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Summary of thesis

The coalescence of two stellar mass black holes is regarded as one of the most promising sources

for the first gravitational-wave (GW) detection with ground-based detectors. The current

detection strategies, however, rely on theoretical knowledge of the gravitational waveforms.

It is therefore crucial to obtain an accurate and complete description of the GW signal.

This thesis concerns the description of precessing black holes. Misalignment between the

orbital angular momentum and the spin angular momenta of the two black holes induces pre-

cession, leading to complex dynamics that leaves a direct imprint on the GW. Additionally,

the evolution of the binary depends on the mass ratio and both spins spanning a seven-

dimensional intrinsic parameter space. This makes it difficult to obtain a simple, closed-form

description of the waveform through inspiral, merger and ringdown. We are therefore inter-

ested in 1) developing a conceptually intuitive framework to systematically model precessing

waveforms and 2) exploring the possibility of representing the seven-dimensional parameter

space by a lower-dimensional subset.

First, we introduce an accelerated frame of reference, which allows us to track the preces-

sion of the orbital plane. We then analyse the waveforms in this co-precessing frame resulting

in an approximate decoupling between the inspiral and precession dynamics. This leads to

the important identification of the inspiral rate of a precessing binary with the inspiral rate

of an aligned-spin binary. Based on this decoupling, we develop a general framework to con-

struct precessing waveforms by “twisting up” an aligned-spin waveform with a model for the

precession dynamics.

In general, precession depends on all seven intrinsic physical parameters, which compli-

cates modelling efforts. However, we find a parameter-reduced representation of the dynam-

ics, which allows us to produce a first closed-form description of the complete waveforms of

precessing black-hole binaries within this general and easy-to-grasp framework.
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6.18 Angle between Ĵ(tend) and (0, 0, 1). . . . . . . . . . . . . . . . . . . . . . . . . 121



LIST OF FIGURES xix

6.19 Cumulative distribution function for q = 10. . . . . . . . . . . . . . . . . . . . 122

6.20 Comparison of the precession angles ι and α for a case of transitional precession123

6.21 Match as a function of χp for various binary orientations and signal polarisations.124

6.22 Cumulative distribution function in comparison with PTF. . . . . . . . . . . 126

6.23 Cumulative distribution function for the χeff -parameterisation of the inspiral

rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.1 Precession angles with various approximations for L. . . . . . . . . . . . . . . 135

7.2 Fitting factors for different IMR models. . . . . . . . . . . . . . . . . . . . . . 139





List of Tables

4.1 Configuration parameters for a nonspinning and a precessing NR simulation. 59

5.1 Parameters and results for PN configurations with constant κi = 90◦. . . . . . 85

5.2 Parameters and results for PN configurations with χeff = 0.5 and varying κ1 = κ2. 86

7.1 NR parameters for the precessing configurations. . . . . . . . . . . . . . . . . 138





CHAPTER 1

Introduction

Gravity is the weakest of the four fundamental forces, but it is responsible for shaping our

Universe. Our current understanding is based on Einstein’s theory of General Relativity

(GR), which describes the interaction between masses, or more general energy, with space

and time. It agrees with Newtonian gravity where applicable, but also predicts phenomena

that go well beyond the Newtonian picture. One such phenomenon is the occurrence of

gravitational radiation, called gravitational waves (GWs). These waves are perturbations of

spacetime itself, produced by accelerated masses, which distort the fabric of spacetime in their

vicinity. These distortions propagate away from the source at the speed of light. Analogously

to electromagnetic radiation, GWs carry physical information and can therefore be regarded

as “fingerprints” of the generating source revealing its true nature, which opens a new window

to the Universe.

Gravitational radiation is, however, very weak far from the source. In order to directly

observe GWs in a controlled experiment on Earth, extremely violent events such as the merger

of two black holes or a supernova explosion need to take place in the nearby Universe. Until

today, no such observation has been confirmed, but the existence of GWs as predicted by

GR has been confirmed by other means: in 1974, Russel A. Hulse and Joseph H. Taylor

discovered a binary system consisting of one neutron star and a pulsar (i.e., a magnetised

and therefore radiating neutron star) [125]. The regular detection of the emitted radio pulses

allowed them to identify a systematic variation in the arrival time of the pulses on Earth.

They realised that this behaviour is predicted by Einstein’s GR for a pulsar in orbit with

another compact star. According to GR, such compact binary systems lose gravitational

binding energy in the form of GWs, causing the orbital separation to shrink with time. This

orbital decay causes a shift in the periastron which, in turn changes the arrival time of the

radio pulses. This shift is observed and compared to the predictions of General Relativity.

The observations show remarkable agreement with the theoretical predictions as illustrated

in Fig. 1.1, strongly supporting the assumption that the orbital decay is indeed driven by the

emission of gravitational waves.



2 Chapter 1. Introduction

Figure 1.1: The orbital decay of the Hulse-Taylor binary pulsar PSR B1913+16. The data points
indicate the observed shift in the periastron. The solid line shows the theoretical predictions from GR
for a binary system emitting gravitational waves; figure taken from [224].
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Most recently, evidence for the existence of another type of GWs, primordial gravitational

waves has been presented by the BICEP-2 collaboration [7]. These GWs are predicted to be

generated in the very early Universe immediately after the Big Bang [103, 105, 106, 143, 206,

207]. Such gravitational perturbations in the early Universe leave a measurable imprint in

the B-mode polarisation of the photons of the cosmic microwave background [131, 201]. A

signal consistent with primordial GWs has been reported in [7].

In order to directly observe gravitational waves by their effects on spacetime itself, ground-

based Michelson laser interferometers are considered to be the most promising laboratory

experiment. A worldwide network of such GW detectors has been operating for more than a

decade and is currently undergoing an upgrade to reach a design sensitivity, which will allow

for the detection of several GW signals per year [5].

The signals these detectors are predominantly “listening” for are generated by coalescing

compact binaries, in particular two black holes. Inspiraling and merging black holes are among

the most violent, gravitationally-driven events in the Universe. Unless they are surrounded by

matter, black holes binaries shine only gravitationally. The observation of their GWs would

open an entirely new window to the Universe, allowing us to probe some of the most exotic

phenomena in GR, and to complement what we can infer today from electromagnetic and

other observations to obtain a more complete understanding of the Universe.

Although black hole binaries are gravitationally luminous, a binary formed of two Schwarz-

schild black holes of the same mass emits 1023L� when they merge, the effective cross section

of the radiation is so small that the signal recorded by the detector is extremely weak. This

poses a theoretical and computational challenge for analysing the noise-dominated data and

identifying a GW buried therein. One of the most successful strategies employed in GW

searches is based on theoretical knowledge of the gravitational waveform emitted by a compact

binary system. These theoretical waveform templates are compared against the noisy data

and a statistical significance is assigned to whether or not a true GW is contained in the data

stream.

Modelling the gravitational waves from black hole binaries, however, is a challenging task.

Exact solutions to the binary-black-hole problem can only be obtained by solving the Einstein

equations numerically, which is only possible since 2005 [24, 68, 183]. On the other hand,

analytic approximation methods, such as post-Newtonian theory, are available and allow

for an approximate description of the GW signal when the two black holes are far apart.

Ideally, waveform templates should contain all information available, and therefore complete

waveform models, which combine the analytic with the numerical information, are desired.

The construction of such a waveform model for the most general class of black hole binaries,

precessing binaries, is the focus of this thesis. The overall contribution of this thesis is the

development of a simple framework based on a method to untangle the complex dynamics and

the waveform mode structure of precessing binaries, the identification of the key parameters
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of generic binaries, and the construction of a prototype generic-binary waveform model to aid

future modelling and source parameter estimation efforts as well as the development of GW

searches.

This thesis is organised as follows: in Chapter 2 we give brief summaries of the topics

relevant to this thesis, before moving on to the discussion of the phenomenology of precessing

black hole binaries in Chapter 3. In this chapter, we focus on the qualitative description of

the binary motion and how precession affects the gravitational waveforms. In Chapter 4 we

introduce a co-precessing frame, the quadrupole-aligned frame, by identifying the direction

of maximal emission using only information from the GW signal. The algorithm, which

determines this axis, is presented in detail. The introduction of this non-inertial frame and

the analysis of waveforms as viewed therein then allows us to identify the secular phasing

of a precessing binary as the same as for a corresponding spinning, non-precessing binary.

This identification is presented in detail in Chapter 5. In doing so, we show that the secular

inspiral and the precession dynamics approximately decouple and that this decoupling even

holds through the late stages of the binary evolution, meaning that the secular phase is well

approximated by the phase of an aligned-spin binary. This decoupling is one of the key

insights of this thesis, which has subsequently allowed for the systematic construction of a

series of precessing waveform models [117, 148, 174].

Based on the approximate decoupling, in Chapter 6 we present an effective precession

spin, which allows for a simplified description of the precession dynamics. The precessional

motion is predominantly encoded in the evolution of the orbital plane given by the time

evolution of the inclination angle ι(t) and the precession angle α(t). We show that the

precession dynamics a generic system undergoes can be well represented by a reduced set of

spin parameters. This effective parameterisation significantly simplifies the challenging task

of modelling the precession dynamics as a function of physical parameters.

In Chapter 7 we present the first inspiral-merger-ringdown model for precessing black

hole binaries in the frequency domain based on the individual ingredients presented in the

Chapters 4-6. We conclude with a brief discussion of our results in Chapter 8.



CHAPTER 2

Preliminaries and framework

2.1 Convention and notation

In the following, the signature of the metric of a Lorentzian manifold (M, g) is chosen to be

sign(g) = (−,+,+,+). Spacetime indices are denoted by Greek letters and run from 0 to 3,

whereas spatial indices are represented by Latin letters running from 1 to 3. Repeated co-

and a contravariant indices denote the Einstein summation convention

Λµµ ≡
3∑

µ=0

Λµµ = Λ0
0 + Λ1

1 + Λ2
2 + Λ3

3. (2.1)

We adopt geometrical units, where the speed of light c and the gravitational constant G are

set to unity (G = c ≡ 1) unless the constants are explicitly inserted for reasons of clarity.

2.2 General Relativity in a nutshell

The following section is intended to refresh readers’ knowledge of some fundamental concepts

and aspects of General Relativity that are relevant for this thesis. For a comprehensive de-

scription of the subject we refer the reader to the textbooks by [120, 151, 199] and for a more

mathematical treatment of the subject to [123, 167, 218].

Gravity is one of the four fundamental forces in physics. It is responsible for the apple

falling to the ground, for the planets going around the sun, for the stars moving around the

centre of our Galaxy. Due to its long reach, it is the shaping force on the large scales of the

universe. The first theory of gravity was Isaac Newton’s, which explains the gravitational

attraction of the Earth and the motion of the planets around the sun, but it fails to explains

observable effects like the perihelion precession of Mercury. In 1915 Albert Einstein published

a new theory of gravity: the theory of a General Relativity (GR) [92]. In this geometric theory
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of gravity, space and time are unified to build a four dimensional continuum, spacetime, and

gravity manifests itself as a geometric property of this manifold: curvature. Any form of

matter, or in general energy content, deforms the fabric of spacetime causing it to curve and

bend. This warping of spacetime affects the path of light rays travelling from a distant source

and it also explains the deviation of Mercury’s trajectory from a Keplerian orbit – effects

measurable in our solar system allowing for experimental tests of GR [74, 91].

General relativity also predicts the existence of one of the most fascinating class of objects

in the universe: black holes. These are thought to be causally disconnected regions of space-

time, with a gravitational field so strong that nothing, not even light, can escape. Black holes

are not just a singular point in spacetime but cover an extended region which is bounded by

the event horizon. Inside this horizon, the spacetime singularity is hidden and as of today

the laws that describe the physics beyond the singularity are yet unknown.

General Relativity is a geometric theory that relies on the concept of spacetime. Math-

ematically, spacetime is a four-dimensional differentiable semi-Riemannian manifold M to-

gether with a non-degenerate symmetric bilinear form, the Lorentzian metric g. A Lorentzian

metric need not be positive definite, which induces the causal structure, allowing for vectors to

be null, timelike or spacelike. The metric is used to measure the (Lorentz-invariant) distance

between two points p1, p2 ∈M . This distance, or line element, is given by

ds2 = gµνdx
µdxν , (2.2)

where dxµ denotes infinitesimal coordinate differences.

The presence of gravitational fields is entirely encoded in the metric tensor. If there are

no gravitational fields, the metric corresponds to ηµν ,

ηµν = diag(−1, 1, 1, 1), (2.3)

and we recover flat Minkowski space, the spacetime of Special Relativity. The geometric

measure for the presence of gravitational fields is the curvature. One natural way to define

curvature is in terms of the parallel transport. In flat space, a vector transported along a

closed curve does not change its direction. In curved space though, this is not necessarily

true anymore. In order to define parallel transport, the notion of a derivative operator is

needed. Generally, no global coordinate system exists on a Lorentzian manifold and therefore

the coordinate systems, i.e., the basis vectors, at two points in the manifold will differ form

each other. A derivative operator needs to take this change of basis vectors into account. Let

C be a smooth curve, e.g., the worldline xµ(λ) of an observer, in M with a tangent vector

tµ = dxµ/dλ, where λ ∈ R is an affine parameter. A vector vν is parallel transported along

the curve if and only if

tµ∇µvν = 0, (2.4)
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where ∇µ denotes the covariant derivative, a derivative operator with the desired property.

The covariant derivative of a vector is given by

∇µvν = ∂µv
ν + vσΓνµσ, (2.5)

where ∂µ is the partial derivative and Γνµσ are the connection coefficients. There is no unique

choice of a derivative operator on a manifold, but once a metric tensor is provided, a unique

operator can be defined. We can now impose an extra requirement on the derivative operator,

namely that the scalar product between two vectors is preserved under parallel transport. This

condition can be fulfilled if and only if

∇σgµν = 0. (2.6)

This defines the unique derivative operator ∇µ induced by the metric gµν . This condition

then implies that the connection coefficients must take the following form:

Γσµν =
1

2
gσλ {∂µgνλ + ∂νgµλ − ∂λgµν} . (2.7)

These specific connection coefficients are commonly referred to as Christoffel symbols.

A vector’s directional change after having been parallel transported along a closed curve is

encoded in the Riemann curvature tensor given by

Rλµνσvλ = ∇µ∇νvσ −∇ν∇µvσ. (2.8)

This identity is also called the Ricci identity ; its right hand-side can be interpreted as the

commutation of the covariant derivative. We can also express Eq.(2.8) in terms of partial

derivatives and Christoffel symbols, yielding

Rλµνσ = ∂νΓλµσ − ∂σΓλµν + ΓλνρΓ
ρ
µσ − ΓλσρΓ

ρ
µν . (2.9)

The (1, 3)-contraction of the Riemann tensor with the metric yields the Ricci curvature tensor

Rµν := Rλµλν . (2.10)

Yet another contraction defines the Ricci scalar or scalar curvature

R := Rµµ. (2.11)

In General Relativity, massive particles move along timelike worldlines and if they are freely



8 Chapter 2. Preliminaries and framework

falling, they satisfy the geodesic equation of motion:

uµ∇µuν = 0, (2.12)

where uµ is the 4-velocity of a particle. A geodesic is the generalisation of a straight line

in a curved manifold. In the presence of tidal forces, freely falling particles do not move

along geodesics. The acting of tidal forces on a set of freely falling observers is measured

by the relative acceleration of two freely falling bodies given by −R λ
µνσ uµξνuσ, where ξλ

is the deviation vector, i.e., the vector that connects the two test particles. It follows that

the geodesic deviation is directly encoded in the Riemann curvature tensor. Therefore, if

R λ
µνσ vanishes, the two worldlines stay parallel – the spacetime is flat and no coordinate

transformation can be found such that the second derivatives of the metric vanish. If the

components of the Riemann tensor do not vanish, two initially parallel worldlines will either

converge or diverge due to the presence of gravitational forces. But how do these geometric

quantities describe gravity?

Let us first recall the field equation in Newtonian gravity, the Poisson equation, which

connects the gravitational potential ΦN with the mass density ρ of an object

4ΦN = 4πρ, (2.13)

where 4 is the Laplace operator. The covariant generalisation of the right hand-side of

the Poisson equation needs to be compatible with the special relativistic limit gµν ≡ ηµν .

In Special Relativity, continuous matter distributions are described by the stress-energy-

momentum tensor Tµν . In order to recover the correct limit, the energy properties of matter

in GR also have to be described by a stress energy tensor. The generalisation of the left side

of Eq.(2.13) is the Einstein tensor

Gµν := Rµν −
1

2
gµνR. (2.14)

Finally, the desired field equations describing the metric of spacetime and hence the gravita-

tional fields, the Einstein field equations, are given by

Gµν ≡ Rµν −
1

2
gµνR = 8πTµν . (2.15)

In a nutshell, general relativity can be summarised as follows: spacetime is a four-

dimensional manifold M with a Lorentzian metric gµν . Gravity is in encoded in the metric as

the curvature of spacetime and the curvature is related to the mass distribution in spacetime

by the Einstein equations.

One should not be fooled by the apparent elegance of these equations. If a coordinate

basis is chosen, the true nature of the field equations is revealed: they are a highly non-linear
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system of ten coupled second-order partial differential equations. In order to solve these

equations, one must simultaneously solve for the metric and the matter distribution as the

stress-energy tensor depends explicitly on the metric. This particular feature makes it very

difficult to solve the field equations in the presence of sources.

By taking the trace of Eq.(2.15), the field equations can be cast in an equivalent form

Rµν = 8π

(
Tµν −

1

2
gµνT

)
. (2.16)

If no sources are present, then Tµν = 0 and the trace Tµµ = 0, yielding the Einstein equations

in vacuum:

Rµν = 0. (2.17)

Due to the mathematically complex structure of the field equations, only a handful of

exact analytic solutions are known. Undoubtedly one of the most important exact solution

is that for a static, spherically symmetric vacuum spacetime: the Schwarzschild solution. Its

metric in Schwarzschild coordinates is given by

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (2.18)

where dΩ2 = dθ2 + sin2θdφ2, the line element on the unit sphere with (θ, φ) the polar and

azimuth angle. The function r can be interpreted as a “radial coordinate” given by

r =
√
A/4π, (2.19)

where A is the total area of S2; the value rS = 2M is the Schwarzschild radius.

The Schwarzschild solution was derived by Karl Schwarzschild [200] only a few months

after the publication of Einstein’s theory of General Relativity and is a one-parameter family

of solutions, which describes the gravitational field outside some spherically symmetric mass

distribution of total mass M . The derivation exploits the assumption of a particular symme-

try, in this case spatial spherical symmetry, a strategy very commonly used to derive exact

solutions. The difficulty of finding exact solutions is illustrated by the fact that it took almost

50 years to find the solution for an axisymmetric vacuum spacetime, the Kerr solution [132],

describing the gravitational field outside a rotating mass distribution like a neutron star. Fur-

ther generalisations are the Reissner-Nordström [161, 187] and the Kerr-Newman [158, 160]

solutions. Other exact solutions are known in the context of cosmology, most notably the

Friedmann-Lemâıtre-Robertson-Walker solution [98, 99, 138, 139, 189, 190, 220], which is the

standard model used to describe the large-scale universe and is derived under the assumption

of spatial homogeneity and isotropy.

The Schwarzschild solution, which describes the exact exterior field of a spherical body
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like our sun, predicts small deviations from Newtonian gravity, which can be measured in our

solar system and used to test GR. Various predictions have been successfully confirmed by

precise measurements in our solar system. However, the Schwarzschild solution also allows

us to understand much more about the strong-field regime of gravity. Massive stars which

have reached the end of their life cycle will run out of fuel generating the radiation pressure

to support themselves and will start to undergo gravitational collapse. If the initial mass of

the star was large enough, the end product of this collapse contains a spacetime singularity

hidden within an event horizon and is also described by the vacuum Schwarzschild solution.

The event horizon is a boundary in spacetime which represents a point of no return. Once

the event horizon is crossed, nothing, not even light, can escape. At r = 0, the metric and

the Ricci scalar diverge, forming a true spacetime singularity which cannot be avoided by a

change of coordinates. The entire region inside the event horizon is commonly referred to as

a black hole (see Chapter 6 in [218] or Chapters 5 and 6 in [73]).

In this thesis, we are particularly interested in spacetimes containing two spinning black

holes (Kerr black holes). Such general spacetimes do not possess symmetries which could be

exploited to find analytical solutions and therefore no such exact solutions for general binary

spacetimes exist. The Einstein equations can be solved only approximately through analytical

approximations or numerical techniques, which will be discussed in Sec. 2.5.1 and Sec. 2.5.2.

The existence of black holes is an integral part of our understanding of the universe and

is strongly supported by observational evidence like the peculiar motion of stars in the centre

of our Galaxy or active galactic nuclei (AGNs). However, any such observation infers the

presence of a central black hole from the measured effects on surrounding matter. Can we

detect black holes directly via their effect on spacetime itself? One way to directly detect black

holes is the main motivation for this work: the observation of gravitational waves emitted by

a black hole binary.

2.3 Gravitational waves

Einstein’s theory of General Relativity makes another fascinating prediction: gravitational

waves (GWs) [93]. These are small perturbations of spacetime itself caused by accelerating

masses, which propagate away from their source at the speed of light. The most straightfor-

ward way to derive the existence and the main properties of GWs is in the context of linearised

gravity. We shall briefly summarise the derivation and the main properties of GWs here, as

they are the main focus of this thesis, but direct the interested reader to [120, 149, 199] for

a more comprehensive treatment of the subject.
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2.3.1 Linearised gravity

In this section, we derive the solution of the vacuum field equation under the assumption that

gravity is “weak”. In GR this means that the spacetime metric is nearly flat gµν ' ηµν . In

practice this is an excellent approximation for many situations in nature except for highly

relativistic phenomena such as gravitational collapse or to describe the vicinity of black holes.

Let us start by assuming that the spacetime metric is close to Minkowski apart from small

gravitational perturbations, yielding

gµν = ηµν + hµν , (2.20)

where hµν is a small metric perturbation in the sense that ||hµν || � 1. Linearised gravity

is the approximation to GR obtained by substituting this perturbed Minkowski metric into

the Einstein equations Eq.(2.15) and only retaining terms linear in hµν . From this it follows

immediately that the inverse metric is given by

gµν = ηµν − hµν , (2.21)

where hµν = ηµληνσhλσ. We see that indices are raised and lowered with the flat metric ηµν ,

since the corrections would be of higher order in hµν . We can view the linearised version

of GR as the theory describing the propagation of the symmetric tensor field hµν on a flat

background spacetime. This theory is Lorentz invariant in the sense of Special Relativity.

By inserting Eq.(2.20) into Eq.(2.7), we find the linearised Christoffel to be given by

(1)Γσµν =
1

2
ησλ (∂µhνλ + ∂νhµλ − ∂λhµν) , (2.22)

where (1) indicates the linearised quantity to distinguish from the fully covariant expression.

By inserting Eq.(2.20) into the expression for the Riemann tensor Eq.(2.9), we obtain the

Riemann tensor in linearised gravity:

(1)Rµνσλ =
1

2
(∂ν∂σhµλ + ∂µ∂λhνσ − ∂ν∂λhµσ − ∂µ∂σhνλ) . (2.23)

The linearised Ricci tensor then becomes

(1)Rµν = ∂σ
(1)Γσµν − ∂µ(1)Γσσν , (2.24)

where we have used the definition of the Riemann tensor in a coordinate basis and the fact

that the partial coordinate derivative ∂σ of the flat metric vanishes, i.e., ∂σηµν = 0. We can
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now evaluate the expressions on the left side of the above equation, which yields

∂σ
(1)Γσµν =

1

2
∂σ (∂µhνσ + ∂νhµσ − ∂σhµν) (2.25)

∂µ
(1)Γσσν =

1

2
∂µ∂νh, (2.26)

where h = ηµνhµν = hµµ is the trace of the metric perturbation. The linearised Ricci tensor

then reduces to
(1)Rµν =

1

2
∂λ (∂µhνλ + ∂µhνλ − ∂λhµν)− 1

2
∂µ∂νh. (2.27)

By contracting the above equation with the flat metric, we obtain the linearised Ricci scalar:

(1)R = ∂µ∂νhµν − ∂µ∂µh. (2.28)

We have now all ingredients to derive the linearised field equations. By inserting the linearised

expressions for the Ricci tensor and scalar into the field equations Eq.(2.15), we obtain

(1)Gµν ≡ (1)Rµν −
1

2
ηµν

(1)R (2.29)

=
1

2

(
∂λ∂µhνλ + ∂λ∂νhµλ − ∂λ∂λhµν − ∂µ∂νh− ηµν∂λ∂σhλσ + ηµν∂

λ∂λh
)

This is a rather cumbersome expression but it can be significantly simplified by a change of

variable. Instead of using the metric perturbation itself, we can use the trace-reversed metric

perturbation h̄, where

h̄µν := hµν −
1

2
ηµνh. (2.30)

If we now express hµν in terms of h̄µν and substitute it into Eq.(2.29), all terms containing

the trace h vanish resulting in

(1)Gµν =
1

2

(
∂λ∂µh̄νλ + ∂λ∂ν h̄µλ − ∂λ∂λh̄µν − ηµν∂λ∂σhλσ

)
= 8πTµν . (2.31)

These are the linearised Einstein field equations, but we have not yet exploited the gauge

freedom of General Relativity. The gauge freedom in GR corresponds to the invariance

under coordinate transformations. Applied to the linear approximation it implies that two

perturbations hµν and h′µν represent the same physical perturbation if they do not differ under

an infinitesimal coordinate transformation

xµ → x′µ = xµ + ξµ, (2.32)

where ξµ is the generator of the gauge transformation.

Applying the general transformation law for tensors under coordinate changes to the metric
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perturbation yields

hµν → h′µν = hµν − ∂µξν − ∂νξµ. (2.33)

We may now use this freedom to further simplify the linearised field equations. By applying

the gauge transformation to the trace-reversed metric Eq.(2.30), we find that it transforms

as

h̄µν → h̄′µν = h̄µν − ∂νξµ − ∂µξν + ηµν∂
λξλ. (2.34)

We can now choose a gauge parameter ξµ such that it satisfies

∂ν∂νξµ = −∂ν h̄νµ. (2.35)

Differentiating Eq.(2.34) with respect to ∂µ and making use of Eq.(2.35) yields the Lorenz

gauge condition

∂ν h̄µν = 0. (2.36)

In this particular gauge, the linearised Einstein equations Eq.(2.31) take the following form:

2h̄µν = −16πTµν , (2.37)

where 2 = ∂µ∂µ is the flat-space d’Alambertian. We find that in the Lorenz gauge, the

linearised field equations have reduced to simple wave equations for each component of the

trace-reversed metric perturbation. This is the crucial result for the generation of gravitational

waves within the linearised theory of gravity. The general solutions to these simplified field

equations in the weak-field limit can be found via the standard method of Green functions.

In order to study the propagation of gravitational waves and their interaction with test

masses, we are interested in the governing equations outside the source, i.e., Tµν = 0:

2h̄µν = 0. (2.38)

In the vacuum case, the Lorenz gauge condition alone is not enough to fix the gauge freedom.

Further inspection shows that the Lorenz gauge condition is not violated by imposing h̄ = 0,

then h̄µν ≡ hµν , and h0i = 0. The Lorenz condition then becomes

∂0h00 = 0, (2.39)

∂ihij = 0. (2.40)

This means that h00 corresponds to the static (time-independent) part of the gravitational

field; the time-varying gravitational degrees of freedom, the GW itself, is contained in the

time-dependent components hij . In summary, via exploiting the gauge degrees of freedom we
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have set

h0µ = 0, (2.41)

hii = 0, (2.42)

∂ihij = 0. (2.43)

This set of conditions defines the transverse-traceless gauge (TT gauge), the most convenient

gauge to express gravitational waves outside the source. The general complex solutions of

Eq.(2.38) are plane-wave solutions

hµν = Aµνe
ikσxσ , (2.44)

with kµ = (ω, ki) the wave vector. In the TT-gauge this general expression can be rewritten

as

hTT
ij = eije

ikµxµ , (2.45)

where eij is the polarisation tensor. If we now choose the direction of the wave propagation,

e.g., the z-axis, then we are left with only two independent components, which represent the

two gravitational degrees of freedom:

hTT
µν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 ,

where h+ and h× are two independent gravitational-wave polarisations. With this set of

gauge conditions, we have fully exploited the gauge freedom and hence the two polarisations

are the true gravitational degrees of freedom.

2.3.2 Interaction of GWs with test masses

In the previous section we have seen how the existence of gravitational waves arises in the

linearised version of General Relativity. We now briefly discuss their interaction with test

masses closely following [73, 199].

In the absence of external gravitational forces, test masses move along the straightest

possible lines in a curved background, geodesics as described by Eq.(2.12). In order to quantify

how an external time-varying field, like a gravitational-wave, affects the motion of freely-falling

test masses in a Minkowski background, we need to consider at least two nearby geodesics,

xµ(λ) and xµ(λ)+ξµ(λ) separated by a vector ξµ and parameterised by some affine parameter

λ ∈ R. If the separation of the two geodesics is much smaller than the typical scale of variation
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of the gravitational field, we can take the difference between the two geodesics and expand

it to leading order in ξ in the local inertial frame (LIS) of one test particle. By doing so, we

find [199]
D2ξµ

Dλ2
= −(1)Rµνρσξ

ρdx
ν

dλ

dxσ

dλ
, (2.46)

where D := ξα∇α. This equation shows that two nearby freely-falling test masses experience

a tidal accerleration encoded in the linearised Riemann tensor and therefore deviate from a

geodesic motion. According to the Stewart-Walker lemma [208], the inearised Riemann tensor

is gauge-invariant, therefore the components of the separation vector ξµ can be identified as

its proper length. By inserting Eq.(2.23) into the above equation, we can express the relative

acceleration in terms of the gravitational perturbation, yielding

d2ξµ

dλ2
=

1

2
ξν
d2hTT

µν

dλ2
. (2.47)

We see immediately that a passing GW acts like a force on one of the freely falling particles if

we are in the LIS of the other particle. To lowest order for slowly-moving particles λ = x0 = t,

the geodesic deviation equation in the LIS reduces to

∂2

∂t2
ξµ =

1

2
ξν ḧµν . (2.48)

The leading-order solution to the above equation is

ξµ(t) =

(
δµν +

1

2
hµν(t)

)
ξν(0), (2.49)

where δµν is the Kronecker delta and ξµ(0) is the initial separation of the two geodesics.

The above equation allows us to deduce a clear picture of how gravitational waves affect a

ring of freely-falling test particles: let us assume a gravitational wave travels along the z-

direction and the ring of particles is contained in the xy-plane. Now consider a GW such

that hxx does not vanish but hxy = 0. As the wave passes through the ring of particles, it

stretches and squeezes the proper distance between the particles as depicted in the left panel

of Fig. 2.1. If we now set hxx = −hyy = 0 but allow for hxy 6= 0, we find a similar effect on

the ring of particles but rotated by 45◦ as shown the right panel of Fig. 2.1. This periodic

squeezing and stretching of the proper distance between test masses is the basic principle used

in interferometric GW observatories. The notion of cross and plus polarisation as introduced

earlier should be clear from the illustrations.

2.3.3 The generation of gravitational waves

So far, we have introduced gravitational waves as perturbations of the flat Minkowski metric.

Here, we briefly outline the basics of how gravitational waves are generated. In this section
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y

Figure 2.1: The effect of gravitational-waves travelling in the z-direction on a ring of freely-falling
particles in the xy-plane. The left panel assumes a GW with plus polarisation only, the right panel
a GW with cross polarisation. The ring of test masses is initially at rest (black) and is periodically
distorted due to the passing GW.

we follow the explanations of [73, 97, 120, 149].

The general solution of Eq.(2.37) is given by the retarded integral

h̄µν(x) = −16π

∫
d4x′G(x− x′)Tµν(x′). (2.50)

Analogously to electromagnetism, the appropriate solution is governed by the retarded Green’s

function

G(x− x′) = − 1

4π|xi − x′i|
δ(tret − t′), (2.51)

where the retarded time is given by tret = t− |x− x′|. If we substitute the Green’s function

into Eq.(2.50) we find the general solution to the inhomogeneous linearised field equations to

be

h̄µν(t, xi) = 4

∫
d3x′

Tµν(t− |xi − x′i|), x′i

|xi − x′i|
, (2.52)

where the integration is performed over the past light cone of the event (t, xi).

Let us now assume that the GWs are generated by a weak source and observed at large

distance from the source, i.e., r � R, where R is the characteristic size of the source. In this

case, one can perform the standard multipole expansion of the denominator analogous to the

expansion of the electromagnetic field at large distance from the source:

1

|xi − x′i|
' 1

r
+
xix

′i

r3
+ ... (2.53)
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In the limit r →∞ the asymptotic solution of the linearised field equations therefore is

h̄µν →
4

r

∫
d3x′Tµν(t− r, x′i). (2.54)

We note that in linearised theory Tµν fulfills the flat-space conservation law, i.e., ∂µTµν = 0

and sources therefore move on geodesics in flat Minkowski space. Applying the conservation

law, we find that ∫
d3xTij =

1

2

d2

dt2

∫
d3xxixjT00. (2.55)

Assuming a standard stress-energy tensor, the tt-component denotes the rest-mass energy

density of the source µ(x). We can now define the second moment of mass or moment of

inertia tensor

Iij :=

∫
d3xµ(t, xi)xixj . (2.56)

Hence, the asymptotic solution describing GWs generated by weak sources is found to be

h̄ij =
r→∞

2

r

d2

dt2
Iij(t− r). (2.57)

The above result is rather instructive: 1) it shows that GWs are generated by accelerated

sources similar to electromagnetism where accelerated charges generate EM radiation, 2) the

radiation obeys a 1
r -fall-off, which implies that GWs generated by astrophysical sources are

indeed weak when they reach ground-based detectors (far from the source), and 3) gravita-

tional radiation is of quadrupolar nature as the conservation laws do not permit monopole

and dipole gravitational radiation (for more details see for example [97]).

The focus of this thesis lies on compact binary systems and they gravitational radiation

they generate. We are therefore interested in how well this approximation works for such

self-gravitating systems. We immediately observe that this derivation is not consistent with

a dynamical system dominated by gravitational forces since the background metric cannot

be assumed to be flat in such cases due to the back-reaction of the motion of the binary onto

the background spacetime. Nevertheless, it turns out that this approximation is still valid

for widely-separated binary systems, i.e., binaries far from coalescence. To lowest-order, this

approximation then describes a point-like binary system undergoing Newtonian dynamics in

a flat Minkowski background. Let us therefore use such a binary system in a circular orbit

to illustrate the explicit solution of Eq.(2.57). Let us assume that the binary moves on a

circular orbit in the xy-plane of the source frame as illustrated in Fig. 2.2. The trajectory of

the binary is then given by

~x(t) =

R cos(ωorbt)

R sin(ωorbt)

0

 , (2.58)
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Figure 2.2: A nonspinning binary system in a
circular orbit. In the Cartesian source frame at-
tached to the binary, the two compact objects are
in a circular orbit in the xy-plane. x

y

z

where R is the orbital separation of the binary and ωorb the orbital frequency of the binary

motion. We can now compute the components of Iij in the centre-of-mass frame to obtain

hTTij =
4MηR2ω2

orb

r

− cos(2ωorb(t− r)) − sin(2ωorb(t− r)) 0

− sin(2ωorb(t− r)) cos(2ωorb(t− r)) 0

0 0 0

 , (2.59)

where M = m1 +m2 denotes the total mass of the system and η is the symmetric mass ratio,

η =
m1m2

M2
∈ (0, 0.25]. (2.60)

Instead of η, commonly also the mass ratio q ≥ 1 is used. In this thesis, we use both expression

with the convention

q =
m2

m1
≥ 1. (2.61)

We note that the frequency of the emitted gravitational radiation at quadrupole order is twice

the frequency of the orbital motion. Although we have not solved for the dynamics of the

binary but assumed a prescribed Keplerian orbit, this is a very useful starting point for a more

concise treatment of the two-body problem in General Relativity. In this approximation, we

have completely neglected the energy carried away by GWs as well as the effect of the motion

of the source onto the background spacetime. In order to compute the evolution of the binary

system, the emitted gravitational energy needs to be consistently taken into account, which

is the goal of the post-Newtonian approximation summarised in Sec. 2.5.1.

2.3.4 Gravitational-wave sources

In this section we briefly summarise the most important gravitational-wave sources. Although

the main focus of this thesis lies on compact binaries, we give a short overview of the prime
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sources for reasons of completeness. A full treatment is presented in [195].

Compact binary coalescences (CBC): These are believed to be among the most promising

gravitational-wave sources for interferometric GW detectors based on Earth. These binary

systems comprise of two compact objects such as black holes, neutron stars or white dwarfs in

various combinations. The two compact objects form a binary system, which is dominated by

their gravitational interaction. The accelerated masses lose gravitational binding energy via

the emission of gravitational-waves, which leads to the decay of their orbits until they plunge

together and merge to one single object. This can either be the direct merger into a black

hole, or they could form a hypermassive neutron star first which then collapses into a black

hole, or it could form a stable neutron star if the individual masses were not too large initially

(M∗ < 10M�). The emitted gravitational-wave signal is a chirp signal, which increases its

frequency during the inspiral phase up to the merger before it decays exponentially during the

ringdown phase, as predicted by perturbation theory (see for example [135] for more details).

