 

 

  

Figure 3-21 Thermocouple was removed from new tube 

 

Figure 3-22 (a) & (b): Customized quartz sample boat 

(b)  (a)  
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Preliminary experiments  indicated the hygroscopic nature of the roasted products prior to 

ICP analysis. The scenario can be seen as shown in Figure 3-23. Therefore, experimental 

protocols were amended and tested to overcome this problem.  

 

 

Figure 3-23 Hygroscopic nature of the roasting residues if left standing in the sample tube  

  

An investigation was carried out to determine the tendency of samples to absorb 

moisture once removed from the sample tube after chlorination roasting. This steps is necessary 

to be determine to avoid inaccuracy of metal composition  due to moisture. Table 3-8 shows the 

mass changes of the samples based on different roasting protocols.  
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Table 3-8 Mass changes of roasted samples 

Sample  Initial sample 

mass (g)  

Final mass (g) 

after 

chlorination  

Final mass (g) 

after cooling 

on brick in 

open 

laboratory 

Final mass (g) 

after 

dessicator  

Final mass (g) 

after oven  

A 5.09  5.69  5.72  5.78  5.73  

B 5.07  5.55     5.59  5.59  

C 5.03  5.57     5.62  5.61  

 

Table 3-8 depicts how the sample mass was regained shortly the roasted samples 

exposed to ambient air. The measurement was conducted after three series of chlorination 

roasting at 650C for 5 minutes roasting. Three sequences of the procedure were represented by 

sample A, B and C as follows :  

Sample A : Weigh sample after chlorination, cool on bench (ambient air), cool on desiccators, 

dry in oven (105C).  

Sample B : Weigh sample after chlorination, cool in desiccators, dry in oven (105C) 

Sample C : Weigh sample after chlorination, dry in oven (105C), cool in desiccators 

The results showed that the samples tends to absorb moisture strongly. Therefore in the future 

experiment, it is suggested that the sample roasted need to be cooled in desiccators prior for 

chemical analysis as it would effect the ICP result.    
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3.8 Summary 

 

The approach undertaken to conduct the beneficiation of stockpile have been explained. 

The methods and tools used to carry out the earth work and sampling are in accordance with 

common practice for site investigation and site contamination investigation studies. The tools, 

equipment and actions taken were carried out using the best available technique supplied.  

 

The materials and methods used in characterizing the stockpile samples and materials used in 

chlorination roasting experiments are presented herein. Materials used in the chlorination 

roasting were originated from the stockpile beneficiation works and fresh BOS dust. These 

materials were characterised according to various standard procedures. Physical and chemical 

analysis using particle size analyser, ICP, and XRD were conducted to determine the 

characteristic of BOS Stockpile.  

 

The equipment, chemicals and the experimental procedures for the chlorination roasting using 

both solid chlorination agent, NH4Cl and gaseous chlorination agent were explained. The 

designing and commissioning of the chlorination rig have been described along with its 

operating protocols and its components.  
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CHAPTER 4 : RESULTS & DISCUSSION – PART I : EARTH 

WORKS, BENEFICIATION & CHARACTERIZATION OF 

BASIC OXYGEN STEELMAKING (BOS)STOCKPILE 

 

4.1 Introduction 

 

The results of the stockpile earth works and beneficiation are arranged into four parts 

that are stockpile observations, physical analysis, chemical analyses and stockpile survey. The 

stockpile observation covers the overall appearance of the stockpile comparing the material 

uncovered by the sampling excavation process and evidence of material variations on the 

surface. The physical analyses investigated the density, moisture content and pH of samples as 

well as the particle size distribution. The chemical analyses look at the concentration of metals 

and their variation between pits and within the pits to calculate the potential recoverable value, 

while the stockpile survey presents the surface topography, estimating the overall volume and 

mass of the stockpile.  

 

4.2 Earthwork & Sampling Stockpile observation 

 

Initial observations of the stockpile give an important indication to its composition. 

These include aerial photographs, surface investigation and visual observation of the excavated 

trial pits. Initial observations of the surface, shown in Figure 4-1 made at ground level in 

December 2009 also indicate that it is not uniform in its physical composition and is made up  

of a range of different coloured materials.  
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Figure 4-1 Surface photograph of plateau showing variety of dumped materials 

Older arisings are shown in Figure 4-2 on some slopes which are porous hard deposits ‘slag 

like’ in appearance and up to 500cm in size.  

 

Figure 4-2 Old deposits on the stockpile slopes 

Excavation of the trial pits revealed different coloured material. Figure 4-3Figure  shows white 

material excavated from one trial pit and Figure 4-4 shows pink material excavated from 

another. 
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Figure 4-3 White coloured material excavated from trial pit 

 

Figure 4-4 Pink coloured material excavated from trial pit 
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4.3 Physical Characterization 

4.3.1 Bulk density, paste pH and moisture content 

 

The physical analysis is based on the samples ‘as received’ from the trial pits to 

determine the mass of the stockpile and to compare the variation in its physical nature. Figure 

4-5 shows a frequency distribution curve for the bulk densities in the 33 samples taken from the 

7 trial pits and shows two strong clusters and an outlier greater than 2.0 t/m
3
. The ranges of the 

cluster were 1.2 – 1.5 t/ m
3
 and 1.6 – 1.8 t/ m

3
. Again this supports the physical observations of 

the suspected variability of the material.  

 

Figure 4-5 Frequency distribution bulk density 

 

The aim of the bulk density measurements was to aid in  an estimation of the stockpile 

mass. To obtain the most accurate figure the sample must be in its unbroken and consolidated 

form, similar to previous slurry samples obtained from the slopes of the stockpile. However, 

the ‘as received’ samples were a mixture of consolidated and unconsolidated material because 

the samples broke apart during the excavation.  

The samples did not contain purely BOS slurry as anticipated before these trial pits 

were excavated. Core sampling would be an alternative to trial pit excavation to try to  

overcome the issue of obtaining consolidated samples. However, due to the number of large 
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and hard coarse particles in the stockpile it was likely that during a core sampling process, the 

finer particles may be compressed leading to a different density measurement. 

For the samples ‘as received’ the bulk density measurements ranged between 1.3 – 2.0 

t/ m
3
. To calculate the mass of the stockpile, a compaction test was carried out to better 

estimate potential maximum mass. Particles in the coarse size range were hard and cannot be 

easily compacted. The measured bulk density of the larger ‘rock like’ particles was 1.58t/ m
3
, 

which is in the same range as the measured results of the excavated samples. However, the fine 

particles are much more compressible so a compaction test was carried out on a sample of BOS 

clarifier slurry. The maximum compaction density that could be achieved   for BOS slurry for 

the ‘as received’ moisture content of 24.1% is 2.26 t/ m
3
. 

All of the samples were alkaline in nature and the measured paste pH values were high. 

The frequency distribution shown in Figure 4-6 shows a range from 10.2 to 13.5 with a peak 

frequency of the samples at pH 11.5. The distribution also shows two broad tails in the range 

10.2 – 11.1 and 11.9 – 13.5, In the latter range there were two spikes at 12.2 and 13.3.  

 

Figure 4-6 Frequency distribution for paste pH 

The moisture contents shows a wide variation from 6 – 43%. This is consistent with the make 

up of the stockpile, from large ‘rock like’ particles with low moisture content and poor 

porosity, to fine particles retaining much higher moisture levels. Correspondingly, the 

frequency distribution of the moisture content, shown in Figure 4-7 has a very wide variation 
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with two clusters around the 10% and 25% (+/-5%) moisture content. A higher moisture 

content of 44% was recorded as an outlier but is not typical of the majority of the samples. 

Again the distribution shows no clear pattern which reinforces the suspected variability of the 

material in the stockpile.  

 

Figure 4-7 Frequency distribution of moisture content 

 

4.3.2 Particle size distribution 

 

Each of the 33 samples was dry sieved into 5 particle size classifications and the mass of 

each fraction was recorded to give an indication of the particle size distribution in the stockpile. 

These ranges of sizes are chosen because those are reasonably practical number to obtain a 

cross section of the particle sizes that could be prepared and analysed in a reasonable time. The 

biggest and smallest sizes are determined by manual separation and sieve accordingly.  The 

bigger sizes are separated manually and the smaller sizes are determined by sieve available. 

Figure 4-8 below shows the actual samples obtained from excavation trials classified into 5 

different fraction sizes.  
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Figure 4-8 Photographs of stockpile samples with size classifications 

 

4.3.2.1 By dry sieving 

 

Table 4-1Table  and Figure 4-9 shows the average mass of 4 particle size fractions as a 

percentage of it total mass for all the 33 samples after being dry sieved. The largest proportion 

is from the samples range from 0.8 – 9.5 in size. The samples show a wide variation in the 

particle size from very small to large ‘rock like’ lumps. The larger standard deviations also 

indicate a wide variability within the results, reflecting the non-homogeneous nature of the 

stockpile samples. The larger particle size (>15.9mm) showed the greatest variability with a 

standard deviation of 21.2.  

 

 

 

 

>38.22mm 

9.5 – 15.9mm 

> 15.9mm 

<0.8mm 

0.8 – 9.5mm 
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Table 4-1 Averaged dry sieved particle size distribution for all 33 stockpile samples 

Particle size 

(mm) 

 

Mass proportion 

(%) 

 

Standard 

deviation 

<0.8 19.2 8.2 

0.8 - 9.5 

 

38.2 15.6 

9.5 – 15.9 

 

8.7 3.9 

>15.9 33.9 21.2 

 

 

       Figure 4-9 Averaged particle size distribution for all 33 stockpile samples 

4.3.2.2 By wet sieving 

 

With dry sieving it was noticeable that some of the particles could be broken down into 

smaller particles by hand, and that fine particulates may coat the coarse particles. For this 

reason a selection of the trial pit samples were wet sieved. Wet sieving breaks down 

agglomerated particles and washes the fine particle fractions off the surface of coarse 

particles. The five samples taken at different depths from Trial Pit 1 were wet sieved and 

the results for each classification were averaged for each particle size range. Figure 4-10 

compares the particle size distribution for dry and wet sieving for all Pit 1 samples.  
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Figure 4-10 Comparison between dry and wet sieving - Pit 1 

Figure 4-10 showed a very small decrease in the mass percentage of the coarse particles 

greater than 9.5mm corresponding to the relatively small quantity of fine particles coating the 

surface or contained in the pores. The coarse particles are ‘rock like’ in structure and do not 

readily breakdown when wet sieved. The comparison of the mass for each particle size are 

detailed in Appendix 1. 

 

The 0.8-9.5mm intermediate sized particles are made up of more agglomerated and softer 

materials. These are more easily broken down by wet sieving and show a larger decrease in 

percentage mass. Correspondingly the fine particles, less than 0.8mm in size, show an increase 

in mass. Wet sieving was also used to separate the 0.8 – 9.5mm particle size range. Overall the 

mass percentage for this range decreased from 44.8% to 36.1% corresponding to the loss of 

agglomerated fine particles. Correspondingly, the <0.8mm particle size increased from 22.6% 

to 32.9% 

 

A wet sieve analysis was carried out on the intermediate particle size range 0.8 –9.5mm to 

look at the particle size distribution. The histogram (Figure 4-11) shows that the samples 
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contain a range of different particle sizes and not a narrow particle size distribution that might 

indicate a single source of material. Although some agglomerated particles were washed into 

the <0.8mm size range by the sieving process the 0.8-9.5mm range still contains 36.1%, a 

significant proportion of the overall mass. 
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Figure 4-11 Pit 1 particle size distribution - wet sieving 

 

Based on the variation of sizes, physical and chemical aspects, he BOS stockpile is evidently 

extremely heterogeneous.  

 

4.4 Chemical Analysis 

 

The chemical analysis is based on samples which have been prepared by drying and 

grinding to determine the concentration of metals and compare variations between depths and 

locations. Because the majority of potentially recoverable metals are likely to be contained in 

the BOS slurry, the two smaller particle sizes obtained by dry sieving were used for analysis of 

their zinc and iron contents. The 0.8 – 9.5 mm particulates were milled and the fine particulates 
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<0.8mm were used as supplied.  The metal content was determined for each trial pit depth and 

averaged for each pit, see Appendix 3. Figure 4-12 compares the averaged weight percentage of 

zinc for each pit for the analysis of the small particle sizes. The smallest particle size, <0.8mm, 

has higher zinc concentrations per pit compared to the intermediate particle size, 0.8 – 9.5mm 

as expected because the smaller particle size contains more zinc bearing slurry. 

