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1. Introduction

Supernovae (SNe) are often seen as the bad guys in relation tothe interstellar dust life-cycle,
with shock waves destroying dust grains in galaxies [1], yetevidence is building that dust formation
in SN ejecta may be ubiquitous. Other evidence also leads us to believe that SNe should be an
important source of dust: first, without SNe there is a dust budget crisis in the Milky Way and
other galaxies [2–6]. The dust produced in the cool stellar atmospheres of intermediate-mass stars,
combined with current predictions for how much dust is destroyed in shocks, yields far less dust
than is observed in the interstellar medium. Either anothersource of dust must be present to account
for the observed dust in the interstellar medium (e.g. supernovae and/or interstellar grain growth),
or dust destruction is negligible [4,5,7–11]. Second, without SNe as significant sources of dust, it is
difficult to explain the large quantities of dust found in submillimetre (sub-mm)-selected galaxies
and quasars at high redshift ( [9, 12, 13] and references therein). There is not sufficient time for
dust from evolved intermediate mass stars to form in such large quantities even when incorporating
realistic and bursty star formation histories (e.g. [11,14]).

The conditions following a SN explosion are thought to be conducive to the formation of
dust [15, 16]: the abundances of heavy elements are high, as is the density; temperatures drop
rapidly in the expanding ejecta, quickly reaching levels allowing the sublimation of grain mate-
rials. Theoretical estimates (Fig. 1) predict that core-collapse SNe should produce a significant
quantity of dust, approximately 0.1−2M⊙ per star (ignoring destruction, Fig. 1), depending on the
metallicity, stellar mass and energy of the explosion [17–21]. These models are based on classical
nucleation theory where all types of dust can form. Modelling dust formation using a chemical ki-
netic theory approach however, predicts lower dust masses (by roughly a factor of 10) e.g. [22–24]
partly attributed to chemically modelling the type of molecules available for grain formation in the
gas. Including dust destruction in the dust-formation models reduces the dust mass drastically due
to sputtering in the shock waves (see the dashed line in Fig. 1right [19]).

In this review, I will focus on what we’ve learnt since our previous meeting in 2008 (Cosmic
Dust - Near and Fare.g. [18,25]), in particular I will describe how our understanding of the origin
of dust in the nearby SN remnants (SNRs) Cassiopeia A (hereafter Cas A), Tycho, Kepler, the Crab
Nebula and SN1987A has evolved over the last five years since the advent of theHerschel Space
Observatoryand ALMA.

1.1 How do we detect supernova dust?

There are a number of ways to detect or infer the presence of dust in SN ejecta, these include:

1. a decrease in the luminosity.

2. A red-blue asymmetry in optical line profiles. These originate from material moving away
(on the far side of the remnant) being reddened by dust in the ejecta more than material
moving towards us (self extinction).

3. The detection of onset of dust formation via an increase inIR emission;

4. Highly polarised emission from dust aligned with the magnetic field in the remnant.

Methods 1, 2 and 3 have all been applied to early-time SNRs (<1000 days) e.g. [26–30]. Methods
3 and 4 provide a direct measurement of the dust mass (with thecaveat of unknown grain emis-
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Figure 1:Left: The mass of different dust species formed in the ejecta of a theoretical SN IIb model [20].
The total mass of dust formed is∼ 0.17M⊙. Right: A comparison of the dust yields from different theo-
retical supernova models in the literature verus their progenitor mass - black [17]; purple [19]; green [18];
blue [21] and red [23]. The dashed line includes dust destruction by the reverse shock [19]. The shaded
regions show the observed dust masses for Cas A [32–35], the Crab Nebula [36] and SN1987A [37,38].

sivity when converting from flux to dust mass e.g. [31]). Although methods 1 and 2 only provide
indirect evidence of SN dust they are particularly useful indetecting the onset of dust formation
at early times. With these observational signatures, our understanding of dust in SNe and SNRs
were limited to the interpretation of near and MIR studies ofnearby SNRs and extremely young
(<1500 days) SNe at distances up to 20 Mpc. These observations typically found 10−4−10−3 M⊙

of warm dust (200–450 K), 1000 times lower than (i) predictedto form in theoretical models (Fig. 1)
and (ii) required if SNe are to make a significant contribution to ISM dust in galaxies. Conse-
quently, SNe were often dismissed as a source of dust. Of course, if cool dust at temperatures
< 40 K exist in SNRs, it is possible that near and mid-IR measurements with telescopes such as
SpitzerandAKARIwould have missed this component. FIR and sub-mm observations, sensitive to
emission from cooler dust grains, could therefore be extremely important in determining thetotal
dust mass in SNRs.

2. What we knew in 2008

A decade ago, the Submillimetre Common User Bolometer Array(SCUBA) was used to observe
the Galactic SNR Cas A. A large excess of submillimetre (submm) emission well above the extrap-
olation of the synchrotron component was detected (Fig. 2, 3rd panel) and interpreted as emission
from 1− 2M⊙ of cold (20 K) dust [32]. The dust was assumed to be associatedwith the rem-
nant due to the high spatial correlation between the sub-mm emission and the forward and reverse
shocks as traced in X-rays. Subsequently [39] used line emission and absorption towards the rem-
nant to argue that most of the sub-mm emission in [32] arises from unrelated foreground clouds,
concluding that there is no longer significant evidence for copious amounts of dust in the Cas A
remnant.