The largest amount of energy, however, is emitted during the violent merger. This crucial

phase cannot be modelled by analytic approximations, instead the full nonlinear Einstein field

equations have to be solved numerically as we will elucidate in Sec. 2.5.2.

Gravitational collapse: Massive stars (M∗ ≥ 10M�) at the end of their lifetime cannot sup-

port their inner core via radiation pressure anymore. This leads to a core collapse, where the

infalling matter is compressed and sent radially outwards in the form of a supernova explosion

after it is abruptly decelerated when it hits the core. It is widely believed that the collapse is

non-spherical, potentially due to differential rotation or magnetic fields, and therefore a burst

of gravitational radiation is emitted. Such burst waveforms are most conveniently modelled

by sine Gaussians.

Quasi-normal modes of black holes: An individual black hole does not emit gravitational

waves due to the symmetry of the system. However, if a stationary black hole is perturbed

it oscillates with a very particular mode spectrum known as quasi-normal modes (QNMs)

(see [135] for a complete treatment). QNMs are excited during the merger of two black holes,

but other mechanism, such as infalling particles, the scattering of GWs, EM and scalar fields

as well as stellar collapse or tidal disruptions can excite QNMs. The emitted gravitational

waves only depend on the mass and spin angular momentum of the black hole and can there-

fore be considered as the “fingerprints” of black holes. This is in accordance with the no-hair

theorem and therefore the detection of such quasi-normal modes from perturbed black holes

via gravitational-wave observations can be used to test the theorem as well as strong-field

predictions of GR.
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Continuous waves: Isolated, asymmetric spinning neutron stars, known as pulsars, contin-

uously emit gravitational waves of approximately constant frequency. The asymmetry or

bump is needed to induce the time-varying quadrupole moment and stimulate the emission

of gravitational waves. The loss of energy causes the pulsar to lose angular momentum and

spin down. Depending on the size of asymmetry, the emitted gravitational radiation is strong

enough to be detected by ground-based GW observatories. To date, no gravitational waves

from known pulsars have been detected, which allows us to put upper limits on the asymme-

try in the mass distribution (see for example [4, 6]).

Stochastic background : In addition to individual gravitational-wave events, we expect the

universe to also contain a gravitational-wave background made of GWs not only from dis-

crete sources, but also from fundamental processes like the expansion of the universe and the

Big Bang (see for example Les Houches lectures by Allen [15]).

2.4 Detecting gravitational waves

We have seen in Sec. 2.3.2 that a gravitational wave passing a ring of freely-falling test masses

changes the proper distance between them, squeezing and stretching their relative separations

whilst the coordinate distances are kept constant. Due to the change of proper distances

though, it is indeed possible to experimentally detect gravitational waves in a thoroughly de-

signed experiment, which is sensitive to the extremely small changes in proper length induced

by an incident gravitational wave. Generally, two classes of GW detectors are currently used:

bar detectors and beam detectors.

The first attempt to design a ground-based experiment to detect gravitational waves was

undertaken in the 1960s by Joseph Weber [221]. In his pioneering work Weber suggested the

use of a resonant bar detector to detect a passing gravitational wave. It would excite the

bar’s resonant frequency if it was a) strong enough and b) indeed of the resonant frequency.

Despite claims made in 1969 [222], no significant signals were conclusively detected. Until

today, no gravitational-wave signals have been detected by those means, mainly due to their

weakness with an expected GW amplitude (strain) of h ∼ 10−21. Resonant bar detectors

have been improved since to increase their sensitivity, and are still used in experiments like

AURIGA [231] to detect GWs.

However, the most promising effort today is the use of laser interferometers. As of today,

a world-wide large-scale network of such beam detectors is operating. The current network is

comprised of detectors in the US, the Laser Interferometer Gravitational Wave Observatory

(LIGO) [119, 219], the German-UK detector GEO600 in Germany [104], the French-Italian

detector VIRGO near Pisa, Italy [1] and the Japanese detector KAGRA [205]. The basic
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End test mass

End test mass

Beam splitter

Photo detector

Input laser

Figure 2.3: The layout of a basic Michelson
interferometer. The laser beam is split into
two paths via the beam splitter. The end test
masses are mirrors, which allow for the reflec-
tion of the laser beams. After the recombina-
tion of the split beams, the phase difference is
measured at the output port (photo detector).

principle of the interferometric detection of GWs can be summarised as follows:

When a gravitational wave passes, it changes the proper distance between two defined

points like the sender and receiver of a laser beam. Since interferometers are used to register

extremely small changes in length, they are a very natural instrument to measure GWs.

Analogously to the Michelson-Morley experiment with the aim to detect the ether [150], the

two (nearly) perpendicular arms can be used to measure the affect of a passing GW on the

time interval it takes the beam to travel from its source to its receiver.

Ground-based detectors like LIGO consist of a very stable and powerful laser source,

which generates the electromagnetic beam. This beam is sent down a vacuum tube to a beam

splitter, which transmits around 50% of the laser power and reflects the other 50% at an angle

close to 90◦ to travel into the perpendicular vacuum tube. The end of each tube contains a

test mass which reflects the incoming laser beam. After a round-trip the beams recombine

and the detected phase difference in the recombined beam is used to measure the presence of

GWs. We note two things: firstly, only for very special geometries an interferometer is not

able to measure an incident wave because both arms are affected equally and secondly, that a

passing GW does not change the position of the test masses (end mirrors) in the laboratory

reference frame but alters the travel time of the laser light hence the appearance of phase

differences. This basics layout of an interferometric GW detector is depicted in Fig. 2.4.

In practice, interferometric GW detectors are much more refined and employ sophisticated

modern technologies (see for example [119] for the detailed layout of aLIGO).

If a gravitational wave now passes a Michelson-type laser interferometer, it stretches and

squeezes the proper distances between the beam splitter and the end test masses. Depending

on the direction of the GW, the laser beams in each arm are affected differently, introducing

a phase difference when the laser beams are recombined and measured at the output port.
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To illustrate this effect, let us assume a GW detector with one arm parallel to the x-axis of

the detector frame and the other one to the y-axis. Due to its transverse nature, a GW only

acts in the plane transverse to its direction of propagation. Let us denote the direction of

propagation by k̂ and use it to set up a radiation basis in the transverse plane {êRx , êRy , k̂},
such that êRx is parallel to the detector arm along the x-axis. In this radiation frame, the

gravitational wave tensor can be expressed as

h(t) = h+(t)e+ + h×(t)e×, (2.62)

where e+,× are the polarisation tensors expressed in this particular radiation frame basis. In

the TT-gauge, the proper distance L between the beam splitter and the end test mass is given

by

L(t) ≡ Lc + ∆L =

∫ Lc

0
dx
√
gxx =

∫ Lc

0
dx
√

1 + hxx(t, 0) ' Lc
(

1 +
1

2
hxx(t, 0)

)
, (2.63)

where Lc is the coordinate location of the test mass in the x-arm of the interferometer. It

follows from the above equation that the relative change of arm length, known as the fractional

strain produced by the gravitational wave is

∆L

Lc
=

1

2
hxx(t, 0). (2.64)

We can now perform an analogous calculation for the y-arm to find that generally

∆L =
1

2
dijhij , (2.65)

where d denotes the detector tensor, which describes the geometry of the detector, given by

d = Lc(êx ⊗ êx − êy ⊗ êy). (2.66)

In general, the basis vectors in the radiation frame i.e., the polarisation tensors, are not

aligned with the arms of the detector but are related by a rotation angle ψ. The detector

response can then be expressed in terms of the angles (θ, φ, ψ), which completely specify the

location of the source with respect to the detector frame

hresp(t) = F+(θ, φ, ψ)h+(t) + F×(θ, φ, ψ)h×(t), (2.67)

where F+,×(θ, φ, ψ) are the antenna pattern functions, geometrical functions, which determine

how well the detector responds to an incident GW depending on the location of the source in

the sky and its relative orientation in the plane in the sky (see Sec. 4.2 in [195] for a detailed

description).
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Figure 2.4: Two noise curves for Advanced
LIGO. The blue curve depicts the sensitivity for
the early operation stage of the advanced detector,
the red one shows the anticipated design sensitiv-
ity commonly referred to as zero detuned high-
power. The sharp features are violin modes of the
mirror suspension due to Brownian motion.

2.4.1 Sensitivity

Ground-based interferometric GW observatories measure the presence of a GW via extremely

small phase differences of two interfering laser beams with a fractional change of the order

of h ∼ 10−21. In order to be able to measure these small changes, the effective optical path

needs to be increased. This is commonly done by adding additional input test masses to build

a Fabry-Pérot cavity. Secondly, all other noise sources which cause phase differences need to

be well understood in order not to confuse their contributions with a real gravitational wave.

The main noise sources for ground-based detectors are seismic noise, thermal noise, shot noise,

radiation pressure noise and gravity gradient noise. There are many more noise sources and

some of them are poorly understood. The sum of all noise contributions defines the sensitivity

of the detector, which is characterised by the noise power spectral density (PSD). Despite its

dimension being time, more commonly the units Hz−1 are used. The square root of the

PSD is referred to as the noise amplitude with dimension Hz−1/2. Some of the anticipated

sensitivities for Advanced LIGO [204] are summarised in Fig. 2.4. The anticipated design

sensitivity curve is known as “zero-detuned high-power”, which is expected to be reached by

2018. In the subsequent chapters, the design PSD (zdetHP) as well as an anticipated early

Advanced LIGO PSD are used [204].

2.4.2 Searching for GWs: matched filtering

We have seen that on average the gravitational strain amplitude detected in a ground-based

interferometer is of the order h ∼ 10−21 and we have also seen that the detector sensitivity is

just below this threshold. Given this, one might ask how to measure the presence of a true

gravitational-wave signal in noisy data. One of the most efficient data analysis techniques

applied to the search of GWs from coalescing binaries is matched filtering [215]. In order to

pursue this strategy, theoretical knowledge of the shape of the waveform is crucial.

Let us assume that the detector output data stream is given as a real time series s(t),

which is composed of the noise contribution n(t) and some GW-signal hGW(t;~λ). The GW

signal observed in a detector is, in general, a function of a set of physical parameters ~λ of the
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GW source. Schematically, the data stream is then given by

s(t) = n(t) + hGW(t), (2.68)

where we have suppressed the dependence on ~λ. The matched-filtering approach is based on

correlating the detector output s(t) with a template waveform or filter hT (t), and the task is

to find the filter which maximises the correlation. In other words, one estimates the likelihood

of the presence of a signal in the data stream. If this correlation is above a certain threshold,

one is confident that a true signal is indeed hidden in the noisy detector output.

The analysis is most conveniently performed in the Fourier domain, where the Fourier

transform F of some arbitrary function (time series) x(t) is given by

F(x(t)) ≡ x̃(f) :=

∫ ∞
−∞

x(t)e2πiftdt. (2.69)

Under the assumption of stationary Gaussian noise, the noise auto-correlation is directly

related to the (one-sided) power spectral density Sn(f) by

ñ(f)ñ∗(f ′) =
1

2
Sn(|f |)δ(f − f ′), (2.70)

where the bar denotes the average over an ensemble of noise realisations, δ the delta-distribution

and ∗ the complex conjugate. The correlation between the detector output and a template

waveform hT (t) is given by

c(t) =

∫ ∞
−∞

s̃(f)h̃∗T (f)e−2πiftdf. (2.71)

If the noise realisation is Gaussian with a zero mean, then the mean value of the correlation

corresponds to the correlation of the true signal h(t;~λ) with the template hT (t). This now

allows us to define the optimal filter (template) as the inner product between the data stream

s(t) and the filter hT (t)

〈s, hT 〉 = 4Re

∫ ∞
0

s̃(f)h̃∗T (f)

Sn(f)
df. (2.72)

The signal-to-noise ratio (SNR) ρ is given by the square root of Eq.(2.72). It is necessarily

maximised when the hT indeed corresponds to the true GW signal, i.e.,

ρopt :=

√
〈hGW(~λ), hGW(~λ)〉 ≡ ||hGW(~λ)||. (2.73)

Since a true gravitational-wave signal depends on a set of physical parameters ~λ, it is highly

unlikely an exact template is present in the set of all templates used to perform the matched

filtering analysis, as the filter, in general, depends on a different set of parameters ~µ. However,

the agreement between the signal hGW and the template hT can be quantified by defining a
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normalised inner product between two waveforms, the overlap,

O(hGW(~λ), hT (~µ)) :=
〈hGW, hT 〉
||hGW||||hT ||

. (2.74)

Apart from the physical parameters, the waveform also depends on the (unknown) time of

arrival t0 of the signal at the detector as well as the corresponding phase Φ0. Eq.(2.72)

normalised and optimised only over a time and phase shift is the match [27, 90, 171, 193, 194]

M (hGW, hT ) := max
∆t,∆Φ

〈hGW, hT 〉
||hGW||||hT ||

. (2.75)

The match is a particularly useful measure in the context of waveform modelling and will

play a crucial role in the subsequent analysis presented in this thesis. One consequence of

the above expression is that no matter how small the agreement between the signal and the

template is, as long as a signal is present in the data, i.e., hGW 6= 0, it will always be extracted

from the data stream if the SNR is high enough. However, loud events are expected to occur

very rarely and therefore accurate template waveforms are needed to also extract very quiet

signals.

In the context of gravitational-wave searches, one also seeks the optimisation over the

physical parameters ~µ of the template, in order to define the fraction of the optimal SNR

recovered by the suboptimal set of all templates used in the search. This quantity is referred

to as the fitting factor,

FF = max
∆t,∆Φ,~µ

〈hGW, hT (~µ)〉
||hGW||||hT (~µ)||

. (2.76)

In gravitational-wave searches, if the set of all templates, i.e., the template family, has FF ≥
0.965, it is considered to be effectual for signal detection, while templates with high matches,

i.e., M ≥ 0.965, are considered to be both effectual in detection and faithful in estimating

the physical parameters of the GW source [81]. The threshold of 0.965 corresponds to a loss

of no more than 10% of all signals. In the following chapters, we will predominantly use the

match to quantify the agreement between waveforms as we are mainly interested in faithful

representations.

2.5 Modelling gravitational waves from coalescing compact bi-

naries

Coalescing compact binaries, in particular binary-black-holes, are the main focus of this the-

sis. In order to facilitate the matched-filtering detection strategy exploited by ground-based

detectors such as LIGO, it is crucial to understand these systems and to accurately model the

gravitational waveforms they emit. In this section, we shall briefly outline to most commonly

used strategies to develop such waveform models. However, the two-body problem in full
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Figure 2.5: The panel schematically depicts
the three distinct stages of the binary evolution
and the corresponding gravitational waveform
during each stage. Graphics taken from Fig.
12.1, p. 396 from [33].

General Relativity is nontrivial due to the nonlinear nature of the theory. The two main ap-

proaches to determine the evolution of a coalescing binary and the emitted gravitational-wave

signal of particular interest to this thesis are: 1) post-Newtonian theory (PN) and 2) Numer-

ical Relativity (NR). We shall briefly summarise both methods in the subsequent sections,

closely following [14, 36].

In general, the evolution of a compact binary system is composed of three significantly

different stages: when the two gravitationally bound companions are far apart, i.e., their

separation R is much larger than the characteristic intrinsic scale of the binary set by the

total mass, they undergo a quasi-spherical inspiral motion, with a slowly decaying orbital

separation due to the emission of GWs. In this regime, the nonlinear field equations need not

be solved exactly but can be approximately solved utlising an expansion in v
c known as the

post-Newtonian approximation. Here, v is the characteristic velocity of the binary. During the

later stages of the inspiral, the nonlinear contributions cannot be neglected anymore and the

solution can only be obtained by solving the full nonlinear Einstein field equations Eq.(2.15).

Since there exist no analytical solutions for binary spacetimes, the field equations have to

be solved numerically. Once the two companions have plunged together and merged into a

single remnant black hole, it sheds itself of the remaining gravitational perturbations during

the ringdown phase, before settling down to the stationary Kerr solution.

During the inspiral, the frequency of the gravitational waveform increases slowly before

peaking when the two black holes plunge together. This type of signal is commonly referred to

as chirp signal. The gravitational waveform decays exponentially during the ringdown, which

can either be approximately described by black-hole perturbation theory or one may use the

results of numerical simulations. This three-stage evolution and the gravitational-wave signal

are schematically depicted in Fig. 2.5.
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The following two sections briefly summarise the basics of post-Newtonian theory and

Numerical Relativity before we introduce the concept of complete waveform models, which

are synthesised models that describe the complete GW signal from the inspiral, through the

merger to the ringdown.

2.5.1 Post-Newtonian theory

In linearised gravity, the GW sources move in the flat background spacetime without affecting

the spacetime in return. This means, the dynamics of GW the source is described using

Newtonian gravity rather then General Relativity. This approximation is valid for systems

which are either non-relativistic or whose motion is not dominated by the acting gravitational

fields such as charged particles accelerated by an acting electric field. However, compact

binary systems are self-gravitating, relativistic systems whose dynamics contributes to the

curvature of the background spacetime and hence the motion and the background spacetime

cannot be treated independently. The deviation from Minkowski space near the source needs

to be consistently taken into account. One method to do so is known as the post-Newtonian

(PN) formalism, which is of particular importance for the theoretical computation of GWs

from inspiralling binaries.

The PN formalism is based on the expansion of the Einstein field equations in terms of
v
c , where v is the characteristic velocity of the source, for example the relative velocity in a

compact binary system. This allows us to derive the equations of motion of the source as an

order-by-order series corresponding to the relativistic corrections to the Newtonian equations

of motion (see for example [223]). We note that this is only valid in the regime where the

binary’s separation is large, i.e., when v2

c2
∼ RS

R , where RS is the Schwarzschild radius of

the binary and R the orbital separation. As the source becomes highly relativistic, the PN

formalism becomes less accurate and methods applicable to the strong-field regime need to

be used to compute the motion of the source and the gravitational waveforms. In order to

produce a gravitational waveform in the PN formalism, the PN equations of motion have to

be solved first. The solution is then used to evaluate the PN equations, which describe the

generation of the waves (the source multipoles).

Making use of the gauge freedom in GR, the PN calculations are performed most conve-

niently in the harmonic gauge, i.e.,

∂µ
(√
−ggµν

)
= 0. (2.77)

Further, at lowest PN order extended bodies can be treated as point-like masses, as tidal

effects due to the bodies’ volume occur at higher PN order. Schematically, the equations of
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motion at 2.5 PN-order can be written as [133]

d2xi

dt2
= −Mxi

r3

[
1 +O(v2) +O(v3) +O(v4) +O(v5) + ...

]
, (2.78)

where the leading-order term (0PN) is the standard Newtonian expression. For a Newtonian

binary we have seen in Eq.(2.59) that the GW-signal takes the form

h(t) =
4Mηv2

r
e−i(2ωorbt+Φ0). (2.79)

It becomes clear from the above equation that the evolution of the binary and hence the GWs

are governed by the evolution of the orbital phase, since

ωorb =
dΦorb

dt
≡ Φ̇orb. (2.80)

It is therefore crucial to also accurately predict the time evolution of the orbital phase of the

binary as a perturbative series in v. Under the assumption that the orbital decay is entirely

due to the emission of GWs, the gravitational binding energy E and the GW flux F are

related by the “energy balance” equation

F(v) = −dE(v)

dt
. (2.81)

Further, it is commonly assumed that the binary undergoes adiabatic inspiral, where adiabac-

ity means that the fractional change of the orbital frequency over one orbital period is small,

i.e., ω̇orb/ω
2
orb � 1. In this approximation, the phasing can be specified by two ordinary

differential equations

Φ(t)

dt
≡ Φ̇orb(t) =

v

M3
,

dv(t)

dt
≡ v̇ = − F(v)

E′(v)
, (2.82)

where E′(v) denotes the derivative of the energy with respect to v. Inspiralling binaries

of relevance to ground-based detectors undergo a quasi-circular inspiral as eccentricity is

removed earlier from the system via GW radiation [177, 178]. The decay of the orbital

separation can then be described as a series of quasi-circular orbits with decreasing radius.

Under the assumption of circular orbits, the invariant velocity becomes v = (Mωorb)1/3,

Kepler’s familiar law. For a Newtonian binary, the energy of a circular orbit is

E = −ηM
2

2R
, (2.83)
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and the gravitational-wave flux is

F =
32η2M5

5R5
, (2.84)

which is the famous quadrupole formula.

The PN approximation provides an elaborate scheme to extend the Newtonian expressions

for the E and F to higher PN orders. In order to define the GW energy and the GW flux, a

stress-energy tensor associated with the GWs themselves has to be introduced. It is shown

for example in [97] how such a pseudo-tensor can be constructed from second-order terms in

hµν when the GWs are assumed to be perturbations of Minkowski space.

In Eq.(2.57) we have seen that, at leading order, GWs are generated by a time-varying

mass quadrupole moment. The PN formalism now provides a systematic description of the

waveform in terms of higher order radiative multipoles, which are in turn coupled to the energy

and flux [36, 134, 214]. Once all ingredients are computed, the waveform polarisations h+,×

can schematically be written as [36]

h
(p)
+,× =

2Mη

r
v2
∞∑
p=0

vpH
(p/2)
+,× , (2.85)

where (p) denotes the PN-order and the functions H+,× for nonspinning systems for example

are provided in [36]. It is straightforward to show that for p = 0 we obtain the Newtonian

result Eq.(2.57).

However, with the connection to Numerical Relativity in mind, it is convenient to not

only consider the waveform polarisations h+ and h×, but also the complex GW strain

h = h+ − ih× (2.86)

and its decomposition into GW modes hlm in terms of spin-weighted spherical harmonics with

spin weight s = −2, which encode the directional dependence of the gravitational radiation

field. To do so, we introduce basis functions on the unit sphere Y −slm (θ, ϕ) defined by [101]

Y −slm (θ, ϕ) = (−1)s
√

2l + 1

4π
dlms(θ)e

imϕ, (2.87)

where dlms denotes the small-d Wigner matrices [191] and (θ, ϕ) are the polar and azimuth

angle on the sphere. The GW strain expanded in terms of these basis functions reads as

h(t; θ, ϕ) =
∞∑
l=2

l∑
m=−l

hlm(t)Y −2
lm (θ, ϕ). (2.88)
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The GW modes hlm are extracted by means of the surface integral.

hlm =

∫
dΩh(θ, ϕ)Y −s∗lm (θ, ϕ), (2.89)

where dΩ = sin θdθdϕ and ∗ denotes complex conjugation. The (l = 2, |m| = 2)-modes are

the quadrupole modes, also known as the dominant harmonics. The decomposition now allows

us to rewrite the PN polarisations as GW modes given by

hlm(t) = Alme
−imΦorb . (2.90)

The explicit expressions for the mode amplitudes Alm up to 3PN order for nonspinning

binaries are given in [43]; spin contributions up to 2PN order can be found in [23].

2.5.2 Numerical Relativity

In this section, we will briefly summarise the foundations of Numerical Relativity, since results

from this branch of GR are an integral part of this thesis. We refer the interested reader to the

textbooks by Alcubierre [14] and Baumgarte and Shapiro [33] for comprehensive treatments

of the subject.

The goal of Numerical Relativity is to obtain general solutions of the Einstein field equa-

tions for complex spacetimes that do not allow for simple, analytical solutions. One example

of a nontrivial spacetime is the treatment of the classic two-body problem in General Rel-

ativity. In general, it is not possible to analytically solve the field equations for spacetimes

that involve strong gravitational fields or comprise of little or no exact symmetries, which

is the case for astrophysically relevant situations. This has given the rise to the need to

solve Einstein’s equations numerically using sophisticated computational codes and advanced

numerical techniques. But in order to be able to construct a numerical solution, first of all

the tensorial field equations need to be recast in a form suitable for numerical integration. If

one is interested in the time-evolution of a dynamical system, in this case spacetime itself, a

natural approach is to reformulate Einstein’s four-dimensional equations as an initial value

problem. It is a priori not clear that such a formulation indeed exists. However, the funda-

mental works by Lichnerowicz [142] and Choquet-Bruhat [56] have proven the wellposedness

of the Cauchy problem in General Relativity and the existence of solutions, which marks the

starting point for a formulation suitable for numerical evolution. The next step is to separate

the four-dimensional fabric of spacetime accordingly to allow for the dynamical evolution of

the gravitational fields in time. There are various approaches to split spacetime and here

we focus on what is known as the “3 + 1 formulation”, which splits spacetime into three-

dimensional spacelike hypersurfaces, which evolve in time. This is one of the most commonly

used splittings in numerical relativity and of particular interest in the numerical code used to
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Figure 2.6: Spacetime slicing in the 3 + 1 formulation of GR. Depicted are two adjacent spacelike
hypersurfes, the definition of the shift vector βi and the lapse α.

obtain results presented in this thesis.

Let us consider a globally hyperbolic spacetime (M, gµν). Any such manifold can be foliated

into three-dimensional spacelike hypersurfaces Σt such that the disjoint union of all slices

covers the complete manifold, i.e.,

M =
⋃
t∈R

Σt. (2.91)

Each hypersurface can be identified as a level surface of a regular scalar field t, which is con-

sidered to be a universal time function. The intrinsic geometry of each spacelike hypersurface

is encoded in the induced 3-metric γij . Let us now consider two adjacent hypersurfaces Σt

and Σt+δt. Between these two points in the evolution, a coordinate time of δt has elapsed.

The proper time between those two surfaces as measured by an observer moving along the

direction orthogonal to both hypersurfaces nµ is given by

dτ = α(t, xi)dt, (2.92)

where α denotes the lapse. The relative velocity of two such observers with respect to the

lines of constant spatial coordinates is given by the shift vector βi. This is illustrated in

Fig. 2.6. Neither the choice of foliation nor the propagation of the spatial coordinates from

one hypersurface to the next are unique, the four freely specifiable functions (α, βi) are gauge

functions. With the above ingredients, we can rewrite the complete spacetime metric in terms

of (α, βi, γij) to obtain the following line element

ds2 = (−α2 + βiβ
i)dt2 + 2βidtdx

i + γijdx
idxj . (2.93)

The 3 + 1-splitting allows for the separation of the fully covariant Einstein equations into
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six evolution and four constraint equations, in the literature commonly referred to as ADM

equations named after Arnowitt, Deser and Misner [21]1, who first derived these equations

with the aim to quantise gravity. The evolution equations for vacuum spacetimes are given

by

∂tγij = −2αKij +Diβj +Djβi, (2.94)

∂tKij = βk∂kKij +Kki∂jβ
k +Kkj∂iβ

k −DiDjα+ α(Rij +KKij − 2KikK
k
j), (2.95)

where Di is the induced covariant derivative on a hypersurface Σ and Kij is the extrinsic

curvature, which encodes how a hypersurface is embedded in the higher dimensional spacetime

manifold and corresponds to the second fundamental form in differential geometry. The

Einstein equations are a set of ten coupled partial differential equations, hence to close the

system four more equations are needed, the constraint equations. In vacuum these are

R+K2 +KijK
ij = 0, (2.96)

Dj(K
ij − γijK) = 0, (2.97)

where R is the Ricci curvature of the hypersurface, i.e., the Riemann tensor projected onto

the hypersurface and contracted twice, and K is the trace of Kij . Eq.(2.96) is commonly

referred to as Hamiltonian constraint, Eq.(2.97) as momentum constraints.

By applying this particular splitting, the fully covariant field equations have been recast

as a constrained initial value problem. Mathematically, the Bianchi identities2 guarantee that

the constraints are satisfied during the evolution if they are satisfied initially. However, this is

an exact statement which is no longer true in a numerical evolution. It is therefore important

to monitor the constraint violation, which then in return allows us to assess the accuracy of

the numerical evolution.

The 3 + 1 equations are not unique. One can always add a multiple of the constraint

equations to obtain a new set of evolution equations, which are equally as valid as Eq.(2.94)-

Eq.(2.95). Additionally, this particular formulation is not numerically well posed. One of the

most commonly used reformulations, which is numerically particularly robust, is known as

the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation [32, 202]. In this formulation

similar quantities are evolved, but they are conformally rescaled such that

γ̃ij := ψ−4γij , (2.98)

where ψ is the conformal factor. Additionally, three connection functions Γ̃i are introduced,

reducing the evolution equations Eq.(2.94)-Eq.(2.95) to wave equations for the conformal

1Note, however, that ADM derived these expressions in terms of the conjugate momenta πij . The form
used here is after York.

2i.e., ∇[λRρσ]µν = 0.
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metric, which are coupled to the evolution equations for the connection functions.

However, the system of equations is not yet complete, because the gauge variables α and

βi have not yet been specified by a set of gauge conditions. The question of how to choose an

appropriate gauge is rather difficult with no exact answer other than that the choice should

be motivated by the problem one wishes to solve. Ideally, the gauge conditions should enforce

symmetries if present, or avoid the formation of coordinate singularities in the numerical

domain. In the case of black-hole spacetimes, gauge conditions may also be chosen such that

they avoid the physical singularity.

Since numerical evolutions are performed on a finite computational domain, one must ad-

ditionally impose artificial boundary conditions at some finite spatial distance. The numerical

code used to obtain the numerical results presented in this thesis uses a radiative boundary

condition, which assumes that far away from the source, i.e., the binary, all fields behave like

outgoing spherical waves.

Since this thesis is concerned with black-hole spacetimes, let us briefly mention their

numerical representation. These spacetimes are simple, in the sense that no matter or com-

plicated microphysics needs to be taken into account. However, the numerical representation

and evolution of singularities poses complex and unique computational challenges.

Historically, the numerical study of such spacetimes goes back to the 1960s with the pio-

neering work by Hahn and Linquist [107]. However, the first successful numerical simulation

of a black-hole-binary merger and the extraction of the gravitational-wave signal was only

conducted in 2005 by Frans Pretorius [183]. His approach did not use the BSSN-formulation

of the field equations, but what is known as the generalised harmonic decomposition. It is

obtain by imposing the generalised harmonic coordinate condition, i.e., 2xµ = Hµ, where Hµ

are source functions [182]. The black hole singularity is not avoided but instead completely

removed from the numerical domain via black hole excision [213]. Although no physical

information is lost by the removal of this causally disconnected area, additional boundary

conditions at the excision surface have to be introduced.

Another very successful approach of evolving black-hole spacetimes is known as the moving

puncture approach [24, 68]. Therein, black holes are initially represented by a wormhole

topology connecting two asymptotically flat ends, where the ends are compactified and then

identified with points in R3 referred to as “punctures”. In order for the punctures to indeed

move on the grid, the (singular) conformal factor ψ needs to be evolved and singularity-

avoiding gauge conditions have to be imposed. This method, in particular the choice of

initial data, is based on the assumption of spatial conformal flatness. However, binary black

hole spacetimes are not conformally flat and therefore, a short burst of additional radiation,

commonly referred to as junk radiation, is introduced but quickly leaves the system.

Independently of the formulation of the ADM equations and the representation of the black
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holes in the numerical domain, before the relevant fields can be evolved, initial data have to

be constructed, i.e., the gravitational fields (γij ,Kij) have to be specified on the initial slice

Σ0, which can then be evolved in time. To do so, the constraint equations Eq.(2.96)-Eq.(2.97)

have to be solved, but we see immediately that only four out of the twelve components of the

gravitational fields can be determined. Four of the remaining eight undetermined functions

can be specified by imposing a gauge, the other four represent the two dynamical degrees of

freedom of the gravitational field. Two of these four variables are freely specifiable and one can

introduce a decomposition of γij and Kij , which allows for a convenient split of the constrained

from freely specifiable variables. Such a split is obtained by conformally decomposing the

constraint equations [166, 227, 228]. The two most commonly used conformal decompositions

are the conformal transverse-traceless method and the conformal thin sandwich method. For

more details on the subject, we refer the reader to [75] for a comprehensive treatment.

Since the remarkable breakthroughs in 2005 the simulation of the late stages of binary

black holes have become a standard tool to calculate the gravitational-wave signal. However,

long numerical evolutions of binaries with large mass ratios are still time-consuming and

exceptionally challenging. As of today, only small parts the complete binary-black-hole pa-

rameter space have been covered by NR simulations. Most of the investigated configurations

are between mass ratio 1 and 10 (comparable mass ratio regime), and are either nonspinning

or have spins (anti-)aligned with the orbital angular momentum. The Kerr parameters in

these simulations range between -0.95 to +0.97 for equal mass [147], but have lower values for

unequal-mass binaries. Recently, a number of simulations of binaries with arbitrarily oriented

spins have been carried out [72, 155, 170, 196], but the coverage of the full binary parameter

space is yet far from complete. Nevertheless, the availability of numerical solutions to a wide

range of binary configurations allows us to establish a more complete picture of the evolution

of coalescing black hole binaries and to understand the dynamics as well as the emitted GWs.

However, so far we have not mentioned how gravitational radiation is extracted from a

numerical evolution. We have seen earlier that far from the source, the gravitational radiation

is weak and can be described by the means of linearised gravity and PN theory. Numerical

Relativity simulations, however, focus on the strong-field regime close to the relativistic source

and compute the evolution of spacetime, i.e., the metric, itself. The explicit functional form of

the metric depends on the coordinate choice and it is therefore nontrivial to extract the GW

polarisations h+ and h× in a gauge-invariant way. Most commonly, two different approaches

are used to extract the GW signal, which we will briefly summarise below:

One approach is based on the early work on linear perturbations of a Schwarzschild black

hole [186] by Zerilli [232] and Moncrief [152] known as the Zerilli-Moncrief formalism. In

this formalism, the spacetime metric is perturbatively decomposed and the perturbations are

split into even- and odd-parity parts, which are then decomposed into modes by projecting

them onto the spin-weighted spherical harmonic basis functions. For each mode, a gauge-
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invariant Moncrief function can be obtained. The GW polarisations are determined from

these functions (see for example Chapter 9 of [33] or [156] for more details).

In recent years, an alternative approach known as the Newman-Penrose formalism [157],

has become a standard tool to extract gravitational radiation. Therein, the outgoing trans-

verse gravitational radiation is given by the Weyl scalar Ψ4, which is a component of the

Weyl tensor in a particular complex tetrad. In this formalism, the Weyl scalar is related to

the GW polarisations by

Ψ4 ≡ ∂2
t h = ∂2

t (h+ − ih×). (2.99)

2.5.2.1 BAM

In this section, we will briefly summarise the binary-black-hole code, BAM, used in this thesis

to obtain numerical results. More details can be found in [53, 55].

The BAM code evolves black-hole spacetimes following the moving puncture approach.

Therein, the black holes are modelled by adopting the wormhole topology. The asymptot-

ically flat ends are compactified and identified with points in R3. The resulting coordinate

singularities are referred to as “punctures”.

The initial data are constructed following the conformal transverse-traceless decomposi-

tion method. Initially, the conformal background metric is chosen to be flat, i.e., γ̃ij = δij ,

and the initial slice is maximal (K = 0). With this choice, the Hamiltonian and momentum

constraints decouple and admit Bowen-York solutions [48, 51]. These are generated using a

pseudo-spectral elliptic solver [17].

To complete the set of initial data, the initial values for the gauge quantities, the lapse

and the shift, need to be specified, which are chosen to be

α = 1 or α = ψ−2
0 , (2.100)

βi = 0, (2.101)

where ψ0 denotes the initial conformal factor. The numerical simulations carried out for the

work presented here use α = ψ−2
0 .

The initial data are then evolved with the χ-variant of the moving-puncture [24, 68, 110]

version of the BSSN [32, 202] formulation of the 3+1 Einstein evolution equations. The

numerical method uses sixth-order finite differencing in space [126] and explicit fourth-order

Runge-Kutta time stepping with mesh refinement following Berger and Oliger [34]. The

numerical domain is represented by a hierarchy of nested Cartesian grids to obtain enough

numerical resolution on different scales: we wish to resolve the black holes and their vicinity

well, at the same time enough resolution in the GW extraction zone is also required. The

various boxes have different grid spacings to allow for the desired resolution. The GWs emitted
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Figure 2.7: The left panel shows the trajectories traced out by the moving punctures until merger
in an equal-mass nonspinning numerical simulation with the BAM code. Initially, the two punctures
are separated by ∼ 12M .The right panel shows the real part (blue) and the magnitude (red envelope)
of the Ψ4,22-mode extracted from the simulation.

by the binary are calculated from the Weyl scalar Ψ4. The details of the implementation of

this procedure are given in [55].

In each numerical simulation, the black-hole punctures are initially separated by a coor-

dinate distance D and are placed on the y-axis at y1 = −qD/(1 + q) and y2 = D/(1 + q),

where q = M2/M1 is the ratio of the black hole masses in the binary, with the convention

M1 < M2. The masses Mi are estimated from the Arnowitt-Deser-Misner (ADM) mass at

each puncture, according to the method described in [51]; see also the Appendix of [116]

and the discussion in [114]. The Bowen-York punctures are given linear momenta px = ∓pt
tangential to their separation vector and py = ±pr towards each other. The latter momentum

component accounts for the (initially small) radial motion of the black holes as they spiral

together. Initial parameters for low-eccentricity inspiral are produced using integrations of

the PN equations of motion, as described in [116, 127].

