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Summary 
 

Nucleic acid therapies may have significant potential for effectively treating genetic, 

hyper-proliferative or malignant skin conditions caused by aberrant gene expression. To 

be effective, the restorative pDNA or inhibitive siRNA must access the viable skin 

layers and cells in a stable and functional form, preferably without painful 

administration. Microneedles are able to penetrate the stratum corneum skin barrier in a 

minimally invasive manner to allow targeted delivery of therapeutic macromocules. To 

date, there are limited studies reporting the delivery of nucleic acids, particularly 

siRNA, to the skin using microneedle devices. 

 

A range of in vitro, ex vivo and in vivo skin models was developed to characterise 

nucleic acid delivery and functional response. In vitro studies conducted in both 

continuous and primary keratinocyte cultures provided proof-of-concept of efficient and 

non-toxic cell uptake and gene silencing with siRNA and moderately efficient gene 

expression with pDNA. In initial studies, pDNA and siRNA was pre-complexed with 

lipid-based transfection reagents, however, in the case of siRNA, coating of the 

lipoplexes onto microneedles resulted in a reduction in functionality. Hence, modified 

self-delivery (sd) siRNA formulations were used in subsequent microneedle delivery 

experiments. 

 

Stainless steel microneedles coated with reporter pDNA or sd-siRNA were successful in 

penetrating the stratum corneum barrier of ex vivo viable human breast skin. It was 

difficult to demonstrate equivocally both plasmid gene expression and functional gene 

silencing in the skin explants, which only remain viable for short periods. Delivery of 

pDNA and sd-siRNA to in vivo mouse skin however, resulted in demonstrable gene 

expression and gene silencing, particularly evident at the protein level, in an established 

transgenic reporter mouse skin model.  

 

Overall, these investigations generally support the use of the coated steel microneedles 

for the simple and potentially self-administrable delivery of nucleic acids to the skin.   
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1 General introduction 

Genetic manipulation in the skin is appealing because the skin is the largest, outermost 

organ of the body rendering it highly accessible to local therapeutic interventions. It is 

possible to specifically treat a confined skin area and monitor the treated region for 

clinical improvement or adverse effects, which can be surgically removed if necessary. 

Effective delivery of therapeutic nucleic acid across the cellular membrane is one of the 

greatest challenges in gene therapy. In the skin, this challenge is further compounded by 

the presence of the stratum corneum, a non-viable outermost barrier layer. The stratum 

corneum serves as protective interface between the body and external environment to 

prevent infiltration of harmful chemicals and pathogens as well as to prevent the loss of 

endogenous substances. The presence of the skin barrier layer limits transdermal entry 

of therapeutic substances to high potency molecules of low molecular weight (less than 

500 Daltons) and high lipophilicity (log P above 1). Nucleic acids are hydrophilic, 

negatively charged molecules that pose significant challenge not only for delivery 

across the skin barrier but also across the negatively charged cellular membrane. 

 

With the advances in gene therapy research, scientists have managed to elucidate 

candidate genes for a variety of skin conditions. However, effective gene delivery to the 

skin remains a challenge and the ability to develop a method for efficient and 

convenient nucleic acid delivery to the skin and skin cells for localised gene expression 

or gene silencing would provide the opportunity to treat a variety of debilitating genetic, 

hyper-proliferative or malignant skin conditions. Therefore, the research in this thesis 

aims to optimise methods for delivering nucleic acid, in particular plasmid DNA 

(pDNA) and small interfering ribonucleic acid (siRNA), to the skin via a coated steel 

microneedle system. This introductory chapter describes the structure and function of 

the human skin, gene therapy with emphasis on cutaneous gene therapy and non-viral 

cutaneous gene delivery approaches as well as the concept of microneedles as a physical 

skin disruption method for delivery of nucleic acid and other therapeutic molecules to 

the skin. 
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1.1 The human skin 

The human skin (Figure 1.1) consists of two layers, the epidermis and the dermis. 

Below the dermis is a fatty layer of adipose tissue called the subcutaneous layer 

(McGrath et al. 2004). Other parts of the skin include the hair follicles, which are 

present in up to 0.1% of the total skin surface (Otberg et al. 2004)  and the eccrine sweat 

glands, which are present in every region of the body in densities of 16 to 530 glands 

per cm2 and form pores on the skin surface (Taylor and Machado-Moreira 2013).  

 

 
Figure 1.1:  A cross-section schematic representation of the skin (taken from McGrath et 

al. 2004). 

 

1.1.1 Dermis  

The dermis is composed of a combination of cell populations including the fibroblasts, 

mast cell and histiocytes such as monocytes and macrophages. The dermis acts as a 

supporting matrix and is highly capable of water retention due to presence of 

macromolecules produced by linkage of polysaccharides and proteins. Two kinds of 

protein fibres are present in the dermal matrix – collagen, which provides tensile 

strength, and to a lesser extent elastin. The dermal layer also has a rich blood supply and 

nerve fibre bundles that provide sensory perception (McGrath et al. 2004).  

 

The skin’s blood supply is provided by a deep plexus that lies at the dermal-

subcutaneous junction and a superficial papillary plexus that lies at the overlying dermal 
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tissue, approximately 1 to 1.5 mm from the skin surface. Nutrients and oxygen are 

supplied to the skin via capillaries that extend from the superficial papillary plexus into 

the epidermal ridges to form the dermal papillary loops (Braverman 1997). Therefore, 

skin penetration of sharp objects, such as hypodermic needles into deeper skin layers 

impacts upon the dermal papillary loops and will inevitably cause skin bleeding 

(Coulman et al. 2006a).  

 

The cutaneous presence of nerve fibre bundles that are important for the perception of 

various stimuli, including pain, is believed to be present in the papillary dermis, 

alongside capillaries and lymphatic vessels. Although there is evidence that nerve fibres 

also exist in all cells of the viable epidermis, the role of the epidermis as a sensory 

tissue is still unclear (Boulais and Misery 2008; Hilliges et al. 1995). Penetration of 

sharp objects of micron dimensions restricted to the uppermost layers of the skin, 

avoiding the highly innervated dermal tissue, should be pain free or cause negligible 

pain upon insertion (Coulman et al. 2006a). 

 

1.1.2 Dermal-epidermal junction 

The skin epidermis is attached to the dermis through the cutaneous basement 

membrane, known as the dermal-epidermal junction. The dermal-epidermal junction 

allows epidermal-dermal adherence through anchoring protein filaments found in the 

basal cell membrane called hemidesmosomes. The dermal-epidermal junction also has 

the function of providing the epidermis with mechanical support and being a partial 

barrier for cells and macromolecules to exchange across the junction (Briggaman and 

Wheeler 1975; Burgeson and Christiano 1997).  

 

There are multiple protein components that are present in the dermal-epidermal junction 

and they play an important role in morphogenesis, wound healing and skin remodelling 

(Burgeson and Christiano 1997). When the proteins are mutated and the dermal-

epidermal junction structures have been disrupted, inherited skin disorders and skin 

diseases manifest (Figure 1.2).  An example of such skin diseases is epidermolysis 

bullosa, which is a group of heritable skin disorders characterised by skin blistering and 

mucous membranes (Burgeson and Christiano 1997; Christiano and Uitto 1996). 
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Figure 1.2: A schematic representation of cell layers in the epidermis and dermal-

epidermal junction, with indication of genetic diseases that affect the skin 

layers. The genetic diseases are listed on the left, and the specific gene products, 

the proteins are listed on the right. (EB: epidermolysis bullosa; EHK: 

epidermolytic hyperkeratosis; PPK: palmoplantar keratosis; and BPAG: bullous 

pemphigoid antigen) (taken from Christiano and Uitto 1996) 

 

1.1.3 Epidermis  

The human skin epidermis can be considered as a two-layered structure of viable 

epidermis and stratum corneum. The viable epidermis is a stratified squamous 

epithelium of approximately 50 to 100 µm in thickness. The viable epidermis, 

composed mainly of keratinocytes, is formed by cell division in the basal layer and the 

progressive differentiation and maturation of cells as they migrate towards the stratum 

corneum (Bickenbach 2001; McGrath et al. 2004; Preat and Dujardin 2001). This 

results in several distinguishable layers of epidermal cells. The cells in the viable 
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epidermis are connected intercellularly to adjacent and overlying cells to form a 3-

dimensional (3D) lattice through membrane junctions called desmosomes and 

hemidesmosomes (Eckert 1989; Menon 2002).  

 

Apart from the durable and cohesive keratinocyte cells, several other cell populations 

exist, such as the melanocyte cells which have a role in ultraviolet protection, the 

Langerhans’ cells which have a role in immunological functions and the Merkel cells, 

which are important for sensation (Bressler and Bressler 1989; McGrath et al. 2004; 

Odland 1958). The outermost layer of the skin, the stratum corneum is the main barrier 

for transdermal drug delivery. 

 

1.1.3.1 Viable epidermis 

The aim of the thesis is to optimise delivery of nucleic acids across the stratum corneum 

and to analyse subsequent transgene expression or gene silencing within the cells in the 

viable epidermis of the skin. Therefore, it is important to understand the role and 

characteristics of cells in each sublayer of the epidermis. The stratified epidermis of 

human skin is divided into four distinct layers: stratum basale, stratum spinosum and 

stratum granulosum in the viable epidermis, and the non-viable stratum corneum. 

Keratinocyte cells in the viable epidermis differentiate and mature to ultimately form 

the stratum corneum (Menon 2002). 

 

The stratum basale is a monolayer of columnar basal cells located immediately above 

the dermal-epidermal junction, which is anchored to the basement membrane via 

adhesion molecules known as integrins, forming a specialised adhesion structure known 

as hemidesmosomes (Sonnenberg et al. 1991). In the epidermis, only cells within the 

basal layer are actively dividing due to the presence of highly proliferative stem cells 

and transit amplifying cells (Kaur and Li 2000). These basal cells express the K5 and 

K14 keratin filaments (Nelson and Sun 1983); differentiate after a number of divisions, 

detach from the basement membrane and migrate into the suprabasal layers (Kaur and 

Li 2000). The tissue renewal and barrier function of the skin is maintained by the 

regeneration of the proliferative basal cells (Fuchs 1990; Kaur and Li 2000).  In order to 

successfully manipulate gene expression, it is crucial to deliver nucleic acid to the 

appropriate target cells (Mulligan 1993). The major intracellular barrier to gene therapy 
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is the nuclear envelope (Dean et al. 2005). In dividing cells, such as basal keratinocytes, 

the nuclear envelope breaks down, allowing nuclear translocation of exogenous nucleic 

acid for proficient gene expression (Nicolau and Sene 1982). Therefore, cells within the 

stratum basale should be the prime targets for cutaneous gene delivery 

 

The stratum spinosum is a suprabasal layer located above the stratum basale. This layer 

of cells has a spiny appearance due to the abundance of desmosomes joining adjacent 

cells (Eckert 1989). The cells in this layer are non-dividing but metabolically active, 

synthesising the K1 and K10 keratin filaments (Eichner et al. 1986; Fuchs 1990). 

Lamellar bodies that are rich in lipids are also present in the stratum spinosum (Menon 

2002). When compared to cells in the stratum basale, cells in the stratum spinosum are 

larger and appear flattened (Eckert 1989; Eichner et al. 1986; Fuchs 1990).  

 

The stratum granulosum consist of cells rich in keratohylin granules that have high 

electron density and are composed of profillaggrin, K1 and K10 keratin filaments and 

other proteins (Eckert 1989; Menon 2002). There is an increased synthesis and 

accumulation of keratin, which contributes to the cells appearing progressively flattened 

and larger, as they differentiate and migrate towards the upper layers of the viable 

epidermis (Menon 2002). Even as the stratum granulosum cells undergoes the final 

keratinisation steps, the cells contain organelles and are metabolically active, rendering 

this a viable cell layer (Eckert 1989). Lipogenesis is also increased, resulting in the 

increased presence of lipid rich lamellar bodies that eventually fuse with the cell 

membrane within the upper layers of cells in the stratum granulosum and their lipid 

content is eventually released into the extracellular matrix (Eckert 1989; Elias et al. 

1988; Menon 2002). Cell viability within the upper layers begins to be compromised 

when essential cell organelles are degraded prior to the process of cornification to form 

terminally differentiated cells in the stratum corneum (Menon 2002).  

 

1.1.3.2 Stratum corneum 

As the outermost organ of the human body, the main biological function of the skin is 

as a physical barrier for preventing permeation by harmful chemicals and pathogens as 

well as for protecting the body from the loss of endogenous materials. This physical 

barrier is provided by the non-viable outermost layer above the viable epidermis, the 
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stratum corneum. The stratum corneum is an extremely thin layer (approximately 10 to 

20 µm in thickness) consisting keratin-filled corneocyte cells that are without nuclei, 

anchored in a lipophilic matrix (Bouwstra and Honeywell-Nguyen 2002; Christophers 

1971; Naik et al. 2000; Scheuplein and Blank 1971). The corneocyte cells are 

keratinocytes, which have been terminally differentiated and are constantly being 

produced, maintained and renewed by the viable epidermis (Bouwstra and Honeywell-

Nguyen 2002; Menon and Elias 2001). The stratum corneum cells form a very densely 

cross-linked protein structure, often described as the ‘brick and mortar’ structure where 

the ‘bricks’ represents corneocyte cells with hydrated keratin that are interspersed 

within a ‘mortar’ matrix composed of multiple lipid bilayers of ceramides, fatty acids 

and cholesterol (Elias 1983, 1988). Although the stratum corneum is non-viable and 

unable to regenerate, it is in a dynamic state. It is continuously being renewed and 

maintained by different enzymes and continuous shedding of the outer stratum corneum 

layers (Elias et al. 1988; Menon and Elias 2001). 

 

1.1.4 Transdermal drug entry routes 

The stratum corneum is a sophisticated lipophilic molecular architecture that functions 

as a physical barrier against permeation of water, penetration of exogenous substances 

and invasion of microbes and parasites (Menon and Elias 2001). The penetration of 

drug molecules through the lipid rich matrix surrounding corneocytes in the stratum 

corneum and in between epidermal cells in the viable epidermis represents the 

intercellular lipidic route of transdermal delivery (Figure 1.3). Experimental data and 

modelling of skin penetration by passive diffusion have shown that increasing 

molecular weight more than 500 Dalton (Da) or decreasing log P below 1 (decreasing 

lipophilicity) strongly decreases transdermal delivery (Bos and Meinardi 2000; Idson 

1971). There are approximately 20 drug molecules approved by the FDA that are 

currently available in the market as 40 transdermal products (patches) and all the 

molecules are highly potent and relatively lipophilic with molecular weights below 400 

Da (Kim et al. 2012b; van der Maaden et al. 2012). Therefore, macromolecules that are 

hydrophilic like protein, peptide and nucleic acid do not penetrate the skin through the 

transdermal pathway.   



	  
	  
	  

	  

	  
GENERAL INTRODUCTION 

	  
	   	  

9	  

 
 

Figure 1.3: A cross-sectional diagram of the skin, with indication of transdermal drug 

penetration routes including the transappendageal, transfollicular, 

transcellular and intercellular pathways (taken from Geusens et al. 2011).  

 

Although the stratum corneum constitutes a major barrier to drug penetration, the 

existence of both sweat glands and the pilosebaceous unit (sebaceous gland and hair 

follicle) in the skin is believed to provide pathways through which small lipophilic 

molecules and vesicular systems diffuse into the skin (El Maghraby and Williams 2009; 

Otberg et al. 2008). The size of the follicular opening in human skin range an average of 

between 70 and 170 µm in a density of between 14 follicles per cm2 (calf) and 455 

follicles per cm2 (lateral forehead), depending on gender and ethnicity (Mangelsdorf et 

al. 2006; Otberg et al. 2004). However, the role of the transappendageal route for 

transdermal drug delivery is debatable as they are only present in less than 0.1% 

(Otberg et al. 2004) of total skin surface area (Geusens et al. 2011). A study reported 

that microparticles applied locally to the skin were found in the hair follicle and the 

upper layer of stratum corneum but not into the viable epidermis (Lademann et al. 

1999). Another route through which drugs may enter is the transcellular route but it is 

unclear whether the transcellullar pathway contributes to transdermal drug penetration 

1. Introduction

In general, gene therapy is defined as the introduction of a ther-
apeutic gene into a cell, whose expression can lead to a cure of a
disease or offer a transient advantage for e.g. tissue growth, vacci-
nation or anticancer treatment (Morgan and Anderson, 1993). To
achieve this goal, a therapeutic gene must first be efficiently deliv-
ered to the specific target cell. Secondly, its expression must reach
and sustain a certain level to achieve its therapeutic purpose.
Thirdly, to optimize the therapy, a pharmacological agent should
reversibly control the level and timing of the gene’s expression
within the target cells. In this manner, the therapeutic dose can
be fine-tuned to the requirements of the treatment, and stopped
when it is no longer needed.

Two basic approaches towards the therapeutic gene delivery
into the skin involve ex vivo and in vivo gene delivery. Ex vivo deliv-
ery involves a skin biopsy to harvest cells for growth and gene
insertion in culture followed by re-grafting to the patient. In con-
trast to the ex vivo approach, in vivo gene transfer delivers genetic
material directly to the patient’s intact skin tissue and is therefore
generally more simple and direct. Many in vivo gene transfer sys-
tems have been developed for cutaneous delivery, using both viral
and non-viral vectors. These systems include topical gene applica-
tion, direct intradermal injection, electroporation, iontophoresis,
sonophoresis and gene guns (Carretero et al., 2006; Khavari et al.,
2002; Kikuchi et al., 2008). Some viral vectors (lentiviral, retroviral)
allow prolonged gene expression in vivo because they are capable
of integrating into the genome of various skin cells and even epi-
dermal stem cells (Baek et al., 2001; Ghazizadeh et al., 1999). Intra-
dermal or subcutaneous injection is the preferred method of choice
for their introduction. For diseases involving recessive loss-of-
function mutations, such as those involved in many genodermatoses,
simple re-introduction of the wild-type gene via genomic insertion
may be sufficient for prolonged correction of the phenotype
(Kikuchi et al., 2008). Although recombinant viruses are the most
effective vehicles to deliver therapeutic nucleic acids into the cells,

the genetic material that they can carry is limited and they can
potentially induce insertional oncogenesis and severe immuno-
genic responses. As a consequence, several non-viral gene delivery
systems have been developed for safe delivery of therapeutic nu-
cleic acids into the skin. Topical application of plasmid DNA is an
attractive alternative approach for gene delivery. Although only
transient expression can be obtained, it can be useful for various
cutaneous gene therapy applications, if successfully developed.
Lipid-based delivery vehicles for topical DNA application onto the
skin offer advantages over other transfer systems. It is a painless,
cheap and easily applicable method for large surface areas on the
body. In addition, it is patient compliant, safe and can be used
for home-based settings. However, they are considered to be inef-
ficient as they tend to accumulate on the skin surface. Efficient
gene therapy depends in the first place on efficient delivery into
the target cells. The skin encompasses several extracellular and
intracellular barriers that need to be overcome by specialized
delivery techniques. The present review summarizes the different
vesicular lipid-based systems for topical delivery of DNA to and
through the skin, mentioning their limitations and particular
applications.

2. The skin as a target organ

Human skin is the largest organ of the human body and is an
interesting candidate for gene therapy because of its easy accessi-
bility. The skin structure and cell types are well understood, which
makes the skin relatively easy to manipulate. Additional advanta-
ges include the ability to visually monitor the genetically modified
region and the possibility of surgical removal of aberrant tissue if
unwanted side-effects occur (Greenhalgh et al., 1994). Human skin
consists of three layers, beginning from the surface; the epidermis,
the dermis and subcutaneous tissue or subcutis, each containing
their own specific cells and respective functions (Kanitakis, 2002)
(Fig. 1). The majority of the epidermis is comprised of keratinocytes.
The high turnover and self-renewing capacity of the epidermis

Fig. 1. Schematic cross-sectional representation of the skin. Arrows indicate the possible routes of particle penetration through skin; transappendageal, transfollicular,
transcellular and intercellular pathways. Several factors determine particle penetration. Depending on the size of the particle, different penetration routes can be followed.
The size of the sweat pores and the follicular openings of the skin range between 10 and 210 lm. The lipids of the intercellular route are assembled in parallel head–head tail–
tail repeating bilayers, with the tail–tail region known as the intercellular lipidic route of skin absorption and the head–head regions constituting the hydrophilic SC aqueous
pores. Particle dimensions below 6–7 or 36 nm might be able to be concurrently and respectively absorbed through these pathways. It is questionable whether the
transcellular pathway forms an important route for cutaneous penetration.

200 B. Geusens et al. / European Journal of Pharmaceutical Sciences 43 (2011) 199–211
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(Geusens et al. 2011) as the complexity of the skin layers and cell membrane bilayer 

probably prevents free movement of drugs in and out of cells.  

 

As permeability of drug substances across the stratum corneum of healthy skin is 

restricted, different strategies have been developed to improve penetration of 

hydrophilic and large molecules across the skin for both therapeutic and cosmetic 

purposes (Barry 2001; Brown et al. 2006). Ideally, a drug delivery enhancer should be 

able to disrupt the stratum corneum in a reversible manner to increase skin permeability 

for a short period of time and provide an additional force to transfer drugs into and 

through the skin, whilst avoiding injury to the tissues in the treatment area (Prausnitz 

and Langer 2008). Based on these strategies, various chemical and physical methods 

have been developed for use alone or in combination to increase transdermal 

penetration as reviewed by numerous authors (Barry 2001; Brown et al. 2006; Cross 

and Roberts 2004; Prausnitz and Langer 2008; Preat and Dujardin 2001). Examples of 

chemical methods are chemical enhancers such as surfactants and liposomes; and 

biochemical enhancers such as peptides. Chemical enhancers are able to modify skin 

barrier by disrupting the stratum corneum and also enhance drug solubility, which 

improves drug delivery driven by an increase in drug concentration gradient (Prausnitz 

and Langer 2008; Preat and Dujardin 2001). A few physical methods that have been 

exploited include iontophoresis, electroporation, cavitational ultrasound, microneedle 

devices, skin abrasion, skin puncture and perforation, needleless injection, suction 

ablation and skin stretching (Barry 2001; Brown et al. 2006; Cross and Roberts 2004; 

Prausnitz and Langer 2008; Preat and Dujardin 2001; Villemejane and Mir 2009). The 

use of chemical and physical enhancers to improve nucleic acid penetration across the 

skin and into cells is described further in section 1.3. 
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1.2 Skin gene therapy 

1.2.1 Gene therapy  

Morgan and Anderson (1993) defined gene therapy as “the introduction of an 

exogenous genetic material to the cells of an individual to achieve therapeutic benefit” 

(Morgan and Anderson 1993). This is a broad definition of gene therapy, which reflects 

on the potentially wide application of gene therapy including but not exclusive to (i) 

gene replacement to re-introduce a defective or missing gene, for example in monogenic 

recessive genetic disorders such cystic fibrosis, (ii) gene therapeutics to introduce gene 

expressing a protein with specific pharmacological effect, for example growth factors 

(iii) gene encoding a suicidal enzyme, for example in cancer treatment (iv) DNA 

vaccination to deliver gene encoding specific antigens to create an adaptive immune 

response and (v)  RNA interference to destruct or inhibit translation of messenger RNA 

(mRNA), thus preventing expression of targeted genes to curb diseases caused by 

dominant negative mutation or to combat viral infections (Gong et al. 2005; Preat and 

Dujardin 2001).  Initial research on gene therapy mainly targeted monogenic diseases 

but it is now apparent that gene therapy may be applied for many polygenic and multi-

factorial disorders. Treatment of monogenic disorders is relatively straightforward, 

where gene therapy can be applied to target the pre-identified defective gene but the 

choice of gene to treat multi-factorial disease is less apparent. 

 

Apart from identifying a candidate gene, the greatest challenge in gene therapy is 

perhaps the effective delivery of therapeutic gene into human cells. In order to be 

effective, a gene delivery system should fulfil certain criteria. Firstly, an ideal gene 

delivery system should be able to protect the therapeutic nucleic acid against 

degradation by cellular nucleases. Next, it should be able to efficiently deliver genetic 

materials into a sufficiently large population of cells within targeted diseased tissues so 

that a biological effect can be achieved and gene expression is mediated for a sustained 

period of time. Equally as important, a gene delivery system should be safe and not 

adversely affect the recipient (Gao et al. 2007; Ledley 1994; Preat and Dujardin 2001). 

It has been a challenge to identify a gene delivery system that meets all of these criteria.  

 

In order to deliver a gene into a cell, viral and non-viral vectors have been developed 

over several decades. Viruses represent an ideal model for gene delivery, as they are 
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capable of carrying out each of the required steps for gene delivery into a cell with high 

efficiency for long-term gene expression (Gao et al. 2007; Walther and Stein 2000). 

Examples of medical disorders, which have demonstrated clinical successes using viral 

gene therapy, include severe combined immunodeficiency (SCID) (Cavazzana-Calvo et 

al. 2000), haemophilia (Powell et al. 2003) and retinal degeneration (Cideciyan et al. 

2013).  Several classes of viral gene delivery vectors widely researched and employed 

are herpex simplex virus, adeno-associated virus, adenovirus, retrovirus and lentivirus 

(Howarth et al. 2010; Vannucci et al. 2013; Walther and Stein 2000). 

 

One of first gene therapy clinical trials on human involved the use of retroviral vectors 

to introduce the adenosine deaminase (ADA) gene into the T cells of children with 

SCID (Blaese et al. 1995). Thereafter, several other viral gene therapy clinical trials 

were also performed using retroviral vectors but serious adverse reactions such as acute 

immune response, immunogenicity, and insertional mutagenesis were reported (Hacein-

Bey-Abina et al. 2008; Howe et al. 2008; Vannucci et al. 2013). Another example of 

viral vector that has been tested in human is the adenovirus vectors, whereby it was 

used for the treatment of ornithine transcarbamylase deficiency. The study reported 

death of an 18-year old male patient due to multiple organ failure as a result of severe 

anti-adenovirus vector immune response caused by over-dosage of the viral vector 

(Raper et al. 2003).  

 

There are advantages and disadvantages to using different classes of viral vectors, 

which has recently been reviewed by Vannucci et al. (2013) and Howarth et al. (2010). 

Several viral vectors such as adenovirus, adeno-associated virus and lentiviral vectors 

are capable of transducing both non-dividing and dividing cells whilst retroviral vectors 

only transduce dividing cells. Adenovirus and poxvirus vectors are highly immunogenic 

but adeno-associated viral vectors and retroviral vectors have low immunogenicity. 

Retroviral and lentiviral vectors cause integration of the vector genome into the host cell 

genome, enabling stable long-term gene expression in transduced cells whereas 

adenovirus, herpes simplex virus and poxvirus vectors do not integrate into the host cell 

genome. The use of viral vectors is also limited by the size of the genetic material that 

recombinant viruses are able to encode and biosafety concerns associated with the 

production of viral vectors (Howarth et al. 2010; Vannucci et al. 2013).  
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The limitations and clinical safety issues associated with viral gene delivery have 

motivated the development of non-viral gene delivery systems. The advantages of non-

viral gene delivery are low toxicity, low immune response and are easy to synthesise but 

are compromised by being less efficient in vivo and having short duration of gene 

expression (Hart 2010; Wang et al. 2013). Non-viral gene delivery methods can be 

subdivided into physical and chemical approaches. The physical approaches of non-

viral gene delivery involve carrier-free gene delivery of naked nucleic acid and uses a 

physical force to permeate the cell membrane and aid cellular gene transfer (Gao et al. 

2007). Examples of physical approaches include needle injection (Wolff et al. 1990), 

electroporation (Neumann et al. 1982), gene gun (Yang et al. 1990), ultrasound (Kim et 

al. 1996) and hydrodynamic delivery (Liu et al. 1999). The chemical approaches of non-

viral gene delivery uses synthetic or naturally occurring compounds, including cationic 

lipid or polymer as carriers to introduce therapeutic genetic materials into cells (De 

Smedt et al. 2000; Felgner et al. 1987; Zhang et al. 2004; Zhang et al. 2007).  

 

1.2.2 Gene therapy targeted to the skin 

Gene therapy in the skin is appealing as the skin has a large and readily accessible 

surface area that permits nucleic acid access to target cells within the skin (Khavari et 

al. 2002; Naik et al. 2000; Preat and Dujardin 2001). Nucleic acid delivery to the skin 

can easily be confined to the affected skin area and the treated region can conveniently 

be monitored visually or with biopsy. If an unwanted side effect is encountered during 

treatment, aberrant tissue can be surgically removed (Geusens et al. 2009b; Preat and 

Dujardin 2001). Nucleic acid has low lipophilicity, therefore systemic absorption of 

nucleic acid applied to the skin is minimal and should result in negligible systemic 

toxicity (Fattal and Bochot 2008).  

 

There are several limitations to gene therapy targeted to the skin, which has previously 

been reviewed by Coulman et al (2006a). Cutaneous gene expression or silencing is 

usually short-term and inefficient due to continuous epidermal regeneration over 2 to 4 

weeks, resulting in gene expression or silencing effect that declines over a 2 to 7 day 

period (Coulman et al. 2006a; Hengge 2006; Preat and Dujardin 2001). Gene therapy 

aimed at cells within the skin epidermis (mainly keratinocyte cells) has a limited 

targeting range, as the viable epidermis is a thin region of cells approximately 50 to 100 
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µm in thickness below the stratum corneum (Coulman et al. 2006a). Localised delivery 

of nucleic acids, deposited extracellularly, also necessitates diffusion through tightly 

packed skin cells to reach enough defective cells for clinically effective genetic 

correction (Coulman et al. 2006a). Gene delivery systems used for cutaneous gene 

therapy should avoid stimulation of immune response to be clinically safe for use 

(Burnett and Rossi 2012; Coulman et al. 2006a). These limitations need to be addressed 

for safe and effective clinical application of localised cutaneous gene therapy (Burnett 

and Rossi 2012; Coulman et al. 2006a; Hengge 2006). 

 

Both viral and non-viral vectors have been exploited for nucleic acid delivery to the 

skin. A number of viral vectors that have been considered for cutaneous gene delivery 

include adenovirus, adeno-associated virus, retrovirus and lentivirus (Ferrari et al. 2005; 

Teo et al. 2009). Adenoviral or adeno-associated vectors are highly efficient but gene 

expression with these vectors is short-term due to rapid loss from continually renewing 

epidermis and cell division in human skin cells (Ferrari et al. 2005; Teo et al. 2009). 

Retroviruses have also been investigated for cutaneous gene delivery but the use of 

retrovirus for gene therapy became undesirable when clinical trials revealed serious 

adverse effects caused by random retroviral integration into the host chromosome 

resulting in insertional oncogenesis (Hacein-Bey-Abina et al. 2008; Hacein-Bey-Abina 

et al. 2003; Howe et al. 2008). Thereafter, significant interest developed in using 

lentiviral vectors for cutaneous gene therapy. Lentiviral vectors are reportedly efficient 

and result in long-term expression in both dividing and non-dividing human skin cells 

(Ferrari et al. 2005; Serrano et al. 2003; Teo et al. 2009) as well as in in vivo human 

skin equivalent grafted onto immunodeficient mice (Woodley et al. 2004). However, 

safety concerns associated with viral gene delivery have hindered the clinical progress 

of lentiviral vectors (Vannucci et al. 2013). Due to the risk and disadvantages associated 

with viral gene delivery, the research in this thesis involves only non-viral approaches 

for nucleic acid delivery to the skin. 

 

1.2.3 Medical conditions with potential for cutaneous gene therapy 

The knowledge on skin pathobiology is ever increasing and recent advancement in 

molecular genetics is leading to a greater understanding towards the genetic basis of 

various skin conditions. Localised gene therapy could offer an effective personalised 
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treatment for many skin conditions including inheritable skin diseases, skin cancer and 

wound healing. Nucleic acid-based therapy can be used for the treatment of genetic skin 

disorders that could potentially be corrected through genetic modification. 

 

Monogenic recessive disorders occur as a consequence of gene mutation that results in 

deletion of a particular gene essential for maintaining normal cell or tissue function. 

Examples of monogenic recessive disorders that manifest in the skin are xeroderma 

pigmentosum, simplex and dystrophic forms of epidermolysis bullosa and x-linked 

ichthyosis (Del Rio et al. 2004; Uitto 2009; Uitto and Richard 2004). Monogenic 

recessive disorders could potentially be treated by non-viral insertion of a normal copy 

of gene through pDNA generated using recombinant DNA technologies for expression 

of the missing gene to restore gene function (Kikuchi et al. 2008). 

 

Dominant negative disorders occur when gene mutation results in aberrant expression of 

protein that adversely affects the function of its normal counterpart (Carretero et al. 

2006; Geusens et al. 2009b). Examples of dominant negative skin disorders are the 

recessive form of epidermolysis bullosa simplex, the recessive form of dystrophic 

epidermolysis bullosa, hemidesmosomal epidermolysis bullosa and pachyonychia 

congenita (Leachman et al. 2008; Uitto 2009; Uitto and Richard 2004). Dominant 

negative disorders can be treated by supressing the mutated gene through RNA 

interference (RNAi) or by increasing the expression of the normal gene in a controlled 

manner to counteract the activity of the overexpressed counterpart (Carretero et al. 

2006). Other skin conditions caused by aberrant gene expression which may be treated 

with gene silencing therapy include allergic skin diseases (Inoue et al. 2007; Ishimoto et 

al. 2008; Ritprajak et al. 2008), alopecia (Nakamura et al. 2008),  skin malignancy 

(Hoeflich et al. 2006; Matsumoto et al. 2006; Nakai et al. 2010; Nakai et al. 2007; 

Sharma et al. 2005; Tao et al. 2005; Tran et al. 2008), psoriasis (Funding et al. 2006; 

Jakobsen et al. 2009; Johansen et al. 2006), hyperpigmentation (Kim et al. 2012a), and 

wound healing (Thanik et al. 2007). 

 

The skin also has great potential as a target for DNA immunisation due to the presence 

of Langerhans cells in the viable epidermis and dermal dendritic cells that could acquire 

antigens expressed in cells after DNA vaccination and then migrate to the regional 

lymph node area to stimulate immune responses (Falo Jr 1999; Larregina and Falo 
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2005; Peachman et al. 2003; Tuting et al. 1998). DNA vaccines can be delivered to the 

skin in the form of pDNA encoding for exogenous antigenic protein, mainly to 

keratinocyte cells in the epidermis (Larregina and Falo 2005). Transgenic antigens that 

are subsequently expressed are taken up by neighbouring Langerhans cells to stimulate 

an immune response (Larregina and Falo 2005).  

 

1.2.4 RNA interference (RNAi) 

In comparison with gene therapy that leads to gene expression, gene silencing is a 

relatively new concept, having been introduced only 15 years ago (Fire et al. 1998). In a 

Nobel prize winning discovery, it was found that double-stranded RNA (dsRNA) was 

considerably more effective than single stranded RNA (ssRNA) at inducing RNAi in 

Caenorhabditis elegans (a nematode) (Fire et al. 1998). However, dsRNA used in initial 

studies were long (more than 30 nucleotides), which renders them potent inducers of an 

interferon response in more complex organisms (Stark et al. 1998), therefore preventing 

the translation of the initial results into human. Shortly thereafter, small interfering 

RNA (siRNA) described as ‘small antisense RNA’ was discovered (Hamilton and 

Baulcombe 1999). The first successful introduction of synthetic siRNA to induce RNAi 

in mammalian cell was reported in a paper published in 2001, whereby 21-nucleotide 

synthetic siRNA complexed to lipid based transfection reagents was delivered to human 

embryonic kidney and HeLa cells (Elbashir et al. 2001a).  