Although there was clearly an issue with contamination of non-SN dust from intervening
clouds along the line of sight towards Cas A, [34] reasoned that if the sub-mm emission origi-
nates within the remnant, then it would likely be polarised at a higher value than the general ISM,
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Figure 2: IR and sub-mm views of the Cassiopeia A remnant. From left to right: TheSpitzerIRS obser-
vations of shocked ejecta gas (argon, green) and warm dust (orange) from [33]. The similarity between the
two not only suggests that the warm dust is formed from the ejecta material, but is also being heated by
the reverse shock. 850µm (blue) image with SCUBA [32] (note this emission contains both thermal dust
emission and non-thermal synchrotron radiation). 850µm after subtraction of the synchrotron component
with sub-mm polarisation vectors overlaid [34].

and the polarisation vectors would trace the magnetic field of Cas A. However, if the sub-mm flux
originated from line-of-sight spiral arm material, then one would expect the vectors to be more-or-
less randomly orientated (with typical interstellar polarisation fractions of 2–7%). Consequently,
observations of Cas A were made with the SCUBA polarimeter todetermine the level and direction
of polarisation from the sub-mm emission - see final panel in Fig. 2. [34] found that the sub-mm
emission is polarised to anunprecedentedfraction of 30%. They tested whether this could be due
to contamination from synchrotron polarised signal creeping in at the longest sub-mm wavelengths,
but found that the polarised signal seen in the radio is far lower, at only 3.7% on average. Assuming
that only the polarised flux seen in the SCUBA map (Fig. 2) is within the remnant, then the revised
dust mass in the Cas A ejecta is still a massive∼ 1M⊙. Unfortunately, the whole of the remnant
was not mapped with the polarimeter as SCUBA was taken offlineshortly after these observations
were taken, in preparation for its successor SCUBA-2.

With no further access to SCUBA or high sensitivity observations in the sub-mm, there was
much interest in investigating the warm dust emission seen in SNRs (emitting at 24− 70µm).
DetailedSpitzerobservations of Cas A revealed dust emission peaking at 21µm (Fig. 2, second
panel) with remarkably similar structure and location to the shocked argon ejecta [33] (Fig. 2, first
panel). The mass of dust responsible for this component was estimated to be 0.02−0.054M⊙ at
temperatures of 60−120K. These results were (at the time) the first unambiguous identification of
more than> 10−3 M⊙ of dust in the SN ejecta.

Despite evidence pointing towards larger dust masses in historical remnants compared to the
near-IR estimates made previously, valid questions were asked by the community. These included
questioning what appeared to be the uncomfortably large dust masses estimated from the sub-mm
emission for the Cas A remnant. Whether it could be possible,for example, that the dust seen was
actually formed in the massive star (pre-SN) or simply swept-up ISM? Some questioned whether
a dust mass of the order of a solar mass was unphysical since itis similar (if not exceeding) the
predicted mass of metals in core-collapse ejecta (Table 1).Other possible causes proposed for
the high dust masses included flux contamination from line emission from both the gas in the
mid-FIR and CO in the sub-mm. Or whether the dust emissivity in the ejecta (via differences
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SNR type age progenitor mass ejected metal mass dust mass Ref
(yrs) (M⊙) (M⊙) (M⊙)

1987A II a 27 18-20a 1.3 - 3.0g 0.4 - 0.7 [37], [38], [63]
Cas A IIbb 333 13-20b 0.7 - 3.0g 0.1 - 0.7 [35], [33], [34], [44]
Crab IIn-Pc 960 8-10c, 9-12 f 0.4 - 0.8g 0.1 - 0.25 [36]

Kepler Iad 410 N/A 1.2 - 1.3h .. [54]
Tycho Iae 442 N/A 1.2 - 1.3h .. [54]

Table 1:A summary of dust masses demonstrated to be associated with ejecta emission in SN1987A, Cas

A, Crab, Tycho and Kepler SNRS. Also provided are the progenitor masses, ages and predicted metal yields.
a [64]; b [65]; c [66]; d [67]; e [68]; f [69], g [10]; h range of metals predicted for deflagration and detonation

models in general [70,71].

in composition or structure) is orders of magnitude higher than the typical ‘astronomical silicate’
and ‘amorphous carbon’ used to convert the flux into dust mass. One suggestion included iron
needles/whiskers [40], though further work raised some issues with this proposal [41]. There is
also the fact that it is difficult to envisage how such cold (∼ 40K) dust could form and survive
in the hot, harsh environment of the ejecta. As a consequence, many of us looked forward to the
launch of theHerschel Space Observatory[42], an ESA led mission covering a wavelength range
of 55–210µm and 190–670µm, allowing us to fully sample the FIR and sub-mm regime with
unprecedented resolution.