 

 

Figure 4-12 Zinc content variation between pits for the smaller particle sizes 

 

The zinc mass percentage ranges between 2.4 - 5.9% for the <0.8mm size and 1.6 – 4.8% for 

the 0.8 - 9.5mm size. However, the standard deviation of the average zinc figures shows a wide 

variation, indicative of the non-homogenous nature of the samples between pit locations, as 

shown in Table 4-2. 
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Table 4-2 Averaged zinc contents and standard deviations 

 

Correspondingly, Figure 4-13 compares the averaged iron content per pit for two different 

particle sizes and shows the same effect as for zinc, higher iron content for the smaller particle 

size classification. For the <0.8mm size range the iron levels vary from 26 – 62% while results 

for the 0.8 – 9.5mm size range from 26 – 54%. Generally all pits highlighted values of iron in 

the <0.8mm size fraction greater than the 0.8-9.5mm range.  Table 4-3 also indicates that there 

was greater variation of the results in the larger size ranges. 

 

 

<0.8mm particle size  0.8 – 9.5mm particle size 

 Zinc 

(%) 

 

Standard 

deviation 

Zinc 

(%) 

 

Standard 

deviation 

Pit 1 2.78 1.83 2.51 1.40 

Pit 2 2.49 1.73 1.94 1.59 

Pit 3 3.75 2.39 2.72 2.59 

Pit 4 3.13 1.29 1.63 0.45 

Pit 5 3.63 1.16 1.96 1.58 

Pit 6 5.94 0.92 3.51 2.12 

Pit 7 5.71 1.57 4.77 3.28 

Average  3.91   2.72  
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Figure 4-13 Iron content variation between pits for the smaller particle size 

Table 4-3 Averaged iron content and standard deviations 

 

 

 

<0.8mm particle size  0.8 – 9.5mm particle size 

 iron 

(%) 

 

Standard 

deviation 

iron 

 (%) 

 

Standard 

deviation 

Pit 1 62.18 7.85 36.86 7.53 

Pit 2 41.36 14.57 36.94 11.94 

Pit 3 55.59 12.86 38.92 16.25 

Pit 4 25.79 4.65 25.85 5.44 

Pit 5 49.19 10.22 34.33 19.96 

Pit 6 48.15 2.33 33.72 29.84 

Pit 7 57.43 0.76 54.19 3.46 

Average 48.53   37.26  
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The zinc and iron contents were also compared at different depths to establish any 

correlations, as shown in Figure 4-14 and Figure 4-15. The results show a random variation of 

values with no clear correlations for the Zinc or Iron levels and the depth of sample. The aim of 

analysing samples from different depths was to investigate if there was a stratification effect 

where material was laid down in layers which may be recovered in layers across the stockpile. 

There was no clear evidence of this effect. 

 

Figure 4-14 Zinc content variation between depths for smaller particle size (<0.8mm) 

 

Figure 4-15 Iron content variation between depths for smaller particle size (<0.8mm) 
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Figure 4-16 shows that larger particles also contain reasonable levels of zinc ranging 

from less than 0.2% in Pits 4 and 5 to over 6% for Pit 7. Although the majority of recoverable 

zinc was expected in the smaller particle size range, which should contain the BOS slurry, this 

analysis shows that the larger particle sizes could also be worth processing to recover value 

from the metal they contains. 

 

Figure 4-16 Zinc content variation between pits for larger particle sizes 

 

The results also indicate high levels of iron in the larger particle sizes, as shown in Figure 4-17 

ranging from 0 – 50%. These levels of iron are less consistent and have a lower average of 

26.1% compared to the smaller particle size averages of 48.5% for <0.8mm and 37.3% for 0.8-

9.5mm.  
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Figure 4-17 Iron content variation between pits for larger particle sizes 

 

4.5 Stockpile Survey 

 

The stockpile is irregular in shape and measurements were taken using a global positioning 

device (GPS) to survey the area. Ordnance survey coordinates for eastings, northings and 

elevations were recorded in metres around the perimeter of the base and around the perimeter 

of the elevated plateau. The main aim of this investigation was to survey the stockpile to 

estimate the total volume and mass. The GPS survey coordinates of the stockpile were plotted 

using the Surfer surveying software package to give a 3D topographical map as shown in 

Figure 4-18 and calculations of the stockpile dimensions as shown in Table 4-4.  
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Figure 4-18 Topographical map of BOS Stockpile 

Table 4-4 Stockpile and plateau dimensions 

Stockpile 

Average height (above sea level) 25.3m 

Average base height (above sea level) 12.9m 

Surface area 68, 498m
2
 

Volume 430,487m
3
 

Plateau 

Surface area 20,818m
2
 

Sample grid volume  74,945m
3
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The area surrounding the stockpile is above sea level so a contour map of the stockpile 

base was produced which was subtracted from the stockpile volume to obtain the estimated 

area and volume figures. The software has also been used to calculate the surface area of the 

flat plateau area, at the top of the stockpile, where the samples were taken. Because the depth of 

the trial pits measured is on average 3.6 m, the volume of the trial pit sample grid has been 

calculated. This can be compared to the estimated stockpile volume to consider how applicable 

results from the samples may be to the overall stockpile composition. 

 

Using the maximum compaction density of slurry, and the volume, a potential maximum 

stockpile mass has been calculated as 972,000 t as shown in Table 4-5. If the remainder of the 

stockpile is the same as the area sampled then this mass figure will be representative of the 

whole. 

Table 4-5 Stockpile mass estimation 

Stockpile Volume 430,487m
3
 

Potential maximum density 2.26t/m
3
 

Potential maximum stockpile 

mass 

972,900t 

 

Because the stockpile is a mixture of different materials it was not possible to be totally 

definitive about density and calculated mass. For example, the solid ‘rock like’ coarse particles 

greater than 9.5 mm have a bulk density of under 2 t/m
3
.  

 

Using the calculated potential maximum mass and the particle size classification data as 

highlighted in Table 4-4 and  Table 4-5 then the mass fractions can be calculated for each of the 

particle sizes as identified in Table 4-6. 

 

 

Table  The dry sieving technique shows significant levels (44%) of the larger 

particulates (>9.5mm) and will have a significant effect on how the material is handled for any 

potential recovery process and what quantity of material can be recovered. 
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Table 4-6 Potential quantities of various size fractions (dry sieve data) 

Particle size range Potential mass, tonnes 

<0.8mm 186,625 

0.8 – 9.5mm 261,994 

9.5 – 15.9mm 88,971 

>15.9mm 335,310 

 

Using the calculations for the mass and the average zinc and iron contents, the potential 

quantities estimated for the different particle size fractions , are shown in Table 4-7.  

 

Table 4-7 Potential quantity of Zn and Fe contained in the stockpile 

Particle size range (mm) 
zinc iron 

Mass of Zn  (t) Mass of Fe (t) 

<0.8 7,381 90,928 

0.8 – 9.5 9,830 133,695 

9.5 – 15.9 1,892 27,661 

15.9 – 38.2 2,393 50,162 

>38.2 2,203 30,859 

Total 23,699 333,305 

 

The quantities shown in Table 4-7 are potential figures and are dependent on the sample 

results being representative of the whole stockpile. The data in this chapter show a wide 

variability within the results. Hence, greater confidence in the averages from these figures 

would require more comprehensive sampling. To recover the metals from the stockpile a 

variety of processes will be needed to separate and prepare the material. The samples will 

require beneficiation works including classification based on their particle size and the larger 

particles will require crushing and milling. 
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4.6 Summary 

 

The stockpile is composed of a wide variety of materials with different particle sizes 

and different levels of metal. They pose a high alkaline characteristic. The majority of the zinc, 

73%, and the iron, 67%, is contained in the particle size range less than 9.5mm which 

represents 55% of the total stockpile mass. The estimated maximum total stockpile mass is 

972,900t with potential mass of 23,699 t of zinc and 333,305 t of iron. Potentially 2.4% of the 

stockpile mass is zinc and 34.3% is iron. The calculated potential value of the stockpile 

depends on the results being representative of the whole stockpile. The sample grid from which 

these results have been obtained represents only 17% of the total volume of 430,487m
3
. 
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CHAPTER 5 RESULTS & DISCUSSION- CHLORINATION 

WITH NH4CL, CL2/N2 & WATER LEACHING 

 

5.1 Introduction  

 

This chapter describes an investigation of the feasibility of chlorination 

procedures for zinc extraction from stockpile samples and BOS dusts. 

 

5.2 Chlorination with chlorination agent, NH4CL  

5.2.1 Material 

 

As mentioned earlier in Chapter 3, Section 3.3.1, two different samples were used in the 

preliminary chlorination roasting with NH4Cl. The first sample was weathered BOS dust taken 

from an historic stockpile (sample with smallest fraction size, <0.8mm) with highest Zn assay 

from one of the excavated pits. The second sample was fresh BOS dust (non-weathered dust) 

obtained from the clarifier at the end of the BOS off-gas dust collection system. The details are 

as stated in section 5.2.2 below 

 

5.2.2 Physical analysis of weathered and non-weathered dust 

 

5.2.2.1 Particle size analysis, pH and moisture content.  

 

The results for physical analysis for both weathered and non-weathered samples are 

shown in Table 5-1. 
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Table 5-1 Physical analysis for weathered and non-weathered dusts 

 

Physical analysis Weathered Dust (Ground) Non weathered dust 

Particle size (Dv90) 45 µm 23 µm 

pH 12.8 10.3 

Moisture content 

% 

10.56 11.38 

 

The weathered dust needs to be crushed as it appear heterogeneous and needs to be 

broken down prior for chemical analysis The weathered samples were ground in a Tema mill to 

obtain homogeneous samples . The non weathered samples did not require grinding as they 

were already of fine particle size and homogenous. The particle sizes for the weathered sample 

(ground)  and non-weathered BOS dust are  45µm and 23 µm as Dv90s respectively. The non-

weathered dust is finer than the weathered dust as it was obtained directly from the clarifier 

from the scrubber in the off-gas system on the BOS plant.  It is  and homogenous in apperance. 

It is well known that the size of BOS dusts are mostly below 100µm (Mikhail and Turcotte, 

1998). The pH of both samples indicate highly alkaline characteristics. 

 

5.2.3 Chemical analysis of weathered and non-weathered dust 

 

To investigate the composition of both samples, ICP-OES elemental analysis was 

carried out. Table 5-2 shows the assay composition of Fe, Zn, Ca and Mg in the two samples. 

The highest Fe concentrations were found in the fresh dust, Zn, Ca and Mg were higher in the 

weathered dust. Typical compositions for steelmaking dusts are 30-85% Fe and <0.2 – 9.4% Zn 

(Wu, 1999; Hay and Rankin, 1994; Jalkanen et al, 2005, Veres et al, 2010) depending on the 

amount of galvanised scrap used during the steelmaking process. 
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Table 5-2 Composition of weathered and non-weathered BOS dust from ICP-OES analysis 

Sample Fe (%) Zn (%) Ca (%) Mg (%) 

Weathered dust 50.9 7.8 8.2 1.1 

Non-weathered dust 58.5 6.3 6.4 0.8 

 

The chemical composition of BOS dust depends mainly on the quality of steel scrap 

processed and the type of steel produced. Beside iron and zinc, the dust is characterized by the 

relatively high content of calcium oxide, whose presence should be attributed to the lime added 

to the steelmaking furnace. Veres at al., (2010) found 7.5% of Ca in a form of CaO and 2.7% of 

Mg in a form of MgO. Therefore, the chemical composition carried out in the present work 

obtain similar characteristics.  

 Figure 5-1 and Figure 5-2 show the XRD patterns for the analyses of weathered and non-

weathered BOS dusts to compare the mineralogy. The X-ray diffraction patterns of the 

untreated BOS dust indicate the presence of franklinite (ZnFe2O4), iron, wustite (FeO), calcite 

(CaCO3) and graphite (C). The non-weathered BOS dust consists of franklinite, iron, wustite, 

calcite, graphite; plus zincite (ZnO) and haematite (Fe2O3).  

 

 

Figure 5-1 XRD pattern of BOS weathered dust 
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Figure 5-2 XRD pattern of non-weathered BOS dust 

This is in line with the mineralogical characterization works carried out with BOS dust 

by (Veres et al., 2010), Mikhail and Turcotte, (1998) and Wu (1999). They found the similar 

composition  of Fe, FeO, Fe2O3, ZnO, ZnFe2O4 and similar components of CaO found by Su et 

al (2004).   

5.2.4   Preliminary work : Chlorination roasting  

A preliminary work of chlorination roasting with NH4Cl in muffle furnace, Carbolite 

Model  OAF 1000 was conducted in duplicate to determine the removal of Fe & Zn from 

weathered dust, namely BOS1 and BOS2. The roasting was carried out for a 60 minutes, 3-

stage roasting at 750C. Table 5-3 shows the results the Fe and Zn removal.  