 

This initial sequence of discoveries caused an increased interest in RNAi research and 

there are countless publications that have described the potential of siRNA in vitro and 

in vivo (Grimm 2009). Following the first successful delivery of siRNA to mice in vivo 

(McCaffrey et al. 2002) and numerous other pre-clinical studies in small animals, RNAi 

therapies, mainly with siRNAs have entered Phase I, II and III clinical trials for diseases 

such as wet age-related macular degeneration, diabetic macular oedema, intraocular 

hypertension, respiratory syncytial virus infection, familial adenomatous polyposis, 

hepatitis C, acquired immune deficiency syndrome (AIDS), solid tumours and 

pachyonychia congenita (Burnett and Rossi 2012; Castanotto and Rossi 2009). Results 

from the clinical trials (Table 1.1) were mixed and the clinical progress of the RNA-

based therapies is impeded by issues such as efficiency and specificity of delivery, 

stability of the RNA drug, prolonged duration of drug action, off target toxicity, 
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immunogenicity (Burnett and Rossi 2012). These issues could be overcomed by 

refining the biochemical properties of siRNA and its delivery vectors for more efficient 

and tissue-specific delivery (Burnett and Rossi 2012). 
 

Table 1.1:  An overview of anti-miRNA and siRNA/shRNA therapeutics in clinical trials 

(taken from Burnett and Rossi 2012).  

Disease Drug Delivery 
route Target Vehicle Company Phase Status 

Advanced solid 
cancer 

Atu027 IV PKN3 siRNA-
lipoplex 

Silence 
Therapeutics 

I Ongoing 

AKI and DGF I5NP IV P53 Naked siRNA Quark Pharma II Ongoing 

AMD AGN-745 IVT VEGF-R1 Naked siRNA Allergan/Sirna II Terminated 

AMD/DME Bevasiranib IVT VEGF Naked siRNA Opko Health III Terminated 

AMD/DME PF-655 IVT RTP801 Naked siRNA Quark/Pfizer II Completed 

Asthma Excellair Inhalation Syk kinase unknown ZaBeCor II Ongoing 

CML Bcr-Abl siRNA IV Bcr-Abl Anionic 
liposome 

University 
Duisburg 

I Completed 

Dry eye syndrome SYL1001 Ophthalmic 
drops 

TRPV1 Naked siRNA Sylentis I Ongoing 

FAP/colon cancer CEQ508 Oral Beta catenin tkRNAi in E. 
Coli 

Marina Biotech I Ongoing 

HCV SPC3649 (LNA) SC mir-122 Naked LNA Santaris IIa Ongoing 

HIV Tat/Rev shRNA Ex vivo 
transplant 

HIV Tat and 
Rev 

Lentivirus City of 
Hope/Benitec 

0 Ongoing 

Hypercholesterolemia TKM-ApoB IV Apo B SNALP Tekmira I Terminated 

Intraocular pressure SYL040012 Ophthalmic 
drops 

ADRB2 Naked siRNA Sylentis II Ongoing 

Metastatic melanoma iPsiRNA Ex vivo 
intradermal 
injection 

LMP2, LMP7, 
MECL1 

Transfection Duke University I Ongoing 

NAION QPI-1007 IVT Caspase 2 Naked siRNA Quark Pharma I Ongoing 

Pachyonychia 
congenita 

TD101 Intralesional 
injection 

KRT6A(N171K) Naked siRNA TransDerm/IPCC Ib Completed 

PDAC siG12D LODER EUS biopsy 
needle 

KRASG12D LODER 
polymer 

Silenseed Ltd I Ongoing 

RSV ALN-RSV01 Nebulisation 
or intranasal 

RSV 
Nucleocapsid 

Naked siRNA Alnylam/Cubist IIb Ongoing 

Solid tumours TKM-PKL1 IV PLK1 SNALP Tekmira I Ongoing 

Solid tumours ALN-VSP02 IV KSP and VEGF SNALP Alnylam/Tekmira I Completed 

Solid tumours CALAA-01 IV RRM2 Cyclodextrin 
nanoparticle, 
TF and PEG 

Calando Pharma I Ongoing 

Solid tumours FANG vaccine Ex vivo IV Furin and GM-
CSF 

Electroporation Gradalis Inc.  II Ongoing 

TTR-mediated 
amyloidosis (ATTR) 

ALN-TTR01 IV TTR SNALP Alnylam I Ongoing 

 

AKI = acute kidney injury; DGF = delayed graft function; AMD = age-related macular degeneration; DME = diabetic macular 

oedema; CML = chronic myeloid leukaemia; FAP = familial adenomatous polyposis; HCV = hepatitis C virus; HIV = human 

immunodeficiency virus; NAION = optic nerve-related visual loss; PDAC = pancreatic ductal adenocarcinoma; RSV = respiratory 

syncytial virus; TTR = transthyretin; IV = intravenous; IVT = intravitreal; SC = subcutaneous; EUS = endoscopic ultrasound; PKN3 

= protein kinase N3; VEGF = vascular endothelial growth factor; VEGF-R1 = vascular endothelial growth factor receptor-1; 

RTP801 = proangiogenic factor; Syk = spleen tyrosine kinase; Bcr-Abl = fusion oncogene expressed in CML; TRPV1 = transient 

receptor potential cation channel subfamily V member 1; mir-122 = microRNA-122; ADRB2 = beta-2 adrenergic receptor; LMP = 

immunoproteasome subunit; KRT6A = keratin 6a gene; KRASG12D = KRAS oncogene; PLK1 = polo-like kinase 1; KSP = kinesin 

spindle protein; RRM2 = ribonucleotide reductase; GM-CSF = granulocyte-macrophage colony stimulating factor; tkRNAi = 

TransKingdom RNA interference; LNA = locked nucleic acid; SNALP = stable nucleic acid lipid particle; LODER = Local Drug 

EluteR; TF = transferrin; PEG = polyethylene glycol. 
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1.2.4.1 Small double stranded RNAs  

siRNAs or silencing RNAs are a group of small dsRNA molecules that is usually 20 – 

25 nucleotides in length and are designed with specific sequences that is homologous to 

sequences in the target mRNA. siRNA has many biological functions and its most 

notable function is in the RNA interference (RNAi) pathway (Figure 1.4). Through 

RNAi, siRNA interferes with the expression of a target gene to cause silencing of gene 

expression (Elbashir et al. 2001c; Hamilton and Baulcombe 1999; Hammond et al. 

2000; Pei and Tuschl 2006; Zamore et al. 2000).  

 

Besides siRNA, another class of small RNA molecules that acts through similar RNAi 

pathway is the microRNA (miRNA). Whilst naturally occurring siRNAs are generated 

by degradation of long dsRNAs, miRNAs are endogenous RNA molecules that do not 

code for protein and are derived from hairpin shaped precursors (Bartel 2004). The 

production of miRNAs are encoded for by genes in the organism genome (Bartel 2004). 

Both siRNA and miRNA are of similar nucleotide length but siRNA sequences are fully 

complementary to their target mRNAs leading to target mRNA cleavage and 

degradation whereas miRNAs sequences are not fully complementary to their target 

mRNA recognition sites and downregulate gene expression either by inducing 

degradation of target mRNA or translational inhibition (Bartel 2004; Shabalina and 

Koonin 2008).  

 

To exogenously exploit the miRNA machinery, small hairpin RNA (shRNA) can be 

produced by cellular gene expression machinery using DNA vector-based technology. 

shRNA can be delivered to cells through transfection of pDNA construct that encodes 

for shRNA or infection of cells with viral vectors for stable integration of exogenous 

DNA into the host genome (Moore et al. 2010; Rao et al. 2009; Yu et al. 2002). 

Following transcription in the nucleus, shRNA sequence is exported to the cell 

cytoplasm, recognised by the enzyme Dicer and then processed into siRNA duplexes 

(Lund et al. 2004; Moore et al. 2010; Rao et al. 2009).  
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Figure 1.4: RNA interference pathway (taken from Vicentini et al. 2013). The initiation 

phase involves production of effector molecules such as siRNA and miRNA. In 

the nucleus, miRNA synthesis occurs, whereby the miRNA gene is transcripted 

by RNA Pol II/III to form primary miRNA (pri-miRNA). pri-miRNA is then 

processed into miRNA precursor (pre-miRNA) by Drosha and DGCR8, and then 

exported to the cytoplasm by exportin-5. In the cytoplasm, an enzyme called 

Dicer fragments dsRNA and pre-miRNA into siRNA and miRNA, respectively. 

The execution phase involves loading of effector molecules into RISC protein 

complexes to promote gene silencing. RISC is composed of Dicer, TRBP and 

Ago2. siRNA or miRNA strands are unravelled and the guide strand is bound to 

the RISC complex, which activates the complex to search for the target mRNA. 

Association of the active RISC complex with target mRNA promotes either 

mRNA degradation or translational inhibition. 

 

injection of siRNAs, including the use of liposomes,
polymers and nanoparticles, the development of alterna-
tive routes of administration have been investigated
extensively (14,15) and an increasing number of studies
have proposed different approaches for the local deliv-
ery of therapeutic siRNA.

Considering that the systemic administration of siRNA
faces important obstacles, including low bioavailability, sys-
temic toxicity, rapid excretion and inefficient targeting to
the affected organ or cell type (10), local administration has
become an attractive and effective route, allowing the use of
lower doses and reducing the side effects.

Fig. 1 Mechanisms of RNA interference. Initiation Phase: generation of effectors molecules. Nucleus: micro-RNA (miRNA) synthesis. miRNA gene is
transcript by RNA Pol II/III forming miRNA primary (pri-miRNA), which is processed by Drosha and DGCR8 in miRNA precursor (pre-miRNA). pre-
miRNA is exported by exportin-5 to cytoplasm. Cytoplasm: dsRNA and pre-miRNA are processed by Dicer in siRNA and miRNA, respectively. Execution
Phase: incorporation of effectors molecules in protein complexes and promotion of gene silencing. siRNA or miRNA binds to RISC (RNA induced silencing
complex—composed by Dicer, TRBP and Ago2). siRNA or miRNA strands are separated. Antisense strand remains bound to RISC complex, which is
activated and guided to the target mRNA. The complex siRNA/RISC associates with the target mRNA promotes its degradation. The complex miRNA/RISC
associates with the target mRNA promotes its degradation or translational repression, depending of the level of the complementarity.

916 Vicentini et al.
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1.2.4.2 RNAi pathway and mechanism of action  

The RNAi pathway is depicted and explained in Figure 1.4. With specific reference to 

siRNA, RNAi is initiated when an enzyme called Dicer (ribonuclease III) (Bernstein et 

al. 2001) recognises long dsRNA molecules and fragments the molecule into small 

RNA duplexes of approximately 20 nucleotides in length (Hamilton and Baulcombe 

1999; Zamore et al. 2000). The short RNA duplexes, also known as small interfering 

RNA (siRNA) are then unravelled into single stranded RNAs (ssRNAs) of the guide 

strand and passenger strand. A protein complex known as the RNA-induced silencing 

complex (RISC) is preferentially loaded with the guide strand to form an active RISC 

complex and the passenger strand is degraded. The active RISC complex is capable of 

finding potential target mRNA that has a sequence homologous to the guide ssRNA 

(Hammond et al. 2000) and then cleaves the target mRNA (Meister and Tuschl 2004) 

with an endonuclease or the ‘slicer’, which has been identified as Argonaute protein 

found in the RISC complex (Hammond et al. 2001; Meister et al. 2004). 
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1.3 Non-viral cutaneous gene delivery systems 

Localised delivery of nucleic acid to the skin faces two major barriers, the skin’s 

physical barrier, the stratum corneum and the intracellular barrier of the target cell. For 

therapeutic nucleic acid to effectively express or silence a gene, it has to be efficiently 

delivered to the cell cytoplasm, in the case of siRNA for gene silencing (Tseng et al. 

2009; Wang et al. 2010), or the cell nucleus, in the case of pDNA for gene expression 

(Capecchi 1980; James and Giorgio 2000). Treatment of inherited skin disorders 

requires lifelong integration of a corrective nucleic acid sequence in the form of DNA 

or siRNA. However, due to the continuous differentiation and desquamation of 

epidermal keratinocyte cells, longevity of gene expression or silencing can only last for 

as long as the epidermal turnover rate which is two to four weeks. Targeting of stem 

cells within the epidermis provides the possibility of long-term gene correction as 

transgenes can be selectively and stably integrated into permanently residing epidermal 

stem cells (Alonso and Fuchs 2003).  

 

Current cutaneous gene delivery approaches can be classified as ex vivo and in vivo 

gene delivery (Kikuchi et al. 2008). Ex vivo gene delivery involves removing a skin 

biopsy from a patient to harvest cells for in vitro culture, inserting correctional gene into 

those cultured cells and then subsequent re-grafting the genetically modified cells on to 

the same patient (Ferrari et al. 2005). In vitro gene insertion is efficient and large areas 

of skin can be treated with the ex vivo approach of gene delivery (Coulman et al. 2006a; 

Ferrari et al. 2005; Kikuchi et al. 2008). However, ex vivo gene therapy is expensive, 

time-consuming and technically challenging to perform in clinical practice (Coulman et 

al. 2006b). This approach may be more suited for skin conditions like epidermolysis 

bullosa, where the condition manifests in large skin areas (Dellambra et al. 2000). On 

the other hand, in vivo gene transfer is generally less complicated and more direct as it 

delivers therapeutic gene directly to the patient’s skin. However, this approach may be 

restricted to skin disorders that manifest in isolated skin areas (Choate and Khavari 

1997). Various viral and non-viral vectors and physical methods have been developed to 

improve in vivo targeting of skin cells and to assist in vivo and in vitro cellular uptake of 

exogenous genetic materials, however only non-viral approaches will be discussed in 

this thesis.  
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1.3.1 Non-viral vectors for cellular delivery of nucleic acid 

Nucleic acids are negatively charged hydrophilic macromolecules that do not permeate 

negatively charged cellular membrane efficiently (Singer and Nicolson 1972; Watson 

and Crick 1953). In fact, in vitro cell treatment with naked DNA or unmodified siRNA 

has low delivery efficiency resulting in almost undetectable transgene expression or 

gene silencing (Bains et al. 2010; Basner-Tschakarjan et al. 2004; Elbashir et al. 2002). 

In order to facilitate cellular gene transfer, a variety of non-viral vectors have been 

developed. Most vectors used for non-viral gene delivery can be broadly classified as 

cationic lipids or cationic polymers. 

 

1.3.1.1 Cationic lipid/DNA complexes (lipoplexes) 

Cationic lipid-based vectors for nucleic acid delivery are well characterised and 

comprehensively reviewed in literature (Elouahabi and Ruysschaert 2005; Lv et al. 

2006; Ma et al. 2007; Niculescu-Duvaz et al. 2003; Pedroso de Lima et al. 2003; Rao 

2010; Rehman et al. 2013; Spagnou et al. 2004; Tranchant et al. 2004; Tseng et al. 

2009; Wasungu and Hoekstra 2006; Zhang et al. 2004; Zhi et al. 2010; Zuhorn et al. 

2007). A broad range of cationic lipids with different structures has been developed 

over the years for a wide range of applications. The chemical components that are 

common to all cationic lipids are the positively charged headgroup and hydrophobic 

domains with two aliphatic chains or cholesterol-type group (Niculescu-Duvaz et al. 

2003).  

 

When preformed cationic lipids and nucleic acids are mixed in an aqueous solution, a 

spontaneous process occurs, which condenses nucleic acid with extensive 

rearrangement to produces small lipoplexes (Caracciolo et al. 2005; Pedroso de Lima et 

al. 2003). The formation of a lipoplex is driven by electrostatic interactions between the 

positively charged cationic lipid headgroups and the negatively charged phosphate 

DNA backbones (Elouahabi and Ruysschaert 2005). The use of lipoplex formulations 

for nucleic acid delivery is advantageous over naked DNA as condensation of nucleic 

acid in lipoplexes protects nucleic acid from extracellular and intracellular nuclease 

degradation and improves interaction with the cellular membrane for more efficient 

cellular uptake through endocytosis (Gershon et al. 1993; Niculescu-Duvaz et al. 2003; 

Xu et al. 1999). 
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Some cationic liposomal formulations incorporate “helper lipid” with non-charged 

phospholipids like dioleoylphosphatidyl ethanolamine (DOPE) or cholesterol to form 

liposomes with improved transfection efficiencies (Gao et al. 2007; Ramezani et al. 

2009; Xu and Anchordoquy 2008). The analogues of DOPE and other phospholipids 

have been shown to facilitate lipoplex interaction with cell membranes and aid nucleic 

acid escape from endosomes (Felgner et al. 1994; Hoekstra et al. 2007; Zuhorn et al. 

2007). Liposomal formulations can also be formulated with cholesterol to form a very 

stable bilayer that provides rigidity and stability to the lipoplexes in the presence of 

serum, which usually causes lipoplex disintegration (Templeton et al. 1997; Zhang and 

Anchordoquy 2004). It has been said that the presence of cholesterol domains in 

lipoplexes reduces serum protein binding and improves membrane interaction to result 

in enhanced transfection efficiency (Xu and Anchordoquy 2008).  

 

Many of the more efficient cationic transfection reagents have become commercially 

available such as Lipofectamine by Invitrogen, DOTAP and FuGENE® distributed 

by Roche, and Escort by Sigma-Aldrich (Pedroso de Lima et al. 2003). Furthermore, 

some of the liposomal formulations have also been employed in clinical trials for gene 

therapy of cancer and other genetic disorders (Zhi et al. 2010). Lipid-based nucleic acid 

complex formulations are potentially convenient and inexpensive vectors that have 

demonstrated limited success in the delivery of exogenous genetic material across the 

stratum corneum barrier without significant skin disruption (Geusens et al. 2011; 

Geusens et al. 2010; Raghavachari and Fahl 2002).  

 

Although lipoplexes have conventionally been thought to cause less immunologic 

reaction than viral vectors, there have been reports of toxicity associated with gene 

delivery by lipoplexes (Lv et al. 2006). Some of these have proved more toxic than 

others and toxicity is dependant on the cationic lipid structure and dose used both in 

vivo (Ruiz et al. 2001; Scheule et al. 1997; Song et al. 1997) and in vitro (Fischer et al. 

2003). In an in vivo experiment, mice that were treated with intravenous injection of N-

(2,3-dioleoyloxy)propyl-N,N,N-trimethylammonium chloride (DOTMA) and l,2-

dioleoyloxy-3-trimethylammonium propane (DOTAP) lipoplexes at a dose higher than 

50 µg DNA per mouse or higher cationic to lipid ratio of 48:1 nmol:µg with 25 µg DNA 

per mouse have suffered from liver inflammation that resulted in animal death 20 to 48 

h after injection (Song et al. 1997). In mice (Scheule et al. 1997) and human (Ruiz et al. 
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2001) studies investigating in vivo pulmonary delivery, pDNA lipoplex reportedly 

caused pulmonary inflammation, increased expression of pro-inflammatory cytokines 

and short-term increase in inflammatory cells (Ruiz et al. 2001; Scheule et al. 1997). 

The studies have also demonstrated that the immune response was mainly caused by 

lipoplexes, with administration of individual components of the lipoplex formulation 

having minimal or undetectable effect, suggesting that combination of cationic lipid and 

DNA were synergistic in causing toxicity (Ruiz et al. 2001; Scheule et al. 1997). The 

studies suggested that improvement in cationic liposomal formulation that could target 

tissue and cells with specificity at a low dose is required (Ruiz et al. 2001; Scheule et al. 

1997) before gene delivery with lipoplex formulation could progress to widespread 

clinical use (Rehman et al. 2013). 

 

1.3.1.2 Cationic polymer/DNA complexes (polyplexes) 

Similar to cationic lipids, synthetic and naturally occurring polymers have been widely 

used as carriers for gene delivery (Gary et al. 2007; Lungwitz et al. 2005; Luten et al. 

2008; Zhang et al. 2004; Zhang et al. 2007). Over the years, numerous cationic 

polymers have been explored and synthesised for in vitro and in vivo gene delivery, 

including polyethylenimine (PEI) (Boussif et al. 1995; Chemin et al. 1998; Goula et al. 

1998; Kwok and Hart 2011; Rudolph et al. 2000), polyamidoamine dendrimers 

(Haensler and Szoka 1993; Rudolph et al. 2000; Tang et al. 1996), polypropylamine 

dendrimers (Schatzlein et al. 2005), polyallylamine (Nimesh et al. 2006), cationic 

dextran (Hosseinkhani et al. 2004; Nimesh et al. 2006), chitosan (Erbacher et al. 1998; 

Lee et al. 1998; Leong et al. 1998), cationic proteins and peptides like polylysine (Wu 

and Wu 1988), protamine (Park et al. 2003) and histones (Balicki and Beutler 1997; 

Balicki et al. 2002).  

 

Cationic polymers are different from cationic lipids as cationic polymers do not have a 

hydrophobic moiety, are completely water soluble and are more efficient in condensing 

DNA than cationic lipids (Ruponen et al. 1999). Moreover, the polymeric nature of 

cationic polymers allows easy manufacturing manipulation of polymer lengths, 

geometry (linear or branched), and presence of functional groups (Elouahabi and 

Ruysschaert 2005). Similar to cationic lipids, condensation of DNA with cationic 

polymers protects DNA from degradation and facilitates membrane interaction for 
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cellular uptake through endocytosis (Rejman et al. 2005). Although cationic polymer-

based nucleic acid delivery systems are advantageous in terms of formulation 

reproducibility, DNA condensing efficiency and formulation biocompatibility, its value 

in cutaneous gene therapy is limited as it is inefficient in delivering nucleic acid across 

the skin barrier layers (Raghavachari and Fahl 2002).  

 

1.3.2 Nucleic acid delivery across the skin barrier 

In vivo delivery of nucleic acid across the skin barrier can be achieved through 

specialised chemical formulation for non-invasive topical application or through 

physical skin disruption methods, sometimes in combination with non-viral vectors 

such as cationic lipids. There are advantages and limitations associated to every 

cutaneous gene delivery method. Several factors such as proposed application, cost 

effectiveness and patient compliance should be considered when selecting a particular 

method (Geusens et al. 2009b).  

 

1.3.2.1 Non-invasive topical application 

Non-invasive topical cutaneous application of naked nucleic acid is an attractive and 

simple approach for delivering therapeutic gene to large areas of skin. As previously 

mentioned, the presence of stratum corneum in healthy skin provides a significant 

physical barrier against permeation of naked DNA or siRNA. Formulation approaches 

that use cationic lipid and chemical enhancers to improve skin permeability of nucleic 

acid following topical application has been reported but was of limited success 

(Meykadeh et al. 2005). A recent review on lipid-mediated cutaneous gene delivery 

systems has indicated that numerous studies investigating topical application of pDNA 

lipoplexes to animal skin, predominantly in vivo mouse skin, resulted in reporter gene 

expression in hair follicles (Geusens et al. 2011). A study investigating siRNA delivery 

reported an ultraflexible siRNA-containing lipoplex formulation called SECosomes 

(surfactant-ethanol-cholesterol-osomes) capable of penetration into keratinocytes in the 

epidermis of freshly excised intact human skin but the gene silencing effect of the 

delivery system in the skin has not been shown (Geusens et al. 2010).  

 

More recent studies reported success in functional siRNA delivery to the skin in vivo. A 

study reported that the use of skin penetrating and cell entering (SPACE) peptide in the 
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lightly shaved back of mice resulted in partial gene silencing (Hsu and Mitragotri 2011). 

An earlier study using a cream-emulsified siRNA formulation to target dendritic cells 

on murine ear skin showed a marked decrease in the target gene (Ritprajak et al. 2008). 

Another study developed an agarose matrix system for delivery of a siRNA-liposomal 

transfection complex to a cutaneous mouse wound model that resulted in local gene 

silencing (Thanik et al. 2007). An in vivo gene silencing study using a proprietary lipid 

and alcohol-based GeneCream formulation containing functional siRNA resulted in 

suppression of the development of arthritic symptoms when topically applied to the 

paws of a mouse rheumatoid arthritis model (Takanashi et al. 2009). The GeneCream 

formulation, probably similar in concept to the SECosomes formulation (Geusens et al. 

2009a), is an interesting prospect for non-invasive topical cutaneous delivery of siRNA 

therapeutics. Another study has demonstrated the ability of GeneCream formulated with 

food grade dye to penetrate through the stratum corneum into lower layers of the 

epidermis and into the dermis (up to a depth of 100 µm) in a human volunteer with 

healthy skin and also the callused or noncallused skin region of a patient with 

pachyonychia congenita (Ra et al. 2011). It will be interesting to observe the progress of 

the GeneCream formulation to clinical application and the gene silencing efficiency of 

the formulation in human skin.   

 

1.3.2.2 Physical disruption methods  

Despite promising progress in non-invasive topical gene delivery to the skin, physical 

approaches are more widely used to enhance nucleic acid permeation across the skin 

barrier. The different commonly used invasive and minimally invasive physical gene 

delivery techniques in active research include intradermal injection, electroporation, 

ultrasound, particle and jet acceleration and microneedles. The skin is a unique organ 

and despite the complexity associated with gene delivery through multiple skin layers to 

cells within the viable epidermis and subsequently across cellular barriers to its target 

site, many studies have reported success in naked pDNA delivery when delivered in 

combination with some of the physical approaches. 

 

1.3.2.2.1 Intradermal injection 

Intradermal injection is the most commonly used and effective method to achieve 

localised gene expression in epidermal keratinocytes following nucleic acid delivery 
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(Gonzalez-Gonzalez et al. 2010a; Hengge et al. 1995; Hengge et al. 1996; Sawamura et 

al. 2002; Wolff and Budker 2005). The potential of direct intradermal injection of naked 

pDNA for cutaneous gene expression has long been established in extensive studies 

using murine, porcine and excised human skin (Hengge et al. 1995; Hengge et al. 1996). 

In human and porcine skin, reporter gene expression was localised in cells surrounding 

the injection site, throughout the epidermal layer, mainly in keratinocytes in the stratum 

spinosum layer within 4 h post-treatment (Hengge et al. 1996). This was the first study 

to report gene expression following naked pDNA delivery in freshly excised human 

skin, cultured in an ex vivo environment, and also highlights the interspecies differences 

or similarity in cutaneous gene expression patterns between human, porcine and mouse 

(Hengge et al. 1996).  

 

A study attempting to characterise pDNA distribution and gene expression following 

intradermal delivery revealed that at 4 h post-injection with rhodamine-labelled 

plasmid, the fluorescent plasmid was found in most epidermal cells but transgene 

expression was only detected in a small proportion of cells in the back of rat skin 

(Sawamura et al. 2002). In vivo gene delivery faces many extracellular and intracellular 

barriers (Barry et al. 1999; Khalil et al. 2006; Ruponen et al. 2003). Even if the 

therapeutic gene has been delivered to the extracellular matrix, naked pDNA faces 

repulsion from the negatively charged cellular membrane and clearance from the skin 

tissue. A recent study has suggested that cellular entry of exogenous DNA in the skin 

following intradermal injection is driven by increased interstitial pressure (Gonzalez-

Gonzalez et al. 2010a). Assuming successful cellular entry, a non-mitotic cell, including 

suprabasal keratinocytes would need to be exposed to at least 100000 copies of 

plasmids to overcome nuclease degradation and to ensure a few copies translocate into 

the cell nucleus for gene expression (Lechardeur and Lukacs 2006; Lechardeur et al. 

2005; Tseng et al. 1997). This suggests that intradermal injection alone may not be able 

to facilitate cellular entry of sufficient nucleic acid copies for efficient gene expression 

or gene silencing in the epidermis. Intradermal injection is often used in combination 

with other strategies such as electroporation to improve cell permeation of injected 

nucleic acid (Drabick et al. 2001; Ferraro et al. 2009; Hirao et al. 2008).  

 

Conventional intradermal injection has the advantage of being able to overcome the 

stratum corneum barrier with certainty to deliver relatively large and precise volumes of 
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aqueous nucleic acid formulation. It is often the standard to which other cutaneous gene 

delivery techniques are compared. However, with respect to gene delivery targeted to 

the upper layers of the skin, injection administration by different administrators causes 

variation in the depth where the needle penetrates and the drug deposits. The thickness 

of the skin is also variable according to body sites, individual differences and 

differences between the species of animals tested, which may potentially lead to 

subcutaneous rather than intradermal delivery (Hengge et al. 1996; Morton et al. 2001; 

Sandby-Moller et al. 2003). The smallest size of hypodermic syringe needle 

recommended for intradermal injection is 28 gauge (G) and has nominal outer diameter 

of 362 µm, which creates an average skin penetration hole diameter of between 410 µm 

and 710 µm (Baxter and Mitragotri 2005). This means that drugs are not delivered 

exclusively to the viable layer of the epidermis (thickness of approximately 50 to 100 

µm below stratum corneum) but to deeper layers of the skin as well.  

 

Hypodermis needle injection also causes considerable pain, with a study showing that 

approximately 53% of insertions with a 27 G hypodermic syringe needle caused pain in 

healthy volunteers (Arendt-Nielsen et al. 2006). The pain sensation may be potentiated 

at the site of cutaneous manifestation in certain skin disorders, where topical gene 

treatment is usually targeted. In the first human skin phase I clinical trial for siRNA 

treatment, pain from intradermal delivery has hampered further clinical progress of 

siRNA drug treatment for pachynychia congenita (inherited dominant skin disorder) 

even though the treatment resulted in callus regression in a patient (Leachman et al. 

2009). Some of the risks and unwanted effects associated with intradermal injections are 

infection, phlebitis, haematoma, thrombosis and the potential for needle stick injury 

during administration or disposal. Hypodermic needles have proven clinical 

effectiveness but they are unfavourable to both children and adults because they are 

painful, cause anxiety to the recipients and they are difficult to use (Deacon and 

Abramowitz 2006; Gill and Prausnitz 2007c; Hanas 2004). Therefore, minimally 

invasive methods that could improve patient compliance are actively being pursued for 

delivery of nucleic acids to the skin. 
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1.3.2.2.2 Electroporation 

The use of electroporation for gene delivery is also called gene electrotransfer. It 

involves the application of short (50 µs to 400 ms) high voltage (>400 V) or low 

voltage (<400 V) electrical pulse to cells or across tissue to create pores that open 

temporarily to allow tissue and cellular entry of otherwise impermeable molecules such 

as nucleic acids and other macromolecules of up to 40 kDa (Lombry et al. 2000; 

Neumann et al. 1982; Wells 2010). Theoretically, electroporation can be applied in any 

tissues where a pair of electrodes can be inserted and reviews have shown that this 

physical method can be used in various tissues in vitro and in vivo (Gothelf and Gehl 

2010; Wells 2010).  

 

Compared to direct DNA injection alone, gene electrotransfer shows less variable gene 

delivery efficiency between different animal species (McMahon and Wells 2004). 

Factors such as nucleic acid dose and tissue distribution of injected dose before 

electroporation affect transfection efficiency (McMahon and Wells 2004; Molnar et al. 

2004). A study reported that the use of electroporation in a hairless mouse model 

following intradermal injection resulted in improved cutaneous naked DNA delivery by 

a few hundred times when compared to intradermal injection alone (Zhang et al. 2002). 

However, attempts to combine lipid-DNA lipoplexes with electroporation to improve 

skin transfection proved futile, as a study has shown that electroporation following 

intradermal and intramuscular injection of naked pDNA resulted in a higher increase in 

gene expression compared to electroporation following injection of DNA lipoplexes 

(Mignet et al. 2010). 

 

There are several drawbacks to in vivo cutaneous application of gene electrotransfer. 

Firstly, the technique may not be effective for cell transfection in a large tissue area 

because the range in between which the electrodes are effective is limited (Ferraro et al. 

2011; Heller et al. 2010). Secondly, electrotransfer alone does not sufficiently increase 

stratum corneum permeability (Chen et al. 1999) to allow entry of topically applied 

macromolecules like nucleic acids, thus requiring intradermal injection of therapeutic 

gene before electroporation (Gothelf and Gehl 2010) and hence it is also associated with 

the inconveniences of gene transfer through intradermal injection. Thirdly, applying 
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high voltage to tissues may induce thermal heating, resulting in irreversible tissue 

damage (Durieux et al. 2004; Ferraro et al. 2011).  

 

In a Phase 1 dose escalation pDNA delivery with electroporation clinical trial, 

intratumoral injection of pDNA encoding interleukin 12 (IL-12) followed by 

electroporation in patients with metastatic melanoma was reported to be safe and 

effective, with increased IL-12 protein expression as well as marked reduction in 

tumour size (Daud et al. 2008). However, patients who received electroporation 

suffered from transient pain at the treatment site (Daud et al. 2008). This again 

highlights the importance in developing more patient friendly methods for delivery of 

nucleic acids to the skin. 

 

1.3.2.2.3 Ultrasound 

In vivo gene delivery facilitated by ultrasound has received considerable research 

interest in recent years (Escoffre et al. 2013; Newman and Bettinger 2007). The 

combination of low ultrasound waves with gas microbubbles that are usually 

incorporated in a drug formulation creates transient permeability across tissue and cell 

membranes in a process known as sonoporation to allow enhanced entry of small 

molecules and nucleic acids (Delalande et al. 2013; Escoffre et al. 2013). Sonoporation 

occurs when the frequency of ultrasound is near the frequency where microbubbles 

resonate, leading to oscillation of the microbubbles, which causes pore formation 

(approximately 100 nm in size) in surrounding cell membranes (Delalande et al. 2013; 

Morgan et al. 2000; van Wamel et al. 2006; Zhou et al. 2009). Pore formation could 

either be due to the shear stress as a result of microbubble collapse (Dijkmans et al. 

2004; Tachibana and Tachibana 2001) or due to the physical interaction between the 

microbubbles and cell membrane (van Wamel et al. 2006). This phenomenon facilitates 

intracellular gene delivery as nucleic acid can passively diffuse across the pores formed 

in the cell membrane (Kim et al. 1996; Koch et al. 2000). 

 

Although promising, direct application of ultrasound alone for cutaneous gene therapy 

still requires optimisation as, similar to electroporation, skin pores formed by ultrasound 

application are not sufficient for permeation of large nucleic acid molecules like pDNA 

(estimated sizes between 3000 to 6000 kDa) across the stratum corneum. Application of 
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ultrasound in the skin reportedly lead to pore formation in the stratum corneum (Wu et 

al. 1998) to allow transdermal entry of proteins such as insulin (6 kDa) and 

erythropoietin (48 kDa) (Mitragotri et al. 1995) but ultrasound-mediated transdermal 

delivery of nucleic acids with molecular weights in the order of mega Daltons has not 

been shown.  

 

1.3.2.2.4 Particle and jet acceleration  

In principle, particle and jet acceleration involves the use of devices to propel particles 

(Yang et al. 1990) or expel stream of liquid drug formulation at high speed (Schramm-

Baxter and Mitragotri 2004) through the stratum corneum into the skin. An example of 

a well-studied particle acceleration method uses a device called the gene gun, which has 

been shown to be effective for skin immunisation through delivery of pDNA vaccine-

coated particles to the upper layers of the skin (Dileo et al. 2003; Fynan et al. 1993; 

Haynes et al. 1996; Lin et al. 2000; Peachman et al. 2003; Pertmer et al. 1995; Tang et 

al. 1992). The gene gun particle acceleration method has also been used to deliver 

cDNA and mRNA for wound healing (Nanney et al. 2000; Sohn et al. 2001) and cDNA 

for suppression of skin malignancy (Oshikawa et al. 2001). Nucleic acids are usually 

coated onto the surface of gold particles and accelerated to a high velocity by a high 

voltage discharge or pressurised gas to enable efficient expulsion and penetration of 

target organs, tissues or single cells. The momentum generated also allows DNA release 

from the surface of gold particles resulting in DNA deposition into cells that are in the 

path of tissue penetration (Gao et al. 2007; O'Brien and Lummis 2002; Yang et al. 

1990).  