The eccentricity is measured with respect to the frequency of the orbital motion ωorb as

discussed in [102, 111, 116, 127] as well as in [66, 154] and references therein. The eccentricity

is estimated as the extrema of

eω(t) =
ω(t)− ωQC(t)

2ωQC(t)
, (2.102)

where ω is the frequency of the (l = 2,m = 2)-mode of the waveform, and ωQC(t) is an

estimate of the frequency evolution for a non-eccentric, quasi-circular binary, calculated by a

smooth curve fit through the numerical data. The base configuration to set up the numerical
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grid is of the following form:

χMη=2[l1 ×N : l2 × 2N : buf][h−1
min : hmax], (2.103)

which indicates that the following: the simulation used is the χ-variant of the moving-puncture

method, l1 is the number of moving nested mesh-refinement boxes with a base value of N3

points surrounding each black hole, l2 is the number of fixed nested boxes with (2N)3 points

around the entire system and buf is the number of mesh-refinement buffer points. The η-

parameter in the BSSN system is Mη = 2; hmin denotes the resolution of the finest level and

hmax the one of the coarsest, outmost refinement level.

The resolution around the puncture is denoted by M1/hmin, which is the resolution with

respect to the smaller black hole M1. The puncture of the second black hole will have the

same numerical resolution, but if the black hole is bigger, M2 > M1, then it will effectively

be better resolved, which is not necessary. Therefore, some of the finer levels are not used for

the larger black hole. Far from the sources, the meaningful length scale is the total mass of

the binary, M = M1 +M2, and so the resolution on the coarsest level is given by hmax/M .

The puncture motion and the (2, 2)-mode of the gravitational-wave signal from an equal-

mass nonspinning NR simulation performed using the BAM code are illustrated in Fig. 2.7.

2.5.3 Complete waveform models

So far we have seen how pure inspiral waveforms can be constructed via the post-Newtonian

formalism and also how GWs emitted during the merger and ringdown can be extracted from

Numerical Relativity simulations. However, depending on the total mass of the binary, the

amount of time a binary signal can be observed with a ground-based GW detector varies. The

higher the mass, the shorter the time a signal spends in the sensitivity band of the detector

at a given luminosity distance DL. A binary comprised of two neutron stars cannot exceed a

total mass of ∼ 6M� [137]. For such a low-mass binary system, only the inspiral part of the

binary evolution lies within the sensitivity band of the advanced ground-based detectors and

hence PN template waveforms are thought to be efficient to detect them. If we, on the other

hand, consider a binary with a black hole of 10M� and a neutron star with 1.4M�, the late

inspiral and the merger will also be observable by the detector. This shift to the later stages

of the binary evolution becomes more and more pronounced the heavier the binary system,

which is illustrated in Fig. 2.8. Ideally, we wish to have waveform templates hT that describe

the complete evolution of the binary system including inspiral, merger and ringdown.

There exist different approaches in obtaining such complete inspiral-merger-ringdown

(IMR) waveforms. One approach, which is adopted later in this thesis, is a phenomeno-

logical approach [10]. Its goal is to find a simple, analytical closed-form expression, which,
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Figure 2.8: GW signals from various binary
systems at a distance of 100Mpc. The dashed
blue curve is the GW signal from a neutron star
binary 1.4M� + 1.4M�. The solid green curve
shows the signal of a neutron star-black hole
binary with masses 1.4M� + 10M�. Finally,
the dot-dashed black curve is the signal of a
black-hole-binary with 10M�+10M�. The red
curve shows the design sensitivity of Advanced
LIGO.
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when evaluated for a set of physical binary parameters, gives the corresponding gravitational

waveform. The phenomenological approach has been applied to the modelling problem be-

fore in the context of efficiently generating inspiral waveforms without performing the time

consuming evolution of the equations of motion [59]. We shall briefly summarise the main

ingredients of the phenomenological approach.

Let us consider the simplest class of black-hole-binaries: two Schwarzschild black holes.

Such a nonspinning binary configuration is intrinsically defined by the two component masses

m1 and m2 respectively the symmetric mass ratio η. Even for such “simple” systems, the

numerical evolution is rather expensive and it is therefore not feasible to produce accurate

numerical waveforms of several hundred orbits for every such configuration. However, GW

searches are significantly improved by including the numerical information. Moreover, wave-

forms which include the merger and ringdown part of the evolution also allow for deeper

surveys and for the search of high-mass systems (M ≥ 12M�) [64]. It is therefore important

to have an efficient representation of the complete evolution of the binary from the early

inspiral to the ringdown. One way to address this problem is to combine the knowledge from

PN theory with the numerical information in an appropriate way. Thus, the first step is to

construct hybrid waveforms. Such complete waveforms are built by smoothly attaching a PN

inspiral waveform to a numerical waveform. Most commonly in this approach, only the domi-

nant harmonics (quadrupole modes) are matched. The hybridisation is done by matching the

two waveforms in an overlapping time interval t1 < t < t2 (or frequency interval; see [192]).

In the simplest case, the waveform is a function of a small number of parameter: h(t;~λ),

where ~λ = {M,η, t0,Φ0} with t0 being the starting time of the waveform and Φ0 the initial

phase. After the construction of a set of hybrid waveforms, the next step is to produce an

ansatz for the GW phase as well as an ansatz for the GW amplitude. This is most conveniently

done in the Fourier domain and can schematically be written as [10]

h̃phen(f ; ~α, ~β) := A(f ; ~α)eiΨ(f ;~β), (2.104)
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where ~α are phenomenological amplitude parameters and ~β are phenomenological phase pa-

rameters. Once this ansatz is in place, the hybrid waveforms are used to tabulate the values

of the coefficients (~α, ~β).

Since we are interested in describing the complete GW signal as a function of physical

parameters rather than phenomenological parameters, a mapping between these two sets of

parameters needs to be established. The best match amplitude and phase parameters for

every waveforms is used to allow for the identification

(~α, ~β) 7→ (M,η). (2.105)

These are the basic ingredients to produce a phenomenological waveform family param-

eterised by the physical parameters of the binary system. The more complex the binary

system, the more difficult the construction of such a family. As of today, there exist complete

phenomenological waveform families for nonspinning binaries [10, 11] and for binaries where

the individual spin angular momenta are aligned with the orbital angular momentum (spin-

aligned binaries) [12, 192]. Also available is a phenomenological model for the most general

class of binary systems, precessing binaries, in the time-domain [209]. And most recently, a

phenomenological waveform family for precessing black-hole-binaries in the Fourier domain

has become available [117]. This particular model will be described in detail in Chapter 7.

The phenomenological approach is not the only formalism to construct waveform families

for arbitrary binary configurations. Another successful strategy is to map the two-body prob-

lem in General Relativity onto an effective-one-body problem (EOB) [57, 58] to describe the

inspiral part of the waveform. This description is then extended to the merger and ringdown

using information from Numerical Relativity. By doing so, a set of differential equations pro-

vides the inspiral-merger signal, which is then completed by attaching an analytical ringdown

waveform [65, 172, 174, 210].





CHAPTER 3

The phenomenology of black hole binaries

In this Chapter we aim to familiarise the reader with the qualitative behaviour of com-

pact binary coalescences, their evolution and their waveform characteristics within the post-

Newtonian framework. The subsequent sections explore the phenomenology of the three main

types of black-hole-binaries: 1) nonspinning binaries, 2) aligned-spin binaries and 3) precess-

ing binaries. All three types undergo inspiral, merger and ringdown, but the dynamics of

the system as well as the waveforms are qualitatively different. The investigation of those

differences is the subject of the following sections. Parts of this analysis have already been

published in [197].

3.1 Nonspinning and aligned-spin binaries

The simplest class of binary black holes is formed by nonspinning binaries. In such binaries,

the two companions are Schwarzschild black holes characterised only by their mass parameters

m1 and m2. The set of all nonspinning binaries forms a two dimensional manifold which

represents their intrinsic parameter space. Similar to the Newtonian two-body problem, the

two compact objects trace out a trajectory in a fixed two dimensional plane, whose spatial

orientation does not change with time. Due to the emission of gravitational waves, the

orbital separation of the binary decays continuously until they merge. A few orbits of the

PN insprial motion in the fixed orbital plane are shown in Fig. 3.1a. Moreover, the emission

of gravitational radiation tends to circularise the orbit on the orbital time scale, removing

eccentricity from the motion long before the binary enters the sensitivity band of ground-based

GW detectors [177, 178]. At the same time, the decay of the orbit, i.e., the inspiral, occurs on

the (long) radiation-reaction time scale, the time needed to radiate orbital angular momentum

away in order to drive the decay [177, 178]. It is therefore valid to assume that the inspiral

can be described as a series of quasi-circular orbits. This assumes that the fractional change

of the orbital velocity is small compared to the orbital velocity, meaning that the orbit evolves

slowly. This is commonly referred to as adiabatic inspiral, which we will consider henceforth.
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mass binary.
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(b) Cartesian source frame of a nonspinning
binary.

Figure 3.1: The left panel shows the inspiral motion of a nonspinning equal-mass binary. The
starting point of the evolution is on the y-axis and is marked by the red dot. The orbital decay as well
as the fixed two dimensional plane of motion, here the xy-plane, are clearly visible. The right panel
depicts the source frame {x, y, z} of a nonspinning binary with the orbital plane in the xy-plane. The
line-of-sight of some static observer is indicated by N̂ . The inclination of the orbital plane as seen by
the observer is given by ι.

In order to describe the geometry of any binary system, it is useful to attach a coordinate

system to the binary. We will refer to this coordinate system as the source frame of the

binary and denote it by the Cartesian coordinates {x, y, z}. The geometry of nonspinning

binaries is depicted in Fig. 3.1b. Without loss of generality we can choose the xy-plane of the

source frame to be the plane of the orbital motion. In the Newtonian limit, the orthonormal

direction of the orbital plane is the direction of the orbital angular momentum L̂. Since the

orientation of the orbital plane is fixed, so is L̂ and it is therefore the defining direction in the

geometry of the binary configuration. Apart from having a well-defined geometrical meaning,

gravitational radiation is predominantly emitted along this direction L̂, making this frame a

natural basis for the spin-weighted spherical harmonics.

Let N̂ be the direction to some static observer. In general, we denote this direction with

respect to the source frame by the polar angle θ. If we choose a source frame such that L̂ ≡ ẑ,
then θ corresponds to the inclination of the orbital plane relative to the observer,i.e., θ = ι,

as illustrated in Fig. 3.1b.

The GW strain measured by a static observer whose line-of-sight is parallel to L̂, will pre-

dominantly contain GW energy from the dominant harmonic, i.e., h(t; 0, φ) ' h22(t)Y −2
22 (θ =

0, φ). This is commonly referred to as an optimally oriented binary, i.e., L̂||N̂ with θ = ι ≡ 0.

Let us now assume the binary is arbitrarily oriented with respect to the static observer
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Figure 3.2: The left panel shows the source frame of a spin-aligned binary. The right panel illustrates
the relative inclination of a spin-aligned binary with respect to the reference frame {x′, y′, z′} of a static
observer.

and indicate the misalignment between the line-of-sight and the orbital angular momentum

by the inclination angle ι. The inspiral motion of the binary is still confined to a spatially

fixed two-dimensional plane, but the observer does not receive the full power contained in the

dominant harmonic. Only a fraction of this energy is seen, but some higher modes, which

are subdominant for an optimally oriented binary, appear stronger relative to the quadrupole

mode. The observed strain is then inaccurately approximated by the (22)-mode as the energy

is spread across various modes and therefore signal power is lost, since these modes are in

general substantially weaker. For a fixed sky location, optimally-oriented binaries can thus

be observed to a much larger distance than arbitrarily oriented binaries [94, 215].

The qualitative behaviour of the binary evolution changes minimally if we now include

spin angular momenta ~Si aligned with each other and with the orbital angular momentum.

Such binaries are referred to as aligned-spin binaries and a typical setup is illustrated in

Fig. 3.2. We note here that the dimensionless spin parameters χi are commonly used:

χi =
Si
m2
i

, (3.1)

where i = 1, 2 indicates the black hole and Si := ||~Si||. This notation is common in PN

theory, whereas in Numerical Relativity often the Kerr parameter ai is used instead. We will

use both notations interchangeably.

The main effect of the presence of aligned-spin angular momenta on the motion of the

binary is that it either slows down or speeds up the inspiral rate, in other words the phase

evolution of the binary is affected. To illustrate this, let us briefly recall the PN description

of the motion of the binary: the PN approximation computes the evolution of the orbital

phase Φorb(t) as an expansion series in the invariant velocity parameter. In the adiabatic

approximation, the orbital phase is computed by solving the system of coupled ordinary

differential equations given in Eq.(2.82). The main ingredients are the binding energy E and
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the GW flux F . Currently, the energy function E(v) for a nonspinning binary in circular

orbit has been calculated to 4PN order (v8) [37, 39, 40, 42, 84, 89, 129, 130, 133, 179, 226],

the spin-orbit contributions to 3.5PN [46, 121] and the spin-spin terms to 3PN and some at

4PN [122, 141]; the nonspinning GW flux function F(v) is known to 3.5PN order (v7) [41, 42,

185], but the spin effects have only been computed to 2PN order (spin spin) [100] and 3.5PN

order (spin-orbit) [45, 46, 181] respectively.

There exist different ways of solving this system of equations, giving rise to a variety of

PN approximants. To illustrate the effect of aligned spins on the GW phase, we give the

explicit expression Φorb(t) for one particular approximant, ”TaylorT5” [9]:

Φorb(v) = Φ0 −
1

32v5η

{
1 + v2

[
55η

12
+

3715

1008

]
+ v3

[
565

24

((
1− 76η

113

)
~χs · L̂+ δ~χa · L̂

)
− 10π

]
+v4

[
(~χa · L̂)2

(
150η − 3595

96

)
− 3595δ(~χa · L̂)(~χs · L̂)

48
+ (~χa)

2

(
1165

96
− 50η

)
+

1165δ(~χa · L̂)(~χs · L̂)

48
+ (~χs · L̂)2

(
−5η

24
− 3595

96

)
+ (~χs)

2

(
35η

24
+

1165

96

)
+

3085η2

144
+

27145η

1008
+

15293365

1016064

]
+v5

[(
(~χa · L̂)

(
−35δη

2
− 732985δ

2016

)
+ (~χs · L̂)

(
85η2

2
+

6065η

18
− 732985

2016

)
−65πη

8
+

38645π

672

)
ln(v)

]
+v6

[
−127825η3

5184
+

76055η2

6912
+

2255π2η

48
− 15737765635η

12192768
− 1712γE

21

−160π2

3
+

12348611926451

18776862720
− 1712 ln(4v)

21

]
+v7

[
−74045πη2

6048
+

378515πη

12096
+

77096675π

2032128

]}
, (3.2)

where η = m1m2/m
2 is the symmetric mass ratio, Φ0 is a certain reference phase, γE is

Euler’s constant, δ = m1−m2 and ~χs,a the symmetric and antisymmetric dimensionless spin

combinations

~χs =
1

2
(~χ1 + ~χ2) , (3.3)

~χa =
1

2
(~χ1 − ~χ2) . (3.4)

We see immediately from the above expression that the leading order spin contribution occurs

at 1.5PN order (v3) and is a weighted combination of ~χ1 and ~χ2 projected onto the orbital

angular momentum L̂, which can be rewritten in terms of a only one spin parameter by
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defining an effective total spin χeff

χeff :=

(
1− 76η

113

)
~χs · L̂+ δ~χa · L̂. (3.5)

With this definition, at leading spin-orbit order, the inspiral phase of an aligned-spin binary

is then given by

Φorb(v) = Φ0 −
1

32v5η

{
1 + v2

[
55η

12
+

3715

1008

]
+ v3

[
565

24
χeff − 10π

]}
. (3.6)

Therefore, rather than describing the binary in terms of the two individual spin magnitudes,

the mass-weighted combination χeff can be used instead, allowing for a simplified description

of the parameter dependencies. We note that a range of physical spin parameters map to the

same effective spin, revealing spin degeneracies and highlighting the difficulty in measuring

the individual spins from GW observations.

It can be shown that if the total spin

~S = ~S1 + ~S2 (3.7)

is parallel to the orbital angular momentum, the inspiral is slowed down and the binary

produces more orbits before it can finally merge. This effect is known as the orbital hang

up [69]. If, on the other hand, the total spin is antiparallel to L̂, the evolution occurs more

rapidly and less time is spent in orbit before the final plunge. We shall emphasise here that

the direction of the orbital angular momentum as well as the orientation of the spins relative

to it are constant in space and time. During the evolution also the magnitudes of the two

spin momenta are approximately constant. Therefore, the intrinsic parameter space of spin-

aligned binaries has dimension three: the mass ratio and the two spin magnitudes {η, χ1, χ2}.
This completely defines the binary configuration. The spin directions can be neglected as this

information is already incorporated in the notion of aligned spins.

3.2 Precessing black hole binaries

In this section we summarise the main features of precessing-binary systems, introduce their

geometry and illustrate the effects of precession on the gravitational-wave signal within the

post-Newtonian framework. In this context, we will use the terms “precessing” and “generic”

synonymously. For a comprehensive discussion of precessing-binary systems we refer the

reader to Refs. [20, 133], which remain the standard references in the field.



46 Chapter 3. The phenomenology of black hole binaries

Figure 3.3: Illustration of the complex inspi-
ral motion of a precessing binary. The starting
point of the evolution is on the y-axis and is
marked by the red dot. It is clearly visible how
the orbital motion starts off in the xy-plane but
then continuously moves out of it.
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3.2.1 The precessing geometry

The most general class of black-hole-binaries is formed by including arbitrarily oriented spin

angular momenta. As soon as the spins are misaligned with the orbital angular momentum L̂,

precession is induced due to spin-orbit and spin-spin coupling effects. The spin-orbit couplings

cause the orbital plane (i.e., the direction of the orbital angular momentum) to evolve not

only in time but also in space. The binary’s motion is no longer confined to a two-dimensional

plane but traces out a trajectory in the full three dimensional space continuously changing

its orientation. The trajectory of the relative motion for an equal-mass precessing black-hole-

binary with spins ~χ1 = (0, 0, 0) and ~χ2 = (0.75, 0, 0) is illustrated in Fig. 3.3. We see the

binary initially moves in the xy-plane of the source frame, but evolves out of this plane with

time, clearly showing the precession of the orbital plane.

On top of the orbital precession, spin-spin couplings, which enter at 2PN order, act like

torques on the spin angular momenta introducing nutation. We note that the nutation of L

is not observed in single-spin precessing binaries. In conclusion, the orientation of the spin

angular momenta is crucial for the occurrence of precession in a binary system and therefore

needs be taken into account to intrinsically define a binary configuration. In general, this

yields a seven-dimensional parameter space spanned by the mass ratio and the two spin

vectors {η, ~χ1, ~χ2}.
Geometrically, the defining difference between a precessing and an aligned-spin system is

the evolution of the direction of the orbital angular momentum L̂. Whereas only its magnitude

changed in the nonspinning and aligned-spin case due to the emission of gravitational waves,
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now also its direction evolves in time and space. L̂(t) traces out an evolving precession cone

centered around some direction. Therefore, due to its time-dependency, L̂ does not constitute

a useful direction to characterise the dynamics of a generic binary. This goes hand in hand

with reconsidering the definition of the orientation of a binary system with respect to some

observer. In order to do so, a geometrically meaningful direction in the binary system needs

to be identified, and indeed one such direction also exists in precessing configurations: the

direction of the total angular momentum Ĵ , where

~J(t) = ~L(t) + ~S(t). (3.8)

The direction Ĵ is not exactly constant in time, but it remains very close to its initial direction

when the binary has infinite separation, i.e., t→ −∞. We denote this the “asymptotic total

angular momentum direction” Ĵ−∞ ≡ Ĵ(t→ −∞). This is the approximately fixed direction

the precession cone of L̂ is centred around.

In Newtonian solid-body mechanics the total angular momentum is a natural fixed direc-

tion, around which the rotation occurs. This picture is still true for Newtonian and first-order

post-Newtonian binary systems. However, when spin effects are included, starting at 1.5PN

order (spin-orbit), the post-Newtonian approximation of the Einstein field equations reveals

that this natural direction of rotation still exists, but it is no longer exactly fixed: the direction

of the total angular momentum is now also time-dependent. It evolves as well, but in cases

with small precession, and for large separations, it describes a precession cone that is rather

small, in particular compared to the precession cone traced out by L̂. Therefore, it is almost

natural to consider Ĵ−∞ to be the geometrically defining direction in a generic binary system.

To recaptitulate, the orientation of the orbital angular momentum L̂ is no longer fixed but

instead evolves, tracing out a precession cone around the approximately fixed direction of

the total angular momentum Ĵ . The spin angular momenta also precess, but their precessing

motion is centred around L̂. This type of precessing motion is known as simple precession. An

example of the precession cone traced out by L̂ for a binary with mass ratio q = 3 and initial

spins ~χ1 = (0, 0, 0) and ~χ2 = (0.75, 0, 0) with an initial separation of Di = 40M is shown in

in the left panel of Fig. 3.4; see Sec. V in [20] for more examples of simple precession.

Simple precession is the most common type of precession, but not the only one: in a few

special cases, namely where the orbital and spin angular momenta are nearly equal and op-

posite and the total angular momentum passes through zero during the inspiral, the direction

of the total angular momentum changes significantly during the binary’s evolution; this is

called transitional precession and is illustrated in the right panel of Fig. 3.4. However, for

transitional precession to occur within the sensitivity band of the Advanced ground-based

GW detectors, only a very narrow range of physical parameters is allowed in order to fulfill

the conditions mentioned above. In order to produce the transitional phase shown in the right

panel of Fig. 3.4, a large initial separation of Di = 53M for the mass ratio q = 10 and the



48 Chapter 3. The phenomenology of black hole binaries

Figure 3.4: Evolution of Ĵ (red) and L̂ (blue)plotted on the unit sphere, where Ĵ0 is initially aligned
with the z-axis of the source frame. The left panel shows the evolution of these two directions for a
case of simple precession. The precession cone described by Ĵ is very small in comparison to the one
described by L̂, and appears on the figure as only a red dot at the end of the vertical arrow. The
right panel shows the same characteristic directions for a case of transitional precession. In this case
Ĵ clearly moves along the unit sphere away from its initial direction (to the right side of the sphere)
and separates from L̂, which moves to the left side of the sphere in the figure.

following initial spins ~χ1 = (0, 0, 0) and ~χ2 = 0.65(0,− sin(3◦),− cos(3◦)) were chosen. The

transitional phase lasts for about 500, 000M , a fourth of the entire evolution from Di = 53M

to Df = 6M .

Since Ĵ is the only approximately constant direction in a precessing binary, it proves

useful to adapt a source frame, i.e., a Cartesian coordinate frame attached to the binary,

such that the initial total angular momentum is parallel to the z-direction at some initial

time t0 at which we define the binary configuration. In practice, this corresponds to some

finite time or GW frequency. We refer to the direction of J at the moment of definition as

Ĵ0 ≡ ẑ. Henceforth, we will refer to this frame as the “J0-aligned frame”. In this particular

frame, let the direction of L̂ be defined on the unit sphere by the two polar angles (ι(t), α(t)).

The intrinsic geometry of a precessing configuration is depicted in Fig. 3.5. These two angles

encode the complete information about the orientation of the binary with respect to the

J0-aligned source frame. The inclination angle ι(t) is defined as

ι(t) := arccos
(
L̂(t) · Ĵ(t)

)
, (3.9)

and the azimuth angle α(t) is given by

α(t) := arctan

(
Ly
Lx

)
, (3.10)
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Figure 3.5: The panel depicts the geometry
of a precessing binary in the Ĵ0-aligned source
frame.

with the standard convention of being measured counterclockwise from the x-axis of the source

frame (mathematically positive) in the interval [0, 2π]. In the case of simple precession, ι(t)

represents the (time-evolving) opening angle of the precession cone. The azimuth angle α(t)

describes how L̂ moves around Ĵ0 and is therefore directly related to the precession frequency,

i.e., the rate of change of the orbital angular momentum:

ωp(t) =
dα(t)

dt
. (3.11)

Let us emphasise at this point that the inclination ι of an aligned-spin binary refers to the

relative orientation of L̂ = const. to the line-of-sight. In the general case of a precessing

binary, ι(t) is the intrinsic angle between J and L; the orientation of the binary with respect

to some static observer is encoded in the angle θ, which, in this case, generalises to the angle

between Ĵ and N̂ .

Although it is convenient to work in the Ĵ0-aligned source frame for simplicity, we will

see later that it is very useful to still define the intrinsic geometry of the binary, and in

particular the spin angular momenta, with respect to the orbital angular momentum in the

following way. Any vector ~v ∈ R3 can be decomposed into its vector components parallel ~v||

and orthogonal ~v⊥ relative to some other vector. We therefore define

~Si|| :=
(
~Si · L̂

)
L̂, (3.12)

~Si⊥ := L̂×
(
~Si × L̂

)
. (3.13)

The magnitudes of the parallel and orthogonal spin components are denoted by Si|| and Si⊥

respectively. For certain applications it might be more intuitive to directly introduce the
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angle between L̂ and the spin angular momenta,

cosκi = Ŝi · L̂. (3.14)

With this decomposition we can now rewrite the precession cone opening angle Eq.(3.9) in

terms of the decomposed spin angular momenta to obtain

ι(t) ≡ arccos

 L(t) + S||(t)√
(L(t) + S||(t))2 + S2

⊥(t)

 , (3.15)

where S|| and S⊥ are the magnitudes of the projections of the total spin as given in Eq.(3.7)

onto L̂. In general, in order to compute these functions the time evolutions for L(t) and S(t)

need to be known. However, under the approximation that S|| and S⊥ are constant, only the

time evolution of L is needed.

3.2.2 The PN precession equations

We have seen that in order to qualitatively understand precession in binary systems, it is

useful to investigate the effects within the post-Newtonian framework. As mentioned before,

in the PN approximation the leading-order precession effect occurs due to the spin-orbit

coupling and already appears at 1.5PN order. This term induces the precession of the orbital

plane, an effect also known as Lense-Thirring precession [140] or “frame-dragging”, a purely

relativistic effect, which does not occur in Newtonian physics. The next-to-leading order spin

term occurs at 2PN order and encapsulates the dominant spin-spin coupling.

Precession does not only alter the otherwise simple motion of the binary, but also affects

the emitted gravitational waves as will be illustrated later. An advantage of the PN framework

is that it allows one to derive the governing equations of motions for ~L and ~Si. These equations

fully describe the precession dynamics up to a given PN order. The precession equations

accurate through 2PN order obtained after averaging over one circular orbit1 read as [20]:

~̇L =
L

r3

[(
2 +

3m2

2m1

)
~S1 +

(
2 +

3m1

2m2

)
~S2

]
× L̂− 3

2r3
[(~S2 · L̂)~S1 + (~S1 · L̂)~S1]× L̂

− 32µ2

5r

(
M

r

)5/2

L̂, (3.16)

~̇S1 =
1

r3

[(
2 +

3m2

2m1

)
(µ
√
Mr)L̂

]
× ~S1 +

1

r3

[
1

2
~S2 −

3

2
(~S2 · L̂)L̂

]
× ~S1, (3.17)

~̇S2 =
1

r3

[(
2 +

3m1

2m2

)
(µ
√
Mr)L̂

]
× ~S2 +

1

r3

[
1

2
~S1 −

3

2
(~S1 · L̂)L̂

]
× ~S2. (3.18)

1In the adiabatic approximation one expects the bulk GW flux to result from the average change of the
orbital velocity over one orbit.
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Figure 3.6: The left panel shows the time evolution of the opening angle ι(t); the right panel shows
the evolution of the precession angle α(t) from a PN evolution of the generic binary configuration
with initial spins ~χ1 = (0.4,−0.2, 0.3) and ~χ2 = (0.75, 0.4,−0.1) and mass ratio q = 3, where the
components of ~χi are defined with respect to L̂ at the initial time t0 = 0 corresponding to an initial
separation of Di = 40M .

Here, the overdot denotes the time derivative, µ := (m1m2)/m is the reduced mass, L the

magnitude of the orbital angular momentum and r(t) the binary’s separation. The first term

in Eq.(3.16) is the spin-orbit contribution, the second one denotes the spin-spin term and the

third is due to radiation-reaction, which drives the decrease of the orbital separation. These

equations allow us to fully investigate the evolution of the orbital plane (characterised by
˙̂
L(t),

which yields ι(t) and α(t)) during the inspiral regime for any precessing configuration.2 A

typical time evolution of the two defining precession angles (ι(t), α(t)) for a simply precessing

generic binary obtained by solving the above system of ordinary differential equations (ODEs)

is shown in Fig. 3.6.

Further, we note that the spin components driving the precession of the orbital plane are

the ones contained within the instantaneous orbital plane, i.e., ~Si⊥, as can directly be seen

from the leading-order term in Eq.(3.16). In contrast to this, in Eq.(3.2) we have seen that

the spin components parallel to L̂, i.e., χi||, influence the evolution of the orbital phase of

the binary. In this sense, the phase and the precession are influenced by the complementary

components of the spins. Once we have solved for the dynamics of the precessing binary, we

are now able to investigate how the complex motion affects the emitted gravitational-wave

signal.

3.2.3 Precessing waveforms

The complex motion of the orbital plane in space is directly reflected in the emitted gravita-

tional waveforms. Precession predominantly introduces phase and amplitude modulations in

the GW signal [20] and additionally contributes to the GW phase as we will see in the follow-

ing. However, the strength of the observed modulations depends highly on the orientation of

2We have done so to investigate the phenomenology presented in Sec. 3.2.1
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Figure 3.7: Waveforms viewed at different binary orientations. The first panel shows the real part of
the (l = 2,m = 2)-mode with Ĵ0 initially aligned with N̂ (θ = 0), for a precessing configuration with
mass ratio of mass ratio q = 10. The second panel shows the same quantity, but now with L̂ initially
aligned with N̂ . Since L̂ continuously changes its relative orientation to N̂ , the observed modulations
are much more pronounced compared to the optimally oriented precessing binary on the left.

the binary, i.e, Ĵ0, with respect to the line-of-sight N̂ , henceforth denoted by θ:

θ := ∠
(
Ĵ0, N̂

)
. (3.19)

We emphasise once more that it is necessary in precessing binaries to distinguish between the

intrinsic inclination of the binary ι(t) and the relative orientation of the binary with respect

to some static observer denoted by θ. Note that for nonspinning and aligned-spin binaries

such a distinction is not needed as L̂ ≡ Ĵ . Thus, an optimally oriented precessing binary is

now defined by θ = 0, i.e., the line-of-sight is parallel to the total angular momentum. For

aligned-spin binaries the orientation ι = θ = 0 is commonly referred to as “face-on”, whereas

ι = θ = π/2 is known as “edge-on” – we will use these standard terms also for precessing

binaries, but emphasise that they do not actually refer to the orbital plane in this context.

If a precessing binary now happens to be optimally-oriented towards some static observer,

the observed amplitude modulations in the gravitational waveform will be smaller than for any

other orientation, since the relative orientation between the observer and the least-precessing

axis of the binary does not change much during the evolution of the binary. Nonetheless, since

the GW signal is to first approximation produced by the acceleration of the two bodies in orbit,

the bulk of the GW energy is emitted along the direction of the orbital angular momentum

L̂. On average, however, i.e., over one precession cycle, we expect the strongest and simplest

GW emission for simple precession along the direction of Ĵ0 as discussed in [169]. On the

other hand, if the observer’s orientation does not coincide with Ĵ0, strong modulations will be

observed in the GW signal, which peak whenever L̂ crosses the line-of-sight. This orientation

dependence is depicted in Fig. 3.7.

Modulations in the phase and the amplitude are not the only complications induced by

precession. In the case of nonspinning or aligned-spin binaries, the misalignment between the
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line-of-sight and the orbital angular momentum (θ 6= 0) yields a different power distribution

among the emitted GW modes. This can be understood in the following way: the maximal

GW power is emitted along the direction of L, governed by the dominant harmonic. The

total gravitational radiation field, however, has directional dependence. In a source frame

such that L̂ ≡ ẑ, which is also the frame where the mode decomposition is performed, the

maximal emission will be in the direction θ = 0. For any other orientation, the radiation field

at this point contains significantly large contributions from higher modes, such as h21, and less

observable power in the dominant harmonic. Current gravitational searches predominantly

use search templates which model only the dominant harmonic. In practice, this means

that a binary oriented face-on is observable to much higher distances, whereas an edge-on

binary, where the contribution of the dominant harmonic to the total signal power is much

weaker, can only be detected if it is relatively close-by. For precessing binaries, the situation

is much more complicated as the signal power is spread over a large number of modes due to

the precession of L, which breaks the nice mode structure observed in aligned-spin binaries.

Similar to a non-optimally oriented spin-aligned binary, subdominant harmonics are excited

and the hierarchical mode structure is broken as will be discussed in detail in Chapter 4.

The generation of precessing waveform modes in PN theory is a rather complicated task.

The lengthy, explicit expressions for the precessing waveform polarisations for arbitrary ori-

entations have first been calculated by Arun et al. [23] with precession through 1.5PN order.

Currently, the amplitude functions are only known for precession effects through 2PN or-

der [67]. Schematically, the precessing waveform modes can be written as

hlm = Alme
−im(Φ+α), (3.20)

where we explicitly see the contribution of the precession to the gravitational-wave phase.

Φ here denotes total phase of the binary Φ(t), a particularly important difference to non-

precessing systems. Let us recall that hlm ∼ e−imΦorb for nonprecessing binaries. Therein,

the orbital phase is related to the orbital frequency by Eq.(2.80), which simply describes

the motion of the relative separation vector within the orbital plane. However, for precessing

binaries the orbital phase is replaced by the total phase Φ, which consists of two parts: firstly,

the projection of the orbital motion in the xy-plane of the source frame, which is the standard

integral of the orbital frequency. Secondly, the motion of the orbital plane within the source

frame due to precession. The total phase of the binary is then given by [133]

Φ(t) =

∫ t

0

(
ωorb(t′)− dα(t′)

dt′
cos ι(t′)

)
dt′. (3.21)

The total phase can be constructed by solving the set of ODEs given by Eq.(3.16)-Eq.(3.18)
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as well as the additional evolution equation for the separation r(t) (Eq.(4.12) in [133])
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and evaluating the equation for the orbital frequency ωorb(t) (Eq.(4.5) in [133])
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, (3.23)

as well as the expressions for the precession angles Eq.(3.10) and Eq.(3.9). Alternatively, one

may wish to directly integrate ω̇orb(t) (Eq.(4.14) in [133]). Once these quantities have been

determined, the expressions for the polarisations respectively the hlm-modes given in [23] can

be evaluated yielding precessing inspiral waveforms.

Solving the explicit PN evolution equations is one way to compute the precessing motion.

Alternatively, one may use the Hamiltonian formulation provided by the effective-one-body

framework to solve for the dynamics of the binary [57, 78].



CHAPTER 4

Tracking the precession of the orbital plane

In the previous chapter we have explored the phenomenology of precessing black-hole-binaries

during the inspiral regime in the context of PN theory. So far, we have entirely neglected

the analysis of precession during the late inspiral, merger and ringdown, which needs to be

explored with Numerical Relativity (NR). The understanding of the late precession dynamics

is particularly important, as we aim to systematically explore precession during all three

binary evolution stages to ultimately facilitate the construction of a complete inspiral-merger-

ringdown (IMR) waveform model for precessing binary black holes. We therefore also need to

investigate precession in NR simulations and isolate interesting features like the precession of

the orbital plane, which is the main goal of this chapter. To do so, we present a simple method

to track the precession of a black-hole-binary system during the late inspiral and merger,

using only information from the gravitational-wave signal extracted from NR simulations.

The method consists of locating the frame of reference from which the magnitudes of the

dominant harmonics, the (l = 2, |m| = 2)-modes, are maximised, which we henceforth refer

to as the “quadrupole-aligned” frame. The analysis and results were published in:

[196] Schmidt et al., “Tracking the precession of compact binaries from their gravitational-

wave signal”, Phys.Rev., D84:024046, 2011.

4.1 Introduction

Numerical Relativity simulations produce waveforms for only discrete points in the param-

eter space of binary configurations, but significant progress has been made in synthesising

information from post-Newtonian (PN) and effective-one-body (EOB) methods, numerical

relativity and perturbation theory, to produce analytic models of the complete IMR sig-

nal over some regions of the parameter space. At the time this work was completed (Dec

2010), the majority of then available complete waveform models treated nonspinning bina-

ries [8, 10, 11, 26, 62, 65, 79, 80, 87, 88, 153], or spin-aligned binaries [12, 172, 192, 210].