Table 5-3 Preliminary chlorination roasting with weathered dusts (BOS)  

 Fe g/kg Zinc (g/kg) 

Initial Concentration 491 55.5 

Final Concentration BOS 1 433 1.05 

Final Concentration BOS 2 
432 0.87 

% Extraction Fe (%) Zinc (%) 

BOS 1 25 98 

BOS 2 21 99 
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From the result, it was found that 98 - 99% of Zn was removed and only 21-25% of Fe 

volatilized. The results shows a very high promising removal for Zn. Based on this result, 

further chlorination roasting were carried out.   

Following the high removal of Zn achieved, another series of experimental work were 

undertaken to investigate the removal of Fe & Zn volatilization using weathered dust (sample 

A) and additional non-weathered dust (sample B). The same chlorination regime of 60 minutes 

roasting, 3 stage roasting at 750C were used. Chlorination with sample A were conducted in 

triplicate while chlorination with sample B were conducted in duplicate. The results are shown 

in Table 5-4 below.   

Table 5-4 Preliminary chlorination roasting with weathered dust and Non weathered Dust  

 Fe (g/kg) Zinc (g/kg) % Fe 

Extraction 

% Zinc 

Extraction 

Weathered Dust (A) 509.5 77.93 - - 

Non Weathered (B)  585.2 62.86 - - 

A1 375.1 1.15 28.13 99.22 

A2  425.7 1.062 35.77 98.95 

A3  449.5 1.094 14.06 98.63 

B1 380.9 0.422 34.65 99.33 

B2 442.2 0.5 23.05 99.19 

 

As can be seen in Table 5-4, the removal of Zn is successfully achieved with the 

extraction ranging from 99.1% to 99.3% for non-weathered and from 98.6% to 99.2%  with 

non weathered dust. The extraction of Fe in weathered dust ranged from 14 to 36% in 

weathered dust and 23 to 35% for non weathered dust. Following the successful extractions as 

presented in Table 5-5 and Table 5-6Table 5-, further chlorination roasting regime were 

performed as shown in  

 Table 5-5 shows the roasting regime for chlorination roasting with NH4Cl. The 

‘conducted regime’ were the condition for chlorination roasting already carried out while 

‘additional regime’ were the additional regime added; with different roasting condition. Most 

preliminary roasting were conducted with weathered dust, therefore, another sample, non 



121 
 

weathered dust were added to compare the removal of Zn from different source of sample. The 

additional range of roasting temperature were added, from 400C to 700 C, added to the single 

temperature of 750 conducted earlier.  

Table 5-5 Roasting Regime for Weathered & Non Weathered Dust. 

  Conducted regime   Additional regime  

Sample  Weathered Dust   

Weathered Dust, 

Non-Weathered 

Dust.   

Temperature  750°C  

450°C – 750 °C 

(Mass determine 

every 50°C)  

Duration  
3 stage - Every 1 

hour (3 hours)  

Every 30 mins (till 3 

hours) 

NH4Cl add Every one hour 
Every 30 mins / one 

hour 

 

 

 

 

5.2.5  Weathered versus Non-weathered BOS dust 

 

A preliminary experiment was conducted to compare the removal of Zn and Fe after 180 

minutes using 3-stage roasting at 750C. The results obtained were as shown in Table 5-6. It 

can be seen that the Zn removals for both samples were around 99%. However, the removals 

for Fe showed a wide variation from 14% to 35%. These Fe results are undesirable levels of 

extraction and show a high degree of sensitivity to small changes in conditions from one test to 

another. The remaining experiments were therefore carried out to determine whether lower 

temperature and shorter roasting could reduce the Fe extraction whilst still extracting most of 

the Zn.  
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  Table 5-6 Zn and Fe removal in weathered and non-weathered BOS dust for 3-

stage roasting at 750C for 3 hours 

Sample % Zn Extraction % Fe Extraction 

Weathered dust 98.6, 98.6, 99.3 14.1,19.2, 27.9 

Non-weathered dust 98.6, 98.7 23.1, 34.7 

 

5.2.6 Effects of temperature 

 

The effect of roasting temperature on Zn and Fe removals with weathered dust is shown 

in Figure 5-3. Interestingly, there is a significant increase in volatilization of Zn (53% to 93%) 

between 550-650C whilst volatilization of Fe (27%) is fairly constant. According to (Chan et 

al., 1996a), for most metals, the removal process will be increased with a higher roasting 

temperature. However, this was not observed for Fe in this experiment at roasting temperatures 

of 450- 650C when the level of Fe removal remained relatively consistent at about 27% or 

less. 

 

 Figure 5-3 Effect of temperatures for the removal of Fe & Zn by HCl with  3-stage 

roasting for   3 hours for weathered sample. 

The maximum extraction of Zn at 750C could be due to presence of ZnCl2 which has a boiling 

point of 732C. The boiling point of FeCl2 is 1074C and for FeCl3 is 332C respectively 
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(Habashi, 1997). This would suggest that the valency of the Fe is an important consideration in 

assessing extractions. Determination of optimum temperature for Zn removal is crucial as the 

percentage of removal is clearly affected by roasting temperature. Depending on the roasting 

temperature, some of the chlorides will be in a condensed state and others will be present in the 

gas phase. 

 

5.2.7 Effects of roasting time  

 

The results from the series of experiments at a roasting temperature of 750C with 3-

stages with  different roasting times (15 and 180 minutes) are presented in Figure 5-4. The 

removal of Zn increased significantly from 75% extraction at 15 minutes to higher than 97% 

for roasting times greater than 30 minutes. The additional roasting period shows a constant 

recovery of 98 – 99% of Zn. During the same time period Fe removal averaged about 32%, 

falling off to less than 21% at 180 minutes. Hence, it may be concluded that the removal of Fe 

was relatively constant regardless of the duration of roasting.   
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Figure 5-4 Effect of roasting time on Fe & Zn extraction by HCl at 750°C; 3 stage roasting for 

weathered samples. 
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It can be seen that for the chlorination roasting process, reaction time is an important 

parameter as is often observed in the literature (Kar et al., 2005), (Chi et al., 2004);(Chan et all, 

2006). As can be observed from Figure 4, even though Zn removal was increased, Fe removal 

was fairly constant. There are many reasons that may account for this phenomenon. Limited 

roasting time could result in an incomplete chlorination reaction, and an excessively long 

roasting time could give rise to the reversal of the already formed chloride to oxide (which will 

not be volatilized in this temperature range), thereby reducing the iron recovery (Chi et al., 

2004). This might be the case for Fe removal in this study as the removals were fairly constant 

between 15 – 135 minutes, with the removal dropping slightly at 180 minutes.  

The reaction between the chlorination agent and oxygen may be controlled by the oxygen 

partial pressure in the air, which is close to constant in an open system such as the one used in 

this study (Chan, 1997). On the basis of this laboratory scale study, it is possible to recover 97 

% of Zn and 30% Fe by roasting at 750C for a period of 135 minutes. Ignoring the results of 

180 minutes roasting, the best time for volatilization of both metals is from 30 minutes to 135 

minutes.  

 

5.2.8 Effects of amount of chlorination agent and number of roasting stages 

 

5.2.8.1 1-stage versus 3-stage roasting non-weathered sample 

 

 Different amounts of NH4Cl were used to compare the effects of each addition 

agent which represent stages. 1 stage roasting represent the ratio of 0.1666 g sample to 0.1 

gNH4Cl while 3-stage roasting represent 0.166g sample to the total of 3g NH4Cl. Table 5-7 

shows the extractions of Zn and Fe for roasting of the weathered and non-weathered samples at 

750C with a single stage and also a 3-stage regime using 10 minutes and 15 minutes per stage.  

Zn extractions are clearly high, with the first 0.1g of NH4Cl (1-stage), achieving almost 84% 

with one 10-minute stage increasing to almost 95% at 15 minutes.  For the 3-stage runs, the 

amount of 0.3g NHCl (3-stage) led to high Zn recoveries as reported earlier. Interestingly, 

though, it has now been possible to reduce the Fe recovery to below 14% whilst maintaining a 

reasonable Zn recovery as shown by the data for the 10-minute roast for the weathered sample. 
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The results show that performing the roasting stage with a starvation amount of chlorination 

agent leads to very acceptable Zn recoveries whilst controlling the undesirable Fe removal.  

This forms the basis for further refinement of the potential recovery process. 

Table 5-7 Effect of the length and number of roasting stages on Fe & Zn removal at 750C 

Regime Weathered Non-weathered 

% Zn 

Extraction 

% Fe 

Extraction 

% Zn 

Extraction 

% Fe 

Extraction 

1-stage, 10 minutes 83.5 13.4 53.6 4.7 

3-stages, 30 minutes 

(10 minutes per 

stage) 

97.1 30.3   

1-stage, 15 minutes 94.40 20.5 67.3 9.5 

3-stage, 45 minutes 

(15 minutes per 

stage) 

97.6 32.8   

 

 

5.2.9 Weathered versus Non-weathered BOS dust 

 

The roasting behaviour of the non-weathered sample was studied at one stage only and 

the results are presented in Table 5-7.  The trends for the non-weathered samples are similar to 

weathered, but with lower removals of both Zn and Fe.  Indeed it is possible to obtain more 

than 67% of the Zn in the vapour phase whilst potentially losing only 9.5% of the Fe to that 

phase. This behaviour is somewhat unexpected when it is considered that the weathered sample 

is coarser; D90 of 45 μm compared to 23 μm of non-weathered sample and expected should 

contain more of the higher valency Fe species.   

The research has demonstrated that chlorination extraction has potential application in 

the steel sector for removal of Zn from steelmaking BOS dusts. From this investigation it can 

be   concluded that chlorination roasting indicates relative selectivity, recovering higher 

percentages of Zn than Fe. High levels of Zn recovery (53% to 99%) are obtained over wide 
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ranges of roasting times (10 to 180 minutes). Greater than 93% Zn recovery can be obtained at 

roasting temperatures over 650ºC. The weathered BOS dusts samples tested have higher Zn 

recovery levels than the non-weathered dusts. 

 

5.3 Chlorination with chlorination agent, CL2/N2 gas mixtures.  

5.3.1 Material, Physical analysis and chemical analysis of stockpile sample mixtures.  

 

The samples used for this chlorination roasting with Cl2/N2 gas is a mixture of 5 different 

weathered BOS dust, namely Sample Mixture (SM) which were mixed and ground. The 

preparation of samples prior the chlorination roasting with Cl2/N2 gas was explained earlier in 

Section 3.3.1 of Chapter 3.  

 Physical analysis were carried out to investigate the characteristic of the SM. The 

results for particle size, pH and moisture content are shown in Table 5-8. 

Table 5-8 Particle size, pH and moisture content of stockpile sample mixtures  

Particle size (Dv90)  66 µm 

pH 12.48 

Moisture content (%) 1.37 % 

 

 The particle size analysis showed that the particle size (Dv90) was high compare to the 

weathered (46 µm) and non weathered dusts (26 µm) used in the NH4Cl chlorination roasting. 

The Dv90 of 66 µm was in a range (<100 m) as reported by Mikhail and Turcotte, 1998. The 

possibility that can be stated for the higher particle size of SM was that the SM was formed 

from various sample from different trial pits, therefore the heterogenous characteristic from one 

pit to the other varies while the weathered dust was taken from one particular sample that is 

C092 from pit 6 sample no 2.  

To study the repeatability of Fe & Zn determination in the mixed sample, 16 chemical 

analysis were carried out on replicates from the sample used for the chlorination roasting 

experiments. The 16-times replication was chosen as to fully utilize the vessels slots in the 
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microwave digester for ICP analysis.  The variability of the Fe & Zn composition in all  

samples is shown in Figure 5-5. The average composition and statistical data for Fe & Zn are 

presented in Table 5-9. 

 

Figure 5-5 Composition of Fe & Zn in SM 

The analysis shows in Figure 5-5 showed that the Fe and Zn composition analysis results 

are highly accurate and low variability with <10% difference between highest and lowest 

readings for Fe & <5% for Zn.  The mean, minimum and maxium value as well as  2Std Dev 

are shown in Table 5-9.  

Table 5-9 Fe & Zn content in SM  

 
Fe Zn 

Mean 55.70 6.66 

2 Std Dev  (95.45%) 1.81 0.21 

Min 53.39 6.48 

Max 56.71 6.83 

Range 3.32 0.35 
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 As can be seen in Table 5-9, the average content of Fe was 55.7% while for Zn was 

6.7%.  The low value of 2 Std Dev, 1.81 for Fe and 0.21 for Zn indicate the high confidence 

results. The composition analyses were in the range as reported in literature (Sakamoto et al., 

1995), (Veres et al., 2010) ((WU, 1999) ; (S.M.Hay and Rankin, 1994)  These  compositions 

were used later to compute metal removal percentages..  