 

Several prototypes of particle acceleration gene delivery devices have been developed 

and tested in early phase clinical trials for DNA vaccination against hepatitis (Roberts et 

al. 2005) and influenza (Dean and Chen 2004; Jones et al. 2009). The most recent Phase 

1b clinical trial delivering Trivalent DNA vaccine for influenza consisting of three 

plasmids coated onto microscopic (1–3 µm in diameter) gold beads using particle 

mediated epidermal delivery (PMED™) system reported vaccine delivery to the 

epidermis but the level of efficiency was less than that of trivalent inactivated influenza 

vaccine, with substandard serological responses (Jones et al. 2009). No serious adverse 

events were reported in the study and the most common adverse reactions were 



	  
	  
	  

	  

	  
GENERAL INTRODUCTION 

	  
	   	  

32	  

application site burning, headache and application site stinging. The study concluded 

that optimisation to the gene delivery system is needed in order to compete with 

conventional influenza vaccines (Jones et al. 2009). 

 

The use of ballistic devices is reportedly safe and effective in delivery of exogenous 

gene to the skin (Dean and Chen 2004; Jones et al. 2009; Roberts et al. 2005). However 

the use of gene gun as a cutaneous gene delivery tool is limited by several factors such 

as the lack of control over successful penetration of particles through the stratum 

corneum and variability in the depth of particle penetration in the skin (Kendall et al. 

2004). Gold particles are non-biodegradable, hence it is unclear whether these particles 

are cleared from the tissue. Treatment with accelerated particles may also result in cell 

death (Raju et al. 2006). There is also a limitation in dose of nucleic acid that can be 

loaded onto particles, necessitating the need for frequent immunisation and the particle 

acceleration method requires the use of devices that may not be readily available 

(Peachman et al. 2003). 

 

Jet injection uses air or spring injector to drive pressurised liquid at a speed of more 

than 100 m s–1 into the skin to allow delivery of macromolecules such as insulin, human 

growth hormone and vaccines (Baxter and Mitragotri 2005; Kim and Prausnitz 2011; 

Mitragotri 2006). Jet injection creates micron-sized channels that are proportionate in 

diameter to the ejected stream of approximately 100 µm and depth of skin penetration 

(up to 10 mm) depends on the injection volume (Baxter and Mitragotri 2005). Several 

studies have indicated the potential of jet injection for cutaneous gene therapy (Aguiar 

et al. 2001; Cui et al. 2003; Mumper and Cui 2003; Sawamura et al. 1999) and a phase 

1 clinical trial has reported safety and efficiency of intratumoral jet-injection for gene 

delivery using β-galactosidase-expressing pDNA (pCMVβ) in patients with 

metastasised skin cancer and breast cancer (Walther et al. 2009).  

 

1.3.2.2.5 Microneedles 

Over recent years, microneedles have been investigated as a means of cutaneous drug 

and vaccine delivery (Kim et al. 2012b). A microneedle array is a device with multiple 

repeated structures that are micron size in dimension (usually less than 1 mm in length) 

protruding from a base (Figure 1.5) and can be of different shapes, size and needle 
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density (Donnelly et al. 2010). Upon skin insertion, microneedles create micron-sized 

channels for delivery of macromolecules across the stratum corneum (Badran et al. 

2009; Chabri et al. 2004; Henry et al. 1998; Wang et al. 2006). Microneedles have 

several advantages over other physical skin disruption methods. The design of 

microneedles can easily be adapted for various applications. There is a potential for 

microneedles to be self-administered due to their simplicity; they do not depend upon 

the use of devices that are expensive, complex, relatively large and require training to 

use. Skin penetration with microneedles is reportedly pain-free (Gill et al. 2008; Haq et 

al. 2009) and the micron-scaled dimensions of microneedles should more acceptable to 

patients and could improve patient compliance to treatment (Gill and Prausnitz 2007c). 

Large-scale manufacture of microneedles is cost-effective and microneedles can easily 

be distributed due to their small size (Coulman et al. 2006a; Kim et al. 2012b). The use 

of microneedles for nucleic acid delivery to the skin is discussed in section 1.4. 

 

 

Figure 1.5:  Digital image of two in-plane steel microneedle arrays of 700 µm in length (5 

needles per array) in comparison with the tip of a 23G hypodermic syringe 

needle. 

 

1.3.2.2.6 Other stratum corneum disruption methods  

Apart from the major methods discussed, there are very few reports on successful 

cutaneous gene delivery. Other methods that have been used to disrupt the stratum 

corneum for cutaneous gene delivery are the tape stripping method (Choi et al. 2004; 

Vandermeulen et al. 2009) and radio frequency ablation method (Birchall et al. 2006).  

Tape stripping is a simple and inexpensive method that uses repeated taping and 
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stripping of the tape to remove stratum corneum but the technique has poor 

reproducibility and is highly variable between individuals and within individuals 

depending on skin site, state of skin hydration, age, gender and ethnicity (Choi et al. 

2004; Geusens et al. 2009b). Tape stripping has been exploited for skin vaccination 

(Choi et al. 2004; Mitragotri 2005; Peachman et al. 2003) but is disadvantageous 

because this method requires high doses of DNA to achieve immunisation and is a harsh 

method because stratum corneum have to be completely removed for effective delivery 

(Liu et al. 2001; Peachman et al. 2003). A recent study suggested the potential of tape 

stripping as an adjuvant to electroporation as mice that were tape-stripped following 

intradermal injection and electroporation elicited significantly higher immune responses 

(Vandermeulen et al. 2009). 

 

Radio frequency (RF) ablation can be performed using a device called ViaDerm™. 

Micron-sized channels are created by RF ablation whereby the skin is exposed to an 

array of densely spaced microelectrodes under an alternating electrical current (Sintov 

et al. 2003). The microchannels created permit entry of macromolecules across the 

stratum corneum and into the underlying skin layers (Birchall et al. 2006; Sintov et al. 

2003). Radiofrequency ablation has been used to deliver reporter pDNA to excised 

human skin resulting in gene expression (Birchall et al. 2006). The ViaDerm™ system 

has also been tested in early phase clinical trials for delivery of hormones and insulin 

(Arora et al. 2008). 
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1.4 Microneedles for cutaneous gene delivery 

1.4.1 Microneedles concept 

Although the concept of using micron sized devices for administration of therapeutic 

molecules were described nearly 40 years ago (Gerstel and Place 1976), it was not until 

near the turn of the millennium that the technology required to microfabricate these 

devices were available (Henry et al. 1998). Since the first paper describing the use of 

microneedles for drug delivery was published in 1998 (Henry et al. 1998), microneedle-

based research has attracted significant interest from both academic and industrial 

groups (Kim et al. 2012b). This has resulted in an exponential increase in publications 

with progress to clinical trials and the availability of a few products that have been 

approved for medical and cosmetic applications (Kim et al. 2012b). 

 

The use of microneedles is appropriate for targeting cells in the upper layers of 

epidermis as the stratum corneum is only approximately 10 to 20 µm in thickness (Kim 

et al. 2012b). Microneedles are able to penetrate through the stratum corneum and into 

the skin up to a limited depth, thus potentially avoiding nerve fibres and blood vessels 

in the dermis that causes pain and bleeding (Gill et al. 2008; Haq et al. 2009). 

Microneedle devices when applied to human skin are considered minimally invasive 

and are reported to be significantly less painful than conventional hypodermic needle 

injection (Gill et al. 2008; Haq et al. 2009; Kaushik et al. 2001). There is however, 

increased pain associated with longer microneedles with length of up to 1450 µm (Gill 

et al. 2008). Increase in the number of microneedles in an array also caused a minimal 

increase in pain sensation but pain was not affected by the thickness, tip angle and 

width of the microneedles (Gill et al. 2008). It has been reported that application of 

longer microneedles resulted in minor bleeding at the treatment site but the incidence of 

bleeding was not associated with infection or subsequent scarring (Widera et al. 2006). 

 

Studies have shown that microneedles are capable of increasing delivery of a range of 

therapeutic substances across the skin barrier including small molecules (Li et al. 2010; 

Wermeling et al. 2008) and biotherapeutics such as DNA (Birchall et al. 2005; Coulman 

et al. 2006b; Mikszta et al. 2002; Pearton et al. 2008), RNA (Gonzalez-Gonzalez et al. 

2010b),  oligonucleotide (Lin et al. 2001), peptide (Cormier et al. 2004), protein (Davis 

et al. 2005; Torrisi et al. 2013), vaccines (Kim et al. 2010; Matriano et al. 2002; Mikszta 
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et al. 2002; Pearton et al. 2010) and other materials. The first microneedles were 

fabricated out of silicon (Henry et al. 1998) and since then, various bio-degradable and 

non-biodegradable materials including metal (Chong et al. 2013; Gill and Prausnitz 

2007a; Khandan et al. 2012; Matriano et al. 2002), polymer (Gonzalez-Gonzalez et al. 

2010b; Park et al. 2010; Park et al. 2007), sugar (Donnelly et al. 2009; Li et al. 2009; 

Martin et al. 2012),  glass (Wang et al. 2006) and ceramic (Bystrova and Luttge 2011) 

have been used in the fabrication of microneedles with a variety of shapes and sizes, as 

needed for different applications (Figure 1.6). Different techniques that have been used 

to fabricate microneedles include silicon etching (Henry et al. 1998), laser cutting 

(Davis et al. 2005), metal electroplating (A Fomani and Mansour 2011) and 

micromoulding (Donnelly et al. 2011; Park et al. 2005) or a combination of techniques 

(Choi et al. 2010). 

 

 
Figure 1.6:  Microscopic images of various solid microneedles that are made of silicon 

(a–d), metal (e–h) and polymer (i–l) (taken from Kim et al. 2012b).  
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The use of different types of microneedles for delivery of a broad range of therapeutic 

substances to the skin and various other applications has been thoroughly reviewed by 

several authors (Bariya et al. 2012; Chandrasekhar et al. 2013; Kim et al. 2012b; Tuan-

Mahmood et al. 2013; van der Maaden et al. 2012). For the purpose of narrowing 

interest in this thesis, this introductory section on microneedles focuses on the general 

concept of microneedle delivery to the skin and the historical progress of studies 

involving microneedles for delivery of nucleic acid to the skin.  

 

With specific regards to nucleic acid delivery, microneedles have actively been studied 

for cutaneous gene transfer and DNA vaccination through delivery of pDNA (Alarcon 

et al. 2007; Birchall et al. 2005; Chabri et al. 2004; Coulman et al. 2006a; Coulman et 

al. 2006b; Gill et al. 2010; Gonzalez-Gonzalez et al. 2011; Kim et al. 2012b; Pearton et 

al. 2008; Pearton et al. 2012). In early 2010 (at the beginning of the work contained in 

this thesis), the use of microneedles for cutaneous siRNA delivery had never been 

reported (Geusens et al. 2009b). Since then, the potential of microneedles for delivery 

of siRNA to the skin has been demonstrated by both this research group and others 

(Chong et al. 2013; Gonzalez-Gonzalez et al. 2010b; Lara et al. 2012). 

 

1.4.2 Microneedle application methods 

In general, methods of drug delivery using microneedles can be categorised into four 

approaches (i) solid microneedles for skin pre-treatment: pre-applying solid 

microneedles before drug application to create channels through which drugs can pass 

the stratum corneum barrier, (ii) drug-coated microneedles: microneedles that are dry-

coated with drugs, which dissolve upon skin insertion, (iii) dissolving microneedles: 

integrating drug into dissolving or biodegradable microneedles, which completely 

dissolve in the skin upon skin insertion, leading to release of the drug payload and (iv) 

hollow microneedles: injecting liquid drug formulation through hollow microneedles 

(Figure 1.7) (Kim et al. 2012b). 

 

The first publication on microneedles described the use of solid silicon microneedles of 

approximately 150 µm in length as a skin pre-treatment to allow skin permeation of 

calcein, a model drug with molecular weight of 623 Da by more than 10000 fold 

compared to intact human skin in in vitro diffusion studies (Henry et al. 1998). In the 
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solid microneedles for skin pre-treatment approach, microneedles are used to form 

micron-sized channels through the stratum corneum for enhanced delivery of drugs 

across the skin. Drugs can be applied directly to the skin in the form of aqueous 

formulation or ointment, or formulated in a transdermal drug delivery patch. 

Therapeutic formulations that are applied to the skin could produce local effects or can 

be taken up by skin capillaries for systemic effect. Several other methods for solid 

microneedle application have since been reported including drug-coated microneedles 

for delivery of dry-coated drug formulation (Cormier et al. 2004; Gill and Prausnitz 

2007a; Matriano et al. 2002) and drug incorporation into the matrix of dissolvable 

microneedles (Park et al. 2005; Park et al. 2007).  

 

 
Figure 1.7:  A schematic representation of the skin and drug-delivery approaches using 

microneedles. Different types of microneedles are applied to the skin (A), after 

which drug is delivered and deposited in the skin (B). (i. Solid MN: solid 

microneedle for skin pre-treatment; ii. Coated MN: drug-coated microneedles; iii. 

Dissolving MN: dissolving microneedles; iv. Hollow MN: hollow microneedles) 

(taken from Kim et al. 2012b). 

 

Hollow microneedles are capable of precise microinjection of liquid drug formulation in 

the skin dermis through defined channels within their micron-sized structure, similar to 

intradermal injection with a hypodermic syringe needle (Wang et al. 2006). The use of 

hollow microneedles for intradermal injection is advantageous because the limited 

micron length of hollow microneedles allows improved control of injection depth and 

the injected dose is delivered to the dermis with precision (Van Damme et al. 2009). 
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The needles on a hollow microneedle device are almost invisible to the naked eye and 

therefore they appear to be less intimidating to patients than a hypodermic syringe 

needle (Van Damme et al. 2009). Hollow microneedles are an ideal substitute for 

intradermal injection with syringe needles but delivery of liquid formulation into the 

dermis is not ideal for gene delivery targeted to epidermal cells.  

 

1.4.3 Current limitations and mitigation strategies 

Despite numerous advantages associated with the use of microneedles as a minimally 

invasive skin disruption method, there are several limitations that need to be addressed 

before wide scale use of the devices in clinical practice. In some of the microneedle 

delivery systems, it is difficult to deliver reproducible and accurate doses because 

manual loading and application of the devices is subjected to variation dictated by the 

skills and technique of the person handling these devices (Verbaan et al. 2008). There 

are also variations in the skin thickness at different sites of the body and between 

individuals (Sandby-Moller et al. 2003). Factors such as difference in stratum corneum 

thickness and skin hydration could affect or impede the penetration of microneedles 

(Bariya et al. 2012). A degree of care needs to be employed while manipulating these 

devices to avoid loss of material on the skin surface or reduced penetration that may 

reduce the delivery of the intended dose to the target site (Bariya et al. 2012). There are 

also risks of microneedle tip rupture upon insertion and the deposition of fragments of 

the needle within the skin upon removal of the device (Bariya et al. 2012).  

 

The issue with inconsistent manual delivery is being addressed with the use of 

applicators to achieve reproducible penetration and penetration depth to ensure that 

patients receive the same and required dose during each administration (Singh et al. 

2011; van der Maaden et al. 2012). Several examples of microneedle applicators include 

the microneedle roller (Park et al. 2010), an impact applicator device with a 

microprotrusion membrane called Macroflux® (Trautman and Keenan 2005), a hand-

held device with a planar side for microneedle application and an actuation unit on the 

opposing side (Yuzhakov 2007; Yuzhakov 2010), and a pen type device that includes a 

drug cartridge filled with liquid drug formulation, a plunger and a drive mechanism for 

liquid drug ejection (Petits et al. 2009).  
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1.4.4 Non-viral nucleic acid delivery to the skin using microneedles 

One of the initial reports of nucleic acid delivery with microneedles described delivery 

of antisense oligonucleotide formulated in 2% (w/v) hydroxyethyl cellulose gel using a 

microprojection patch (Macroflux®) consisting of stainless steel microneedles with a 

length of 430 µm (Lin et al. 2001) to hairless guinea pig skin in vivo. This study 

investigated systemic delivery of oligonucleotide through the transdermal route 

following microprojection patch application using a radioactively labelled 

oligonucleotide. Delivery with microprojection patches reportedly achieved 

therapeutically relevant dose of oligonucleotide systemically and was compared to 

iontophoresis (similar in concept to electrophoresis), which delivered oligonucleotides 

at doses that were several orders of magnitude lower than the dose required for 

therapeutic efficacy. This study did not show functional efficacy of the delivered 

oligonucleotide (Lin et al. 2001). 

 

Shortly after, functional delivery of reporter pDNA and pDNA encoding hepatitis B 

antigen in liquid PBS formulation to shaved mouse skin in vivo, after skin pre-treatment 

with microenhancer arrays (MEAs) was reported (Mikszta et al. 2002). The skin was 

treated with the pDNA solution and microneedles by placing the MEA with blunt tip 

silicon microneedles (length of up to 200 µm) in contact with the DNA solution and 

then moving the MEA laterally across the skin surface several times to cause dermal 

abrasion. This method of pDNA delivery resulted in up to 2800 times increase in 

reporter luciferase gene expression compared to topical delivery controls and also 

induced immune response following skin immunisation with DNA vaccine that was less 

variable and significantly greater than intramuscular and intradermal injections (Mikszta 

et al. 2002). 

 

The first human skin studies describing functional nucleic acid delivery to excised skin 

through microneedles, which resulted in successful reporter plasmid expressions were 

performed by the research group in Cardiff (Birchall et al. 2005; Coulman et al. 2006b). 

Solid silicon microneedles of up to 280 µm in length were used to create microchannels 

in the excised human skin stratum corneum of approximately 20 to 50 µm in diameter, 

through which pre-applied liquid formulation of reporter pDNA was delivered. This 

resulted in gene expression in viable epidermal cells proximal to the microneedle 
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penetration site (Birchall et al. 2005; Coulman et al. 2006b). However, both studies 

reported unpredictable gene expression, as only a minority of the created microchannels 

stained positive for reporter gene expression (Birchall et al. 2005; Coulman et al. 

2006b). Further attempts to improve consistency in the extent of gene expression in 

human skin, including the use of pDNA formulated in a prolonged release hydrogel 

formulation applied to the skin after silicon microneedles pre-treatment, failed to 

achieve more consistent reporter gene expression (Pearton et al. 2008). Nevertheless, 

these studies were important in describing the ability to deliver nucleic acid to human 

skin through microneedles that resulted in detectable transgene expression.  

 

The use of pDNA coated microneedles to achieve hepatitis C DNA vaccination (Gill et 

al. 2010) and reporter transgene expression (Gonzalez-Gonzalez et al. 2011) in vivo has 

also been reported. A study comparing the delivery of pDNA encoding for hepatitis C 

virus protein from microneedles with the gene gun and also intramuscular injection 

demonstrated that significantly lower doses of plasmid coated onto stainless steel 

microneedles of 700 µm in length (8 µg) and plasmid delivered using gene gun 

technology (4 µg) was required to achieve an immune response in mice that was 

comparable to intramuscular injection dose of 100 µg (Gill et al. 2010). It was estimated 

that microneedles delivered 90% of the coated dose (Gill and Prausnitz 2007a). Another 

study compared the use of steel microneedles, similar to the ones used in the DNA 

vaccination study (Gill et al. 2010), with dissolvable microneedles made of polyvinyl 

alcohol, termed the protrusion array device (PAD), for delivery of coated reporter 

pDNA to mouse paws (Gonzalez-Gonzalez et al. 2011). The study demonstrated the 

ability to load higher doses of pDNA on the steel microneedles than PADs (3 µg for 

steel microneedles; 0.1 µg for PAD microneedles), which correspondingly resulted in 

higher reporter gene expression. 

 

More remarkably, functional siRNA delivery to the paws of a transgenic mouse model 

(Gonzalez-Gonzalez et al. 2009) with siRNA coated onto PAD microneedles was 

reported (Gonzalez-Gonzalez et al. 2010b). PAD microneedles were used to deliver 

siRNA that had been modified for stability and to enter cells passively without a 

transfection reagent. This resulted in gene silencing in the paws of the transgenic mouse 

model (Gonzalez-Gonzalez et al. 2010b). However, PADs deliver only 10% of the 

coated drug payload in mouse skin (Gonzalez-Gonzalez et al. 2010b), which represents 
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significant wastage in the coated materials. Nonetheless, this study is the first study to 

demonstrate functional siRNA delivery through microneedles. The ability to target 

delivery of siRNA to a cell population within human skin using microneedles is an 

attractive minimally invasive treatment option for localised gene treatment of a plethora 

of skin disorders caused by aberrant gene expressions. 
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1.5 Thesis aim and objectives  

Thesis aim 

The aim of this thesis was to understand gene expression and gene silencing in in vitro, 

ex vivo and in vivo skin models employing various gene detection systems to realise the 

potential of targeted nucleic acid delivery to the skin using microneedles. 

 

Thesis objectives 

The objectives of the thesis were: 

• To optimise the culture of relevant in vitro and ex vivo human skin models for 

nucleic acid delivery studies 

• To characterise the appearance of solid steel microneedle devices and develop a 

manual coating technique that allows estimation of coating dose and quantification 

of delivered dose 

• To learn and optimise pre-validated techniques for delivery and detection of gene 

expression following non-viral delivery of pDNA to human skin models 

• To develop assays to detect siRNA mediated gene silencing at the mRNA and 

protein levels as well as to quantify and visualise cellular delivery of siRNA in in 

vitro human skin models 

• To determine the suitability of coating siRNA onto steel microneedles by 

investigating biological functionality of siRNA formulations following coating and 

recovery from microneedles 

• To visualise physical skin disruptions caused by application of steel microneedles 

in human volunteers and in excised human skin 

• To develop methods to quantify delivery of siRNA and detection of siRNA 

mediated gene silencing in ex vivo human skin as a pre-clinical model to test 

potential siRNA therapeutics targeted to human skin 

• To determine in vivo functionality of nucleic acids, delivered to established mouse 

models via drug-coated steel microneedle system, using different gene detection 

systems 
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2 Human skin models and characterisation of microneedle devices  

2.1 Introduction 

The human skin is a structurally complex multilayer tissue, with its outermost layer, the 

stratum corneum, acting as physical barrier that limits entry of therapeutic molecules to 

potent lipophillic small molecules. Nucleic acids are highly negatively charged 

macromolecules that do not cross the skin barrier. In order to penetrate the stratum 

corneum barrier, microneedle devices were explored as a means to overcome the skin 

barrier in a minimally invasive and pain-free manner to deposit therapeutic nucleic acid 

to the skin. Microneedle length and delivery depth can be manipulated to potentially 

target either the epidermis or the dermis to treat a plethora of inherited skin disorders or 

skin conditions caused by aberrant gene expression. Local delivery of therapeutic gene 

allows concentration of nucleic acid where it is required so that clinically relevant doses 

can be delivered for local gene correction whilst avoiding systemic side effects.   

 

2.1.1 Human skin models 

In order to investigate delivery of nucleic acid to the skin, the development of suitable 

human skin models to perform gene delivery and expression studies was necessary. The 

target area for cutaneous nucleic acid delivery is the epidermis due to the abundance of 

keratinocytes in this cellular layer of the skin. Gene therapy targeted to epidermal 

keratinocytes is appealing because human keratinocytes can be harvested from a small 

skin biopsy and cultured in vitro for the ex vivo approach of cutaneous gene therapy 

(Del Rio et al. 2004). In gene therapy targeted to in vivo human skin, gene expression or 

gene silencing is usually short-term (Coulman et al. 2006a; Hengge 2006; Preat and 

Dujardin 2001) but could potentially be clinically relevant with the development of 

efficient gene delivery systems and targeting of appropriate cell populations like 

epidermal stem cells (Del Rio et al. 2004). An immortalised cell line and primary 

keratinocytes, isolated from excised human skin, are therefore often used as in vitro 

models of the human skin.  

 

2.1.1.1 In vitro human skin models  

HaCaT cells are spontaneously immortalised human keratinocytes obtained from the 

distant periphery of a melanoma of a 62-year-old male patient (Boukamp et al. 1988). 
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The HaCaT cell line is non-tumorigenic, despite having an in vitro phenotype alteration 

that enables colonies formation and proliferation on plastic and agar. Chromosomal 

alterations occur in HaCaT cells that are in long-term culture but cells continue to 

differentiate normally (Boukamp et al. 1988; Boukamp et al. 1997). 

 

Primary keratinocytes are cells isolated from excised human skin samples and 

selectively cultured in vitro under a controlled environment of keratinocyte specific 

growth medium. One of the oldest and most commonly used method (Daniels et al. 

1996) for isolating and culturing primary keratinocytes was described by Rheinwald and 

Green in 1975 (Rheinwald and Green 1975). This method involves the trypsinisation of 

skin sample to yield a variety of cell types and then growing the cells in medium 

supplemented with epidermal growth factor (EGF) and hydrocortisone, on a growth-

arrested or lethally irradiated 3T3 feeder layer, which functions as a growth suppressor 

of dermal fibroblasts and provides the matrix for keratinocyte attachment (Rheinwald 

and Green 1975, 1977). Over the years, various methods have been explored and serum-

free medium specific for growth of primary keratinocytes is commercially available.  

 

The method that has been adapted for use in this thesis uses commercially available, 

defined keratinocyte specific and serum-free medium that does not require the 3T3 

feeder layer for cell attachment and proliferation (Aasen and Izpisua Belmonte 2010; 

Richards et al. 2008; Zellmer and Reissig 2002).  Eliminating the need for the 3T3 

feeder layer reduces risk of fibroblast contamination and avoids laborious work 

preparing the feeder layer. The commercially available serum-free mediums used for 

culture of primary keratinocytes are supplemented with bovine serum albumin, 

hydrocortisone, insulin or insulin-like growth factor-I, EGF and prostaglandin E2. A 

combination of EGF, insulin and hydrocortisone has been shown to be essential for 

stimulation of keratinocytes growth in long-term culture of more than 5 days (Formanek 

et al. 1996). 

 

2.1.1.2 Excised human skin  

For the ultimate goal of delivering therapeutic nucleic acid to human subjects, it was 

important to perform nucleic acid delivery experiments on a more representative model 

of the in vivo environment of human skin. Although animal models may be used, 
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excised human skin cultured in a controlled ex vivo setting would provide the closest 

physiological resemblance to the human skin (Hengge et al. 1996). Previously, an ex 

vivo human skin culture protocol has been developed and pre-validated in the research 

laboratory for analysis of gene expression (Birchall et al. 2005; Coulman et al. 2006b; 

Ng et al. 2009).   

 

2.1.2 Microneedle devices  

As previously mentioned, drug delivery using microneedles can be categorised into four 

general approaches (i) solid microneedles for skin pre-treatment, (ii) drug-coated 

microneedles, (iii) dissolving microneedles and (iv) hollow microneedles (Kim et al. 

2012b; Prausnitz 2004). Of the four approaches, drug coated solid microneedles is 

appealing as a drug delivery system because drugs coated on the surface of 

microneedles may have enhanced stability in a solid state and pre-coated microneedle 

devices are particularly attractive as a one step delivery device that may be developed as 

a simple self-administrable drug delivery option (Gill and Prausnitz 2007a). A study 

examining desmopressin coating onto microneedles reported that 98% of the coated 

drug remained intact when stored under nitrogen at 25°C for 6 months or more 

(Cormier et al. 2004). Coated microneedles have been widely investigated for skin 

vaccination as antigens that are released in the skin following microneedle application 

are taken up by Langerhans cells in the epidermis and dendritic cells in the dermis to 

induce a potent immune response (Babiuk et al. 2000; Pearton et al. 2010; Song et al. 

2010). Due to the versatility of the drug-coated microneedle system, it is also being 

explored as a delivery system for a broad range of drugs (for review, refer to Kim et al. 

2012b) and therapeutic nucleic acids (refer to section 1.4.4). Besides delivery of dry 

drug-coated microneedles, the ability to coat and deliver a liquid formulation of protein 

to the skin using pocketed metal microneedles has recently been shown (Torrisi et al. 

2013). 

 

In order to deliver an effective dose of a therapeutic substance using the drug-coated 

microneedle system, it is important to ensure consistent coating of material onto the 

surface of solid microneedles for subsequently effective skin penetration performance 

and efficient targeted drug deposition (Gill and Prausnitz 2007a, b; Kim et al. 2012b). 

There are several features that should be considered when coating sensitive 
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biotherapeutics (Gill and Prausnitz 2007a). The microneedle coating process should (i) 

be able to produce uniform coating and avoid drug deposition onto the base of the 

microneedle arrays to achieve reproducible dosage whilst minimising drug loss, (ii) not 

be performed at high temperatures, to avoid drug degradation, (iii) be able to load 

sufficiently high doses of drugs per microneedle and (iv) be able to coat drugs that 

adhere well onto the surface of microneedles and yet be able to rapidly dissolve upon 

skin insertion or formulated for controlled release (Gill and Prausnitz 2007a). The 

coating formulation should be aqueous to prevent the degradation of biotherapeutics and 

to enable drugs to dissolve following microneedle insertion into the skin (Gill and 

Prausnitz 2007a; Pearton et al. 2012). The formulation also needs to be sufficiently 

viscous with low surface tension so that materials are uniformly coated on the surface of 

microneedles (Gill and Prausnitz 2007a).  

 

Several coating process such as dip-coating, spray-coating and roll-coating have been 

used for coating objects (Bierwagen 1992). Of these methods, the method that is 

suitable for coating microneedles is dip-coating because it is a simple to perform and is 

capable of coating objects with complex shapes (Gill and Prausnitz 2007a). An object is 

dip-coated by immersing into a coating solution and then withdrawing. This allows 

adherence of a continuous liquid film on the object, which upon drying forms a uniform 

coating (Gill and Prausnitz 2007a). Although effective, surface tension plays a dominant 

role when coating micron-scale objects like microneedles and it is difficult to precisely 

coat specific sections of microneedles with close spacing in between needles (Beebe et 

al. 2002; Gill and Prausnitz 2007a). Therefore, an improved technique for manual 

coating of microneedles with clinically relevant doses of therapeutic substances is 

necessary. 
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2.1.3 Aim and objectives 

The aim of this chapter was to develop and optimise human skin models for nucleic acid 

delivery and to characterise microneedle devices for the delivery of nucleic acids to the 

skin. The objective of the experiments were:  

• To successfully culture and maintain HaCaT cells for in vitro nucleic acid delivery 

optimisation studies. 

• To compare epidermal sheet separation methods for successful isolation of viable 

cells from the skin. 

• To optimise a method for selective culture of primary keratinocytes in vitro. 

• To maintain viability of excised human skin within organ culture, in an ex vivo 

environment. 

• To develop an optimised manual technique for dip-coating steel microneedles. 

• To characterise steel microneedle devices in terms of appearance, coating and cargo 

release following delivery of liquid-loaded or dry-coated substances to both mouse 

and human skin. 
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2.2 Methods 

Unless specified, all other reagents and materials including tissue culture vessels were 

obtained from Thermo Fisher Scientific, UK.  

 

Cell and organ cultures were maintained in an incubator at 37°C in a humidified 

atmosphere containing 5% CO2 in air unless specified otherwise. 

 

2.2.1 Aseptic procedures 

Where necessary, materials were sterilised by autoclaving at 121°C for 15 min.  Aseptic 

techniques were performed as required and carried out in a class 2 biosafety cabinet 

with 70% (v/v) ethanol in water used as the general disinfectant.  

 

2.2.2 Cell culture  

2.2.2.1 Cell culture medium 

HaCaT cell lines were cultured using Dulbecco’s modified Eagle medium (DMEM) 

(Life Technologies, UK) supplemented with 10% foetal bovine serum (FBS) (Life 

Technologies, UK), 100 unit mL-1 penicillin and 100 mg mL-1 streptomycin (Life 

Technologies, UK). 

 

2.2.2.2 Culturing from frozen stock 

HaCaT cells (passage 47 and passage 58), a gift from Professor Mark Gumbleton 

(School of Pharmacy and Pharmaceutical Sciences, Cardiff University), were 

maintained as 1 mL aliquots of cells suspension at -80°C until use. The frozen cells 

were thawed at 37°C in a water bath and 10 mL growth medium was added slowly 

(drop-wise) to dilute the cells with continuous gentle shaking. The cells were then 

centrifuged (Beckman Coulter, UK) at 180 × g for 10 min at room temperature and 

seeded in a 25 cm2 tissue culture flask. Cells were then incubated to allow adherence to 

the bottom of the culture vessel and proliferation until approximately 90% confluency 

before subculture as described in section 2.2.2.3. 
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2.2.2.3 Routine subculture 

Firstly, confluent cells were rinsed three times with PBS (Life Technologies, UK) and 

then incubated with 1mL (equivalent to 40 µL cm-2 growth area) of 0.05% Trypsin-0.53 

mM EDTA (Life Technologies, UK) at 37°C for 5 to 10 min. Then, cells were removed 

from the growth surface by tapping the culture vessel against the edge of a bench top. 

Growth medium with serum was then added to the flask to inhibit the enzymatic action 

of trypsin-EDTA. The cells were then centrifuged at 300 × g for 5 min at room 

temperature. The supernatant was discarded and the cell pellet was re-suspended in 

growth medium. Cells were disaggregated by passing through the serological pipette 

several times and then seeded in sufficient density by splitting the cells approximately 

in ratios of 1 in 5 to 1 in 10, for a new passage. Cells were maintained in an incubator 

and fluid changed with growth medium every 48 to 72 h. Cell subcultures were 

performed every 4 to 5 days. If a 75cm2 tissue culture flask was used, reagents were 

scaled up accordingly. 

 

2.2.2.4 Determination of cell count 

Cell count was performed using a Neubauer haemocytometer (Paul Marienfield, 

Germany). A 20 µL aliquot of cell samples was removed from the tissue culture vessel 

and disaggregated as described in section 2.2.2.3 were diluted 1:1 with trypan blue 

solution (Sigma Aldrich, UK). Then, 10 µL sample of the trypan blue diluted cell 

suspension was loaded into each counting chamber of the haemocytometer for counting 

under a light microscope. Only viable cells that were not stained with trypan blue were 

included in the count.  

 

2.2.2.5 Cryopreservation of cells 

Cells were occasionally frozen to maintain stock for future use. Cells that have been 

removed from the tissue culture vessel and disaggregated as described in section 2.2.2.3 

were suspended in DMEM supplemented with 20% FBS and 10% DMSO at a cell 

density of 106 cells per mL. Cell suspensions were divided into 1mL aliquots in 

cryogenic tubes and frozen at -80°C in an isopropyl alcohol bath setup (Mr. Frosty 

Freezing Container; Nalgene, Thermo Fisher Scientific, UK) to achieve a rate of 

cooling of approximately -1°C per min, the optimal rate for cell preservation.  
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2.2.3 Excised human breast skin organ culture 

2.2.3.1 Organ culture medium 

Organ culture medium was prepared using DMEM supplemented with 100 mg mL-1 

penicillin and 100 unit mL-1 streptomycin. Amphotericin B (Life Technologies, UK) at 

a concentration of 2.5 µg mL-1 was added to cultures that are maintained for more than 

2 days. 

 

2.2.3.2 Acquisition of skin samples 

Human breast skin samples were obtained from subjects of breast reduction and 

mastectomy following informed consent and with full ethical approval from South East 

Wales Local Research Ethics Committee (reference 08/WSE03/55). After surgical 

removal, breast skin tissue was placed into organ culture medium and transported to the 

laboratory on ice. Upon arrival at the laboratory, the skin tissue was stored at 2 to 8°C 

until use. Subcutaneous adipose tissue was removed with surgical scissors. The excised 

skin was briefly rinsed in sterile PBS and was then stretched and pinned using 1 cm 

push pins (Staples, UK) on a planar corkboard with the epidermal side facing up. Skin 

samples were then treated or cut to required size before being cultured in an organ 

culture setting as described in section 2.2.3.3.  

