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� Introduction

Genetic algorithms� and other closely related areas such as genetic programming � evolution strategies and evo�

lution programs� are the subject of an increasing amount of research interest� This two�part article is intended
provide an insight into this �eld�

In the �rst part of this article �BBM��a� we described the fundamental aspects of genetic algorithms �GAs	�
We explained their basic principles� such as task representation� �tness functions and reproduction operators�
We explained how they work� and compared them with other search techniques� We described several practical
aspects of GAs� and mentioned a number of applications�

In this part of the article we shall explore various more advanced aspects of GAs� many of which are the
subject of current research�

� Crossover techniques

The 
traditional� GA� as described in Part � of this article� uses ��point crossover� where the two mating
chromosomes are each cut once at corresponding points� and the sections after the cuts exchanged� However�
many di
erent crossover algorithms have been devised� often involvingmore than one cut point� DeJong �DeJ���
investigated the e
ectiveness of multiple�point crossover� and concluded �as reported in �Gol��a� p����	 that
��point crossover gives an improvement� but that adding further crossover points reduces the performance of
the GA� The problem with adding additional crossover points is that building blocks are more likely to be
disrupted� However� an advantage of having more crossover points is that the problem space may be searched
more thoroughly�

��� ��point crossover

In ��point crossover� �and multi�point crossover in general	� rather than linear strings� chromosomes are regarded
as loops formed by joining the ends together� To exchange a segment from one loop with that from another
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loop requires the selection of two cut points� as shown in Figure �� In this view� ��point crossover can be seen

StartFinish

Cut point 2

Cut point 1

Figure �� Chromosome Viewed as a Loop

as ��point crossover with one of the cut points �xed at the start of the string� Hence ��point crossover performs
the same task as ��point crossover �i�e� exchanging a single segment	� but is more general� A chromosome
considered as a loop can contain more building blocks�since they are able to 
wrap around� at the end of the
string� Researchers now agree that ��point crossover is generally better than ��point crossover�

��� Uniform crossover

Uniform crossover is radically di
erent to ��point crossover� Each gene in the o
spring is created by copying
the corresponding gene from one or the other parent� chosen according to a randomly generated crossover mask �
Where there is a � in the crossover mask� the gene is copied from the �rst parent� and where there is a � in
the mask� the gene is copied from the second parent� as shown in Figure �� The process is repeated with the
parents exchanged to produce the second o
spring� A new crossover mask is randomly generated for each pair
of parents�

O
spring therefore contain a mixture of genes from each parent� The number of e
ective crossing points is
not �xed� but will average L�� �where L is the chromosome length	�

0 1 0 1 0 1 0 0 1 1

1 1 0 0 0 0 1 1 1 1

1 0 1 0 0 0 1 1 1 0

1 0 0 1 0 1 1 1 0 0

Parent 2

Parent 1

Crossover Mask

Offspring 1

Figure �� Uniform Crossover

��� Which technique is best�

Arguments over which is the best crossover method to use still rage on� Syswerda �Sys��� argues in favour of
uniform crossover� Under uniform crossover� schemata of a particular order� are equally likely to be disrupted�
irrespective of their de�ning length�� With ��point crossover� it is the de�ning length of the schemata which
determines its likelihood of disruption� not its order� This means that under uniform crossover� although short
de�ning length schemata are more likely to be disrupted� longer de�ning length schemata are comparatively
less likely to be disrupted� Syswerda argues that the total amount of schemata disruption is therefore lower�
Uniform crossover has the advantage that the ordering of genes is entirely irrelevant� This means that re�
ordering operators such as inversion �see next section	 are unnecessary� and we do not have to worry about
positioning genes so as to promote building blocks� GA performance using ��point crossover drops dramatically
if the recommendations of the building block hypothesis �BBM��a� are not adhered to� Uniform crossover� on

�The order of a schema is the number of bit values it speci�es�
�The de�ning length is the number of bit positions between the �rst and last speci�ed bit�
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the other hand� still performs well�almost as well as ��point crossover used on a correctly ordered chromosome�
Uniform crossover therefore appears to be more robust�

Eshelman et al �ECS��� did an extensive comparison of di
erent crossover operators� including ��point�
��point� multi�point and uniform crossover� These were analysed theoretically in terms of positional and distri�
butional bias� and empirically� on several problems� No overall winner emerged� and in fact there was not more
than about ��� di
erence in speed among the techniques �so perhaps we should not worry too much about
which is the best method	� They found that ��point crossover was good on the problems they tried�

Spears � DeJong �SD��� are very critical of multi�point and uniform crossover� They stick by the theoretical
analyses which show �� and ��point crossover are optimal� They say that ��point crossover will perform poorly
when the population has largely converged� due to reduced crossover productivity � This is the ability of a
crossover operator to produce new chromosomes which sample di
erent points in the search space� Where
two chromosomes are similar� the segments exchanged by ��point crossover are likely to be identical�leading
to o
spring which are identical to their parents� This is less likely to happen with uniform crossover� They
describe a new ��point crossover operator such that if identical o
spring are produced� two new cross points
are chosen� �Booker �Boo��� introduced reduced surrogate crossover to achieve the same e
ect�	 This operator
was then found to perform better than uniform crossover on a test problem �but only slightly better	�

In a slightly later paper� DeJong � Spears �DS��� conclude that modi�ed ��point crossover is best for large
populations� but the increased disruption of uniform crossover is bene�cial if the population size is small �in
comparison to the problem complexity	� and so gives a more robust performance�

��� Other crossover techniques

Many other techniques have been suggested� The idea that crossover should be more probable at some string
positions than others has some basis in nature� and several such methods have been described �SM��� Hol���
Dav��a� Lev��� LR���� The general principle is that the GA adaptively learns which sites should be favoured
for crossover� This information is recorded in a punctuation string � which is itself part of the chromosome� and
so is crossed over and passed on to descendants� In this way� punctuation strings which lead to good o
spring
will themselves be propagated through the population�

Goldberg �Gol��� Gol��a� describes a rather di
erent crossover operator� partially matched crossover �PMX	�
for use in order�based problems� �In an order�based problem� such as the travelling salesperson problem�
gene values are �xed� and the �tness depends on the order in which they appear�	 In PMX it is not the
values of the genes which are crossed� but the order in which they appear� O
spring have genes which inherit
ordering information from each parent� This avoids the generation of o
spring which violate problem constraints�
Syswerda �Sys��� and Davis �Dav��d� p��� describe other order�based operators�

The use of problem speci�c knowledge to design crossover operators for a particular type of task is discussed
in Section ���

� Inversion and Reordering

It was stated in Part � of this article that the order of genes on a chromosome is critical for the building block

hypothesis to work e
ectively� Techniques for reordering the positions of genes in the chromosome during a run
have been suggested� One such technique� inversion �Hol���� works by reversing the order of genes between two
randomly chosen positions within the chromosome� �When these techniques are used� genes must carry with
them some kind of 
label�� so that they may be correctly identi�ed irrespective of their position within the
chromosome�	

The purpose of reordering is to attempt to �nd gene orderings which have better evolutionary potential
�Gol��a� p����� Many researchers have used inversion in their work� although it seems few have attempted to
justify it� or quantify its contribution� Goldberg � Bridges �GB��� analyse a reordering operator on a very
small task� and show that it can bring advantages�although they conclude that their methods would not bring
the same advantages on larger tasks�

Reordering does nothing to lower epistasis �see below	� so cannot help with the other requirement of the
building block hypothesis� Nor does it help if the relationships among the genes do not allow a simple linear
ordering� If uniform crossover is used� gene order is irrelevant� so reordering is unnecessary� So� Syswerda
�Sys��� argues� why bother with inversion�

Reordering also greatly expands the search space� Not only is the GA trying to �nd good sets of gene values�
it is simultaneously trying to discover good gene orderings too� This is a far more di�cult problem to solve�
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Time spent trying to �nd better gene orderings may mean time taken away from �nding good gene values�
In nature� there are many mechanisms by which the arrangement of the chromosome�s	 may evolve �known

as karyotypic evolution	 �MS���� inversion is only one of them� In the short term� organisms will be favoured
if they evolve to become well adapted to their environment� But in the long term� species are only likely to
survive if their karyotypic evolution is such that they can easily adapt to new conditions as the environment
changes� Evaluation of the genotype takes place rapidly� in each generation� But evaluation of the karyotype
takes place very slowly� perhaps over thousands of generations�

For the vast majority of GA applications the environment� as embodied in the �tness function� is static�
Taking a hint from nature� it would seem that karyotypic evolution is therefore of little importance in these
cases� However� in applications where the �tness function varies over time� and the GA must provide a solution
which can adapt to the changing environment� karyotypic evolution may be worth employing�

In a static environment� if we really want to determine the best gene ordering �perhaps because we have a
large number of problems� all with similar characteristics	� we might try using a meta�GA� in the same way that
Grefenstette �Gre��� used a meta�GA to determine a good set of GA parameters� A meta�GA has a population
where each member is itself a GA� Each individual GA is con�gured to solve the same task� but using di
erent
parameters �in this case� di
erent gene orderings	� The �tness of each individual is determined by running the
GA� and seeing how quickly it converges� Meta�GAs are obviously very computationally expensive to run� and
are only likely to be worthwhile if the results they provide can be reused many times�

� Epistasis

The term epistasis has been de�ned by geneticists as meaning that the in�uence of a gene on the �tness of an
individual depends on what gene values are present elsewhere� �MS��� More speci�cally� geneticists use the term
epistasis in the sense of a 
masking� or 
switching� e
ect� 
A gene is said to be epistatic when its presence
suppresses the e
ect of a gene at another locus�� Epistatic genes are sometimes called inhibiting genes because
of their e
ect on other genes which are described as hypostatic�� �GST����

Generally� though� there will be far more subtle and complex interactions among large overlapping groups of
genes� In particular� there are chains of in�uence�one gene codes for the production of a protein� which is then
involved with a protein produced by another gene to produce a third product� which then reacts with other
enzymes produced elsewhere � � � and so on� Many genes simply produce intermediate proteins which are used
by other processes initiated by other genes� So there is a considerable amount of 
interaction� among genes in
the course of producing the phenotype� although geneticists might not refer to this as epistasis�

When GA researchers use the term epistasis� they are generally referring to any kind of strong interaction
among genes� not just masking e
ects� although they avoid giving a precise de�nition� While awaiting a de�nitive
de�nition of epistasis in a GA context� we o
er our own�

Epistasis is the interaction between di
erent genes in a chromosome� It is the extent to which the

expression� �i�e� contribution to �tness	 of one gene depends on the values of other genes� The
degree of interaction will� in general� be di
erent for each gene in a chromosome� If a small change
is made to one gene we expect a resultant change in chromosome �tness� This resultant change may
vary according to the values of other genes� As a broad classi�cation� we distinguish three levels of
gene interaction� These depend on the extent to which the change in chromosome �tness resulting
from a small change in one gene varies according to the values of other genes�

� Level ��No interaction� A particular change in a gene always produces the same change
in �tness�

� Level ��Mild interaction� A particular change in a gene always produces a change in
�tness of the same sign� or zero�

� Level ��Epistasis� A particular change in a gene produces a change in �tness which varies
in sign and magnitude� depending on the values of other genes�

An example of a level � task is the trivial 
counting ones task�� where �tness is proportional to the number
of �s in the binary string� An example of a level � task is the 
plateau function�� where typically � bits are
decoded such that the �tness is � if all bits are �� and zero otherwise�

�The locus is the position within the chromosome�

�



When GA researchers use the term epistasis� they would generally be talking only about level �� This is
how we shall use the term� unless otherwise stated�

Tasks in which all genes are of type � or � can be solved e�ciently by various simple techniques� such as
hillclimbing� and do not require a GA �Dav��c�� GAs can� however� outperform simple techniques on more
complex level � tasks exhibiting many interactions among the parameters�that is� with signi�cant epistasis�
Unfortunately� as has already been noted in Part � of this article� according to the building block hypothesis�
one of the basic requirements for a GA to be successful is that there is low epistasis� This suggests that GAs
will not be e
ective on precisely those type of problems in which they are most needed� Clearly� understanding
epistasis is a key issue for GA research� We need to know whether we can either avoid it� or develop a GA
which will work even with high epistasis� This is explored further below� but �rst we shall describe a related
phenomenon�

� Deception

One of the fundamental principles of GAs is that chromosomes which include schemata which are contained
in the global optimum will increase in frequency �this is especially true of short� low�order schemata� known
as building blocks	� Eventually� via the process of crossover� these optimal schemata will come together� and
the globally optimum chromosome will be constructed� But if schemata which are not contained in the global
optimum increase in frequency more rapidly than those which are� the GA will be mislead� away from the global
optimum� instead of towards it� This is known as deception�

Deception is a special case of epistasis� and it has been studied in depth by Goldberg �Gol��� �Gol��a�
p����DG��� and others� Deception is directly related to the detrimental e
ects of epistasis in a GA� Level �
epistasis is necessary �but not su�cient	 for deception�

Statistically� a schema will increase in frequency in the population if its �tness� is higher than the average
�tness of all schemata in the population� A problem is referred to as deceptive if the average �tness of schemata
which are not contained in the global optimum is greater than the average �tness of those which are� Further�
more� a problem is referred to as fully deceptive if 
all low�order schemata containing a suboptimal solution are
better than other competing schemata� �DG����

Deceptive problems are di�cult to solve� However� Grefenstette �Gre��� cleverly demonstrates that this
is not always the case� After the �rst generation� a GA does not get an unbiassed sample of points in the
search space� Therefore it cannot estimate the global� unbiassed average �tness of a schema� It can only get
a biassed estimate of schema �tness� Sometimes this bias helps the GA to converge �even though a problem
might otherwise be highly deceptive	� and other times the bias might prevent the GA converging �even though
the problem is not formally deceptive	� Grefenstette gives examples of both situations�

� Tackling epistasis

The problems of epistasis �described above	 may be tackled in two ways� as a coding problem� or as a GA
theory problem� If treated as a coding problem� the solution is to �nd a di
erent coding �representation	 and
decoding method which does not exhibit epistasis� This will then allow a conventional GA to be used� If this
cannot be done� the second approach may have to be used�

Vose � Liepins �VL��� show that in principle any problem can be coded in such a way as to make it as
simple as the 
counting ones task�� Similarly� any coding can be made simple for a GA by using appropriately
designed crossover and mutation operators� So it is always possible to represent any problem with little or no
epistasis� However� for 
di�cult� problems� the e
ort involved in devising such a coding will be considerable�
and will e
ectively constitute 
solving� the initial problem�

Traditional GA theory� based on the schema theorem� relies on low epistasis� If genes in a chromosome have
high epistasis� a new theory may have to be developed� and new algorithms developed to cope with this� The
inspiration may once again come from natural genetics� where epistasis �in the GA sense	 is very common�

Davis �Dav��a� considers both these approaches� He converts a bin�packing problem� where the optimum
positions for packing rectangles into a space must be found� into an order problem� where the order of packing
the rectangles had to be found instead� A key part of this is an intelligent decoding algorithm� which uses
domain knowledge to �nd 
sensible� positions for each rectangle� in the order speci�ed by the chromosome�
This reduces the epistasis in the chromosome� Once the problem has been converted to an order�based one�

�The �tness of a schema is the average� or expected �tness of chromosomes which contain that schema�
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a modi�ed GA theory is required� Goldberg �Gol��� describes how GA theory can be adapted to encompass
order�based problems� He introduces the idea of order�schemata �o�schemata	� and the PMX crossover method
which processes o�schemata in an analogous way to conventional crossover and normal schemata�

Davis � Coombs �DC��� point out that GAs have been made to work even in domains of high epistasis�
So� although Holland�s convergence proof for a GA assumed low epistasis� there may be another� perhaps
weaker� convergence proof for domains of high epistasis� Even rigourous de�nitions of 
low epistasis� and 
high
epistasis� have yet to be formulated�

Davidor �Dav��� has attempted to develop a technique which allows the degree of epistasis in a problem
to be measured� Unfortunately an accurate assessment of epistasis can only be made with a time complexity
comparable to an exhaustive search of the problem space� This can be reduced by sampling� but then the results
are considerably less accurate�especially for problems with high epistasis�

Davidor also points out that present�day GAs are only suitable for problems of medium epistasis� If the
epistasis is very high� the GA will not be e
ective� If it is very low� the GA will be outperformed by simpler
techniques� such as hillclimbing� Until such a time as we have GAs which are e
ective on problems of high
epistasis� we must devise representation schemes �or crossover�mutation operators	 which reduce epistasis to
an acceptable level�

A technique for achieving this� expansive coding� is presented by Beasley� Bull � Martin �BBM��b�� Expan�
sive coding is a technique for designing reduced�epistasis representations for combinatorial problems� Rather
than having a representation consisting of a small number of widely interacting genes� a representation is created
with a much larger number of more weakly interacting genes� This produces a search space which is larger� yet
simpler and more easily solved� They demonstrate that this technique can design reduced complexity algorithms
for signal processing�

� Mutation and Na��ve Evolution

Mutation is traditionally seen as a 
background� operator �Boo��� p����DeJ���� responsible for re�introducing
inadvertently 
lost� gene values �alleles	� preventing genetic drift� and providing a small element of random
search in the vicinity of the population when it has largely converged� It is generally held that crossover is the
main force leading to a thorough search of the problem space�

However� examples in nature show that asexual reproduction can evolve sophisticated creatures without

crossover�for example bdelloid rotifers �MS��� p����� Indeed� biologists see mutation as the main source of
raw material for evolutionary change �Har��� p����� Scha
er et al �SCLD��� did a large experiment to determine
optimum parameters for GAs� They found that crossover had much less e
ect on performance than previously
believed� They suggest that 
na� ve evolution� �just selection and mutation	 performs a hillclimb�like search
which can be powerful without crossover� They investigate this hypothesis further �SE���� and �nd that crossover
gives much faster evolution than a mutation�only population� However� in the end� mutation generally �nds
better solutions than a crossover�only regime�

This is in agreement with Davis �Dav��d�� who points out that mutation becomes more productive� and
crossover less productive� as the population converges�

Despite its generally low probability of use� mutation is a very important operator� Its optimum probability
is much more critical than that for crossover �SCLD���� Even if it is a 
background operator�� it should not be
ignored�

Spears �Spe��� closely compares crossover and mutation� and argues that there are some important char�
acteristics of each operator that are not captured by the other� He further suggests that a suitably modi�ed
mutation operator can do everything that crossover can� He concludes that 
standard mutation and crossover
are simply two forms of a more general exploration operator� that can perturb alleles based on any available
information��

Other good performances of na� ve evolution have been reported �EOR��� ES��� Esh���� According to
Eshelman �Esh���� 
The key to na� ve evolution�s success �assuming a bit�string representation	 is the use of
Gray coded parameters� making search much less susceptible to Hamming cli
s� � � � I do believe that na� ve
evolution is a much more powerful algorithm than many people in the GA community have been willing to
admit��
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	 Non
binary representations