 XRD analysis was conducted to determine the mineral phases in SM. The mineralogical 

phases are as shown in Figure 5-6.  

 

 

Figure 5-6  XRD Pattern for Stockpile Mixtures 

Figure 5-6 shows the four main crystalline mineral phases that were identified by XRD 

as iron, wustite, franklinite and calcite.  The calcite component was expected and originated 

from limestone used as flux in the steelmaking process.  The two most commonly identified 

zinc phases in steel and ironmaking dusts are zincite (ZnO) and zinc ferrite, plus the possibility 

of complex ferrites such as (ZnMnFe)2O4 (Oda et al., 2006; Vereš et al., 2011). However, it is 

well understood that minor amounts of certain crystalline phases can disappear in the 

background (Hilber et al., 2001). 
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5.3.2. Chlorination Regime 

 

After all the issues associated with the chlorination rig were resolved as presented and 

discussed in Chapter 3 Section 3.7, the roasting regimes could be tabulated. The chlorination 

roasting programmes with the new modified chlorination rig are as shown in Table 5-10 where. 

7 set experiments were carried out.  

Table Table 5-10 where. 7 set experiments were carried out.  

Table 5-10 Chlorination Regime for Chlorination with N2/Cl2 gas 

Run 

Number  
Sample  Duration (minutes)  

1 Chlorination at 650C 5  

2 Chlorination at 450C 15, 30, 45, 60, 75, 90  

3 Chlorination at 650C  5, 10, 15, 20, 25, 30  

4 Chlorination at 750C 5, 10, 15, 20, 25, 30  

5 Chlorination at 150C, 550 C 90  

6 
Chlorination at  750C, 1x & 2.5x 

stoichiometry 
5, 10, 15, 20, 25, 30  

7 Chlorination at 450C & 650C, Wider boat  15, 30  

 

The goal of the study was to establish the roasting conditions which will remove most 

effectively the required heavy metals. The roasting parameters under investigations included 

temperature, roasting time, amount of chlorinating agents and surface area.  
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5.3.2 Effects of temperature and reaction time.  

 

 The 1
st
 run of the chlorination roasting was conducted with chlorination roasting at 

650C, for 10 minutes with 0.34 l/min Cl2/N2 flow. The results are shown in Figure 5-7.  

 

Figure 5-7 Extraction of Fe & Zn at 650 C, 5 minutes roasting 

The results shown from Figure 5-7 above shows the repeatability of the 10 roasting 

replication procedure to be only moderate with the extraction for Zn ranging from 19% to 33% 

while extraction for Fe ranging from 4% to 15%. 

The chlorination roasting in a lower temperature was carried out in a 2
nd

 run, at 450C 

for 15 to 90 minutes roasting with 0.34 l/min Cl2/N2 flow. The results are presented in Figure 5-

8.  
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Figure 5-8 Extraction of Fe & Zn at 450 C for 15 – 90 minutes roasting  

It can be seen in Figure 5-8 that the extraction of Fe was higher than Zn with a removal of Fe 

ranging from 23% to 51% while the extraction of Zn ranged from about 16% to 36%. Even 

though the extractions for both metal were unsatisfactory, the higher extraction of Fe needs to 

be avoided. These results suggest the formation of Fe2Cl3 (boiling point 332C) at this 

temperature (Habashi, 1997). 

 The 3
rd

 run was conducted was continued with a chlorination roasting at 650 C, for 5 – 

30 minutes with 0.34 l/min Cl2/N2 flow. The results for 5 minutes roasting were the average 

results from the 1
st
 run results reported earlier and the additional results are as presented in 

Figure 5-8. It become apparent that the reaction time of 15 mins at 650C is sufficient for 

volatilizing a maximum 78% of Zn with less than 30 % of the Fe being removed from the 

solids at these conditions.The volatilization  of Fe was increased  from about 20% at 15 

minutes to almost 40% at 30 minutes holding time. 
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Figure 5-9  Extraction of Fe & Zn at 650C for 5 - 30 minutes.  

The energy provided is inadequate to bring about further increment of Zn removal. The 

degree of volatilization of a metal chloride at a given temperature is very much dependent on 

its boiling point. The efficiency of volatilization depended not only on the vapor pressure of the 

metal chloride, but also the ease of conversion of the metal compound into chloride. If the 

metal compound contains a large portion of unconvertible metal, then the volatilization will  

not be high. Therefore, at temperature lower than the boiling point of ZnCl2, the removal was 

only satisfactory. The volatilization of Fe might be further increased with longer roasting time 

as the Fe
3+

 valency in the samples might lead to the production of FeCl3 which  has a boiling 

point of only 332C (Habashi, 1997), thus readily vaporized. 

The 4
th

 run was the chlorination roasting at 750 C, for 5 to 30 minutes roasting with 

0.34 L/min Cl2/N2 gas flow. The results are presented in Figure 5-10.  
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Figure 5-10 Extraction of Fe & Zn at 750C for 5 - 30 minutes roasting time 

Figure 5-10 shows the removal of Fe & Zn at 750C roasting temperature for 5 – 30 minutes 

holding time. Removal of more than 98% Zn was achieved whilst almost 50% Fe was 

volatilized after 30 minutes. The extraction for Fe was steadily increasing from 15 minutes to 

30 minutes, ranged from 20% to 45%. This result shows that the temperature 750C , just 

above boiling point of ZnCl which 732C, could be sufficient to remove all of the  Zn.  
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Figure 5-11 Comparison of Extraction of Fe & Zn at 650C for 5 - 30 minutes roasting time 

 Figure 11 above shows for convenience the comparison of Fe & Zn extraction at 650C 

and 750C from 5 to 30 minutes roasting which were already explain earlier.  

It must be noted that higher temperatures makes the samples sinter, and the sample 

becomes fused, making the transfer of the sample from the boat difficult. However, prolonging 

the roasting time generally is a bound to produce more vapour in the tube wall which makes the 

maintenance and cleaning of the tube difficult. Reaction time is an important parameter to be 

considered in process development. lt directly relates to the operating cost (Chan, 1997).  

 The main objective of recycling BOS dust after chlorinating roasting is to be able to use 

the Fe content in the sample. Therefore, a few attempts (5
th

 run) were made to conduct 

chlorination roasting at lower temperature of 150 and 550 with 0.34 L/min Cl2/N2 for 90 

minutes to see whether they will be a high removal of Zn, whilst keeping Fe in the residue. The 

results are compared with the chlorination roasting conducted at 450C earlier as shown in 

Figure  

 Figure 5-12 illustrate the extraction of Fe and Zn at low chlorination roasting 

temperature conducted at 150C, 450C and 550C. The gas flow used is 0.34 L/min and the 

roasting was held for 90 minutes.  
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Figure 5-12 Extraction of Fe & Zn at 150 C, 450C & 550C for 90 minutes roasting time 

As can be seen from Figure 5-12, longer roastings were done as it is expected that the 

reaction could be enhanced with longer roasting time. Generally speaking, it is not expected to 

see much removal of Fe & Zn at temperatures way below the boiling point of FeCl2 (1023 C), 

FeCl3 (332 C) and ZnCl2 (732 C).  

The immediate questions were how high should the temperature be in order to 

effectively volatilize the heavy metals and what would be the minimum temperature that would 

allow effective volatilization. Although the roasting were conducted at temperature below the 

ZnCl2 vapor pressure, given longer roasting time, they can still vaporized.  

5.3.3 Effects of chlorination agent : Flowrates  

 

A short series of experiments (7th run) were conducted to investigate the behavior of Zn 

extraction using different chemical stoichiometry. Figure 5-13 shows the extraction of Fe & Zn at 

750 oC using 1 (0.06l/min), 2.5 (0.17L/min) and 5 (0.34lL/min) stoichiometry at 30 minutes 

roasting.  
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Figure 5-13 Extraction of Fe & Zn at 750 C at different stoichiometry for 30 minutes 

From Figure 5-13, generally it is clear that the addition of a chlorinating agent is needed 

for further vaporization of the existing metal chlorides. The 1:1 of Cl2/N2 : Zn ratio based on 

the chemical stoichiometry calculated only removed about 20% of the zinc from the sample. 

The increase of Zn removal was significant with the addition of 2.5 times stoichiometric 

amount of Cl gas where about 90% zinc was  removed and only a relatively small proportion of 

23% of  Fe  removed. The strong dependence of Zn removal on the addition of chlorinating 

agent indicates that  a significant fraction of Zn is in the form of ZnO or in forms other than 

chloride (Chan, 1997). At 5 times stoichiometry, further increment of Zn was achieved. The 

results showed that almost total removal of Zn was achieved where 99.4% and 48% removal 

were obtained for Zn and Fe respectively. If the target is to remove at least 90% of Zn, the 2.5 

times stoichiometry are sufficient. At 2.5 times stoichiometry, about 76% Fe can be kept in the 

sample compared to only half of the Fe constituents (48%) remaining in the sample with 5 

times stoichiometry. Fe is a major constituents needed as feedstock in steel production. 

Therefore, to avoid more of Fe removal from the sample, 2.5 times stoichiometry is sufficient.  

 Following the results presented in Figure 5-13, an additional series of experiments using 

2.5 times stoichiometry was carried out to investigate the trend of Fe & Zn extraction with time 

at the same temperature, using  5 minutes intervals from 5 minutes to 30 minutes roasting 
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Figure 5-14 Comparison of Fe & Zn Extraction at 750C with different stoichiometry for 5 – 

30 minutes 

Figure 5-14 indicates the comparison of Fe & Zn extraction using 0.17 L/min and 0.34 

L/minCl2/N2 to represent the respective 2.5 and 5 times chemical stoichiometry at 750C . The 

extraction is gradually increased for both Fe & Zn with the additional roasting time. Significant 

increase of Zn removal was seen from 5 minutes to 15 minutes roasting time for both 

stoichiometry ratios. The Zn removal using 0.17L/min ranged from 20% to 55% while using 

0.34 L/min increase the Zn removal from 42% to 83% at 15 minutes. Almost the same amount 

of (~20%) Fe extractions were recorded at 15 minutes roasting whether using 0.17 l/min or 

0.34 l/min flowrate. At 2.5 stoichiometry, the Fe extractions were quite stationary where the 

extraction was maintaining at slightly above 20% extraction from 20 to 30 minutes roasting. 

However the Fe extraction at 5 times stoichiometry continually increased. These results 

indicated that insufficient amount of Cl2/N2 will exhaust the ability to remove further Fe in the 

sample, thus no appreciable increment of Fe removal  was seen as roasting time was increased.  

There is no need to use more than 5 times stoichiometry because based on the 99.4% Zn 

extraction the excessive chloride cannot further affect the volatilization of Zn.  
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5.3.4 Effects of sample boat surface area  

 

As mentioned in Chapter 3, Section 3.7.2, two types of sample boat (same depth) were 

used in this study. Most of the experiments use the smaller sample boat with the capacity of 

11.2 cm
3 

with surface area
 
of 41.7cm

2
 while the larger sample boat with a capacity of 28.8 cm

3
 

and surface area of 81.6cm
2
 was used selectively for a surface area effect study.  

The same amount of 5g samples were spread on different sample boat as illustrated in 

Figure 5-15.  The thickness of the samples on the boat were 0.4 cm and 0.2 cm respectively. 

 

 

Figure 5-15 Samples spread on different sample boat 

  

Two chlorination roasting regime were conducted in determining the surface area 

effects towards the Zn and Fe removal (7
th

 run). Temperature at 450C and 650C were chosen 

with a flowrate of 0.34 L/min for 15 minutes and 30 minutes. The results are presented in 

Figure 5-16.  
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Figure 5-16 Comparison of Zn Extraction at 450C & 650C for 15 & 30 minutes roasting, 

0.34 L/min using different boat size.  

As expected, the removal of both Fe and Zn as can be seen from Figure 16 are higher 

with larger boat and longer roasting time. It is possible to remove about 99.5% and 91% of Zn 

at 650C for 30 minutes and 15 minutes roasting accordingly using the wider boat compared to 

only 73% with smaller boat for 30 minutes roasting. The trend is similar to 15 minutes roasting 

at 650C and 450C where the removal of Fe & Zn are higher with bigger boat. This suggest 

that the surface area plays an important role in providing enough space for a reaction between 

chlorination agent and sample.  