 

2.2.3.3 Ex vivo skin culture 

The viability of skin samples were maintained at the air-liquid interface of a Trowell-

type organ culture (Trowell 1954) to simulate in vivo conditions. A lens cleaning tissue 

paper was wrapped around a metal gauze platform before being inserted into a 6-well 

plate. The well was then filled with 6 mL organ culture medium, which was quickly 

drawn up by the lens tissue paper.  Skin samples were then placed epidermal side up 

and dermal side in contact with the soaked lens tissue paper (Figure 2.1). Skin samples 

were then maintained in an incubator for the required duration of time. 
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Figure 2.1:  A schematic diagram of the Trowell-type organ culture setup. (OCM = 

organ culture medium) (taken from Ng et al. 2009) 

 

Alternatively, skin viability was maintained by suspension at the air-liquid interface of a 

hanging insert organ culture setup (Figure 2.2). Organ culture medium of 700 µL per 

well was added to the wells of 24-well plate. Skin samples cut using 8 mm diameter 

biopsy punch (KAI medical, Japan) were suspended in a de-membraned 6 mm diameter 

hanging cell culture insert (Millipore (UK) Ltd, UK) with the epidermal side up and 

dermal side in contact with the organ culture medium. Skin samples were then 

incubated for the required duration of time. 

 

 
 

Figure 2.2:  A schematic diagram of the hanging insert organ culture setup. 
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2.2.4 Primary keratinocyte isolation and culture 

2.2.4.1 Primary keratinocyte specific culture medium 

Primary keratinocyte cell lines were cultured in EpiLife® Medium supplemented with 

Human Keratinocyte Growth Supplement (HKGS) (Life Technologies, UK) and 100 

unit mL-1 penicillin and 100 mg mL-1 streptomycin. Amphotericin B at a concentration 

of 2.5 µg mL-1 was also added to freshly isolated primary cells.   

 

2.2.4.2 Epidermal sheet separation  

Freshly excised (within 6 h of surgery) breast skin tissue (section 2.2.3.2) was placed 

into a rinse solution of D-PBS (Life Technogies, UK) with an antibiotic cocktail 

containing 100 unit mL-1 penicillin and 100 mg mL-1 streptomycin, 50 µg mL-1 

gentamicin (Life Technologies, UK) and 2.5 µg mL-1 amphotericin B, for 

approximately 30 min. The skin tissue was then divided using a 6 mm diameter biopsy 

punch. To improve reagent penetration into the tissue during enzymatic separation, a 

significant portion of the dermis was mechanically removed before treatment using 

either: 

i. a 2.4 caseinolytic units mL-1 solution of Dispase II (Life Technologies, UK) dissolved 

in D-PBS supplemented with 100 unit mL-1 penicillin, 100 mg mL-1 streptomycin and 

2.5 µg mL-1 amphotericin B. This was incubated at 4°C for 16 h and then at 37°C for 20 

min before separation or 

ii. an enzyme cocktail solution containing 2 caseinolytic units mL-1 solution of Dispase 

II, 197 units mL-1 solution of Collagenase D (Life Technologies, UK) and 20 units mL-1 

solution of Deoxyribonuclease (DNase) I from bovine pancreas (Sigma Aldrich, UK) in 

RPMI medium (Sigma Aldrich, UK) at 37°C for 40 min.  

 

For chemical separation of the epidermal sheets, skin tissue pieces were incubated in 

3.8% (w/v) ammonium thiocyanate (Sigma Aldrich, UK) in PBS at room temperature 

for 40 min. After incubation in dispase, enzyme cocktail or ammonium thiocyanate, the 

epidermal layer of human skin was separated from the dermis using forceps. Epidermal 

sheets for primary cells isolation were then handled as described in section 2.2.4.3.  
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2.2.4.3 Isolation of primary epidermal cells  

Epidermal sheets separated using dispase were transferred into a 15 mL centrifuge tube 

containing 5 mL of 0.25% Trypsin-0.53 mM EDTA (Life Technologies, UK). The 

sheets were then incubated at 37°C for 30 min, during which it was aspirated using a 1 

mL serological pipette every 10 min to aid cell dissociation. Following incubation, 

trypsin activity was inhibited by addition of an equal volume of soybean trypsin 

inhibitor (Life Technologies, UK) at a final concentration of 1 mg mL-1 dissolved in D-

PBS and sterile filtered prior to use. The cell suspension was transferred to a fresh 50 

mL centrifuge tube through a 70 µm cell strainer and rinsed with 5 mL PBS, after which 

it was centrifuged at 300 × g for 5 min at room temperature. The resulting cell pellet 

was gently re-suspended in complete keratinocyte specific medium and centrifuged 

again at 300 × g for 5 min at room temperature.  

 

The cell pellet was gently re-suspended in 5 mL of complete keratinocyte specific 

medium and the concentration of basal keratinocytes was determined using a 

haemocytometer. Primary cells were seeded into 25 cm2 tissue culture flasks at a density 

of approximately 4 × 104 cell cm-1 in complete keratinocyte specific medium with 

amphotericin B. The primary cultures were incubated and fluid changed with fresh 

complete keratinocyte specific medium every 48 to 72 h. 

 

2.2.4.4 Secondary culture of human epidermal keratinocytes 

Upon reaching 60% to 75% confluency, the culture medium was removed and the cell 

monolayer was rinsed twice with PBS before incubation in 1 mL (equivalent to 40 µL 

cm-2 growth area) TrypLE™ Express (Life Technologies, UK) at 37°C for 5 to 10 min. 

Following the enzymatic treatment with TrypLE™ Express, cells were removed from 

the growth surface by tapping the culture vessel against the edge of a bench top. 

 

When approximately 90% of the cells have detached, the enzymatic activity was 

stopped by the addition of 200 µL cm-2 growth area (5 times dilution) of PBS. The cell 

suspension was transferred to a sterile 50 mL centrifuge tube and centrifuged at 300 × g 

for 5 min at room temperature.  The supernatant was discarded and cell pellet was re-

suspended in keratinocyte specific medium and seeded into a fresh tissue culture flask at 

a density of approximately 3 × 104 cells cm-2 in keratinocyte specific medium. The 
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primary cultures were maintained in an incubator and fluid changed with fresh complete 

keratinocyte specific medium every 2 to 3 days until the cells reached 80% confluency, 

after which it was further sub-cultured. Primary cells were cultured in keratinocyte 

specific medium without amphotericin B in subsequent passages. If a 75cm2 tissue 

culture flask was used, reagents were scaled up accordingly. 

 

Primary keratinocytes after the initial passage were also grown on glass coverslips and 

subjected to immunofluorescence staining with anti-cytokeratin-14-FITC antibody 

(Abcam, UK) to determine purity of the keratinocyte cell population as described in 

section 2.2.4.6. 

 

2.2.4.5 Cryopreservation of primary keratinocyte cells 

Cells were counted and re-suspended from routine subculture, at 3 × 106 cells per mL, 

in FBS, supplemented with 10% dimethyl sulfoxide (DMSO). Cell suspensions were 

divided into 1mL aliquots in cryogenic tubes and frozen at -80°C in an isopropyl 

alcohol bath setup to achieve a rate of cooling of approximately -1°C per minute, the 

optimal rate for cell preservation.  

 

2.2.4.6 Immunofluorescence staining for confocal microscopy 

Prior to confocal microscopy, cells grown on glass coverslips in the wells of 12-well 

plates were fixed and stained with primary antibodies and fluorescently conjugated 

secondary antibodies. Firstly, growth medium was removed and cells were rinsed 3 

times with PBS. Then, paraformaldehyde (PFA) 3% (w/v) dissolved in PBS was added 

to the cells as a fixative agent for 15 min at room temperature. The cells were rinsed 3 

times with PBS. Ammonium chloride 50mM in PBS was added to the cells to remove 

any traces of PFA for 5 min at room temperature. The cells were rinsed 3 times with 

PBS. Triton X-100 0.2% (w/v) in PBS was added to the cells to permeabilise cell 

membranes for 5 min at room temperature. The cells were then rinsed 3 times with PBS. 

Subsequently, the cells were incubated in 500 µL blocking solution made of 2% (v/v) 

foetal bovine serum (FBS) and 2% (w/v) bovine serum albumin (BSA), for 30 min at 

room temperature. Primary antibodies were diluted in blocking solution according to 

manufacturer’s recommended concentration for immunofluorescence.  The cells were 

incubated in the diluted primary antibodies for 30 min at room temperature. The cells 
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were rinsed 3 times with triton X-100 0.2% (w/v) in PBS and then once with PBS. 

AlexaFluor conjugated secondary antibodies (Life Technologies, UK) were diluted 

1:400 in blocking solution. The washed cells were incubated in the diluted secondary 

antibodies for 30 min at room temperature and then rinsed 3 times with triton X-100 

0.2% (w/v) in PBS and once with PBS. The cells were then incubated in Hoechst 33258 

or 33342 (Sigma Aldrich, UK), a fluorescent nuclei counterstain, at a concentration of 1 

µg mL-1 in PBS for 15 min at room temperature and then rinsed 3 times with PBS.  

 

Each coverslip was lifted and excess fluid was removed using filter paper, without 

damaging the cells, before being mounted on a drop of Dako fluorescence mounting 

medium (Dako, UK) on a microscope slide. The coverslips mounted on oil were 

allowed to dry for 2 h at room temperature before the sides of the coverslips were sealed 

with a clear coat of nail varnish (Boots UK Ltd, UK). The slides were kept at 4°C until 

further use for up to 4 weeks. 

 

A Leica DMI6000B confocal microscope (Leica Microsystems (UK) Ltd, UK) with the 

LAS AF software (Leica Microsystems (UK) Ltd, UK) system was used to visualise 

and capture micro-images of the fixed and stained cells. The images saved were then 

analysed using the Image J computer software (United States National Institute of 

Health, USA). 

 

2.2.4.7 Cryosectioning and immunohistochemistry staining 

Skin samples were embedded in optimal cutting temperature (OCT) medium (Tissue-

Tek® OCT™ Compound, Sakura Finetek Europe B.V.), frozen on dry-ice and then 

stored at -80°C. The samples embedded in OCT blocks were sectioned using the Leica 

CM3050S Cryostat (Leica Microsystems (UK) Ltd, UK). Skin sections of 10 to 14 µm 

were captured on Superfrost Plus® microscope slides. Selected slides were washed in 

PBS for 5 min to remove residual OCT embedding medium and subjected to 

haematoxylin and eosin (H&E) staining to assist visualisation of the epidermal 

architecture. Briefly, the skin sections were immersed in Harris’ haematoxylin solution 

for 45 to 90 s, rinsed under running tap water for 1 min, differentiated in 0.3% (v/v) 

hydrochloric acid in ethanol (acid alcohol) for 10 s, rinsed under running tap water for 2 

min, immersed in 1% eosin solution for 1 s, and then rinsed under running tap water for 
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2 min. The stained cryosections were then dehydrated in an ethanol gradient by 

consecutive immersion in 30%, 50%, 70%, 90% and 100% ethanol for 2 min each 

immersion, respectively. The stained and dehydrated cryosections were then immersed 

in xylene for 5 min before permanent mounting with Histomount mounting solution 

(National Diagnostics, USA) and cover-slipped. For long-term storage, the side of the 

coverslips were sealed with a clear coat of nail varnish.   

 

Specimens were observed using the Olympus® BX-50 or IX-50 microscopes (Olympus 

(UK) Ltd, UK) and images were captured using the DP-10 digital camera (Olympus 

(UK) Ltd, UK). 

 

2.2.5 Characterisation of microneedle devices 

Steel microneedle devices manufactured and fabricated by Cardiff University and 

Georgia Institute of Technology, USA were characterised by imaging under a 

microscope (section 2.2.5.3). The microneedles were also coated with nucleic acid and 

allowed to dry after which the nucleic acid was recovered with a small volume of buffer 

and then quantified. These microneedle devices were then utilised for ex vivo and in 

vivo experiments to deliver methylene blue to mouse skin (section 2.2.5.4), FITC 

conjugated oligonucleotide (section 2.2.5.5), pDNA (Chapter 3) and siRNA (Chapter 5) 

to excised human skin as well as, pDNA and siRNA to mouse skin (Chapter 6).  

 

2.2.5.1 Microneedle fabrication 

Microneedle devices of various needle densities and dimensions manufactured by 

Cardiff University were fabricated by wire electrical discharge machining (EDM) from 

a stainless steel sheet (Chong et al. 2013). Other microneedle devices (5 needles per 

array or 10 × 5 needles per array; 700 µm in length), manufactured and provided by 

Georgia Institute of Technology, were fabricated using laser cutting followed by 

electropolishing (Gill and Prausnitz 2007a).  

 

2.2.5.2 Microneedle coating 

Before coating, microneedle devices were pre-conditioned by rinsing in buffer solutions 

and were then allowed to dry at room temperature. Steel microneedles were coated 
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using the dip-coating method depicted in Figure 2.3 (Chong et al. 2013). A volume, V, 

of concentrated solution, C, was loaded into a pipette tip as a reservoir for coating. 

Microneedles were coated by repeated immersions of the needles into the reservoir, 

with 30 s air drying time in between each immersion until the reservoir was exhausted. 

More than one microneedle device (N) was coated at a time. The coated microneedles 

were then allowed to dry further at 4°C.  

 

 

Figure 2.3:  A schematic illustration of the microneedle coating method (Chong et al. 

2013). (i) A volume of solution of known concentration was loaded into a 

pipette tip as a reservoir for coating. (ii) Microneedles were coated by repeated 

immersions of the needles into the reservoir, with 30 s of air-drying time 

between each immersion. (iii) Microneedles were coated until the reservoir 

was exhausted. (iv) Coated microneedles were allowed to dry further at 4 °C. 

 

The estimated mass of material coated onto each microneedle device, 𝑥, was then 

calculated using the formula below:  

𝑥 =
𝐶  ×  𝑉
𝑁    

  

2.2.5.3 Imaging of microneedle devices 

Microneedle devices were imaged en face using the Maplin USB digital microscope 

(Maplin Electronics, UK) and at greater magnification using the VWR BI 500 light 
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microscope (VWR International, UK). Fluorescent images of coated microneedles were 

imaged using Leica DM IRB epifluorescence microscope (Leica Microsystems (UK) 

Ltd, UK) with Openlab imaging software (Perkin Elmer, UK). 

 

2.2.5.4 Delivery of a liquid-loaded formulation from microneedles 

Microneedles were coated by a single immersion of each microneedle in the array in 2% 

(w/v) methylene blue with 10% (v/v) glycerol in water using the method described in 

section 2.2.5.2. The methylene blue coated microneedles were not allowed to dry 

(liquid-loaded) but immediately applied to dead mouse skin with the mouse hair having 

been chemically removed using Veet® Hair Removal Cream (Boots, UK). Prior to 

microneedle application, skin at the proposed area of treatment was pulled taught and 

then the coated microneedles were manually inserted with enough force to puncture the 

surface of the mouse skin and were left in place for 5 min.  

 

2.2.5.5 Delivery of a dry-coated formulation from microneedles 

Microneedles were coated with fluorescein isothiocyanate (FITC) conjugated 

oligonucleotide 10 mg mL-1 using the method described in section 2.2.5.2. The 

microneedles were coated through repeated immersions (20 times per microneedle) in 

the coating reservoir and were allowed to dry at 4°C for 16 h (dry-coated). 

Microneedles were imaged before and after insertion into excised human skin. The 

treated skin samples were embedded in OCT medium, frozen on dry ice and 

cryosectioned using the method described in section 2.2.4.7. The transverse sections of 

sample collected on microscope slides were not H&E stained but kept frozen until 

imaging using the Leica DM IRB epifluorescence microscope with Openlab imaging 

software.  The epidermal sheets were separated from some of the treated samples using 

ammonium thiocyanate, as described in section 2.2.4.2, and imaged using the Leica DM 

IRB epifluorescence microscope with Openlab imaging software.  
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2.3 Results and discussion 

2.3.1 Cell culture of the HaCaT cell line 

Routine subculture was successfully performed with the HaCaT cell line. HaCaT cells 

used in all the experiments were between passage 50 and 75.  

 

2.3.2 Epidermal sheet separation, primary keratinocyte isolation and culture 

2.3.2.1 Epidermal sheet separation 

Epidermal sheet from freshly excised human breast skin tissue was successfully 

separated from the dermis using different chemical and enzymatic reagents. For skin 

tissue incubated in ammonium thiocynate, the average incubation time was 

approximately 30 min at room temperature to achieve separation. As ammonium 

thiocynate is a chemical compound, it is not suitable for primary culture work. 

However, ammonium thiocynate is useful for sheet separation in a short period of time 

and is reportedly the preferred method for extracting RNA of high quality for 

transcriptional analysis of skin tissues (Clemmensen et al. 2009; Trost et al. 2007).  

 

The more popular methods of choice for epidermal sheet separation where viable cells 

are required for subsequent processes are the enzymatic methods using dispase (Green 

et al. 1979; Kitano and Okada 1983) or thermolysin (Walzer et al. 1989). Both dispase 

and thermolysin are protease enzymes that act at the basal cell attachment level by 

disrupting the hemidesmosomes to cause epidermal-dermal separation (Green et al. 

1979; Poumay et al. 1994; Spurr and Gipson 1985; Walzer et al. 1989). Albeit having 

slightly varied protocols, these enzymatic methods of epidermal sheet separation have 

been widely applied to isolate cells from skin tissues for primary cell cultures (Germain 

et al. 1995; Hybbinette et al. 1999; Normand and Karasek 1995; Rakhorst et al. 2006). 

 

Epidermal sheet separations were initially attempted using published methods by 

incubating in dispase for 16 h at 4°C (Kitano and Okada 1983; Normand and Karasek 

1995) or thermolysin for 2 h at 37°C (Germain et al. 1993). However, the skin tissues 

incubated in thermolysin at 37°C for 2 h were difficult to handle and epidermal 

separation was challenging as the dermal tissues disintegrated. Separation of epidermal 

sheets after 16 h incubation in dispase was possible but separation was not always 
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complete with small segments of epidermal sheet proving inseparable around the centre 

of the skin tissue.  

 

However, consistent epidermal sheet separations were achieved by incubating tissues in 

dispase for 16 h at 4°C and then 20 min at 37°C prior to separation (Rakhorst et al. 

2006). Incubation at 4°C overnight seemed to be gentle enough to allow the enzymes to 

fully penetrate the tissues into the dermal-epidermal junction without disintegrating the 

tissue. A short incubation at 37°C provided the optimum condition for the enzymes to 

work efficiently at the junction and allowed dermal-epidermal separation with ease. 

 

Whilst epidermal sheet separation with dispase alone was successful in the culture of 

primary cells (section 2.3.2.2), this enzymatic separation method requires overnight 

incubation time which was not suitable for epidermal cell extraction for flow cytometry 

analysis. An alternative protocol using an enzyme cocktail solution with dispase, 

collagenase and DNase was employed, which required a shorter incubation time of 40 

min. This separation method extracts epidermal cells in a shorter period of time, which 

was more suitable for viable cell extraction for flow cytometry. 

 

2.3.2.2 Isolation of epidermal keratinocytes and culture 

After several initial attempts, primary keratinocyte cells were successfully isolated and 

cultured from human epidermis. Upon seeding in the culture flask, some smaller cells 

immediately settled and stuck to the culture flask while larger cells remained afloat 

(Figure 2.4 A). The following day some cells were fully attached to the bottom of the 

culture vessel, whilst many large rounded cells had adhered to the bottom of the culture 

vessel but failed to fully attach, even after 4 days (Figure 2.4 B). The cells capable of 

attachment during this phase were probably basal cells, whereas the majority of larger, 

more differentiated cells remained in an arrested state (Staiano-Coico et al. 1986; 

Zellmer et al. 2001). Attached cells started proliferating after 3 to 4 days and formed 

colonies of 20 to 30 cells after 4 to 7 days in culture (Figure 2.4 B). By day 8 to 10 cell 

confluency was approximately 70%, with cells clusters of 70 to 80, and the culture was 

therefore split at this point.  
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Figure 2.4:  Representative bright-field micrographs of primary keratinocyte cells 

post-isolation (Passage 0). A. Non-adherent rounded cells on Day 1. B. Cell 

colony with approximately 20 to 30 cells and visible rounded cells, which 

adhered but did not fully attach or proliferate on Day 4. 

 

Several studies have reported that keratinocyte cells that are present in the skin can be 

classified into three subpopulations of cells with different sizes and cell cycle kinetics 

(Barrandon and Green 1987; Staiano-Coico et al. 1986; Watt and Green 1981). 

Keratinocyte cells deriving from the basal layer of epidermis are small and have the 

greatest capacities to form colonies if cultured in vitro. These basal keratinocytes are 

called the holoclone and are likely the stem cells (Barrandon and Green 1987). These 

cells were observed in the cultures as the smaller sized cells, which easily attached and 

proliferated in the culture vessel (Zellmer et al. 2001). 

 

In contrast, suprabasal keratinocytes found in the upper layer of epidermis are larger in 

size and are less efficient at forming colonies in vitro.  The suprabasal cells are 

meroclone, a clone of cells with mixed composition and paraclone, which consists of 

matured keratinocytes (Barrandon and Green 1987). The keratinocyte cells in the skin 

increase in size as they differentiate from haloclone to meroclone to paraclone as 

synthesis of involucrin and large keratin filaments begin at different stages of 

keratinocyte maturation (Watt and Green 1981). Therefore, primary keratinocytes 

isolated from adult human breast skin tissue may contain a majority of differentiated or 

terminally differentiated cells that do not adhere or divide in the culture vessel (rounded 

non-adhering cells in Figure 2.4 B). The duration of keratinocytes propagation in cell 

culture has been said to decline with the age of donor (Rheinwald and Green 1975) due 
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to changes in relative levels of the three clonal types (Barrandon and Green 1985) but 

insufficient samples were processed in this study to be able to support this claim.  

 

Subcultures of primary keratinocytes were attempted with various cell-seeding 

densities. When cells were seeded at low density, initial proliferation was remarkably 

slow, sometimes did not proliferate enough for subsequent subculture and were 

abandoned. Based on daily observations, cells seeded at higher density following 

subculture attached to the culture vessel and proliferated. Larger cells that did not attach 

well during these cultures were washed away when the culture medium was refreshed. 

At higher seeding density, primary keratinocytes reached 80% confluency and were 

ready for further subculture after 4 to 6 days (Figure 2.5). Primary keratinocyte cells 

should always be seeded at higher cell density for growth and proliferation to avoid 

issues such as apoptosis at low density (Aasen and Izpisua Belmonte 2010; Zellmer and 

Reissig 2002).  

 

   
Figure 2.5:  Representative bright-field (A) and fluorescent confocal (B) micrograph of 

confluent primary keratinocyte cells after subculture. A. Primary 

keratinocyte cells assumed the distinct “cobble stone” morphology and the 

proliferating cells were visibly of different sizes. B. Primary keratinocyte cells 

were stained with anti-cytokeratin-14-FITC antibody and pseudo-coloured 

green. Nuclei were counterstained with Hoecsht 33342 and pseudo-coloured 

blue. The confocal image is a z-stacked projection of 20 slices of images taken 

over a cell layer thickness of approximately 12 µm. 

  

Generally, keratinocyte cells display distinct “cobble stone” morphology and are easily 

distinguished from other cell types present in the human skin such as fibroblasts, which 

usually display spindle morphology upon reaching confluency (Tomakidi et al. 1999). 
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Therefore, it was easy to monitor that primary keratinocyte cells were proliferating in 

the cultures instead of other populations of cells. Primary keratinocytes also expresses 

K14 protein (Figure 2.5 B), which can be used as a marker to identify the proliferating 

cells through immunofluorescence (Aasen and Izpisua Belmonte 2010). Primary culture 

was exploited to investigate the plausibility of delivering nucleic acids to cells similar to 

those found in human skin under controlled culture environment. The results from work 

with primary cells would facilitate or support transition of future work to excised 

human skin.  

 

2.3.3 Ex vivo Human Skin  

Excised human skin samples were successfully cultured ex vivo and remained viable for 

the duration of time required for gene manipulation studies described in Chapter 3 and 

5. The protocol for culture of excised human skin maintained for up to 72 h has been 

previously optimised for pDNA delivery (Ng et al. 2009) and therefore the same organ 

culture protocol was employed for all ex vivo skin studies with pDNA. An example of 

the Trowell-type organ bath is depicted in Figure 2.6.  

 

 
Figure 2.6:  A representative image of the Trowell-type organ culture setup. The skin 

samples were punch biopsies of human breast skin resting on an air-liquid 

interface with the dermis in direct contact with the lens tissue paper wrapped 

around a metal grid platform, drawing up culture medium from the reservoir in 

the culture vessel.  
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An alternative ex vivo culture model using the hanging insert organ culture setup was 

employed in subsequent siRNA delivery experiments. This hanging insert organ culture 

setup requires less organ culture volume and involves less processing steps.  The 

viability of excised human skin cultured in hanging inserts has previously been 

validated by a colleague, who demonstrated high epidermal cell viability through flow 

cytometry for culture of up to 5 days (results not published). An example of the hanging 

insert organ culture setup is depicted in Figure 2.7.  

 

 
Figure 2.7:  A representative image of the hanging insert organ culture setup. The skin 

sample was a punch biopsy of microneedle-treated human breast skin resting 

on an air-liquid interphase with the dermis in direct contact with culture 

medium in the culture vessel.  

 

2.3.4 Characterisation of microneedle devices  

Microneedle devices used in this research were made of stainless steel and were 

manufactured and fabricated by Georgia Institute of Technology, USA or Cardiff 

University, UK (Figure 2.8). The microneedle devices have different needle shapes 

(blade, concave, serrated), heights (500 or 750 µm) and spatial densities (5 or 10 

needles per array).  
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Figure 2.8:  Images of stainless steel microneedle devices of different needle heights, 

shapes and spatial densities.   

 

Previously, in-plane steel microneedle arrays in the laboratory were coated using a 

specially designed micro-dip-coating device (Figure 2.9). The device has a solution 

reservoir that is covered by a thin sheet of plastic with micron-sized holes of the same 

spacing as the needles in an array of in-plane metal microneedle device. This served to 

prevent solution contact with the base of the microneedles on insertion into the reservoir 

(Gill and Prausnitz 2007a). The aforementioned micro-dip-coating device is useful 

when coating microneedles with a single coat of potent drug solution with precision. 



	  

	  

	  
CHAPTER 2 

	  
	   	  

69	  

However when manually coating microneedles multiple times the shape of the thin 

sheet cover distorts over time causing the micron-sized holes to expand. This can lead to 

deposition of drug substance on the base of the microneedle array. The dip-coating 

device is cleaned after use and reused, which raises the concern of residual 

contaminants from previous experiments. Most importantly, the device also has a dead 

volume of 10 µL, which causes wastage of materials such as proteins, nucleic acids and 

other expensive biologic drugs.  

 

 
Figure 2.9:  Digital image of the micro-deep-coating device.  

 

An optimised technique for dip-coating microneedles was developed as depicted in 

Figure 2.3. Albeit a slower coating process than using the dip-coating device, this 

technique improves coating precision and dosage accuracy. The depth of microneedle 

immersion into the coating reservoir can be manually manipulated when coating under 

the inspection microscope. Coating fluid in the reservoir can be fully utilised to avoid 

wastage of material as well as provide theoretical estimation of drug quantity coated on 

the microneedles if the volume and concentration of drug formulation loaded into the 

reservoir was known. Microneedles of any shape, spatial density and dimension may be 

coated as the end of a pipette tip can be cut to reveal larger hole if necessary. As pipette 

tips are inexpensive and readily available in laboratories, the tips are for single use 

ensuring coating material purity. This technique is inexpensive and can be performed in 

any laboratory setting. 

 

Initial skin penetration studies using these steel microneedles were performed using 

methylene blue (Figure 2.10) and FITC conjugated oligonucleotide (Figure 2.11 and 
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2.12) delivered to dead mouse skin and excised human skin, respectively. These studies 

aim to determine the ability of steel microneedles to penetrate both the mouse and 

human skin and deliver their cargo using simple, easily detectable reagents. The 

characteristics of cargo delivery with formulations that were either liquid loaded or dry-

coated onto microneedles were then evaluated to determine a system suitable for nucleic 

acid delivery. 

 

 

Figure 2.10:  Images of stainless steel microneedles liquid-loaded with methylene blue 

and mouse skin that have been treated by the microneedle devices. 

Microneedle devices (A: 5 regular needles per array and B: 5 pocketed needles 

per array, both with 500 µm needle length) were (i) coated with 2% (w/v) 

methylene blue + 10% glycerol, (ii) delivered to mouse skin and (iii) imaged 

with used devices beside the corresponding penetration sites on the mouse 

skin.   

 

Methylene blue is a water-soluble compound that does not penetrate the highly 

lipophilic stratum corneum of intact skin. Methylene blue solution dries quickly on the 

surface of microneedles, therefore glycerol was added to the formulation in this 

experiment to investigate the delivery of liquid-loaded methylene blue solution to 

mouse skin. As depicted in Figure 2.10, methylene blue in a glycerol solution, liquid-

loaded onto the surface of steel microneedles, resulted in penetration of the mouse skin 

stratum corneum and deposition of methylene blue on the surface of the skin. The 

pocketed microneedles showed higher liquid loading capacity than the regular 

microneedles. However, the majority of the methylene blue solution was deposited on 

the surface of the skin instead of in the skin penetration site. The delivery of liquid-
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loaded formulations using microneedles also resulted in a visible amount of liquid 

formulation adhering to the microneedle base plate after they were removed from the 

skin. Although liquid-loaded formulations do not enable the microneedle to fully deliver 

its cargo into the skin, but rather on the surface of the skin, this approach may be 

advantageous as it avoids the dissolution step required in formulations that have been 

dry-coated onto microneedles. 

 

 
Figure 2.11:  Representative fluorescent and bright-field micrographs of stainless steel 

microneedle devices coated with FITC-conjugated oligonucleotide before 

(pre-delivery) and after (post-delivery) insertion into human skin. (FITC 

fluorescence was pseudo-coloured green)   

 

The ability to deliver high molecular weight compounds into the skin using dry-coated 

microneedles was then investigated using FITC conjugated oligonucleotide. The 

surfaces of microneedles of different needle lengths and from different manufacturers 
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were evenly coated with the fluorescent material (Figure 2.11 “pre-delivery”). There 

was a visible amount of material coated on the base of the microneedle arrays, which 

could be improved by controlling the depth of microneedle immersion into the coating 

reservoir. Following insertion of coated microneedles into human skin (Figure 2.11 

“post-delivery”), the fluorescence signal was reduced along the length of the Georgia 

Institute of Technology microneedles (Figure 2.11). It is presumed that the coated 

material has been deposited in the human skin during microneedle administration. 

However, there was a notable amount of coating material left on both the microneedle 

arrays manufactured by Cardiff University (Figure 2.11).  

 

The treated skin samples were cryosectioned and transverse sections of the microneedle 

penetration sites were examined microscopically (Figure 2.12). More FITC conjugated 

oligonucleotide was deposited on skin sample treated with the microneedles from 

Georgia Institute of Technology, consistent with the observation of less fluorescence 

remaining on the microneedles post-delivery compared to the microneedles 

manufactured at Cardiff School of Engineering. The fluorescent oligonucleotide was 

also deposited in human skin treated with the microneedles manufactured in Cardiff 

University but to a lesser extent, which corresponds to the notable fluorescence signal 

that remained on the surface of microneedles post-delivery. 

 

The steel microneedle devices manufactured by Georgia Institute of Technology, USA 

were surface-electropolished (Gill and Prausnitz 2007a) whilst the microneedle devices 

manufactured by Cardiff University, UK were not. This could be one of the factors 

affecting the ability of steel microneedle devices to release its coated cargo. As visible 

from the scanning electron micrographs published by Gill and Prausnitz in 2007 (Figure 

2.13), there are vast differences in microneedle surface smoothness and tip sharpness 

following electropolishing. The effect of the different microneedle surfaces on the 

ability to release its coated cargo was investigated further with pDNA in Chapter 3 and 

siRNA in Chapter 4. 
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Figure 2.12:  Representative fluorescent and bright-field micrographs of human skin 

sections, which have been microneedle-treated with dry-coated FITC-

conjugated oligonucleotide. FITC fluorescence was pseudocoloured green.   
 

 
Figure 2.13:  Scanning electron micrograph showing the effect of electropolishing on 

the surface of steel microneedle. (A) A microneedle tip after cleaning with 

detergent powder appears to have debris residue and slag. (B) A microneedle 

tip after electropolishing reveals a cleaner, sharper and smoother surface that is 

free from debris and slag (taken from Gill and Prausnitz 2007a). 
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2.4 Conclusion 

In this method development and optimisation chapter, several culture models of human 

skin were successfully developed and optimised. The availability and ability to maintain 

these culture models was essential to future nucleic acid delivery work in later chapters. 

Microneedles of various shape, dimension and spatial densities were also characterised 

microscopically. More importantly, a simple and precise manual coating technique was 

successfully developed and used for coating nucleic acid onto steel microneedles in 

later chapters. Preliminary skin penetration studies showed the ability of the various 

coated steel microneedles to breach the stratum corneum barrier and subsequently 

deposit coated materials in the skin proximal to the microneedle penetration site. 
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3 Non viral delivery of plasmid DNA to human skin 

3.1 Introduction 

According to the “central dogma” of molecular biology, expression of genetic 

information occurs from the direction of nucleic acids to proteins (Crick 1970). Gene 

expression to produce proteins involves transcription of sequence specific DNA to 

corresponding mRNA. The subsequent translation of mRNA into amino acids, which 

are then folded into proteins, is essential for the regulation of cellular function. Genetic 

diseases are caused by failure in gene regulation, resulting in over-, under- or non-

expression of functional protein in the body. For genetic manipulation to occur, 

therapeutically relevant genetic material needs to be delivered across the cellular 

membrane and introduced to the target site in a safe and effective manner. In the skin, 

this challenge is further complicated by the presence of the physical barrier of the tissue, 

the stratum corneum. Despite the presence of the stratum corneum barrier, gene delivery 

to the skin is advantageous as it is the largest organ of the human body and is readily 

accessible for treatment. Non-viral gene therapy uses plasmid DNA (pDNA) to allow 

introduction of a missing gene to correct monogenic recessive disorders (Kikuchi et al. 

2008). This chapter describes introduction of nucleic acid to both in vitro and ex vivo 

humans skin models, in the form of pDNA that expresses a reporter gene, as the first 

steps to understanding cutaneous gene delivery and gene expression. 

 

3.1.1 Non-viral delivery of nucleic acids 

The ability to deliver naked reporter pDNA to excised human skin and observe 

transgene expression has been shown previously (Hengge et al. 1996) and is a useful 

tool to investigate pre-clinical functional genetic manipulation in human skin. Although 

delivery of naked pDNA to human skin models using skin disruption techniques such as 

intradermal injection (with or without electroporation), ballistic approaches and 

microneedles have been widely reported in the literature (refer to Chapter 1 for 

comprehensive literature review), naked DNA does not cross the cellular barrier in 

monolayer cell culture in vitro and requires vectors for cellular delivery (Felgner et al. 

1987).  

 

As previously discussed in the general introduction chapter, certain viral vectors are 

ideal for gene delivery as they allow permanent introduction of genetic material into the 
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cells. However, viral gene delivery is associated with risks of life threatening adverse 

effects such as acute immune response, immunogenicity, and insertional mutagenesis 

(Hacein-Bey-Abina et al. 2008; Howe et al. 2008; Vannucci et al. 2013). The use of 

non-viral vectors, if executed optimally, provides a safe and effective alternative 

method of gene delivery to the skin. Non-viral vectors such as cationic lipids can be 

used to deliver nucleic acids to in vitro keratinocyte cells, which can be re-grafted back 

to a patient in an ex vivo approach of cutaneous gene delivery (Del Rio et al. 2004; 

Ferrari et al. 2005). The ability to improve cellular delivery of nucleic acid with a non-

viral vector could also potentially improve in vivo gene delivery and subsequent gene 

expression in human skin. 