A chromosome is a sequence of symbols� and� traditionally� these symbols have been binary digits� so that each
symbol has a cardinality of �� Higher cardinality alphabets have been used in some research� and some believe
them to have advantages� Goldberg �Gol��a� p����Gol��b� argues that theoretically� a binary representation
gives the largest number of schemata� and so provides the highest degree of implicit parallelism� But Antonisse
�Ant���� interprets schemata di
erently� and concludes that� on the contrary� high�cardinality alphabets contain
more schemata than binary ones� �This has been the subject of more recent discussion �Ang��� Ant����	
Goldberg has now developed a theory which explains why high�cardinality representations can perform well
�Gol���� His theory of virtual alphabets says that each symbol converges within the �rst few generations� leaving
only a small number of possible values� In this way� each symbol e
ectively has only a low cardinality�

Empirical studies of high�cardinality alphabets have typically used chromosomes where each symbol repre�
sents an integer �Bra���� or a �oating�point number �JM��� MJ���� As Davis �Dav��d� p��� points out� problem
parameters are often numeric� so representing them directly as numbers� rather than bit�strings� seems obvi�
ous� and may have advantages� One advantage is that we can more easily de�ne meaningful� problem�speci�c

crossover� and 
mutation� operators� A variety of real�number operators can easily be envisaged� for example�

� Combination operators

� Average�take the arithmetic average of the two parent genes�

� Geometric mean�take the square�root of the product of the two values�

� Extension�take the di
erence between the two values� and add it to the higher� or subtract it from
the lower�

� Mutation operators

� Random replacement�replace the value with a random one

� Creep�add or subtract a small� randomly generated amount�

� Geometric creep�multiply by a random amount close to one�

For both creep operators� the randomly generated number may have a variety of distributions� uniform
within a given range� exponential� Gaussian� binomial� etc�

Janikow � Michalewicz �JM��� made a direct comparison between binary and �oating�point representations�
and found that the �oating�point version gave faster� more consistent� and more accurate results�

However� where problem parameters are not numeric� �for example in combinatorial optimisation problems	�
the advantages of high�cardinality alphabets may be harder to realise�

In GA�digest� volume � number �� �September ����	� the editor� Alan C� Schultz� lists various research
using non�binary representations� These include Grefenstette�s work which uses a rule�based representation to
learn reactive strategies �or behaviours	 for autonomous agents �SG��� Gre���� Koza is using a process known as
genetic programming to learn Lisp programs �Koz���� Floating point representations have been widely explored
�Whi��� JM��� MJ��� ES���� and Michalewicz has looked at a matrix as the data structure �Mic����

� Dynamic Operator Probabilities

During the course of a run� the optimal value for each operator probability may vary� Davis �Dav��b� tried
linear variations in crossover and mutation probability� with crossover decreasing during the run� and mutation
increasing �see above	� Syswerda �Sys��� also found this advantageous� However� it imposes a �xed schedule�
Booker �Boo��� utilises a dynamically variable crossover rate� depending on the spread of �tnesses� When the
population converges� the crossover rate is reduced to give more opportunity for mutation to �nd new variations�
This has a similar e
ect to Davis�s linear technique� but has the advantage of being adaptive�

Davis �Dav��� Dav��d� describes another adaptive technique which is based directly on the success of an
operator at producing good o
spring� Credit is given to each operator when it produces a chromosome better
than any other in the population� A weighting �gure is allocated to each operator� based on its performance
over the past �� matings� For each reproductive event� a single operator is selected probabilistically� according

�GA�digest is distributed free by electronic mail� Contact GA�List�Request�AIC�NRL�NAVY�MIL to subscribe� Back issues
are available by anonymous ftp from� ftp�aic�nrl�navy�mil �in �pub�galist��
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to the current set of operator weightings� During the course of a run� therefore� operator probabilities vary in
an adaptive� problem dependent way� A big advantage of this technique is that it allows new operators to be
compared directly with existing ones� If a new operator consistently loses weight� it is probably less e
ective
than an existing operator�

This is a very interesting technique� It appears to solve a great many problems about choosing operator
probabilities at a stroke� It also allows new representations and new techniques to be tried without worrying
that much e
ort must be expended on determining new optimum parameter values� However� a potential
drawback of this technique which must be avoided is that it may reward operators which simply locate local
optima� rather than helping to �nd the global optimum�

Going in the opposite direction� several researchers vary the mutation probability by decreasing it exponen�
tially during a run �Ack��� Bra��� Fog��� MJ���� Unfortunately� no clear analysis or reasoning is given as to why
this should lead to an improvement �although Fogarty �Fog��� provides experimental evidence	� The motivation
seems to be that mutation probability is analogous to temperature in simulated annealing� and so mutation rate
should be reduced to a low value to aid convergence� However� in Ackley�s case �Ack���� probability is varied
from ���� to ����� and most would say that ���� is still a rather high value for mutation probability� Ackley
does not appear to have thought this through� Fogarty does not say whether he thinks that the improvements
he found would apply in other problem areas�

Arguments over whether the trajectory of the mutation probability should increase� decrease� be linear or
exponential� become academic if Davis�s adaptive algorithm is used�

�� Niche and Speciation

In natural ecosystems� there are many di
erent ways in which animals may survive �grazing� hunting� on the
ground� in trees� etc�	� and di
erent species evolve to �ll each ecological niche� Speciation is the process whereby
a single species di
erentiates into two �or more	 di
erent species occupying di
erent niches�

In a GA� niches are analogous to maxima in the �tness function� Sometimes we have a �tness function
which is known to be multimodal� and we may want to locate all the peaks� Unfortunately a traditional GA
will not do this� the whole population will eventually converge on a single peak� Of course� we would expect
the population of a GA to converge on a peak of high �tness� but even where there are several peaks of equal
�tness� the GA will still end up on a single one� This is due to genetic drift �GR���� Several modi�cations to
the traditional GA have been proposed to solve this problem� all with some basis in natural ecosystems �GR����
The two basic techniques are to maintain diversity� or to share the payo
 associated with a niche�

Cavicchio �GR��� introduced a mechanism he called preselection� where o
spring replace the parent only
if the o
spring�s �tness exceeds that of the inferior parent� There is �erce competition between parents and
children� so the payo
 is not so much shared as fought over� and the winner takes all� This method helps to
maintain diversity �since strings tend to replace others which are similar to themselves	� and this helps prevent
convergence on a single maximum�

DeJong �DeJ��� generalised preselection in his crowding scheme� In this� o
spring are compared with a few
�typically � or �	 randomly chosen individuals from the population� The o
spring replaces the most similar one
found� using Hamming distance as the similarity measure� This again aids diversity� and indirectly encourages
speciation� Stadnyk �Sta��� found better results using a variation on this� The sampling of individuals was
biassed according to inverse �tness� so that new o
spring replace others which are in the same niche and have
low �tness�

Booker �Boo��� uses restricted mating to encourage speciation� In this scheme� individuals are only allowed
to mate if they are similar� The total reward available in any niche is �xed� and is distributed using a bucket�
brigade mechanism� Booker�s application is a classi�er system� where it is easy to identify which niche an
individual belongs to� In other applications� this is generally not a simple matter�

Perry �GR��� solves the species membership problem using a similarity template called an external schema�
However� this scheme requires advance knowledge of where the niches are� so is of limited use�

Grosso �GR��� simulates partial geographical isolation in nature by using multiple subpopulations and
intermediate migration rates� This shows advantages over isolated subpopulations �no migration�equivalent
to simply iterating the GA	� and completely mixed �panmictic	 populations� This is an ideal method for use
on a parallel processor system� �Fourman �Fou��� proposed a similar scheme�	 However� there is no mechanism
for explicitly preventing two or more subpopulations converging on the same niche�

Davidor �Dav��b� used a similar approach� but instead of multiple subpopulations� the population was
considered as spread evenly over a two�dimensional grid� A local mating scheme was used� achieving a similar
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e
ect to multiple subpopulations� but without any explicit boundaries� Davidor found that for a while a
wider diversity was maintained �compared with a panmictic population	� but eventually the whole population
converged to a single solution� Although Davidor describes this as 
A naturally occurring niche and species
phenomenon�� we would argue that he has misused the term 
niche�� In nature� species only come into direct
competition with each other if they are in the same niche� Since Davidor�s GA eventually converges to a single
species� there can only be one niche�

Goldberg � Richardson �GR��� describe the advantages of sharing � Several individuals which occupy the
same niche are made to share the �tness payo
 among them� Once a niche has reached its 
carrying capacity��
it no longer appears rewarding in comparison with other� un�lled niches� The di�culty with sharing payo

within a niche is that the boundaries of the niche are not easily identi�ed� Goldberg uses a sharing function to
de�ne how the sharing is to be done� Essentially� the payo
 given to an individual is reduced according to a
function �a power law	 of the 
distance� of each neighbour� The distance may be measured in di
erent ways� for
example in terms of genotype Hamming distance� or parameter di
erences in the phenotype� In a ��dimensional
task� this method was shown to be able to distribute individuals to peaks in the �tness function in proportion
to the height of the peak�

In a later continuation of this work� Deb � Goldberg �DG��� show that sharing is superior to crowding�
Genotypic sharing �based on some distance measure between chromosome strings	 and phenotypic sharing
�based on the distance between the decoded parameters	 are analysed� Phenotypic sharing is shown to have
advantages� A sharing function based on Euclidian distance between neighbours implements niches which are
hyperspherical in shape� The correct operation of the sharing scheme depends on using the appropriate radius
for the hyperspheres� �The radius is the maximum distance between two chromosomes for them still to be
considered in the same niche�	 The paper gives formulae for computing this� assuming that the number of
niches is known� and that they are evenly distributed throughout the solution space�

A mating restriction scheme was also implemented to reduce the production of lethals �see Section ��	� This
only allowed an individual to mate with another from the same �phenotypic	 niche �or at random only if there
was no other individual in the niche	� This showed a signi�cant improvement�

A di�culty arises with niche methods if there are many local maxima with �tnesses close to the global
maximum �GDH���� A technique which distributes population members to peaks in proportion to the �tness
of the peak� as the methods described above do� will not be likely to �nd the global maximum if there are more
peaks than population members� Crompton � Stephens �CS��� found that on a real problem� the introduction
of niche formation by crowding gave no improvement�

Deb�s assumption that the function maxima are evenly distributed gives the upper bound on the niche radius�
and better results might be obtained using a smaller value� If all the function maxima were clumped together�
we would expect the performance to be little better than a GA without sharing� One solution might be to iterate
the GA� trying di
erent values for niche radius� An optimum scheme for this could be worth investigating�

A di
erent approach to sharing is described by Beasley� Bull � Martin �BBM��c�� Their sequential niche

method involves multiple runs of a GA� each locating one peak� After a peak has been located� the �tness
function is modi�ed so that the peak is e
ectively 
cancelled out� from the �tness function� This ensures that�
on subsequent runs� the same peak will not be re�discovered� The GA is then restarted with a new population�
In this way� a new peak is located on each run� This technique has many similarities with �tness sharing�
However� instead of the �tness of an individual being reduced �i�e� shared	 because of its proximity to other
members of the population� individuals have their �tness reduced because of their proximity to peaks located
in previous runs� This method has a lower time complexity than that of �tness sharing� but su
ers similar
problems with regard to choice of niche radius� etc�

�� Restricted Mating

The purpose of restricted mating is to encourage speciation� and reduce the production of lethals� A lethal is
a child of parents from two di
erent niches� Although each parent may be highly �t� the combination of their
chromosomes may be highly un�t if it falls in the valley between the two maxima� Nature avoids the formation
of lethals by preventing mating between di
erent species� using a variety of techniques� �In fact� this is the
primary biological de�nition of a 
species��a set of individuals which may breed together to produce viable
o
spring�	

The general philosophy of restricted mating makes the assumption that if two similar parents �i�e� from the
same niche	 are mated� then the o
spring will be similar� However� this will very much depend on the coding
scheme�in particular the existence of building blocks� and low epistasis� Under conventional crossover and
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mutation operators� two parents with similar genotypes will always produce o
spring with similar genotypes�
But in a highly epistatic chromosome� there is no guarantee that these o
spring will not be of low �tness� i�e�

lethals�� Similarity of genotype does not guarantee similarity of phenotype� These e
ects limit the use of
restricted mating�

Restricted mating schemes of Booker �Boo��� and Deb � Goldberg �DG��� have been described above� These
restrict mating on the basis of similarities between the genotypes or phenotypes� Other schemes which restrict
mating using additional mating template codes �for example �Hol��� p���	 are summarised by Goldberg �Gol��a�
p�����

�� Diploidy and Dominance

In the higher lifeforms� chromosomes contain two sets of genes� rather than just one� This is known as diploidy �
�A haploid chromosome contains only one set of genes�	 Most genetics textbooks tend to concentrate on diploid
chromosomes� while virtually all work on GAs concentrates on haploid chromosomes� This is primarily for
simplicity� although use of diploid chromosomes might have bene�ts�

Diploid chromosomes lend advantages to individuals where the environment may change over a period of
time� Having two genes allows two di
erent 
solutions� to be remembered� and passed on to o
spring� One
of these will be dominant �that is� it will be expressed in the phenotype	� while the other will be recessive� If
environmental conditions change� the dominance can shift� so that the other gene is dominant� This shift can
take place much more quickly than would be possible if evolutionary mechanisms had to alter the gene� This
mechanism is ideal if the environment regularly switches between two states �e�g� ice�age� non ice�age	�

The primary advantage of diploidy is that it allows a wider diversity of alleles to be kept in the population�
compared with haploidy� Currently harmful� but potentially useful alleles can still be maintained� but in a
recessive position� Other genetic mechanisms could achieve the same e
ect� For example� a chromosome might
contain several variants of a gene� Epistasis �in the sense of masking	 could be used to ensure that only one of the
variants were expressed in any particular individual� A situation like this occurs with haemoglobin production
�MS���� Di
erent genes code for its production during di
erent stages of development� During the foetal stage�
one gene is switched on to produce haemoglobin� whilst later on a di
erent gene is activated� There are a variety
of biological metaphors we can use to inspire our development of GAs�

In a GA� diploidy might be useful in an on�line application where the system could switch between di
erent
states� Diploidy involves a signi�cant overhead in a GA� As well as carrying twice as much genetic information�
the chromosome must also carry dominance information� There are probably other mechanisms we can use to
achieve similar results �for example� keep a catalogue of the best individuals� and try reintroducing them into
the population if performance falls	� Little work seems to have been done in this area�Goldberg �Gol��a� p����
provides a summary�

�� Knowledge
based Techniques

While most research has gone into GAs using the traditional crossover and mutation operators� some have
advocated designing new operators for each task� using domain knowledge �Dav��d�� This makes each GA more
task speci�c �less robust	� but may improve performance signi�cantly� Where a GA is being designed to tackle
a real�world problem� and has to compete with other search and optimisation techniques� the incorporation of
domain knowledge often makes sense�

Suh � Van Gucht �SVG��� and Grefenstette �Gre��� argue that problem�speci�c knowledge can usefully
be incorporated into the crossover operation� Domain knowledge may be used to prevent obviously un�t
chromosomes� or those which would violate problem constraints� from being produced in the �rst place� This
avoids wasting time evaluating such individuals� and avoids introducing poor performers into the population�

For example� Davidor �Dav��a� designed 
analogous crossover� for his task in robotic trajectory generation�
This used local information in the chromosome �i�e� the values of just a few genes	 to decide which crossover
sites would be certain to yield un�t o
spring�

Domain knowledge can also be used to design local improvement operators� which allow more e�cient explo�
ration of the search space around good points �SVG���� It can also be used to perform heuristic initialisation of
the population� so that search begins with some reasonably good points� rather than a random set �Gre��� SG����

Goldberg �Gol��a� p���!�� describes techniques for adding knowledge�directed crossover and mutation� He
also discusses the hybridisation of GAs with other search techniques �as does Davis �Dav��d�	�
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�� Redundant Value Mapping

A problem occurs when a gene may only have a �nite number of discrete valid values� If a binary representation
is used� and the number of values is not a power of �� then some of the binary codes are redundant�they will
not correspond to any valid gene value� For example� if a gene represents an object to be selected from a group
of �� objects� then � bits will be needed to encode the gene� If codes ���� to ���� are used to represent the ��
objects� what do the codes ���� to ���� represent�

During crossover and mutation� we cannot guarantee that such redundant codes will not arise� The problem
is� what to do about them� This problem has not been greatly studied in the literature �perhaps because most
research concentrates on continuous�valued functions� where the problem does not arise	� A number of solutions
are brie�y mentioned by DeJong �DeJ����

�� Discard the chromosome as illegal�

�� Assign the chromosome low �tness�

�� Map the invalid code to a valid one�

Solutions �	 and �	 would be expected to give poor performance� since we may be throwing away good gene
values elsewhere in the chromosome� There are several ways of achieving �	� including �xed remapping� and
random remapping�

In �xed remapping� a particular redundant value is remapped to a speci�c valid value� �In this case�
remapped means that either the actual gene bit pattern is altered� or the decoding process treats the two bit
patterns as synonymous�	 This is very simple� but has the disadvantage that some values are represented by
two bit patterns� while the others are represented by only one� �In the example above� the codes for �� to ��
may be mapped back to the values � to �� so these values are doubly represented in the code set� while the
values � to � are singly represented	�

In random remapping� a redundant value is remapped to a valid value at random� This avoids the represen�
tational bias problem� but also causes less information to be passed on from parents to o
spring�

Probabilistic remapping is a hybrid between these two techniques� Every gene value �not just the 
excess�
ones	 is remapped to one of two valid values in a probabilistic way� such that each valid value is equally likely
to be represented�

Scha
er �Sch��� encountered the simplest version of this problem�three valid states represented by � bits�
He used �xed remapping�allowing one state to have two binary representations� He also tried using ternary
coding to avoid the problem� but performance was inferior�

Belew �Bel��� also used �xed remapping to solve the three�state problem� He points out that not only does
one state have two representations �while the other two states have only one each	� but also that the e
ective
mutation rate for this state is halved �since mutations to one of the bits don�t change the state	� 
There may
be opportunities for a GA to exploit this representational redundancy�� says Belew�

�� Summary

The two parts of this article have introduced the fundamental principles of GAs� and explored some of the
current research topics in more detail� In the past� much research has been empirical� but gradually� theoretical
insights are being gained� In many cases it is still too early to say which techniques are robust and general�
purpose� and which are special�purpose� Where special�purpose techniques have been identi�ed� work is still
required to determine whether these can be extended to make them more general� or further specialised to make
them more powerful� Theoretical research can greatly help progress in this area�

Davis �Dav��d� describes a variety of promising ideas� Steady state replacement� �tness ranking� and ��point
crossover �modi�ed so that o
spring must di
er from their parents	 are often good methods to use� although
with suitable parent selection techniques� generational replacement may be equally as good �GD���� and uniform
crossover can have advantages�

Knowledge�based operators and dynamic operator probabilities are probably going to help solve real world
problems� Niche formation still seems like a big problem to be solved�how can all the "best� maximabe located�
while avoiding the not�so�good maxima� which may have only a slightly lower �tness� Ultimately� if the �tness
function has very many local maxima� no search technique is ever going to perform well on it� Better methods for
designing �tness functions are needed� which can avoid such pitfalls� Similarly� the di�culties of high epistasis
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must be addressed� Either we must �nd ways to represent problems which minimise their epistasis� or we must
develop enhanced techniques which can cope even where there is high epistasis� There is no doubt that research
into GAs will be a very active area for some time to come�
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