Precession adds a number of complications, as was illustrated in Chapter 3. Therein
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we have seen that when the spins ~Si are not parallel to the orbital angular momentum L̂

their orientation varies with time, as does the orbital angular momentum itself, meaning

that he orbital plane also precesses. Both the precession of the spins and of the orbital plane

introduce modulations into the GW amplitude, oscillations into the GW frequency and phase,

and variations in the distribution of signal power across different harmonics of the waveform.

All of these features complicate efforts to produce an analytic model of precessing-binary

waveforms. In addition, they make it difficult to uniquely characterise the GW signal. For

example, the total phase Eq.(3.21) of the dominant mode of the signal depends on the initial

orientation, i.e., (ι0, α0), of the orbital plane. This makes it difficult to determine whether

two waveforms were produced by the same binary configuration, or to compare independent

numerical simulations, a task that is relatively simple for non-precessing binaries [25, 118, 175]

in quasi-circular orbits.

In the following, we introduce a method to put a precessing-binary waveform into a partic-

ularly simple form by identifying a preferred time dependent coordinate system, which tracks

the precession of the orbital plane during the late inspiral and merger.

Gravitational-wave signals are most conveniently expressed in terms of spherical harmonics

Y s
lm(θ, ϕ) of spin-weight s = −2, where (θ, ϕ) are the standard polar coordinates on the

unit sphere (see Sec. 2.5.1 for details). The mode decomposition is performed in the time-

independent Cartesian coordinate system of the numerical simulation, henceforth referred

to as the simulation frame. It is chosen such that the black holes are initially placed on

the y-axis. The dominant modes are the quadrupole modes, where (l = 2,m = ±2). If we

now choose a different coordinate system to perform the mode decomposition, for example

by rotating the system, the modes of a particular l mix among each other according to the

transformation law described in Appendix A.

In linearised gravity it can be shown that a binary system emits GWs predominantly in

the direction orthogonal to the orbital plane. In a purely Newtonian picture, we associate

this direction with the Newtonian orbital angular momentum LN . Correspondingly, if the

binary system is oriented such that this dominant-emission direction is parallel the z-axis

of the mode-decomposition frame (i.e., θ = 0), then we expect that the dominant signal is

given by the (l = 2, |m| = 2) spherical harmonics of the wave. In general, the |m| = 1-

modes vanish when the two black holes can be exchanged by symmetry; the m = 0-mode

is a non-oscillating mode related to memory effects, see e.g., [95, 180]. If we now choose

different (rotated) coordinates (θ′, ϕ′) to define a new mode-decomposition basis Y s
lm(θ′, ϕ′),

then mode-mixing will complicate the spherical harmonic description of the signal, and for

example even an equal-mass nonspinning binary will exhibit nonvanishing |m| = 1 modes.

This coordinate change (θ, ϕ) 7→ (θ′, ϕ′) is equivalent to decomposing the GW signal in the

source frame {x′, y′, z′} of some static observer (see for example Fig. 3.2). We illustrate this

effect in more detail in Sec. 4.4.1.
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Therefore, we can determine a preferred direction from the gauge-invariant wave signal

alone by finding the orientation that maximises the (l = 2, |m| = 2)-modes. This is the

method that we will discuss in this chapter. Henceforth, we will refer to waveforms that are

given in terms of a spherical harmonics basis that is aligned with this direction of maximal

emission as “quadrupole-aligned” waveforms.

In a precessing system there are two contributions to the frequency of the binary motion:

the frequency of the motion about the orbital-plane axis, ωorb, which increases during a non-

eccentric inspiral as a monotonic function, and the frequency due to the precessional motion,

which oscillates as a function of time (see Eq.(3.21)). The total frequency of the motion of the

binary in the simulation frame is ω = ωorb − ϕ̇ cos θ, where θ is the inclination of the normal

to the orbital plane from the z-axis, and ϕ is the rotation of the normal about the z-axis in

the xy-plane of the simulation frame1; this corresponds to the result in Eq.(3.10) in [23]. In

a kinematical description of the binary, these two frequencies together prescribe the bodies’

acceleration, which is the dominant source of gravitational radiation. One of the properties

we expect from our quadrupole-aligned waveform is that during the inspiral the frequency of

the (l = 2, |m| = 2)-modes will to a good approximation satisfy the relation

ω22 = 2(ωorb − ϕ̇ cos θ). (4.1)

Our main results are that 1) we can determine the quadrupole-aligned direction from

the GW signal to high accuracy (within a fraction of a degree during most of the inspiral),

and 2) the GW signal is indeed much simplified, see in particular Fig. 4.11 of the GW

frequency before and after our (2,2)-maximisation procedure, where the final frequency does

approximately satisfy Eq.(4.1). In addition, we show that the GW signal is emitted in the

direction of the orbital angular momentum of the binary, which is not in general perpendicular

to the orbital plane. This is counterintuitive to the Newtonian picture, but we illustrate this

effect with an example from PN theory, where it can be seen explicitly that the effective

orbital angular momentum is not parallel to the naive Newtonian angular momentum.

In Sec. 4.2 we describe our numerical methods and numerical simulations and in Sec. 4.3 we

provide details of our algorithm to find the dominant-emission direction from the GW signal,

which will subsequently be identified as the direction of the orbital angular momentum. The

results of our method are presented in Sec. 4.4, where we verify our method using a simple

test case of an equal-mass nonspinning binary and then apply the method to an unequal-mass

spinning binary that undergoes significant precession. We discuss these results in Sec. 4.5.

1We note that we use the general polar coordinates (θ, ϕ) in this chapter to denote the direction of L̂ in
the simulation frame.
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4.2 Numerical methods and simulations

We performed numerical simulations with the moving-puncture code BAM [55, 126] as de-

scribed in detail in Sec. 2.5.2.1. The numerical grid setup is similar to that used in [55],

although in the precessing-binary simulation the number of grid points on each refinement

level is varied to achieve greater wave extraction accuracy.

In this analysis we consider two configurations: the first is an equal-mass nonspinning

binary, using the same setup as first described in [113]. The initial separation is D = 12M

and the binary completes on the order of nine orbits before merger. To test our orbital-plane

tracking algorithm (which we will discuss in Sec. 4.3), we performed a new simulation of this

case in which the (Newtonian) orbital angular momentum was first rotated by 10◦ about

the y-axis (tilt), and then around the z-axis by 25◦ (twist). For this simulation the grid

configuration was the same as the N = 64 simulation in [113] (although of course with a

full grid and no symmetries applied). For reference, this grid was characterised by N = 64,

l1 = l2 = 5, M1/hmin = 21.3, hmax = 12M , and the extent of the grid was xi,max = 774M ;

the resolution on the wave-extraction level was hex = 1.5M .

The second configuration in this study is a precessing binary with mass ratio q = 3, where

the larger black hole has spin χ2 = 0.75. In the calculation of the initial parameters, the spin

is directed perpendicular to the Newtonian orbital angular momentum, i.e., cosκ2 = 0, when

the binary is at a separation of D = 30M . The configuration is evolved using the PN equations

of motion until about D = 10M and the linear momenta are read off from the PN evolution

at a point where the point particles pass through the xy-plane. A low-resolution simulation

is performed with these initial parameters, and then an additional iteration is performed to

further reduce the eccentricity; more details of a refined version of this procedure can be

found in [184]. This leads to the parameters given in Tab. 4.1. The number of grid point

for this simulation is N = 112. The number of moving levels is l1 = 4 around the large

black hole, and l1 = 5 around the small black hole. The number of fixed levels is l2 = 8, but

the fixed boxes are of varying sizes, with 4483 points on the wave-extraction level and with

hex = 0.46M . The resolution at the puncture is M1/hmin = 35.7 and the maximal resolution

is hmax = 29.26M on the coarsest level that extends to xi,max = 1653M . This ensures that

the outer boundary is causally disconnected from the source over the course of the simulation.

Some key physical properties of the simulations are given in the last three rows of Tab. 4.1:

the estimate of the eccentricity of the binary, the time when the GW signal reaches its peak

amplitude and the number of GW cycles up until that time (excluding the initial pulse of

junk radiation).
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nonspinning precessing

q 1 3
Mi {0.488278, 0.488278} {0.47790, 1.02343}
~S1 {0, 0, 0} {0, 0, 0}
~S2 {0, 0, 0} {−1.048, 1.197, 0.560}
~x1 {0, 6, 0} {0, 15.0478, 0}
~x2 {0,−6, 0} {0,−5.0159, 0}

D/M 12.00 10.03
px ∓0.085035 ∓0.126292
py ±0.000537 ∓0.00139578
pz 0 ±0.0696932

e 0.0016 0.0015
tpeak/M 1940 1271
Ncycles 19 14

Table 4.1: Parameters for the two configurations that we consider in this paper: the equal-mass
nonspinning case and the q = 3 precessing-spin case. (For the rotated equal-mass nonspinning case,
the momenta are ~pi = ∓{0.07567, 0.03588, 0.01477}.) The lower rows indicate some physical properties
of the configuration: the initial eccentricity e, the time until the peak amplitude of the (l = 2,m = 2)-
mode and the number of GW cycles up to that time.

4.3 Maximisation procedure algorithm

The Weyl scalar Ψ4 as calculated from the numerical code is decomposed into standard spin-

weighted spherical harmonics (see [55] for our implementation). We expect that if the orbital

angular momentum ~L of the binary is parallel to the z-axis of the numerical simulation frame,

then the GW signal will be dominated by the (l = 2, |m| = 2)-modes. We also expect that

the coefficients of the (l = 2, |m| = 2)-modes will be maximal in this case; for any other

orientation of the orbital angular momentum, the (l = 2, |m| = 2)-modes will be weaker and

higher harmonics will be excited.

Given the l = 2 modes Ψ′4,2m from the numerical code, we can rotate the mode-decomposition

frame (i.e., the numerical simulation frame) to any other orientation using the general trans-

formation described in Appendix A, to produce the corresponding Ψ4,2m in the new frame of

reference. We locate the direction of maximal emission by searching over a range of the Euler

angles (β, γ) to find a global maximum in Ψ4,22 at each time step. The two frames and the

orientation of the maximal emission direction are schematically depicted in Fig. 4.1.

The procedure in practice is as follows: we start our analysis after the passage of the pulse

of junk radiation. Since we extract the GW signal at either Rex = 90M or Rex = 94M , we

take the start time to be at about t = 150M respectively t = 200M . We produce a first

(Newtonian) guess of the direction of L̂ from the locations and velocities of the black-hole

punctures at that time. This provides a guess (β0, γ0) of the Euler angles by which to rotate the

system. Given this initial guess, we then search over a range of (β, γ) = (β0±10◦, γ0±10◦) with
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Figure 4.1: The left panel shows the simulation frame {x′, y′, z′} of a generic binary at a time t1.
The maximal emission direction points along some arbitrary direction (β, γ) and is denoted by Q̂A.
The right panel illustrates the effect of quadrupole-alignment: the emission direction is identified and
re-aligned with the z-axis of the mode-decomposition frame {x, y, z}.

Figure 4.2: Profile of the magnitude of Ψ4,22

as the system is rotated by the Euler angles β
and γ, shown relative to the maximum value.
The example is taken from one time step (t =
562M) of the rotated equal-mass nonspinning
case discussed in Sec. 4.4.1. Note that the max-
imum is clearly defined, which in this case is at
(β, γ) = (−10◦,−205◦).
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an angular resolution of 0.1◦ and find the angles for which the function
√
|Ψ4,22|2 + |Ψ4,2−2|2

has a maximum. In our test cases, where the orientation is constant, this procedure is trivial,

but in general this first guess may not be very accurate. In particular, it does not take into

account the time lag from the source to the GW extraction sphere. However, we do not

expect the system to precess by as much as 10◦ over ∼ 100M of evolution. We also know

that the Newtonian orbital angular momentum ~LN calculated from the puncture motion is

not in general parallel to the direction that maximises the (l = 2,m = 2)-mode, but we do

not expect the deviation to be larger than a few degrees.

For subsequent times, we use the angles from the previous time step as the first guess

and then search over the smaller range of ±3◦ in each angle. We locate the maximum in√
|Ψ4,22|2 + |Ψ4,2−2|2 with a quadratic curve fit through the data from the search.

At all times we find a clear maximum in the amplitude of Ψ4,22 as a function of the

rotation angles β and γ. An example is given in Fig. 4.2, based on one time step of the

rotated equal-mass nonspinning case presented in Sec. 4.4.1.
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4.4 Numerical results

4.4.1 Test case: equal-mass nonspinning binary

In order to test our maximisation procedure, we consider two simulations of an equal-mass

nonspinning binary. In one, a reference case, the orbital angular momentum is oriented

parallel to the z-axis of the source frame. Since the orientation of the orbital plane is time-

independent in this case and since L̂ = L̂N for vanishing spins, the waveforms are already

decomposed in the quadrupole-aligned frame. The simulation starts at a separation D = 12M

and covers about nine orbits before merger.

For the second nonspinning simulation we change the orientation of the orbital plane. It

is first rotated about the y-axis by 10◦ and then around the z-axis by 25◦. The motion of

the punctures in both the reference (red) and rotated (blue) case is shown in Fig. 4.3. In

the reference case (denoted by Ψ̃4,lm), the (l = 2,m = 1)-mode is zero by symmetry and

the (l = 2,m = 0)-mode is dominated by numerical noise. The dominating mode is the

(l = 2,m = 2)-mode. This can be seen in the left panel of Fig. 4.4. In the rotated case,

however, both originally sub-dominant modes have become significant. Note that oscillations

are visible in the (l = 2,m = 0)-mode amplitude because it is a purely real function. In

this case, the modes of Ψ4,2m are now mixed and the power in the Ψ4,22 mode is distributed

amongst the other (l = 2)-modes. Nevertheless, the modes show a hierarchical structure.

This is illustrated in the right panel of Fig. 4.4.

We now want to see if our maximisation procedure, when applied to the waveforms from

the rotated configuration, recovers the waveforms from the reference configuration. In our

procedure we search for a rotation of the system by the Euler angles (β, γ) such that the

coefficients of the (l = 2, |m| = 2)-modes are maximised. If the method works, we will recover

the reverse angles (−10◦,−205◦)2.

Fig. 4.5 shows the error in the determination of the Euler angles. The maximisation

procedure was applied from t = 150M , after the burst of junk radiation has passed, through

to t = 2000M , which is late in the ringdown phase. Up until about t = 500M the waveform

is rather noisy, and so the error in β can be as large as 1◦ and in γ the error is up to 4◦.

During most of the inspiral, however, when the wave signal is clean, the error in β is below

0.05◦, and the error in γ is below 0.2◦ and even during the ringdown (when the waveform

amplitude is falling exponentially), the angles are determined to within ±(0.5◦, 2.0◦).

Note that during the merger and ringdown we do not expect the method to necessarily

work. The dominance of the (l = 2, |m| = 2)-modes, which we expect during inspiral, may

not hold through merger. In addition, the signal during ringdown is no longer a superposition

of spin-weighted spherical harmonics, but of spin-weighted spheroidal harmonics [211]. In this

2The Euler angle to reverse the twist is −205◦ due to the freedom in performing the rotation about the
z-axis clockwise or counterclockwise.
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Figure 4.3: Motion of one black-hole puncture for
the reference (red) and rotated (blue) equal-mass
nonspinning cases. The orbital planes are related
by a rotation about the y-axis of 10◦, and about
the z-axis of 25◦.
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Figure 4.4: The left panel shows the amplitude of the Ψ̃4,2m-modes for the reference case. The
(l = 2,m = 1)-mode is zero by symmetry, and we see that the (l = 2,m = 0)-mode is much smaller
than the dominant mode and is essentially noise during most of the inspiral. The right panel shows
the corresponding amplitudes for the rotated case. We now see that both sub-dominant modes have
become significant. The amplitude of the (l = 2,m = 0)-mode is oscillatory because it is a purely real
function.

test case we also find that our method continues to work well through merger and ringdown.

The magnitudes of the (l = 2)-modes in the quadrupole-aligned frame agree well with

those in the reference case. The (l = 2, |m| = 2)-modes agreed within numerical error in the

raw data, and the (l = 2, |m| = 1)-modes, which should be zero by symmetry, were reduced

by three orders of magnitude, to a level that would generally be regarded as noise. During

the inspiral, for example, |Ψ4,21| was reduced from ∼ 10−4 to ∼ 10−7.

These results demonstrate that our method works and give us an indication of the error

bounds. We expect that in general the errors will depend on the orientation angles of the

binary and will be worse when the angles are small. In these cases the sub-dominant modes

will be smallest and therefore will be resolved with less accuracy in the numerical code and

will then contribute more noise to the waveform in the rotated frame. However, we will take

the errors from this example as the basis for our error bounds in other applications of our

method.

We also note that we could directly replace the set of Euler angles (β, γ) with the direction

of the orbital angular momentum denoted by (ι, α) in PN theory, but since this not true in

general, we will distinguish between the angles determined by the maximisation routine and

the polar coordinates of L̂ in PN.
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Figure 4.5: Error in the angles for the tilt (β) and twist (γ) of the orbital plane, as determined by
the maximisation procedure.

4.4.2 Precessing binary

Having shown that the maximisation procedure works for the equal-mass nonspinning test

case, where the orientation of the orbital plane is known and time-independent, we now apply

the method to a generic precessing binary. The configuration we have chosen has a mass ratio

of q = 3, the larger black hole has a spin of χ2 = 0.75 and the spin lies initially in the orbital

plane, i.e., perpendicular to the Newtonian orbital angular momentum. The small black hole

is not spinning, i.e. χ1 = 0.

By inspection of Eq.(3.16), we expect this configuration to exhibit significant precession.

Alternatively, the 2PN-order equations of motion can also be derived from a generalised

Lagrangian. The spin-orbit interaction can be characterised by the Hamiltonian [133] (see

also, for example, Ref. [61])

HSO(t) = 2
~Seff · ~L
r3

, (4.2)

where r is the coordinate separation of the black holes and the effective spin ~Seff is defined as

~Seff =

(
1 +

3

4

M2

M1

)
~S1 +

(
1 +

3

4

M1

M2

)
~S2, (4.3)

where in our case one of the spins would be zero. From the spin-orbit interaction one can

derive a post-Newtonian evolution equation for the total black-hole spin [133],

~̇S = − 2

r3
~Seff × ~L. (4.4)

This indicates that the maximum amount of spin precession will be achieved when the spin

is perpendicular to the orbital angular momentum. If one of the black holes has a Kerr

parameter Si/M
2
i , then S will be largest if the larger black hole is spinning. This is also

convenient from a numerical point of view, because the resolution requirements increase both

as the mass is decreased, and spin is added; it is computationally cheaper to put the spin on
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Figure 4.6: Motion of the black-hole punctures
for the q = 3 precession simulation. The motion
of the small black hole is shown in red, and the
large black hole is shown in black. The precession
of the orbital plane is clearly visible through the
late inspiral until the merger.
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Figure 4.7: Comparison of the polar angles θ and ϕ for the unit directions of ~r × ~v (normal to the
orbital plane) and ~r× ~p (orbital angular momentum) in a PN calculation. The comparison shows that
the direction of ~r × ~v exhibits extra oscillations.

the larger black hole.

We also know from PN theory that ~̇S = −~̇L due to the conservation of the total angular

momentum ~J in the absence of gravitational radiation. If we increase the mass ratio, then

the orbital angular momentum L at a given separation will decrease, but the magnitude of

the spin will stay the same. Therefore the relative change in ~L due to the precession of the

spins will increase. This means that we will get greater spin precession for higher mass ratios.

We have chosen q = 3 because this is reasonably large compared to typical simulations we

have performed in the past, but low enough that we still expect to be able to achieve high

accuracy.

Fig. 4.6 shows the orbital motion of the two punctures in the numerical simulation. The

precession of the orbital plane is clearly visible in the figure.

Considering the leading order spin-orbit interaction Eq.(4.2) also exhibits another subtle

feature of spinning binaries. The time evolution of the momentum vector ~p is given by the
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Hamiltonian evolution equation

d~p

dt
= −∂H

∂~r
. (4.5)

If the Hamiltonian H depends on the spins, then consequently the momentum also picks up

a contribution from the spins and the relative velocity vector~̇r is in general not parallel to

the momentum ~p. Consequently, the directions of the orbital frequency vector ~ωorb,

~ωorb =
~r × ~v
r2

(4.6)

is in general not aligned with the angular momentum ~L = ~r×~p. For the spin-orbit interaction

defined by the Hamiltonian in Eq.(4.2), this contribution to the angular momentum can be

computed as [133]

~LSO =
µ

M

[
M

r
n̂×

(
n̂×

(
3~S +

δm

M
∆

))
−1

2
~v ×

(
~v ×

(
~S +

δm

M
∆

))]
, (4.7)

where

∆ = M

(
~S1

M2
−

~S2

M1

)
, (4.8)

and ~v = ~̇r and ~n is the unit vector in the direction of ~r. The total orbital angular momentum

at next-to-next-to leading order is then ~L = ~LNS + ~LSO, where LNS is the nonspinning

contribution to the angular momentum (which is parallel to the vector ~r × ~v).

Note that the effect of the non-alignment of ~ωorb and ~L is maximal when the total spin

~S is in the orbital plane. This is indeed the case for our initial conditions. We also find that

during the numerical evolution the spin component out of the orbital plane is significantly

smaller than the components in the orbital plane. Note also that since the spin typically

varies on a timescale larger than the orbital time scale, Eq.(4.7) will lead to oscillations in

the angle between ~ωorb and ~L with roughly the orbital period.

Such oscillations are not present in the direction of L̂, as illustrated in Fig. 4.7. We will see

later that the quadrupole-aligned frame moves consistently with L̂ (i.e., as a smooth function),

suggesting that our maximisation procedure indeed tracks the direction of the orbital angular

momentum.

The left panel of Fig. 4.8 shows the amplitude of the (l = 2,m = 2)- and (l = 2,m =

1)-modes during the late inspiral. We clearly see that the “sub-dominant” (2, 1)-mode is

of comparable magnitude to the (2, 2)-mode and shows significant modulation. (It is also

instructive to compare with the results in [72], where a precessing binary is also considered

from a fixed frame of reference and all of the (l = 2)-modes are of significant amplitude.) The
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Figure 4.8: Amplitude of raw numerical data for inspiral (left), for the “dominant” mode Ψ′4,22 and
the “sub-dominant” mode Ψ′4,21. The right panel shows the frequency of the (l = 2,m = 2)-mode,
which exhibits significant oscillations. (The data are also noisy at early times, but this is typical for
such data.)

right panel of Fig. 4.8 shows the frequency of the (2, 2)-mode, ω22 = Φ̇22, over the same time

interval. The frequency clearly exhibits large oscillations. Based on the discussion around

Eq.(4.1) we expect oscillations in ω22 of purely physical origin, but we also assume that the

physical oscillations will be exaggerated and their frequency modified in the fixed frame of an

inertial observer, e.g., the simulation frame.

We now apply the maximisation procedure to the waveform signal from t = 200M , when

the junk radiation has passed, through merger and ringdown (up to t = 1350M). At each time

step the system is rotated such that the (l = 2, |m| = 2)-mode amplitudes are maximised.

Having applied our maximisation procedure to track the precession, we first address the

question of whether the GW signal is emitted normal to the orbital plane, or parallel to the

orbital angular momentum. Although we cannot unambiguously define the direction of orbital

angular momentum in General Relativity, we can certainly determine whether the GW signal

is emitted normal to the orbital plane.

Fig. 4.9 shows the Euler angles (β(t), γ(t)) that were found in the maximisation procedure,

time shifted by 103M to approximately compensate for the time lag to the GW extraction

spheres. It also shows the angles (θ(t), ϕ(t)) of the direction orthogonal to the orbital plane

as computed from the NR simulation and for the orbital angular momentum ~L as computed

from a PN simulation (as in Fig. 4.7). The PN angles are approximately aligned with (β, γ)

at early times. If the GW signal were emitted normal to the orbital plane, we would expect

to be able to align β with −θ from the numerical relativity simulation and likewise for γ and

−ϕ. However, it is clear from Fig. 4.9 that the orbital-plane angles contain extra oscillations.

Based on the illustration in Fig. 4.7, this suggests that the GW signal is emitted in the

direction of the orbital angular momentum. In particular, we plot in Fig. 4.9 the direction

of the orbital angular momentum as predicted in PN theory, which shows good agreement

with the angles that define the quadrupole-aligned frame. We conclude that the maximisation

tracks the true orbital angular momentum, which is roughly approximated by the Newtonian
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Figure 4.9: The Euler angles (β, γ) found when the maximisation procedure was applied to the
q = 3 precessing-binary waveform. For comparison we show the corresponding angles (−θ,−ϕ) of the

normal to the orbital plane as computed from the NR simulation and for the angular momentum ~L
from a PN simulation (as in Fig. 4.7). We approximately align the PN angles with β and γ at early
times. We clearly see that the orbital-plane angles show additional oscillations that are not present in
the (2, 2)-maximisation angles.
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Figure 4.10: Amplitude of the (l = 2,m = 2)-mode, before (Ψ′4,22) and after (Ψ4,22) the maximisation
procedure.

orbital angular momentum.

Fig. 4.10 shows the amplitude of the original Ψ′4,22 and the quadrupole-aligned signal that

results from the maximisation procedure, Ψ4,22. We see that the maximisation procedure has

indeed increased the amplitude of the dominant harmonics at all times. Additionally, it also

seems to have removed some oscillations.

The frequency of the (l = 2,m = 2)-mode before and after the maximisation proce-

dure is shown in Fig. 4.11. This figure illustrates one of the key results of this work: the

high-frequency oscillations in the GW frequency have been removed by the maximisation

procedure, leaving it in a far simpler functional form, almost as simple as for aligned-spin

binaries. We note, however, that the oscillations in the frequency have not been completely

removed. This is to be expected from Eq.(4.1). In the absence of precession, during the inspi-

ral the gravitational wave frequency of a spherical harmonic mode (l,m) is with a high degree

of accuracy proportional to the orbital frequency, ωlm = mωorb. In the presence of precession,
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Figure 4.11: Frequency of the (l = 2,m = 2)-
mode before (Ψ′4,22) and after (Ψ4,22) the maximi-
sation procedure. We see that the high-frequency
oscillations have been removed. The remaining os-
cillations are of a lower frequency and much lower
amplitude; see text and Fig. 4.12.
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Figure 4.12: Frequency of the (l = 2,m = 2)-
mode after the maximisation procedure compared
with the “total frequency” ωtot, which is the or-
bital frequency with a precession term added ac-
cording to Eq.(4.1). We also show the frequency
that results from rotating the system according to
the direction of the Newtonian orbital angular mo-
mentum, ωN , i.e., the normal to the orbital plane.
The frequencies, in order of increasing magnitude
of oscillation, are ω22, ωtot and ωN .
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this is however replaced by Eq.(4.1), which adds an extra term depending on the precessing

motion of the orbital plane. In Fig. 4.12 we compare the frequency of the (l = 2,m = 2)-

mode after the maximisation procedure with the orbital frequency with the precession term

added according to Eq.(4.1). We find reasonable agreement. We also show the frequency ωN

that results from rotating the system according to the direction perpendicular to the orbital

plane, which is also the direction of the naive Newtonian orbital angular momentum. It is

clear from Fig. 4.12 that the oscillations due to the orbital-plane rotations are much larger,

and this further suggests that the quadrupole-aligned frame is optimal. We have also verified

that the remaining oscillations are not due to residual eccentricity in the system, by repeating

our analysis on a simulation with roughly twice the eccentricity as well as by studying PN

examples.

It is clear that the maximisation procedure produces (l = 2, |m| = 2)-modes that are

of a simpler form than in the original NR data. However, this is not a guarantee that we

have correctly tracked the direction of the GW emission; we have not necessarily put the

waveform into a physically meaningful frame of reference. One test of our method is to

calculate the effect on the sub-dominant modes. We expect that in the quadrupole-aligned

frame the amplitude of the GW signal will agree to a good approximation with that from

a q = 3 nonspinning binary for the following reason: the spin effect on the rate of inspiral

is dominated by ~S · ~L, and this is close to zero throughout our simulation, so we expect the

secular inspiral to be similar to that for a nonspinning binary with the same mass ratio.
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Figure 4.13: Left: selected modes of the precessing-binary waveform after being transformed into
the co-precessing frame, i.e., after the system has been rotated by the angles that were found from
the (2, 2)-maximisation procedure. The right-hand plot shows the same modes for a nonspinning
(and therefore non-precessing) q = 3 waveform. The agreement is remarkable. Note in particular
the qualitative agreement of the (l = 2,m = 1)-mode, which is of comparable magnitude to the
(l = 2,m = 2) mode in the raw data (see Fig. 4.8).

Fig. 4.13 shows a selection of modes for the quadrupole-aligned waveform. The left panel

shows the transformed modes for the precessing binary and the right frame shows the same

modes for the nonspinning q = 3 waveform presented in [116]. Two things are remarkable

about this figure. The first is that the amplitudes of the modes show extremely good agree-

ment. The other is that we have found that the magnitude of the (l = 2,m = 1)-mode is

extremely sensitive to the angle by which the system is rotated. If, for example, we were to

modify β or γ by a fraction of a degree, Ψ4,21 could change by orders of magnitude. With

this fact borne in mind, the oscillations in |Ψ4,21| are not very large at all. This figure sug-

gests that we have indeed located an optimal frame from which to study the GW signal of

precessing binaries.

Finally, we will discuss the application of our procedure to the merger and ringdown. We

can calculate the final black hole’s spin magnitude and direction using information from the

apparent horizon [70]. Ideally our method would locate the same spin direction. However, as

pointed out in Sec. 4.4.1, the ringdown signal is a superposition of spheroidal (rather than

spherical) harmonics [52, 211], and so we do not expect a maximisation of the l = 2, |m| = 2

coefficients of a spherical-harmonic decomposition of the waveform to necessarily produce

accurate results. Moreover, the identification of the final spin direction is yet another example,

which highlights the importance of geometrically meaningful frame choices. Originally, we

believed that the maximisation method does not identify the correct final-spin direction. This

is, however, not true: we expect the direction of the final spin to be close to the direction of

J0 in the case of simple precession. The quadrupole-alignment is performed with respect to

the rather arbitrary simulation frame. If the analysis was performed in the J0-aligned frame,

though, the correct final spin direction would be identified, as the actual vector components

are, of course, coordinate-dependent.
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4.5 Discussion

In summary, we have presented a simple method to track the precession of the orbital plane of

a binary system, using only information from the GW signal. Our procedure is to rotate the

system such that the magnitudes of the (l = 2, |m| = 2)-modes are maximised, based on the

physical assumption that this is the direction of dominant GW emission. This frame represents

a frame which is to a first approximation co-precessing with the instantaneous orbital plane,

i.e., (β, γ) ≈ (−ι,−α). We refer to the waveforms in this frame as “quadrupole-aligned”

waveforms. Based on evidence from PN theory, we have shown evidence that this direction

corresponds to that of the orbital angular momentum, which is in general not perpendicular

to the orbital plane. Further, we have also seen that our method produces higher-mode

amplitudes consistent with what we know from comparable aligned-spin binaries.

The result of our procedure is that the waveforms are represented in a more simple form

than the ones produced directly from the numerical code. This is particularly true for the

subdominant modes; compare Figs. 4.8 and 4.13. We will see in the subsequent chapters that

this insight will significantly simplify the task of producing analytic inspiral-merger-ringdown

models, which is the main motivation for this work. This method also provides a normal form

for the waveforms, which is useful for comparisons between numerical and analytic results.

In our analysis, we have neglected an important subtlety: in general, any such co-rotating

frame is defined by three Euler angles. We have only made use of the two geometrically

obvious angles, the two polar coordinates which define the maximal emission direction on the

unit sphere. However, it was subsequently pointed out by Boyle et al. [50] that the third

Euler angle is rather important to completely fix the frame, leaving it invariant under BMS

transformations (see Appendix A). This third angle corresponds to an additional rotation

about the z-axis and is commonly referred to as minimal rotation. Therefore, the invariant

co-precessing radiation frame is the quadrupole-aligned frame completed with the third Euler

angle.

One could propose alternative procedures to track the orbital precession of the system

and we will now discuss some of them as well as their difficulties.

In General Relativity, only the total angular momentum of the spacetime is unambiguously

defined. The form of Bowen-York puncture initial data is such that we can analytically

calculate the angular momentum ([55, 166, 229, 230]) of the initial slice from the initial-data

parameters; it is simply given by ~L = ~x1×~p1+~x2×~p2, where ~xi are the coordinate locations of

the punctures and ~pi are the momenta that are input into the Bowen-York extrinsic curvature.

We can calculate the angular momentum radiated through the spheres on which we measure

the GW signal and can then determine the total angular momentum of the system as a

function of time. However, we want the orbital angular momentum, ~L = ~J − ~S. To calculate

this we need to know the black-hole spins as a function of time (which can be estimated

with reasonable accuracy from the black holes’ apparent horizons [70]), but these quantities
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are calculated at the black holes, not at the GW extraction sphere and cannot easily be

translated. Instead, one could attempt to calculate the orbital angular momentum entirely

at the sources, but this also presents difficulties. The proper distance between the black-

hole horizons and their momenta could be calculated by some quasi-local procedure (for

example [136]) and hence the orbital angular momentum could be determined. But it will

be difficult to assess the gauge errors in any such method. Alternatively, one could calculate

the angular momentum using the puncture locations and PN theory, but this will only be

an approximation to the true general relativistic angular momentum. One direction we can

easily determine from the puncture motion is the normal to the orbital plane of the binary,

but we have seen in Sec. 4.4 that this is not the direction in which the dominant GW signal is

emitted, and nor does it define a reference frame from which the GW signal appears simpler

than what can be achieved by the maximisation procedure that we have used.

One may also question whether this method will work beyond the single-spin precessing

case that we have considered, which involved only one spinning black hole and the spin

direction was explicitly chosen such that ~S · ~L = 0. However, we have made additional studies

with a number of other precessing-binary configurations, and find results consistent with those

presented here. A PN study will be presented in the next chapter.





CHAPTER 5

Towards generic waveform models I

An approximate mapping between

precessing and non-precessing waveforms

In the previous chapter we have introduced a co-precessing frame of reference, which allows

us to put the rather complex gravitational waveforms emitted by precessing binaries in a

very simple form. In this chapter, we will make use of this convenient waveform descrip-

tion, to analyse the secular component of the waveform and introduce an approximation

that significantly simplifies the problem of modelling precessing waveforms. We show that

generic precessing-binary inspiral waveforms can be mapped to a two-dimensional space of

non-precessing binaries, characterised by the mass ratio and a single effective total spin. The

mapping consists of a time-dependent rotation of the waveforms into the quadrupole-aligned

frame (see Chapter 4) and is extremely accurate (matches > 0.99 with parameter biases in

the total spin of ∆χ ≤ 0.04), even in the exotic case of transitional precession. In addition,

we demonstrate a simple method to construct hybrid post-Newtonian–Numerical-Relativity

precessing-binary waveforms in the quadrupole-aligned frame and provide evidence that our

approximate mapping can be used all the way to the merger. Finally, based on these results,

we outline a general strategy for the construction of generic waveform models, which will be

used in Chapter 7 to produce a precessing IMR waveform model. The analysis and results

presented in this chapter have been previously published in:

[197] Schmidt et al., Towards models of gravitational waveforms from generic binaries: A sim-

ple approximate mapping between precessing and non-precessing inspiral signals. Phys.Rev.,

D86:104063, 2012.
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5.1 Introduction

The detection and subsequent analysis of gravitational waves relies strongly on the accuracy

and completeness of theoretical waveform models. For black-hole binaries, this includes the

inspiral, merger and ringdown of the final black hole. Such waveform models combine informa-

tion from analytic approximation methods and numerical-relativity (NR) simulations [165].

At the time this work was carried out, a number of theoretical inspiral-merger-ringdown

(IMR) waveform models existed for non-spinning binaries and configurations where the spin

angular momentum is either aligned or anti-aligned with the orbital angular momentum (a

summary of these models is given in Ref. [165]). But most astrophysical binary systems

are expected to have arbitrary spin configurations, which lead to complicated precession ef-

fects (see Chapter 3 for a detailed analysis of the phenomenology). Although there did exist

one preliminary precessing-binary IMR model [209] at the time, the systematic modelling of

generic binaries remained a serious challenge.

The complicated structure of precessing-binary waveforms suggests that in order to con-

struct accurate IMR waveform models, we may need to produce numerical simulations that

densely sample a seven-dimensional parameter space. At first glance, this does not seem

feasible on the timescale of second-generation GW detectors (i.e., within the next ten years),

although valiant efforts are underway [124, 155, 162].

In this chapter we introduce an approximation that has proven to dramatically simplify

the modelling of precessing-binary waveforms. Motivated by the results presented in Chap-

ter 4, we show that the seven-dimensional space of intrinsic physical parameters of generic

precessing-binary waveforms can be mapped to a two-dimensional space of non-precessing

waveforms, parametrised by the mass ratio q and one effective total spin parameter χeff .