 

3.1.2 Reporter plasmid DNA 

Plasmid DNA exists naturally as supercoiled small circular double-stranded DNA 

molecules that is not a part of genomic DNA (extra-chromosomal) and replicates 

independently in a cell. Naturally occurring plasmids in bacteria carry auxiliary genes 

that can be exchanged between bacterial cells. For example, some bacteria contains 

fertility factor that allows gene transfer between one bacterium to another through 

conjugation, known as the F-plasmids (Lederberg et al. 1952); and some bacteria gain 

antibiotic resistance through pDNA exchange between different strains, known as the 

R-plasmids (Christie et al. 1987). Synthetic plasmids are capable of multiplying rapidly 

in bacterial culture for extraction and purification (Prazeres et al. 1998). Recombinant 

DNA technology allows insertion of a gene sequence that encodes a visual marker into 

a synthetic plasmid construct, which is expressed as reporter gene when introduced to 

cells. pDNA expressing reporter genes are commonly used to identify and quantify gene 

expression in cells as reporter gene expression can easily be detected using established 

detection methods or assays. The expression of a reporter gene from a plasmid is used 

in proof-of-concept studies to indicate successful gene transfer resulting in gene 

expression. Therefore, it is important to select reporter gene that is not endogenously 

expressed in the target cells or organism. Two examples of commonly used reporter 

pDNAs are pEGFP-N1 and pCMVβ. 
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3.1.2.1 pEGFP-N1 

The pEGFP-N1 reporter plasmid (GenBank accession number U55762) is a 4733 base 

pair (bp) vector construct that encodes a red-shifted variant of wild-type green 

fluorescent protein (GFP), called the enhanced GFP (EGFP). When expressed in cells 

and visualised through fluorescence microscope with a blue light, green fluorescence 

emitted by EGFP (excitation maximum at 488 nm; emission maximum at 507 nm) is 

more intense than wild-type GFP.  The pEGFP-N1 vector has been optimised for 

enhanced expression in mammalian cells and contains a kanamycin/neomycin resistance 

region as a selectable bacterial propagation marker (ClontechLaboratories 2002). The 

green fluorescent protein reporter system is simple to analyse as it does not require a 

substrate to stimulate detection and is therefore widely utilised in gene therapy studies 

(van Roessel and Brand 2002). Besides fluorescence microscopy, a fluorescence 

detector within a flow cytometry system can also detect the expression of EGFP within 

living cells.  

 

3.1.2.2 pCMVβ  

The pCMVβ (or pCMV-LacZ) reporter plasmid (GenBank accession number: U02451) 

is a 7165 bp vector construct that encodes bacterial (Escherichia coli) β-galactosidase. 

The pCMVβ uses human cytomegalovirus (CMV) immediate early gene promoter to 

drive expression of β-galactosidase in mammalian cells (MacGregor and Caskey 1989). 

The hydrolysis of galactosides into monosaccharides is catalysed by β-galactosidase, a 

hydrolase enzyme. One of the galactoside substrates, 5-bromo-4-chloro-3-indolyl-D-

galactoside (X-gal) is converted by the β-galactosidase enzyme to galactose and an 

intermediate, which readily oxides to form a water-insoluble blue pigment visible to the 

naked eye when expressed in tissue or under the light microscope when expressed in 

monolayer cell culture. The plasmid vector also has an ampicillin resistance gene as a 

selectable bacterial propagation marker (ClontechLaboratories 2004). 

 

3.1.3 Cationic liposomal transfection reagents 

The use of microneedle devices has previously been shown to facilitate functional 

delivery of naked reporter pDNA expressing the β-galactosidase enzyme in excised 

human skin (Birchall et al. 2005; Coulman et al. 2006b; Ng et al. 2009). For gene 
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expression to occur from a plasmid vector, the exogenous DNA molecule needs to cross 

the cell membrane, avoid degradation in the cytoplasm and translocate into the cell 

nucleus.  This renders naked pDNA a vulnerable candidate, as naked DNA is prone to 

degradation by intracellular and extracellular nucleases. Furthermore, naked DNA does 

not cross intact cell membranes easily because DNA has a negative charge and is 

repelled by the negatively charged cell membrane (Gao et al. 2007; Lechardeur and 

Lukacs 2006).  

 

To overcome nuclease degradation and repulsion from the cell membrane, lipid based 

transfection reagents are commercially available and widely used to protect DNA from 

degradation and to facilitate uptake in vitro. However, the use of lipid based transfection 

reagents in the skin has resulted in varying degrees of success. Studies have been 

performed in murine models, porcine skin model, injured skin and reconstructed human 

epidermis (Branski et al. 2010; El Maghraby et al. 2008; Jeschke et al. 2000; 

Raghavachari and Fahl 2002; Steinstraesser et al. 2007). Nucleic acid uptake and 

subsequent gene expression varies between species (Hengge et al. 1996). Reconstructed 

human skin equivalent is also more permeable than in vivo human skin, which could 

exaggerate the effect of transdermal drug delivery (El Maghraby et al. 2008). Therefore, 

the use of lipid based transfection reagent in ex vivo human skin could provide great 

pre-clinical insights to the potential of such reagents for the delivery of nucleic acid to 

in vivo human skin. 

 

Liposomes used for non-viral nucleic acid delivery are usually positively charged 

(cationic) and are complexed with negatively charged DNA to form lipoplexes. 

Liposomes are normally used in excess charge ratio over DNA to form lipoplexes with 

a net positive charge, which enhances interaction of lipoplexes with cellular membrane 

(Felgner et al. 1987; Sakurai et al. 2000). Lipoplexes are taken up by cells through the 

endocytosis pathway, whereby they are internalised through fusion with cell membrane 

and formation of endosomes (Almofti et al. 2003; Rejman et al. 2005). Encapsulation of 

DNA in liposomes to form lipoplexes also protects DNA from enzymatic degradation 

by nucleases (Gershon et al. 1993). The mechanism of DNA release from endosomes 

upon cellular internalisation, which is a critical step for efficient transfection, is still 

unclear but it has been proposed that the interaction of cationic lipids with anionic lipids 

of endosome membrane destabilises and induces a “flip-flop” of the endosomal lipids to 
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allow DNA escape into cytoplasm (Hoekstra et al. 2007; Xu et al. 1999; Xu and Szoka 

Jr 1996). Differences in liposome structures and composition are said to affect cellular 

uptake and cellular toxicity in a cell-type specific and transfection condition specific 

manner and should be optimised (Yamano et al. 2010). 

 

3.1.4 Aim and objectives 

The aim of this chapter was to develop and optimise techniques for non-viral delivery 

and analyse gene expression in human skin models using microneedle devices. The 

objective of the experiments were:  

• To propagate Escherichia coli bacteria transformed with reporter plasmids and then 

isolate purified reporter plasmids pEGFP-N1 and pCMVβ.  

• To identify a liposomal DNA formulation capable of enhancing delivery of pDNA 

to an in vitro cell monolayer with minimum toxicity. 

• To characterise steel microneedle devices in terms of pDNA coating ability and the 

stability of pDNA coated microneedles during storage. 

• To demonstrate reproducible functional pDNA delivery to ex vivo human skin 

using various disruption methods, including microneedles. 

• To visualise epidermal localisation of reporter gene expression in ex vivo human 

skin. 
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3.2 Methods 

Unless specified, the suppliers of all reagents and materials have previously been 

mentioned or were obtained from Thermo Fisher Scientific, UK.  

 

3.2.1 Plasmid DNA preparation 

3.2.1.1 Colony selection 

Frozen transformed pEGFP-N1 and pCMVβ Escherichia coli bacteria were gifts from 

Dr Marc Pearton and Dr Keng Wooi Ng (previously School of Pharmacy and 

Pharmaceutical Sciences, Cardiff University). 

 

Luria agar (Sigma Aldrich, UK) (40 mg mL-1) and Luria broth (Sigma Aldrich, UK)  

(25 mg mL-1) were prepared according to manufacturer’s instruction in deionised water 

and autoclaved. Luria agar was cooled to approximately 50°C before 50 µg mL-1 

kanamycin (Life Technologies, UK) or 100 µg mL-1 ampicillin (Sigma Aldrich, UK) 

were respectively added to the molten agar as selective antibiotics for propagation of 

bacteria containing pEGFP-N1 or pCMVβ plasmids, respectively. Molten luria agar 

with antibiotics were poured into sterile petri dishes and allowed to cool and solidify at 

room temperature. A volume of 100 µL transformed bacterial culture was transferred on 

to the agar. The culture was sequentially streaked across the agar surface using a sterile 

inoculation loop, in a pattern shown in Figure 3.1, to achieve dilution of the culture. The 

agar plate was incubated at 37°C for 18 h. 

 

 
Figure 3.1:  A schematic representation of the bacteria culture streak pattern on agar. 
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3.2.1.2 Bacterial propagation 

At the end of the incubation period, a single isolated bacterial colony on the agar plate 

was selected and isolated using a sterile inoculation loop and added to 5 mL Luria broth 

containing the selective antibiotic in a McCartney bottle. The broth was then incubated 

at 37°C with shaking at 140 rpm in the Orbi-Safe shaking incubator (Sanyo E&E, UK) 

for 6 h. 

 

3.2.1.3 Plasmid amplication 

After initial incubation, 1 mL of bacterial culture was transferred into each of the four 

125 mL Luria broths with a selective antibiotic, in a 500 mL conical flask, respectively 

(total of 500 mL Luria broth volume in four flasks). The broths were incubated at 37°C 

with shaking at 140 rpm in the Orbi-Safe shaking incubator for a further 18 h. 

 

3.2.1.4 Plasmid isolation and purification 

Plasmid from the bacterial culture was isolated and purified using the Qiagen® Plasmid 

Mega Kit (Qiagen, UK) according to a protocol supplied with the kit. Briefly, the 

inoculated broths were centrifuged (Beckman Coulter, UK) at 6000 × g at 4°C for 15 

min to create a bacterial pellet. The supernatant was discarded while the bacterial pellet 

was re-suspended and subsequently lysed by pre-formulated buffers supplied with the 

kit to lyse bacteria cells based on a modified alkaline lysis procedure (Birnboim and 

Doly 1979). The lysate was collected by centrifuging at 20000 × g for 30 min at 4°C. 

The supernatant containing pDNA was removed promptly and kept while the lysate 

pellet was discarded. The QIAGENtip 2500 anion-exchange column was pre-

conditioned to the appropriate low-salt and pH conditions by equilibrating with one of 

buffers supplied with the kit. The supernatant containing pDNA was then eluted 

through the column, which retained the pDNA through binding with resin in the column 

and a medium-salt wash buffer was added to remove protein, RNA and other impurities. 

A high-salt buffer was then added to eluate the pDNA and the eluate was collected in a 

sterile tube. 

 

Isopropanol was added to the eluate to concentrate and desalt the pDNA through 

precipitation and the precipitate was centrifuged at 15000 × g for 30 min at 4°C. The 
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supernatant was carefully decanted without disturbing the DNA pellet. The pellet was 

then air-dried for 10 to 20 min and re-dissolved in 1 mL of tris-EDTA (TE) buffer, pH 

8.0. The pDNA solution was frozen at -20°C until further use.  

 

3.2.1.5 Quantification of nucleic acid 

The concentration and purity of nucleic acid was measured using a NanoVue Plus 

spectrophotometer (GE Healthcare, UK) or NanoDrop spectrophotometer (Thermo 

Fisher Scientific, USA). The baseline absorbance was obtained by measuring 

absorbance of 2 µL of buffer. The concentration of nucleic acid sample was then 

determined by measuring 2 µL of the sample undiluted or diluted up to 1:100 with 

buffer. The concentration of the nucleic acid sample and a ratio of absorbance, at 

wavelengths 260 µm and 280 µm (A260/280) were recorded. If the sample was diluted, 

the concentration was calculated by multiplying the value obtained with the dilution 

factor. The A260/280 value was used to determine the purity of the nucleic acid sample. 

 

3.2.1.6 Analysis of plasmid DNA 

pDNA was analysed by agarose gel electrophoresis. Agarose gel 1% (w/v) was prepared 

by dissolving 1 g of agarose powder in 100 mL tris-borate-EDTA (TBE) buffer and 

heated using the microwave at 800 watt (W) for 1 min and 5 s. The agarose solution 

was allowed to cool to approximately 50°C before a drop of ethidium bromide was 

added to the solution. The molten agarose solution containing ethidium bromide was 

poured into an electrophoresis tray fitted with a gel comb and allowed to solidify at 

room temperature for 30 min. The gel comb was then removed to reveal wells for 

sample loading and the gel setting was placed in an electrophoresis tank filled with TBE 

buffer.  

 

A loading buffer containing bromophenol blue was added to an aliquot of DNA sample 

containing 0.5 µg pDNA diluted in deionised water and a supercoiled DNA molecular 

weight marker (New England Biolabs, UK). The samples were loaded into the wells and 

electrophoresis was carried out at 100 V for 30 to 45 min. After electrophoresis, the gel 

was imaged with the Bio-rad ChemiDoc™ XRS+ gel imaging system (Bio-rad, UK). 
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3.2.2 Preparation of DNA-liposome complexes 

3.2.2.1 DOTAP liposomes 

For the preparation of 1,2-dioleoyl-3-trimethylammonium-propane (chloride salt) 

(DOTAP) (Avanti Polar Lipids, USA) liposomes 10 mg DOTAP powder was measured 

and transferred into a 50 mL round-bottom flask. Chloroform was added to dissolve the 

DOTAP powder and the solvent was subsequently evaporated using the Rotavap R110 

(BÜCHI Labortechnik AG, Switzerland) rotary evaporater. The round bottom flask was 

fitted to the rotary evaporator and was lowered into a 37°C water bath. The condenser 

was filled with running tap water as coolant and partial vacuum was induced. The flask 

was rotated at approximately 60 rpm for 2 to 3 min and when the chloroform had 

evaporated, a thin film lining the inner wall of the flask was observed. Full vacuum and 

rotation speed was set to operate for 90 min. Then, 10 mL of sterile deionised water, 

pre-warmed to 37°C, was added to the flask, resulting in a 1mg mL-1 DOTAP solution, 

Alternatively, the headspace of the flask was purged with N2, stoppered and sealed with 

paraffin film and stored at 4°C for short-term storage. 

 

To proceed, the flask with DOTAP and water was placed on the vortex to disperse the 

film and create an aqueous suspension of DOTAP vesicles. The suspension was 

incubated in water bath at 37°C for 30 min before liposome extrusion through a 100 nm 

Nuclepore® polycarbonate filter membrane (Millipore (UK) Ltd, UK) within The 

Extruder™ (Lipex Biomembranes Inc., Canada), for a total of 10 extrusions. The size of 

the DOTAP liposomes was determined by photon correlation spectroscopy using the N4 

Plus submicron particle size analyser (Beckman Coulter (UK) Ltd, UK) and the Coulter 

counter software (Beckman Coulter (UK) Ltd, UK). If the extruded liposomes were not 

of the satisfactory size, the extrusion process was repeated. Extruded liposomes of 

satisfactory size (≤120 nm) were kept in small sterile glass vials with the headspace of 

the vials purged with N2, capped, sealed with paraffin film and refrigerated at 4°C for 

use within 3 days. 

 

DOTAP and pDNA lipoplexes were assembled within 2 h of use using the formulation 

outlined in Table 3.1 and 3.2. Sterile deionised water was added to dilute the pDNA. 

Then, protamine sulphate (grade X from salmon sperm; Sigma Aldrich, UK) was added 

to the diluted DNA solution and then incubated for 10 min at room temperature. The 
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preceding incubation step was repeated after the addition of DOTAP. Finally, DMEM 

was added to the formulation. For formulations containing protamine sulphate, the mass 

ratio of DOTAP, protamine sulphate and DNA was kept at 3:2:1 (Birchall et al. 2000). 

 

Table 3.1:  Formulation of DOTAP lipoplexes with protamine sulphate (per well of 24 

well plate) 

Components Volume (µL) 
Plasmid DNA (1 mg mL-1) 0.5 
Sterile deionised water 99.5 
Protamine sulphate (1 mg mL-1) 1.0 
DOTAP (1 mg mL-1) 1.5 
DMEM 897.5 

 

 

Table 3.2:  Formulation of DOTAP lipoplexes without protamine sulphate (per well of 24 

well plate) 

Components Volume (µL) 
Plasmid DNA (1 mg mL-1) 0.5 
Sterile deionised water 99.5 
DOTAP (1 mg mL-1) 1.5 
DMEM 898.5 

 
 

3.2.2.2 Lipofectamine  Reagent 

Lipofectamine (Life Technologies, UK) transfection reagent is a 3:1 (w/w) liposome 

formulation of the polycationic lipid 2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-

N,N-dimethyl-1-propanaminium trifluoroacetate (DOSPA), and the neutral lipid 

dioleoyl phosphatidylethanolamine (DOPE) in membrane-filtered water. 

Lipofectamine (Life Technologies, UK) lipoplexes were formulated and prepared 

within 2 h of use, using the formulation outlined in Table 3.3. The complexation 

method was adapted from the supplier’s recommended protocol. For each transfection 

well, pDNA was diluted to 25 µL with Opti-MEM® and mixed gently. Lipofectamine 

reagent was gently mixed before use and then diluted to 25 µL with Opti-MEM® and 

mixed gently. The diluted DNA and diluted Lipofectamine was combined, gently 

mixed and then incubated at room temperature for 30 to 45 min. The complexes were 

further diluted by adding 150 µL of Opti-MEM® and gently mixed. 



	  
	  

	  

	  
CHAPTER 3 

	  
	   	  

86	  

Table 3.3:  Formulation of Lipofectamine lipoplexes (per well of 24 well plate) 

Components Volume (µL) 
Plasmid DNA (1 mg mL-1) 0.5 
Lipofectamine reagent 1.5 
Opti-MEM® I Reduced Serum Medium 198.0 

 

 

3.2.2.3 Lipofectine  Reagent 

Lipofectine (Life Technologies, UK) transfection reagent is a water-based 1:1 (w/w) 

liposome formulation of the cationic lipid N-[1-(2,3- dioleyloxy)propyl]-N,N,N-

trimethylammonium chloride (DOTMA) and neutral lipid dioleoyl 

phosphatidylethanolamine (DOPE) in membrane-filtered water. Lipofectine 

lipoplexes were formulated and prepared within 2 h of use, using the formulation 

outlined in Table 3.4. The complexation method was adapted from the supplier’s 

recommended protocol. For each transfection well, pDNA was diluted to 25 µL with 

Opti-MEM® and mixed gently. Lipofectine reagent was gently mixed before use and 

then diluted to 25 µL with Opti-MEM®. The diluted reagent was gently mixed and 

allowed to stand at room temperature for 30 to 45 min. The diluted DNA and diluted 

Lipofectine was combined, gently mixed and then incubated at room temperature for 

10 to 15 min. The complexes were further diluted by adding 150 µL of Opti-MEM® and 

gently mixed. 
 

Table 3.4:  Formulation of Lipofectine lipoplexes (per well of 24 well plate) 

Components Volume (µL) 
Plasmid DNA (1 mg mL-1) 0.5 
Lipofectine reagent 1.5 
Opti-MEM® I Reduced Serum Medium 198.0 

 

3.2.2.4 Lipofectamine  2000 Reagent 

Lipofectamine 2000 (Life Technologies, UK) transfection reagent is a proprietary 

formulation. Lipofectamine 2000 lipoplexes were formulated and prepared within 2 h 

of use, using the formulation outlined in Table 3.5. The complexation method was 

adapted from the supplier’s recommended protocol. For each transfection well, pDNA 
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was diluted to 50 µL with Opti-MEM® and mixed gently. Lipofectamine 2000 

reagent was gently mixed before use. It was then diluted to 50  µL with Opti-MEM®, 

gently mixed and incubated at room temperature for 5 min. The diluted DNA and 

diluted Lipofectamine 2000 was combined, gently mixed and then incubated at room 

temperature for 20 min.  
 

 

Table 3.5:  Formulation of Lipofectamine 2000 lipoplexes (per well of 24 well plate) 

Components Volume (µL) 
Plasmid DNA (1 mg mL-1) 0.5 
Lipofectamine 2000 reagent 2.0 
Opti-MEM® I Reduced Serum Medium 97.5 

 

3.2.2.5 Lipofectamine  LTX and PLUS  Reagent 

Lipofectamine LTX (Life Technologies, UK) transfection reagent is a proprietary 

formulation. Lipofectamine LTX lipoplexes were formulated and prepared within 2 h 

of use, using the formula as outlined in Table 3.6. The complexation method was 

adapted from the supplier’s recommended protocol. For each transfection sample, 

pDNA was diluted in 97.5 µL Opti-MEM® and mixed thoroughly. PLUS reagent 

(Life Technologies, UK) was gently mixed before being added directly to the diluted 

DNA. The solution was gently mixed and incubated at room temperature for 5 min. 

Lipofectamine LTX was gently mixed before being added directly to the diluted DNA 

and mixed thoroughly. The complexes were incubated for 30 min at room temperature 

to allow the lipoplexes to form.  

 

Table 3.6:  Formulation of Lipofectamine LTX lipoplexes (per well of 24 well plate) 

Components Volume (µL) 
Plasmid DNA (1 mg mL-1) 0.5 
PLUS reagent  0.5 
Lipofectamine LTX reagent 1.5 
Opti-MEM® I Reduced Serum Medium 97.5 
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3.2.3 HaCaT Cell Transfection  

One day before transfection, HaCaT cells were seeded at 5 × 104 cells cm-2 in a 24-well 

plate, so that the cells were at least 70% confluent at the time of transfection, and 

allowed to adhere to the bottom of the plate surface overnight. For cells transfected with 

Lipofectamine 2000, cells were seeded at 7.5 × 104 cells cm-2 so that the cells were at 

least 90% confluent at the time of transfection. Cells were seeded in 0.5 mL of growth 

medium without antibiotics. Cells were then treated in triplicate or quadruplicate wells 

as described in sections 3.2.3.1, 3.2.3.2 and 3.2.3.3. The plates were gently rocked back 

and forth for 30 s to ensure thorough mixing of the well contents. The cells were 

incubated at 37°C in a humidified atmosphere containing 5% CO2 in air for 5 h to allow 

sufficient time for lipoplex entry into cells. After the initial incubation, the transfection 

media was replaced with 500 µL of DMEM with serum to reduce cell toxicity and cell 

death. Cells were then further incubated and transgene expression was tested 48 h post-

transfection. As negative controls, cells were treated with formulation equivalents of 

each transfection reagents minus the pDNA. As a non-lipoplex control, cells were 

treated with the same concentration of pDNA without transfection reagents.  

 

3.2.3.1 DOTAP lipoplexes 

The cell growth medium was removed from the wells and the cells were washed twice 

with PBS. Thereafter, 1 mL of the DOTAP lipoplexes (transfection media) was added 

to each well.  

 

3.2.3.2 Lipofectamine  and Lipofectine  lipoplexes 

The cell growth medium was removed from the wells and the cells were washed twice 

with Opti-MEM® I Reduced Serum Medium and replaced with 200 µL of Opti-MEM® I 

Reduced Serum Medium and 200 µL of the diluted Lipofectamine and Lipofectine 

lipoplexes in each well.  

 

3.2.3.3 Lipofectamine  2000 and Lipofectamine  LTX lipoplexes 

For transfection with Lipofectamine 2000 or Lipofectamine LTX lipoplexes, 100 

µL of the lipoplexes was added to each well.  
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3.2.4 Primary keratinocyte transfection 

Primary keratinocytes were isolated from excised human breast skin of a 38-year-old 

female patient using methods described in section 2.2.4. 

 

3.2.4.1 Lipofectamine  2000 reagent and DNA lipoplexes 

Lipofectamine 2000 lipoplexes were formulated and prepared within 2 h of use, using 

the formula as outlined in Table 3.7 and described in section 3.2.2.4, except that 

keratinocyte specific culture medium without antibiotics was used in place of Opti-

MEM®.  
 

Table 3.7:  Formulation of Lipofectamine 2000 lipoplexes (per well of 24 well plate) 

Components Volume (µL) 
Plasmid DNA (1 mg mL-1) 0.5 
Lipofectamine 2000 reagent 2.0 
Keratinocyte specific culture medium 97.5 

 

 

3.2.4.2 Lipofectamine  LTX with PLUS  reagent and DNA lipoplexes 

Lipofectamine LTX lipoplexes were formulated and prepared immediately (up to 2 h) 

before use, using the formula as outlined in Table 3.8 and described in section 3.2.2.5, 

except that keratinocyte specific culture medium without antibiotics was used in place 

of Opti-MEM®. 

 

Table 3.8:  Formulation of Lipofectamine LTX lipoplexes (per well of 24 well plate) 

Components Volume (µL) 
Plasmid DNA (1 mg mL-1) 0.5 
PLUS reagent  0.5 
Lipofectamine LTX reagent 1.5 
Keratinocyte specific culture medium 97.5 
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3.2.4.3 Primary keratinocyte cell transfection  

Cell transfection was performed on primary keratinocytes at passage 4. One day before 

transfection, cells were seeded at 5 × 104 cell cm-2 in a 24-well plate, so that the cells 

were at least 80% confluent at the time of transfection and allowed to adhere to the 

bottom of the plate surface overnight. Cells were seeded in 0.5 mL of keratinocyte 

specific culture medium without antibiotics.  

 

Thereafter, 100 µL of the Lipofectamine 2000 and Lipofectamine LTX lipoplexes 

were added to each well, respectively. Cells were treated in quadruplicate wells. The 

plates were gently rocked back and forth for 30 s to ensure thorough mixing of the well 

contents. The cells were incubated at 37°C in a humidified atmosphere containing 5% 

CO2 in air for 5 h. After the initial incubation, the media was replaced with 500 µL of 

keratinocyte specific medium without antibiotics to reduce cell toxicity and cell death. 

Cells were then further incubated and transgene expression was tested 48 h post-

transfection. 

 

3.2.5 Characterisation of plasmid DNA coating onto steel microneedles 

3.2.5.1 Nucleic acid coating and quantification 

Microneedles were coated with nucleic acid using the method described in section 

2.2.5.2. Following drying and/or application of these microneedle devices, the mass of 

nucleic acid coated or deposited was quantified by determining the mass of nucleic acid 

left on the devices. Nucleic acid was recovered from the surface of microneedle devices 

by washing in a small volume, V, of buffer (50–150 µL) for 5 min with agitation. The 

concentration, C of nucleic acid was then quantified using the NanoVue or NanoDrop 

spectrophotometer, as described in section 3.2.1.5. The mass of nucleic acid recovered 

was calculated using the formula below:  

𝑚 = 𝐶  ×  𝑉     

 

3.2.5.2 Re-using microneedle devices 

Steel microneedle devices were re-used following thorough removal of previously 

coated material by sonication in deionised water for 15 min and a rinse in deionised 
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water. The ‘clean’ microneedle devices were then rinsed with 70% ethanol and air dried 

before next use.  

 

3.2.5.3 Plasmid DNA coating functional assay 

An assay was performed to determine functional stability of pDNA following coating 

and recovery from steel microneedles by coating, drying and recovering the pEGFP-N1 

pDNA, as detailed in section 3.2.5.1. An aliquot of 2 µL pEGFP-N1 at a concentration 

of 6.5 µg µL-1 in TE buffer was loaded into a pipette tip reservoir for coating. Stainless 

steel microneedle devices (4 devices per treatment group; each with 5 microneedles per 

array and 700 µm needle length) were coated with pDNA using the dip-coating method 

described in section 2.2.5.2. A set of four coated devices was allowed to dry at 4°C for 

24 h and the other set of four MNDs for 96 h before pDNA was recovered from the 

surface of the devices by washing in 100 µL TE buffer for 5 min and the buffers 

containing recovered pDNA were stored at -20°C until use.  

 

On the day of transfection, the mass of pEGFP-N1 recovered from the microneedles 

was quantified and the pDNA was complexed with Lipofectamine 2000 reagent, as 

detailed in section 3.2.2.4. The pDNA solution and Opti-MEM® volumes were adjusted 

to maintain the mass of pEGFP-N1 to 0.5 µg per transfection well. The lipoplexes were 

then used to transfect HaCaT cells using the method described in section 3.2.3. 

 

3.2.6 Excised human skin transfection  

Excised human skin samples were acquired and prepared as described in section 2.2.3.2. 

The disruption methods as detailed in section 3.2.6.1.1, 3.2.6.1.2, 3.2.6.1.3, 3.2.6.1.4 

and 3.2.6.1.5 were performed on the excised skin. The treated skin was cut into samples 

measuring 1 cm2 using surgical scissors or cut using a 6 mm diameter biopsy punch and 

were cultured at the air-liquid interface in a Trowel-type system, in organ culture 

medium containing DMEM supplemented with 5% FCS, 100 mg mL−1 penicillin and 

100 unit mL−1 streptomycin and 2.5 μg mL−1 amphotericin B at 37°C in a 5 % CO2/95 

% air humidified incubator for 24 h. Gene expression was determined 24 h post-

transfection using the method detailed in section 3.2.7.3.  
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3.2.6.1 Microneedle abrasion 

A 10 μL pDNA formulation containing either (i) naked pCMVβ 6 mg mL−1 in TE 

buffer, (ii) naked pCMVβ 1 mg mL−1, (iii) naked pCMVβ 2.5 mg mL−1in TE buffer, 

(iv) pCMVβ 1 mg mL−1 complexed with 50% (v/v) Lipofectamine 2000 in TE buffer, 

or (v) pCMVβ 2.5 mg mL−1 complexed with 50% (v/v) Lipofectamine 2000 in TE 

buffer was topically applied to the skin surface either before or after abrasion. The skin 

surface was abraded by inserting a stainless steel microneedle array (10 × 5 needles; 

700 µm length) (Georgia Technologies, USA) into the skin and subsequently moving it 

laterally (5 mm) through the area of skin that was in contact with the liquid formulation. 

This action was repeated 5 times.  

 

3.2.6.2 Tape-stripping 

The skin surface was tape-stripped 40 times using D-squame® discs (CuDerm 

Corporation, USA). A 10 μL pDNA formulation containing naked plasmid pCMVβ 6 

mg mL−1 in TE buffer was then applied to the skin surface and the treated area of skin 

was occluded with Vaseline® gauze (Covedien AG, USA).  

 

3.2.6.3 Liquid cyanoacrylate strip 

A drop of liquid cyanoacrylate (Loctite, UK & Ireland) was applied to either the tape-

stripped skin or non-tape-stripped skin surface. A glass microscope slide was placed on 

the treated area for 5 min, allowing the liquid cyanoacrylate to dry, and the slide was 

subsequently removed in a single motion.  A 10 μL pDNA formulation containing 

naked plasmid pCMVβ 6 mg mL−1 in TE buffer was then applied to the treated area. 

The treatment area was occluded with Vaseline gauze. PBS was applied on the treated 

skin surface instead of the pDNA formulation as a negative control. Alternatively, 10 

μL of 2% (w/v) methylene blue in water solution was applied to the treated area to 

determine whether the stratum corneum barrier has been breeched following application 

of the liquid cyanoacrylate stripping method.  

 

3.2.6.4 Multiple liquid cyanoacrylate strip 

The liquid cyanoacrylate stripping method described in section 3.2.6.1.3 was repeated 2 

to 4 times. A 10 μL pDNA formulation containing naked plasmid pCMVβ 6 mg mL−1 



	  
	  

	  

	  
CHAPTER 3 

	  
	   	  

93	  

in TE buffer was then applied to the skin surface. The treatment area was occluded with 

Vaseline gauze.  

 

3.2.6.5 Multiple liquid cyanoacrylate strip and microneedles abrasion 

The liquid cyanoacrylate stripping method described in section 3.2.6.1.3 was repeated 3 

times. A stainless steel microneedle array (10 × 5 needles; 700 µm length) was inserted 

into the skin and moved laterally (5 mm) from the microneedle insertion site, across the 

area of skin 5 times.  A 10 μL pDNA formulation containing 6 mg mL−1 naked plasmid 

pCMVβ in TE buffer was then applied to the skin surface. The treatment area was 

occluded with Vaseline gauze. 

 

3.2.7 Analysis of transgene expression 

3.2.7.1 Detection of GFP expression  

3.2.7.1.1 Fluorescent microscopy 

The expression of EGFP in cell monolayers was examined by fluorescence microscopy 

under blue laser light, which excited GFP at its peak excitation wavelength of 488 nm. 

Representative images were captured using the Olympus® DP-10 digital camera 

attached to the Olympus IX 50 microscope with the TH-3 halogen lamp, U-RFL-T 

fluorescence illuminator (Olympus (UK) Ltd, UK) or Leica DM IRB epifluorescence 

microscope with the Openlab imaging software.  

 

3.2.7.1.2 Flow cytometry 

The transfection efficiency of pEGFP-N1 in cells was determined by flow cytometry 

using the FACSCalibur or FACSCanto II flow cytometry systems (BD Biosciences, 

UK). The following procedure was performed on ice to reduce any cell activities past 

the incubation period and to keep cells viable for analysis.  First, the cells were washed 

twice with chilled PBS and then trypsinised by incubating at 37°C for 10 min with 

trypsin-EDTA, to liberate the cells from the culture vessels. The cells were then re-

suspended in growth medium, centrifuged (Thermo Fisher Scientific, UK) at 300 × g 

for 3 min, and then re-suspended in 200 µL chilled PBS. The cell suspensions were 

transferred into polysterene flow cytometry tubes (Elkay Laboratory Products (UK) Ltd, 
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US), stored on ice and analysed immediately by flow cytometry. If the flow cytometer 

was not immediately available, pelleted cells were resuspended in 100 µL flow 

cytometry buffer containing 1% (w/v) bovine serum albumin (Sigma Aldrich, UK) and 

0.1% (w/v) sodium azide (Sigma Aldrich, UK) in PBS and transferred into flow 

cytometry tubes. The cells were fixed with 200 µL fixing buffer containing 1% (w/v) 

paraformaldehyde and 0.1% (w/v) sodium azide in PBS and analysed by flow 

cytometry within a week. 

 

The flow cytometric analysis was performed as recommended by the instrument 

manual. The frequency of fluorescent cells in the FL1 channel (corresponding to green 

fluorescence), out of a total of at least 105 events analysed per sample was recorded. 

The data collected was analysed with the FlowJo Flow Cytometry Analysis Software 

for Mac Version 8.8 (Tree Star Inc., USA). A representative cell population excluding 

cell debris was selected from the dot plot of side-scattering (SSC-H) vs. forward-

scattering (FSC-H). Then, within the selected population, a histogram of number of 

events against fluorescence intensity (FL1-H) was obtained. A software gate was 

created to define significant fluorescence intensity to indicate cells with the presence of 

fluorescence. Fluorescent signal from cells was considered significant when the 

fluorescence signal intensity is above the baseline fluorescence (autofluorescence), 

where ≤1% of cells in the negative control (untreated cells) samples was gated. The 

percentage of gated cells in each sample indicates the proportion of cells with 

fluorescence.  

 

3.2.7.2 Confocal microscopy 

For cells transfected with pEGFP-N1, and expressing GFP, an established fixation 

method to preserve GFP fluorescence was used (Brock et al. 1999). Briefly, growth 

medium was removed and cells were washed 3 times with PBS. The cells were initially 

fixed with 3% (w/v) paraformaldehyde (PFA) in PBS at 4°C for 5 min and at room 

temperature for 10 min and then washed 3 times with PBS. Thereafter, cells were fixed 

and permeabilised with ice-cold methanol, pre-chilled in a -20°C freezer, at 4°C for 6 

min and washed 3 times with PBS. Each coverslip was lifted and excess fluid was 

carefully removed using filter paper, before being mounted on a drop of fluorescence 

mounting medium (Dako, UK) or PBS on a microscope slide. The edges of the 
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coverslips mounted on PBS were immediately sealed with nail varnish. The coverslips 

mounted in oil were allowed to dry at room temperature for 2 h before the edge of the 

coverslips were sealed with nail varnish. The slides were kept at 4°C until further use 

within a week. Cells were then imaged using the Leica DMI6000B confocal microscope 

system and analysed using the method described in section 2.2.4.6. 