3. What we know now: The Herschel and ALMA era

3.1 Cassiopeia A

Cassiopeia A was observed withHerschelas part of the guaranteed time programme MESS (Mass
loss from Evolved StarS - PI Martin Groenewegen [43], see Fig. 3). After subtracting the non-
thermal and warm dust components (as seen already bySpitzer[33]), a new cool dust component
was revealed withT ∼ 33 K and mass 0.075± 0.028M⊙ located across the central, western and
southern parts of the remnant [35]. Combining this new cool component with the warmSpitzer dust
yields an ejecta dust mass of 0.1M⊙. [35] found no evidence for cold dust in theHerscheldata but
this is compounded by the large amount of cirrus seen across theHerschelimage (Fig. 3), arising
from unrelated interstellar material emitting at temperatures of∼20 K. Note that this is not the same
as saying there isno cold ejecta dust in Cas A, instead it is simply too difficult todistinguish SN
dust from unrelated dust along the line of sightemitting at approximately the same temperaturewith
photometric information alone. This is often a problem which plagues theHerschelobservations
of SNRs (see Fig. 5 and Section 3.4) and different techniquesmay be required to disentangle dust
within the ejecta and dust towards or behind the source. The polarimetry observations (as described
above) are one way to overcome this problem. The results fromthis study of Cas A (0.1M⊙ of
highly polarised dust) is supported by the high levels of self-extinction in observed [Fe II] lines in
the remnant [44], thought to be the result of 0.5−1.0M⊙ of dust within the ejecta.
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Figure 3:Three colour image of Cas A withHerschel: 70µm (blue), 100µm (green) and 250µm (red) from
[35]. Note the negligible mass of hot ejecta dust shining brightly in blue (previously seen withSpitzer[33]).
The faint green glow in the centre is the newly discovered cool dust component. The red emission seen all
over the image is from cold dust (∼20 K), demonstrating the difficulty with disentangling emission from
unrelated interstellar dust in the vicinity of, or in front of SNRs, withHerschel.

3.2 The Crab Nebula

Spitzerobservations of the Crab Nebula found only 2.4×10−3 M⊙ of dust in the ejecta [45].
To determine if any cold dust was formed, the Crab was observed with Herschelas part of MESS
(Fig. 4, [36]). Remarkably (unlike with Cas A, Tycho and Kepler - Section 3.4), the area around
the remnant is relatively ‘clear’ from foreground or background interstellar dust. Therefore the
emission seen in Fig. 4 (left) is clearly associated with dust in the Nebula. The combination of
Spitzer, HerschelandPlanck (observing at frequencies from 30-857GHz, [46]) allowed the mid-
FIR-mm spectral energy distribution (SED) to be fully sampled, enabling the synchrotron emission
at these wavelengths to be characterised (see Fig. 4, right). Indeed, the synchrotron power law
slope was found to be steeper than previously estimated. Thecontamination from line emission
to the mid-FIR fluxes was determined from additionalSpitzerandHerschelspectroscopy (Fig. 4),
contributing less than 5% to the integrated flux beyond 24µm. After removing line and synchrotron
emission, the remaining flux was attributed to two components of dust, a warm component with
mass 10−3M⊙ at 63 K and a cool component at 34 K with mass 0.1− 0.2M⊙ (depending on the
dust composition). The dust is distributed within the well-known filaments, located in the densest
ejecta gas.

Subsequent works have investigated more complex methods ofderiving the dust mass in the
Crab. [47] fitted the SED with a large number of modified blackbodies at a range of grain sizes
(and temperatures) with a more realistic heating source. They revised the dust mass in the Crab to
0.02−0.13M⊙, with the upper end of their range consistent with the two-component fitting in [36],
and the lower end suggesting an order of magnitude less dust than the previous work. However,
the biggest difference in the dust masses derived in [47] is due to a choice of different optical
constants compared to those used in [45] and [36] andnot the multi-temperature SED modelling.
Furthermore, the optical constants used to derive the 0.02M⊙ of dust (taken from [48]) have no data
beyond 300µm, crucial for determining the total dust mass from cold, large grains. Instead, the
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Figure 4:Left: Wide field view of the Crab Nebula withHerschel[36] demonstrating both dust emission in
the remnant and the lack of cirrus in the region. The composite image consists of warm dust (blue) and cold
dust (yellow and orange). These images have had the synchrotron emission subtracted.Right: The entire
mid-IR - radio SED of the Crab [36] usingSpitzer, HerschelandPlanckphotometry with literature values
(grey). The inset box also includes theSpitzerandHerschelspectra and the dot-dashed lines show the warm
and cool dust components.

optical constants required to model the SED in the sub-mm have been estimated by an extrapolated
power-law which could severely underestimate the mass required to fit the SED. Indeed the silicate
fit to the SED in [47] underestimates the observed FIR-submm fluxes (see their Section 3). Given
the cut-off imposed for large grains in their model combinedwith the lack of optical constant data
in the sub-mm, it is therefore not surprising that [47] find a lower dust mass. Recent attempts at
modelling the affects of a multi-temperature SED model compared to the canonical two-component
fit used in [36] shows that this creates (at most) a factor of two difference in the derived dust masses
[31]. This supports the claim that using a more realistic multi-temperature grain model for the SED
is not responsible for the order of magnitude decrease in dust mass suggested by [47].

