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� Introduction

Genetic Algorithms �GAs� are adaptive methods which may be used to solve search and optimisation problems�
They are based on the genetic processes of biological organisms� Over many generations� natural populations
evolve according to the principles of natural selection and �survival of the �ttest�� �rst clearly stated by Charles
Darwin in The Origin of Species� By mimicking this process� genetic algorithms are able to �evolve� solutions
to real world problems� if they have been suitably encoded� For example� GAs can be used to design bridge
structures� for maximum strength�weight ratio� or to determine the least wasteful layout for cutting shapes
from cloth� They can also be used for online process control� such as in a chemical plant� or load balancing on
a multi�processor computer system�

The basic principles of GAs were �rst laid down rigourously by Holland 	Hol
��� and are well described
in many texts �e�g� 	Dav
� Dav��� Gre�� Gre��� Gol�a� Mic����� GAs simulate those processes in natural
populations which are essential to evolution� Exactly which biological processes are essential for evolution� and
which processes have little or no role to play is still a matter for research� but the foundations are clear�

In nature� individuals in a population compete with each other for resources such as food� water and shelter�
Also� members of the same species often compete to attract a mate� Those individuals which are most successful
in surviving and attracting mates will have relatively larger numbers of o�spring� Poorly performing individuals
will produce few of even no o�spring at all� This means that the genes from the highly adapted� or ��t�
individuals will spread to an increasing number of individuals in each successive generation� The combination
of good characteristics from di�erent ancestors can sometimes produce �super�t� o�spring� whose �tness is
greater than that of either parent� In this way� species evolve to become more and more well suited to their
environment�

GAs use a direct analogy of natural behaviour� They work with a population of �individuals�� each repre�
senting a possible solution to a given problem� Each individual is assigned a ��tness score� according to how
good a solution to the problem it is� For example� the �tness score might be the strength�weight ratio for a
given bridge design� �In nature this is equivalent to assessing how e�ective an organism is at competing for
resources�� The highly �t individuals are given opportunities to �reproduce�� by �cross breeding� with other
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individuals in the population� This produces new individuals as �o�spring�� which share some features taken
from each �parent�� The least �t members of the population are less likely to get selected for reproduction� and
so �die out��

A whole new population of possible solutions is thus produced by selecting the best individuals from the
current �generation�� and mating them to produce a new set of individuals� This new generation contains a
higher proportion of the characteristics possessed by the good members of the previous generation� In this way�
over many generations� good characteristics are spread throughout the population� being mixed and exchanged
with other good characteristics as they go� By favouring the mating of the more �t individuals� the most
promising areas of the search space are explored� If the GA has been designed well� the population will converge
to an optimal solution to the problem�

GAs are not the only algorithms based on an analogy with nature� Neural networks are based on the
behaviour of neurons in the brain� They can be used for a variety of classi�cation tasks� such as pattern
recognition� machine learning� image processing and expert systems� Their area of application partly overlaps
that of GAs� The use of GAs for the design of neural networks is a current research area 	HS���� Simulated

annealing is a search technique which is based on physical� rather than biological processes� and this is described
in Section ����

The power of GAs comes from the fact that the technique is robust� and can deal successfully with a wide
range of problem areas� including those which are di�cult for other methods to solve� GAs are not guaranteed
to �nd the global optimum solution to a problem� but they are generally good at �nding �acceptably good�
solutions to problems �acceptably quickly�� Where specialised techniques exist for solving particular problems�
they are likely to out�perform GAs in both speed and accuracy of the �nal result� The main ground for
GAs� then� is in di�cult areas where no such techniques exist� Even where existing techniques work well�
improvements have been made by hybridising them with a GA�

In Section � we outline the basic principles of GAs� then in Section � we compare GAs with other search
techniques� Sections � and � describe some of the theoretical and practical aspects of GAs� while Section � lists
some of the applications GAs have been applied to�

Part � of this article will appear in the next issue of this journal� This will go into more detail� and discuss
the problems which GA designers must address when faced with very di�cult problems� We will also show how
the basic GA can be improved by the use of problem�speci�c knowledge�

� Basic Principles

The standard GA can be represented as shown in Figure ��
Before a GA can be run� a suitable coding �or representation� for the problem must be devised� We also

require a �tness function� which assigns a �gure of merit to each coded solution� During the run� parents must
be selected for reproduction� and recombined to generate o�spring� These aspects are described below�

��� Coding

It is assumed that a potential solution to a problem may be represented as a set of parameters �for example� the
dimensions of the beams in a bridge design�� These parameters �known as genes� are joined together to form a
string of values �often referred to as a chromosome�� �Holland 	Hol
�� �rst showed� and many still believe� that
the ideal is to use a binary alphabet for the string� Other possibilities will be discussed in Part � of this article��
For example� if our problem is to maximise a function of three variables� F �x� y� z�� we might represent each
variable by a ���bit binary number �suitably scaled�� Our chromosome would therefore contain three genes�
and consist of �� binary digits�

In genetics terms� the set of parameters represented by a particular chromosome is referred to as a genotype�
The genotype contains the information required to construct an organism�which is referred to as the phenotype�
The same terms are used in GAs� For example� in a bridge design task� the set of parameters specifying a
particular design is the genotype� while the �nished construction is the phenotype� The �tness of an individual
depends on the performance of the phenotype� This can be inferred from the genotype�i�e� it can be computed
from the chromosome� using the �tness function�
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BEGIN �� genetic algorithm ��

generate initial population

compute fitness of each individual

WHILE NOT finished DO

BEGIN �� produce new generation ��

FOR population�size � � DO

BEGIN �� reproductive cycle ��

select two individuals from old generation for mating

�� biassed in favour of the fitter ones ��

recombine the two individuals to give two offspring

compute fitness of the two offspring

insert offspring in new generation

END

IF population has converged THEN

finished �� TRUE

END

END

Figure �� A Traditional Genetic Algorithm

��� Fitness function

A �tness function must be devised for each problem to be solved� Given a particular chromosome� the �tness
function returns a single numerical ��tness�� or ��gure of merit�� which is supposed to be proportional to the
�utility� or �ability� of the individual which that chromosome represents� For many problems� particularly
function optimisation� it is obvious what the �tness function should measure�it should just be the value of the
function� But this is not always the case� for example with combinatorial optimisation� In a realistic bridge
design task� there are many performance measures we maywant to optimise� strength�weight ratio� span� width�
maximum load� cost� construction time�or� more likely� some combination of all these�

��� Reproduction

During the reproductive phase of the GA� individuals are selected from the population and recombined� pro�
ducing o�spring which will comprise the next generation� Parents are selected randomly from the population
using a scheme which favours the more �t individuals� Good individuals will probably be selected several times
in a generation� poor ones may not be at all�

Having selected two parents� their chromosomes are recombined � typically using the mechanisms of crossover
and mutation� The most basic forms of these operators are as follows�

Crossover takes two individuals� and cuts their chromosome strings at some randomly chosen position� to
produce two �head� segments� and two �tail� segments� The tail segments are then swapped over to produce
two new full length chromosomes �see Figure ��� The two o�spring each inherit some genes from each parent�
This is known as single point crossover�

Crossover is not usually applied to all pairs of individuals selected for mating� A random choice is made�
where the likelihood of crossover being applied is typically between ��� and ���� If crossover is not applied�
o�spring are produced simply by duplicating the parents� This gives each individual a chance of passing on its
genes without the disruption of crossover�

Mutation is applied to each child individually after crossover� It randomly alters each gene with a small
probability �typically ������� Figure � shows the �fth gene of the chromosome being mutated�

The traditional view is that crossover is the more important of the two techniques for rapidly exploring a
search space� Mutation provides a small amount of random search� and helps ensure that no point in the search
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1 0 1 0 0 1 0 0 1 0Offspring 0 0 1 1 0 0 1 1 1 0

Crossover point

1 0 1 0 0 0 1 1 1 0Parents

Crossover point

0 0 1 1 0 1 0 0 1 0

Figure �� Single�point Crossover

1 0 1 0    1 0 0 1 0

1 0 1 0    1 0 0 1 0Offspring

Mutated Offspring

0

1

Mutation point

Figure �� A single mutation

space has a zero probability of being examined� �An alternative point of view is explored in Part � of this
article��

An example of two individuals reproducing to give two o�spring is shown in Figure �� The �tness function
is an exponential function of one variable� with a maximum at x � ���� It is coded as a ���bit binary number�
Table � shows two parents and the o�spring they produce when crossed over after the second bit �for clarity�
no mutation is applied�� This illustrates how it is possible for crossover to recombine parts of the chromosomes
of two individuals and give rise to o�spring of higher �tness� �Of course� crossover can also produce o�spring
of low �tness� but these will not be likely to get selected for reproduction in the next generation��

��� Convergence

If the GA has been correctly implemented� the population will evolve over successive generations so that
the �tness of the best and the average individual in each generation increases towards the global optimum�
Convergence is the progression towards increasing uniformity� A gene is said to have converged when ��� of
the population share the same value 	DeJ
��� The population is said to have converged when all of the genes
have converged�

Figure � shows how �tness varies in a typical GA� As the population converges� the average �tness will
approach that of the best individual�

� Comparison with other techniques

A number of other general purpose techniques have been proposed for use in connection with search and
optimisation problems� Like a GA� they all assume that the problem is de�ned by a �tness function� which
must be maximised� �All techniques can also deal with minimisation tasks�but to avoid confusion we will
assume� without loss of generality� that maximisation is the aim��

There are a great many optimisation techniques� some of which are only applicable to limited domains� for
example� dynamic programming 	Bel�
�� This is a method for solving multi�step control problems which is only
applicable where the overall �tness function is the sum of the �tness functions for each stage of the problem�
and there is no interaction between stages� Some of the more general techniques are described below�
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Individual x Fitness Chromosome
Parent � ��� ���� �� ��������
Parent � ��
� �������� �� ��������

O�spring � ���� ���
 �� ��������
O�spring � ��� ������
 �� ��������

Table �� Details of individuals in Figure �
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��� Random Search

The brute force approach for di�cult functions is a random� or an enumerated search� Points in the search
space are selected randomly� or in some systematic way� and their �tness evaluated� This is a very unintelligent
strategy� and is rarely used by itself�

��� Gradient methods

A number of di�erent methods for optimising well�behaved continuous functions have been developed 	Bun��
which rely on using information about the gradient of the function to guide the direction of search� If the
derivative of the function cannot be computed� because it is discontinuous� for example� these methods often
fail�

Such methods are generally referred to as hillclimbing � They can perform well on functions with only one
peak �unimodal functions�� But on functions with many peaks� �multimodal functions�� they su�er from the
problem that the �rst peak found will be climbed� and this may not be the highest peak� Having reached the
top of a local maximum� no further progress can be made� A ��dimensional example is shown in Figure ��
The hillclimb starts from a randomly�chosen starting point� X� �Uphill� moves are made� and the peak at B is
located� Higher peaks at A and C are not found�

Fitness

A

C

X

B

Hillclimb

Figure �� The hillclimbing problem

��� Iterated Search

Random search and gradient search may be combined to give an iterated hillclimbing search� Once one peak has
been located� the hillclimb is started again� but with another� randomly chosen� starting point� This technique
has the advantage of simplicity� and can perform well if the function does not have too many local maxima�

However� since each random trial is carried out in isolation� no overall picture of the �shape� of the domain
is obtained� As the random search progresses� it continues to allocate its trials evenly over the search space�
This means that it will still evaluate just as many points in regions found to be of low �tness as in regions found
to be of high �tness�

A GA� by comparison� starts with an initial random population� and allocates increasing trials to regions
of the search space found to have high �tness� This is a disadvantage if the maximum is in a small region�
surrounded on all sides by regions of low �tness� This kind of function is di�cult to optimise by any method�
and here the simplicity of the iterated search usually wins the day 	Ack
��

��� Simulated annealing

This technique was invented by Kirkpatrick in ���� and a good overview is given in 	Rut��� It is essentially
a modi�ed version of hill climbing� Starting from a random point in the search space� a random move is made�
If this move takes us to a higher point� it is accepted� If it takes us to a lower point� it is accepted only with
probability p�t�� where t is time� The function p�t� begins close to �� but gradually reduces towards zero�the
analogy being with the cooling of a solid�
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Initially therefore� any moves are accepted� but as the �temperature� reduces� the probability of accepting
a negative move is lowered� Negative moves are essential sometimes if local maxima are to be escaped� but
obviously too many negative moves will simply lead us away from the maximum�

Like the random search� however� simulated annealing only deals with one candidate solution at a time� and
so does not build up an overall picture of the search space� No information is saved from previous moves to
guide the selection of new moves� This technique is still the topic of much active research �e�g� fast re�annealing�
parallel annealing�� and it has been used successfully in many applications� for example� VLSI circuit layout
	Rut���

� Why GAs work

Most research into GAs has so far concentrated on �nding empirical rules for getting them to perform well� There
is no accepted �general theory� which explains exactly why GAs have the properties they do� Nevertheless�
several hypotheses have been put forward which can partially explain the success of GAs� These can be used
to help us implement good GA applications�

��� Schemata and the Schema theorem

Holland�s schema theorem 	Hol
�� was the �rst rigourous explanation of how GAs work� A schema is a pattern
of gene values which may be represented �in a binary coding� by a string of characters in the alphabet f� �
�g� A particular chromosome is said to contain a particular schema if it matches that schemata� with the ���
symbol matching anything� So� for example� the chromosome ������ contains� among others� the schemata
������� ������� ������ and ������� The order of a schema is the number of non�� symbols it contains
��� �� �� � respectively in the example�� The de�ning length of a schema is the distance between the outermost
non�� symbols ��� �� �� � respectively in the example��

The schema theorem explains the power of the GA in terms of how schemata are processed� Individuals
in the population are given opportunities to reproduce� often referred to as reproductive trials� and produce
o�spring� The number of such opportunities an individual receives is in proportion to its �tness�hence the
better individuals contribute more of their genes to the next generation� It is assumed that an individual�s high
�tness is due to the fact that it contains good schemata� By passing on more of these good schemata to the
next generation� we increase the likelihood of �nding even better solutions�

Holland showed that the optimum way to explore the search space is to allocate reproductive trials to
individuals in proportion to their �tness relative to the rest of the population� In this way� good schemata
receive an exponentially increasing number of trials in successive generations� This is called the schema theorem�
He also showed that� since each individual contains a great many di�erent schemata� the number of schemata
which are e�ectively being processed in each generation is of the order n�� where n is the population size� This
property is known as implicit parallelism� and is one of the explanations for the good performance of GAs�

��� Building Block Hypothesis

According to Goldberg 	Gol�a� p���� the power of the GA lies in it being able to �nd good building blocks� These
are schemata of short de�ning length consisting of bits which work well together� and tend to lead to improved
performance when incorporated into an individual� A successful coding scheme is one which encourages the
formation of building blocks by ensuring that�

�� related genes are close together on the chromosome� while

�� there is little interaction between genes�

Interaction �often referred to as epistasis� between genes means that the contribution of a gene to the �tness
depends on the value of other genes in the chromosome� �For example� for echo�location� bats must be able to
generate ultrasonic squeaks� and have a good hearing system for detecting the echoes� The possession of either
characteristic by itself is of little use� Therefore� the genes for good hearing can only increase the ��tness� of a
bat if it also has genes for squeak production��

In fact there is always some interaction between genes in multimodal �tness functions� This is signi�cant
because multimodal functions are the only sort of any real interest in GA research� since unimodal functions
can be solved more easily using simpler methods�






If these rules are observed� then a GA will be as e�ective as predicted by the schema theorem�
Unfortunately� conditions ��� and ��� are not always easy to meet� Genes may be related in ways which do

not allow all closely related ones to be placed close together in a one�dimensional string �for example� if they
are related hierarchically�� In many cases� the exact nature of the relationship between the genes may not be
known to the programmer� so even if there are only simple relationships� it may still be impossible to arrange
the coding to re�ect this�

Condition ��� is a precondition for ���� If the contribution to overall �tness of each gene were independent
of all other genes� then it would be possible to solve the problem by hillclimbing on each gene in turn� Clearly
this is not possible in general� If we can ensure that each gene only interacts with a small number of other genes
and these can be placed together on the chromosome� then conditions ��� and ��� can be met� But if there is a
lot of interaction between genes� then neither condition can be met�

Clearly� we should try to design coding schemes to conform with Goldberg�s recommendations� since this
will ensure that the GA will work as well as possible� Two interesting questions therefore arise from this�

�� Is it possible� in general� to �nd coding schemes which �t the recommendations of the building block
hypothesis� �And if so� then how can they be found��

�� If it is not possible to �nd such ideal coding schemes� can the GA be modi�ed to improve its performance
in these circumstances� �And if so� how��

These questions are both important research topics�

��� Exploration and exploitation

Any e�cient optimisation algorithm must use two techniques to �nd a global maximum� exploration to inves�
tigate new and unknown areas in the search space� and exploitation to make use of knowledge found at points
previously visited to help �nd better points� These two requirements are contradictory� and a good search
algorithm must �nd a tradeo� between the two�

A purely random search is good at exploration� but does no exploitation� while a purely hillclimbing method
is good at exploitation� but does little exploration� Combinations of these two strategies can be quite e�ective�
but it is di�cult to know where the best balance lies �i�e� how much exploitation do we perform before giving
up and exploring further��

Holland 	Hol
�� showed that a GA combines both exploration and exploitation at the same time in an
optimal way �using a k�armed bandit analogy� also described in 	Gol�a� p����� However� although this may be
theoretically true for a GA� there are inevitably problems in practice� These arise because Holland made certain
simplifying assumptions� including�

�� that population size is in�nite�

�� that the �tness function accurately re�ects the utility of a solution� and

�� that the genes in a chromosome do not interact signi�cantly�

Assumption ��� can never be satis�ed in practice� Because of this the performance of a GA will always
be subject to stochastic errors� One such problem� which is also found in nature� is that of genetic drift

	Boo
� GS
��
Even in the absence of any selection pressure �i�e� a constant �tness function�� members of the population

will still converge to some point in the solution space� This happens simply because of the accumulation of
stochastic errors� If� by chance� a gene becomes predominant in the population� then it is just as likely to become
more predominant in the next generation as it is to become less predominant� If an increase in predominance
is sustained over several successive generations� and the population is �nite� then a gene can spread to all

members of the population� Once a gene has converged in this way� it is �xed�crossover cannot introduce new
gene values� This produces a ratchet e�ect� so that as generations go by� each gene eventually becomes �xed�

The rate of genetic drift therefore provides a lower�bound on the rate at which a GA can converge towards
the correct solution� That is� if the GA is to exploit gradient information in the �tness function� the �tness
function must provide a slope su�ciently large to counteract any genetic drift� The rate of genetic drift can
be reduced by increasing the mutation rate� However� if the mutation rate is too high� the search becomes
e�ectively random� so once again gradient information in the �tness function is not exploited�

Assumptions ��� and ��� can be satis�ed for well�behaved laboratory test functions� but are harder to satisfy
for real�world problems� Problems with the �tness function have been discussed above� Problems with gene
interaction� �epistasis�� have already been mentioned� and will be described further in Part ��





� Practical aspects of GAs

When designing a GA application� we need to consider far more than just the theoretical aspects described in
the previous section� Each application will need its own �tness function� as mentioned earlier� but there are
also less problem�speci�c practicalities to deal with� Most of the steps in the traditional GA �Figure �� can
be implemented using a number of di�erent algorithms� For example� the initial population may be generated
randomly� or using some heuristic method 	Gre
� SG����
In this section we describe di�erent techniques for selecting two individuals to be mated� To understand

the motivation behind these techniques� we must �rst describe the problems which they are trying to overcome�
These problems are related to the �tness function� so �rst we shall look at this more closely�

��� Fitness function

Along with the coding scheme used� the �tness function is the most crucial aspect of any GA� Much research
has concentrated on optimising all the other parts of a GA� since improvements can be applied to a variety
of problems� Frequently� however� it has been found that only small improvements in performance can be
made� Grefenstette 	Gre�� sought an ideal set of parameters �in terms of crossover and mutation probabilities�
population size� etc�� for a GA� but concluded that the basic mechanism of a GA was so robust that� within
fairly wide margins� parameter settings were not critical� What is critical in the performance of a GA� however�
is the �tness function� and the coding scheme used�
Ideally we want the �tness function to be smooth and regular� so that chromosomes with reasonable �tness

are close �in parameter space� to chromosomes with slightly better �tness� For many problems of interest�
unfortunately� it is not possible to construct such ideal �tness functions �if it were� we could simply use hill�
climbing algorithms�� Nevertheless� if GAs �or any search technique� are to perform well� we must �nd ways of
constructing �tness functions which do not have too many local maxima� or a very isolated global maximum�
The general rule in constructing a �tness function is that it should re�ect the value of the chromosome

in some �real� way� As stated above� for many problems� the construction of the �tness function may be an
obvious task� For example� if the problem is to design a �re�hose nozzle with maximum through �ow� the �tness
function is simply the amount of �uid which �ows through the nozzle in unit time� Computing this may not
be trivial� but at least we know what needs to be computed� and the knowledge of how to compute it can be
found in physics textbooks�
Unfortunately the �real� value of a chromosome is not always a useful quantity for guiding genetic search� In

combinatorial optimisation problems� where there are many constraints� most points in the search space often
represent invalid chromosomes�and hence have zero �real� value�
An example of such a problem is the construction of school timetables� A number of classes must be given

a number of lessons� with a �nite number of rooms and lecturers available� Most allocations of classes and
lecturers to rooms will violate constraints such as a room being occupied by two classes at once� a class or
lecturer being in two places at once� or a class not being timetabled for all the lessons it is supposed to receive�
For a GA to be e�ective in this case� we must invent a �tness function where the �tness of an invalid

chromosome is viewed in terms of how good it is at leading us towards valid chromosomes� This� of course� is
a Catch��� situation� We have to know where the valid chromosomes are to ensure that nearby points can also
be given good �tness values� and far away points given poor �tness values� But� if we don�t know where the
valid chromosomes are� this can�t be done�
Cramer 	Cra�� suggested that if the natural goal of the problem is all�or�nothing� better results can be

obtained if we invent meaningful sub�goals� and reward those� In the timetable problem� for example� we might
give a reward for each of the classes which has its lessons allocated in a valid way�
Another approach which has been taken in this situation is to use a penalty function� which represents

how poor the chromosome is� and construct the �tness as �constant � penalty� 	Gol�a� p��� Richardson et

al 	RPLH�� give some guidelines for constructing penalty functions� They say that those which represent the
amount by which the constraints are violated are better than those which are based simply on the number

of constraints which are violated� Good penalty functions� they say� can be constructed from the expected

completion cost � That is� given an invalid chromosome� how much will it �cost� to turn it into a valid one�
DeJong  Spears 	DS�� describe a method suitable for optimising boolean logic expressions� There is much
scope for work in this area�

Approximate function evaluation is a technique which can sometimes be used if the �tness function is
excessively slow or complex to evaluate� If a much faster function can be devised which approximately gives the
value of the �true� �tness function� the GA may �nd a better chromosome in a given amount of CPU time than

�



when using the �true� �tness function� If� for example� the simpli�ed function is ten times faster� ten times
as many function evaluations can be performed in the same time� An approximate evaluation of ten points in
the search space is generally better than an exact evaluation of just one� A GA is robust enough to be able
to converge in the face of the noise represented by the approximation� This technique was used in a medical
image registration system� described by Goldberg 	Gol�a� p���� In attempting to align two images� it was
found that optimum results were obtained when only ������th of the pixels were tested�

Approximate �tness techniques have to be used in cases where the �tness function is stochastic� For example�
if the problem is to evolve a good set of rules for playing a game� the �tness may be assessed by using them
to play against an opponent� But each game will be di�erent� so it is only ever possible to determine an
approximation of the �tness of the rule set 	Chi��� Goldberg 	Gol�a� p���!� describes other techniques for
approximate function evaluation� for example using an incremental computation based on the parents� �tness�

��� Fitness Range Problems

At the start of a run� the values for each gene for di�erent members of the population are randomly distributed�
Consequently� there is a wide spread of individual �tnesses� As the run progresses� particular values for each
gene begin to predominate� As the population converges� so the range of �tnesses in the population reduces�
This variation in �tness range throughout a run often leads to the problems of premature convergence and slow

�nishing �

����� Premature convergence

A classical problem with GAs is that the genes from a few comparatively highly �t �but not optimal� individuals
may rapidly come to dominate the population� causing it to converge on a local maximum� Once the population
has converged� the ability of the GA to continue to search for better solutions is e�ectively eliminated� crossover
of almost identical chromosomes produces little that is new� Only mutation remains to explore entirely new
ground� and this simply performs a slow� random search 	Gol�b��

The schema theorem says that we should allocate reproductive trials �or opportunities� to individuals in

proportion to their relative �tness� But when we do this� premature convergence occurs�because the population
is not in�nite� In order to make GAs work e�ectively on �nite populations� we must modify the way we select
individuals for reproduction�

Ways of doing this are described in Section ���� The basic idea is to control the number of reproductive
opportunities each individual gets� so that it is neither too large� nor too small� The e�ect is to compress the
range of �tnesses� and prevent any �super��t� individuals from suddenly taking over�

����� Slow �nishing

This is the converse problem to premature convergence� After many generations� the population will have
largely converged� but may still not have precisely located the global maximum� The average �tness will be
high� and there may be little di�erence between the best and the average individuals� Consequently there is an
insu�cient gradient in the �tness function to push the GA towards the maximum�

The same techniques used to combat premature convergence also combat slow �nishing� They do this by
expanding the e�ective range of �tnesses in the population� As with premature convergence� �tness scaling
can be prone to overcompression �or� rather� underexpansion� due to just one �super poor� individual� These
techniques are described below�

��� Parent selection techniques

Parent selection is the task of allocating reproductive opportunities to each individual� In principle� individuals
from the population are copied to a �mating pool�� with highly �t individuals being more likely to receive
more than one copy� and un�t individuals being more likely to receive no copies� Under a strict generational
replacement scheme �see Section ����� the size of the mating pool is equal to the size of the population� After
this� pairs of individuals are taken out of the mating pool at random� and mated� This is repeated until the
mating pool is exhausted�

The behaviour of the GA very much depends on how individuals are chosen to go into the mating pool�
Ways of doing this can be divided into two types of methods� Firstly� we can take the �tness score of each
individual� map it onto a new scale� and use this remapped value as the number of copies to go into the mating
pool �the number of reproductive trials�� Another method has been devised which achieves a similar e�ect�
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but without going through the intermediate step of computing a modi�ed �tness� We shall call these methods
explicit �tness remapping and implicit �tness remapping �

����� Explicit �tness remapping

To keep the mating pool the same size as the original population� the average of the number of reproductive
trials allocated per individual must be one� If each individual�s �tness is remapped by dividing it by the
average �tness of the population� this e�ect is achieved� This remapping scheme allocates reproductive trials in
proportion to raw �tness� according to Holland�s theory�

Before we discuss other remapping schemes� there is a practical matter to be cleared up� The remapped
�tness of each individual will� in general� not be an integer� Since only an integral number of copies of each
individual can be placed in the mating pool� we have to convert the number to an integer in a way that does
not introduce bias� A great deal of work has gone into �nding the best way of doing this 	Gol�a� p�����
A widely used method is known as stochastic remainder sampling without replacement � A better method�
stochastic universal sampling was devised by Baker 	Bak
�� and is elegantly simple and theoretically perfect�
It is important not to confuse the sampling method with the parent selection method� Di�erent parent selection
methods may have advantages in di�erent applications� But a good sampling method �such as Baker�s� is always
good� for all selection methods� in all applications�

As mentioned in Section ������ we do not want to allocate trials to individuals in direct proportion to raw
�tness� Many alternative methods for remapping raw �tness� so as to prevent premature convergence� have
been suggested� Several are described in 	Bak��� The major ones are described below�

Fitness scaling is a commonly employed method� In this� the maximum number of reproductive trials
allocated to an individual is set to a certain value� typically ���� This is achieved by subtracting a suitable
value from the raw �tness score� then dividing by the average of the adjusted �tness values� Subtracting a
�xed amount increases the ratio of maximum�tness to average �tness� Care must be taken to prevent negative
�tness values being generated�

Adjusted Fitness Raw Fitness

Number

Fitness6543210

Figure 
� Raw and adjusted �tness histograms

Figure 
 shows a histogram of raw �tness values� with an average �tness of ���� and a maximum �tness of
���� This gives a maximum�average ratio of ���� so� without scaling� the most �t individual would be expected to
receive ��� reproductive trials� To apply �tness scaling �perhaps �tness shifting would be a more accurate term�
we subtract �� � average � maximum� � ��� from all �tnesses� This gives a histogram of adjusted �tnesses
with an average of ��� and a maximum of ���� so the maximum�average ratio is now ��

Fitness scaling tends to compress the range of �tnesses at the start of a run� thus slowing down convergence�
and increasing the amount of exploration�

However� the presence of just one super �t individual �with a �tness ten times greater than any other� for
example�� can lead to overcompression� If the �tness scale is compressed so that the ratio of maximumto average
is ���� then the rest of the population will have �tnesses clustered closely about �� Although we have prevented
premature convergence� we have done so at the expense of e�ectively �attening out the �tness function� As
mentioned above� if the �tness function is too �at� genetic drift will become a problem� so overcompression may
lead not just to slower performance� but also to drift away from the maximum�

Fitness windowing is used in Grefenstette�s GENESIS GA package 	Gre��� This is the same as �tness
scaling� except the the amount to be subtracted is chosen di�erently� The minimum �tness in each generation
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is recorded� and the amount subtracted is the minimum �tness observed during the previous n generations�
where n is typically ��� With this scheme the selection pressure �i�e� the ratio of maximum to average trials
allocated� varies during a run� and also from problem to problem� The presence of a super�un�t individual
will cause underexpansion� while super��t individuals may still cause premature convergence� since they do not
in�uence the degree of scaling applied�
The problem with both �tness scaling and �tness windowing is that the degree of compression is dictated

by a single� extreme individual� either the �ttest or the worst� Performance will su�er if the extreme individual
is exceptionally extreme�

Fitness ranking is another commonly employed method� which overcomes the reliance on an extreme
individual� Individuals are sorted in order of raw �tness� and then reproductive �tness values are assigned
according to rank� This may be done linearly 	Bak��� or exponentially 	Dav��� This gives a similar result to
�tness scaling� in that the ratio of the maximum to average �tness is normalised to a particular value� However
it also ensures that the remapped �tnesses of intermediate individuals are regularly spread out� Because of this�
the e�ect of one or two extreme individuals will be negligible� irrespective of how much greater or less their
�tness is than the rest of the population� The number of reproductive trials allocated to� say� the �fth best
individual will always be the same� whatever the raw �tness values of those above �or below�� The e�ect is that
overcompression ceases to be a problem�
Several experiments have shown ranking to be superior to �tness scaling 	Bak�� Whi���
Other methods �hybrid methods including using a dynamic population size� are described in 	Bak��� but

were found not to perform well�

����� Implicit �tness remapping

Implicit �tness remapping methods �ll the mating pool without passing through the intermediate stage of
remapping the �tness�

Tournament selection 	Bri�� GD��� is such a technique� There are several variants� In the simplest�
binary tournament selection� pairs of individuals are picked at random from the population� Whichever has
the higher �tness is copied into a mating pool �and then both are replaced in the original population�� This
is repeated until the mating pool is full� Larger tournaments may also be used� where the best of n randomly
chosen individuals is copied into the mating pool�
Using larger tournaments has the e�ect of increasing the selection pressure� since below average individuals

are less likely to win a tournament� while above average individuals are more likely to�
A further generalisation is probabilistic binary tournament selection� In this� the better individual wins the

tournament with probability p� where ��� � p � �� Using lower values of p has the e�ect of decreasing the
selection pressure� since below average individuals are comparatively more likely to win a tournament� while
above average individuals are less likely to�
By adjusting tournament size or win probability� the selection pressure can be made arbitrarily large or

small�

Goldberg  Deb 	GD��� compare four di�erent schemes� proportionate selection� �tness ranking� tournament
selection and steady state selection �see Section ����� They conclude that by suitable adjustment of parameters�
all these schemes� �apart from proportionate selection�� can be made to give similar performances� so there is
no absolute �best� method�

��� Generation gaps and steady�state replacement

The generation gap is de�ned as the proportion of individuals in the population which are replaced in each
generation� Most work has used a generation gap of ��i�e� the whole population is replaced in each generation�
This value is supported by the investigations of Grefenstette 	Gre��� However� a more recent trend has favoured
steady�state replacement 	Whi
� Whi�� Sys�� Dav�� Dav���� This operates at the other extreme�in each
generation only a few �typically two� individuals are replaced�
This may be a better model of what happens in nature� In short�lived species� including some insects�

parents lay eggs� and then die before their o�spring hatch� But in longer�lived species� including mammals�
o�spring and parents are alive concurrently� This allows parents to nurture and teach their o�spring� but also
gives rise to competition between them�
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In the steady�state case� we not only have to consider how to select two individuals to be parents� but we
also have to select two unlucky individuals from the population to be killed o�� to make way for the o�spring�
Several schemes are possible� including�

�� selection of parents according to �tness� and selection of replacements at random

�� selection of parents at random� and selection of replacements by inverse �tness