The mapping consists of transforming the precessing-binary waveforms into a “co-precessing”

frame of reference, described by three Euler rotation angles (γ(t), β(t), ε(t)), which is closely

related to the “quadrupole-aligned” (QA) frame described in Chapter 4. In this geometric

framework, the waveform modelling problem then factorises into two much smaller tasks:

1. the construction of a non-precessing waveform model (and candidates for such a model

already exist [12, 173, 192]) and

2. the construction of a model for the rotation angle functions (γ(t), β(t), ε(t)) with respect

to the binary’s seven physical parameters.

In this chapter we do not address the task of producing a model for the rotation angles as

well as the behavior of the signal during the ringdown, which is subject to Chapter 6 and

Chapter 7. Here, we restrict ourselves to the approximate mapping between precessing-binary

and non-precessing-binary waveforms and test its validity on a series of inspiral waveforms

generated by post-Newtonian (PN) theory.
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Generic binary systems undergoing quasi-circular inspiral are characterised by a set of

intrinsic physical parameters: the binary’s total mass M = m1 + m2, the mass ratio q =

m2/m1 (we adopt the convention that m1 < m2), and the six spin components ~S1 and ~S2.

We note that the total mass of the system sets the overall scale in General Relativity and can

therefore be factored out in for modelling purposes. The individual masses m1 and m2 are

uniquely determined given M and q.

We have seen in the previous chapter that precessing-binary waveforms take a far simpler

form when transformed into the quadrupole aligned (QA) frame [196]. In a nutshell, the

QA frame approximately follows the instantaneous orbital plane of the binary. In this frame

the binary is essentially viewed “face-on”, .i.e., L̂||N̂ , throughout the course of its evolution.

Note that this frame corresponds to a co-rotating, accelerated frame of reference. In this “co-

precessing” frame the amplitudes of the waveform modes as well as their frequency evolution

are significantly simplified and most of the energy is emitted in the (l = 2, |m| = 2)-modes,

just as in a non-precessing binary. In fact, in this accelerated frame the mode structure of a

non-precessing binary appears to be restored (see Fig. 4.13). Based on this observation we

postulate that QA- and non-precessing-binary waveforms may agree well in both amplitude

and phase. Note that a related frame, defined by the direction of the Newtonian orbital an-

gular momentum, was introduced in Ref. [59], along with the observation that the precession-

induced phase oscillations can be removed in this “precessing frame”. The key new result,

beyond the use of the QA frame (which can be determined from the GW signal alone), is the

simple identification between QA waveforms and non-precessing-binary waveforms utilising

the co-precessing frame.

In the context of gravitational-wave searches and parameter estimation, waveforms from

different binary configurations are most strongly characterised by their phase evolution, i.e.,

their rate of inspiral. When the black holes are widely separated their motion can be de-

scribed well by PN methods as summarised in Sec. 2.5.1. In Chapter 3 we have seen that the

leading-order influence of the spin on the inspiral rate and therefore the phase evolution is the

spin-orbit coupling, which is due to a sum of the components of the black-hole spins parallel

to the orbital angular momentum [133]. If the binary precesses, the precession introduces

both secular and oscillatory changes in the phase, but in the QA frame, where the preces-

sion has been removed to some extent, we expect to recover the underlying orbital phase

evolution, which will be similar to that of a non-precessing binary. Since the leading-order

spin effects on the phase arise from the total black-hole spin, it is additionally possible to

make an approximate parametrisation of non-precessing binaries by a single effective total

spin parameter, χeff , and this idea has been used in both inspiral [9] and IMR [192] models.

In this chapter we focus on inspiral PN models and so we will use the same effective spin

parameter as in [9]; see Eq.(5.10). For complete IMR waveforms other parameterisations have

been found to work better [12, 192], but here we restrict ourselves to PN inspiral waveforms.
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The fundamental hypothesis investigated in this chapter is twofold:

1. precessing-binary waveforms can be approximately mapped to non-precessing-binary

waveforms and

2. the equivalent non-precessing-binary signal is parameterised only by the mass ratio q

and χeff .

It is the goal of the subsequent sections to quantify the accuracy of that approximation.

Our approach is to consider a selection of PN inspiral precessing-binary waveforms and to

match them against a family of non-precessing-binary signals to determine the best-match

value of χeff . We can then see how well these values agree with our expectation and the

level of agreement with the best-match waveform. We use PN waveforms because they allow

us to study the long inspiral regime with many precession cycles and they are far more

computationally convenient to produce than numerical simulations of only the last ∼ 10

orbits before merger.

5.2 Precessing-binary inspiral waveforms

5.2.1 Post-Newtonian waveforms

In order to produce the precessing post-Newtonian inspiral waveforms used in this analysis,

we evolved the full PN equations of motion formulated as the Hamiltonian equations of motion

in the standard Taylor-expanded form [116, 127], which were integrated using a Mathematica

package. More specifically, we use the non-spinning 3PN accurate Hamiltonian [82, 84, 128]

(see also [37, 38, 89]) and the 3.5PN accurate radiation flux [35, 40, 41]. We add both leading-

order [29–31, 77, 133, 179] and next-to-leading order [42, 86, 96] contributions to the spin-orbit

and spin-spin Hamiltonians, and the spin-induced radiation flux terms as described in [61](see

also [133, 179]). In addition we include the flux contribution due to the energy flowing into

the black holes, which appears at the relative 2.5PN order, as derived in [16].

The precessing PN waveforms were then generated making use of the explicit formulae

for the waveform modes hlm as given by Eqn. (B1) and (B2) in [23]. The expression for the

(2, 0)-mode was provided by G. Faye and the (2,−m)-modes were constructed according to

Eq. (4.15) in [23]. The positions, momenta and spins of the masses were read off the full PN

solution and used to generate the parameters for the construction of the precessing waveform

modes h2m. The amplitudes contain only the leading-order spin contributions but higher-order

corrections are contained in the dynamics, since the Hamiltonian is known to higher order

(see above). Therefore, even if the hlm expressions were evaluated only at quadrupole-order,

the waveforms would still show many features of precession, since the dominant contribution

to the waveforms is from the motion itself. We note that the dynamical calculations are

performed in the ADMTT gauge, while the mode expressions are written in the harmonic
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gauge. This inconsistency will introduce errors into the waveforms, but we do not expect

these to be larger than those due to the neglect of higher-order PN contributions.

We have chosen the source frame to be the J0-aligned frame, where Ĵ0 = (0, 0, 1) at

the initial separation Di. To achieve this, the PN initial data in the centre-of-mass frame

{~x, ~p, ~S1, ~S2} were rotated by applying a standard rotation about the y- and z-axes in the

Cartesian source frame. This is purely a convention as all of the physics is invariant with

respect to rotations. The system was evolved for 15M to reduce eccentricity (as done pre-

viously in numerical applications [116, 127]), and then evolved from an initial separation of

Di = 40M down to a final separation of Df = 6M, which corresponds to the innermost stable

circular orbit (ISCO) of a test particle around a Schwarzschild black hole.

The orbital frequency of the quasi-spherical motion is given by the general expression

Eq.(4.6). The Newtonian orbital angular momentum in relative coordinates, where ~r is the

separation vector, is given by

~LN = µ(~r × ~̇r), (5.1)

where µ denotes the reduced mass µ = (m1 + m2)/M . The general PN orbital angular

momentum vector ~L is given by

~L = ~r × ~p. (5.2)

Note that ~LN and ~L differ significantly in the case of precession since ~̇r and ~p are no longer

strictly parallel to each other, as explained in [133] and in Chapter 4 unless the two masses

m1 and m2 are far apart.

The Newtonian orbital angular momentum ~LN is defined by the polar coordinates

(ι(t), α(t)) as introduced in Chapter 3. We have already seen that the evolution of these

two angles describes the dynamics of the instantaneous orbital plane. The total phase of the

binary is then constructed from Eq.(3.21). Let us briefly recap the physical interpretation of

the integral: the phase seen by an observer on the z-axis (which is the axis that defines our

mode decomposition of the GW signal) is a combination of the actual motion of the orbital

plane in the source frame and its projection onto the xy-plane.

The symmetric and anti-symmetric spin combinations as given in Eq.(3.3) are constructed

directly from the data of the PN solution. Once all time-dependent dynamical parameters

are constructed, the waveform modes, hlm, are evaluated. We remind the reader that for a

non-precessing binary this means that if the source frame was chosen such that L̂N is parallel

to ẑ, the quadrupole contributions are h22 and h2,−2. For precessing binaries, L̂N is not in

general parallel to ẑ, and hence modes with m 6= |2| appear even at quadrupole order. They

only vanish when ι = 0 and α = π.

Schematically, the precessing hlm modes can be written as a function with the following

explicit dependencies:

hlm(t) = f(M,DL, q, ωorb, ι, α,Φ, ~χs, ~χa). (5.3)
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Figure 5.1: The top panel shows the magnitude of the (2, 2)-mode for a strongly precessing case over
the whole length of the evolution, and over a length of the first 10000M in the lower panel. The source
frame was chosen such that Ĵ0 ' (0, 0, 1), and ~L and ~χ2 are initially orthogonal to each other with
‖~χ2‖ = 0.75; the smaller black hole is not spinning. The close-up of the waveform magnitude over a
shorter timescale reveals strong amplitude modulations.

The expressions are evaluated for a constant luminosity distance DL, which is scaled out of our

results. Fig. 5.1 shows the magnitude of the (2, 2)-mode for a precessing case with parameters

{~χ1 = (0, 0, 0), ~χ2 = (0.75, 0, 0), q = 10}. Despite this being a strongly precessing case(
~S · ~L = 0

)
, long-timescale modulations are hardly noticeable. This is because a preferred

frame was already chosen for the evolution, as described previously. Only an observer whose

line-of-sight coincides with Ĵ0 will see a signal of this form. The appearance and strength

of amplitude modulations strongly depends on the relative viewing angle as illustrated in

Fig. 3.7.

5.2.2 Quadrupole-Alignment of PN waveforms

Let us briefly recapitulate the main idea behind quadrupole-alignment (see Chapter 4 for

details). The idea is to track the direction of the dominant radiation emission. This means

that, at leading order, it follows the precessing motion of the instantaneous orbital plane

characterised by L̂N . This allows us to significantly simplify the gravitational-wave signature

by artificially removing the precession of the instantaneous orbital plane and describing the

signal in a co-precessing frame. Previously, we have seen that the quadrupole-aligned direction

actually tracks the full PN angular momentum direction L̂, which differs slightly from the

normal to the orbital plane.

We have specified an explicit algorithm to determine the two time-dependent general

Euler angles (β(t), γ(t)) that specify the direction which maximises the amplitude of the

(l = 2, |m| = 2)-modes. A third angle, ε(t), which adjusts the phase, was ignored in the

previous prescription, but its importance was pointed out in [50], particularly in whenever β

is close to zero and γ changes rapidly.

The alignment itself is based on the general transformation behavior of spin-weighted
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spherical harmonics under coordinate transformations as given in Appendix A. This allows

us to find the instantaneous, average direction of maximal emission by transforming the

(l = 2, |m| = 2)-modes and averaging over the dominant harmonics. This direction is uniquely

defined by two angles, β and γ, which are determined by the maximisation algorithm presented

earlier:

(βmax, γmax) = max
β,γ

√
‖h̃22(β, γ)‖2 + ‖h̃2,−2(β, γ)‖2, (5.4)

where h̃22 and h̃2,−2 are explicitly given by

h̃22(β, γ) =
2∑

m′=−2

e−im
′γ(t)d2

m′2(−β(t))h2m′(t), (5.5)

h̃2,−2(β, γ) =
2∑

m′=−2

e−im
′γ(t)d2

m′,−2(−β(t))h2m′(t),

(5.6)

where d2
m′m denote the Wigner d-matrices [101, 225]. The maximisation determines the

two Euler angles βmax and γmax. In general, the transformation of spin-weighted spherical

harmonics involves three degrees of freedom and, as noted in [50], the third angle can be

provided by the analog of Eq.(3.21), given the other two angles:

ε(t) = −
∫
γ̇max(t′) · cosβmax(t′)dt′. (5.7)

We may set ε(0) = 0 without loss of generality.

Once all three time-dependent angles (βmax, γmax, ε) have been determined, the dominant

quadrupole-aligned mode can then explicitly be written as

hQA22 (t) = e−2iε(t)
2∑

m′=−2

e−im
′γmax(t)d2

m′2(−βmax(t))h2m′(t). (5.8)

All other QA modes can be constructed as well, as long as the hlm-modes for a given l

are known. One may see that this transformation differs slightly from the one presented in

Chapter 4. This is because the numerical-relativity waveforms presented there are related to

the PN waveforms in this work by an overall complex conjugation.

The three angles (γ, β, ε) define a standard Euler rotation of the reference frame: a rotation

by γ about the z-axis, followed by a rotation by β about the y-axis, followed by another

rotation by ε about the (new) z-axis. This is important to bear in mind if we consider

the reverse procedure to “wrap up” a QA waveform back into its original precessing-binary

waveform. In that case, the inverse procedure consists of applying the rotations in the opposite
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Figure 5.2: The two panels show the angles found in an example of the maximisation routine. The
first panel shows the inclination angle βmax vs. time, the second panel shows the azimuth γmax vs.
time over the full length of the PN inspiral.

order, i.e., the same procedure but with

QA−1 : {γ, β, ε} → {−ε,−β,−γ}. (5.9)

Although we expect QA waveforms to be useful tools in standardising the representation

of precessing waveforms for comparison purposes (as in, for example, Ref. [118] for equal-

mass nonspinning waveforms) and in waveform modelling, we emphasise that they do not

correspond to a signal seen by a gravitational-wave detector. The QA waveforms are the

waves as seen in a very specific accelerated “co-precessing” frame. One of the consequences

of this frame choice is that the usual relationship Ψ4 = −ḧ no longer holds, as can be seen

by inspection of Eq.(5.8). Hence, in order to obtain quadrupole-aligned Weyl scalar modes,

one has to construct the precessing modes first and then transform them into the quadrupole-

aligned counterparts. Note also that the QA angles will differ slightly when calculated from

either h or Ψ4 (this point is also made in [163]; the Ψ4 angles tend to be smoother than the

h angles).

To leading PN order, the recovered angles naturally correspond to the inverse Newtonian

angles (ι(t), α(t)), but higher order contributions in the wave amplitudes lead to a deviation

from those angles, which is consistent with the results from the pure numerical analysis

presented in the previous chapter. Therein we have seen that the identified angles correspond

to the smooth evolution of L̂ in the limit of a complete description. The angles found by

the maximisation routine when applied to precessing PN waveforms are shown in Fig. 5.2.

They deviate slightly from the inverse Newtonian ones (−ι,−α) due to higher-order PN

contributions to the mode amplitudes but this difference is not visible over the scale of the

plots. If we were to use only the quadrupole contribution of the hlm expressions, then we

would indeed recover the direction of L̂N as given by ι(t) and α(t).

Once the three Euler angles are determined, those are then used to reconstruct the QA
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Figure 5.3: QA magnitude for the q = 10 configuration considered in Fig. 5.1. The left panel
shows the complete waveform, while the right panel zooms in on the first 10000M . We see that the
oscillations in the amplitude have been reduced and simplified from those in Fig. 5.1.

modes. Fig. 5.3 shows the quadrupole-aligned (2, 2)-mode for the configuration shown in

Fig. 5.1.

In the next section we will present a detailed study of how these simplified QA waveforms

compare against corresponding non-precessing cases.

5.3 Results

The aim of this section is to test and quantify the accuracy of our hypothesis that generic

inspiral signals can be mapped onto non-precessing counterparts (see Sec. 5.1). Numerical-

Relativity waveforms are too short for a real inspiral comparison and, moreover, it is computa-

tionally very expensive to produce a large number of accurate numerical precessing waveforms.

Instead, we have restricted this analysis to PN waveforms to allow a more detailed study for

a larger subset of the precessing parameter space.

First, we will take a look at simple precession (see Sec. 3.2.1 for more details about simple

precession) and consider a range of spin configurations for two mass ratios. The first is mass

ratio q = 3 and includes the configuration of the numerical precessing case that we studied

in Chapter 4. The second is mass ratio q = 10, motivated by the observation that precession

effects become more significant for higher mass ratios; see, for example, Eq.(2.11) in [133],

and the results presented in [9]. We will show that the mapping works extremely well; the

non-precessing waveforms that agree best with each QA-transformed precessing configuration

follow closely the χeff -parameter that we discussed in Sec. 5.1 and Sec. 3.1 (and will elucidate

further below). Finally, as the most challenging test of our hypothesis, we look at a case of

transitional precession.

This study covers only a small range of the full precessing-binary parameter space, but

the configurations were carefully chosen to test the hypothesis for varying spin magnitudes

and for two mass ratios within the range that is likely to be treated in IMR models in the
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near future, i.e., cases which can also be realised in current numerical simulations to high

accuracy.

From the PN expressions for the phase evolution of the binary [133], we see that the

dominant spin contribution is proportional to the projection of each spin vector onto the

orbital angular momentum, (~Si · L̂). We characterise the degree of spin-orbit-alignment with

κi as given in Eq.(3.14). When the spin interaction is restricted to the leading order spin-orbit

coupling and radiation reaction is switched off, each κi is conserved and is a constant of the

motion [133]. When radiation reaction is included and, to a lesser degree, when higher order

spin interactions are included, κi has been observed to show only small variation in time.

The agreement or disagreement between two waveforms is mainly due to their phasing. If

the inspiral rate is significantly different, two waveforms are not expected to agree very well.

For the QA waveforms, the precession of the orbital plane has been factored out, but the

physical spins are, of course, present and contribute to the phase evolution. Thus, in general,

we expect the best comparison waveform to be in general from an aligned-spin black-hole

binary. At leading PN spin-order, where only the leading order spin-orbit terms contribute,

each spin contribution is proportional to cosκi, and thus by looking at the leading-order

terms, we expect that all waveforms with cosκi = 0 (aligned spins) map onto nonspinning

counterparts, while all waveforms with cosκi 6= 0 map onto aligned-spin waveforms, which

can be parameterised by an effective total-spin parameter. This 2-part leading-order spin

term can be represented by a single reduced spin parameter [9]:

χeff = χsz +
(m1 −m2)

m
χaz −

76η

113
χsz, (5.10)

where we have assumed L̂ ≡ ẑ; η denotes the symmetric mass ratio. Note that this parameter

is not the same effective spin parameter as introduced in Ref. [77]. In this work the effective

total spin used is indeed the reduced spin parameter as defined by Eq.(5.10) due to its PN

nature.

In our study the non-precessing-binary comparison modes were parameterised by ~χ1 =

~χ2 = (0, 0, χ). For each of these cases we have χeff = χ(1− 76η/113).

The first set of configurations was chosen such that κi = 0 for the spinning hole, yielding

an effective spin of zero. The second set was chosen such that all configurations have the

same theoretical effective spin of χeff = 0.5, but with varying κ1 = κ2. The details are listed

in Tab. 5.1 and Tab. 5.2. The PN comparison family with (anti-)aligned spins was generated

by the same method as the precessing ones, solving the full PN equations of motion and using

the same hlm expressions [23], where α = π and ι = 0. This ensures that the results are not

contaminated by differences due to the choice of the PN approximant.

The agreement between two waveforms can be quantified by a single number, the match

M , which corresponds to a noise-weighted inner product (overlap) between them [76] (see
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Sec. 2.4.2 for details). Since QA waveforms are not in an inertial (detector) frame and we are

interested in quantifying the difference between two waveforms independently of a detector,

we primarily use the white-noise spectrum Sn(f) = 1. Match calculations are performed in

the frequency domain and hence the Fourier transforms (FFTs) of the time-domain waveform

modes are computed first. In our examples the PN waveforms are defined in the frequency

range Mf ∈ [0.0018, 0.01]. The upper frequency corresponds to Mω ≈ 0.06, which is typical

of the frequency at which we would start using NR results in full IMR hybrids; in this study

we are not interested in the performance of the PN waveforms beyond that frequency. Since

the matches are calculated with a flat noise spectrum, they are independent of the binary’s

mass.

Although the QA waveforms are not in a detector’s frame of reference, it is also instructive

to calculate matches with respect to realistic detector noise curves. In this case different

choices of binary mass correspond to giving extra weight to different frequency ranges in the

waveforms and provide a more stringent test on the robustness of our results. We repeated

the match calculation for every configuration with the early Advanced LIGO [203] and the

zero-detuned high-power [212] noise curves. The matches were calculated for masses between

20M� and 50M� in the frequency range between 20 Hz and 8 kHz.

The idea of the comparison is to find the non-precessing waveform as a function of χ

that gives the best match with each QA waveform of our study. If the second part of our

hypothesis holds, then the best-match spin, χBM, will be close to the effective spin χeff .

5.3.1 Simple precession

The first two sets of PN configurations are cases of simple precession. For most arbitrary

binary configurations, simple precession will occur and only a small set of configurations will

undergo “transitional precession”, as it requires fine-tuned physical parameters (see [20] and

Sec. 5.3.2 below). In the case of simple precession, the total spin angular momentum ~S

precesses around the orbital angular momentum vector ~L and both of these vectors precess

around the centre of the rather small precession cone described by Ĵ0 as illustrated in the left

panel of Fig. 3.4.

Each precessing time-domain waveform was generated in the Ĵ0-aligned source frame. The

quadrupole-alignment algorithm was then applied to determine the time series of the two

Euler rotation angles (βmax(t), γmax(t)). Given those, the third angle, ε(t), was determined

and Eq.(5.7) applied to reconstruct the time-domain quadrupole-aligned (2, 2)-mode. 1

The first set of configurations tests the mapping hypothesis for a vanishing proposed

theoretical effective spin χeff = 0, for various spin configurations for the two mass ratios q = 3

and q = 10. The results in Tab. 5.1 suggest that the hypothesis works very well for single-spin

1Higher modes can be reconstructed as well but here we consider only the dominant harmonic in the match
calculations.
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systems with only the smaller black hole spinning. In these cases, we obtain best matches

> 0.99 for the theoretical χeff -value for both mass ratios. In the reversed cases, i.e., now

the larger black hole is spinning, the maximal matches are still > 0.99 but we see a small

parameter bias of ∆χ = 0.02. If both black holes are spinning with the same spin magnitude

and the spins initially parallel to each other (κ1 = κ2), the parameter bias increases slightly

to ∆χ = 0.03. Note that in all of these cases the match has a sharp peak at its maximum,

but the match at the theoretical χeff value is well above 0.97 in many cases.

The results do not change appreciably when the calculations are repeated with the Ad-

vanced LIGO noise curves. The matches improve slightly as the mass is increased, but so

does the bias in χeff . However, the bias never increases by more than ∆χ = 0.01. The results

for the 20M� bin are displayed in the last two columns of Tab. 5.1 and 5.2. We would like to

emphasise again that QA waveforms are not in a detector frame: the matches using the de-

tector noise curves are only to rule out the possibility of spurious results with the white-noise

curve.

The second set was chosen such that all configurations have the same theoretical χeff -

value, but that the amount of precession changes due to a varying κ1 = κ2 ≡ κ angle. All

configurations in this set are equal-spinning, i.e., the spins are initially equal in magnitude

and parallel to each other. The results are given in Tab. 5.2. We see for both mass ratios

q = 3 and q = 10 that the best-match χ agrees with χeff for small κ. A bias appears as κ

increases beyond 30◦, but is again never more than ∆χ = 0.02.

It is important to note that the parameter that describes the rate of inspiral, i.e., the

phasing of the binary, is given by Eq.(5.10) and that the geometric quantity that defines the

amount of precession is quantitatively described by the spin components perpendicular to ~L,

χ1|| and χ2||, which are proportional to sinκi (see Sec. 3.1 for more details). We have looked

at various other cases with varying relative azimuth angle between the spin vectors as well

as varying relative inclination between ~S1 and ~S2, i.e. κ1 6= κ2. For equal spin magnitudes

we find that the azimuth has no effect on the best-match χeff . For unequal κi but equal spin

magnitude we find that the best-match bias increases with increasing κi but that the relative

inclination angle between the two spin vectors does not have a significant influence on the

results.

The approximation that χeff is constant becomes less accurate as the binary approaches

merger. Remarkably, the effective spin value associated with the initial χeff value seems

to characterise the best-match non-precessing-binary system in all cases. Even when using

detector noise curves and choosing masses such that the late inspiral (when χeff changes

fastest) is in the most sensitive part of the detector band, the best-match χeff varies by only

∆χ ≤ 0.04 from the value predicted by our hypothesis. However, it is likely that when we

move to full IMR configurations, some other appropriate effective total spin will be more

appropriate, as was found for the full IMR waveforms in [12].
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q ~χ1 ~χ2 χBM M0 (χBM)early (χBM)zdethp

3 (0, 0, 0) (0.75, 0, 0) 0.02 0.9815 0.02 0.02
3 (0.75, 0, 0) (0, 0, 0) 0.00 0.9997 0.00 0.00
3 (0.75, 0, 0) (0.75, 0, 0) 0.03 0.9576 0.04 0.03

10 (0, 0, 0) (0.75, 0, 0) 0.03 0.8209 0.03 0.03
10 (0.75, 0, 0) (0, 0, 0) 0.00 0.9999 0.00 0.00
10 (0.75, 0, 0) (0.75, 0, 0) 0.03 0.8075 0.03 0.03

Table 5.1: PN configurations with constant κi = 90◦ for the spinning hole and varying spins. The
best matches, not necessarily for the predicted χeff = 0 but for the values displayed in column 4, are
all well above 0.999 for q = 3 and above 0.995 for q = 10. M0 denotes the match with the counterpart
waveform that has χeff = 0. The last two columns show the best match for two potential Advanced
LIGO noise curves, evaluated for a 20M� binary. For all cases the best match is above 0.999 for both
detector noise curves.

When interpreting these results, one should bear in mind that the phasing of a PN wave-

form can change significantly with respect to the choice of PN approximant. The matches

that we calculated between QA and non-precessing waveforms are in general far better than

those between, for example, the same non-precessing configuration produced with TaylorT1

and TaylorT4; see Fig. 6 in [13]. In this sense, our approximation can be considered to hold,

well within the level of accuracy of our PN waveforms.

We also emphasise once again that the QA waveforms do not correspond to the waveforms

as seen by a detector, since the QA frame is accelerating, and would not be directly employed

in a GW search; the matches as shown therefore do not constitute a study of the efficacy of

these waveforms for either searches or parameter estimation. What they do tell us, however,

is the following:

If we were to take the non-precessing waveforms used in this study and to apply the

reverse QA procedure to them, i.e., “wrap them up” into mock precessing waveforms

using the inverse QA angles calculated for each of these configurations, then we expect

them to agree well with the original precessing-binary waveforms.

Schematically, the above proposition can be expressed in the following way:

hPrec(t; η, ~χ1, ~χ2) ≈ R(−ε,−β,−γ)hSpin(t; η, χeff). (5.11)

Alternatively, if one does not want to combine the two parallel spin components into the

effective total spin, these can be used instead:

hPrec(t; η, ~χ1, ~χ2) ≈ R(−ε,−β,−γ)hSpin(t; η, χ1||, χ2||). (5.12)

Further, this study also suggests that if we were to construct a waveform model from “wrapped
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q ~χ1 = ~χ2 κ1 = κ2 χBM M0.5 (χBM)early (χBM)zdethp

3 (0.050, 0, 0.572) 5◦ 0.50 0.9998 0.50 0.50
3 (0.101, 0, 0.572) 10◦ 0.50 0.9998 0.50 0.50
3 (0.208, 0, 0.572) 20◦ 0.50 0.9992 0.51 0.50
3 (0.330, 0, 0.572) 30◦ 0.51 0.9975 0.51 0.51
3 (0.480, 0, 0.572) 40◦ 0.52 0.9917 0.52 0.52
3 (0.682, 0, 0.572) 50◦ 0.52 0.9719 0.52 0.52

10 (0.093, 0, 0.529) 10◦ 0.50 0.9986 0.50 0.50
10 (0.193, 0, 0.529) 20◦ 0.50 0.9996 0.50 0.50
10 (0.306, 0, 0.529) 30◦ 0.50 0.9965 0.51 0.50
10 (0.444, 0, 0.529) 40◦ 0.51 0.9771 0.51 0.51
10 (0.631, 0, 0.529) 50◦ 0.52 0.8925 0.53 0.52

Table 5.2: PN configurations with the same effective spin value χeff = 0.5 but varying κ1 = κ2 for
the two mass ratios 1 : 3 and 1 : 10. χBM denotes the effective χeff -value yielding the best match. In
all cases the best matches are above 0.999 for q = 3 and above 0.997 for q = 10. M0.5 denotes the
match with the counterpart waveform that has χeff = 0.5. Column 5 lists the match for the predicted
χeff -value. The last two columns show the best match for two potential Advanced LIGO noise curves,
evaluated for a 20M� binary.

up” non-precessing waveforms, then it is possible that this model could be used to measure

the effective total spin χeff with only a small bias. However, the true behavior of such a model

in a parameter estimation exercise requires an exhaustive study that is beyond the scope of

this thesis.

To back up this claim, we performed the following exercise: from the first case in Tab. 5.1

we took the corresponding χeff -waveform, which is a nonspinning q = 3 waveform, and

wrapped it up with the inverse QA angles that we calculated for the {q = 3, χ1 = 0, χ2x =

0.75} configuration. The resulting waveform is shown in Fig. 5.4; we have plotted the ampli-

tude of the GW strain, constructed from all (l = 2)-modes, at an arbitrarily chosen inclination

of θ = 2.8rad from the initial direction of the total angular momentum. Also shown is the

same quantity for the “true” precessing-binary waveform and for comparison we also show the

original non-precessing-binary waveform, constructed from only the (l = 2, |m| = 2)-modes.

We see that the twisted-up non-precessing-binary waveform (red) captures the main features

of the amplitude of the true precessing-binary waveform (black) extremely well; how well

the phases agree can be judged by calculating the match between the two waveforms. This

we did, once again over the frequency range of Mf ∈ [0.0018, 0.01]. Note that now we are

considering waveforms as they would be observed in a detector.

We find that the match between the true precessing-binary waveform and the mock-

precession waveform have a match greater than 0.97 for all masses and binary orientations.

By contrast, the match between the unmodified non-precessing q = 3 waveform and the true

precessing waveform is below 0.97 even for the best-performing orientation. These results

provide an important cross-check that we can indeed mimic the original PN precessing-binary
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Figure 5.4: The absolute value of the GW strain
for a precessing binary, as viewed at an arbitrary in-
clination of 2.8 rad from Ĵ0. The signal includes all
(l = 2)-modes. The true precessing signal (black)
has the finer structure; the other signal with the
lower-amplitude high-frequency oscillations (red)
was generated by twisting a non-spinning q = 3
waveform with the inverse QA angles. The dot-
ted line (blue) shows the amplitude of the original
nonspinning waveform.

signal by suitably transforming the signal from a non-precessing binary.

As an aside, note that there is one mode of the precessing-binary signal that we cannot

fully model in this way, the (l = 2,m = 0)-mode. In the non-precessing waveforms, the (2, 2)-

and (2,−2)-modes are complex conjugates of each other. When this is true, the transformed

(2, 0)-mode will always be real. This can be seen from inspection of Eq.(5.8). But in the true

precessing-binary waveform the (2, 0)-mode has real and imaginary parts; it is straightforward

to produce an example to illustrate this from Sec. IV of Ref. [23]. In order to capture these

effects, we would need to break the symmetry between the non-precessing hlm-modes, which

would require that the corresponding aligned-spin includes unequal spins — this is therefore

one limitation of a single-effective-spin model. In practice, however, the relative signal power

in the imaginary part of the (2, 0)-mode (that part that our model cannot reproduce) will

always be small, and we expect the other errors in this approximate waveform, for example

in the phasing, will be more significant.

5.3.2 Transitional precession

In the previous section we have seen that our mapping works extremely well in cases of simple

precession; in fact it can be considered to be an exact mapping within the error bars of the

PN phasing. In this section, we demonstrate that it also works in the more extreme case of

transitional precession [20]. This second type of precession occurs when ~L and ~S are almost

opposite and equal in magnitude and so J is small. During the inspiral, the magnitude of

~S hardly changes but since orbital angular momentum is radiated away, the magnitude of ~L

decreases with time. With the appropriate choice of parameters, the total angular momentum

~J is initially small and positive, but due to the loss of orbital angular momentum, decreases

until it crosses the xy-plane of the Cartesian source frame, where it changes sign. See [20] for

an extensive discussion of transitional precession.

As opposed to simple precession, where Ĵ0 represents the least evolving axis in the binary’s

geometry, this direction changes significantly during the transitional phase, as illustrated in

the right panel of Fig. 3.4. In order to test the validity of our precessing 7→ non-precessing
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Figure 5.5: The panel shows the magnitudes
of the (2, 2)-modes for the transitional precession
case before (red; lower curve) and after (blue;
upper curve) the quadrupole alignment was ap-
plied. The change of the direction of Ĵ at t =
1.587 · 106M is indicated by the vertical line. A
strong modulation is introduced into the origi-
nal waveform at that time, which is completely
removed after quadrupole alignment.
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mapping for a transitional-precession case, we have chosen one specific configuration with

PN parameters q = 10, initial separation Di = 53M and initial spins ~χ1 = (0, 0, 0) and

~χ2 = 0.65 · (0,− sin(3◦),− cos(3◦)). This is a single-spin configuration, where the initial spin

is 3◦ from complete anti-alignment and the generated inspiral waveform is about 2 · 106M

long, terminating at a final separation of Df = 6M .

It is worth mentioning that in order to produce a transitional phase, the parameters have

to be fine-tuned such that ~J changes sign. If ~S and ~L were completely anti-aligned, no

precession would occur at all. The transitional phase is not brief: it takes up most of the

duration of the inspiral that we have calculated and, as noted in [20], cases where a binary

undergoes transitional precession within the sensitivity band of ground-based detectors are

expected to be rare.

The dramatic change of the direction of Ĵ is reflected in the GW signal and the transitional

waveforms in the standard source frame look particularly distorted when the total angular

momentum crosses the xy-plane, as is shown in Fig. 5.5.

We do not expect any of these features to be present in the quadrupole-aligned waveform,

since we now track the direction of dominant emission and this is completely independent

from any asymptotic direction of Ĵ . We see in Fig. 5.5 that this is indeed the case. The

angles found by the maximisation routine are shown in Fig. 5.6. The zero-crossing of the

total angular momentum occurs at t = 1.587 · 106M , which is indicated in the figures with a

vertical line.

If our hypothesis is correct, then the QA waveform should be very close to a non-precessing

waveform with χeff = −0.572, from Eq.(5.10). As before, we compared the QA mode with

a series of spin-aligned waveforms with varying spin parameter to locate the non-precessing

configuration that agrees best with the QA waveform. We find the best match to be 0.998 for

a spin anti-aligned waveform with effective spin parameter χeff = −0.576. This is remarkably

close to the theoretically expected value, with a bias of only ∆χ = 0.004!

On the other hand, naively using the non-aligned transitional-precession waveform and

calculating the matches with the same comparison waveforms gives the same effective spin

value, since the phase is dominated by the inspiral rate, but yields a best match of only 0.940.
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Figure 5.6: The two panels show the two Euler angles β and γ determined by the quadrupole-
alignment procedure for the transitional case. The time when the z-component of ~J changes sign is
indicated by the vertical line.

Note also that this is for the (2, 2)-mode as seen from only one orientation; for many other

orientations that matches are likely to be far worse.

This example demonstrates that even in the case of transitional precession, our method

proves to be accurate (expected χeff -value) and robust (M > 0.99) for mapping precessing

waveforms onto single-spin-parameterised non-precessing-binary waveforms.

5.4 PN-NR hybrid waveforms

So far we have only discussed PN inspiral waveforms. To produce complete waveforms that

include the late inspiral, merger and ringdown, we need to include results from NR simulations.

In this section we will show how the quadrupole-alignment procedure simplifies the production

of hybrid PN-NR waveforms.

A variety of methods have been introduced to construct hybrid waveforms for non-

precessing configurations [10, 11, 49, 115, 175, 192], and see [13] for a unified summary of the

methods in use. In all methods the PN and NR waveforms are aligned at some time, or over

a time or frequency window, and then blended together. Such waveforms have been used to

produce phenomenological waveform models [8, 10–12, 192], and are now also being used to

test GW search and parameter estimation tools [13].

The construction of hybrids for precessing-binary configurations is more complex: not only

do the time and phase of the PN and NR waveforms have to be aligned, but to some extent

the orientations of the spins and orbital plane must agree as well. For the precessing-binary

hybrids that were used in [12], the hybrid waveforms were constructed by matching the NR

waveforms with PN waveforms computed from the same PN evolution that was employed to

construct the initial data for the NR simulations. This technique ignores mismatches in the

binary orientation and physical parameters due to the emission of junk radiation [109, 146]

and gauge changes [110, 112] in the early stages of an NR simulation, although these effects
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are expected to be small; see [192] for a detailed discussion of this point in the context of

non-precessing-binary hybrids.

These complications can be avoided through the use of QA waveforms. The PN and

NR waveforms, both converted to the QA frame, can now be aligned exactly as in the non-

precessing cases. In order to reverse the QA process, it is also necessary to align the QA

angles (β, γ, ε), but this is straightforward, as we show below.