Subsequent radiative transfer modelling of dust in the ejecta [49] (which encompassess vary-
ing grain size distributions, gas geometry and a more physical heating source) derives ejecta dust
masses consistent with the parameters in [36] and the upper end of the range quoted in [47]. If
the ejecta is clumpy, the radiative transfer models implymore dust is required to fit the SEDwith
0.4−0.6M⊙ of amorphous carbon grains in the debris [49]. At the time, theHerschelobservations
of the Crab Nebula [36] provided the cleanest view of dust in aSNR, due not only to the relatively
low column density of intervening interstellar dust, but also the ability to resolve out the different
emission components in order to pin down the contribution from thermal dust emission.

3.3 SN1987A

Spitzerobservations of SN1987A ( [37] and references therein) found only 10−4 M⊙ of warm dust
originating in the ring structure (where the shockwave fromthe explosion is sweeping up the pre-
supernova circumstellar material). Given the insignificant amount of dust seen previously, it was
originally assumed that the remnant would not be detected atthe longerHerschelwavelengths.
Nethertheless, a bright unresolved source was clearly visible at the location of the remnant in the
HERITAGE map of the Large Magellanic Cloud - see Fig. 5. TheHerschelsource was attributed to
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Figure 5: Left panel: Herschelcomposite image of 100µm (blue), 160µm (green) and 250µm (red)
with the unresolved SN1987A circled. Zoomed-in HST image (ESA/NASA-JPL/Caltech/UCL)Inset (a):
Further zoom in on HST view of the inner ring and the central ejecta. Inset (b): The nail in the coffin:
ALMA 450 µm observations of SN1987A demonstrating the cold dust emission originally detected with
Herschelis resolved into the innermost ejecta region [38].Top right: Three colour SN1987A showing
the inner ejecta (red) and the outer ring. Cold dust from ALMAat 450µm (red-orange, [38]) with optical
(green), and soft X-ray (blue).Bottom right: Three colour image of SN1987A withHα (blue), [Fe II]
ejecta (green) and CO in red (ALMA, [52]). Credits: R. Indebetouw et. al., A. Angelich (NRAO/AUI/NSF);
NASA/STScI/CfA/R. Kirshner; NASA/CXC/SAO/PSU/D. Burrows et al.

0.4−0.7M⊙ of cold dust (∼20 K) in SN1987A. Given such a large mass, [37] proposed this must
be part of the metal-rich ejecta (just as with the Galactic remnants, the swept-up mass is predicted
to be two-three orders of magnitude lower than this). This would suggest that not only is dust for-
mation efficient in SN ejecta, butalmost all of the predicted metals in the ejecta must be in theform
of dust(Table 1). It became clear that higher resolution sub-mm observations would unequivocally
rule out the possibility that the unresolved FIR emission seen byHerscheloriginates from swept-up
material, line contamination, or a background source etc. The ideal opportunity to address these
issues presented itself in the form of ALMA (the Atacama Large Millimeter/submillimeter Array),
an interferometer observing from 400µm to 3 mm with resolutions of 0.7 to 4.8′′.

ALMA observations of SN1987A have since confirmed that a massive amount of dust seen
initially with Herscheloriginates from the SN ejecta and not from another source or pre-supernova
mass-loss [38]. Fig. 5 (top right, see also [50, 51]) shows the three colour image of optical, X-ray
and cold dust in SN1987A. The emission as seen by ALMA originates from> 0.2M⊙ of dust at
26 K and is clearly concentrated in the centre of the remnant:the dust has not yet been affected by
the reverse shock. The ALMA observations [52] also showed that the maximum contribution from
line emission to the sub-mm and mm fluxes is negligible (< 12%, see also Section 4 and Fig. 5
(bottom right)). This provides unambiguous confirmation that massive amount of cold dust was
formed in the ejectawithin the last 20 years.
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Figure 6:Left: The theoretical dust mass (in M⊙) formed (and destroyed) over time within a Type Ia ejecta
based on the W7 deflagration model [53]. The two curves indicate ejecta expanding into interstellar gas
with densityn = 0.3cm−3 (red) andn = 1cm−3 (black). The grey vertical line represents the age range
for the Tycho and Kepler SNRs and the dotted horizontal linesindicates the dust masses observed with
Herschel, though these are attributed to swept up dust and not originating in the ejecta [54].Right: Three
colour image of Tycho’s SNR composed of X-rays (blue - from shock-heated swept up ISM and green -
from the ejecta) and 8.6+2.3

−1.8×10−3M⊙ of hot dust (∼ 90 K) seen byHerschelin red. Credit: NASA/CXC;
ESA/Herschel/PACS/MESS Consortium/H L Gomez, created with the software package APLpy [55].