 Another series of chlorination roasting were conducted for 15 minutes and 30 minutes 

at higher temperature, 750C using smaller sample boat (surface area; 41.74cm
2
) and 2.5x 

stoichiometry (0.17 L/min). The outcome are compared with bigger boat (surface area; 

81.6cm
2
) and 5x stoichiometry (0.34 L/min) The condition was chosen to determine whether 

the removal was significantly affected by the surface area regardless the flowrate of 

chlorination agent. The results are presented in Figure 5-17. 
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Figure 5-17 Comparison of Zn Extraction at 750C, 0.17L/min using different boat size.   

 

Interestingly, the graph in Figure 5-17 shows that the longer boat with larger surface 

area  was significantly capable of  almost doubling the removal of Zn compared to smaller boat 

at 15 minutes roasting; 97% of Zn was extracted for 15 minutes roasting with the larger boat 

while only 54% of Zn was extracted using the smaller boat. The results obtained showed that 

chlorides formed at the surface of the sample covered the unreacted part of the sample thus 

forming a diffusion barrier (Kanari et al., 2001). It is evident where there was not much 

difference by using the larger sample boat for roasting at 30 minutes where the extraction 

difference was only additional 10% extraction as at 15 minutes roasting. The lower reaction 

rate maybe due to difficulties of chlorine to diffuse through the chloride layer.  
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5.3.5 Anions in the volatile matter 

 

One way to confirm that the metals in the volatile matter were mainly in chloride form 

was to analyze the dissolved volatile matter for Cl
-
 using an analytical technique such as ion 

chromatography (IC). Although hydrogen chloride would also be measured if present, this 

experiment did not have water vapour in the gas phase and hence the chloride values should 

represent metal chloride. Selected samples were analysed for Cl
-
 and SO4

-
 constituents and the 

results are shown in Table 5-11. The analysis was done in duplicate unless specified.  

Table 5-11 Analysis of anions in selected experiments. 

Sample 

ID 

Temp 

(°C) 

Roasting 

Time 

(min) 

Flowrate 

(L/min) 

Cl
- 
(%)  SO4

- 
(%) NO3

- 
(%) 

CR96 650 5 0.34 16.79, 14.86 0.44, 1.27 0.22 ND 

CR101 650 10 0.34 25.79, 26.35 0.95, 1.93 ND, ND 

CR102 650 15 0.34 22.45, 25.51 0.44, 1.01 ND ND 

CR103 650 20 0.34 23.48, 27.48 0.74, 0.82 ND ND 

CR100 650 25 0.34 29.87, 29.98 1.69, 1.92 ND ND 

CR99 650 30 0.34 27.36, 30.27 2.52, 3.36 ND ND 

*CR104 750 5 0.34 16.00 0.60 ND 

 CR104 : Single analysis on anion 

Table 5-11 shows that a substantial amount of Cl
-
 found suggesting that the roasted samples are 

mainly in the form of chloride with some in sulphate form and a negligible amount of NO3
-
. 

However, the anion analysis from the NaOH scrubber was not carried out to indicate the 

volatile matter trapped in the scrubber solution. This is subjected to the improvement in future 

work.  
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5.4 Leaching 

5.4.1 Introduction 

 

The presence of presence of zinc ferrite in much greater proportion than the zinc oxide 

will prohibit the ability of zinc leaching (Veres et al., 2010). Therefore, the leachability of zinc 

could be achieved as zinc chloride is soluble. Post chlorination roasting could leach out more 

zinc constituents as chlorides.  

 

5.4.2 Zn & Iron Leachability 

 

The aim of the leaching tests was to determine the level of chloride than can be further 

removed from the roast residues by water leaching. The leaching was carried out using DI 

water as leaching agent with a  1:20 ratio of 0.5g:10ml of deionized (DI) water mixed in 40ml 

sample bottle at ambient temperature; for 1 hour and 24 hours. The procedures are as discussed 

in Chapter 3, Section 3.6.  The results are presented in Table 5-12 to Table 5-15. The results in 

the table throughout the work are the mean values of duplicate leaching work, unless specified 

as single. The extraction was calculated based on the assay of the final leach liquor. The 

unleached residue was not subjected to analysis due to time constraint.  

Table 5-12 Fe & Zn leachability  of roast residues from  650C Cl roasting  

Time (minutes) 

Fe (%) Zn (%) 

Extraction 

via 

Chlorination 

Leachability 

(1hr 

leaching) 

Leachability 

(24hr 

leaching) 

Extraction 

via 

Chlorination 

Leachability 

(1hr 

leaching) 

Leachability 

(24hr 

leaching 

5 7.19 2.70 1.13 24.21 10.83 15.62 

10 28.52 15.50 15.05 48.81 74.61 74.69 

15 19.95 8.82 8.49 74.64 92.23 88.27 

20 30.50 6.59 6.72 77.96 90.62 95.63 

25 36.84 9.07 9.66 73.32 87.17 91.57 

30 39.00 4.57 4.09 73.73 88.46 78.29 
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Table 5-12 shows the results of leached constituents after the chlorination roasting at 

650C. The highest Zn leached out was found after 24hr leaching with a sample previously 

roasted for 20 minutes.  Zn was leached out of the roast residue up to 92% of the initial value in 

the residue, while only 7% Fe was extracted. This result indicates a very promising hybrid 

chlorination roasting-leaching approach. The 73% - 78% extraction of Zn during chlorination 

roasting from 15 to 20 minutes holding time could be enhanced with water leach where 79% to 

96% zinc were leached out.   

 Table 5-13 shows the Fe and Zn leachability after chlorination roasting at 750C for 5 – 

30 minutes using 0.34 L/min Cl2/N2.  

Table 5-13 Fe & Zn leachability of roast residues from Cl roasting  at 750C. 

Time 

(minutes) 

Fe % Zn % 

Extraction via 

Chlorination 

Leachability 

(1hr 

leaching) 

Leachability 

(24hr 

leaching) 

Extraction via 

Chlorination 

Leachability 

(1hr 

leaching) 

Leachability 

(24hr 

leaching 

5 9 13.05 1.50 46.41 1.83 18.56 

10 22.47 18.64 16.23 70.03 77.49 69.12 

15 19.35 N/A N/A 83.71 N/A N/A 

20 29.28 15.00 13.59 84.56 84.89 74.70 

25 38.06 23.21 20.12 96.96 *342.99 *289.54 

30 47.79 N/A N/A 99.35 N/A N/A 

 

From the table, the percentage of Fe leached ranged from as low as 1.5% to 23% and 

from 1.8% to 85% for Zn. Results for 15 minutes and 30 minutes roasting were not available 

due to the sample spillage during the leaching procedure. At 25 minutes roasting period, 

leaching results shown error in the calculation. The leaching was repeated to see the real 

outcome of the post chlorination leaching at this regime, however, the repeat leaching 

calculated shown the same data error, suggesting an error in the head grade of Zn in the residue 

rather than in the aqueous phase However, even though Zn was 85% leached out after 20 

minutes roasting, it is expected that the actual amount of Zn leached is low as most of the Zn 

constituents was mostly volatilized during chlorination roasting.  
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Table 5-14 shows the results of Fe & Zn leachability of chlorinated samples at 150C, 450 and 

550 C roasting. A very interesting leaching results comparing to the extraction during 

chlorination roasting were determined.  

Table 5-14 Fe & Zn leachability of residues from at 150C, 450C & 550C roasting  

 

 ND = Not Detected, results obtained -0.1 

As shown in Table 5-14, a very high proportion (98%) of Zn was leached out after 

chlorination roasting conducted at 450C with very little Fe was leached out. The metal 

chlorides formed after chlorination conducted in the temperature range 100C-600C formed 

are usually non-volatile hence the metals can be recovered by leaching with water (Chan, 

1997). The results shows that water leach could aid the further removal of Zn after chlorination 

roasting at lower temperature. As the lower temperature could retain most of the iron in the 

sample while demonstrate low Fe leachability, the hybrid roasting-leaching is promising in 

maintaining most of the Fe while remove almost total Zn  

The water leaching with chlorinated samples using 1x, 2x and 5 x stoichiometry at 

750C, 0.34 L/min Cl2/N2 for 30 minutes were conducted. The data are as indicated in Table 5-

15.  

 

 

 

Temp  

(C) 

Fe (%) Zn (%) 

Extraction 

via 

Chlorination 

Leachability 

(1hr 

leaching) 

Leachability 

(24hr 

leaching) 

Extraction 

via 

Chlorination 

Leachability 

(1hr 

leaching) 

Leachability 

(24hr 

leaching 

150 12 ND -0.06 10.74 1.39 0.10 

450 50.83 ND 0.04 36.37 97.92 98.61 

550 48.54 ND -0.12 86.07 87.47 89.15 
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Table 5-15 Effect of chemical stoichiometry on Fe & Zn leachability. 

 

Fe % Zn % 

Stoichiometry 

Extraction 

via 

Chlorination 

Leachability 

(1hr 

leaching) 

Leachability 

(24hr 

leaching) 

Extraction 

via 

Chlorination 

Leachability 

(1hr 

leaching) 

Leachability 

(24hr 

leaching 

1x 12 0.23 0.23 21.07 0.28 0.31 

2.5x 22.81 18.97 61.52 90.40 18.97 57.63 

5x 47.79 N/A N/A 99.35 N/A N/A 

 

Stochiometry effects towards the removal of Zn and Fe shown very promising results 

indicated 90% Zn can be removed by using 2.5 times of excess chlorine. Table 5-15 shows an 

interesting findings with longer leaching time effects. Post chlorination roasting using 2.5 x 

stoichiometry indicated that the longer contact time between leachant and samples yield higher 

leachability. Coincidently, the same percentage (19%)  of Fe and Zn   was leached out after 1 hr 

contact time and 24hr leaching time yieldedfurther 62% Fe and 58% Zn leached out 

respectively. Data for 5 times stoichiometry excess was not available due to sample loss.     

 

5.5 Summary  

 

The chlorination roasting were conducted using a solid chlorinating agent and gaseous 

chlorinating agent which were NH4Cl and Cl2/N2 gas respectively. In this study, generally, the 

preliminary works carried out using NH4Cl and the latter using Cl2/N2 gas demonstrated that 

the chlorination roasting at 750C was capable of extracting more than 98% Zn with excess of 

chlorinating agent. However, the comparison between chlorination samples using NH4Cl salt 

and Cl2/N2 gas cannot be made as different sample size, sample boat, type of furnace and 

control mechanism were used. No attempts were made to compare the difference of efficiency 

by using different solid chlorination agent and chlorination gas. This is highly recommended 

for future works.  
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Effects of surface area are significant in removing Zn while limiting the chlorination 

agent consumption. This aspect is beneficial as having bigger surface area could yield high 

removal of metal and the chemical cost can be reduced. However, no doubt that in order to 

better understand the chlorination mechanism, it might be important to know the difference 

made, by using a solid chlorinating agent as against using a gaseous chlorinating agent. 

However, the option to use whether solid or gases agent is dependent on the selectivity factor. 

Solid chlorination agent is much safer to be used in the roasting operation while gaseous agent 

will pose a health hazard if leakage occurs in the operational system.  

Hybrid chlorination with water leaching of the roast residues indicate promising 

technique in maximizing removal of Zn in the BOS sample whilst reducing the loss of Fe.  The 

highest Zn leached out was recorded after the chlorination roasting at 450 C where 98% Zn 

was leached out while only 0.04 % Fe was leached.  
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Chapter 6 CONCLUSION & FUTURE WORK 
 

6.1  Conclusion   

 

Fundamental analysis carried out aimed to remove Zn from BOS by-product and the objectives 

of the research were achieved.  These are as follows: 

 The earth works and beneficiation of the BOS stockpile was conducted and found that 

this location contained heterogenous material that ranged in both sizes and colours and 

typically viewed  black, white & pink coloured unknown material. Physical analysis 

showed that it was highly alkaline where the pH varied from 10.2 – 13.5 and moisture 

content from 6-43%.  Particle size ranged from <0.88 mm to >38.22 mm taken from the 

samples excavated at 3.7m depth. Bulk density varied from 1250-1980 kg/m
3
. 

Composition of Zn and Fe ranged from 2.78% - 5.96% and 41.36-62.18% respectiv. 

Estimated maximum total stockpile mass determined by the s sample pits used was 

972,900 tonnes with a potential mass of 23,699 tonnes of Zn and 333,305 tonnes of Fe.  

The high potential value of Fe content can be reused  within the steelmaking process, 

thus  reducing iron ore  and potential landfilling cost of estimately 77.8 million of that 

total stockpile mass (based on £80 (April 2014) per tonne of landfill cost).  