�� selection of both parents and replacements according to �tness�inverse �tness

For example� Whitley�s GENITOR algorithm 	Whi��� selects parents according to their ranked �tness score�
and the o�spring replace the the two worst members of the population�
The essential di�erence between a conventional� generational replacement GA� and a steady state GA� is

that population statistics �such as average �tness� are recomputed after each mating in a steady state GA� �this
need not be computationally expensive if done incrementally�� and the new o�spring are immediately available
for reproduction� Such a GA therefore has the opportunity to exploit a promising individual as soon as it is
created�
However� Goldberg  Deb�s investigations 	GD��� found that the advantages claimed for steady�state se�

lection seem to be related to the high initial growth rate� The same e�ects could be obtained� they claim�
using exponential �tness ranking� or large�size tournament selection� They found no evidence that steady�state
replacement is fundamentally better than generational�

� Applications

Some example GA applications were mentioned in the introduction� To illustrate the �exibility of GAs� here we
list some more� Some of these applications have been used in practice� while others remain as research topics�

Numerical function optimisation� Most traditional GA research has concentrated in this area� GAs
have been shown to be able to outperform conventional optimisation techniques on di�cult� discontinuous�
multimodal� noisy functions 	DeJ
���

Image processing� With medical X�rays or satellite images� there is often a need to align two images of
the same area� taken at di�erent times� By comparing a random sample of points on the two images� a GA can
e�ciently �nd a set of equations which transform one image to �t onto the other 	Gol�a� p����
A more unusual image processing task is that of producing pictures of criminal suspects 	CJ���� The GA

replaces the role of the traditional photo��t system� but uses a similar coding scheme� The GA generates a
number of random faces� and the witness selects the two which are most similar to the suspect�s face� These
are then used to breed more faces for the next generation� The witness acts as the ��tness function� of the GA�
and is able to control its convergence towards the correct image�

Combinatorial optimisation tasks require solutions to problems involving arrangements of discrete ob�
jects� This is quite unlike function optimisation� and di�erent coding� recombination� and �tness function
techniques are required� Probably the most widely studied combinatorial task is the travelling salesperson

problem 	Gol�� GS�� LHPM
�� Here the task is to �nd the shortest route for visiting a speci�ed group of
cities� Near optimal tours of several hundred cities can be determined� Bin packing� the task of determining
how to �t a number of objects into a limited space� has many applications in industry� and has been widely
studied 	Dav�a� Jul���� A particular example is the layout of VLSI integrated circuits 	Fou��� Closely related
is job shop scheduling� or time�tabling� where the task is to allocate e�ciently a set of resources �machines�
people� rooms� facilities� to carry out a set of tasks� such as the manufacture of a number of batches of machine
components 	BUMK��� Dav�b� Sys��� WSF��� There are obvious constraints� for example� the same machine
cannot be used for doing two di�erent things at the same time� The optimum allocation has the earliest overall
completion time� or the minimum amount of �idle time� for each resource�

Design tasks can be a mix of combinatorial and function optimisation� We have already mentioned three
design applications� bridge structure� a �re hose nozzle and neural network structure� GAs can often try things
which a human designer would never have thought of�they are not afraid to experiment� and do not have
preconceived ideas� Design GAs can be hybridised with more traditional optimisation or expert systems� to
yield a range of designs which a human engineer can then assess�

Machine learning� There are many applications of GAs to learning systems� the usual paradigm being
that of a classi�er system� The GA tries to evolve �i�e� learn� a set of if � � � then rules to deal with some
particular situation� This has been applied to game playing 	Axe
� and maze solving� as well as political and
economic modelling 	FMK����
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A major use of machine learning techniques has been in the �eld of control 	DeJ�� Hun��� KG���� In
a large� complex system� such as a chemical plant� there may be many control parameters to be adjusted to
keep the system running in an optimal way� Generally� the classi�er system approach is used� so that rules are
developed for controlling the system� The �tness of a set of rules may be assessed by judging their performance
either on the real system itself� or on a computer model of it� Fogarty 	Fog� used the former method to
develop rules for controlling the optimum gas�air mixture in furnaces� Goldberg modelled a gas pipeline system
to determine a set of rules for controlling compressor stations and detecting leaks 	Gol�a� p��� Davis and
Coombs used a similar approach to design communication network links 	DC
��

� Summary

GAs are a very broad and deep subject area� and most of our knowledge about them is empirical� This article
has described the fundamental aspects of GAs� how they work� theoretical and practical aspects which underlie
them� and how they compare with other techniques�

If this article has aroused your interest� you may wish to �nd out more� For those with access to the Usenet
News system� the comp�ai�genetic newsgroup supports discussion about GA topics� A moderated bulletin�
GA�digest is distributed by email from the US Navy�s Arti�cial Intelligence Centre� Subscription is free� To
join� send a request to� GA�List�Request�aic�nrl�navy�mil � They also support an FTP site� containing
back issues of GA�digest� information on publications and conferences� and GA source code which can be freely
copied� To use this service� connect using ftp to ftp�aic�nrl�navy�mil using anonymous as the user name
and your email address as the password� Then change directory to �pub�galist� There is a README �le which
gives up�to�date information about the contents of the archive� The administrators request that you do not use
this facility between am and �pm EST ��pm to ��pm GMT�� Monday to Friday�

Part � of this article will appear in a future issue of this journal� and will go into further detail�
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