3.4 Type Ia SNRs

The environment of a Type Ia remnant is likely to be harsher than a core-collapse SN, with higher
radioactive heating in the ejecta resulting in increased destruction of dust grains or even inhibiting
the formation of dust and molecules. Furthermore, the density of the expanding shell drops more
rapidly than in core-collapse ejecta, with gas densities three orders of magnitude lower which may
also inhibite the condensations of dense clumps in the gas. An interesting question is whether,
despite these harsher conditions, dust still forms in Type Ia ejecta. The presence of ejecta dust in
these kind of explosions could affect the interpretation ofSN light curves, and any lack of dust
would provide crucial information on the required conditions for dust formation.

A theoretical model of dust formation in the Type Ia ejecta was presented in [53] assuming
a carbon deflagration explosion with ejecta mass of 1.4M⊙ - see Fig. 6 (left). 0.2M⊙ of dust is
predicted to form in this model with the grains completely destroyed over a timescale of 106 years.
Also shown in Fig. 6 is the expected evolution of dust mass formodels in which the gas is expand-
ing into ambient gas with densitiesn = 0.3 and 1cm−3, since this will affect the amount of dust
destroyed in the shock waves. Using the relative ages of Kepler and Tycho (410 and 440 years) and
assuming that the ejecta is expanding into an ambient gas density of 1cm−3, the model predicts
dust masses of∼ 88 or 84×10−3 M⊙ respectively.

As part of the MESS programme, the Galactic remnants Tycho and Kepler were observed with
Herschel. Hot dust was detected ‘in’ both remnants (at temperatures of 80−90 K) arising from dust
masses of 8×10−3 and 6×10−3 M⊙ respectively [54] (see also [56]). This is an order of magnitude
lower than the hot dust mass predicted from the theoretical model (Fig 6). Careful comparisons
with the spatial location of the hot dust in Tycho with the hotX-ray gas (Fig. 6 right) arising from
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the ejecta (green) and the shocked swept-up surrounding material (blue), indicates that the dust is
only seen at the edges of the expanding bubble of gas which is ploughing through the ISM at high
speeds. This tells us that the hot dust in this image was not created in the explosion itself [54]
but is instead swept-up interstellar dust. This is further supported by the interaction seen between
Tycho’s forward shock and surrounding molecular clouds (see Fig. 10 in [54], also [57, 58]). A
similar result is seen with Kepler, though in Kepler’s case the mass of swept up material is so large
(and given the low interstellar densities at the location ofthe remnant) the hot dust likely originates
from swept upcircumstellar dust[54].

Whether or not cold dust exists in the Tycho and Kepler SNRs [59] is more difficult to de-
termine given the large amounts of interstellar dust detected across the maps and in front of the
remnants [54] (similar to Cas A - Fig. 3). Careful comparisonwith the ejecta tracers in optical and
X-ray shows no evidence of sub-mm emission from cool or cold dust coincident with the debris.
In summary then (and contrary to the theoretical predictions, Fig. 6 (left)), sub-mm observations
of Tycho and Kepler showno evidence of dust formation (see also [60–62]). Instead, we find
the observed dust emission originates from swept-up interstellar and circumstellar material respec-
tively. It is possible that the explosions responsible for Tycho and Kepler are in fact detonation type
( [57,72]) rather than the deflagration model assumed in [53]; the predicted mass of dust formed in
detonation ejecta may be very different to the model shown inFig. 6 (left). For example, a detona-
tion explosion has a more rapid decline in density early on and is less well mixed compared to the
deflagration, with the outermost carbon-rich layer quicklyburned through, severely restricting the
amount of metals available for dust formation.

On a final note, Type Ia’s produce most of the iron found in galaxies (ejecting 0.6M⊙ per ex-
plosion), and interstellar gas-phase depletions in the Milky Way (where iron is depleted by factors
of 10-100 [73, 74]) indicate that large amounts of iron is locked up in dust grains. It is therefore
somewhat surprising that we find no evidence for iron dust grains in Ia ejecta. By 400 years, the
reverse shocks in Tycho and Kepler have not yet swept up the innermost iron-rich layer (where one
would expect iron grains could form - see Fig. 14 in [54]) so ifa significant amount (∼ subsolar) of
iron grains had condensed in these SNRs, most of them would beunshocked and cold i.e. should be
clearly visible in theHerschel data(though the interstellar material seen across these imagesmakes
it difficult to rule this out). The lack of dust in Ia’s compared to core-collapse remnants suggests
that significantly less dust forms in this environment, placing stringent constraints on where dust
and potentially cool molecules can form.

The dust masses for the historical remnants Cas A, the Crab, SN1987A, Tycho and Kepler
derived fromHerscheland ALMA observations are summarized in Table 1. In the last five years,
we now have confirmation that significant amounts of cold dusthas formed in the ejecta of Cas A,
the Crab Nebula and in SN 1987A.