 

3.2.7.3 Detection of β-galactosidase expression 

For detection of β-galactosidase expression in monolayer cell culture, cells were 

incubated with solutions in the Invitrogen β-gal Staining Kit (Life Technologies, UK) 

according to the protocol supplied with the kit. The cells were rinsed twice in PBS and 

fixed in 2 % (v/v) formaldehyde and 0.2 % (v/v) glutaraldehyde in PBS at room 

temperature for 10 min. The cells were then rinsed twice with PBS and were then 

incubated in X-gal staining solution at 37°C for 2 h. Again, the cells were rinsed twice 

in PBS and remain in PBS for visualisation under the Olympus® IX-50 microscope. 

Representative images were captured using the Olympus® DP-10 digital camera 

attached to the microscope.  

 

For detection of β-galactosidase in excised human skin, an optimised protocol 

according to Coulman (2006) was adapted for use (Coulman 2006). Skin samples were 

washed twice in PBS and then fixed in 2% (v/v) glutaraldehyde in PBS at 4°C for 2 h. 

The fixed skin samples were then rinsed twice in PBS supplemented with 4 mM MgCl2 

for 30 min each rinse. The skin samples were then incubated in the X-gal staining 

solution, prepared according to the formula shown in Table 3.9, at 37°C for up to 16 h. 

The samples were then washed in PBS and visualised under the Leica Zoom 2000 

stereomicroscope (Leica Microsystems (UK) Ltd, UK) with illumination from the 

Schott KL1500 Electronic fibre optic light source lamp (Schott AG, UK) for any blue 

pigmentation. En face images of the skin sample were captured using the VisiCam 5.0 

digital camera (VWR International, UK) attached to the stereomicroscope.  

 

Relevant skin samples were then frozen in OCT embedding medium, cryosectioned and 

transverse sections with visible epidermal β-galactosidase expression were subjected to 

H&E staining using the methodology detailed in section 2.2.4.7. Skin sections were 
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visualised using the Olympus® IX 50 microscope and images were captured using the 

DP-10 digital camera attached to the microscope.  

 

Table 3.9:  Formulation of X-gal staining solution (per 50 mL) used for the detection of β-

galactosidase in excised human skin  

Components Volume (mL) 
Deionised water 21.56 
Tris-HCl (200 mM) 25 
Magnesium chloride (1 M) 0.1 
Potassum ferrocyanide (K4Fe(CN)6, 600 mM) 0.42 
Potassum ferricyanide (K3Fe(CN)6, 600 mM) 0.42 
X-gal stock solution (5-bromo-4-chloro-indolyl-β-D-
galactopyranoside, 40 mg mL−1) 2.5 

 

3.2.8 Cell viability assay 

For MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenal tetrazolium bromide) or MTS (3-

[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-

tetrazolium) assay cell toxicity studies, cell transfections as described in section 3.2.3 

were scaled-down and performed in 96-well plates. As the surface area of each well in 

96 well plates was approximately 5 times less than that of 24-well plate, all the 

materials were scaled down 5 times.  

 

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenal tetrazolium bromide) is a tetrazolium 

salt, which forms an insoluble purple formazan crystal when it is cleaved by 

mitochondrial enzymes in viable cells. Acidified isopropanol solution can be added to 

solubilise the formazan crystals to a purple solution, which can be measured using a 

spectrophotometer (Edmondson et al. 1988). When compared to untreated controls, an 

increase or decrease in absorbance due to changes in the concentration of formazan 

indicates the degree of cytotoxicity caused by test materials. 

 

MTT reconstituted with PBS to a concentration of 5 mg mL−1 was added to each well in 

an amount equal to 10% of the culture medium volume 48 h post transfection. The side 

of the 96-well plate was gently tapped for 15 s to thoroughly mix the well contents. The 

cultures were then returned to the incubator for 4 h. After the incubation period, the 

culture medium was carefully removed from the wells using a syringe needle, without 
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disturbing the formazan crystals that had formed. The resulting formazan crystals were 

dissolved by adding an amount of MTT Solubilization Solution equal the original 

culture medium volume. The side of the 96-well plate was gently tapped for 60 s and 

the plate was allowed to stand at room temperature for 15 min to equilibrate the 

temperature and thoroughly dissolve the crystals.  The absorbance was measured at a 

wavelength of 570 nm using the Titerback Sunrise plate reader with pre-measurement 

shaking of 90 s. 

 

Alternatively, MTS assay was performed by adding an amount of MTS reagent at a 

concentration of 1.9 mg mL−1 (CellTiter® 96 AQueous One Solution Reagent; Promega, 

UK) equal to 20% of the culture medium volume to fresh culture medium without FBS 

and antibiotics. Growth medium was removed from the wells of 96 well-plate with 

treated cells and replaced with culture medium containing MTS reagent (Patel et al. 

2005). The cultures were then returned to the incubator for 4 h. The plate was allowed 

to stand at room temperature for 30 min before the absorbance was measured at a 

wavelength of 490 nm using the Labtech LT-5000MS plate reader (Labtech 

International Ltd, UK) with Manta PC software (Dazdaq Ltd, UK). If the absorbance 

reading was above the optimum value of approximately 1, the samples were diluted up 

to 10 times with PBS.  

 

3.2.9 Data processing and statistical analysis  

Image processing including scale bar inclusion was performed using the ImageJ 

software (National Institute of Health, USA). Raw numerical data was processed using 

the Microsoft® Excel for Mac 2011 software (Microsoft Corporation, USA). Graphs 

were generated and statistical analysis was performed using Prism® 5 for Mac OS X 

(GraphPad Software Inc. USA). Unless stated otherwise, one-way ANOVA followed by 

Tukey’s multiple comparison test was performed to compare multiple groups against a 

reference group with significant differences indicated by p-values of less than 0.05 

(p<0.05), less than 0.01 (p<0.01) or less than 0.001 (p<0.001). Results are summarised 

as mean ± standard deviation (SD) and error bars on graphs represents SD unless stated 

otherwise. 
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3.3 Results and discussion 

3.3.1 DNA preparation 

pEGFP-N1 and pCMVβ pDNA were successfully propagated and quantified. The 

concentrations of the purified pDNA were between 2.5 and 6.5 mg mL-1 with A260/280 

values of above 1.8. The acceptable DNA purity values (A260/280) are reported to be 

between 1.8 and 2.0 (Sambrooks and Russell 2001). The identity of both the reporter 

plasmids has previously been confirmed through restriction analysis by the donor (Ng 

2010). To determine the success of the extraction method in obtaining purified pDNA, 

agarose gel electrophoresis was performed. Gel analysis of one of the pEGFP-N1 

plasmid samples revealed a single distinct band at approximately 4733 kilobase pairs 

(kbp), Band 1 and presence of 2 weak bands, Band 2 and 3 (Figure 3.2), thus 

confirming the purity of pDNA obtained through the extraction method.  

 

 

 

Figure 3.2:  Agarose gel image of electrophoretically separated pEGFP-N1 pDNA. 

(Markersc = molecular weight marker of supercoiled DNA; pDNA = pEGFP-

N1; kbp = kilobase pairs) 

 

On agarose gels, DNA is resolved according to its molecular weight and its 

conformation. Like other pDNAs, the pEGFP-N1 plasmid was predominantly isolated 

in its supercoiled conformation (Middaugh et al. 1998), which corresponded to the 

brightest band, Band 1. However, pDNA also undergoes major degradative pathways 

both in vivo and in vitro as the phosphodiester backbone is cleaved through the 

depurination and β-elimination processes (Lindahl 1993; Middaugh et al. 1998). The 

pDNA backbone cleavage causes the conversion of supercoiled plasmid to open circular 
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and linear forms of the DNA, as observed by the faint bands, and is a major limiting 

factor to the aqueous stability of pDNA (Cherng et al. 1999; Middaugh et al. 1998; 

Voordouw et al. 1978).  

 

3.3.2 Preparation of DNA-Liposome complexes 

DOTAP liposomes were prepared and extruded. The average size of the freshly 

extruded liposomes was 117.0 nm, with a standard deviation (SD) of 39.0 nm. All the 

transfection reagents, including DOTAP, Lipofectamine, Lipofectamine 2000, 

Lipofectamine LTX and Lipofectine, were complexed with pEGFP-N1 or pCMVβ. 

All cell transfections with the lipoplexes resulted in expression of either the green 

fluorescent protein (GFP) or beta-galactosidase (β-gal). 

 

3.3.3 HaCaT cell transfection 

Numerous transfection reagents are currently commercially available. An attempt to 

determine and compare the efficiency and toxicity of commercially available 

transfection reagents in human keratinocyte cells was made by transfecting HaCaT cells 

with pEGFP-N1 reporter pDNA complexed with various transfection reagents 

(lipoplexes). HaCaT cells that were transfected with the pEGFP-N1 reporter pDNA 

lipoplexes resulted in expression of GFP (Figure 3.3). All negative controls failed to 

express any GFP.  

 

Flow cytometry analysis was performed to quantify and compare GFP expression of 

cells treated with different lipoplexes  (Figure 3.4).  There was no significant difference 

in the percentage of fluorescent cells in the untreated cells and cells incubated with 

naked pEGFP-N1. This indicates negligible or no GFP expression in cells treated with 

naked pEGFP-N1 (p > 0.05), which was confirmed by visual inspection through 

fluorescence microscopy (Figure 3.3). For each lipoplex formulation containing 0.5µg 

pEGFP-N1 per well, respectively, GFP expression was significantly greater than 

autofluorescence (gated at ≤1%; p < 0.01 for each lipoplex formulations compared 

against untreated samples) with the exception of the lipoplex formulation containing 

DOTAP only, which was not significantly different than untreated cells.  
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Figure 3.3:  Representative fluorescence micrographs of HaCaT cells treated with 

naked pEGFP-N1 (A) or lipoplexes (B-F) of pEGFP-N1. In each treatment 

group, pEGFP-N1 pDNA amount was 0.5 µg. GFP fluorescence was 

pseudocoloured green. (PS = protamine sulphate) 

 

When the mass of pDNA remained constant, the highest GFP expression was observed 

when cells were transfected with pEGFP-N1 complexed with Lipofectamine LTX 

(37.0 ± 1.5%; n = 3), followed by Lipofectamine 2000 (26.63 ± 2.69%; n = 4), 

Lipofectamine (26.0 ± 0.76%; n = 3), DOTAP with protamine suphate (6.603 ± 

0.29%; n = 4), Lipofectine (4.2 ± 0.39%; n = 3) and DOTAP without protamine 

suphate (2.045 ± 0.19%; n = 4). Increasing the amount of pDNA by 60% (0.8 µg instead 

of	  0.5 µg) complexed to the same concentration of Lipofectamine 2000 transfection 

reagent did not result in significant increase in the GFP expression level (0.8 µg 

pEGFP-N1 + Lipofectamine 2000 mean: 26.0 ± 1.48%; n = 4; p > 0.05). When 

protamine sulphate was added to the DOTAP formulation, significantly enhanced gene 

expression was observed (p < 0.01).  
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Figure 3.4:  Transfection efficiency of pEGFP-N1 lipoplexes in HaCaT cells. (pDNA = 

0.5 µg pEGFP-N1; pDNA 2 = 0.8 µg pEGFP-N1; Lipo = Lipofectamine; PS 

= protamine sulphate; experiment (1): n = 3; experiment (2): n = 4; error bar = 

standard deviation; ** = p<0.01; *** = p<0.001 compared to untreated) 

 

Whilst cell viability studies were not performed, visual observation under the light 

microscope indicated that cell viability decreased with increased transfection efficiency 

(data not shown). Similar observations were reported in the literature by Yamano et al. 

(2010), whereby studies were performed comparing six commercially available nonviral 

transfection reagents on nine different cells lines. Lipofectamine 2000 was efficient in 

transfecting HEKn human epidermal keratinocytes resulting in significant level of β-

galactosidase expression. Gene expression was significantly enhanced under serum free 

conditions. However, amongst the six transfection reagents tested by Yamano et al., 

Lipofectamine 2000 showed the lowest cell viability (69.1 ± 17.8%)(Yamano et al. 

2010). 
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In an unpublished study using HaCaT cells where the transfection efficiency of a range 

of transfection reagents at the same pEGFP-N1 to lipid ratio and concentration were 

compared, similar findings with transfection efficiency were found. Lipofectamine™ 

LTX gave the highest transfection efficiency (46.2 ± 1.969%, n = 4) and DOTAP with 

protamine sulphate the lowest transfection efficiency (6.7  ± 1.552%, n = 4) (Ng 2010). 

Another study compared different ratios of 5 commercially available transfection 

reagents, including Lipofectine complexed to pDNA expressing GFP, in keratinocyte 

cells extracted from the skin. At a ratio of pDNA to Lipofectine of 1:4 using 0.4 µg 

pDNA, the study found low transfection efficiency with Lipofectine lipoplexes (3.55 

± 0.62%; n = 3) (Dickens et al. 2010). The transfection efficiency achieved with 

Lipofectine containing 0.5 µg pDNA, at a ratio of pDNA to Lipofectine of 1: 3, was 

4.2 ± 0.39% (Figure 3.4; n = 3). The low transfection efficiency of Lipofectine 

lipoplexes in keratinocyte cells suggests that the reagent is unsuitable for the cell line. 

Transfection related cell toxicity was not reported in both of the aforementioned studies 

(Dickens et al. 2010; Ng 2010).  

 

As the formulations were kept at similar DNA to lipid ratios and the same mass of 

pDNA was used in each transfection experiment, the observed differences in 

transfection efficiency and toxicity were most likely due to the differences in the 

chemical structures and compositions of the cationic lipids. When complexed with 

pDNA, different chemical structures (Zhang et al. 2004; Zhi et al. 2010) and lipid 

compositions of transfection reagents are known to form lipoplexes of various sizes and 

molar charge ratios, which affects transfection efficiency and toxicity (Lv et al. 2006; 

Masotti et al. 2009). Several authors have proposed the lipid-mixing hypothesis and 

suggested that interactions between cationic lipids and cell membranes and other cell 

organelle membranes, such as the mitochondrial membranes may result in membrane 

charge alteration that affects function of membrane receptors and ion channels, leading 

to toxicity. These membrane changes may also affect cell attachment resulting in cell 

detachment from the culture vessel (Felgner et al. 1994; Xu and Szoka Jr 1996).  

 

Based on observation under the light microscope, cells treated with Lipofectamine, 

Lipofectamine LTX and Lipofectamine 2000 pDNA lipoplexes showed 

morphological and cell number changes, which indicated cell toxicity (data not shown). 
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Cells treated with naked pDNA and the respective transfection reagents controls 

appeared normal and healthy. In the absence of additional physical disruption like 

electroporation, naked pDNA does not enter the cells efficiently (Basner-Tschakarjan et 

al. 2004; Wattiaux et al. 2000). Any naked pDNA that manages to penetrate the cell 

membrane, presumably through endocytosis is not likely to escape from the endosomes 

and is thereby degraded by nucleases in the lysosomes (Lechardeur and Lukacs 2006; 

Lechardeur et al. 2005; Wattiaux et al. 2000). In lipoplexes, the presence of cationic 

lipids has been postulated to aid endosomal release of pDNA through interaction of 

cationic lipids with the anionic lipids of endosomal membrane (Hoekstra et al. 2007; Xu 

et al. 1999; Xu and Szoka Jr 1996). Since cell membranes are composed of lipids, 

interactions of uncomplexed cationic lipids with cellular lipids are unlikely to cause 

significant harm to cells. Several in vivo studies have also reported that DNA and 

cationic lipids in a lipoplex formulation can have a synergistic effect on the toxicity 

observed (Ruiz et al. 2001; Scheule et al. 1997). The studies performed established the 

efficiency of various commercially available transfection reagents on HaCaT cells, 

which enabled the selection of these reagents for functional assay studies in monolayer 

cell cultures. 

 

In a separate study, HaCaT cells were transfected with pCMVβ to determine the 

functionality of the plasmid for use in skin transfection studies. Lipofectamine 2000 

transfection reagent was used and expression of β-galactosidase was detected, 

confirming the functionality of the pCMVβ plasmid (Figure 3.5). A MTT assay was 

also performed to determine the toxicity of the lipoplexes and there was insignificant 

reduction in cell viability in the pDNA lipoplexes treatment groups (Figure 3.6). These 

results show that the isolated and purified pCMVβ reporter pDNA was functional and 

suitable for use in skin experiments.  
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Figure 3.5:  Representative bright-field micrographs of HaCaT cells treated with 

naked pCMVβ (A) and lipoplexes (B-D). In each treatment group with lipid 

transfection reagent, Lipofectamine™ 2000 amount was constant. 

 

 
Figure 3.6:  Cell viability (MTT assay) following treatment with pCMVβ lipoplexes in 

HaCaT cells. The percentage viability was relative to normalised untreated 

cells.  (pDNA 1 = 0.25 µg pCMVβ; pDNA 2 = 0.5 µg pCMVβ; pDNA 3 = 0.75 

µg pCMVβ; Lipo = Lipofectamine; n = 4; error bar = standard deviation) 

0

20

40

60

80

100

120

Untreated Naked
pDNA

Lipo 2000 Lipo 2000
+ pDNA 1

Lipo 2000
+ pDNA 2

Lipo 2000
+ pDNA 3

Transfection Reagents

No
 of

 ce
lls

 (%
 re

lat
ive

 to
 un

tre
ate

d)



	  
	  

	  

	  
CHAPTER 3 

	  
	   	  

105	  

3.3.4 Primary keratinocyte transfection 

The relative ease of growth of HaCaT cells helped in preliminary and optimisation 

experiments while the primary keratinocytes cultured in a controlled monolayer 

environment provide closer biological proximity to keratinocyte cells in human skin. 

Therefore, primary keratinocyte cells, isolated from the excised skin of a 38-year-old 

subject, were transfected with pEGFP-N1 complexed with Lipofectamine™ 2000 or 

Lipofectamine™ LTX transfection reagents (Figure 3.7), the reagents with the highest 

transfection efficiencies amongst the previously tested reagents (Figure 3.4)  

 

 
Figure 3.7:  Representative fluorescence micrographs of primary keratinocyte cells 

treated with naked pEGFP-N1 (A) or lipoplexes (B and C). In each 

treatment group, pEGFP-N1 mass was constant at 0.5 µg. GFP fluorescence 

was pseudocoloured green. 

 

Primary cells are usually said to be difficult to transfect with pDNA using a non-viral 

delivery system due to their slower rate of proliferation. When compared with dividing 

cells, transfection efficiencies in non-dividing cells are generally lower (Mortimer et al. 

1999) as the nuclear envelope is regarded as the major intracellular barrier to delivery of 

nucleic acid (Dean et al. 2005). During mitosis, the nuclear membrane breaks down, 

thus allowing entry of pDNA and subsequent gene expression (Escriou et al. 2001; 

Nicolau and Sene 1982; Wilke et al. 1996). Nevertheless, in non-proliferating cells, 

nuclear translocation of DNA is thought to still occur, probably as a result of passive 

movement through the nuclear pore complex (Mattaj and Englmeier 1998; Stoffler et al. 

1999; Wilson et al. 1999). The size of a nuclear pore is approximately 55 Å in diameter, 

which allows free diffusion of small molecules (less than 40 kDa) but it is unlikely that 

pEFGP-N1 pDNA of 4733 bp (approximately 3000 kDa) could enter the nucleus 

through the nuclear pore complex (Escriou et al. 2001). Primary keratinocytes used in 

this study were transfected between passage 2 and 6, when the cells were highly 
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proliferative. This is consistent with a study that reported the successful transfection of 

highly proliferating primary keratinocytes with a reporter gene and subsequent 

expression for up to 2 weeks in culture (Zellmer et al. 2001).  

 

Flow cytometry analysis was performed to compare the efficiency of lipoplex treatment 

and subsequent gene expression in primary keratinocyte cells (Figure 3.8). GFP 

expressions in cells treated with both lipoplexes were significantly greater than 

autofluorescence of untreated cells and naked pDNA (both p<0.001). GFP expression 

was significantly higher when cells were transfected with pEGFP-N1 complexed with 

Lipofectamine LTX (19.25 ± 2.58%; n = 4) compared to Lipofectamine 2000 (6.37 

± 0.65%; n = 4, p<0.001). The level of GFP expression in primary keratinocytes treated 

with both the lipoplexes were lower than the expression in HaCaT cells (Figure 3.4), 

where GFP expressions were 47.9% and 76.1% lower in Lipofectamine LTX and 

Lipofectamine 2000 lipoplex treated groups, respectively. The lower transfection 

efficiencies seen in primary keratinocytes can be attributed to a lower rate of cell 

division, compared to HaCaT cells.  

 

 
Figure 3.8:  Transfection efficiency following treatment with pEGFP-N1 lipoplexes in 

primary keratinocyte cells. (pDNA = 0.5 µg pEGFP-N1; Lipo = 

Lipofectamine; n = 4; error bar = standard deviation; *** = p<0.001 

compared to untreated) 

 

Confocal microscopy was used to capture fluorescence micrographs of the primary 

keratinocyte cells expressing GFP and the images taken sequentially were stacked (z-
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stack projection) to provide an in depth view of GFP expression in the cells (Figure 

3.9). Primary keratinocyte cells were seeded on glass coverslips and transfected the 

following day with pEGFP-N1 and Lipofectamine LTX lipoplexes. The cells were 

fixed using the combined PFA/Methanol method (Brock et al. 1999). Alternatively, 

cells were unfixed and mounted on a microscope slide in PBS. However, unfixed live 

cells had to be analysed immediately. Fixing and then mounting cells on glycerol-based 

mounting buffer containing anti-fading agent provides the benefit of anti-bleaching 

effect, preservation of signal intensity and improve the durability of the sample (Longin 

et al. 1993; Ono et al. 2001). 

 

Despite the advantages of glycerol-based mounting, cells mounted in this solution face 

problems of receptor redistribution (Brock et al. 1999). The commonly used cell 

fixation method, with PFA, fixes cells through cross-linking with cellular proteins 

(Kiernan 2000). However when cells are mounted on a glycerol-based mounting buffer, 

membrane integrity is compromised due to cellular redistribution of receptors (Brock et 

al. 1999). On the other hand, methanol fixation precipitates cellular proteins but washes 

out soluble cellular proteins and free GFP (Brock et al. 1999; Kalejta et al. 1997). The 

combined PFA/methanol method of fixation combines the advantages of both the 

procedures and can be used to fix both transmembrane and soluble proteins as well as to 

preserve GFP fluorescence following mounting on glycerol-based buffer (Brock et al. 

1999). 

 

From the z-stack projection micrographs of fixed (Figure 3.9 A) and unfixed cells 

(Figure 3.9 B), it is obvious that GFP protein expression occurred both in the nucleus 

and cytoplasm of the cells. Cell fixation with PFA/methanol seemed to have 

precipitated the fluorescent proteins in cross-linked structure, as fluorescence 

distribution appeared fibrous when compared to the even expression of fluorescence 

found in unfixed cells. This is an interesting technical observation and highlights the 

importance in understanding how various cell fixing methods could affect fluorescence 

distribution in cells.  
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Figure 3.9:  Fluorescence z-stack confocal micrographs of primary keratinocyte cells 

transfected with pEGFP-N1 and Lipofectamine  LTX transfection 

reagent complexes. The green fluorescent protein was excited with laser at 

488 nm and pseudocoloured green. Cells were grown on glass cover slips in 

vitro appeared to be flattened out against the culture surface. The confocal 

image is a z-stacked projection of 20 slices of images taken over a cell layer 

thickness of approximately 15 µm (Transfection volume = 1200 µL; pDNA = 

pEGFP-N1; LTX = Lipofectamine LTX transfection reagent) 

 

3.3.5 Characterisation of plasmid DNA coating onto steel microneedles 

Steel microneedles have the ability to penetrate the stratum corneum and deposit dry 

coated materials in the skin as demonstrated in Chapter 2. In this study, the ability to 

coat stainless steel microneedle devices with pDNA was evaluated. Using the optimised 

coating method described in section 2.2.5.2, two sets of 4 microneedle devices (5 × 700 

µm regular, Cardiff University, UK) were evenly coated with 13 µg of pEGFP-N1 

pDNA each set. This approximates to a theoretical maximum loading of 3.25 µg pDNA 

coated per device and 0.65 µg pDNA coated per microneedle. Following drying, the 

average mass of pDNA recovered in 100 µL of TE buffer from each device was 2.78 ± 

0.54 µg (n = 4) after a 24 h drying time and 2.28 ± 0.69 µg (n = 4) after a 96 h drying 

time. This was an average of 14.5% and 30.1% reduction in the mass of pDNA 

recovered from the microneedles, compared to the theoretical maximum loading dose 

after 24 h and 96 h drying times respectively.  
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Figure 3.10:  pDNA coating onto steel microneedles. A theoretical maximum mass of 3.25 

µg of pDNA per microneedle device was loaded onto two sets of 4 

microneedle devices (5 × 700 µm Regular, Cardiff University, UK). pDNA 

from 4 random devices was recovered at the drying time points. (pDNA = 

pEGFP-N1; h = hour; n = 4; error bar = standard deviation) 

 

The reduction in the mass of pDNA recovered could be due to less than 100% efficient 

loading from the theoretical maximum loading dose. If the full loading dose was coated, 

reduction in recovered pDNA mass could be due to retention of coated materials on the 

surface of microneedles or shedding of dry-coated pDNA from the microneedles during 

storage and handling. pDNA is relatively stable in solid state; therefore it is not 

expected to be degraded within the 96 h drying time. The mass reduction seemed to 

have increased with time suggesting that the increased drying time may have resulted in 

significant dehydration of the coated material and subsequent difficulty re-dissolving it 

from the surface of microneedles in the small volume of buffer used and with minimum 

agitation. Furthermore, unpolished steel microneedles were used and it is possible that 

dehydrated pDNA adhered more strongly to the rough microneedle surface. In chapter 2 

(section 2.3.4), electropolished microneedles from Georgia Institute of Technology, 

USA resulted in higher skin deposition (Figure 2.12) of coated materials from the FITC-

oligonucleotide coated microneedles (Figure 2.13), compared to unpolished 

microneedles. pDNA dissolution from electropolished microneedles has not been tested 

concurrently, but the results indicate that the surface property of steel microneedles 

affects the adherence and dissolution of the pDNA coat. 
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A transfection assay was performed on the recovered pDNA to determine if plasmid 

DNA remained functional after coating and drying. Lipofectamine 2000 or DOTAP 

with protamine sulphate were used as transfection reagents to form lipoplexes with the 

recovered pEGFP-N1. Gene expression was observed (Figure 3.11) and flow cytometry 

was performed to quantify and compare GFP expression between different treatment 

groups (Figure 3.12 A). An MTT assay was also performed to determine cell viability 

post-transfection (Figure 3.12 B).  

 

 
Figure 3.11:  Representative fluorescence micrographs of HaCaT cells treated with 

DOTAP (A-C) and Lipofectamine  2000 (D-F) lipoplexes of pEGFP-N1 

recovered from microneedle devices following 24 h and 96 h drying time 

(B, C, E and F). In each treatment group, pDNA mass was constant at 0.5 µg. 

GFP fluorescence was pseudocoloured green. (PS = Protamine sulphate) 

 

Gene expression was greatest in lipoplexes formulated with Lipofectamine 2000. 

Compared to the positive control (26.63 ± 2.69%; n = 4), the coating and 24 h drying 

process reduced gene expression by 32.6% (17.95 ± 5.71%; n = 4; p < 0.01) whilst 96 h 

drying reduced gene expression by 88.8% (2.98 ± 0.77; n = 4; p < 0.001) in the 

Lipofectamine 2000 lipoplexes group. The mass of pDNA used for transfection was 

the same but functionality of the pDNA reduced with an increase in coated pDNA 

drying time. In the DOTAP group, the coating and 24 h drying process did not affect the 
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level of gene expression (7.75 ± 4.44%; n = 4) whilst 96 h drying seemed to reduce 

gene expression by 67.7% (2.13 ± 0.58%; n = 4) when compared to the positive control 

(6.60 ± 0.29%; n = 4) but the results were statistically insignificant (p>0.05).  

 

 
Figure 3.12:  Transfection efficiency (A) and cell viability (MTT assay) (B) following 

treatment with pEGFP-N1 recovered from microneedle devices following 

24 h and 96 h drying time and subsequently complexed with liposomes for 

transfection in HaCaT cells. (pDNA = 0.5	   μg pEGFP-N1; PS = Protamine 

sulphate; n = 4; error bar = standard deviation; * = p<0.05; *** = p<0.001 

compared to untreated) 
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Cell viability was lowest in the Lipofectamine 2000 positive control group (70.64 ± 

12.6%; n = 4), followed by Lipofectamine 2000 complexed with pDNA recovered 

from microneedle devices following drying for 24 h (82.27 ± 20.82%; n = 4) and then 

DOTAP with protamine sulphate complexed with pDNA recovered from microneedle 

devices following drying for 24 h (85.33 ± 21.80%; n = 4). However, the differences in 

reduction of cell viabilities were statistically insignificant. There was some observed 

correlation between the apparent reduction in cell viability and increased gene 

expression, suggesting the small increase in cell toxicity could be related to increased 

expression of exogenous genetic material in the cells. When observed microscopically, 

most of the presumably dead cells seen to be detached from the tissue culture vessel, 

appeared rounded and were brightly fluorescent with GFP. 

 

The ability to coat pDNA onto steel microneedles has previously been investigated by 

other members of the research laboratory (Pearton et al. 2012); data shown in Figure 

3.13. Studies were performed to investigate the physical stability and biological 

functionality of reporter plasmid following coating for up to 7 days and recovery from 

the surface of electropolished steel microneedles. Microneedles were coated with pDNA 

using the micro-dip-coating device (Gill and Prausnitz 2007a), allowed to dry for 7 days 

at room temperature and recovered in a small volume of buffer. The recovered pDNA 

was then subjected to agarose gel electrophoresis to determine the physical stability of 

the tertiary supercoiled structure as well as complexed with Lipofectamine LTX reagent 

for delivery to HaCaT cells (Pearton et al. 2012).  

 

The physical stability of coated pDNA, determined by the retention of supercoiled 

structure appears to have decreased with the relative amount of supercoiled pDNA 

decreasing from 80% to 50% over 7 days storage (Figure 3.13 A). However, the change 

in tertiary DNA structure did not appear to significantly affect the biological 

functionality of the coated and recovered plasmid as HaCaT cells transfection revealed 

similar levels of gene expression compared to positive control (Figure 3.13 B) (Pearton 

et al. 2012). However, it is noted that the level of transfection in this study was 

observably lower than found in earlier experiments using the same transfection reagent, 

whereby transfection efficiency of up to 17.5% (positive control and recovered pDNA) 

were observed in the aforementioned study compared to an average of 37% in the study 

presented in Figure 3.4. The authors in the study (Pearton et al. 2012) suggested that it 
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is possible that the cleavage of pDNA during storage occurred at a location that did not 

affect the mechanism of gene expression or that the dose of pDNA used in in vitro 

transfection studies was more than required and as such partial degradation in pDNA 

structure may result in undetectable subtle changes in biological functionality of the 

plasmid (Pearton et al. 2012). 

 

 
Figure 3.13:  Structural stability (A) and biological functionality (B) of pDNA coated 

onto the surface of electro-polished steel microneedles. (A) An image of gel 

electrophoresis of pDNA recovered after coating for up to 7 days with either 

10 or 40 dip-coats with 5 s drying time in between each immersion (dip) using 

a micro-dip-coating device. (B) Transfection efficiency of pEGFP-N1 

recovered from the surface of microneedles following storage for up to 7 days, 

determined through flow cytometry analysis. pEGFP-N1 from stock and 

recovered from microneedles were complexed with Lipofectamine LTX 

transfection reagent.  (Data presented as mean ± SD; ANOVA p>0.05) (taken 

from Pearton et al. 2012) 

 

It was also observed that the reduction in supercoiled pDNA fraction was more 

prominent when a lower mass of pDNA (10 dips with approximately 2 µg compared to 

40 dips with approximately 5 µg pDNA, presumably coated and recovered per 
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microneedle device) was coated onto the surface of microneedles (Pearton et al. 2012). 

The authors suggested that in samples with less materials coated, the fraction of coated 

nucleic acid that is in contact with either the metallic surface of microneedles or the 

atmosphere is higher, resulting in an increased DNA instability due to oxidation 

(Pearton et al. 2012).  Subsequently, the physical stability of pDNA coated onto 

microneedles was significantly enhanced by the addition of 1.5% (w/v) disaccharide, 

which resulted in approximately 85% retention of the supercoiled DNA structure 

(Pearton et al. 2012). 

 

Apart from the major degradative pathways of depurination and β-elimination in an 

aqueous solution, pDNA is also susceptible to free radical oxidation (Evans et al. 2000).  

The theoretical maximum mass of pDNA coated in this experiment was 3.25 µg, which 

is within the range used by Pearton and colleagues (approximately 1 µg for 10 dips and 

5 µg for 40 dips, with 5 s drying time in between dips). However, the rough surface of 

unpolished microneedles increases the surface area of steel microneedles for coating. 

The studies in this chapter reveal the relative instability and insolubility of pDNA in TE 

buffer coated onto unpolished steel microneedles after prolonged storage. 

Pharmaceutical excipients like disaccharides could potentially be exploited in the future 

to help improve long-term storage stability and solubility of pDNA that are coated onto 

microneedles. Electropolishing the surface of steel microneedles produced locally at 

Cardiff University could also potentially improve dissolution of dry-coated DNA 

material from the surface of steel microneedles. The current and previously published 

studies on the stability of pDNA coated onto microneedles forms the basis for initial 

understanding of the limitations for nucleic acid coating onto the surface of steel 

microneedles. 

 

3.3.6 Excised human skin transfection 

The ability to deliver reporter pDNA to skin using a concentrated naked pDNA 

formulation applied to the surface of freshly excised human skin prior to skin puncture 

with microneedles has been previously shown in the laboratory (Birchall et al. 2005; 

Coulman et al. 2006b; Ng et al. 2009; Pearton et al. 2008; Pearton et al. 2012). The 

physical skin disruption studies detailed in this thesis serve to compare the routinely 

used method using microneedles with other conventional methods used to disrupt the 
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stratum corneum barrier to facilitate delivery of nucleic acid to excised human skin. 

pCMVβ reporter plasmid was the reporter plasmid of choice due to the ease of visual en 

face detection of β-galactosidase expression in the skin. The effect of delivering 

lipoplexes (pDNA complex with a lipid based transfection reagent) was also 

investigated. 

 

In an experiment comparing (i) microneedle abrasion with (ii) tape-stripping and (iii) 

tape-stripping plus liquid cyanoacrylate stripping, gene expression (β-galactosidase 

protein expression) was observed in the microneedles abrasion method but not in other 

disruption methods (Figure 3.14). β-galactosidase protein expression was observed as 

dark blue spots en face after staining with X-gal solution. 

 

As shown on the tranverse sections, β-galactosidase protein expression in the 

microneedle abrasion sample seems to be prominent in the viable epidermis, adjacent to 

skin disruptions (Figure 3.15 B). Microneedle application resulted in disruption of the 

stratum corneum with one of the lateral disruption sites was approximately 150 µm in 

depth. β-galactosidase protein expression seemed to have occurred at the basal and 

suprabasal layer of epidermal cells, supporting the notion that targeted delivery of 

nucleic acid to the appropriate cells within the epidermis is crucial for successful gene 

expression. It has been postulated by Pearton et al. (2012) that cellular uptake of 

aqueous naked pDNA formulation following microneedle administration is a transient 

process, whereby the shearing force of microneedle penetration temporarily disrupts cell 

membrane to allow pDNA entry into cells through diffusion as the cell membrane 

rapidly re-organise to restore integrity (Pearton et al. 2012). This hypothesis is 

supported by the fact that naked pDNA in the absence of a gene transfer vector does not 

transfect cells in a monolayer culture but is able to facilitate gene expression in viable 

human skin tissue.  
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Figure 3.14:  En face images of skin samples, from a 53-year-old patient that have been 

treated by physical disruptions and PBS only (A) or naked pCMVβ (B, C 

and D). Arrows on figure B show the direction that microneedles were moved 

through the skin following insertion. Skin samples have been subjected to X-

gal staining, which highlights the presence of β-galactosidase protein with a 

dark blue pigment (naked pCMVβ = 10 µL pCMVβ 6 mg mL-1 solution; n = 2) 
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Figure 3.15:  Transverse section images of a skin sample, from a 53-year-old patient, 

that have been treated by physical disruptions and PBS only (A) or naked 

pCMVβ	  (B-‐D). Skin samples (Figure 3.14) that have been subjected to X-gal 

staining were cryosectioned and transverse sections were H&E stained. A. 