 

  Chlorination roasting trials highlighted that operational parameters such as 

temperature, roasting, chlorine agent, stoichiometry, surface area are important in 

determining the best operational condition. Temperature and roasting time are the 

adjustable parameter for the volatilization of metals. Performing the roasting stage with 

a starvation amount of chlorination agent leads to acceptable Zn recoveries whilst 

controlling the undesirable Fe removal. Surface are plays a very important aspects in the 

volatilization of metals. Furthermore, modification to the chlorination rig during the 

experimental period found that the selection of materials and experimental works were 

highly important to ensure that robust and consistent data was generated from the  

commission stage through to the full experimental procedures/trials. it was found that 

quartz was the most compatible material when using  chlorine gas as the chlorination 

agent.  
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 Three types of samples are used with the chlorination roasting analysis. Two samples 

from two distinct sources, namely the weathered dust (smallest size sample range; 

<0.8mm taken from stockpile) and non weathered dust (sample taken from the clarifier 

system off scrubber system). These were used for chlorination with NH4Cl salt and 

sample mixtures from stockpile were used for chlorination with Cl2/N2 gas.  The 

particle size for weathered dust was 45 µm, non weathered dust was 23 µm and 

stockpile mixtures was 66 µm. The pH measurement showed that all samples were 

alkaline in nature. The pH values of these dusts varied from 10.3 and 12.48.  While 

moisture content varied from 1.37   to 11.38 respectively. The compound found in all 

samples using XRD analysis showed that all samples consisted of Iron, Wustite, 

Franklinite, Calcite with addition of Graphite for both weathered dust and non 

weathered dust and the addition of Zincite in the  non weathered dust samples.  

 

 The chlorination roasting was carried out using chlorination agents of salt (NH4Cl) and 

gas (Cl2/N2). Both showed promising results of high Zn extraction, thus allowing the 

reuse of BOS dust within the steelmaking process. Chlorination roasting with NH4Cl 

salt showed the volatilization of Zn varying between 53% to 93% for roasting 

temperatures varying between 550-650C. Volatilization of Fe at 27% remained fairly 

constant. The removal of Zn increased significantly from 75% extraction at a roasting 

time of 15 minutes to higher than 97% at roasting times greater than 30 minutes and 750 

C. The additional roasting period showed a constant recovery of 98 – 99% of Zn. It was 

possible to recover 97 % of Zn and 30% Fe by roasting at 750C for a period of 135 

minutes. Zn extractions were high with a single stage process achieving about 84% with 

one 10-minute roasting time, increasing to around 95% at 15 minutes.  For a 3-stage 

process, the Zn recoveries are extremely high as reported earlier.  It was possible to 

reduce the Fe recovery to below 14% for the 10-minute roast. 

 Chlorination roasting with Cl2/N2 gas showed similar trend to that using salt. Greater 

than 93% Zn recovery can be obtained at roasting temperatures over 650ºC. The 

removal of Zn increased significantly from 75% extraction at 15 minutes roasting time 

to higher than 97% for times greater than 30 minutes. The additional roasting period 
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shows a constant recovery of 98 – 99% of Zn. It was also noted that surface area played 

an important part in recovering Zn. More than 90% Zn are recovered using bigger 

surface area sample boat with only 2.5 times stoichiometry.  

 Both chlorination research trials using salt and gas showed that performing the roasting 

with a starvation amount (stoichiometry of chlorination agent to sample) leads to very 

acceptable Zn recoveries. Whilst controlling the undesirable Fe removal, using bigger 

surface area of sample boat enhanced the Zn removal.  

 The post chlorination using water leaching showed high promising extraction of Zn 

when the chlorination was carried out at low temperature The water leaching studies 

were undertaken to further reduce the unwanted Zn remaining in the residue left after 

the roasting process. It was found that 95% of Zn was leached, while only 7% Fe was 

extracted. The residue was from a chlorination process at 650C for 20 minutes 

roasting. Conducting a chlorination roasting at lower temperature as at 450C led to a 

high 98% leachability of Zn and Fe was not leach out from the residue. This is 

significant finding since most of the Fe can be kept in the sample whilst removing the 

bulk of the Zn. The combined procedure of chlorination roasting followed by water 

leaching was undertaken successfully, where the removal of undesirable Zn, thus 

enriching the valuable Fe remaining.   

The research has demonstrated that chlorination extraction has a potential application in the 

steel sector for removal of Zn from steelmaking BOS dusts. The use of chlorination to recover 

and refine metals may increase in the future. This is due to a number of factors which include 

the high chlorination rates resulting from the elevated reactivity of chlorinating, the 

comparative temperature involved in the chlorination process; the favorable physical and 

chemical characteristics of certain metals; the properties of many chlorides (high solubility, 

wide variety of oxidation states and ease of separation processes; and the development of 

certain corrosion resistant materials used for the manufactures of reactors. On the other hand, 

the wastes from chlorination processes can be conveniently treated for the recovery of toxic 

materials, prior to their recycle and final disposal.  
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6.2  Recommendation for Future Work 

 

This study was conducted with a number of limited variables especially for the type of 

chlorination agent, reducing/oxidation agent, gas mixture and leachant type. Therefore, 

recommendations for future works are listed below:   

 

a. Investigate the effects of additional type of carrier gas to determine the behavior 

of chlorination roasting with reducing agent eg CO/air/ in future and determine 

its impact on either zinc removal or the amount of iron removed from the 

material. 

b. Undertake a series of mass balances of the chlorinated sample based on the 

range of parameters investigated. These are to include residue in the tube and 

residue in the scrubber. These were not determined due to complexity of the 

experimental process. Hence a robust methodology is required. 

c. Water leaching showed promising result, however, the behaviour towards the 

adjustment of the pH eluant and temperature was not considered. Elementary 

analysis to investigate the compound prior for leaching works should also be 

carried out to confirm the break of Franklinite composition based on the high Zn 

leach. This will add value to the information of water leaching of BOS by- 

product in future. 

d. Review the existing experimental set up and procedures to maximize various 

procedures and parameters that could be undertaken thus providing a greater 

understanding of this extremely complex process.  
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APPENDIX 1 : WET SIEVE PARTICLE SIZE  

Appendix 1-1 : Wet sieve particle size pit 7 sample 3 - pit 1 sample 5 

Sample Id Description Particle size (mm) Weight      (g) Proportion (wt %) 

C099 Pit 7 Sample 3  >16.0 0 0.0 

    10.0 - 16.0 9.46 0.5 

    4.75 - 10 87.2 4.2 

    2.0 - 4.75 238.6 11.5 

    0.85 - 2.0 248.24 12.0 

    0.125 - 0.85 535.68 25.9 

    <0.125 952.12 46.0 

    

 

2071.3 100.0 

          

C088 Pit 5 Sample 3  >16.0 1505.52 49.9 

    10.0 - 16.0 262.94 8.7 

    4.75 - 10 412.94 13.7 

    2.0 - 4.75 258.71 8.6 

    0.85 - 2.0 139.12 4.6 

    0.125 - 0.85 217.25 7.2 

    <0.125 218.03 7.2 

    

 

3014.51 100.0 

 

 

    Appendix 1-1 (continue) : Wet sieve particle size pit 7 sample 3 - pit 1 sample 5 



158 
 

Sample Id Description Particle size (mm) Weight      (g) Proportion (wt %) 

C084 Pit 4 Sample 3  >16.0 885.5 41.9 

    10.0 - 16.0 43.72 2.1 

    4.75 - 10 169.78 8.0 

    2.0 - 4.75 185.67 8.8 

    0.85 - 2.0 126.9 6.0 

    0.125 - 0.85 256.4 12.1 

    <0.125 445.15 21.1 

    

 

2113.12 100.0 

C080 Pit 3 Sample 3  >16.0 500 17.5 

    10.0 - 16.0 139.95 4.9 

    4.75 - 10 376.28 13.1 

    2.0 - 4.75 378.75 13.2 

    0.85 - 2.0 278.46 9.7 

    0.125 - 0.85 530.1 18.5 

    <0.125 659.84 23.0 

    

 

2863.38 100.0 

C072 Pit 1 Sample 5  >16.0 576.49 20.6 

    10.0 - 16.0 304.17 10.9 

    4.75 - 10 417.14 14.9 

    2.0 - 4.75 352.15 12.6 

    0.85 - 2.0 230.16 8.2 

    0.125 - 0.85 499.18 17.8 

    <0.125 422.26 15.1 

    

 

2801.55 100.0 
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Appendix 1-2 : Wet sieve particle size pit 1 sample 4 - pit 1 sample 1 

Sample Id Description Particle size (mm) Weight      (g) Proportion (wt %) 

C071 Pit 1 Sample 4  >16.0 141.14 7.3 

    10.0 - 16.0 98.51 5.1 

    4.75 - 10 276.69 14.3 

    2.0 - 4.75 349.31 18.1 

    0.85 - 2.0 195.53 10.1 

    0.125 - 0.85 353.31 18.3 

    <0.125 515.77 26.7 

    

 

1930.26 100.0 

          

C070 Pit 1 Sample 3  >16.0 664.13 25.8 

    10.0 - 16.0 283.41 11.0 

    4.75 - 10 265.95 10.3 

    2.0 - 4.75 285.82 11.1 

    0.85 - 2.0 161.59 6.3 

    0.125 - 0.85 438.48 17.1 

    <0.125 470.19 18.3 

    

 

2569.57 100.0 
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Appendix 1-2 (continue) : Wet sieve particle size pit 1 sample 4 - pit 1 sample 1 

Sample Id Description Particle size (mm) Weight      (g) Proportion (wt %) 

C069 Pit 1 Sample 2  >16.0 318.56 17.6 

    10.0 - 16.0 204.37 11.3 

    4.75 - 10 193.55 10.7 

    2.0 - 4.75 233.99 12.9 

    0.85 - 2.0 150.63 8.3 

    0.125 - 0.85 386.5 21.3 

    <0.125 323.7 17.9 

    

 

1811.3 100.0 

     C068 Pit 1 Sample 1 091208 >16.0 1153.04 37.1 

    10.0 - 16.0 426.44 13.7 

    4.75 - 10 274.82 8.8 

    2.0 - 4.75 292.68 9.4 

    0.85 - 2.0 183.44 5.9 

    0.125 - 0.85 533.9 17.2 

    <0.125 245.77 7.9 

    

 

3110.09 100.0 
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APPENDIX 2 : MOISTURE CONTENT  

 

Appendix 2-1 : Moisture Content for Stockpile Samples 

Id 

No. 
Description As Received Weight Post drying Weight Difference 

% 

Moisture 
Pit Average 

C068 Pit 1 Sample 1 3583.46 3308.69 274.77 7.67 

15.67 

C069 Pit 1 Sample 2 2565.84 2091.35 474.49 18.49 

C070 Pit 1 Sample 3 3254.40 2760.83 493.57 15.17 

C071 Pit 1 Sample 4 2773.30 2134.50 638.80 23.03 

C072 Pit 1 Sample 5 3667.33 3153.38 513.95 14.01 

C073 Pit 2 Sample 1 3773.32 2821.07 952.25 25.24 

15.78 

C074 Pit 2 Sample 2 3344.66 2888.66 456.00 13.63 

C075 Pit 2 Sample 3 3865.82 3393.19 472.63 12.23 

C076 Pit 2 Sample 4 4229.40 3658.86 570.54 13.49 

C077 Pit 2 Sample 5 3848.68 3298.19 550.49 14.30 

C078 Pit 3 Sample 1 5815.77 5139.21 676.56 11.63 

26.52 
C079 Pit 3 Sample 2 3942.81 2745.06 1197.75 30.38 

C080 Pit 3 Sample 3 4502.97 3562.70 940.27 20.88 

C081 Pit 3 Sample 4 4342.59 2467.28 1875.31 43.18 

 

 



162 
 

Appendix 2-1 (continue) : Moisture Content for Stockpile Samples 

Id 

No. 
Description As Received Weight Post drying Weight Difference 

% 

Moisture 
Pit Average 

C082 Pit 4 Sample 1 3142.76 2508.35 634.41 20.19 

21.73 
C083 Pit 4 Sample 2 3120.39 2341.72 778.67 24.95 

C084 Pit 4 Sample 3 3310.29 2649.83 660.46 19.95 

C085 Pit 4 Sample 4 3156.27 2467.45 688.82 21.82 

C086 Pit 5 Sample 1 3580.90 2746.21 834.69 23.31 

11.17 

C087 Pit 5 Sample 2 3970.62 3570.27 400.35 10.08 

C088 Pit 5 Sample 3 4056.30 3707.56 348.74 8.60 

C089 Pit 5 Sample 4 3448.89 3190.27 258.62 7.50 

C090 Pit 5 Sample 5 3364.50 3151.11 213.39 6.34 

C091 Pit 6 Sample 1 3142.60 2401.09 741.51 23.60 

19.39 

C092 Pit 6 Sample 2 3125.30 2412.35 712.95 22.81 

C093 Pit 6 Sample 3 3079.66 2339.88 739.78 24.02 

C094 Pit 6 Sample 4 4070.64 3601.82 468.82 11.52 

C095 Pit 6 Sample 5 2981.62 2193.25 788.37 26.44 

C096 Pit 6 Sample 6 4304.89 3961.30 343.59 7.98 

24.78 

C097 Pit 7 Sample 1 3110.80 2332.36 778.44 25.02 

C098 Pit 7 Sample 2 3436.71 2805.36 631.35 18.37 

C099 Pit 7 Sample 3 3346.30 2395.02 951.28 28.43 

C100 Pit 7 Sample 4 3647.30 2651.69 995.61 27.30 
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APPENDIX 3 : ICP ANALYSIS RESULTS 

Appendix 3-1 : ICP Results for Stockpile Samples <0.88mm fraction size. 