4. A Serendipitous Surprise - molecular rich ejecta

Perhaps one of the most surprising results to come out ofHerscheland ALMA studies of SNRs is
the presence of significant amounts of cool ejecta material in the form of cold dust and molecules,
despite the harsh environment expected within the ejecta. The presence of cool molecules in SN
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ejecta would be an important diagnostic of the properties and chemistry within the ejecta and
could imply inhomogeneities and clumping. Furthermore, since CO is an effective coolant, any
detection of CO also suggests an environment which favours further molecule formation, complex
chemistry and also the formation and survival of SN dust grains. (Note that as well as enhancing
dust formation, the presence of molecules in the ejecta can also inhibit it e.g. [23, 24].) Recent
theoretical models following the chemistry of core-collapse ejecta suggests a 15M⊙ progenitor
could create> 0.1M⊙ of CO [22]. This places an enormous 17% of the predicted ejecta mass in
cool molecular form only a few years after the explosion.

Although vibrationally excited (hot) molecules have been detected in SN ejecta since the early
90’s, only recent observations have revealed the presence of cool molecules. The first overtone and
fundamental bands from small amounts of hot CO was detected afew years after the SN1987A
explosion [75], and more recently, in the 300-year old ejecta of Cas A [76,77]). The former result
suggests the formation of CO is efficient even in the high-temperature ejecta at early times, and
the latter suggests that CO survives (or continually reforms) centuries after the initial explosion.
Indeed, the detection of a dense knot of CO in Cas A’s post-shock gas by [77] clearly demonstrates
that CO molecules dissociated by the reverse shock must havereformed in the past several years.

ALMA has since revealed rotational transitions from cold COin SN1987A [52] (with a partial
observation of SiO). The molecules were seen within 1′′ of the inner debris (Fig. 5, bottom right
panel), demonstrating beyond a doubt that these molecules originate from the ejecta. As the(2−1)
and(1−0) CO lines are optically thick, the observations require> 0.01M⊙ of cold CO (where the
lower limit is derived using the optically thin assumption).

Aside from Cas A and SN 1987A, the Crab Nebula is also known to have an abundance of
H2 molecules within the filaments [78], butHerschelhas revealed another ‘fragile’ molecule in the
debris. FIR- sub-mm spectra across different locations of the Crab were taken withHerschelas part
of the MESS survey [43] and revealed two unknown lines at 618 and 1235 GHz [79]. Fig. 7 shows
the full spectrum withHerschelfrom 447 - 1544 GHz. The first line to be identified was the OH+

emission at 971 GHz, with radial velocities ranging from -603 and 1037 kms−1. These velocities
suggest that the emission arises from different knots and filaments in the ejecta; the emission from
the unidentified lines are strongest in the south of the remnant (coinciding with H2 knots and cool
dust). Given the expected frequency of OH+ at 971.8038 GHz it was relatively simple to correct the
two unknown lines to a ‘rest’ frequency of 617.554±0.209 and 1234.786±0.643 GHz; the ratio of
these lines correspond to the(2−1) and(1−0) transitions from a simple diatomic molecule. [79]
realised (apparently onHerschel’sfinal day of taking observations) that these lines correspond to
36ArH+, making this thefirst noble gas compound discovered in space.

So the ejecta in the Crab Nebula (despite its large expansionspeeds, harsh environment and
hot temperatures) provides exactly the right conditions toform noble gas molecules. The proposed
formation mechanism put forward in [79] is that argon produced in the supernova is ionised in the
shockwaves, which also lead to the formation of cool filaments containing H2 [78] and dust [36].
The argon is then mixed in the cool gas allowing noble gas compounds to form.

5. Conclusions

Evidence for dust formation in core-collapse supernova ejecta has been known for some time, with
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Figure 7: The HerschelFTS spectra of the Crab Nebula from [79] withtop: y-axis flux in units of
10−19Wm−2Hz−1sr−1 andbottom: y-axis flux in units of 10−18Wm−2Hz−1sr−1. The OH lines indi-
cated enabled the identification of two unknown lines at 618 and 1235GHz which are the(1−0) and(2−1)
transitions of36ArH+ respectively.

observations in the optical and near-mid IR detecting only small amounts (10−4−10−3M⊙) of dust
at temperaturesT > 70K. With recent advances in sharper resolution, greater wavelength coverage
and superior sensitivity in the FIR-submillimetre regime,we have learned that:

• the flux contamination in the FIR (λ ≥70µm) from line emission for SN 1987A and the Crab
Nebula is negligible (< 5−12%) and cannot be wholly responsible for the FIR emission seen
in SNRs.

• Observations in the FIR with SCUBA,Herscheland ALMA have revealed significant amounts
of cool dust is also formed in the ejecta of core collapse supernova.

• Observations and theoretical models both show that core-collapse supernova ejecta appear to
provide an environment in which efficient dust and molecule formation occurs, suggestive of
clumping in the ejecta.

• These works suggest that within a few hundred years after theexplosion, nearly 100% of the
metals predicted to be in the ejecta is in the form of dust and molecules.