Tape-stripping + liquid cyanoacrylate stripping + PBS (negative control); B. 

pCMVβ + microneedle abrasion; C. Tape-stripping + pCMVβ; D. Tape-

stripping + liquid cyanoacrylate stripping + pCMVβ. (naked pCMVβ = 10 µL 

pCMVβ 6 mg mL-1 solution; arrow = skin area with β-galactoside expression) 
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Transverse sections from the tape-stripping (Figure 3.15 C) and tape-stripping plus 

liquid cyanoacrylate stripping (Figure 3.15 A and D) samples revealed incomplete 

removal of the stratum corneum. Attempts to improve on the liquid cyanoacrylate 

stripping method were made by repeating the cyanoacrylate applications. Methylene 

blue was used to determine whether the stratum corneum and/or epidermis had been 

removed. Methylene blue is an aqueous dye that does not penetrate skin with intact 

stratum corneum and could easily be wiped or washed off following application on 

intact skin. After 4 applications of liquid cyanoacrylate on the treatment area, methylene 

blue solution rapidly diffused into the dermis, indicating complete removal of the 

stratum corneum and epidermis (Figure 3.16 E and 3.17). From the transverse sections, 

the presence of stratum corneum was visible even after liquid cyanoacrylate stripping 

on 3 occasions. This shows the difficulty in achieving consistency in the technique, 

which therefore may not be ideal for widespread application. Also, forcefully removing 

the upper layer or the skin using liquid cyanoacrylate might cause pain and if not 

performed carefully or consistently, it may result in insufficient removal of the stratum 

corneum or complete removal of the epidermis. 

 

 
Figure 3.16:  Transverse section images of defrosted skin sample, from an 83-year-old 

patient subjected to increasing times of liquid cyanoacrylate stripping 

physical disruptions. Tranverse sections were H&E stained. (LCS = liquid 

cyanoacrylate stripping; × 1 = applied once, × 2 = applied twice; × 3 = applied 

thrice and × 4 = applied 4 times) 
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Figure 3.17:  En face image (A) and corresponding cross-section image (B) of a 

defrosted skin sample from an 83-year-old patient subjected to 4 repeated 

liquid cyanoacrylate stripping physical disruption procedures followed by 

staining with methylene blue. 

 

Nevertheless, the skin disruption experiment was repeated and liquid cyanoacrylate 

stripping was performed 3 times to remove the stratum corneum rather than complete 

removal of the epidermis, before application of pCMVβ. Gene expression was not 

observed when examined stereoscopically, en face (Figure 3.18). When the skin sample 

was subjected to microneedle abrasion after liquid cyanoacrylate stripping, gene 

expression occurred.  This observation supports the hypothesis that in order for gene 

expression to occur following delivery of naked pDNA, skin cells have to be 

temporarily and minimally disrupted and nucleic acid should be targeted to the actively 

dividing basal epidermal cells. The action of liquid cyanoacrylate may have disrupted 

the upper layer of epidermis but the disruption may only be superficial. It was also 

noteworthy to observe that gene expression occurred subsequent to a 5 min delay in 

application of pDNA after microneedle abrasion, suggesting that temporary cellular 

membrane disruption caused by microneedle abrasion may not be as transient as 

previously thought.  
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Figure 3.18:  En face images of skin samples, from a 77-year-old patient, that have been 

treated by physical disruptions and pCMVβ or controls. Skin samples have 

been subjected to X-gal staining, which highlights the presence of β-

galactosidase protein with a dark blue pigment, indicated by an arrow. (A. LCS 

× 3 + PBS = skin subjected to 3 times liquid cyanoacrylate stripping followed 

by PBS; B. LCS × 3 + naked pCMVβ = skin subjected to 3 times liquid 

cyanoacrylate stripping followed by naked pCMVβ; C. LCS × 3 + MNA + 

naked pCMVβ = skin subjected to 3 times liquid cyanoacrylate stripping and 

then microneedle abrasion followed by naked pCMVβ; D. Naked pCMVβ 

prior MNA = skin treated with naked pCMVβ prior to microneedle abrasion; 

E. Naked pCMVβ 5 min post MNA = skin treated with naked pCMVβ 5 min 

after microneedle abrasion; F. Intradermal β-gal = intradermal injection of β-

galactosidase; PBS = 10 µL PBS solution; naked pCMVβ = 10 µL pCMVβ 6 

mg mL-1 solution; n = 1) 

 

Due to positive results from the microneedle abrasion technique, another experiment 

was performed to investigate the effect of applying different concentrations of naked 

pDNA and pDNA lipoplex on the skin using the microneedle abrasion method (Figure 

3.19). Application of naked pCMVβ at concentrations of 1 mg mL-1 and 2.5 mg mL-1 

resulted in reporter gene expression (Figure 3.19 B and C) and up to 6 mg mL-1 was 

effective in previous experiments (Figure 3.14 B and Figure 3.18 D). Application of 

pCMVβ lipoplex resulted in gene expression at concentrations higher than 2.5 mg mL-1 

(Figure 3.19 E) but not at a concentration of 1 mg mL-1 (Figure 3.19 F). Previously, an 

attempt by another member of the research laboratory to deliver pDNA lipoplexes to ex 
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vivo human skin using the same method failed to facilitate gene expression at both 

lipoplex concentrations tested (Ng 2010).  

 

 
Figure 3.19:  En face images of skin samples, from a 72-year-old patient that have been 

treated by physical disruptions and pCMVβ or controls. Skin samples have 

been subjected to X-gal staining, which highlights the presence of β-

galactosidase protein with a dark blue pigment, indicated by an arrow. (MNA 

= microneedle abrasion; intradermal β-gal = intradermal injection of β-

galactosidase; naked pCMVβ = 20 µL pCMVβ solution; pCMVβ lipoplex = 

pCMVβ + 50% v/v Lipofectamine™ 2000; n = 1) 

 

However, the choice of lipid based transfection reagents between the two studies was 

different; Lipofectamine™ LTX was the transfection reagent used in Keng (2010) whilst 

Lipofectamine™ 2000 was used in this study. The compositions of these transfection 

reagents are proprietary to the company and hence it is unclear whether the choice of 

transfection reagent was the reason for the difference in results. Moreover, results from 

the in vitro studies in both HaCaT cells (Figure 3.4) and primary keratinocytes (Figure 

3.9) show more efficient transfection using the Lipofectamine™ LTX transfection 

reagent, which was used in Keng (2010)’s study. Again, this highlights the challenges in 

correlating observations in vitro with ex vivo and ultimately in vivo settings in the 

complex skin structure for the delivery of nucleic acid. Furthermore, at the higher 
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pDNA concentration of 2.5 mg mL-1, the ratio of pDNA to the transfection reagent at 

50% v/v was 5:1. The ideal plasmid to lipid ratio for in vitro cell monolayer transfection 

is 1:3 and this is diluted to a final plasmid concentration of 8 × 10-4 mg mL-1 (0.5 µg 

pDNA in 600 µL transfection volume). At a higher pDNA to lipid ratio of 5:1, lipoplex 

formation is probably incomplete, resulting in the availability of uncomplexed naked 

pDNA that could have transfected the skin cells in a way similar to naked plasmid. 

 

Moreover, if naked pDNA is efficient in human skin transfection following treatment, 

the value of including a lipid-based transfection reagent for nucleic acid delivery is 

debatable. Complexation of pDNA with lipid-based transfection reagents has been 

shown to be toxic, inducing acute inflammatory reactions in in vivo studies where 

animals were treated with intravenous injections (Song et al. 1997), and animal 

(Scheule et al. 1997) or humans (Ruiz et al. 2001) were treated with pulmonary delivery 

of lipoplex formulations. These studies have shown that cationic lipid and DNA were 

synergistic in significantly contributing to the toxicity observed (Ruiz et al. 2001; 

Scheule et al. 1997). The observed toxicity to keratinocyte cells in vitro following 

treatment with pDNA lipoplexes in section 3.3.3 is concerning and therefore it would be 

better if naked pDNA could be delivered to the skin using microneedles. 

 

In addition to cutaneous delivery of a pDNA liquid formulation (Figures 3.14, 3.15, 

3.18 and 3.19), delivery of naked pDNA from dry-coated microneedles was also 

investigated. However following treatment of three tissue samples with steel 

microneedles (5 needles per array; 700 µm in length) coated with 10 µg pCMVβ per 

microneedle device, β-galactosidase was only observed at one microneedle puncture 

site (Figure 3.20). Low transfection efficiencies with pDNA coated microneedles have 

previously been reported by other members of the research laboratory (Pearton et al. 

2012). 
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Figure 3.20:  En face images of skin samples, from a 72-year-old patient, that have been 

treated by naked pCMVβ coated microneedles application. Skin samples 

have been subjected to X-gal staining, which highlights the presence of β-

galactosidase protein with a dark blue pigment. The arrows represent visible 

microneedle insertion sites. (each microneedle was coated with 2 µg	  pCMVβ; 

n = 3) 

 

This observation could be attributed to poor dissolution of dehydrated pDNA (Pearton 

et al. 2012). In routine laboratory use, pDNA is often dissolved to 1 mg mL-1. DNA 

pellet obtained from plasmid extraction usually requires gentle agitation over extended 

period of time. For a dry-coat of pDNA on the surface of microneedles to dissolve 

following microneedle application, a sufficient volume of solvent in the skin 

environment proximal to the microneedle delivery site is required to allow rapid 

dissolution of pDNA from the surface of microneedles (Pearton et al. 2012). In a 

previous study where pDNA was recovered from the surface of microneedles after 24 h 

and 96 h drying time (section 3.3.5), 100 µL volume of TE buffer was used to recover a 

theoretical maximum loading amount of 3.25 µg dry-coat of pDNA from the surface of 

microneedles. The mass of pDNA recovered also decreased with time, which could be 

attributed to loss of material or poor solubility of the dried plasmid coat. The volume of 

fluid required to sufficiently dissolve solid pDNA deposited from microneedles is 

unlikely to be present in the skin area proximal to the microneedle insertion sites 

(Pearton et al. 2012).  

 

Moreover, although a study has shown low amounts of pDNA internalisation (up to 

15%) following delivery of a high concentration of pDNA (5 µg mL−1) to human 
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keratinocyte cells in vitro (Basner-Tschakarjan et al. 2004), it has been estimated that in 

a non-dividing cell, including suprabasal keratinocytes, at least 100000 copies of pDNA 

has to be present in cell cytoplasm to ensure nuclear uptake and transcription of 

between 0.1% and 0.0001% of the plasmid (Capecchi 1980; Tseng et al. 1997). Any 

naked pDNA internalisation in skin cells from slow dissolution of a deposited solid 

pellet, after the initial phase of transient cell membrane disruption by microneedles, is 

probably through endocytosis and without the presence of cationic lipids, naked pDNA 

is not likely to escape from the endosomal membrane and is likely to be degraded in 

lysosomes (Lechardeur and Lukacs 2006; Lechardeur et al. 2005; Wattiaux et al. 2000). 

 

Due to limited supply of freshly excised human skin, these human skin experiments 

were only performed once and if the sample size permitted, treatments would have been 

repeated on the same skin specimen. More studies need to be performed in the future to 

be able to support the observations. These results and observations are by no means 

conclusive but generally support what has previously been reported.  
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3.4 Conclusion 

Preliminary studies performed in this experimental chapter demonstrated the feasibility 

of genetic manipulation through functional delivery of reporter pDNA in both in vitro 

and ex vivo human skin models. Various commercially available lipid-based 

transfection reagents were tested in human keratinocyte cells in vitro, which resulted in 

reporter gene expression, but transfection efficiencies were low (up to 37% gene 

expression) and cell toxicity was also observed in cells treated with lipoplexes, albeit 

insignificant. Delivery of naked pDNA to keratinocyte cells did not result in gene 

expression in vitro but topical delivery of a 1 mg mL-1 pDNA liquid formulation to 

freshly excised human skin, followed by abrasion with microneedles, resulted in 

reporter gene expression in the viable epidermis. Topical application of lipoplexes in 

liquid formulation to excised human skin treated with microneedle abrasion resulted in 

one occasion of reporter gene expression, at a pDNA concentration of 2.5 mg mL-1. 

Therefore, the value of lipid-based transfection reagents in gene delivery to the skin is 

debatable. Overall, results from this chapter provide greater understanding of human 

skin models and demonstrates the functionality of the biological systems that were 

described in Chapter 2. This lays the foundation for siRNA delivery experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  

	  

	  
CHAPTER 4 

	  
	   	  

126	  

 

 

 

 

 

CHAPTER 4 

 

Non viral delivery of siRNA to  

in vitro human skin models  

 

 

 

 

 

 
 



	  

	  

	  
CHAPTER 4 

	  
	   	  

127	  

4 Non-viral delivery of siRNA to in vitro human skin models 

4.1 Introduction 

Functional delivery of reporter plasmid DNA (pDNA) and subsequent reporter gene 

expression in both keratinocytes in monolayer cell culture and intact excised human 

skin was demonstrated in the preceding chapter. The availability of a reporter gene 

system helps in easy identification of gene expression following gene delivery. Such 

reporter gene systems are also widely used for gene silencing detection following 

siRNA delivery in monolayer cell culture. For example, cells can be co-transfected with 

pDNA that expresses a reporter gene, suppression of which is attributed to the action of 

siRNA (Elbashir et al. 2001a). Alternatively, reporter genes may be introduced to cells 

to generate cell lines that stably express the reporter gene, which may then be used for 

subsequent siRNA mediated gene silencing experiments targeting the reporter mRNA 

(Hickerson et al. 2011; Kwok and Hart 2011). Unfortunately, human skin is a complex 

structure that does not naturally express any gene that allows easy identification through 

commonly used reporter gene systems. Furthermore, the use of excised human breast 

skin that deteriorates over time requires rapid attention and does not allow sufficient 

time for genetic manipulation through reporter gene introduction in this model system. 

Therefore, proof-of-concept siRNA delivery experiments to human skin models require 

selection of a suitable model gene for functional detection of siRNA mediated gene 

silencing. In vitro studies involving gene silencing detection in monolayer human 

keratinocyte cells were performed using lamin A/C and CD44 as model genes for RNA 

interference studies. These in vitro studies serve to optimise siRNA delivery and 

detection systems in a defined and controlled monolayer cell culture environment to 

inform and support studies in the less robust excised human skin culture system 

(Chapter 5). 

 

4.1.1 Gene silencing targets 

In proof-of-concept gene silencing studies, target genes are selected based on the 

availability of antibodies or assays required to quantitate the silencing effect (Elbashir et 

al. 2001a). For the same reasons, the human lamin A/C and CD44 genes were selected 

as model genes for functional siRNA delivery and gene silencing studies. These genes 

are abundant in human skin cells and the reduction of these genes in cells is not 

expected to affect cell viability.  
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4.1.1.1 Lamin A/C  

The nuclear lamina is a dense protein matrix located near the inner wall of the nuclear 

membrane of a cell. The matrix of the nuclear lamina is composed of lamins and lamin-

associated membrane proteins. During mitosis, lamin proteins are phosphorylated, 

resulting in reversible matrix deconstruction. The functions of the nuclear lamina 

include cell cycle regulation, cell differentiation, DNA replication, chromatin 

reorganisation, DNA replication and apoptosis (Gruenbaum et al. 2000).  

 

The human lamins consist of two types, A (LMNA) and B (LMNB). Alternative 

splicing of the type A gene results in the presence of three mRNA isoforms known as 

Lamin A, Lamin C and Lamin Aδ10, respectively. The human lamin A/C gene (LMNA; 

GenBank accession number NG_008692) was selected as the gene silencing target for 

initial siRNA experiments involving unmodified siRNA complexed with a lipid based 

transfection reagent due to its abundant expression in most human cells, including 

keratinocyte cells.  

 

The lamin A/C siRNA used in these studies targets all three of the human lamin A/C 

mRNA transcript variants: 1 (GenBank accession number NM_170707.2), 2 (GenBank 

accession number NM_170708.2) and 3 (GenBank accession number NM_005572.3). 

The human lamin A/C gene is commonly used in siRNA mediated gene silencing 

studies (Elbashir et al. 2001a; Elbashir et al. 2002), with a wide range of commercially 

available gene detection assays such as Taqman gene expression assay for detection of 

mRNA levels through reverse transcription quantitative polymerase chain reaction (RT-

qPCR) as well as primary antibodies for detection of protein levels through Western 

blotting. 

 

4.1.1.2 CD44  

The human CD44 gene (GenBank accession number NG_008937.1) exists in multiple 

isoforms through alternative splicing. The CD44 isoforms are further modified by post-

translational modifications (Screaton et al. 1992) to form a family of cell-surface 

glycoprotein molecules that are involved in cell-cell and cell-matrix interactions, cell 

adhesion and cell migration (Goodison et al. 1999; Ponta et al. 1998). The CD44 protein 

is the main receptor for hyaluronic acid (HA) and is also the receptor for other ligands 
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including osteopontin, collagens, fibronectin and laminin. It has been suggested that the 

expression of multiple CD44 splice variant isoforms and post-translational modification 

to the CD44 protein is related to tumour metastasis (Bourrguignon et al. 1995; Cichy 

and Pure 2003; Nagano and Saya 2004).  

 

The predominant form of CD44 splice variant that are expressed in epidermal 

keratinocytes and keratinocytes in cell culture is the epican variant (Zhou et al. 1999). 

The CD44 siRNA used in this thesis was synthesised with a binding site that targets all 

CD44 isoform mRNA (Figure 4.1)(Lara et al. 2012). The location of Taqman gene 

expression assay probe binding sites used to determine CD44 mRNA levels through 

RT-qPCR and the primary antibody binding site used to determine CD44 protein levels 

through Western blotting are as indicated in Figure 4.1. 

 

 
Figure 4.1:  Schematic representation of CD44 gene organisation and CD44 epican 

mRNA structure with indication of the CD44 siRNA binding site, the 

probe location for the Taqman gene expression assay used for qPCR and 

the CD44 antibody binding epitope. The binding site of the CD44 siRNA 

ensures that all CD44 mRNA isoforms are targeted. Open boxes represent 

exons common to all known splice variants of CD44, green boxes represent the 

variable exons and red boxes represent alternative exons for cytoplasmic 

domain (adapted from Lara et al. 2012). 

 

4.1.2 siRNA chemical modifications 

siRNA are short double stranded RNA molecules vulnerable to rapid degradation by 

endo- and exonucleases. In human plasma, siRNA has a half-life of less than 5 min 

(Layzer et al. 2004). In the absence of a transfection reagent, naked siRNA is not taken 

up by cells (Elbashir et al. 2002). siRNA also has a relatively small size and therefore is 

rapidly cleared by kidney filtration after systemic administration (Soutschek et al. 
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2004). Transfection reagents such as cationic liposomes are often used to deliver siRNA 

in vitro, which provides protection against degradation as well as facilitating cellular 

delivery of siRNA. However, chemical modifications to the siRNA structure are 

required for increased stability against intracellular nucleases to improve gene silencing 

persistence without affecting the interaction of siRNA with RISC or the target. 

Chemical modifications are also applied to maximise siRNA potency, specificity and to 

reduce off-target effects. RNA therapy should also be limited to short strands of RNA 

molecules (shorter than 30 bp) to avoid off-target immune response, as the 

administration of long double stranded RNA molecules induces type 1 interferon 

synthesis (Manche et al. 1992; Stark et al. 1998). Nevertheless, siRNA should be 

routinely screened to identify and eliminate sequences that might activate an immune 

response. 

 

Various proprietary chemical modifications of siRNA are now commercially available 

to improve nuclease stability, potency and specificity of siRNA. Most commercially 

available chemical modifications to siRNA serve to improve nuclease stability, however 

a recent siRNA modification by Dharmacon (part of ThermoFisher Scientific) allows 

the synthesis of “self-delivery” (sd-) siRNA that enters cells passively in the absence of 

a “carrier” such as liposomes. The chemical modification is propriety to the company 

and therefore is not known but is believed to involve steroid or lipid moieties that are 

covalently conjugated to the 5’-ends of the siRNAs, as previously described by a 

research group in Alnylam Europe AG, Germany (Lorenz et al. 2004; Soutschek et al. 

2004). The addition of lipophilic moieties to negatively charged siRNA molecules may 

enhance siRNA uptake into cells via a receptor-mediated mechanism or by increased 

membrane permeability. The availability of these siRNA allows for improved targeted 

delivery of siRNA to a readily accessible organ such as the skin.  

 

4.1.3 Non-viral delivery of siRNA in vitro 

Similar to the studies using pDNA (Chapter 3), a lipid based transfection agent was 

selected for initial in vitro experiments to optimise cellular delivery of siRNA to 

monolayer human keratinocyte cells. Lipid based transfection reagents have also been 

used in numerous siRNA studies with great success (Elbashir et al. 2001a; Elbashir et 

al. 2002). The use of cationic liposomal transfection agent produces siRNA lipoplexes. 
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The efficiency of these complexes in facilitating gene silencing can be compared with 

that mediated by the aforementioned chemically modified sd-siRNA. The post-

transcriptional gene silencing mediated by siRNA and siRNA uptake is determined 

using commonly used detection methods. 

 

4.1.3.1 Detection of gene silencing  

Gene silencing by siRNA occurs at the post-transcriptional level, where mRNA 

sequences homologous to the guide strand of siRNA are targeted, cleaved and rapidly 

degraded (Hammond et al. 2000; Hammond et al. 2001; Meister and Tuschl 2004). The 

degraded mRNA is not able to translate into protein and hence the gene is silenced 

when remaining protein degrades over its half-life (Wilkinson 2000). Therefore, the 

effect of siRNA mediated gene silencing can be detected either at the mRNA or protein 

level of the targeted gene.  

 

Gene silencing at the mRNA level can be detected using reverse-transcription 

quantitative polymerase chain reaction (RT-qPCR). This method involves extraction of 

total RNA from treated cells, which is then converted to cDNA through reverse 

transcription (RT). Quantitative polymerase chain reaction (qPCR) is then performed to 

quantify levels of target genes. PCR assumes an exponential accumulation of the target 

gene with each replication cycle until the reaction reaches a plateau. qPCR uses 

fluorescent probes to quantitatively measure gene amplification, whereby the increase in 

fluorescent signal is proportional to the amount of DNA accumulated during each PCR 

cycle (Bustin 2000; Nolan et al. 2006). The level of target mRNA in each treatment 

group is normalised to the level of an endogenous control gene not affected by the 

siRNA treatment performed in parallel.  The differences in mRNA levels between 

different treatment groups including positive and negative controls (cells treated with 

non-specific siRNA or untreated cell) are then compared.  

 

A range of fluorescent detection systems has been developed and is commercially 

available (Bustin 2000). The two most favoured systems are the DNA-binding dye and 

the hydrolysis probe methods. The most commonly used dye is SYBR Green, a 

fluorescent dye that binds to DNA, which has been amplified using primers (Bustin 

2000; Nolan et al. 2006). The hydrolysis probe or Taqman assay method uses a Taqman 
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probe that utilises the 5’-nuclease activity of the DNA polymerase or Taq polymerase 

enzyme to hydrolyse and cleave a dual-labelled hybridisation probe bound to the 

complementary target sequence, releasing the fluorescent dye which is then detected 

(Bustin 2000; Holland et al. 1991). When unbound, the fluorescent reporter dye at the 5’ 

end is quenched by a second fluorescent dye at its 3’ end and no reporter fluorescence is 

detected. The Taqman assay method has an improved sensitivity and specificity over 

other qPCR detection methods (Holland et al. 1991).   

 

A gene is ultimately expressed in the form of protein and therefore, gene silencing can 

be detected by performing Western blot and/or immunofluorescence to determine 

protein levels. Western blotting (Towbin et al. 1992) is a widely used technique to 

detect specific proteins in a sample (MacPhee 2010). This technique involves (i) protein 

extraction from tissue or cell samples, (ii) separating extracted protein samples by 

molecular weight, isoelectric point and/or electric charge using gel electrophoresis, (iii) 

transferring separated protein from gel to nitrocellulose or polyvinylidene difluoride 

(PVDF) membrane, (iv) probing the membrane for specific proteins with antibodies and 

then (v) detecting the presence of target proteins through colorimetric, 

chemiluminescent, radioactive or fluorescent detection. The same amount of protein 

from each sample is loaded for Western blotting, usually indicated by a protein loading 

control, which allows meaningful comparison of protein levels of the gene targeted by 

the siRNA. 

 

The immunofluorescence technique involves staining treated cells with specific 

antibodies, incorporating a fluorescent tag either on the primary antibody or through 

fluorescently labelled secondary antibodies to then detect fluorescence intensity of 

target protein in samples through fluorescence or confocal microscopy (Odell and Cook 

2013). 

 

4.1.3.2 Determination of siRNA uptake  

In addition to gene silencing, siRNA uptake studies could provide useful information on 

cellular uptake kinetics and localisation of fluorescently labelled siRNA. Techniques 

such as flow cytometry, fluorescent microscopy, and confocal microscopy have 

previously been used to detect cellular uptake and/or localisation of fluorescent siRNA 
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(Dunne et al. 2003; Grunweller et al. 2003; Ruponen et al. 2003; Vader et al. 2010). 

Flow cytometry analysis of single cell suspensions of treated cells could provide useful 

data for quantification of siRNA uptake at various time-points. Fluorescent microscopy 

is a quick method to visualise if cells have taken up siRNA before further analysis with 

flow cytometry. Cellular localisation of siRNA could then be visualised using confocal 

microscopy, an imaging technique with increased optical resolution and contrast. This 

technique allows sequential imaging through a cellular layer, which can then be 

reconstructed into 3D image to provide insight of fluorescent siRNA localisation in 

cells, relative to counterstained nuclei.  

 

4.1.4 Aim and objectives 

The aim of this chapter was to develop functional assays to quantify detection of siRNA 

delivery and siRNA mediated gene silencing in in vitro human skin models following 

non-viral siRNA delivery. The objectives of the experiments were:  

• To deliver functional siRNA to human keratinocyte cell monolayers and optimise 

gene expression detection methods. 

• To perform protein extraction from cultures of human keratinocytes for 

quantification by Western blotting. 

• To perform total RNA extraction from cultures of human keratinocytes for 

quantification by RT-qPCR. 

• To determine the effect of siRNA treatment on cell viability. 

• To observe internalisation of siRNA through delivery of fluorescently labelled 

siRNA to human keratinocytes. 

• To determine siRNA uptake kinetics in human keratinocytes through delivery of 

fluorescently labelled siRNA . 

• To test the ability to coat microneedles with siRNA consistently and precisely.  

• To test the short term biological stability of siRNA coated onto microneedles. 
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4.2 Methods 

Unless specified, the suppliers of all reagents and materials have previously been 

mentioned or were obtained from ThermoFisher Scientific, UK. 

 

4.2.1 siRNA modification and sequences 

siRNA were received either in the form of a dry pellet or pre-diluted in PBS. Dry pellets 

of siRNA were dissolved in a small volume of PBS to the required concentration, 

determined by quantification using a NanoVue or NanoDrop spectrophotometer as 

described in section 3.2.1.5. 

 

4.2.1.1 Non-self-delivery siRNA 

For all the experiments targeting lamin A/C mRNA, unmodified siRNA molecules were 

a 19+2 format, with two 3′ deoxythymidine (dT) overhangs, designed and synthesised 

by Eurofins MWG Operons (Ebersberg, Germany). A non-self-delivery unmodified 

(non-sd) lamin A/C siRNA (lamin A/C non-sd-siRNA; sequence: 5′-

CUGGACUUCCAGAAGAACA) was used to target human lamin A/C mRNA. A 

nonspecific unmodified green fluorescent protein (GFP) siRNA (GFP non-targeting 

non-sd-siRNA; sequence: 5′-GGCUACGUCCAGGAGCGCACC) targeting the GFP 

mRNA not present in the human keratinocyte models was used as a negative control 

(Chong et al. 2013). 

 

For experiments targeting the CD44 mRNA, siSTABLE modified and unmodified 

siRNAs (gifts from Dr. Roger Kaspar, Transderm Inc., USA) were designed and 

synthesised by Dharmacon Products, Thermo Fisher Scientific (Lafayette, CO, USA). 

siSTABLE is a proprietary modification to improve stability of siRNA by preventing 

degradation by nucleases. A siSTABLE modified non-self-delivery CD44 siRNA 

(CD44 non-sd-siRNA; siRNA sequence: 5′- GGCGCAGAUCGAUUUGAAU) was 

used to target human CD44 mRNA (Lara et al. 2012). A nonspecific unmodified non-

self-delivery K6a_513a.12 siRNA (TD101 non-targeting non-sd-siRNA) targeting a 

keratin 6a mutation not present in the human keratinocyte models was used as negative 

control (Hickerson et al. 2011). 
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4.2.1.2 Self-delivery siRNA 

For experiments involving self-delivery siRNA, Accell-modified siRNA (gifts from Dr. 

Roger Kaspar, Transderm Inc., USA) were designed and synthesised by Dharmacon 

Products, Thermo Fisher Scientific (Lafayette, CO, USA).  Accell siRNA is a 

proprietary modification to produce “self-delivery” (sd-) siRNA that does not require a 

transfection agent to facilitate cell transfection and to improve stability of siRNA by 

preventing degradation by nucleases. Accell-modified self-delivery siRNA (Accell 

CD44 sd-siRNA; siRNA sequence: 5′- GGCGCAGAUCGAUUUGAAU) was used to 

target human CD44 mRNA (Lara et al. 2012). A nonspecific self-delivery K6a_513a.12 

siRNA (Accell TD101 or non-targeting sd-siRNA) targeting a keratin 6a mutation not 

present in the human keratinocytes model was used as a negative control (Hickerson et 

al. 2011). 

 

4.2.1.3 Fluorescently labelled siRNA 

A BLOCK-iT-modified Alexa 647 fluorescent siRNA (1 mg mL−1 in PBS) (a gift 

from Dr. Xavier de Mollerat du Jeu, Life Technologies, USA) was a nonspecific 

sequence of non-sd-siRNA with far-red Alexa Fluor® 647 fluorescent label that has an 

excitation maximum of 650 nm and emission maximum of 668 nm. BLOCK-iTis a 

proprietary chemical modification to enhance stability of siRNA. 

 

An Accell-modified Red Cyclophilin B control siRNA (Accell Red sd-siRNA) was 

used to evaluate cellular uptake of self-delivery siRNA. A siGLO-modified Cyclophilin 

B control siRNA (siGLO Red non-sd-siRNA) was used as non-self-delivery control for 

siRNA uptake studies. siGLO has similar chemical modifications to siSTABLE for 

enhanced siRNA stability as well as extended fluorescence signal intensity of up to 7 

days. Both Accell-modified and siGLO-modified red fluorescent siRNA are labelled 

with DY-547 fluorescent label with an absorbance maximum of 557 nm and emission 

maximum of 570 nm. Both the siRNA sequence targets the human peptidylprolyl 

isomerase B (PPIB), commonly referred to as cyclophilin B mRNA that is abundantly 

expressed in most mammalian cells. The human cyclophilin B gene is non-essential and 

silencing of the gene does not affect cell viability. The functional gene silencing of 

cyclophilin B is not a target for investigation in the siRNA uptake studies described in 

later sections. 
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4.2.2 In vitro gene silencing with siRNA lipoplexes in HaCaT cells 

4.2.2.1 Lipofectamine  RNAiMAX Reagent – siRNA lipoplexes 

Lipofectamine RNAiMAX (Life Technologies, UK) transfection reagent is a 

proprietary formulation. Non-sd-siRNA-Lipofectamine RNAiMAX lipoplexes were 

formulated and prepared within 2 h of use. The complexation method was adapted from 

the supplier’s recommended protocol. For each transfection sample, non-sd-siRNA was 

diluted with Opti-MEM® and mixed thoroughly. Lipofectamine RNAiMAX (Life 

Technologies, UK) was gently mixed before being added directly to the diluted siRNA 

and mixed thoroughly. The complexes were incubated for 20 min at room temperature 

to allow the lipoplexes to form.  

 

4.2.2.2 Cell treatment 

One day before transfection, HaCaT cells were seeded at 2.5 × 104 cells cm-2 in either 6-

well, 12-well or 24-well plates, so that the cells were at least 50% confluent at the time 

of transfection and were allowed to adhere to the bottom of the plate surface overnight. 

Cells were seeded in 2.5 mL (per well of 6-well plate), 1 mL (per well of 12-well plate) 

or 0.5 mL (per well of 24-well plate) of growth medium without antibiotics. 

 

In each well, 500 µL (per well of 6-well plate) or 200 µL (per well of 12-well plate) of 

the lipoplexes and controls were added to each well, respectively. The plates were 

gently rocked back and forth for 30 sec to ensure thorough mixing of the well contents. 

The cells were incubated at 37°C in a humidified atmosphere containing 5% CO2 in air. 

RNA and protein extractions for gene expression analysis were performed 48 h post-

transfection. Cells were treated in quadruplicate wells when necessary with triplicate 

samples for mRNA quantification by RT-qPCR and the remaining treatment sample for 

protein analysis by Western blotting.  

 

4.2.2.3 Dose optimisation for in vitro siRNA lipoplex transfection 

Dose optimisation of the lipoplexes was performed with lamin A/C non-sd-siRNA on 

HaCaT cells and the optimum transfection dose was determined by varying the 

concentration of lamin A/C non-sd-siRNA and Lipofectamine RNAiMAX complex 



	  

	  

	  
CHAPTER 4 

	  
	   	  

137	  

in a 6-well plate format to give a final transfection volume of 500 µL, as shown in Table 

4.1. Cells were seeded in 2.5 mL culture medium and thus, the molar concentration of 

siRNA was based on a final cell culture medium volume of 3 mL post-transfection in a 

6-well plate format. Protein extractions for gene expression analysis were performed 48 

h post-transfection. 

 

Table 4.1:  Formulation of Lipofectamine RNAiMAX-siRNA complexes tested for dose 

optimisation (per well of 6 well plate) 

No. Description 

Components 

siRNA (50 pmol µL-1) Lipofectamine 
RNAiMAX (µL) 

Opti-MEM® 
(µL) GFP (µL) 

Lamin A/C 
(µL) 

1 Untreated negative control - - - 500.0 

2 25 nM siGFP + 5µL RNAiMAX 
negative control 1.5 - 5.0 493.5 

3 25 nM siLamin negative control - 1.5 - 498.5 

4 5 nM siLamin + 5µL RNAiMAX - 0.3 5.0 494.7 

5 5 nM siLamin + 7.5µL RNAiMAX - 0.3 7.5 492.2 

6 10 nM siLamin + 2.5µL 
RNAiMAX - 0.6 2.5 496.9 

7 10 nM siLamin + 5µL RNAiMAX - 0.6 5.0 494.4 

8 10 nM siLamin + 7.5µL 
RNAiMAX - 0.6 7.5 491.9 

9 25 nM siLamin + 5µL RNAiMAX - 1.5 5.0 493.5 

10 25 nM siLamin + 7.5µL 
RNAiMAX - 1.5 7.5 491.0 

11 50 nM siLamin + 5µL RNAiMAX - 3.0 5.0 492.0 

12 50 nM siLamin + 7.5µL 
RNAiMAX - 3.0 7.5 489.5 

 

The optimum dose for gene silencing in HaCaT cells with lamin A/C lipoplexes was 

determined to be 10 nM non-sd-siRNA complexed with 5 µL Lipofectamine 

RNAiMAX transfection reagent in a 6-well plate format. Further transfections with 

lamin A/C and non-specific control were kept at the same dose of lipoplexes and scaled-

down accordingly when necessary.  