Fraction 

Size 

Sample 

ID 
Weight 

Sample 

Description 
Zn (mg/l) 

Zn 

(%) 
Fe (mg/l) Fe (%) Ca (mg/l) 

Ca 

(%) 
Mg (mg/l) 

Mg 

(%) 

< 0.8mm C068 0.1013 P1 S1 13.84 0.68 1461 72.11 152.1 7.51 27.89 1.38 

< 0.8mm C069 0.1003 P1 S2 58.09 2.90 1257 62.66 160.3 7.99 30.26 1.51 

< 0.8mm C070 0.1017 P1 S3 43.60 2.14 1346 66.18 147.8 7.27 25.41 1.25 

< 0.8mm C071 0.1003 P1 S4 114.10 5.69 1178 58.72 154.1 7.68 21.41 1.07 

< 0.8mm C072 0.0999 P1 S5 50.06 2.51 1024 51.25 195.2 9.77 53.81 2.69 

< 0.8mm C073 0.1008 P2 S1 93.96 4.66 1256 62.30 148.5 7.37 11.95 0.59 

< 0.8mm C074 0.1009 P2 S2 79.74 3.95 978.1 48.47 193.3 9.58 25.25 1.25 

< 0.8mm C075 0.1004 P2 S3 15.18 0.76 526.6 26.23 340.9 16.98 59.86 2.98 

< 0.8mm C076 0.1002 P2 S4 23.92 1.19 601.5 30.01 310.8 15.51 50.48 2.52 

< 0.8mm C077 0.1008 P2 S5 37.80 1.88 802.1 39.79 274.9 13.64 42.95 2.13 

< 0.8mm C078 0.1016 P3 S1 17.31 0.85 1435 70.62 172.5 8.49 30.47 1.50 

< 0.8mm C079 0.1003 P3 S2 125.90 6.28 1192 59.42 144.9 7.22 12.14 0.61 

< 0.8mm C080 0.1000 P3 S3 99.70 4.99 1048 52.40 207.6 10.38 27.43 1.37 

< 0.8mm C081 0.1007 P3 S4 57.96 2.88 804.2 39.93 311.7 15.48 43.42 2.16 

< 0.8mm C082 0.1004 P4 S1 49.78 2.48 578.7 28.82 402.8 20.06 53.41 2.66 

< 0.8mm C083 0.1004 P4 S2 101.30 5.04 471.6 23.49 411.3 20.48 60.14 3.00 

< 0.8mm C084 0.1007 P4 S3 46.61 2.31 411.3 20.42 463.8 23.03 100.8 5.00 

< 0.8mm C085 0.1008 P4 S4 53.92 2.67 613.3 30.42 393.9 19.54 68.68 3.41 



164 
 

Appendix 3-1(continue)  : ICP Results for Stockpile Samples <0.88mm fraction size  

Fraction 

Size 

Sample 

ID 
Weight 

Sample 

Description 
Zn (mg/l) 

Zn 

(%) 
Fe (mg/l) Fe (%) Ca (mg/l) 

Ca 

(%) 
Mg (mg/l) 

Mg 

(%) 

< 0.8mm C086 0.1017 P5 S1 100.70 4.95 1275 62.68 132.8 6.53 15.16 0.75 

< 0.8mm C087 0.1008 P5 S2 95.69 4.75 1155 57.29 189.5 9.40 20.22 1.00 

< 0.8mm C088 0.1010 P5 S3 46.77 2.32 786.8 38.95 368.1 18.22 38.41 1.90 

< 0.8mm C089 0.1007 P5 S4 62.31 3.09 890.8 44.23 348.5 17.30 24.3 1.21 

< 0.8mm C090 0.1008 P5 S5 61.49 3.05 862.7 42.79 301.5 14.96 32.53 1.61 

< 0.8mm C091 0.1009 P6 S1 103.50 5.13 988.6 48.99 222.6 11.03 19.39 0.96 

< 0.8mm C092 0.1006 P6 S2 139.20 6.92 1024 50.89 164.4 8.17 21.66 1.08 

< 0.8mm C093 0.1017 P6 S3 133.60 6.57 998.5 49.09 172.2 8.47 25.1 1.23 

< 0.8mm C094 0.1011 P6 S4 101.90 5.04 889.1 43.97 237.5 11.75 37.36 1.85 

< 0.8mm C095 0.1001 P6 S5 136.90 6.84 970.2 48.46 140.1 7.00 14.83 0.74 

< 0.8mm C096 0.1007 P6 S6 103.70 5.15 957.1 47.52 216.1 10.73 22.85 1.13 

< 0.8mm C097 0.1001 P7 S1 77.18 3.86 1134 56.64 176.8 8.83 17.91 0.89 

< 0.8mm C098 0.1019 P7 S2 107.50 5.27 1190 58.39 149.8 7.35 18.27 0.90 

< 0.8mm C099 0.1014 P7 S3 154.20 7.60 1169 57.64 149.6 7.38 15.26 0.75 

< 0.8mm C100 0.1002 P7 S4 122.70 6.12 1143 57.04 146.8 7.33 14.93 0.75 
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Appendix 3-2 : ICP Results for Stockpile Samples 0.8 – 9.5mm fraction size. 

Fraction Size Sample ID Weight 
Sample 

Description 
Zn (mg/l) Zn (%) Fe (mg/l) Fe (%) Ca (mg/l) Ca (%) Mg (mg/l) Mg (%) 

0.8 - 9.5mm C068 0.1003 P1 S1 13.76 0.69 560.1 27.92 419.9 20.93 62.81 3.13 

0.8 - 9.5mm C069 0.1002 P1 S2 63.03 3.15 834.6 41.65 279 13.92 38.31 1.91 

0.8 - 9.5mm C070 0.1019 P1 S3 47.95 2.35 734.3 36.03 339.4 16.65 48.59 2.38 

0.8 - 9.5mm C071 0.1006 P1 S4 89.48 4.45 941.7 46.80 227.8 11.32 30.79 1.53 

0.8 - 9.5mm C072 0.1015 P1 S5 39.26 1.93 647.5 31.90 345 17.00 52.06 2.56 

0.8 - 9.5mm C073 0.1008 P2 S1 84.00 4.17 1140 56.55 134.3 6.66 12.59 0.62 

0.8 - 9.5mm C074 0.1017 P2 S2 62.66 3.08 814.5 40.04 251.9 12.38 36.39 1.79 

0.8 - 9.5mm C075 0.1016 P2 S3 13.17 0.65 629 30.95 370.1 18.21 67.05 3.30 

0.8 - 9.5mm C076 0.1018 P2 S4 14.45 0.71 591.3 29.04 383.8 18.85 65.23 3.20 

0.8 - 9.5mm C077 0.1018 P2 S5 22.66 1.11 572.3 28.11 374.1 18.37 61.79 3.03 

0.8 - 9.5mm C078 0.1010 P3 S1 9.42 0.47 529.6 26.22 453.9 22.47 63.74 3.16 

0.8 - 9.5mm C079 0.1009 P3 S2 119.10 5.90 1175 58.23 148.5 7.36 14.04 0.70 

0.8 - 9.5mm C080 0.1011 P3 S3 76.30 3.77 940 46.49 247.6 12.25 33.41 1.65 

0.8 - 9.5mm C081 0.1003 P3 S4 15.18 0.76 496.7 24.76 464.4 23.15 63.67 3.17 

0.8 - 9.5mm C082 0.1008 P4 S1 35.55 1.76 526 26.09 423.2 20.99 60.36 2.99 

0.8 - 9.5mm C083 0.1005 P4 S2 41.14 2.05 525.1 26.12 401.5 19.98 79.97 3.98 

0.8 - 9.5mm C084 0.1007 P4 S3 19.88 0.99 381.3 18.93 475.5 23.61 110.8 5.50 

0.8 - 9.5mm C085 0.1008 P4 S4 34.85 1.73 649.9 32.24 374.3 18.57 64.54 3.20 

0.8 - 9.5mm C086 0.1003 P5 S1 80.33 4.00 1122 55.93 154.4 7.70 23.09 1.15 

0.8 - 9.5mm C087 0.1008 P5 S2 54.62 2.71 883.5 43.82 302.9 15.02 41.57 2.06 

0.8 - 9.5mm C088 0.1012 P5 S3 13.45 0.66 602.3 29.76 482.8 23.85 59.52 2.94 
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Appendix 3-2 (continue) : ICP Results for Stockpile Samples 0.8 – 9.5mm fraction size. 

Fraction 

Size 

Sample 

ID 
Weight 

Sample 

Description 
Zn (mg/l) Zn (%) Fe (mg/l) Fe (%) Ca (mg/l) Ca (%) Mg (mg/l) Mg (%) 

0.8 - 9.5mm C089 0.1012 P5 S4 46.46 2.30 795.5 39.30 359.5 17.76 42.27 2.09 

0.8 - 9.5mm C091 0.1016 P6 S1 84.92 4.18 857.8 42.21 304.4 14.98 33.79 1.66 

0.8 - 9.5mm C092 0.9990 P6 S2 123.50 0.62 981.8 4.91 174.4 0.87 22.81 0.11 

0.8 - 9.5mm C093 0.1004 P6 S3 103.90 5.17 872.6 43.46 201.5 10.03 26.26 1.31 

0.8 - 9.5mm C094 0.1007 P6 S4 42.68 2.12 600.9 29.84 423.1 21.01 55.28 2.74 

0.8 - 9.5mm C095 0.1003 P6 S5 131.50 6.56 995.6 49.63 127.2 6.34 15.77 0.79 

0.8 - 9.5mm C096 0.1017 P6 S6 48.62 2.39 656.4 32.27 373 18.34 52.94 2.60 

0.8 - 9.5mm C097 0.1008 P7 S1 66.07 3.28 1103 54.71 200 9.92 26.41 1.31 

0.8 - 9.5mm C098 0.1016 P7 S2 74.13 3.65 999 49.16 253.3 12.47 39.35 1.94 

0.8 - 9.5mm C099 0.1009 P7 S3 139.3 6.90 1147 56.84 144.9 7.18 17.75 0.88 

0.8 - 9.5mm C100 0.1004 P7 S4 105.7 5.26 1125 56.03 160.8 8.01 20.6 1.03 
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Appendix 3-3 :  ICP Results for Stockpile Samples 9.5mm – >38.2mm fraction size. 