In the next section we will outline how we produce a QA hybrid for the precessing-binary

waveform that we used in Chapter 4. This also corresponds to the first configuration discussed

in Tab. 5.1: {q = 3, χ1 = 0, χ2 = 0.75} and ~S ·L̂ = 0. Having produced the QA hybrid, we will

examine where our non-precessing-binary mapping hypothesis breaks down as we approach

merger. That the hypothesis must break down is clear, because the spin of the final merged

black hole will be influenced by the black-hole spins in a way that the orbital phase evolution

is not, and the mass and spin of the final black hole will not be the same as that for the

corresponding non-precessing inspiral configuration.

5.4.1 Construction of QA hybrids

A QA hybrid can be produced by making use of the same procedure as for a non-precessing-

binary hybrid. We will briefly summarise the method that we used.

We start with a PN and an NR waveform, each for the same physical configuration. The

last requirement is achieved to good approximation by using results from the PN evolution

to produce the initial parameters for the NR evolution. The PN and NR waveforms are

then put into the QA frame by the procedure described in Sec. 5.2.2. We will produce a

hybrid of Ψ4, and note that, since the QA frame is non-inertial, we cannot produce ΨQA
4 by

taking two time derivatives of hQA. We must first produce the Ψ4,2m modes from the original

precessing-binary GW-strain modes, h2m, and apply the QA algorithm to Ψ4,2m.

We then choose a matching frequency Mωm and locate the times tPN and tNR when each

waveform passes through that frequency. For our q = 3 configuration, Mωm = 0.07. We align

the PN and NR frequencies around that time such that

φPN(tPN) = φNR(tNR), (5.13)

ωPN(tPN) = ωNR(tNR) = ωm. (5.14)

The hybrid waveform is then produced by blending together ΨQA
4,PN and ΨQA

4,NR with a linear

transition function of width ∆t = 200M around the matching frequency. The final waveform

is then

ΨQA
4,hyb(t) = a−ΨQA

4,PN(t− tPN) + a+ΨQA
4,NR(t− tNR), (5.15)

where a± = (∆t/2 ± t)/∆t when t ∈ [−∆t,∆t] and zero or one otherwise, and the time has

been shifted such that t = 0 coincides with the point at which ω = ωm. This constitutes
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Figure 5.7: The PN (red, from t = −300M to
t = 100M), NR (green, from −100M to 300M) and
hybrid (dashed black) waveforms near the match-
ing time (t = 0). The PN and NR waveforms are
blended together in the window ∆t = [−100, 100],
indicated by the shaded region.

the QA hybrid. Fig. 5.7 shows the real part of Ψ4 around the time where the matching was

performed, which is at t = 0. The figure shows the PN and NR waveforms, as well as the

final hybrid, and we see that the matching between the PN and NR waveforms is smooth.

To convert this QA-hybrid into a physical precessing-binary hybrid, we also require hybrids

of the QA angles (β(t), γ(t), ε(t)). These are produced as follows. The two polar angles

(β(t), γ(t)) define a vector n̂(t) = (sin(−β(t)) cos(−γ(t)), sin(−β(t)) sin(−γ(t)), cos(−β(t)))

on the unit sphere. The QA angles for the PN waveform define n̂PN(t), while those for the

NR waveform define n̂NR(t). We perform a fixed rotation RPN to n̂PN(t) (and another RNR to

n̂NR(t)), such that both vectors are equal at the matching frequency, n̂PN(tPN) = n̂NR(tNR).

Since the angle γ is ill-defined when n̂ = {0, 0, 1}, we do not choose that as our (arbitrary)

matching direction, but rather the vector such that β(tPN) = 0.1 rad. Specification of a third

Euler angle allows us to require that the vectors not only meet at the matching time, but that

the curves they trace out are parallel at that time. To do this we simply measure the angle

between the two curves at the matching time, and then rotate n̂NR(t) around the axis defined

by the matching direction, n̂NR(tNR). Fig. 5.8 shows the first two angles at the times close

to the matching frequency and the final aligned PN and NR curves are shown in the lower

panel of Fig. 5.8. The hybrid angles are constructed by smoothly blending between the PN

and NR angles, in the same way as for the QA waveform with a linear transition function.

The precessing-binary hybrid can then be constructing by simply performing the reverse QA

procedure with (γ, β, ε)→ (−ε,−β,−γ).

5.4.2 Breakdown of the non-precessing-binary equivalence

We expect the simple mapping between QA- and non-precessing-binary waveforms to break

down near merger. As we have seen, the effect of the spins on the inspiral rate, i.e., the

secular phasing, comes predominantly from the spin components parallel to the orbital an-

gular momentum; this is why our mapping works. At merger, however, the spin of the final

black hole is, to first approximation, ~Jfin = ~L + ~S1 + ~S2, where the orbital and spin angular

momentum vectors are those at the point of merger. (A far more sophisticated treatment of

the final spin ingredients is given in [63], and a number of estimates of the final spin as a

function of the initial configuration exist in the literature [145, 188, 216].) All components of
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Figure 5.8: Hybridisation of the QA angles β(t) and γ(t). Upper panels: The black (dotted) lines
indicate the inspiral PN values, the red (dashed) lines indicate the later NR values and the green
(solid) lines indicate the hybrids. The lower panel shows the evolution of the aligned QA directions,
where here the black line indicates long PN inspiral of duration 2.9×105M , and the red line indicates
the NR results up to merger.
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Figure 5.9: Matches between QA and non-
precessing hybrids for our standard q = 3 configu-
ration.The horizontal axis represents the frequency
at which both waveforms are cut off in the match
calculation and indicates that the two hybrids agree
well (match > 0.97) right up to the merger, indi-
cated by the vertical line.

the spin now become important and the appropriate parameterisation may no longer be the

effective total spin χeff .

It is instructive to investigate where the mapping breaks down, and we can use the hybrid

waveform constructed in the previous section to do this. Fig. 5.9 shows the match between

the QA hybrid constructed above, and a non-spinning q = 3 hybrid (which would be the

corresponding non-precessing configuration during the inspiral). The match is calculated

for a range of termination frequencies of the two waveforms. For reference, the frequency

Mf = 0.016 corresponds roughly to Mω = 0.1, and is close to the point where PN waveforms

are typically terminated in inspiral searches. Below this frequency the white-noise match is

consistent with the results in Sec. 5.3.1. The peak of the waveform occurs at Mf = 0.07,

which is indicated by the red vertical line. The fiducial acceptable match of 0.97 is indicated

by a horizontal line. We see that the match is at or above 0.97 through the merger, and only

degrades significantly during the ringdown.

Once again we emphasise that these matches were computed using a white-noise power

spectrum. Nonetheless, these provide evidence that the QA procedure is valid very close to

the merger, and perhaps even up to ringdown. We will discuss the implications of this result

for waveform modelling in the final section.

5.5 Discussion: a route to generic-binary waveform models

We have extended the work in Chapter 4 on the quadrupole-alignment (QA) procedure to

show that it can be used not only to cast precessing-binary waveforms in a simple form,

but to map these waveforms onto a sub-family of non-precessing spin-aligned waveforms.

Additionally, we have verified that this sub-family can be parametrised by only mass ratio

and an effective total spin parameter and that the non-precessing waveform that best matches

each QA waveform (with white-noise matches of at least 0.995), corresponds to our predicted

χeff value to within ∆χ ≤ 0.04. The mapping was tested on a range of inspiral PN waveforms

with mass ratios q = 3 and q = 10 and even on an example of transitional precession;

in all cases the approximations holds well within the level of accuracy of the PN phasing.
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As a final test, we used the inverse QA procedure to “wrap up” a non-precessing-binary

waveform to produce a mock precessing signal and found that it matched the corresponding

true precessing waveform with a match of > 0.97 for all binary orientations. We also showed

that this procedure can simplify the construction of hybrid PN-NR waveforms and that the

approximate mapping seems to hold all the way through to merger.

Our results suggest that generic precessing-binary waveforms can be generated with good

accuracy by applying the reverse of the quadrupole-alignment transformation to a small

class of non-precessing-binary waveforms. These waveforms appear to faithfully represent

the “true” precessing-binary waveforms up to the point of merger, and perhaps even up to

the ringdown. The complex problem of constructing a generic waveform model can then be

factorised into two smaller tasks, namely in developing a model for the secular phase (and

such models already exist) and in modelling the rotation operator, which encodes all infor-

mation regarding the precession. We emphasise that this simple structure is only possible

due to the correct identification of the secular phase. Otherwise, the simple rotation operator

becomes a more complex modulation operator with a less geometric meaning as it also needs

to compensate for the incorrect inspiral rate.

More concretely, we propose the following strategy, which will be used in Chapter 7: once

the evolution of the Euler angles β(t) and γ(t) has been determined for a large sample of the

configuration space, these can be modelled as functions that depend on some set of physical

parameters ~λ

β = β(~λ(t)), (5.16)

γ = γ(~λ(t)). (5.17)

We emphasise that the ~λ should be physical parameters, or a combination of physical param-

eters. The third angle ε(t) is automatically determined given the two others. The rotation

angles are unique up to an overall rotation of the frame of reference; we expect that they will

assume the simplest form if in the limit of infinite binary separation Ĵ−∞ = (0, 0, 1).

We have seen that precessing inspiral-merger (IM) waveforms can be mapped onto non-

precessing ones via quadrupole alignment using the angles (γ(t), β(t), ε(t)). This suggests that

a phenomenological IM model with (anti-)aligned spins as a base model to describe the secular

phase evolution can be used and “twisted up” with the inverse angles (−ε(t),−β(t),−γ(t)).

This will give us a precessing phenomenological IM model,

hPrecIM
lm (t) = R(−ε,−β,−γ)hIM

lm(η, χeff ; t). (5.18)

Needless to say, an inspiral model is not urgently needed: we can already produce generic

waveforms by integrating the PN equations of motion, as we have for the PN analysis.

Given in addition a phenomenological model for the ringdown, hRlm(~λR; t), which is param-
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eterised by some yet-to-be determined subset ~λR of the full binary parameters ~λ, we expect

that we can produce a combined IMR model, which can be schematically written as

hPrecIMR
lm (t) = R(−ε,−β,−γ)hIM

lm(t; η, χeff)× hR`m(~λR; t). (5.19)

For ease of use in GW searches, ideally such a model should be cast in closed-form expressions

in the frequency domain.

There is still one problem remaining: the modelling of a seven-dimensional parameter

space, but we now have to model only two functions, and, as we can see from Fig. 5.2 (and

even Fig. 5.6 for transitional precession), they are smooth, simple functions, that may be far

easier to model than the complicated amplitude and phase modulations that are standard

features of the physical waveforms. We will see in the subsequent chapters that many of

the features of the full seven-dimensional parameter space can be captured by a model that

considers only a subset of the physical parameters. It is also quite possible that we will need

to employ a non-precessing model that treats both black-hole spins, and/or the effective spin

that proves most useful will differ from that presented here.





CHAPTER 6

Towards generic waveform models II

Modelling precession with a single effective

precession parameter

6.1 Introduction

In Chapter 3 we have explored the complex phenomenology of precessing binaries, before

we have seen in Chapters 4 and 5 that the inspiral dynamics and the precession dynamics

approximately decouple. This decoupling was identified by introducing a co-precessing frame,

the QA frame, which allows us to partially remove the precession of the orbital. In this

frame, we can more directly measure the secular phasing of a precessing binary and we have

subsequently shown that the secular phase evolution of a precessing binary can be accurately

mapped onto the phase of an aligned-spin binary. This then allowed us to rewrite precessing

waveforms in a simple way, which is the basis of a general framework to produce precessing

binary waveforms, namely by applying a rotation operator, which encodes the precession

dynamics, to an aligned-spin waveform (see Eq.(5.11) and Eq.(5.12)). However, we are still

left with the problem of modelling the precession dynamics, which, in general, depends on all

six spin components as well as the mass ratio of the binary. In this chapter, we explore the

possibility of reducing the number of physical parameters to accurately describe the precession

dynamics of generic systems.

Precession leaves a direct, nontrivial imprint on the precessing-binary waveforms, which

suggests that one may need to produce a large number of numerical simulations to fully

explore the rich phenomenology in order to construct an accurate complete IMR waveform

model for such systems. We are interested in reducing the number of model parameters for

two main reasons: first, to provide a simple ansatz for the description of the waveform that is

associated with a small number of degrees of freedom, and secondly to increase computational
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efficiency of the waveform model. Models with many parameters are in general more costly

to use in gravitational-wave data analysis and parameter estimation. Also, from a Numerical

Relativity point of view, if one wants to accurately span the seven-dimensional precessing pa-

rameter space, assuming that a sampling with four configurations in each parameter direction

as indicated by [12, 192] is sufficient, one would need on the order of 47 ≈ 16, 000 numerical

simulations. Currently, it is not feasible to produce such a large number of Numerical Relativ-

ity waveforms. However, the identification of a reduced set of physical parameters may allow

us to feasibly model generic-binary waveforms as it facilitates the identification of the impor-

tant directions in the precessing-binary parameter space. Additionally, parameter reductions

and combinations also indicate approximate parameter degeneracies and the measurability of

certain binary parameters from a GW detection.

The investigation presented here is entirely based on the study of post-Newtonian inspiral

waveforms. In principle, no parameter reductions are needed as one can simply solve the

full system of PN evolution equations and then use the explicit waveform mode expressions

available in the literature to compute the gravitational waveforms. However, we expect PN

theory to give us the dominant phenomenology of the inspiral and therefore the parameter

dependencies. In the past, the leading-order spin-orbit expression in the PN phase evolution

for aligned-spin binaries was the starting point to introduce one effective inspiral spin rather

than the two individual spin magnitudes. Even though the first insight came from PN, it was

later used as the spin parameter in the complete phenomenological waveform models Phe-

nomB and PhenomC. Similarly, we take the viewpoint that PN provides us with useful insight

into the construction of effective parameters governing the leading-order precession effects,

in particular, we will motivate and identify only one effective precession spin, which allows

us to capture the dominant precession effects of a generic binary configuration and therefore

significantly simplifies the task of modelling the precession dynamics. An adaptation of the

work presented in this chapter has recently been submitted to the preprint server arXiv:

[198] Patricia Schmidt, Frank Ohme and Mark Hannam “Towards models of gravitational

waveforms from generic binaries II: Modelling precession effects with a single effective preces-

sion parameter”

6.2 Modelling simple precession

In Chapter 3 we have explored the phenomenology of precessing binaries without looking

at waveform modelling efforts. In this chapter, however, we are interested in modelling

precessing waveforms by capturing the main effects described in the aforementioned chapter.

We therefore give a brief summary of the routes to modelling precessing binaries taken in the

past to highlight the differences in the various approaches. For a more concise current status

update we refer the reader to [108].
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6.2.1 Summary and recent progress

First attempts to construct search templates for precessing signals [18, 19] followed soon after

the careful analysis of the phenomenology of precessing binaries within the post-Newtonian

framework in the pioneering work by Apostolatos et al. [20] and Kidder [133]. Apostolatos

was the first to observe the potential of modulating the secular phase, which he referred to

as the “carrier phase”, to describe the phase of the precessing system. Schematically, the

precessing strain is then given as

h(t) ∝ Λ(t)hC(t), (6.1)

where hC(t) is the unmodulated carrier signal and Λ(t) is the modulation factor, which

contains all information regarding the precession-induced modulations of the amplitude and

the phase. For more details see Eq.(6)-Eq.(17) in [18]. However, this ansatz modulates the

phase of a nonspinning binary to mimick the secular phase evolution. The agreement between

the artifically modulated waveforms and true precessing waveforms is quantified in the form

of the fitting factor (FF) as defined in Sec. 2.4.2. Apostolatos found that a template family

built from this ansatz is able to capture systems with mild precession, but even moderate

precession leads to unacceptably low FFs [18].

Several years later, Buonanno, Chen and Vallisneri [59] (BCV) improved the modulation

factor in Apostolatos’ general ansatz to produce precessing waveforms. However, they also

used the nonspinning phase to describe the secular phase evolution. The new improved

modulation factor captures the precession-induced modulations better, but in order to do so,

up to six free non-physical parameters have to be introduced, which has subsequently been

shown to prove problematic for use in GW searches [217].

Additionally, BCV introduced the precession convention, which defines a rigid-body sys-

tem attached to the binary and allows for a much simpler computation of the GW strain.

This convention is closely related to the QA-frame from Chapter 4.

Sturani et al. [209] later provided a phenomenological description of the complete inspiral-

merger-ringdown signal in the time domain by calibrating a power-law ansatz for amplitude

and phase to a small set of short precessing numerical relativity simulations. This was the

first precessing IMR waveform model. Large-scale studies regarding the faithfulness and/or

effectualness of this model have not yet been performed.

In order to model the waveforms from precessing binaries in a more systematic way, we

took the following approach: first, we introduced a co-precessing frame, the quadrupole-

aligned frame, which used an analytic maximisation procedure to determine the direction of

maximal GW emission (see Chapter 4 for details). Comparison with PN results suggested

that the QA-axis corresponds to the orientation of the orbital angular momentum L̂, which,

at leading order, is given by the polar angles (ι, α) as defined in Sec. 3.2.1. Henceforth, we

will approximate the general Euler angles (β, γ) by the polar angles (ι, α).
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Importantly, we realised that the GW modes as viewed in this co-precessing frame resemble

the modes of aligned-spin systems. Later on, O’Shaughnessy et al. [168] described a similar

co-precessing frame making use of an algebraic method, which was shown to be the same as

the quadrupole-aligned frame if only the (l = 2)-modes are taken into account. In general,

any such co-precessing frame is determined by three Euler angles analogous to the mechanics

of a rigid body. It was a priori not clear how to fix one of these angles and was thus omitted.

However, Boyle et al. [50] identified this third angle as an overall rotation around the z-axis

given by

ε(t) = −
∫
α̇(t′) cos ι(t′)dt′. (6.2)

One might wonder what the purpose of viewing GWs in a co-precessing, unobservable

frame is, but by doing so we were able to directly observe the secular phasing due to the

partial removal of the precession effects. In other words, it allowed us to observe the correct

carrier phase. In subsequent work and as opposed to the earlier attempts summarised above,

we identified the corresponding secular phase of a given precessing binary as the inspiral rate

of a very particular aligned-spin binary (see Chapter 5 for details). This is a key insight

which allows for the direct identification of the secular phase evolution between precessing

and non-precessing binaries – no ansatz for the carrier phase is needed as the phase of aligned-

spin binaries is known to high PN order. Moreover, this geometric approach allowed us to

make a more systematic ansatz than the power-law ansatz for the phase modulation factor in

earlier work – with this correspondence the modulation factor is identified as a simple rotation

operator with a concrete physical meaning, i.e.,

hnonspinning
C (t)→ hspinning(t), (6.3)

Λ(t)→ R(ι, α, α̇ cos ι). (6.4)

The transformation into the co-precessing frame is based on the transformation behaviour

of the spin-weighted spherical harmonics. In practice, this reduces to applying three simple

time-dependent rotation operators, which encode the evolution of the orbital plane. In order

to accurately model the precession of the orbital plane on top of the inspiral rate of an aligned-

spin binary, the inverse rotation operators need to be applied. We demonstrated the efficacy

and accuracy of this systematic approach on pure PN, pure NR as well as on a PN-NR hybrid

waveform. We are now left with the task of analytically modelling the two precession angles

functions (ι, α), which encode the evolution of the orbital plane as a function of physical

parameters as discussed in detail in Chapter 3.

The opening angle of the precession cone, ι(t), is well defined by Eq.(3.9) and can be

computed in a straightforward way assuming that S(t) and L(t) are known, but the preces-

sion angle, α(t), is directly related to the precession frequency given by Eq.(3.11). Analytic

solutions for α(t) are only known for two special cases: equal-mass or single-spin binaries [20].
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No analytic solution for general double-spin binaries in the comparable mass regime is known.

Further, the precession angle is particularly important for the modulation of the phase and

hence it is crucial to obtain an accurate description of α(t) as a function of the physical pa-

rameters of the binary system. The influence of ι(t) on the phase is less strong and therefore

we do not expect its accuracy to be as important. Nonetheless, the angles depend in general

on all six spin components, which complicates the modelling efforts. Therefore, in order to

establish a sufficient model for the two angle functions all the way up to merger by incor-

porating information from Numerical Relativity, it is advantageous to reduce the number of

dependent parameters.

6.2.2 Parameter reductions

As elaborated in Chapter 3, generic binary systems are intrinsically characterised by a large

number of physical parameters. For precessing black-hole binaries, a total of seven physical

parameters need to be taken into account. These are the mass ratio q and the six spin

components of the two spin angular momentum vectors; the total mass M of the system is

irrelevant in the context of source modelling as it only sets the scale in General Relativity. This

is already one important reduction of the parameter space spanned by binary configurations,

which has already been used in the past to develop complete waveform models for coalescing

binaries.

Another important parameter reduction concerns aligned-spin binaries. In general, such

binaries are intrinsically characterised by the mass ratio and their two spin magnitudes χ1

and χ2. However, these two magnitudes can be combined into one effective spin parameter,

χeff as introduced in [9] and given in Eq.(5.10) and discussed subsequently, which captures

the inspiral dynamics to a very high degree.

The introduction of the effective total spin was a first important step towards a reduced

parameterisation for a complete IMR model and was indeed used in existing models for the

waveform from aligned-spin binaries. Moreover, in Chapter 5 we have seen that this effective

total spin parameter is also useful to describe the phasing, i.e., the inspiral rate, of precessing

binaries in the co-precessing QA-frame. In the general case, the effective spin combines the

spin components parallel to the orbital angular momentum, χi||, into one effective parameter

and hence reduces the number of remaining spin components to four: the four spin components

orthogonal to the orbital angular momentum. This is an important insight, which is directly

related to the approximate decoupling of the inspiral and precession dynamics at leading

order. If this was not the case, such a clean parameter split would not be possible and all

six spin components would affect the inspiral as well as the precession rate of a given binary

system.

Until now, these orthogonal spin components, which drive the precession of the orbital

plane at leading order as can be seen from Eq.(3.16), have not been taken into account. In
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Figure 6.1: The panel shows the evolution of
the two spins projected onto the orbital angular
momentum. The red graph shows the evolution
of the parallel spin of the smaller black hole, S1||,
the blue curve that of the parallel spin of the
larger black hole, S2|| for the case described in
the text. The two black lines indicate the mean
value of each parallel spin with S̄1|| = 0.015 and
S̄2|| = −0.045.
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the following, we show that it is possible to faithfully approximate the precession in a generic

binary system with only one additional spin parameter, a complementary effective precession

spin, χp, instead of four additional spin components.

6.2.3 Effective precession spin χp

In order to construct a complete IMR model for precessing binaries from an underlying

aligned-spin model, we are still left with modelling the precession dynamics as a function

of the physical parameters. In order to do this efficiently, we aim to reduce the number of

physical parameters to achieve a balance between physical information contained in the model

and computational cost in the evaluation of the model. We are therefore interested in iden-

tifying the key directions and parameters that allow us to capture the main phenomenology

of precessing binaries with as few parameters as possible. As mentioned before, we build our

approach on the fact that the inspiral motion and the precession decouple approximately.

This leaves us with the four remaining in-plane spin components, ~S1⊥, ~S2⊥ ∈ R2 for L̂ ≡ ẑ,

which are predominantly responsible for the precession of the orbital plane as can be seen

from Eq.(3.16). We now aim to combine these four remaining parameters into only one

meaningful quantity, which can then be used to accurately account for the induced orbital

precession. The choice of this particular additional spin parameter, henceforth referred to

as χp, to capture the main precessional behaviour of the orbital plane is motivated by the

following observations.

In the previous chapters, we have seen that the inspiral rate of the binary is dominated by

the components of the two spin angular momenta parallel to the orbital angular momentum,

i.e., the contributions ~Si|| or, more precisely, ~χi|| (see Eq.(3.2) for example). In the case of

spin-aligned binaries, these projected magnitudes are constant over time as they simply are

the individually conserved spin magnitudes. In the case of double-spin precessing binaries,

however, the projected magnitudes Si|| are not exactly constant but slowly oscillate around

some mean value over the course of the evolution. This behaviour is illustrated for the

precessing binary ~χ1 = (0.4,−0.2, 0.3) and ~χ2 = (0.75, 0.4,−0.1)1 with mass ratio q = 3

1All illustrations in this section are for this particular spin configuration unless indicated otherwise.
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Figure 6.2: The left panels shows the evolution of the magnitude of ~S1⊥ as function of time, the
right panel shows the evolution of the magnitude of ~S2⊥. Similar to the parallel spin magnitudes, the
orthogonal spin magnitudes oscillate around some mean values, which are S̄1⊥ = 0.030 and S̄2⊥ = 0.479
respectively (solid black lines in the two panels).

in Fig. 6.1. We note that the individual total spin magnitudes Si are still conserved. The

observed oscillations in the parallel spin magnitudes must therefore be compensated by the

orthogonal spin magnitudes at each moment in time.

Analogously, also the magnitudes of the spins orthogonal to the orbital angular momen-

tum, Si⊥, show a similar oscillatory behaviour over time. This is illustrated in Fig. 6.2 for the

same configuration as in Fig. 6.1. We note that these oscillations occur on the precession and

not the orbital timescale. These oscillations are a purely relativistic feature and occur due to

the presence of spin-orbit and spin-spin couplings. By examining the evolution equation for

the orbital angular momentum Eq.(3.16), we see that the driving force of the precession of L̂

indeed are the spin components orthogonal to the instantaneous orbital angular momentum

since ~Si × L̂ = ~Si⊥ × L̂. So far, we have seen that their magnitudes change periodically but

additionally, the spin evolution equations suggest that these projections rotate within the or-

bital plane continuously changing their relative orientation in the plane. This in-plane motion

is illustrated in Fig. 6.3, which shows the orthogonal spin unit vectors at three different times

during the evolution but within one precession cycle. We note that the spins ~Si⊥ rotate at

different rotational velocities, i.e., they have different precession rates around L̂.

These two observations, 1) the oscillation of the magnitudes of the in-plane spins Si⊥

around a mean value and 2) the continuous change of the relative position between the

projected spin vectors in the plane, together with leading-order PN term in the precession

equation for the orbital angular momentum Eq.(3.16), suggest the following effective preces-

sion spin parameter to capture the precession of the orbital plane in a fully generic binary
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Figure 6.3: The three panels show the unit vectors Ŝ1⊥ (red) and Ŝ2⊥ (blue) as contained in the
orbital plane for three different times in the evolution as indicated. The orbital angular momentum L̂
is perpendicular to the xy-plane. It is obvious that the spins in the plane continuously change their
position in the plane as well as their relative orientation – the angle between them changes smoothly.

Figure 6.4: The panel shows the magni-
tude of the leading order precession term
||(A1

~S +A2
~S)× L̂||/(A2m

2
2) (blue), its true mean

||(A1
~S +A2

~S)× L̂||/(A2m2
2) = 0.845 (red) and its

approximation χp = 0.85 (green).
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configuration:

Sp :=
1

2
{A1S1⊥ +A2S2⊥ + |A1S1⊥ −A2S2⊥|}

≡ max(A1S1⊥, A2S2⊥), (6.5)

where A1 = 2 + 3m2/(2m1) and A2 = 2 + 3m1/(2m2). This parameter is defined at the point

where the binary configuration is specified, in our analysis at the initial time t0, but it can

be determined at any preferred point of definition like a specific GW frequency for example.

We note, however, that the spin configuration at the initial point yields one specific value Sp,

which necessarily changes due to the time-dependence of Si⊥ when a different definition point

is chosen. The change in χp, however, is small due the variation of Si⊥ over the inspiral (see

Fig. 6.2), unless the precession itself is very small. In those cases the relative change in χp

can be very large and therefore strongly dependent on the chosen starting point.

By close inspection of Eq.(6.5) we understand the nature of its definition: it is the geomet-

ric mean of the relative orientation of the in-plane spins and their initial magnitudes, which
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are approximated as being constant over the evolution, weighted by the same mass weights

that appear in Eq.(3.16). In other words, it is an approximation to the mean of the magnitude

of the leading-order precession term, which can be interpreted as effective precession spin Sp:

Sp ≈ ||A1
~S1⊥ +A2

~S2⊥||. (6.6)

We expect a binary with this precession spin Sp to exhibit a similar precession motion as a

binary with initial in-plane spins ~S1⊥ and ~S2⊥.

In practice, we prefer to define spin configurations in terms of dimensionless spin parame-

ters and therefore would like to use a dimensionless precession spin χp instead of Sp. In order

to do so, we must make a choice regarding the distribution of the precession spin among

the two black holes. Motivated by the fact that the in-plane spin of the smaller black hole

becomes more and more negligible with increasing mass ratio, we assign the precession spin

to the larger black hole, which, due to the mass weight in Eq.(6.5), yields:

χp :=
Sp

A2m2
2

. (6.7)

Eq.(6.5) does not exactly represent the mean value of the magnitude of the precession term

over the inspiral phase but closely approximates this value. This is illustrated in Fig. 6.4. We

also note here that for certain configurations, namely when S1|| and S2⊥ are both large, the

Kerr limit χi ≤ 1 is not respected.

For most precessing configurations we find the deviation between the true mean value and

χp to be of the order of a few percent at most. The choice of this particular precession spin is

entirely based on the close examination of the PN evolution equation for the orbital angular

momentum and the approximate decoupling of the inspiral and precession dynamics. By

having chosen χp to be the approximate mean of the leading-order term in the PN precession

equations, we do expect (by construction) to see a similar evolution of the orbital plane in a

system where χp is used instead of ~S1⊥ and ~S2⊥. Whether this is true or not can best be seen

from the evolution of the precession angles (ι(t), α(t)). A similar precession motion means

that the two precession angles need to be sufficiently close to the angles in the generic system.

This is illustrated for one generic case in Fig. 6.5. We see that the precession angles obtained

from a configuration, where χp is used, indeed represent the average precession of the generic

system with χ1⊥ and χ2⊥.

6.2.3.1 Limitations

Not all configurations, however, are precession dominated by the in-plane spin of the larger

black hole. If the precession is dominated by the smaller black hole’s spin, then Sp still

represents the correct effective precession spin, but χp is then given by χp = (A1S1⊥)/(A2m
2
2).

For each mass ratio one can define the minimal orthogonal spin on the larger black hole as
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Figure 6.5: The left panel shows α(t) for the generic configuration {q = 3, ~χ1 = (0.4,−0.2, 0.3), ~χ2 =
(0.75, 0.4,−0.1)} (red) and the corresponding configuration utilising χp given by {q = 3, ~χ1 =
(0., 0., 0.3), ~χ2 = (0.85, 0.,−0.1)} (blue). Since the two curves are not distinguishable over that time
scale, the inset shows the difference ∆α (green) as a function of time. The right panel compares the
evolution of the opening angle of the precession cone ι(t). Both graphs reveal that the approximation
discards the spin-spin couplings in the plane and therefore nutation effects (the visible oscillations).

a function of χ1⊥ such that the precession is predominantly driven by χ1⊥. The limit curves

per mass ratio are illustrated in Fig. 6.6. For mass ratio q = 3 and a maximal in-plane spin

of χ1⊥ = 1, any in-plane spin χmax
2⊥ ≤ 0.289 yields a system that is precession-dominated by

the smaller black hole; for q = 10 this value drops to χmax
2⊥ ≤ 0.079. For systems with very

little precession, i.e., a very small precession cone ι ≈ 0, we find that χp does not capture the

precession correctly (see Sec. 6.4.2.2 for further details) for certain binary orientations, which

is reflected in a significantly different precession angle evolution as illustrated in Fig. 6.7.

Another interesting limit to test whether χp indeed encodes the average precession ob-

served in a generic system is the equal-mass case. It is known analytically that for q = 1

the precession is dominated by the total spin S if spin-spin couplings are neglected [20]. χp,

on the other hand, only represents a fraction of the total in-plane spin. Additionally, the

two spins stay “interlocked”, hardly changing their relative orientation and the in-plane spins

precess at the same rate. Therefore averaging over the relative spin orientation in the plane

is not applicable. This locking is illustrated in Fig. 6.8 for the same spin configuration as in

Fig. 6.5 now evaluated for the mass q = 1. The precession term for this case is illustrated in

the first panel of Fig. 6.9. We see that, as expected, χp underestimates the average precession

of the system. We note, however, that χp is already a good estimator of the precession for

mass ratios very close to the equal-mass limit. This is illustrated in the subsequent panels in

the same Fig. 6.9, where we vary the mass ratio from equal-mass to mass ratio q = 2. We

see that already at mass ratio q = 1.2, χp is a good estimator of the precession even for mass

ratios close to equal-mass.

So far, we have explored the phenomenology of a single spin parameter χp to estimate the
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Figure 6.6: The panel shows the limit curves for
the precession to be dominated by the smaller black
hole for various mass ratios. The space below each
graph represents the volume of possible in-plane
spin combinations (χ1⊥, χ2⊥), which give a preces-
sion spin Sp dominated by the smaller black hole.
Expectedly, the higher the mass ratio the less likely
it is to have a configuration where the precession is
dominated by χ1⊥.
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Figure 6.7: The left panel shows α(t) for the case {q = 3, ~χ1 = (0.38, 0.319,−0.079), ~χ2 =
(−0.036,−0.036,−0.012)} (red) and the corresponding configuration using χp given by {q = 3, ~χ1 =
(0., 0.,−0.079), ~χ2 = (0.143, 0.,−0.012)} (blue); the right panel compares the evolution of the opening
angle of the precession cone ι(t). Both graphs highlight that in this case χp does not capture the
precession of the system correctly.

average precession in a generic system and see good agreement when considering precession-

related geometric quantities like the precession angles. However, keeping our goal of modelling

precessing waveforms with a smaller set of physical parameters in mind, we need to investigate

and quantify the agreement between fully generic waveforms and their parameter reduced

counterparts. This will be the goal of the subsequent sections.

6.3 A post-Newtonian analysis

In the previous section we have introduced an effective precession spin χp Eq.(6.7), which

encapsulates the average precession dynamics in a generic double-spin binary configuration.
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Figure 6.8: The left panel shows the angle be-
tween Ŝ1 and Ŝ2 for the same spin configuration
as in Fig. 6.5 now evaluated for mass ratio q = 1.
We see that they precess together, hardly chang-
ing their relative orientation.
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Further, we have seen in Chapter 5, that the secular inspiral evolution of precessing binaries

can be mapped onto the inspiral of aligned-spin binaries by either keeping the parallel spin

components fixed or by combining them into one effective inspiral spin χeff . We have quanti-

fied the inspiral-spin mapping via match computation and will now present a similar analysis

for the goodness of the precession spin.

In the subsequent analysis, a post-Newtonian framework is used to assess the quality of the

choice of precession parameterisation during the inspiral. We aim to completely disentangle

the effect of the effective parameterisation of the inspiral rate, and hence do not invoke the

parameterisation with χeff in this analysis, i.e., we will keep the parallel spin components

χi|| fixed in the comparison; the focus lies entirely on the mapping of four in-plane spin

components ~S1⊥ and ~S2⊥ to χp. Schematically, the precession mapping we seek to investigate

reads as follows:

{q;χ1||, χ2||, ~χ1⊥, ~χ2⊥}FP 7→ {q;χ1||, χ2||, χp}RP, (6.8)

where FP stands for precessing configuration with a “full set of physical parameters” and

RP stands for the corresponding precessing configuration with a “reduced set of physical

parameters”. We will later also combine χ1|| and χ2|| into χeff (see Sec. 6.4.6), but for now

we keep the parallel spin components fixed.

6.3.1 PN waveform generation

As opposed to the previous chapter, for efficiency reasons2 the PN waveforms used in the

analysis presented here are generated by integrating the 2.5PN orbit-averaged equations of

motion under the assumption of quasi-spherical inspiral for ~L and ~Si as given in Eq.(3.16)–

Eq.(3.18). Further, we integrate the evolution equation for the orbital separation Eq.(3.22)

as well as the evolution equation for the precession angle α(t) obtained by differentiating

2In order to perform a systematic analysis, we produce O(104) waveforms, which is more efficiently done
by directly integrating the orbit-averaged PN equations than by using the Hamiltonian formulation.
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Figure 6.9: The panels show the precession term ||A1
~S1⊥ + A2

~S2⊥||/(A2m
2
2) (blue) and its mean

(red) as a function of time for different mass ratios q. The first panel shows the equal-mass case with
a mean of 1.175. For this spin configuration, however, Eq.(6.7) yields χp = 0.85. We see that at a
small mass ratio of q = 1.2, χp is already a good estimator of the average precession.
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Eq.(3.10) with respect to time,

α̇(t) =
LxL̇y − LyL̇x
L2
x + L2

y + ε
, (6.9)

where ε = 10−4 to ensure that the expression does not diverge in the numerical integration. We

construct the orbital frequency from Eq.(3.23) and ι(t) from Eq.(3.9). We then integrate the

equation for the orbital phase Eq.(3.21). The evolution is performed in the J0-aligned frame

and is aborted when a final separation of r = 6M , which corresponds to the Schwarzschild

ISCO, is reached. As initial conditions we choose the spin components defined with respect

to L̂0 ≡ (0, 0, 1), the initial separation r0 = 40M , the initial orbital phase Φ0 = 0 and the

initial azimuth of L̂ in the J0-aligned frame. We also have to set the initial magnitude of the

orbital angular momentum, which we choose to be the Newtonian value, L0 ≡ LN = µ
√
Mr0.