• Observations of Type Ia SNRs indicate that they are not creating significant amounts of cool
SN dust in their ejecta (caveatthis is based on a sample size of two). The small mass of
hot dust seen in the Tycho and Kepler remnants is not freshly-formed SN dust, instead these
arise from swept-up interstellar or cirumstellar material(respectively).

The large amount of cool dust (and now molecules) therefore appears to be a significant fraction of
the ejecta metals in core-collapse SNe. Of course, it is possible that some, if not all, of this freshly
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formed dust is ultimately destroyed in the shock. Some other“known unknowns” include:

• how much of a difference would incorporating 3-D models of SNejecta make to the predicted
dust mass from theoretical models?

• Does dust formation occur in the aftermath of a deflagration Type Ia explosion?

• How long is the ejecta in a molecule and dust formation phase or does this continue through-
out the evolution of the remnant?

• How much dust is destroyed after encountering the reverse shock?

• What is the net yield from SN dust to the ISM?

• What can we learn from IR-submm observations of the mass, composition and chemistry of
the warm and cool debris at different layers of the ejecta, incomparison with optical and
X-ray-emitting ejecta material?

• What will millimetre observations tell us about the 3-D structure of the SN debris given the
ability to now see the entire velocity range of the ejecta with ALMA (e.g. [52,80,81])?

A larger sample of FIR/sub-mm observations of SNRs, particularly with ALMA would help
address some of these issues, including observing remnantswith ages ranging from 1 - 300 years
after the explosion. This entails building up a sample of resolved extragalactic SNRs, which re-
quires an even greater leap in resolution and sensitivity.

6. Next Steps

To separate out the different components in FIR images of SNRs (which include SN ejecta, swept-
up stellar winds, swept up ISM, synchrotron and line emission), we have seen that excellent sen-
sitivity and angular resolution is required. Resolved studies also allow one to investigate the com-
position of the dust - for instance, in the Crab, the dust is located in regions where the ejecta is
carbon-rich and is therefore likely to be composed of amorphous carbon [36]; in Cas A, the dust is
located in silicate-rich ejecta and is likely proto-silicate in nature [33]. Since the emissivity of dust
depends on its chemical make-up (where amorphous carbon is 2–5 times as emissive as silicate)
this also has serious implications on the way we convert FIR flux into dust mass [31].

Increased sensitivity and resolution would allow us to investigate dust formation in SNRs at
different stages in their evolution, by resolving young remnants (< 30 yrs) in the nearest galaxies
and also intermediate-age remnants, particularly in completing the 30–300 year gap in SNR age
from the current limited sample (Table 1). Current and future facilities might also offer the ability to
observe and resolve dusty SNRs at even larger distances, potentially providing a statistical sample
of SNRs. In order to determine what may be possible with future instrumentation, Table 2 lists
the fluxes of the warm, cool and cold dust components at 20 and 100µm for Cas A, the Crab and
SN1987A and predicts the fluxes and angular sizes of these SNRs out to a distance of 10 Mpc. The
sensitivity and wavelength coverage of current and future missions1 are displayed in Fig. 8 with
the expected mid-to-FIR SEDs of the Crab, Cas A and SN1987A asseen at a distance of 5 Mpc.

Although JWSTwill have 8 times the angular resolution ofSpitzerMIPs with a factor of 50
improvement in sensitivity, the wavelength coverage is limited to below 30µm (Fig. 8). Given the

1http://www.stsci.edu/jwst/science/sensitivity
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SNR Dust Model S20 S100 S20 @ 10Mpc S100 @ 10Mpc θ10Mpc

Cas A warm 82 K, 10−3 M⊙ 29 Jy 64 Jy 3.8µJy 7.4µJy 0.1′′

Cas A cool 35 K, 0.075M⊙ 5 mJy 25 Jy 10−4 µJy 2.9µJy ...
Crab warm 63 K, 10−3 M⊙ 6 Jy 44 Jy 0.2µJy 1.8µJy 0.07′′

Crab cool 34 K, 0.11M⊙ 5 mJy 101 Jy 10−4 µJy 4µJy ...
1987A cold 26 K, 0.4M⊙ 0.01µJy 0.1 Jy 10−4 µJy 2.5µJy 4 mas

Table 2:The integrated fluxes at 20 and 100µm from the warm and cool dust components from the ejecta

in Cas A [33, 35], the Crab Nebula [36] and for the cold dust in SN1987A (estimated from the greybody fit

- see Fig 3 in [38]). The predicted fluxes at 20 and 100µm from these components at a distance of 10 Mpc,

along with the angular extent (θ ) of the ejecta material at this distance, are also listed.

SEDs of previously published SNRs (see Table 2 and Fig. 8),JWSTbut will certainly be sensitive
enough to detect warm/hot SN dust with temperatures∼ 80K even at distances of 5 Mpc (Fig. 8),
though the∼60 K Crab and Cas A warm dust components would not be detected above 5σ within a
1 hour exposure beyond a distance of 100 kpc. As expected,JWSTdoes not observe at wavelengths
required to detect emission from the coldest, most massive,dust component (e.g. the 26 K observed
in SN 1987A) even from SNRs in our own galaxy.