 

Fraction 

Size 

Sample 

ID 
Weight 

Sample 

Description 
Zn (mg/l) 

Zn 

(%) 
Fe (mg/l) Fe (%) Ca (mg/l) 

Ca 

(%) 
Mg (mg/l) 

Mg 

(%) 

9.5 - 15.9 C080 0.1004 P3 S3 37.61 1.87 710.3 35.37 294.2 14.65 36.05 1.80 

15.9 - 

38.2 C080 0.1001 P3 S3 39.52 1.97 685.1 34.22 337.8 16.87 35.85 1.79 

>38.2 C080 0.1007 P3 S3 0.41 0.02 252.1 12.52 614.7 30.52 91.67 4.55 

9.5 - 15.9 C084 0.1010 P4 S3 3.61 0.18 446.9 22.12 470.7 23.30 60.43 2.99 

15.9 - 

38.2 C084 0.1004 P4 S3 0.00 0.00 376.6 18.75 556.7 27.72 61.91 3.08 

>38.2 C084 0.0997 P4 S3 0.00 0.00 234.1 11.74 573.7 28.77 99.98 5.01 

9.5 - 15.9 C088 0.1000 P5 S3 3.53 0.18 356.9 17.85 570.2 28.51 55.92 2.80 

15.9 - 

38.2 C088 0.1005 P5 S3 0.00 0.00 318 15.82 591.7 29.44 61.55 3.06 

>38.2 C088 0.1002 P5 S3 0.69 0.03 308.2 15.38 604.6 30.17 58.08 2.90 

9.5 - 15.9 C099 0.0999 P7 S3 125.40 6.28 979.4 49.02 164.9 8.25 17.76 0.89 

15.9 - 

38.2 C099 0.1002 P7 S3 57.70 2.88 660.1 32.94 349.2 17.43 55.78 2.78 

>38.2 C099 0.1011 P7 S3 127.90 6.33 1006 49.75 133.4 6.60 14.91 0.74 
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APPENDIX 4 : WET & DRY SIEVE ANALYSIS 

 

 

Appendix 4-1 Comparison of dry and wet sieving data – Pit 1 Sample 1 

 

Appendix 4-2 Comparison of dry and wet sieving data – Pit 1 Sample 2 
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Appendix 4-3 Comparison of dry and wet sieving data – Pit 1 sample 3 

 

 

 

Appendix 4-4 Comparison of dry and wet sieving data – Pit 1 sample 4 
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Appendix 4-5 Comparison of dry and wet sieving data – Pit 1 sample 5 

 

Appendix 4-6 Comparison between Dry & Wet Sieving for particle size <0.8mm 
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Appendix 4-7 Comparison between Dry & Wet Sieving for particle size 0.8mm - 9.5mm 

 

Appendix 4-8 Comparison between Dry & Wet Sieving for particle size range 9.5mm - 

15.9mm 
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Appendix 4-9 Comparison between Dry & Wet Sieving for particle size > 15.9mm 
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APPENDIX 5 : ORDNANCE SURVEY  

Appendix 5-1 Ordnance survey coordinate points 1-33a from stockpile survey 

Topographical Survey  

Point East North Elevation 

  Base 

 

  

1 276960.939 187072.695 10.697 

2 276981.506 187098.342 11.096 

3 277003.480 187121.583 9.873 

4 277024.279 187146.430 9.510 

5 277069.787 187199.411 8.628 

6 277107.229 187244.729 8.308 

7 277140.804 187282.964 8.212 

8 277170.022 187316.257 8.029 

9 277190.530 187341.489 9.869 

10 277182.439 187348.725 10.105 

11 277163.854 187334.558 10.853 

12 277126.863 187341.245 10.016 

13 277087.908 187345.847 11.409 

14 277045.197 187358.332 11.504 

15 277013.135 187368.961 11.721 

16 276974.749 187383.120 11.998 

17 276956.780 187379.468 12.579 

18 276932.502 187386.643 13.186 

19 276891.434 187388.676 13.919 

20 276857.120 187375.120 14.373 

21 276830.879 187355.896 14.532 

22 276827.149 187322.310 17.240 

23 276833.204 187309.851 16.907 

24 276825.668 187291.500 16.569 

25 276819.855 187267.459 16.679 

26 276823.864 187241.615 17.137 

27 276835.557 187212.140 17.245 

28 276849.305 187187.344 16.260 
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Appendix 5-1(continue) Ordnance survey coordinate points 1-33a from stockpile survey 

Topographical Survey  

Point East North Elevation 

  Base 

 

  

29 276863.874 187169.194 17.264 

30 276879.432 187138.175 14.850 

31 276898.539 187129.020 14.426 

32 276918.940 187120.050 15.243 

33 276932.567 187107.312 14.096 

33a 276960.939 187072.695 10.697 

34 276926.670 187233.455 25.169 

35 276939.006 187244.207 25.674 

36 276956.444 187256.732 25.088 

37 276982.495 187253.711 24.052 

38 276999.926 187263.905 25.028 

39 277001.556 187277.997 25.363 

40 277019.216 187277.800 25.163 

41 277037.004 187282.744 25.232 

42 277058.602 187283.822 24.560 

43 277080.717 187300.627 25.369 

44 277062.216 187314.054 26.979 

45 277033.484 187322.449 25.994 

46 277009.458 187316.655 26.111 

47 276985.851 187330.344 24.967 

48 276959.913 187331.419 25.419 

49 276926.106 187326.969 25.321 

50 276906.973 187321.820 25.470 

51 276888.674 187313.701 26.147 

52 276870.577 187295.704 26.030 

53 276868.280 187260.437 24.464 

54 276879.336 187245.343 24.346 

55 276898.009 187265.098 24.973 

56 276913.270 187263.664 25.309 

57 276914.239 187240.855 25.173 

57a 276926.670 187233.455 25.169 
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APPENDIX 6 : RISK ASSESSMENT  

 

Appendix 6-1 RISK ASSESSMENT : OPERATING PROCEDURE - CHLORINATION 

ROASTING 

 

PURPOSE  

The purpose of this document is to provide operating procedure for laboratory personnel working on 

the high temperature roasting with chlorine gas  

 

OVERVIEW 

This is the procedure for the high temperature chlorination roasting. It involves the roasting of 

steelmaking samples in a tubular furnace with Cl2/N2: 50% gas mixtures in a temperature ranges from 

100C – 750C for period of 5 – 60 minutes. Although the gas is 50% Cl2/N2 mixtures, the safety and 

handling procedure must follow the pure Cl2 criterion. The rig design for the roasting is an open 

system, therefore possibility of the over expansion of the gas arises from purging with higher 

temperature to accommodate the system is negligible. The details pertain the whole experiment 

associated with chemical details and hazards are as written in the Risk Assessment dated 1
st
 

November 2011 attached.  

 

GENERAL RULES 

1. A cautionary notice must be displayed on the exterior door of the laboratory indicating the use 

of chlorine, and its location, within the laboratory. A signage safety notice must be displayed 

on the fume cupboard facia containing relevant information including :  

- Chemical reaction activities 

- Chemicals and Hazards present 

- Contact numbers person in charge 

- Duration and time scale of apparatus left in the fumehood 

2. Material Safety Data Sheet (MSDS) prior to working with all chemicals involves must be 

reviewed.  
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3. A fume cupboard must be designated solely for the proposed work. No other work may be 

undertaken in this fume cupboard, or other personnel work in this fume cupboard, for the 

duration of the experiment.  

4. Access to the room with the designated fume cupboard should be restricted to authorized 

personnel only 

5. Exhaust ventilation equipment should be regularly checked for leaks and damage. 

6. All experimental procedures, including weighing, must be carried out in the fume cupboard. 

The fume cupboard sash must kept closed, as far as possible, when work is not being 

undertaken.  

7. Appropriate personal protective equipment must be worn at all times. Experiment and 

equipment must not be left unattended. 

8. After experiment is complete all residues must be neutralized and equipment decontaminated. 

Products produced must be stored in suitable containers and appropriately labelled.  

9. First aiders trained in administering oxygen from a respirator must be present during all work 

10. An emergency shower and eye wash must be available and location known to the operator 

and supervisor.  

11. The operator needs to wear a chlorine gas detector at all times while the experiment takes 

place.  

12. The pre-experiment checklist must be marked prior to start the experiment 

 

ACCIDENTAL RELEASE MEASURES & CATASTROPHIC FAILURE:  

1. If there’s a need to check gas leaking, the chlorine leaks may be detected by passing a rag 

dampened with aqueous ammonia over the system. White fumes indicate escaping chlorine 

gas. Never spray water on leaking container, it can make the leak worse.  

2. In case of chlorine gas release of leaking, turn off all ignition source (if time permits), 

evacuate the area immediately and close the door.  

3. Extraction rate of the fume cupboard is 22770 L/min, therefore bar entry to the room for 30 

minutes to 1 hour is reasonable.  

4. The emission of chlorine gas from exhaust stack is 100 times less than the permissible 

concentration in EH40/2005 Workplace Exposure Limit (See attached document on Gaussian 

Puff Dispersion Model Equation, the maximum concentration of instantenous releases of 60 L 

Cl2 emitted at a 3 dimensional distance of 100m of  roof exhaust stack is 0.014 mg/m
3
. This is 

100 times less than the 1.5 mg/m
3
 of short term exposure limits as stated in  EH40/2005 

Workplace exposure limits. 
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FIRST AID – In case of Cl2 exposure, first aiders must;  

First aid – For high exposure to chlorine, if it is safe to do so, first aider should:  

For inhalation and ingestion:  

 Remove the victim from the room 

 Keep victim warm in a reclined position with head and shoulders elevated 

 If the casualty is not breathing, start resuscitation using the oxygen kit as soon as possible. 

DO NOT USE MOUTH TO MOUTH RESUSCITATION 

 Is there is no heartbeat or pulse, start cardiac massage.  

 Call emergency personnel or physician immediately 

For skin contact:  

 Remove victim’s contaminated clothing 

 Wash the skin with water, preferably in the emergency shower facility 

 Call emergency personnel or physician immediately 

 

For eye contact:  

 Irrigate ayes with water for 15 minutes, holding eye lids wide apart 

 Call emergency personnel or a physician immediately 

 

FIRST AIDERS CONTACTS 

 NAME  CONTACT NO LOCATION 

1. Julian Steer 029208 (70599) W/2.06 

2. Malcolm Seaborne 029208 (75754) W/0.04   

3. Jeffrey Rowlands 029208 (75734) W/0.23 

4. Ian King 029208 (70676) S/-1.13 

5. Len Scekaj 029208 (75763) S/-1.10 

 

 

 



178 
 

PRE EXPERIMENT CHECKLIST  

1. Check availability of a first aiders who are trained in oxygen respirator administration 

2. Check fume cupboard is working/functional 

3. Check chlorine gas detector is working 

4. Check all PPE is suitable 

5. Check no combustible and unwanted material in the vicinity 

6. Check the operators are aware of the location of the emergency shower 

 

EXPERIMENTAL PROCEDURES 

1) Place the rig and Cl2/N2 10L cylinder in the fumehood.  

2) Prepare NaOH (10% solution) and place in a dreschel bottle 

3) Weigh the stainless steel sample boat 

4) Put 5g of BOS stockpile sample on the sample boat. Record the weight of the sample boat + 

sample. 

5) Place the boat inside stainless steel quartz layered tube, at the centre of the tube furnace 

6) Connect outlet tubing of sample tube to the dreschel bottle containing NaOH scrubber 

solution.  

7) The source for N2 as inert gas to purge in the system before and after experiment is from 

laboratory inner supplies. Make sure proper fitting from the pipe and regulators direct to the 

inlet of the sample boat.  

8) Connect both N2 and Cl2/N2 gas mixture hose to the sample boat inlet.   

9) Open valve for the N2 gas slowly at a rate of 0.06L/min and raise temperature of the furnace 

to a preset value. 

10) The inner temperature of the furnace will be indicated by the temperature indicated by the 

furnace, plus 10C.  

11) Let the nitrogen passes until reaching the desired temperature.  

12) Switch the nitrogen gas to Cl2 and N2 mixtures (1:1) at 0.06 – 0.6 l/min for the chlorination 

reaction for the desired roasting time.  

13) After achieving roasting duration, shut down the furnace at the end of the reaction and cool 

down the boat under an atmosphere of N2. Close the valve for the Cl2/N2 mixtures and switch 

to N2 gas during cooling process to assure all remaining Cl2 escaped from the system. Let the 

cooling process for overnight  to make sure no condensation at the outlet point because of the 

temperature gradient.   

14) Any unused gas from the roasting will pass through the NaOH  scrubber before exhaust .  
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- The concentration of the chlorine gas in the fume hood will be measured using a 

drager tube of 0.1 – 10 ppm range. Personal Cl2 gas detector will also be worn. The 

short term acute exposure limits for chlorine is 0.5 ppm/1.5 mg.m
-3

 

15) Measure the concentration of chlorine gas from the NaOH scrubber outlet to make sure 

chlorine gas is totally release from the system.  

16) Remove sample boat, weigh and analyze the roasted sample in the boat.   

17) The sample shall be placed in dessicator prior to analysis.  

 

PRE –EXPERIMENT CHECKLIST  

 CHECKLIST CHECK 

1. Check availability of a first aiders who are trained in oxygen respirator 

administration 

 

2. Check fume cupboard is working/functional  

3. Check chlorine gas detector is working  

4. Check all PPE is suitable  

5. Check no combustible and unwanted material in the vicinity  

6. Check the operators are aware of the location of the emergency shower  
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Appendix 6-2 SUMMARY – INSTANTANEOUS CONCENTRATION OF 60L CL2 RELEASES 

THROUGH EXHAUST STACK OF 100, 200 & 300m DOWNWIND (BASED ON GAUSSIAN 

PUFF DISPERSION MODEL EQUATION)   
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