The transformation into the J0-aligned frame is given by the following rotation matrix:

R = Rz(ε0 − π)Ry(−ι0)Rz(−ε0), (6.10)

where ε0 is the initial azimuth of the total angular momentum J0.

Once we have solved for the dynamics of the binary, we use the mode expressions hlm

as given in [23] to construct the precessing waveforms. We only use the (l = 2)-modes

and truncate the amplitudes at leading PN order (v2), yielding the explicit following mode

expressions:

h22 = −A
2
e−2i(ι−α−Φ)

[
e4iφ

(
−1 + eiι

)4
+
(
1 + eiι

)4]
(6.11)

h21 = −iAe−i(α+2Φ+2ι)
[
−e4iΦ

(
1 + eiι

) (
−1 + eiι

)3 − (1 + eiι
)3 (−1 + eiι

)]
(6.12)

h20 = A

√
3

2
e−2i(ι+Φ)

(
−1 + e2iι

)2 (
1 + e4iΦ

)
(6.13)

h2,−2 = −A
2
e2i(α+Φ+ι)

[
e−4i(Φ+π)

(
−1 + e−iι

)4
+
(
1 + e−iι

)4]
(6.14)

h2,−1 = iAei(α+2ι+2Φ+π)
[
−e−4i(Φ+π)

(
−1 + e−iι

)3 (
1 + e−iι

)
−
(
−1 + e−iι

) (
1 + e−iι

)3]
(6.15)

with the amplitude factor

A =
Mη

DL
v2

√
π

5
. (6.16)

In the above equations DL is the luminosity distance of the GW source which we set to

DL = 1.
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6.3.2 Reduced-parameter waveforms: templates

As briefly mentioned in the motivation of this section, in order to test whether a reduced

set of spin parameters indeed captures the main phenomenology of generic precessing com-

pact binaries with a full set of spin parameters, we compare generic double-spin cases hFP to

parameter-reduced waveforms hRP. The consequence of this reduced parameter choice is that

any generic double-spin system with spins ~S1 and ~S2 is now approximated by one specific

double-spin system. If this approximation holds, any generic configuration with arbitrary di-

mensionless spins ~χ1 = (χ1x, χ1y, χ1z) and ~χ2 = (χ2x, χ2y, χ2z) corresponds to a configuration

with a reduced set up parameters such that:

~χ1 7→ (0, 0, χ1z)

~χ2 7→ (χp, 0, χ2z), (6.17)

where we have defined the spin with respect to L̂ ≡ ẑ in a Cartesian coordinate system. In

words, the spin components parallel to the orbital angular momentum are fixed, but the in-

plane spin components have been combined into the effective precession parameter χp, which

is assigned to the larger black hole m2. Without loss of generality, we have set χ2y = 0 in the

template construction.

Alternatively, we could also combine the two parallel spin components into χeff as done

in Chapter 5, but will not do so for the majority of the study as we predominantly want to

test the validity of the χp-parameterisation independent of the χeff -parameterisation. Hence,

the reduced model parameters are q, χ1||, χ2|| and χp unless otherwise indicated.

The choice of parameterisation as provided above is not unique: various combinations

of different physical spins ~S1, ~S2 can yield the same set of model parameters {χ1||, χ2||, χp}
despite being physically completely different configurations. We see immediately that all con-

figurations for one set of model parameters (q, χ1||, χ2||, χp) do not define a single configuration

but an approximate equivalence class of precessing systems, i.e., various generic configurations

map to the same point in the manifold of reduced-parameter configurations.

In order to assess whether this approximation indeed holds, matches between the waveform

strains h(θ, ϕ) of the generic configuration and its corresponding RP-configuration for various

binary orientations θ ∈ [0, π] and polarisation angles ψ are computed. Henceforth, we will refer

to the full-parameter configuration as signal and to the reduced-parameter one as template

T 3.

6.3.3 Precessing matches

We have seen in Sec. 2.4.2 that the agreement between two waveforms is commonly quanti-

fied by a single number, the match M . It corresponds to the noise-weighted inner product

3Henceforth, sub- and superscripts S or T refer to signal or template respectively.
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(overlap) between the two waveforms, whose agreement is investigated in Ref. [76]. For con-

venience, match calculations are performed in the frequency domain and hence the Fourier

transform of the time-domain GW strain h(t) has to be computed first. To do so, we utilise

the fast Fourier transform routine in Mathematica.

As before, let the complex waveform strain be

h(t; θ, ϕ) = h+ − ih× ≡
∑
l,m

−2Ylm(θ, ϕ)hlm(t) ∈ C. (6.18)

The measured signal or detector response, however, is a real-valued function given by the

parameterised superposition of the two fundamental polarisations

hSresp(t) = h+(t) cos 2ψ + h×(t) sin 2ψ = Re
(
h(t)e2iψ

)
∈ R, (6.19)

where ψ is the polarisation angle; it encodes the mixing of h+ and h×. Analogously, the

template is defined as

hTresp = Re
(
hT (t)e2iσ

)
∈ R, (6.20)

where σ is the polarisation angle of the template.

The Fourier transform of the real-valued detector response strain is given by

h̃Sresp(f) =
1

2

(
h̃(f)e2iψ + h̃∗(−f)e−2iψ

)
, (6.21)

where we have used

C 3 g(t) = f∗(t) ⇒ g̃(f) = f̃∗(−f). (6.22)

We also know that given a real-valued function a(t) ∈ R, its Fourier transform obeys

ã(f) = ã∗(−f). Thus, a symmetric inner product between two real functions a, b ∈ R can be

defined by

〈a|b〉 = 2

∫ ∞
−∞

ã(f)b̃∗(f)

Sn(|f |)
df (6.23)

= 2

∫ ∞
0

ã(f)b̃∗(f)

Sn(|f |)
df︸ ︷︷ ︸

I

+2

∫ 0

−∞

ã(f)b̃∗(f)

Sn(|f |)
df︸ ︷︷ ︸

I∗

(6.24)

= 4Re

∫ ∞
0

ã(f)b̃∗(f)

Sn(|f |)
. (6.25)

Combining Eq.(6.21) and Eq.(6.23), we find the polarisation-dependent match to be

〈hSresp|hTresp〉 = Re

∫ ∞
−∞

h̃S(f)h̃T∗(f)

Sn(|f |)
e2i(ψ−σ)df + Re

∫ ∞
−∞

h̃S(f)h̃T∗(−f)

Sn(|f |)
e2i(ψ+σ)df. (6.26)
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We explicitly give the expression as the phase optimisation in the match for precessing

signals is directly related to the optimisation of the template polarisation. For nonprecessing

signals, only one side of the frequency spectrum contributes, i.e., the second term in Eq.(6.26)

vanishes. This is not true anymore in the case of precession – in particular for binary orienta-

tions close to edge-on, we find that the power in the negative frequency bins is non-negligible

and must be taken into account. A match algorithm, which uses the double-sided frequency

spectrum, was developed by Frank Ohme. Additionally, it optimises automatically over the

template polarisation σ. All matches quoted in this section use this function and we also

optimise over the azimuthal angle in the spin-weighted spherical harmonics of the template,

ϕT .

The match is a very important figure of merit and in this analysis we are predominantly

interested in whether the template faithfully (see Sec. 2.4.2 for details) represents the full-

parameter signal waveforms. As a threshold we choose a minimum match of M = 0.965. In

the following, we will explore the match M as a function of the binary inclination θ and the

signal polarisation ψ for a total binary mass of M = 12M� with a GW starting frequency of

20Hz and a cutoff frequency of 366Hz. For computational efficiency we use the early aLIGO

noise curve.

6.4 Results

We have investigated the faithfulness of the reduced-parameter model by computing the match

for selected cases of mass ratio q = 3 and mass ratio q = 10 before performing a large study

with a set of 10,000 random binary configurations. For all investigated cases of mass ratio

q = 3 we obtain matches above threshold for close-to-optimally oriented binaries with a sharp

drop in the match towards the orientation θ = π/2.

We emphasise that faithfulness is the lower bound for match calculations as no optimisa-

tions over physical parameters are performed; if we were to optimise over physical parameters

as done in a GW search, the resulting fitting factor would by definition be larger (or the

same). The results show very strong evidence in favour of the reduced parameterisation to

capture the dominant precession effects.

6.4.1 Selected test cases

One of the most extreme cases to test the effectiveness of the reduced parameterisation is a

double-spin case with two maximally spinning black holes. In order to maximise the precession

effects, we choose both spins to be initially contained within the orbital plane, i.e., ~χ1 =

(±1, 0, 0) and ~χ2 = (±1, 0, 0). By construction, the reduced-parameter configuration following

the mapping Eq.(6.17) is given by ~χ1 = (0, 0, 0) and ~χ2 = (1, 0, 0). In the following we analyse

various properties of this particular configuration and variations thereof for the moderate mass
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Figure 6.10: The left panel shows the match contours for the extremal case with varying in-plane
orientation of ~χ1, the right panel shows the contour for varying orientation of ~χ2 as a function of the
binary orientation θ. The red dots mark the actual points at which the matches are evaluated.

ratio q = 3.

6.4.1.1 Relative in-plane spin orientation

The first investigation concerns the influence of the relative orientation of the spins in the

plane. Firstly, we fix ~χ2 ≡ (1, 0, 0) and vary the orientation of ~χ1 = (cosφ1, sinφ1, 0) with

φ1 ∈ [0, 2π] and ∆φ1 = 45◦. Secondly, we interchange the roles of ~χ1 and ~χ2 and now vary

φ2 in the same interval. To quantify the agreement between the rotated generic waveforms

and the same template waveforms as constructed from Eq.(6.17), we compute the match for

each in-plane orientation φ1,2 with the same template. We choose a set of different binary

orientations θ ∈ [0, π] with ∆θ = π/10, but keep the signal polarisation fixed for a polarisation

angle ψ = 0 and also set ϕS = 0. We only optimise over the template polarisation, a time

shift and the angle ϕ in the spin-weighted spherical harmonics of the template strain.

The obtained results are illustrated in Fig. 6.10. In both cases we obtain very high

matches but observe 1) a mild dependence on the relative orientation in the plane and 2)

a strong dependence on the binary’s orientation θ. The minimal match is Mmin = 0.95

in both cases. We find that the lowest matches are clustered around θ ∈ [0.8, 2.1] and

φ1,2 ∈ [0, 0.3] ∪ [2.6, 3.6] ∪ [5.8, 6.3]. In Fig. 6.11 we show the explicit matches for three

different initial relative angles φ1,2 as a function of the inclination of the binary. We find that

the matches are relatively symmetric around θ = π/2 as already suggested by the contour

plots. However, depending on the initial in-plane angle enclosed by ~S1⊥ and ~S2⊥, we observe

an overall shift towards lower matches. The lowest matches are obtained for φ1,2 close to
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Figure 6.11: The left panel shows the match for the extremal case with varying in-plane orientation
of ~χ1, the right panel shows the contour for varying orientation of ~χ2 as a function of the binary
orientation θ for three different relative angles: φ1,2 = 0 (blue), φ1,2 = 45◦ (green) and φ1,2 = 90◦

(magenta). The horizontal red line indicates a match of 0.965.

0, π and 2π. For those orientations, the in-plane spin-spin contribution to the phase (i.e.,

| cosφ1,2| = 1; see Eq.(3.23)) is maximised. This is the case at the initial time, when all orbital

elements evolve more slowly and therefore we subsequently expect a significant difference in

the GW phase evolution. We conclude that the main effect of the reduced parameterisation

in this particular setup is the complete neglect of in-plane spin-spin coupling contribution.

Although it varies with time, its magnitude is set by the initial value. Further, systems close

to being edge-on are not faithfully recovered by the template waveforms, but as the match

is only marginally below threshold, we expect that it can easily be enhanced by parameter

optimisation. Also, waveforms from edge-on binaries will be the weakest signals observed in

ground-based detectors.

6.4.1.2 Varying the in-plane spin magnitude

In this section we investigate the influence of the in-plane magnitude. We fix the relative

spin orientation to φ1 − φ2 = 0 in this study as we have seen earlier that parallel in-plane

spins yield the lowest matches for certain orientations. As before, the signal polarisation is

fixed such that ψ = 0 and we also set ϕS = 0; we compute the match for various binary

orientations. Firstly, we let ~χ2 = (1, 0, 0) and vary the magnitude of the spin on the smaller

black hole such that ~χ1 = (χ1x, 0, 0). We then exchange the role of the two black holes

and vary ~χ2 = (χ2x, 0, 0). The contours for the matches as a function of the in-plane spin

magnitude of one of the holes and the binary orientation θ is shown in Fig. 6.12.

We find that the magnitude of the in-plane spin of the smaller BH is negligible up to

χ1x ' 0.8 and up to χ2x ' 0.7 for the larger one. The lowest matches are recovered for

maximal in-plane spins on both black holes, which is consistent with the results regarding the

relative orientation. The contours once more indicate the influence of the spin-spin coupling



116 Chapter 6. Towards generic waveform models II

0.96

0.96

0.965

0.965

0.97

0.97

0.975

0.975

0.98

0.98

0.985

0.985

0.99 0.99

0.995

0.995

1

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Χ1 x

Θ
@ra

dD

0.96

0.96

0.965

0.965
0.97

0.97

0.975

0.975

0.98

0.98

0.98

0.985

0.985

0.985

0.985

0.99

0.99

0.99

0.995

0.995

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Χ2 x
Θ

@ra
dD

Figure 6.12: The left panel shows the match for ~χ1 = (χ1x, 0, 0) and ~χ2 = (1, 0, 0) against the
appropriate reduced-parameter waveforms as a function of the binary orientation; the right panel
shows the match for ~χ1 = (1, 0, 0) and ~χ2 = (χ2x, 0, 0) against the appropriate reduced-parameter
template waveforms. The red dots mark the actual configurations used to obtain the contours.

term: from Eq.(3.23) we see that this term is proportional to
[
~S1 · ~S2 − (L̂ · ~S1)(L̂ · ~S2)

]
. The

second term vanishes initially as we only consider spins in the plane and the first contribution

determines the strength of the spin-spin contribution to the phasing. It follows immediately

that the spin-spin term becomes more influential the larger the spin magnitudes (note that

we have fixed Ŝ1 · Ŝ2 = 1 initially). By applying the mapping to the reduced-parameter

waveforms, we completely discard the spin-spin contribution in this example. We observe

additional structures in the match contours when ~χ1 is fixed and the in-plane spin magnitude

of ~χ2 is varied, in particular for χ2x ' 0.

6.4.1.3 The influence of parallel spins

The cases considered so far have allowed us to study the influence of the precession to some

extent independently to the influence of the inspiral rate. In Chapter 5 we have seen that the

precessional dynamics decouples approximately from the inspiral dynamics. The phasing of

the in-plane spin cases is only modified by the spin-spin coupling term, which appears at higher

PN order, as the otherwise dominant spin-orbit couplings vanish (χi|| ≡ 0). These cases are

therefore an ideal testbed to investigate the spin-spin influences. These are, necessarily, very

fine-tuned configurations and we wish to investigate more general systems. We now study the

following configuration: the spin on the larger black hole is fixed and set to ~χ2 = (0.8, 0,−0.6)

(χ2 = 1); we now vary the spin of the smaller black hole ~χ1 = (χ1x, 0, χ1z). The results for

three different binary inclinations are shown in Fig. 6.13. The lowest match we obtain is
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Figure 6.13: The panel shows the match contours for three different binary inclinations for the
configurations where ~χ2 = (0.8, 0,−0.6) and ~χ1 = (χ1x, 0, χ1z). Each red dot represents one particular
choice of (~χ1, ~χ2); all pairs were used to compute the contours. We find that the matches drop with
increasing value of χ1x and increasing inclination θ.

Mmin = 0.826 for the configuration with ~χ1 = (1, 0, 0) for θ = 126◦. Following Eq.(6.17), the

parallel components of the template waveform are the same as in the generic configuration

(signal waveform). Keeping this in mind, Fig. 6.13 can be interpreted as follows: if χ1⊥ = 0,

then the reduced system exactly corresponds to the generic system and therefore obtain

matches M = 1. For χ1z = 0 we see a decreasing agreement with increasing |χ1⊥| due to the

neglect of the in-plane contribution to the spin-spin coupling. In between these extremes we

see nearly vertical contours indicating that the mismatch is indeed dominated by the neglect

of (Ŝ1 · Ŝ2)⊥ and rather independent of the parallel spin components as these are preserved in

the particular mapping we use. Further, we note that the values of match contours decrease

with increasing inclination.

6.4.2 Statistical analysis: a random sample of precessing configurations

Previously, we have analysed a handful of test cases, which allowed us to extract trends along

several directions in the configuration space. Further, we were able to investigate the influence

of the in-plane spin-spin coupling, which is completely neglected in our approximation. In

order to quantify the goodness of the reduced-parameter configurations across the precessing

binary parameter space, a statistically significant sample of all possible configurations needs

to be analysed at various mass ratios. We construct 10,000 random binary spin configurations

with uniform sampling in the dimensionless spin magnitudes χ1,2 ∈ [0, 1], the spin azimuth

angles φ1,2 ∈ [0, 2π] as well as the cosine of the spin inclinations cos θ1,2 ∈ [−1, 1].

This random set of spin pairs allows us to compute the distribution of the initial precession

cone opening angles ι0 for the sample at a given mass ratio and initial separation. The opening

angles for the mass ratio q = 3 are shown in Fig. 6.14.

In the subsequent analysis of the sample, we quantify the agreement between the (l = 2)-
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Figure 6.14: The panel shows the distribu-
tion of initial precession cone opening angles
for the statistical sample computed from the
initial spins ~Si and the initial Newtonian or-
bital angular momentum LN for an initial
separation of Di = 40M and a mass ratio of
q = 3.
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waveform strain

h(t; θ, ϕ) =
2∑

m=−2

h2m(t)Y −2
2m (θ, ϕ)

for each configuration in the sample with its corresponding template waveform hT given

by Eq.(6.17) by computing the match M . We optimise only over the following subset of

extrinsic parameters: the polarisation σ of the template waveform, the azimuth ϕ in the spin-

weighted spherical harmonics in the reduced-parameter GW strain as well as a time shift ∆t.

We repeat this match computation for each configuration for the signal polarisation angles

ψ ∈ {0., π/8, π/4, 3π/8} as well as for the binary orientations

θ ∈ {0, π/10, π/4, 2π/5, π/2, 3π/5, 4π/5, 11π/12} with ϕS = 0. This yields 32 individual

matches per configuration and a total of 320,000 matches. We repeat this calculation for

various mass ratios but fix the following parameters in the analysis: the initial separation

Di = 40M to obtain reasonably long inspiral waveforms in the time domain, which are

sampled at 10M . We set the total mass to M = 12M�. This is an ad hoc choice, but

was made to allow a wide frequency range in band, to minimise the effects of merger and

ringdown and for reasons of computational cost efficiency. We fix the upper cutoff frequency

to be MfISCO = (π63/2)−1 and use the anticipated early PSD noise curve for aLIGO [204].

6.4.2.1 Results for q = 1

As highlighted earlier, we expect our effective mapping to perform worse in the equal mass

case. Apostolatos et al. [20] showed that for equal mass binaries the relative orientation

between the two spin vectors, i.e. ~S1 · ~S2, is constant in time if spin-spin term are neglected –

the two spins are locked and therefore the binary follows the evolution of a single spin binary

with a total spin magnitude S = ||~S1 + ~S2|| = const. Since the in-plane spins rotate with the

same precession frequency, the idea of averaging over the continuous change of the relative

orientation is not applicable anymore as is illustrated in Fig. 6.8.

Therefore, we expect the equal-mass limit to provide a stringent test of the effectiveness
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Figure 6.15: The panel shows the cumula-
tive distribution function for all matches for the
mass ratio q = 1 (blue). The red vertical line
indicates a match of M = 0.965. Only a frac-
tion of 1.8% of all matches from the sample are
below threshold.

of the χp-parameterisation. The cumulative distribution function (CDF) for the statisti-

cal sample is shown in Fig. 6.15. Surprisingly, we find that only 1.78% of all matches are

below 0.965, showing that even in the equal-mass limit the precession in the system is faith-

fully represented by the effective precession parameter χp for most binary configurations

and orientations. A total of 88.5% have a match M ≥ 0.99; the minimum match found

is Mmin = 0.558 for the following spin configuration: {χ1, θ1, φ1} = {0.77, 0.25, 0.72} and

{χ2, θ2, φ2} = {0.49, 2.60, 1.06}4, where the polar angles denote the orientation of ~χi in the

Cartesian source frame L̂ ≡ ẑ with ψ = π/4 and θ = π/2.

6.4.2.2 Results for q = 3

We expect the effective precession spin to work even better in the regime of comparable mass

ratios as the averaging becomes more and more applicable due to mass weighting in Eq.(6.7)

– the higher the mass ratio, the more negligible the spin on the smaller black hole for a wide

range of (χ1⊥, χ2⊥)-combinations (see Fig. 6.6). Mass ratio q = 3 provides us with the pos-

sibility to test the approximation in the lower mass-ratio end, where we do not yet have to

be concerned about a wealth of cases that might undergo transitional precession [144]. The

cumulative distribution function for q = 3 is shown in Fig. 6.16. Similar to the equal-mass

study, we find that only a marginal fraction of 1.76% of all computed matches is below thresh-

old. We have performed an additional analysis with randomly chosen azimuthal orientation

ϕS of the binary. The results are illustrated in the right panel of Fig. 6.16: we find almost

identical results and conclude that the restriction ϕS = 0 has no significant influence on the

results.

The CDF for q = 3 and q = 1 look very similar, although the tail of the CDF towards

low matches in Fig. 6.16 is much flatter than in Fig. 6.15, which is rather surprising at first

glance. It can be explained by the pronounced error introduced for cases with very little

precession, which are not well captured by χp. We find the lowest match to be Mmin = 0.532

4This is configuration number #3893 in the sample file.
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Figure 6.16: The left panel shows the cumulative distribution function for all matches computed
from the complete set of 10,000 distinct spin configurations at mass ratio q = 3 (blue). The red vertical
line indicates a match of M = 0.965. Only a fraction of 1.76% of all matches are below threshold.
The tail is flatter than for q = 1 as configurations where the spin of the smaller black hole dominates
the precession are not faithfully represented by the choice of χp. The right panel shows the CDF
for randomly chosen azimuthal orientations (ϕS 6= 0) of the signal (orange). We find no significant
difference.

for the configuration {χ1, θ1, φ1} = {0.83, 2.44, 6.20} and {χ2, θ2, φ2} = {0.80, 0.31, 2.31}5, for

ψ = π/4 and θ = π/2.

Further, we find that a total of 1699 configurations are precession-dominated by the smaller

black hole. However, only 4.7% of matches computed for those configurations result in a

match below threshold. Further, we find that these sub-threshold matches are predominantly

clustered around values for χ2⊥ ≤ 0.08, which is illustrated in the density plot in Fig. 6.17. We

conclude that χp faithfully represents binaries that are precession-dominated by the smaller

black hole – only systems with very little precession are not faithfully approximated.

6.4.2.3 Results for q = 10

In Fig. 6.6 we have seen that it is rather difficult to generically construct a precessing case,

where the precession is dominated by the in-plane spin of the smaller black hole. We therefore

expect the mapping onto the reduced-parameter waveforms to be even more faithful for higher

mass ratios such as q = 10. On the other hand, we now expect transitional precession to

occur more often within the sensitivity band of aLIGO. In order to identify the occurrence

of transitional precession, we compute the angle between Ĵ(tend) and (0, 0, 1) at the end of

the PN evolution. The angles θJ(tend) for the sample are shown in Fig. 6.18. The fraction of

configurations undergoing either the full transitional phase or at least a part of this phase in

band is 1.8% of all binary configurations in the sample6.

We illustrate the results in the form of the cumulative distribution function (CDF) of the

5This is configuration number #1522 in the sample file.
6Following Apostolatos et al. [20], we impose the criterion that ](L, S) ≥ 164◦ initially to determine the

fraction of transitional cases.
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Figure 6.17: The plot shows the density of
matches below threshold M < 0.965 for all con-
figurations in the sample that are precession-
dominated by the smaller black hole. We see
that the density of low matches is significantly
higher for cases with χ2⊥ ≤ 0.08 (darker).
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Figure 6.18: The panel shows the angle be-
tween Ĵ and the z-axis at the end of the PN evo-
lution. We find several cases, which partially or
fully undergo transitional precession within the
frequency band of aLIGO. The red horizontal
line indicates the maximal θJ -angle found for
q = 3.
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Figure 6.19: The panel shows the cumula-
tive distribution function for all matches com-
puted from the complete set of 10,000 distinct
spin configurations at mass ratio q = 10 (blue).
The red vertical line indicates a match of M =
0.965. Only a fraction of 0.3% of all matches
are below threshold.
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match in Fig. 6.19. As expected, the tail is much flatter than for the low mass ratio end

with a fraction of only 0.3% of all matches below threshold. The minimum match obtained

is Mmin = 0.484 for the configuration {χ1, θ1, φ1} = {0.74, 1.65, 3.85} and {χ2, θ2, φ2} =

{0.60, 3.11, 1.23}7, which undergoes the full transitional phase in band. The final angle be-

tween Ĵ and (0, 0, 1) is 146.6◦. We illustrate the details of this particular case in the subsequent

section.

6.4.3 Transitional precession

The analysis of the random spin configurations evaluated for the mass ratio q = 10 has

revealed the occurrence of a very small number of initial spin configurations, which undergo

partial or full transitional precession in band. As expected, these cases give, for certain

orientations and polarisations, matches significantly below threshold, yielding matches as low

as ∼ 0.4.

Transitional precession occurs when the total spin ~S and the orbital angular momentum

~L have similar magnitude but are directed nearly opposite such that the magnitude of the

total angular momentum J is small. For this to occur in the frequency band of ground-based

GW detectors, the companions need to have very fine-tuned parameters when they enter the

sensitivity band: the separation must not be too large as then L� S, and Ŝ ' −L̂ at the same

time. A binary might start in a simply precessing phase, then undergoes the transitional phase

if the appropriate conditions are fulfilled and then goes back into a state of simple precession,

unless the binary has already merged. Fig. 6.20 shows the evolution of the precession angles

(ι(t), α(t)) for the transitional configuration described previously. The corresponding reduced-

parameter configuration is given by ~χ1 = (0, 0,−0.061) and ~χ2 = (0.058, 0,−0.596). The

comparison of the two precession angles α and ι from the transitional configuration with its

corresponding template configuration reveals a strong disagreement. This can be explained

as follows: for transitional precession to also occur in the reduced-parameter configuration, it

is crucial that parallel component of the total spin is close to S|| in the generic configuration.

7This is configuration number #3068 in the sample file.
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Figure 6.20: The left panel shows the PN evolution of the precession angle α for the transitional
precession case described in the text (red) as well as α(t) for the corresponding reduced-parameter
template (blue). The right panel compares the two precession cone opening angles. It is clear from
those graphs that the mapping does not faithfully reproduce transitional precession. The green curves
show the angles for a reduced-parameter system, where the precession is associated with the smaller
black hole m1, which appear to be closer to the angles in the generic system (red).

Since we fix the parallel spin components in the mapping, the fulfilment of this condition is

guaranteed. At the same time, however, S⊥ must also be similar to the full-parameter system.

If it is too large, the transitional phase occurs at later times, if it is too small, the transition

is shifted to earlier times. By construction, χp corresponds to an average in-plane spin, which

does not necessarily correspond to S⊥ of the generic system. We conclude that the faithful

representation of transitional precession is highly sensitive to the initial value of S⊥, but note

that a different value of χp is in principle capable of capturing transitional precession (see the

green graphs in Fig. 6.20), which can be exploited via parameter optimisation.

6.4.4 On the goodness of χp

The results obtained so far suggest that the single spin parameter χp faithfully represents the

precession in a given generic double-spin system. What we have not yet investigated, however,

is the goodness of this parameter, i.e., whether the theoretically predicted value of χp is the

best value, or whether a different value yields better agreement. To do so, we determine the

match of a generic case with a series of reduced-parameter configurations, where we vary the

value of χp. Previously, we have seen that the match strongly depends on orientation θ of the

binary as well as the polarisation angle ψ of the signal. We therefore repeat the analysis for

several values of θ and ψ. The results are illustrated in Fig. 6.21 for the same configuration

as depicted in Fig. 6.5. As expected, we find that for an optimally oriented binary (i.e.,

θ = 0) the match depends only weakly on the explicit value of χp. This is consistent with the

results obtained by Ajith [9] and confirms that a large fraction of optimally-oriented precessing

binaries is well represented by aligned-spin binaries. For larger inclinations θ, however, the

match becomes strongly dependent on χp, and the best match is indeed obtained for a χp-
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(b) θ = 0, ψ = π/4
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(c) θ = π/4, ψ = π/8
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(d) θ = π/2, ψ = π/8

Figure 6.21: The four panels show the matches for the case depicted in Fig. 6.5 with a series of
reduced-parameter configurations with varying χp for four different pairs of binary orientation and
signal polarisation (θ, ψ) as indicated in each panel. The red vertical line indicates the theoretical
χp-value; the black horizontal line in the lower two panels indicates the threshold of M = 0.965. We
find a strong dependence of the match on the value of χp for growing inclinations, where waveform
modulations become more pronounced. Moreover, the theoretical χp-value is very close to the value
yielding the maximal match.

value close to the theoretically predicted one, indicating that χp does provide a meaningful

parameterisation of the precession and allows for a faithful representation of a generic system

in particular for large inclinations. Necessarily, this needs to be investigated in more detail

for a larger number of precessing configurations, which is subject to future work.

6.4.5 Comparison with the Physical Template Family

It was first suggested by Buonanno et al. [60] in 2004 that a single-spin precessing waveform

family is effectual in detecting generic double-spin precessing binaries. This quasi-physical

template family (PTF) shows very high fitting factors. However, we are primarily interested

in the faithful representation of the precession dynamics of generic binaries by a template

family with a reduced set of physical parameters, and in particular how the mapping given
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in Eq.(6.17) compares to the pure single-spin approximation in PTF.

Let us first point out the differences between the two waveform families: based on the

approximate decoupling between the inspiral and precession dynamics, we suggest that the

inspiral is well described by the two parallel spin components, whereas the precession can

be encapsulated in a complementary spin parameter. This yields a double-spin system with

three spin parameters as given in Eq.(6.17). PTF, on the other hand, assigns the total spin

S of the double-spin configuration to the larger black hole, resulting in a pure single-spin

system, obtained by the following map:

~χ1 7→ (0, 0, 0), (6.27)

~χ2 7→
~χ1m

2
1 + ~χ2m

2
2

m2
2

(6.28)

By comparing Eq.(6.17) with Eq.(6.27) we see immediately that they differ significantly. A

direct comparison between those mappings allows us to establish which of them yields a more

faithful representation of precessing inspiral waveforms.

We have investigated the faithfulness of both approximations for equal-mass and the

comparable mass ratio q = 3 using the same sample of generic spin configurations as before.

We apply our proposed mapping to each configuration as well as the PTF mapping and

compute the matches with the double-spin configuration. Fig. 6.22 shows the cumulative

distribution function for both mappings and the two mass ratios in direct comparison. For

q = 3, we find that the mapping suggested by PTF results in 52.8% of all matches smaller than

0.965 compared to on ∼ 2% for the mapping given in Eq.(6.17). We therefore conclude that

the assignment of the total spin to the larger black hole does not yield a particularly faithful

representation of the generic double-spin system, whereas the split into the parallel spin

components χi|| and χp yields matches above threshold for ∼ 98% of all computed matches.

At first glance, the results for the equal-mass case are rather surprising: we expect equal-

mass precessing binaries to follow the evolution of single-spin binaries with the same total

spin on one black hole [20]. However, this is only an exact statement if spin-spin couplings are

neglected. Our proposed mapping also includes the coupling part
(
~S1|| · ~S2||

)
, and performs

similar to PTF in the equal-mass case.

6.4.6 χeff-parameterisation of the inspiral rate

In the analysis presented so far, we have kept the parallel spin components in the reduced-

parameter system the same as in the full-parameter system. However, in Chapter 5 we have

demonstrated that the secular evolution of the inspiral of precessing binaries is comparable

to the inspiral rate of aligned-spin binaries parameterised by the effective inspiral spin χeff as

given in Eq.(5.10). With the construction of a complete inspiral-merger-ringdown model of

precessing binaries in mind, we now investigate the effect of the neglect of χ1|| and instead
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Figure 6.22: The two panels show the CDF for our proposed reduced-parameter mapping (blue)
in comparison to the mapping provided by PTF (green). The left panel shows the results for the
equal-mass case, the right panel for q = 3. Whereas only 1.76% of all matches are below threshold for
our mapping, a significant fraction of 56% match below M ≤ 0.965 when the total spin is assigned
to the larger black hole. For the equal-mass limit we find no significant difference between the PTF-
parameterisation and χp.

use the effective inspiral spin. Schematically, the parameter-reduced template configuration

as defined with respect to L̂ ≡ ẑ is then given by:

~χ1 7→ (0, 0, 0)

~χ2 7→7→
(
χp, 0,

113χeff

(113− 76η)

)
. (6.29)

As an alternative effective parameterisation of the inspiral rate, without violating the physical

range of the dimensionless spins, we will also choose the parallel spins to be equal and fulfilling

χi|| = 2χeff

(
1− 76η

113
− δM

M

)−1

(6.30)

We investigate the faithfulness of these effective parameterisations using the same spin

configurations as in the rest of this chapter and evaluate the matches for the comparable mass

ratio q = 3. Fig. 6.23 illustrates the results in the form of the cumulative fraction of matches

as a function of the match. We find that for the χeff -parameterisation as given in Eq.(6.29),

∼ 13.3% of all matches are below the threshold, for the alternative effective parameterisation

∼ 15.5% of all matches are ≤ 0.965. This is a rather large fraction compared to 1.8% we

obtained by keeping the parallel spin components fixed. With the effective parameterisation

of the inspiral, we have introduced an error in the secular phasing as well as the description of

the precession dynamics, which leaves us with a significantly larger fraction of matches below

threshold. However, we have not explored whether the matches would increase at the cost of

parameter accuracy.
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Figure 6.23: The panel shows the cumula-
tive distribution function for q = 3 for the
reduced parameterisation given by Eq.(6.17)
(blue), the parameterisation suggested by PTF
Eq.(6.27) (green), the χeff -parameterisation as
given in Eq.(6.29) (purple) and the alterna-
tive χeff -parameterisation (orange) as given in
Eq.(6.30). The match threshold of 0.965 is in-
dicated by the red vertical line.

6.5 Discussion

In this chapter, we have explored the possibility of parameterising the precession in a generic

double-spin system with only one precession spin. To obtain this parameter reduction, we have

suggested a combination of a set of spin parameters, which are predominantly responsible for

the leading-order precession effects in inspiral waveforms, into one effective precession spin χp.

The definition of this parameter is motivated by the PN evolution equation for the orbital

angular momentum L, which encodes the leading-order precession dynamics of the binary

system. We have illustrated that the precession rate of the orbital angular momentum, i.e.

|| ˙̂L||, is an oscillatory function over the course of the PN evolution. However, we postulated

that the average precession exhibited by a generic system should be given by the mean of

the precession rate. We have shown that the mean precession is well approximated by the

precession spin χp, which is defined purely from the initial spins and the mass ratio.

In order to test whether the precession in generic systems is indeed well described by the

average precession, we have computed matches between the waveforms from random binary

configurations and their corresponding reduced-parameter configuration. Our results indicate

that a reduced-parameter system built such that its initial precession rate corresponds to the

average precession rate of the generic system indeed shows a very similar precession dynamics

and the waveforms therefore have high overlaps (faithfulness). We have repeated the analysis

for the mass ratios 1, 3 and 10 using the same sample of 10, 000 arbitrary binary configurations.

As expected, χp approximates the average precession rate better with increasing mass ratio:

by definition, χp is the geometric mean of the in-plane spin orientation, under the assumption

that the magnitudes Si⊥ change only minimally. When the equal-mass limit is approached, the

in-plane spins rotate at the same rate, therefore averaging over the spin orientation becomes

invalid and χp approximates the true average precession rate less accurately. For moderate

mass ratios (q = 3 to q = 10) we find that χp parameterises the precession very well. We will

see in the next chapter how crucial the faithful representation of a precessing system defined

intrinsically by seven physical parameters by a system with only four physical parameters is
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in order to construct simple analytic expressions for the precession angles α(t) and ι(t).