It is, of course, still a worthwhile endeavour to continue observing the near and MIR emission
from SNRs (as demonstrated in [33, 76]), but it is worth remembering that this component is only
a tiny fraction of the dust mass. There is a silver lining however. The sensitivity ofJWSTis good
enough at 11-25µm, that it could be used to detect and resolve the more massivecool dust compo-
nent (∼ 0.1M⊙ at∼30-40 K) seen in the Cas A and the Crab SNRs. The expected integrated flux
at 20µm from the cool Crab dust is 5 mJy (Fig. 4, Table 2), well above the 1-hour 5-σ sensitivity
limit. However, this is only possible if there is no warm/hotdust in the same location - taking the
Crab again as an example, the 20µm flux expected from the tiny mass of warm dust is 5Jy, i.e.
1000 times brighter than the expected cool component at thiswavelength. But if there are regions
in the ejecta where only cool dust exists (i.e. no warm or hot dust), thenJWST would be able
to detect the cool dust component(though there would be no information on the peak of the dust
spectral energy distribution).

To detect and characterize the very massive cold dust component, sampling of the SED beyond
100µm is essential.SPICAis a proposed Japanese-European space mission in the FIR with 3.5 m
diameter mirror actively cooled to 4 K.SPICAwill provide a significant improvement in sensitivity
compared toHerschel- by a factor of 200 in overlapping bands - but no improvement in angular
resolution.SPICAwill therefore be suitable for observing local (extended) sources (∼arcminutes),
but will ultimately suffer from the same resolution issue asHerschel: it will be extremely difficult
to measure the dust mass in distant SNRs because of Galactic cirrus and the background emission
from host galaxies. Continued (and future) observations with ALMA will address many of these
uncertainties - its superior resolution and exquisite sensitivity will allow us to disentangle the dif-
ferent thermal and non-thermal FIR and radio components in Galactic and LMC/SMC SNRs on
unprecedented scales, providing a completely different view of the ejecta (e.g. as demonstrated
with Herschelfor the Crab Nebula [36] and with ALMA for SN 1987A [38]). Particularly with

14



Dust in Supernovae Remnants Haley Gomez

Figure 8: Sensitivity plot for current (Herschel, ALMA Cycle 0) and future MIR-FIR telescopes (JWST,
SPICA, ALMA full, SPIRIT, FIRI) with 5-σ , 1 hour limit (dashed lines). The predicted SEDs from Cas A,
the Crab and SN 1987Aat 5 Mpc are shown. The dark blue (top) SED is predicted from a generichot (82K)
dust model with mass 10−3M⊙. The light blue (second from top) SED is the total dust emission in the Crab
Nebula (∼ 0.116M⊙ from the coolT = 34 and warm 64K components [36]). The purple SED (third from
top) is the cool dust in Cas A (∼ 0.1M⊙, T = 35K [35]). The pink SED (bottom) is the cold dust from
SN1987A (∼ 0.2M⊙, T = 26K [38]).

SN1987A, ALMA can be used to further investigate the location and mass of dust, cool debris and
cool molecules within the ejecta (e.g. [52]). Perhaps most excitingly, given that the SN debris is
expanding at speeds of∼ 2000kms−1, the ejecta is beginning to collide with the ring (Fig. 5) and
we can expect to see in real time the passage of ejecta (and ring) dust as these components collide.
This requires continued monitoring efforts with ALMA, but potentially provides adirect test of
dust destruction via SN shocks.

With respect to increasing the sample size and moving to routine extragalactic studies of SNRs
in the FIR and sub-mm, improved sensitivityand sub-arcsecond angular resolution is needed
between 10-500µm, particularly to overcome confusion (Fig. 8). At 10 Mpc, the Crab Nebula
ejecta extends over 0.07′′ with integrated flux at of∼ 1.4µJy at 100µm (Table 2), requiring sub-
arcsecond resolution and extremely high sensitivity at FIR-submm wavelengths.

ALMA will allow us to observe the cold dust in SNRs outside of the Milky Way but it will
be difficult to detect SNRs at Mpc distances (Fig. 8) above thehost galaxies. In its most extended
configuration (when the array is completed), the resolutionwill range from an incredible 6–37 mas.
and only in its full configuration will ALMA be able to resolvethe location of the dust (whether it is
ejecta or swept-up CSM and/or ISM) at such large distances. The next generation of proposed FIR
space missions are therefore designed to address the need for better sensitivity, wider wavelength
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coverage and better resolution. The US-led SPIRIT [82] and EU-led FIRI [83] are proposed FIR
interferometers with design characteristics of 0.02′′ resolution at 100µm andµ Jy sensitivity across
the wavelength range 25–400µm. Since confusion will not be a problem with these instruments,
deep-field exposures (∼ 105 s) in the sub-mm will be possible; finally Cas A and Crab-like SNRs
at 10 Mpc will be routinely detected with FIRI at> 5σ in typical galaxy surveys.
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