We have seen in Chapter 5 that the inspiral and precession dynamics decouple, and that

the inspiral is well governed by the spin components parallel to L. In order to model the

precession in the system, we have shown that only one extra spin parameter, χp, is needed

to faithfully capture the precession of a given generic binary configuration. However, com-

parison with other possible parameterisations suggests that in order to accurately model the

waveforms of precessing black hole binaries it is crucial to accurately describe the inspiral

and the precession motion. Using the total spin of the generic binary or invoking different

variations of the χeff -parameterisation has resulted in matches below 0.965 for more than

∼ 50% respectively ∼ 15% of all computed matches. In both cases (i.e., PTF and χeff), the

inspiral rate as well as the precession description are altered. In particular, in the case of the

effective parameterisation, the initial opening angle ι was modified and therefore χp not only

needs to capture the bulk precession features, but also needs to compensate for the error in

the inspiral phase, which results in biases of the physical parameters. However, our results

also suggest that the effective parameterisation of the inspiral rate in combination with χp

yields a significantly more faithful representation of a generic system than the PTF choice.

In previous efforts, either the inspiral or the modulations due to precession were described

either inaccurately or in an ad hoc way with many degrees of freedom. Our results suggest that

the effective parameterisation of the precession models the modulations accurately for most

configurations and, in particular, binary orientations. Previous studies have already shown

that the waveforms of optimally-oriented precessing binaries can be detected with aligned-spin

binaries as the modulations in amplitude and phase strongly depend on the binary orientation

(see e.g. [9]). Arbitrarily inclined systems, however, are not faithfully matched by aligned-

spin waveforms and for a large volume of the binary parameter space, not even fitting factors

above threshold can be obtained. Our results indicate that most binary inspirals are faithfully

represented by precessing waveforms in the parameter manifold {q, χ1||, χ2||, χp} for arbitrary

orientations and polarisations.

However, in this analysis we have focussed on inspiral waveforms only. It remains to be

seen whether χp is a meaningful precession parameter during the late inspiral and merger.

Further, we have not investigated the improvement of matches by optimising physical param-

eters. Therefore, the matches quoted here are lower bounds and are expected to improve at

the cost of parameter accuracy. Some of these issues will be addressed in the next chapter.



CHAPTER 7

PhenomP

A first approximate phenomenological

waveform model for precessing compact

binaries

In this chapter, we present a prototype precessing IMR waveform model, henceforth referred

to as “PhenomP”, which captures the basic phenomenology of the full seven-dimensional

parameter space of binary configurations with only three physical parameters. Its construction

is entirely based on the ideas outlined in Chapter 5 and Chapter 6: firstly, we use an existing

aligned-spin IMR waveform model parameterised by two physical parameters, the mass ratio

and an effective spin χeff , to describe the secular motion and phasing of the binary as first

suggested in [197]. Motivated by the results in Chapter 6, the aligned-spin waveform is

then convolved with an approximate description of the precessional motion parameterised

by only one additional physical parameter, the effective precession spin χp as introduced in

Sec. 6.2.3. In other words, we simply “twist-up” an existing aligned-spin waveform model

with an approximate model of the precessional motion as sketched in Eq.(5.19).

The fast and efficient generation of waveforms is essential for GW searches using the

matched filtering algorithm as well as for source parameters measurements. For this pur-

pose, we construct the precessing waveform model in the frequency domain. We have tested

the model’s fidelity for GW applications by comparison against PN-NR hybrid waveforms

for a variety of configurations, but we emphasise that these numerical simulations were not

used in the construction of the model. This prototype model is an ideal testbed to develop

GW searches, to study the implications for astrophysical measurements, and, perhaps most

importantly, as a simple conceptual framework to form the basis of generic-binary waveform

modelling in the advanced-detector era. The work presented in this chapter has been adapted
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from the following version of a paper submitted for publication:

[117] Mark Hannam, Patricia Schmidt, Alejandro Bohé, Leila Haegel, Sascha Husa, et al.

“Twist and shout: A simple model of complete precessing black-hole-binary gravitational

waveforms”, submitted to Phys. Rev. Letters, 2013 (see arXiv:1308.3271v1 [gr-qc]).

7.1 Introduction

The inspiral and merger of black-hole binaries constitutes one of the most promising GW

sources for ground-based interferometric GW detectors. As outlined in Chapter 2, the com-

monly used detection and interpretation strategies of these signals require analytic models

that capture the phenomenology of all likely binary configurations; most of these will in-

clude complex precession effects due to the black-hole spins (see Chapter 3 for more details).

However, most of the currently available waveform models of the two black holes’ inspiral,

merger and ringdown of the final black hole, only consider configurations where the black-hole

spins are aligned with the binary’s orbital angular momentum and therefore do not model

precession.

While the binary’s early inspiral can be modelled well with analytic PN calculations,

the late inspiral and merger require 3D numerical solutions of the full nonlinear Einstein

equations. In the case of generic binary configurations, these expensive NR calculations must

span a binary parameter space that covers, for non-eccentric inspiral, seven dimensions: the

mass ratio of the binary and the components of each black hole’s spin vector. Previous work

on phenomenological models of non-precessing binaries suggests that we require at least four

simulations in each direction of parameter space that we intend to model [11, 12, 192]. This

implies that we need 47 ≈ 16, 000 numerical simulations to model the full parameter space,

which is unfeasible in the near future. Therefore, it is necessary to identify approximations

and degeneracies that make the task tractable and allow for reductions of the number of

model parameters.

In Chapter 5 we identified an approximate mapping between inspiral waveforms from

generic binaries and those from a two-dimensional parameter space {q, χeff} of non-precessing

binaries [197]. This approximation holds because precession has little effect on the inspiral

rate and so precession effects approximately decouple from the overall inspiral. The inspiral

can be described by an aligned-spin-binary model, neglecting the effect of breaking equato-

rial symmetry, which is responsible for large recoils [54]. We further proposed that, given a

model for the precessional motion of a binary, we could construct an approximate waveform

by “twisting up” the appropriate non-precessing-binary waveform with the precessional mo-

tion [197]. This technique was subsequently adopted to produce simple frequency-domain PN

inspiral waveforms [148]. It was more recently suggested that this mapping also holds through

merger and ringdown [176]. In this work we take this idea even further, in two crucial ways.

http://arxiv.org/abs/1308.3271
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Based on the reduced-parameter mapping introduced in Chapter 6, firstly we use a high-order

but single-spin PN description for the precession angles (ι(t), α(t)) to twist up a phenomeno-

logical inspiral-merger-ringdown model for aligned-spin binaries [192] known as “PhenomC”.

Secondly, we incorporate precession effects into the estimate of the final black-hole spin in

the ringdown model [28]. These two additions allow us to provide the first frequency-domain

inspiral-merger-ringdown model of generic binaries.

Additionally, we make use of the single complementary spin parameter introduced in

Chapter 6 that captures the basic precession phenomenology of generic binary configura-

tions [198]. Our final model has only three dimensionless physical parameters: the two pa-

rameters of previous aligned-spin models (the mass ratio q = m2/m1 ≥ 1, an effective spin,

χeff , which characterises the rate of inspiral), plus one additional parameter, the effective

precession spin, χp.

The purpose of this model is to a) facilitate the development of computationally efficient

generic-binary searches, b) provide a starting point to investigate the parameter-estimation

possibilities (and limitations) of generic-binary observations in second-generation detectors

and their astrophysical implications, and c) as a simple framework for the construction of

more refined models calibrated to NR simulations. If the dominant parameter space of bi-

nary simulations can be reduced from seven to three dimensions (mass ratio, effective spin,

precession spin), it may be feasible to produce a sufficient number of NR waveforms (∼100)

to calibrate the model well before advanced detectors reach design sensitivity in 2018-20 [3].

The model can be further refined, based on the results of these studies. As such, this model

provides a practical road map to model generic binaries to meet the needs of GW astronomy

over the next decade. The model is provided in the LIGO Algorithm Library (LAL) data

analysis software, to facilitate the development and testing of search and parameter estimation

pipelines [2].

7.2 The waveform model

Following the idea of “twisting-up” a spin-aligned waveform model, our starting point is

the frequency-domain IMR waveform model “PhenomC” by Santamaria et al. [192]. It is

a phenomenological waveform model for aligned-spin black-hole-binaries, which includes the

current state-of-the-art inspiral phase, TaylorF2 [22, 83, 85]. This particular waveform model

describes the (l = 2,m = |2|)-modes of the waveform given as

h̃(f) = Ã(f)eiψ̃(f), (7.1)

where the GW amplitude Ã(f) and phase ψ̃(f) are given in [192].

Apart from the computational improvements, another advantage of constructing a wave-

form model in the frequency domain rather than in the time domain is the simple relation
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between the strain h and Ψ4. In the time domain, they are related via two time integrations

This is important since the construction of an IMR model requires the inclusion of numer-

ical information. While integration amplifies numerical noise and also requires to fix the

integration constants, in the frequency domain the integration is replaced by simple division:

h̃(f) = −Ψ̃4(f)

4π2f2
. (7.2)

Based on the approximate identification described in detail in Chapter 5, we map a given

generic binary to the appropriate non-precessing waveform parameterised by (M,η, χeff),

where η = q/(1 + q)2 is the symmetric mass ratio and χeff differs slightly from the Eq.(5.10)

(which is only appropriate for pure PN waveforms) and is given by:

χeff =
m1~χ1 · L̂N +m2~χ2 · L̂N

m1 +m2
. (7.3)

In binary systems which undergo simple precession, the direction of Ĵ is approximately

constant throughout the evolution, as the loss of angular momentum due to the emission

of GWs is predominantly along Ĵ . The emission orthogonal to Ĵ averages out due to the

precession of L̂ around Ĵ [20]. We therefore assume that the final spin is in the same direction

as Ĵ through the inspiral. In order to account for precession affecting the final spin, we update

the PhenomC final spin magnitude using the final spin formula in Barausse et al. [28] with

only one black hole spinning.

We then approximate the (l = 2)-modes of a precessing binary waveform in the time

domain by rotating the dominant modes of the corresponding non-precessing waveform [196,

197]. In the previous chapters, we have quadrupole-aligned the precessing waveform modes in

order to obtain the evolution of the dominant emission direction. We have further seen that

the identified direction denoted by the general Euler angles (β, γ) corresponds to the direction

of the orbital angular momentum L̂. At leading-order, however, the post-Newtonian orbital

angular momentum is the Newtonian orbital angular momentum – the QA angles therefore

approximately correspond to (ι, α). Making use of this approximation, we can write the

precessing waveform modes in the time domain by inverting Eq.(5.8) and replacing the QA

angles by

β(t) 7→ −ι(t), (7.4)

γ(t) 7→ −α(t), (7.5)

to obtain

hP2m(t) = e−imα(t)
∑
|m′|=2

eim
′ ∫ α̇(t) cos ι(t)d2

m′m(−ι(t))h2m′(t), (7.6)
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where dlm′m denotes the Wigner d-matrices and h2|m′| are the aligned-spin modes from Phe-

nomC. The angles α and ι that enter our model are defined as the polar angles parameterising

the direction of the orbital angular momentum in the Ĵ0-aligned source frame as illustrated

in Fig. 3.5.

During the inspiral phase, the angles and the waveform amplitude vary slowly on the

precession timescale with respect to the orbital timescale (see Fig. 3.6), which allows us to

make use of a stationary-phase-approximation (SPA) transformation from the time to the

frequency domain. In the time domain we have assumed that the inspiral motion is well

described by a series of quasi-circular orbits. The stationary-phase-approximation is the

natural translation of the stationarity condition for the adiabatic inspiral regime in the time

domain into the frequency domain. Its starting point is the Taylor expansion of the orbital

phase of the binary Φorb(t) around a fixed point in time tf such that

mΦ̇orb(tf ) = 2πf, (7.7)

yielding the GW phase in the frequency domain

ψ̃lm(f) = 2πftf −mΦorb(tf )− π

4
. (7.8)

The above expressions can be rewritten in terms of the PN expansion parameter v(tf ) =

(M Φ̇orb(tf ))1/3. The time t(v) then corresponds to the time at which the binary is at the

frequency corresponding to v and φ(v) is the phase of the binary at v. The PN expansions for

each of these functions are known for aligned-spin systems. Precession, however, alters the

frequency evolution of the binary and therefore t(v). In the subsequent analysis we assume

that the modification due to precession is small and therefore neglect the effect. Hence,

the GW phase which enters Eq.(7.6) is the phase of the aligned-spin model PhenomC. The

frequency-domain expressions are obtained in the following way.

Let the spin-aligned time-domain (2,m)-mode be given by

h2m(t) = A(t)e−imΦorb(t). (7.9)

With the convention used in [192], the (2, 2)-mode modelled in PhenomC transforms as

h̃22(f)

∣∣∣∣
f≥0

= Ã(f)eiψ̃22(f). (7.10)

The convention is chosen such that modes with m ≥ 0 have positive support and modes with

m < 0 have negative support in the frequency domain, i.e.

h̃2,−2(f)

∣∣∣∣
f<0

= Ã(−f)e−iψ̃22(−f). (7.11)
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We note that
(
h̃22(−f)

)∗
= h̃2,−2(f), where ∗ denotes the complex conjugate. By making

use of the SPA, we can absorb the angle-dependent functions in the slowly-varying amplitude

yielding the final expressions for the precession waveform modes:

h̃P2m(f) =

{
e−i(mα(−f)−2ε(−f))d2

−2m(−ι(−f))(h̃22(−f))∗ f < 0

e−i(mα(f)−2ε(f))d2
2m(−ι(f))h̃22(f) f ≥ 0,

(7.12)

where we have set ε :=
∫
α̇ cos ι. The GW strain in the frequency domain is given by

h̃(f ; θ, ϕ) =

2∑
m=−2

Y −2
2m ((θ, ϕ)h̃P2m(f) ≡ h̃+(f)− ih̃×(f), (7.13)

where we have used the linearity of the Fourier transform to obtain the equivalence. We

emphasise at this point that modes with l 6= 2 are not modelled by the underlying spin-

aligned model and can therefore not be constructed in the precessing model. The output

of the model is not the waveform modes as given in Eq.(7.12), but the two fundamental

polarisations h̃P+,×(Mf ; η, χeff , χp; θ, φ), which can be obtained via the following relations:

h̃+(f) = F [Re[h(t)]] =
h̃(f) + h̃∗(−f)

2
, (7.14)

h̃×(f) = F [−Im[h(t)]] =
h̃∗(−f)− h̃(f)

2i
. (7.15)

In order to finally compute the precessing waveforms, we need to obtain frequency domain

expressions for the angles (ι, α). As we have seen in the previous chapters, these functions

in general depend on all six spin components. As a first approximation, we approximate

these angles by pure PN expressions for systems with only one spin in the orbital plane as

motivated by the results in the previous chapter. However, the spin-aligned hlm-modes model

the complete signal including merger and ringdown. In our modelling scheme, we twist the

entire non-precessing modes with those pure PN angles, and therefore formally continue the

SPA treatment through merger and ringdown. Although we do not expect these expressions,

or the approximation of slowly varying precession angles, to be valid through merger and

ringdown, in practice we find that they mimic to reasonable accuracy the phenomenology of

our complete PN-NR hybrids and only lead to small mismatches even for high masses, where

the merger becomes important.

In PN theory, the inclination ι is simply the angle between Ĵ and L̂ as given by Eq.(3.15).

It depends on expressions for L, S|| and S⊥. For single-spin precessing binaries, the parallel

and orthogonal spin components are approximately constant and will be assumed as such in

the model. We therefore only need an expression for the magnitude of the orbital angular

momentum L(t). In practice we find that the accuracy in ι, which enters only in amplitude

factors in Eq.(7.12), is not as critical as the accuracy of the precession angle α. Starting from
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Figure 7.1: The left panel shows the PN evolution of the angle ι as constructed from Eq.(3.15) as
a function of the separation r for the precessing q = 3 configuration described in Table 7.1. The blue
graph shows ι as obtained from a full PN evolution of the precessing configuration, the red graph
shows the approximation of ι for L as given in Eq.(7.16) and S⊥ = 0.75. The green graph shows ι
computed from the same expression but now L = LN. We see that the neglect of SO-terms in the
expression for L still captures the secular evolution of ι. The right panel shows the evolution of α
according to Eq.(63a) in [20], which is applicable to this single-spin system, using LPN (red) and LN

(green). The blue graph is α from the full PN evolution. We observe significant dephasing between
the blue and the red graph.

Eq.(3.15), we find that it is sufficient to include only nonspinning PN corrections in L, i.e.,

L ≈ LN + LPN + L2PN, (7.16)

as given in [133] to accurately approximate ι. The goodness of this approximation to ι is

illustrated in the left panel Fig. 7.1.

The precession angle α, on the other hand, does not only affect the amplitude of the

precessing waveform but more importantly strongly influences the phase evolution. It is

related to the precession frequency by Eq.(3.11), which, for single-spin binaries at leading-

order, is given by [20]

ωp :=
dα

dt
=

(
2 +

3m1

2m2

)
J

r3
. (7.17)

The right panel of Fig. 7.1 illustrates the effect of L on the evolution of α. We observe

signifiant dephasing at smaller separations due to the approximation of L but also due to low

PN order of the expression for α. Due to its influential contribution to the GW phasing, a

higher-order expression for α is desired. This was derived by A. Bohé via the expression for

α̇ in [44] (see Eqs (4.10a) and (4.8)) by inserting the highest-order (next-to-next-to-leading in

spin-orbit) expressions available for the quantities entering the formula [47], PN re-expanding
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and averaging over the orientation of the spin in the orbital plane yielding

α(ω) =
5

65028096q(1 + q)4ω

[
(−338688(1 + q)4(3 + 4q)− 508032q(1 + q)4(3 + 4q)χeffω

1/3

−3024(1 + q)2(2985 + q(12890 + q(15789 + 4988q + 168(1 + q)2(3 + 4q)χ2
p)))ω

2/3

+(17660607 + q(107348840− 12192768πχeff + q(271003598 + 322056χ2
p

+q(327403764 + 181442579q + 39432548q2 + 1512(2228 + q(6726 + q(8576

+q(4821 + 956q))))χ2
p − 127008q(1 + q)4(3 + 4q)χ4

p)− 65028096πχeff

−4064256πq(34 + q(36 + q(19 + 4q)))χeff

+84672(1 + q)2(3 + 4q)(75 + q(113 + 6q(1 + q)2χ2
p))χ

2
eff)))ω4/3

−1008(1 + q)2(1344π(1 + q)2(3 + 4q) + q(−5253 + q(−18854 + q(−18197− 2972q

+168(1 + q)2(3 + 4q)χ2
p)))χeff)ω log(ω)

]
(7.18)

7.2.1 Parameterisation

The only spin parameters in our model are χeff and χp as defined in Eq.(7.3) and Eq.(6.7)

respectively. The angle expressions (ι, α), require some choice for the distribution of χ across

the two black holes and for our implementation we let χ1|| = 0 and χ2|| = (M/m2)χeff , i.e.,

all of the parallel spin is on the larger black hole. To ensure physical spins of χi ≤ 1 for each

black hole, we could also choose χ1|| = χ2|| = χeff . We choose the in-plane spin χp to be

associated with the larger black hole m2, as precession effects are more strongly influenced

by the spin on the larger black hole (see Sec. 6.2.3 for more details).

Despite the choice of the spin distribution, which effectively reduces the model to a single-

spin model, we expect the model to capture the basic phenomenology of generic two-spin

systems motivated by the analysis presented in Chapter 6. Briefly summarised, the argu-

ment was the following: for the effective precession spin, if S1⊥ and S2⊥ are the magnitudes

of the projections of the two individual spins in the orbital plane, then, according to the

PN precession equations Eq.(3.16)-Eq.(3.18), the precession rate at leading order is propor-

tional to (A1S1⊥ + A2S2⊥) when the vectors Ŝ1⊥ and Ŝ2⊥ are parallel, and proportional to

(A1S1⊥−A2S2⊥) when they are antiparallel, where Ai = 2+(3m3−i)/(2mi) for i = 1, 2. Dur-

ing the inspiral, to first approximation, the average precession rate is simply the maximum of

these two spin contributions and we can define Sp = max(A1S1⊥, A2S2⊥)/A2. We expect that

applying an in-plane spin of χp := Sp/m
2
2 to the larger black hole will mimic the main pre-

cession effects of the full two-spin system. The full system will exhibit additional oscillations

(nutation) in the precession angles due to spin-spin coupling terms (see e.g., Fig. 4 of [60]

and [198]), but we do not expect these effects to be detectable in most GW observations.

We emphasise that these two effective parameters, χeff and χp, can be mapped to a range of
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physically allowable individual black-hole spins ~χ1 and ~χ2:

~χ1 7→ (0, 0, 0), (7.19)

~χ2 7→
(
χp, 0,

M

m2
χeff

)
. (7.20)

7.3 Results

The most reliable way to test any waveform model is to compare it against hybrid PN (in-

spiral) and NR (merger-ringdown) waveforms, which were not used for its calibration to NR

simulation, if such a calibration was performed to construct the model. We emphasise, that

no precessing NR simulations were used in the construction of PhenomP; NR data were only

used to calibrate the underlying spin-aligned model PhenomC. A comparison with hybrid

waveforms across the full parameter space of precessing binaries would require the same num-

ber of waveforms as needed to construct a seven-dimensional generic model, which is the

computationally prohibitive task that we wished to circumvent in the first place. In practice,

however, what we can do is identify what we expect to be challenging points in the binary

parameter space. In this comparison we restrict ourselves to binaries with small mass ratios

q ≤ 3, because that is the mass ratio range to which the underlying aligned-spin model was

calibrated to spinning-binary waveforms. To test the reliability of the model for GW detec-

tion, we construct three hybrids waveforms at mass ratios 2 and 3 for a variety of spin choices

as listed in Tab. 7.1; the numerical simulations were produced with the BAM code [55] and

hybrids were constructed by the method presented in Sec. 5.4 as well as in the inertial frame

of the NR waveforms via backwards integration of the PN equations of motion as described

in [164]. Among those precessing configurations is the q = 3 case where the larger black hole

has a spin of χ2 = 0.75 in the orbital plane, which leads to strong precession effects, and two

double-spin cases with mass ratio q = 2, which test our assumption that we can consider only

a weighted average of the spins when constructing χp. The NR initial parameters are listed

in Table 7.1.

As is standard in GW data analysis, we calculate the noise-weighted inner product as given

in Eq.(2.75) between our source waveform (in this case the hybrid) and a model waveform

family (either the original non-precessing PhenomC model or the new precessing PhenomP

model). We use the current expectation for the design sensitivity of advanced LIGO [212],

with a low-frequency cutoff of 20Hz. This inner product is maximised with respect to the

parameters of the model, including the physical parameters {η, χeff , χp,M}, the binary ori-

entation {θ, φ} and the signal polarisation angle ψ. This optimised inner product is called

the fitting factor (FF); its value indicates how well the signal can be found in detector data.

Additionally, the bias between the best-fit model parameters and the true source parameters

gives us an indication of the errors in a GW source parameter measurement.
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q 2 2 3

~χ1 {0.5, 0, 0} {−0.5, 0, 0} {0, 0, 0}
~χ2 {0.75, 0, 0} {0.75, 0, 0} {0.75, 0, 0}
Mi {0.285749, 0.453461} {0.285556, 0.45335} {0.47790, 1.02343}
~S1 {−0.031,−0.045, 0.009} {−0.032,−0.0196, 0.041} {0, 0, 0}
~S2 {−0.304, 0.057, 0.125} {−0.322, 0.032, 0.079} {−1.048, 1.197, 0.560}
~x1 {0, 7.49238, 0} {0, 7.3807, 0} {0, 15.0478, 0}
~x2 {0,−3.74619, 0} {0,−3.69035, 0} {0,−5.0159, 0}

Di/M 11.2386 11.0711 10.05
px ∓0.073409 ∓0.0735151 ∓0.126292
py ∓0.000535843 ∓0.000569491 ∓0.00139578
pz ±0.0297503 ±0.0317812 ±0.0696932

Table 7.1: Parameters for the precessing configurations that were used to construct the PN-NR
hybrid waveforms; ~χ1 and ~χ2 define the configuration at the initial separation Di/M = 40 before the
PN equations of motion are evolved.

We have computed fitting factors using PhenomC and PhenomP for total source masses

M between 20M� and 200M� as functions of binary orientations. As an example, Fig. 7.2

shows results for the q = 3 high precession configuration at M = 50M�, which proved to be

the most challenging to our model yielding the lowest fitting factors. The obtained results

are similar for lower masses, while the fitting factors improve for higher masses but at the

expense of source parameter accuracy. The standard requirement for GW searches is that

the fitting factor has to be above 0.965, which corresponds to a loss of no more than 10% of

signals in a search (disregarding additional loss due to a discrete template bank). Comparing

the two panels of Fig. 7.2 we see that while the fitting factors for PhenomC are above 0.97

only for near-optimal orientations (from which the precession has only a small effect on the

signal), they are above 0.97 for almost all orientations with the PhenomP model. A complete

study of the parameter biases has not been performed yet, but these results suggest that a

measurement of χp reliably identifies precession.

7.4 Discussion and limitations

We have presented the first frequency-domain inspiral-merger-ringdown model for the GW

signal from precessing black-hole-binaries. By incorporating a series of insights from our pre-

vious work (see Chapters 4-6), our model is constructed by a straightforward transformation

of an aligned-spin waveform model, in this particular case PhenomC, into a precessing model.

We would like to point out that in practice any workable non-precessing model could be

used instead of PhenomC. In fact, our key idea of twisting up an aligned-spin model with

expressions for the precessional dynamics has also been used to produce a precessing EOB

model [174].
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Figure 7.2: Fitting factors (as computed by A. Bohé) between the q = 3 highly-precessing binary and
the non-precessing PhenomC (left panel) and precessing PhenomP (right panel) models, as a function
of binary orientation angles (θ, φ) for a binary with a total mass of 50M�; at θ = 0 an observer is
oriented with the binary’s total angular momentum. FF < 0.965 for many orientations with PhenomC,
while for PhenomP it is well above 0.965 for all orientations.

As mentioned previously, the current model did not require any precessing-binary numer-

ical simulations in its construction. The only calibration to NR data that is contained in the

model is the original calibration of PhenomC. The expressions used to describe the precession

dynamics are purely PN and therefore not valid for the late inspiral and merger regime. It is

important to use extensive simulations to refine the model, in particular the expressions for

ι and α, based on tests of the model’s accuracy for GW searches and parameter estimation.

Finally, we are able to model the essential phenomenology of the seven-dimensional param-

eter space of binary configurations with a model that requires only three physical parameters.

This will simplify the model’s incorporation into search and parameter estimation pipelines,

as well as making the problem of producing enough numerical simulations to produce a model

of sufficient accuracy for GW astronomy with advanced detectors tractable.

Our ability to model generic waveforms with only two spin parameters implies strong

degeneracies that will make it difficult to identify the individual black-hole spins. This may

well be the reality of GW observations with second-generation detectors, for which 80% of

signals will be at signal-to-noise ratios between 10 and 20, in which the subtle double-spin

effects on the waveform may be difficult to identify. These are important issues that deserve

further attention in future work.

The current model is valid only in the region of parameter space for which PhenomC was

calibrated (q ≤ 3, |χeff | ≤ 0.75). More challenging precession cases are expected at higher

mass ratios and spins (e.g., transitional precession), and the ability of our prescription to

model those configurations will need to be tested when refined non-precessing-binary models

become available.
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Conclusions

The gravitational-wave signatures from coalescing compact binaries, in particular binary black

holes, are amongst the most promising candidates for the first detection with the advanced

ground-based GW detectors aLIGO and VIRGO. Current detection strategies rely on the-

oretical knowledge of the gravitational waveforms emitted during the inspiral, merger and

ringdown. However, the construction of waveform models seeks to combine information from

analytic approximation methods as well as Numerical Relativity. Accurate descriptions of

the complete GW signature from nonspinning or aligned-spin binaries have been presented

previously [10, 12, 192], but modelling the signal from the most general class of black hole

binaries, precessing black holes, has been an open task. In this thesis, we have presented

geometric framework to construct precessing inspiral-merger-ringdown waveform models:

First, in Chapter 4 we introduced a co-precessing frame in the context of Numerical Rel-

ativity [196]. This has allowed us to accurately isolate the secular inspiral dynamics from the

precession dynamics in a generic system. Based on this decoupling, we have shown in Chap-

ter 5 that the secular inspiral phase of a given precessing binary can be accurately mapped

onto the inspiral phase of a particular aligned-spin binary. Moreover, we have identified the

corresponding aligned-spin binary to be defined by the spin components parallel to the orbital

angular momentum of the precessing binary [197], which can be combined into one effective

inspiral spin χeff . We have demonstrated the efficacy of this mapping for a large class of

inspiral signals. Additionally, we have also tested at which point in the binary evolution

this mapping breaks down and found that it is applicable even up to the late inspiral and

merger. This investigation was later extended to a larger numerical study by Pekowsky et

al. [176], confirming our results. Based on the fact that the decoupling of the inspiral and the

precession holds well all the way up to merger, we proposed a systematic and general strat-

egy to construct precessing waveform models, namely by “twisting up” existing aligned-spin

waveform models with a physically meaningful rotation operator that encodes the precession

dynamics.

In order to complete the task of constructing a precessing waveform model, however, the
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precession dynamics needs to be modelled as well, which was another integral part of this

thesis (Chapter 6). Yet again we took inspiration from post-Newtonian theory and inspiral

waveforms to find a simple way to describe the precession in a generic binary-black-hole

system. Based on the PN evolution equations, which encode the precession, we proposed

the construction of a simple effective precession spin χp to capture the precession dynamics

on top of the inspiral [198]. We have shown that the defining geometric quantities, i.e.,

the inclination as well as the azimuthal rotation of the orbital plane, agree well between a

system with two generic spin angular momenta and the corresponding system with χp as the

orthogonal spin, which drives the precession. We have subsequently pursued this geometric

approach to construct the first complete precessing inspiral-merger-ringdown waveform model

in the frequency domain [117], which is presented in Chapter 7.

We emphasise that the geometric strategy of convolving an aligned-spin binary with a

simple rotation operator, which encapsulates the precession motion, and the effective param-

eterisation are two separate things. The construction strategy we proposed is general and

completely independent of the preferred parameterisation. However, given the dimensionality

of the precessing parameter space, effective parameter reductions, which do not compromise

the recovery of physical parameters to a high degree, are highly desirable, as they allow

us to identify the principal directions in the binary parameter space and therefore admit a

systematic exploration. This is of particular interest for NR simulations. The effective pa-

rameterisation we have suggested allows us to explore the binary parameter space numerically

by mapping the seven-dimensional manifold onto a three-dimensional submanifold, allowing

for a much better coverage.

However, the validity of the effective precession spin during the late inspiral and merger

regime remains an open question. A careful numerical analysis is needed, as only a few

numerical simulations of precessing binaries have been performed. It may well be that a single

precession spin is not enough to capture effects like the recoil of the final black hole. Previous

work has shown that the recoil velocity strongly depends on the direction of the spin in the

orbital plane just before merger [54, 71] – χp does not encode any directional information.

Whether or not this is relevant for GW astronomy, is another interesting question, which may

be explored in the future.

Based on our strategy to turn an aligned-spin waveform into a precessing one, other pre-

cessing waveform models have been constructed following this successful approach [148, 174],

meaning that there are now several precessing waveform models available to start working on

a detection and parameter estimation infrastructure that also incorporates precession, which

is of particular interest to the advanced GW detector era.



APPENDIX A

Transformation of Ψ4,lm under rotations

We aim to derive the transformation of the Weyl scalar Ψ4 under a rotation R ∈ SO(3). A

similar calculation is performed in [72]. It can be shown that the Weyl scalar is a field of

spin-weight s = −2 and hence it can be expanded in a suitable basis is

Ψ4 =
∑
l,m

Ψ4,lmY
−2
lm , (A.1)

where Y −2
lm denote the spherical harmonics of spin-weight s = −2 [159]. For s = 0 we obtain

the regular spherical harmonics Ylm, which are the eigenfunctions of the angle-dependent part

of the Laplace operator.

The transformation of the spin-weighted spherical harmonics is a simple composition of

the transformation of the spin-basis-dependent part and of Ylm. It is convenient to introduce

standard polar coordinates (r, θ, ϕ) and to define Ylm with respect to the polar angles (θ, ϕ).

The spherical harmonics then have the form

Ylm(θ, ϕ) = φ(ϕ)Θ(θ). (A.2)

We will consider rotations R, which transform angles Ω = (θ, ϕ) to the new coordinates

Ω′ = (θ′, ϕ′). The spin-weight-zero spherical harmonics Ylm then transform according to

Ylm(θ, ϕ) 7→ Ylm(θ′, ϕ′) by applying the operator PR, where R is a rotation about the z-axis

by the angle γ such that ϕ 7→ ϕ′ = ϕ+ γ and θ = θ′, is given by

Ylm(θ′, ϕ′) ≡ PRYlm(θ, ϕ) = eimγYlm(θ, ϕ). (A.3)

Now, let R(γβα) denote an arbitrary rotation by the Euler angles γ, β, α. Using the z-y-z
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convention, the spherical harmonics then obey the following transformation law [101, 225]:

Ylm(θ′, ϕ′) =

l∑
m′=−l

eim
′γdlm′m(β)eimαYlm(θ, ϕ), (A.4)

where the dlm′m denote the Wigner d-matrices given by [191]

dlm′m =
√

(l +m)!(l −m)!(l +m′)!(l −m′)!

×
∑
k

(−1)k+m′−m

k!(l +m− k)!(l −m′ − k)!(m′ −m+ k)!

× (sin
β

2
)2k+m′−m(cos

β

2
)2l−2k−m′+m. (A.5)

Due to the properties of the group SO(3), the inverse transformation is then given by

Ylm(θ, ϕ) =

l∑
m′=−l

e−im
′γdlm′m(−β)e−imαYlm′(θ

′, ϕ′). (A.6)

The next step is to include the change of spin-basis under a rotation. According to [14] a

quantity η of spin-weight s obeys the following law under a change of the spin basis:

η′ = ηeisχ. (A.7)

Combining Eqs.(A.6) and (A.7) yields the transformation law for the spin-weighted spherical

harmonics:

Y s
lm(θ, ϕ) = e−isχ

l∑
m′=−l

e−im
′γdlm′m(−β)e−imαY s

lm′(θ
′, ϕ′). (A.8)

We invert Eq.(A.1) to determine the transformation law for the Ψ4,lm-modes,

Ψ4,lm =

∫
Ψ4Y s

lm(θ, ϕ)dΩ

=

∫
e−isχΨ′4e

isχ
∑
m′

eim
′γdlm′m(−β)

× eimαY s
lm′(θ

′, ϕ′)dΩ′

=

l∑
m′=−l

eim
′γdlm′m(−β)eimαΨ′4,lm′ , (A.9)

where the overline denotes complex conjugation. We see that explicit knowledge of χ as a

function of θ and ϕ is not necessary to determine the coefficients Ψ4,`m. This transformation

law can now be applied to any given Ψ′4,lm, e.g., our numerical data, in order to change the

frame of reference. The remaining free parameters are the three angles that determine the
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general rotation. In practice, to determine the dominant emission direction one does not need

to perform the third rotation about α [72, 225]. In Chapter 4 we therefore restrict ourselves

to a rotation about two the Euler angles, β and γ, only. Since we aim to align the orbital

angular momentum with the z-axis at every instant of time, i.e., L̂ 7→ ẑ, a simple calculation

shows that in order to fulfill this β = −θ and γ = −ϕ are required, where (θ, ϕ) are the polar

coordinates determining the direction of L̂.





APPENDIX B

Numerical Relativity simulations

Here we list the main configuration parameters of the Numerical Relativity simulations con-

ducted during my PhD research. These were carried out on various superclusters in Europe:

Vienna Scientific Cluster (Austria), Curie (France), Hermit (HLRS, Germany) and Super-

MUC (LRZ, Germany).

The variables {q,~a1,~a2} denote the initial PN spin parameters; all other entries denote the

initial parameters of the NR simulation.
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tivity and a new class of post-Newtonian gravitational-wave phase evolutions: the non-spinning
equal-mass case. Phys.Rev., D78:064026, 2008. doi:10.1103/PhysRevD.78.064026.

[103] L. Grishchuk. Amplification of gravitational waves in an istropic universe. Sov.Phys.JETP, 40:
409–415, 1975.

[104] H. Grote. The status of GEO 600. Class.Quant.Grav., 25:114043, 2008. doi:10.1088/0264-
9381/25/11/114043.

[105] A. H. Guth. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Prob-
lems. Phys.Rev., D23:347–356, 1981. doi:10.1103/PhysRevD.23.347.

[106] A. H. Guth and S. Pi. Fluctuations in the New Inflationary Universe. Phys.Rev.Lett., 49:
1110–1113, 1982. doi:10.1103/PhysRevLett.49.1110.

[107] S. G. Hahn and R. W. Lindquist. The two body problem in geometrodynamics. Ann. Phys., 29:
304–331, 1964. doi:10.1016/0003-4916(64)90223-4.

[108] M. Hannam. Modelling gravitational waves from precessing black-hole binaries: Progress, chal-
lenges and prospects. Gen.Rel.Grav., 46:1767, 2014. doi:10.1007/s10714-014-1767-2.
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