 

Dose optimisation was also performed with CD44 non-sd-siRNA on HaCaT cells and 

the optimum transfection dose was determined by varying the concentration of CD44 

non-sd-siRNA in a 12-well plate format to give a final transfection volume of 200 µL. 

Cells were seeded in 1 mL culture medium and thus, the molar concentration of siRNA 
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was based on a final cell culture medium volume of 1.2 mL post-transfection in a 12-

well plate format. The final concentration of non-sd-siRNA tested was 1 nM, 10 nM, 20 

nM and 50 nM complexed with 2 µL Lipofectamine RNAiMAX transfection reagent.  

 

The optimum dose for gene silencing with CD44 lipoplexes was determined to be 10 

nM non-sd-siRNA complexed with 2 µL Lipofectamine RNAiMAX in a 12-well 

plate format. Further transfections with CD44 and non-specific control were kept at the 

same dose of lipoplexes and scaled-down accordingly when necessary. 

 

4.2.2.4 Duration of gene silencing from siRNA lipoplexes 

HaCaT cells were treated with CD44 and lamin A/C non-sd-siRNA lipoplexes as 

described in section 4.2.2.2. To determine the duration of the lipoplex gene silencing 

effect, the treated cells were maintained in prolonged culture. In some cases, the 

transfection medium in wells treated with CD44 lipoplexes was replaced with growth 

medium without antibiotics 4 h post transfection following a washing step with growth 

medium without antibiotics. In other samples, the media remained unchanged. Cells 

were then further incubated and RNA extractions for gene expression analysis were 

performed 1 h, 3 h, 6 h, 24 h, 48 h and 72 h post-transfection. 

 

4.2.3 In vitro gene silencing with Accell self-delivery siRNA in HaCaT cells 

4.2.3.1 Preparation of Accell self-delivery siRNA  

Accell sd-siRNA was prepared before use. For each transfection sample, Accell sd-

siRNA was diluted to 1 µM with serum-free Accell delivery medium (Thermo Fisher 

Scientific, UK) and mixed thoroughly.  

 

4.2.3.2 Cell treatment 

One day before transfection, HaCaT cells were prepared as described in section 4.2.2.2. 

In each well, cells were treated by replacing the seeding medium with transfection 

mixture containing siRNA, which was prepared as described in section 4.2.3.1. The 

cells were incubated at 37°C in a humidified atmosphere containing 5% CO2 in air for 

24 h. After the initial incubation, the transfection medium was replaced with growth 

medium without antibiotics to replace serum in the medium to promote healthy cell 
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growth following a washing step with growth medium without antibiotics. Cells were 

then further incubated and RNA and protein extractions for gene expression analysis 

were performed 48 h or 72 h post-transfection. Cells were treated in quadruplicate wells 

when necessary with triplicate samples for mRNA quantification by RT-qPCR and the 

remaining treatment sample for protein analysis by Western blotting. 

 

4.2.3.3 Optimisation for in vitro self-delivery siRNA  

Dose optimisation of the lipoplexes was performed with Accell CD44 sd-siRNA on 

HaCaT cells and the optimum transfection dose was determined by varying the 

concentration of Accell CD44 sd-siRNA in a 12-well plate format to give a final 

transfection volume of 1000µL. The final concentration of sd-siRNA tested was 0.1 

µM, 0.5 µM, 1 µM, 1.5 µM and 2 µM. Cells were seeded in 1 mL culture medium and 

cells were transfected by replacing the seeding medium with the transfection mixture 

containing siRNA. Protein extractions for gene expression analysis were performed 72 

h post-transfection. The optimum dose for gene silencing with Accell sd-siRNA was 

determined to be 1 µM sd-siRNA. Further transfection with targeting and non-specific 

control was kept at the same dose of sd-siRNA. 

 

The optimisation of transfection medium condition (with or without serum) was also 

performed by treating HaCaT cells with Accell CD44-sd-siRNA in (i) Accell Delivery 

Medium with 3% (v/v) serum, (ii) serum-free Accell Delivery Medium and (iii) serum-

free Accell Delivery Medium, which was then replaced with growth medium containing 

serum 24 h post-transfection. Cells were incubated at 37°C in a humidified atmosphere 

containing 5% CO2 in air and RNA extractions for gene expression analysis were 

performed 72 h post-transfection.   

 

4.2.3.4 Duration of gene silencing effect of self-delivery siRNA 

HaCaT cells were treated with Accell CD44 sd-siRNA as described in section 4.2.3.2. 

To determine the duration of sd-siRNA gene silencing effect, transfection medium 

(without serum and without antibiotics) in cells treated with Accell CD44 sd-siRNA 

was replaced with growth medium without antibiotics 24 h post transfection. Cells were 

then further incubated and RNA extractions for gene expression analysis were 

performed 3 h, 6 h, 24 h, 48 h and 72 h post-transfection. 
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4.2.4 In vitro fluorescent siRNA uptake  

BLOCK-iT-modified Alexa 647 fluorescent non-sd-siRNA was prepared as described 

in section 4.2.2.1. HaCaT cells were treated with BLOCK-iT-modified Alexa 647 

fluorescent non-sd-siRNA lipoplexes as described in section 4.2.2.2. To determine the 

duration of siRNA uptake of the lipoplexes, transfection medium in cells treated with 

the lipoplexes were (medium change) or were not (no medium change) replaced with 

growth medium without antibiotics 4 h post transfection before further incubation. Cells 

treated in triplicate wells were imaged using the Leica DM IRB epifluorescence 

microscope and then dissociated from the culture vessel at 1 h, 3 h, 6 h, 24 h and 48 h 

post-transfection for flow cytometry analysis to determine cell uptake as described in 

section 3.2.7.1.2. 

 

Accell Red sd-siRNA was prepared as described in section 4.2.3.1 to a final 

concentration of 0.5 µM. HaCaT cells were treated with Accell Red sd-siRNA as 

described in section 4.2.3.2. To determine the duration of siRNA uptake of the 

fluorescently labelled sd-siRNA, transfection medium in treated cells were replaced 

with growth medium without antibiotics 24 h post transfection following two washing 

steps with growth medium without antibiotics and then further incubated. Following 

incubation, cells were imaged using the Leica DM IRB epifluorescence microscope and 

then dissociated from the culture vessel at 0 h, 3 h, 6 h, 24 h, 48 h and 72 h post-

transfection for flow cytometry analysis to determine cell uptake as described in section 

3.2.7.1.2. Cells were treated in triplicate wells. 

 

4.2.5 In vitro gene silencing and siRNA uptake in primary keratinocytes 

Primary keratinocytes were isolated from excised human breast skin of a 38-year-old 

female patient using methods described in section 2.2.4. 

 

4.2.5.1 Gene silencing 

One day before transfection, primary keratinocytes were seeded at 2 × 104 cell cm-2 in a 

24-well or 48-well plate, so that the cells were at least 60% confluent at the time of 

transfection and were allowed to adhere to the bottom of the plate surface overnight. 
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Cells were seeded in 0.5 mL (per well of 24-well plate) or 0.25 mL (per well of 48-well 

plate) of keratinocyte specific culture medium without antibiotics.  

 

Optimised dose of CD44 non-sd-siRNA-Lipofectamine RNAiMAX lipoplexes and 

Accell CD44 sd-siRNA were prepared as detailed in section 4.2.2.1 and 4.2.3.1, 

respectively in keratinocyte specific culture medium without antibiotics. Primary 

keratinocyte cells were treated with lipoplexes and sd-siRNA as described in section 

4.2.2.2 and 4.2.3.2. The transfection media in all treated cells were replaced with 

keratinocyte specific culture medium 24 h post-transfection following a washing step 

with keratinocyte specific culture medium without antibiotics. RNA extractions for gene 

expression analysis were performed 24 h, 48 h and 72 h post-transfection. 

 

4.2.5.2 Fluorescent siRNA uptake 

One day before transfection, primary keratinocyte cells were seeded at 2 × 104 cell cm-2 

in a 12-well or 48-well plate, so that the cells were at least 60% confluent at the time of 

transfection and allowed to adhere to the bottom of the plate surface overnight. Cells 

were seeded in 1.0 mL (per well of 12-well plate) or 0.25 mL (per well of 48-well plate) 

of keratinocyte specific culture medium without antibiotics.  

 

Accell Red sd-siRNA was prepared as described in section 4.2.3.1 to a final 

concentration of 0.5 µM. Primary keratinocyte cells were treated with Accell Red sd-

siRNA as described in section 4.2.4. To determine the duration of siRNA uptake of the 

fluorescently labelled sd-siRNA, transfection medium in treated cells were replaced 

with keratinocyte specific culture medium without antibiotics 24 h post transfection 

following two washing steps with keratinocyte specific culture medium without 

antibiotics. Cells were treated in triplicate wells in 48-well plates for fluorescent 

microscopy and flow cytometry. Cells were imaged using the Leica DM IRB 

epifluorescence microscope and then dissociated from the culture vessel at 6 h, 24 h and 

48 h post-transfection for flow cytometry analysis to determine cell uptake as described 

in section 3.2.7.1.2. Cells were also treated in 12-well plate on glass coverslips for 

confocal microscopy at 6 h, 24 h and 48 h. 
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4.2.6 Characterisation of siRNA coating onto microneedle devices 

Microneedle devices characterised in section 2.2.5 were used for studies with siRNA to 

determine the siRNA coating and deposition capabilities. 

 

4.2.6.1 siRNA coating quantification 

The ability to coat siRNA onto microneedles was determined using the coating, 

recovery and quantification method described in section 2.2.5.2 (Chong et al. 2013). To 

determine the efficiency and reproducibility of the coating method in coating siRNA, 3 

µL of unmodified siRNA (Dharmacon Products, Thermo Fisher Scientific, Lafayette, 

CO, USA) (70 mg mL− 1 in PBS) was loaded into a 20 µL pipette tip as a reservoir for 

coating. Microneedles (set of 6 devices 5 × 700 µm Regular, Cardiff University) were 

coated with siRNA and were allowed to dry at 4 °C for either 1 or 20 h (3 devices for 

each drying time) to provide a theoretical maximum loading of 35 µg siRNA coated 

onto each microneedle device. The method was repeated with another 6 devices with 10 

microneedles per array (10 × 700 µm Regular, Cardiff University). To determine the 

actual loading dose, siRNA was recovered from the microneedle devices by washing in 

150 µL PBS, V for 5 min. Nucleic acid concentration, C was then quantified using the 

NanoDrop spectrophotometer (section 3.2.1.5) and the amount of siRNA, m recovered 

was then calculated using the formula below: 

𝑚 = 𝐶  ×  𝑉   

 

4.2.6.2 Coated siRNA lipoplex functional stability 

The functionality of non-sd-siRNA lipoplex coated onto microneedles was determined 

according to the schematic protocol depicted in Figure 4.2. Microneedles were coated 

with siRNA using the dip-coating and recovery method described in section 2.2.5.2 

(Chong et al. 2013). Naked lamin A/C non-sd-siRNA coating formulation (48 pmol in 8 

µL PBS) or lamin A/C non-sd-siRNA lipoplex coating formulation (48 pmol in 8 µL 

Lipofectamine RNAiMAX) was coated onto steel microneedle devices (set of 4 

devices per treatment group; 5 × 700 µm Regular, Cardiff University) to provide a 

theoretical maximum loading dose of 12 pmol siRNA on each microneedle device. The 

coated microneedles were allowed to dry at 4 °C for 1 h before the naked non-sd-siRNA 

and lipoplexes were recovered by washing the microneedles in 50 µL PBS for 5 min. 
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The recovered naked non-sd-siRNA and lipoplex solutions were prepared using method 

as described in section 4.2.2.1 and then used to treat cells in 12-well plate format using 

the method as described in section 4.2.2.2.  
 

 
Figure 4.2:  Schematic representation of protocol for testing coated naked siRNA (A) 

and siRNA lipoplex (B) functional stability. (MN = microneedle) 
 

Cell populations were treated as described in table 4.2. The volume of Lipofectamine 

RNAiMAX transfection reagent in treatment groups with lipoplex was 2 µL. The final 

concentration of siRNA across all treatment groups with siRNA was 10 nM (12 pmol in 

1200 µL transfection volume). Cells were treated in quadruplicate wells with triplicate 

samples for mRNA quantification by RT- qPCR and the remaining treatment sample for 

protein analysis by Western blotting. Treated cells were incubated at 37 °C in a 

humidified atmosphere containing 5% CO2. 
 

Table 4.2:  Treatment to determine coated siRNA lipoplex functional stability  

No Description Short form 

1 GFP non-sd-siRNA 10 nM lipoplex  non-targeting control 

2 naked lamin A/C non-sd-siRNA 10 nM non-lipoplex control 

3 lamin A/C non-sd-siRNA 10 nM lipoplex positive control 

4 naked lamin A/C non-sd-siRNA pre-coating formulation diluted 
to 10 nM formed into lipoplex naked siRNA pre-coat + lipo 

5 naked lamin A/C non-sd-siRNA recovered from microneedles 
and subsequently formed into lipoplex naked siRNA recovered + lipo 

6 lamin A/C non-sd-siRNA lipoplex pre- coating formulation 
diluted to 10 nM siRNA lipoplex pre-coat 

7 lamin A/C non-sd-siRNA lipoplex formulation recovered from 
microneedles siRNA lipoplex recovered 

8 Opti-MEM® solution untreated 

Coat MN with siRNA 

Naked siRNA 
recovered in buffer 

Transfect HaCaT cells 

Analyse gene expression 

Incubate at 37°C 
for  48 h 

Dry at 4 °C  

Naked siRNA 
formulation (2 ×) 

1 × 1 × 

Naked siRNA 
pre-coating 
formulation 

control 

+ Lipofectamine™ 
RNAiMAX 

+ Lipofectamine™ 
RNAiMAX 

A 

Coat MN with siRNA 

siRNA lipoplex 
recovered in buffer 

Transfect HaCaT cells 

Analyse gene expression 

Incubate at 37°C 
for  48 h 

Dry at 4 °C  

siRNA lipoplex 
formulation (2 ×) 

1 × 1 × 

siRNA lipoplex 
pre-coating 
formulation 

control 

B 
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4.2.6.3 Coated self-delivery siRNA functional and storage stability 

The functionality and stability of Accell sd-siRNA coated onto microneedles was 

determined by coating the microneedles using the coating and recovery method 

described in section 2.2.5.2 (Chong et al. 2013). A theoretical maximum loading of 1.5 

nmol Accell CD44 sd-siRNA was coated onto each steel microneedle devices (5 × 700 

µm Regular, Cardiff University). The coated microneedles were allowed to dry at 4°C 

for 10 h before the siRNA was recovered by washing the microneedles in 60 µL PBS 

for 5 min. The recovered siRNA solutions (20 µL of recovered siRNA solution 

containing approximately 500 pmol siRNA) were prepared using method as described 

in section 4.2.3.1 and were used to treat cells using the method as described in section 

4.2.3.2.  

 

Cell populations were treated as described in table 4.3 by replacing the seeding medium 

with the delivery mixture containing siRNA. Treated cells were incubated at 37°C in a 

humidified atmosphere containing 5% CO2. After 24 h, the transfection medium was 

replaced with growth medium without antibiotics and the cells were incubated for a 

further 24 h. Cells were treated in triplicate wells for mRNA quantification by RT-

qPCR. 

 

The same method was used to treat cell populations with Accell CD44 sd-siRNA 

recovered from microneedles (5 × 700 µm, Georgia Institute of Technology, USA) after 

1, 4, 7, 14 and 28 days drying time. HaCaT cells were treated with 1 µM recovered 

Accell CD44 sd-siRNA and the respective positive and negative controls.  
 

Table 4.3:  Treatment to determine coated sd-siRNA functional stability  

No Description Short form 

1 Accell control sd-siRNA 1 µM  Accell non-targeting control 

2 siSTABLE CD44 non-sd-siRNA 1 µM non-Accell CD44 control 

3 Accell CD44 sd-siRNA 1 µM Accell CD44 positive control 

4 Accell CD44 sd-siRNA recovered from microneedles 1 µM Accell CD44 coated 
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4.2.7 Analysis of gene expression 

siRNA mediated gene silencing in the cells was analysed by quantifying target mRNA 

levels using reverse transcription quantitative polymerase chain reaction (RT-qPCR) 

and comparing target protein levels through the Western blotting technique.  

 

4.2.7.1 Quantification of mRNA levels 

RT-qPCR or competitive reverse transcription polymerase chain reaction (RT-PCR) 

was performed to quantify mRNA levels in treated cells. 

 

4.2.7.1.1 RNA isolation from monolayer cells 

Total RNA was isolated using the Ambion® PureLink RNA Mini Kit (Life 

Technologies, UK) with a protocol supplied with the kit. Briefly, culture medium was 

removed from the transfected adherent keratinocyte cells and washed twice with PBS. 

Lysis Buffer with 1% (v/v) 2-mercaptoethanol was added to lyse the cells. The lysed 

sample was transferred to a microcentrifuge tube and homogenised by passing 10 times 

through 21-gauge needle attached to a 1 mL syringe. One volume of 70% ethanol was 

added to each volume of cell homogenate and mixed thoroughly to disperse any visible 

precipitate that may form after adding ethanol. The sample was transferred to the “Spin 

Cartridge” with collection tube and centrifuged (Thermo Fisher Scientific, UK) at 

12000 × g for 15 s to bind RNA to the cartridge membrane. The flow-through was 

discarded. The sample bound to the spin cartridge membrane was washed 3 times by 

centrifuging at 12000 × g for 15 s with wash buffers to remove impurities such a protein 

and DNA. The flow-through was discarded. The spin cartridge was then inserted into a 

recovery tube. A volume of between 30 µL to 100 µL RNase-free water was added to 

the centre of the spin cartridge and incubated at room temperature for 1 min. The spin 

cartridge was centrifuged for 2 min at 12 000 × g for 2 min to elute the RNA from the 

membrane into the recovery tube. The purified total RNA was stored at -80°C and 

quantified using the NanoVue spectrophotometer (section 3.2.1.5). 

 

4.2.7.1.2 Taqman® gene expression assays 

Target gene inhibition was measured using Taqman® gene expression assays specific 

for lamin A/C (Hs00153462_m1) or CD44 (Hs00153304_m1) and the endogenous 
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control GAPDH (Hs02758991_g1). All the gene expression assays span exon-exon 

junctions and were synthesised by Life Technologies, UK.  

 

4.2.7.1.3 Reverse transcription 

The reverse transcription (RT) step was performed to convert total RNA (0.5 to 1 µg) 

into first-strand cDNA using random primers with the High Capacity cDNA Reverse 

Transcription System (Applied Biosystems, Life Technologies, UK) using the protocol 

supplied with the kit. Briefly, the reverse transcription reaction master mix was 

prepared by combining the components as outlined in Table 4.4 in a sterile, nuclease-

free microcentrifuge tube on ice and mixed gently. 

 

Table 4.4:  Formulation for reverse transcription reaction mixture (per final RT reaction 

volume of 20 µL) 

Components  Final Volume (µL) 
10× reverse transcription buffer 2.0 
25× dNTP mix (100 mM) 0.8 
10× random primers 2.0 
MultiScribe™ Reverse Transcriptase 1.0 
RNase Inhibitor 1.0 
Nuclease-free Water 3.2 
Total volume per reaction 10.0 

 

 

Subsequently, a 10 µL aliquot of the reverse transcription reaction mix was added to 10 

µL total RNA sample diluted to 0.1 or 0.05 µg µL-1 on ice for a final RT reaction 

volume of 20 µL per tube in 0.2 mL PCR reaction tubes. The tubes were then capped, 

briefly centrifuged and placed in the thermal cycler heat block and annealed by 

incubation at 25°C for 10 min before being extended by incubation at 37°C for 120 min. 

The reverse transcriptase enzyme was thermally inactivated by incubation at 85°C for 5 

min. The cDNA tubes were then stored at -20 °C until further use. 

 

4.2.7.1.4 Quantitative PCR 

The quantitative PCR (qPCR) step was performed to quantitatively amplify specific 

regions of target genes with TaqMan® Gene Expression Assay using the ABI 7900HT 
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Fast Real-Time PCR system and the TaqMan® Fast Advanced Master Mix (Applied 

Biosystems, Life Technologies, UK) using an optimized protocol supplied with the kit. 

Briefly, the qPCR reaction master mix was prepared by combining the components as 

outlined in Table 4.5 in a sterile, nuclease-free microcentrifuge tube on ice and mixed 

gently. 

 

Table 4.5:  Formulation for qPCR reaction mixture (per qPCR reaction volume of 20 µL) 

Components  Final Volume (µL) 
2× Taqman® Fast Advanced Master Mix 10.0 
20× TaqMan® Gene Expression Assay 1.0 
Nuclease-free Water 7.0 
Total volume per reaction 18.0 

 

An 18 µL aliquot of the qPCR reaction mix was added to each well of a 96-well optical 

qPCR reaction plate. Then, 2 µL cDNA template or water was added to each well. The 

reaction plate was covered with an optical adhesive film and centrifuged briefly to spin 

down the contents and eliminate air bubbles. The qPCR reaction amplification was 

performed using the cycling program as outlined in Table 4.6 in the ABI 7900HT Fast 

Real-Time PCR System with the Sequence Detection System (SDS) v2.3 software 

(Applied Biosystems, Life Technologies, UK). After the amplification, the results were 

analysed using the RQ Manager software (Applied Biosystems, Life Technologies, 

UK). All data points reported are the mean and standard error of three separate 

treatments each with three replicate qPCR assays.  

 

 

Table 4.6:  ABI 7900HT Fast Real-Time PCR System thermal-cycling profile  

Parameter 

UNG 
incubation 

Polymerase 
activation PCR (40 cycles) 

Hold Hold Denature Anneal/ 
extend 

Temperature (°C) 50 95 95 60 

Time (mm:ss) 02:00 00:20 00:01 00:20 
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4.2.7.2 Quantification of protein levels 

Western blotting was performed to semi-quantify protein levels in transfected cells 

using the Bio-rad Mini Protean 3 system (Bio-rad, UK). 

 

4.2.7.2.1 Protein extraction from monolayer cells 

Proteins were extracted from the treated cells by lysing the cells in lysis buffer. Lysis 

buffer was prepared according to the formulation outlined in Table 4.7 and cooled to 

4°C. Lysis Buffer Plus was prepared by dissolving one Roche Complete Mini Protease 

Inhibitor Cocktail tablet (Roche, UK) in 10 mL lysis buffer. The protein extraction 

procedure was performed on ice. Cells were washed 3 times with chilled PBS. After the 

final wash, 300 µL of ice cold Lysis Buffer Plus was added into each well of different 

samples, respectively. The plate on ice was placed on the Stuart® Gyro-rocker (Bibby 

Scientific, UK) rotating at 35 rpm for 5 min. The samples were then transferred into a 

clean microcentrifuge tube and centrifuged at 13000 × g for 10 min at 4°C. The samples 

were stored at 4°C for use on the same day or frozen at -20°C for long-term storage. 
 

Table 4.7:  Formulation of Lysis Buffer pH 8.0 (50 mL) 

Components Final Concentration Amount 
Tris Base [tris(hydroxymethyl)aminomethane] 50 mM 0.30 g 
NaCl  150 mM 0.43 g 
Deionised water - 45 mL 
HCl, 3.2 M (added dropwise) to pH 8.0 variable 
Triton X-100 1% 0.50 g 
Deionised water - to 50 mL 

 

 

4.2.7.2.2 BCA protein assay 

The BCA protein assay was performed to quantify the concentration of protein in 

extracts. The protein assay solution was prepared with 49 parts of bicinchoninic acid 

(BCA) and 1 part of copper sulphate solution.  A 96-well plate was used to generate a 

concentration gradient of known quantity of 1 µg µL-1 bovine serum albumin (BSA) in 

PBS stock solution from 2 µg to 20 µg diluted in lysis buffer to a total of 20 µL in 

duplicate wells to obtain an average. In separate wells, a known volume from 5 to 20 µL 

of each protein sample extracts were added and diluted with lysis buffer to a total 
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volume of 20 µL in duplicates. To each well containing BSA standards and protein 

samples, 200 µL of the BCA protein assay solution was added. The samples were 

incubated at 37°C for 30 min. The samples were then allowed to cool to room 

temperature before an absorbance reading at 562 nm was obtained using the Titerback 

Sunrise plate reader. A calibration curve with BSA standards was generated and the 

linear equation was used to calculate the concentrations of the samples from the 

absorbance values. 

 

4.2.7.2.3 SDS-PAGE  

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed to separate the protein samples according to size or molecular weight. 

Protein samples were prepared by diluting between 10 µg and 30 µg of protein in lysis 

buffer to 30 µL volume. Then, 10 µL of 4 × Laemmli protein sample buffer (Bio-rad, 

UK) containing 10% v/v β-mercaptoethanol (Sigma Aldrich) was added to each sample. 

The samples were heated in a heat block at 96°C for 5 min to denature and linearise the 

protein chains. The amount of protein in each sample loaded on the same gel was kept 

constant to allow semi-quantitative comparisons.  

 

Mini-PROTEAN TGX Precast Gels, 10% resolving gel, 12 well (Biorad, UK) were 

placed in the running chamber filled with running buffer (formulation as outlined in 

Table 4.8). The first well on the gel was loaded with the protein molecular weight 

marker and the protein samples were loaded into the remaining wells, respectively. 

Proteins of various sizes or molecular weight in the samples were electrophoretically 

separated through application of electric current at 110 V for 70 min.  

 

Table 4.8:  Formulation of Running Buffer (1000 mL) 

Components Amount 
Glycine 14.4 g 
Tris Base 3.03 g 
SDS 1 g 
Deionised water to 1000 mL 
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4.2.7.2.4 Protein transfer 

After the electrophoresis, separated proteins were transferred from the gel to a 

Whatman® nitrocellulose membrane (GE Healthcare, UK). The transfer buffer with 

formulation as outlined in Table 4.9 was prepared fresh and chilled to 4°C before use. 

The gel was retrieved and washed with chilled transfer buffer. The gel was then placed 

in the transfer cassette, in between pre-soaked filter pads and filter papers (Sigma 

Aldrich, UK), next to a nitrocellulose membrane in the following order: black side of 

transfer cassette, filter pad, filter paper, gel, nitrocellulose membrane, filter paper, filter 

pad and the transparent side of the transfer cassette. The transfer cassette was assembled 

into the transfer chamber filled with chilled transfer buffer with an ice-cooling unit 

sitting in an ice-water bath. The set-up was subjected to electric current at 100 V for 100 

min. 
 

Table 4.9:  Formulation of Transfer Buffer (2000 mL) 

Components Amount 
Glycine 28.8 g 
Tris Base 6.06 g 
Methanol 400 mL 
Deionised water to 2000 mL 

 

Alternatively, protein transfer from the gel to nitrocellulose membrane was performed 

using the Trans-Blot® Turbo Transfer System™ (Bio-Rad, UK) with the Trans-Blot 

Turbo Transfer Pack (Bio-Rad, UK). The membrane containing protein was then 

washed with deionised water and dehydrated at 4 °C until use. 

 

4.2.7.2.5 Ferrozine staining  

The efficiency of protein transfer was visualised by staining the nitrocellulose 

membranes with ferrozine. Firstly, the membrane was rehydrated with deionised water. 

The rehydrated membranes were then incubated in 2% v/v glacial acetic acid  (Sigma 

Aldrich, UK) in deionised water at room temperature for 15 min. The nitrocellulose 

membrane was then blocked with 0.1% w/v polyvinylpyrrolidone (Sigma Aldrich, UK) 

in 2% v/v glacial acetic acid in deionised water. The blocked membrane was rinsed in 

2% v/v glacial acetic acid in deionised water for 5 min. Ferrozine stain containing 0.75 

mM ferrozine, 30 mM iron (III) chloride, 5 mM thioglycolic acid in 2% v/v glacial 



	  

	  

	  
CHAPTER 4 

	  
	   	  

151	  

acetic acid was then added to the membrane for 5 to 15 min. The stained membrane was 

then rinsed with 2% v/v glacial acetic acid in deionised water with 30 s agitation on a 

rocker. The rinsing step was repeated 5 times. The stained membrane was then imaged 

using the Bio-rad ChemiDoc™ XRS+ gel imaging system. The membrane was then cut 

into two, between the targeted protein expected band size and loading protein control. 

Stain was removed from the membrane using the elution solution containing 100 mM 

HEPES, 20 mM EDTA at pH 7.0 for 15 min.  

 

4.2.7.2.6 Antibody blotting 

The membranes were blocked and blotted with antibodies against the targeted protein 

and loading control. The nitrocellulose membranes were rinsed for 5 min with 

tris(hydroxymethyl)aminomethane (Tris) base buffer pH 7.5 (formulation as outlined in 

Table 4.10). Blocking buffer 5% (w/v) was prepared by adding 2.5 g Marvel milk 

powder (Premier Foods, UK) to 50 mL tris base buffer pH 7.5. The membranes were 

blocked in 25 mL blocking buffer with constant rocking at 35 rpm for 1 h at room 

temperature.  

 

Table 4.10:  Formulation of tris base buffer pH 7.5 (1000 mL) 

Components Amount 
Tris Base 1.2 g 
Deionised water 950 mL 
HCl, 3.2 M (added dropwise to pH 7.5) variable 
NaCl 5.84 g 
Tween 20 (Sigma Aldrich, UK) 1 mL 
Deionised water to 1000 mL 

 

Primary mouse-anti-human and rabbit-anti-human antibodies were diluted in blocking 

buffer according to optimised concentration for Western blotting (Table 4.11). The 

nitrocellulose membranes were then incubated in respective diluted primary antibodies 

with constant rocking at 35 rpm for 1 hour at room temperature. Occasionally, the 

blocking step or the primary antibody step was performed by incubating the membranes 

at 4°C for 16 h.  
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Table 4.11:  List of primary antibodies and dilution used for Western blotting 

Target protein Antibody 
species Dilution Product 

code Manufacturer 

α-tubulin (loading control) Mouse-anti-
human 1:3000 T9026 Sigma Aldrich, 

UK 

Lamin A/C Mouse-anti-
human 1:500 ab8984 Abcam, UK 

CD44 Rabbit-anti-
human 1:1200 ab41478 Abcam, UK 

 

After incubation with primary antibodies, the membranes were rinsed 3 times with tris 

base buffer pH 7.5 for at least 5 min each time with rocking at 35 rpm. Secondary HRP 

conjugated antibodies was diluted in blocking buffer according to optimised 

concentration for Western blotting (Table 4.12). The washed membranes were 

incubated in the diluted secondary antibody with constant rocking at 35 rpm for 1 h at 

room temperature. After secondary antibody incubation, the membranes were rinsed 3 

times with tris base buffer pH 7.5 for at least 5 min each time with rocking at 35 rpm. 

 

Table 4.12:  List of secondary antibodies and dilution used for Western blotting 

Antibody species Dilution Product 
code Manufacturer 

Goat-anti-mouse 1:5000 32430 Pierce, Thermo Fisher 
Scientific, UK 

Goat-anti-rabbit 1:10000 7074s Cell signalling, New 
England Biolabs, UK 

 

 

4.2.7.2.7 Blot detection 

The chemiluminescent solutions, Super Signal WestDura Stable and Lumino Enhancer 

solutions (Thermo Fisher Scientific) were mixed at a ratio of 1:1 in a clean 

microcentrifuge tube. The solutions were added to the nitrocellulose membranes for 60 

s. Excess solutions were removed and the membranes were transferred into 

hypercassettes (GE Healthcare, UK) and transported to the dark room, where the film 

developer was located. In the dark room with the light switched off, Amersham 

Hyperfilm ECL (GE Healthcare, UK) were placed against the membranes in the 

hypercassettes for an appropriate amount of exposure time from 2 s to 30 min before 

being developed in an x-ray film developer machine. The exposure times were 

increased or decreased to achieve desired protein band intensity.  
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4.2.8 Detection of in vitro fluorescent siRNA uptake 

4.2.8.1 Fluorescent microscopy 

Fluorescent microscopy was performed to detect in vitro fluorescent siRNA uptake in 

both HaCaT cells and primary keratinocytes using Leica DM IRB epifluorescence 

microscope with the Openlab imaging software. The uptake of Alexa-647 and DY-547 

labelled siRNA was examined under the green laser light, which excited the 

fluorophores at their peak excitation wavelengths of 650 nm and 557 nm, respectively. 

 

4.2.8.2 Flow cytometry 

The efficiency of siRNA uptake in cells was determined by flow cytometry using the 

FACSCanto II machine (BD Biosciences, UK). Cells were prepared for flow cytometry 

using the method described in section 3.2.7.1.2 with slight modifications. Primary 

keratinocyte cells were removed from the culture vessels using TrypLE™ Express 

instead of trypsin-EDTA. Pelleted cells were resuspended in 100 µL flow cytometry 

buffer containing 1% bovine serum albumin (Sigma Aldrich, UK) and 0.1% sodium 

azide (Sigma Aldrich, UK) in PBS and transferred into flow cytometry tubes. The cells 

were then fixed with 200 µL fixing buffer containing 1% paraformaldehyde and 0.1% 

sodium azide in PBS and analysed by flow cytometry within a week.  

 

The flow cytometric analysis was performed as recommended by the instrument 

manual. The frequency of fluorescent cells in the APC or PE channel (corresponding to 

red fluorescence of Alexa-647 and DY-547), out of a total of at least 105 events 

analysed per sample was recorded. The data collected was analysed with the FlowJo 

Flow Cytometry Analysis Software for Mac Version 8.8 using method as described in 

section 3.2.7.1.2. 

 

4.2.8.3 Confocal microscopy 

Fluorescent siRNA uptake in treated cells was imaged using the confocal microscopy. 

Treated cells were prepared using methods described in section 2.2.4.6 with slight 

modifications. Cells were fixed with paraformaldehyde but were not permeabilised with 

Triton-X. Also, cells were not stained with antibodies but were counterstained with 

Hoechst 33342 at 5 µg mL-1 in PBS for 30 min at room temperature. Stained cells were 
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then imaged using the Leica DMI6000B confocal microscope system and analysed 

using the method described in section 2.2.4.6. 

 

4.2.9 Cell viability assay 

Cell transfections as described in section 4.2.2, 4.2.3 and 4.2.6.3 were scaled-down and 

performed in 96-well plates. MTS cell viability assay was performed using the method 

described in section 3.2.8.  

 

4.2.10 Data processing and statistical analysis  

Data processing and statistical analysis was performed as described in section 3.2.9.  
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4.3 Results and discussion 

4.3.1 In vitro gene silencing in HaCaT cells 

4.3.1.1 siRNA lipoplexes 

Since the first successful introduction of siRNA into mammalian cells (Elbashir et al. 

2001b), several non-viral siRNA delivery methods have been employed but the most 

common of these uses lipid based transfection reagent to assist cellular delivery of 

siRNA (Elbashir et al. 2001a; Elbashir et al. 2002; Geusens et al. 2009b; Hart 2010; 

Kim et al. 2009; Zhou et al. 2013). Cationic liposomal transfection formulations are 

commercially available and are capable of delivering nucleic acids to monolayer cell 

culture efficiently with minimal cell toxicity in a cost-effective manner (Hart 2010).   

 

In an attempt to determine the optimum dose for transfection of siRNA lipoplexes in 

human keratinocytes, HaCaT cells were transfected with siRNA targeting the lamin A/C 

gene complexed with Lipofectamine RNAiMAX transfection reagent and protein 

extractions were performed 48 h post-transfection. The Western blotting technique was 

used to semi-quantify protein levels (Figure 4.3). The optimum dose for gene silencing 

in HaCaT cells based on protein levels 48 h post-transfection was determined to be 10 

nM siRNA complexed with 5 µL Lipofectamine RNAiMAX in a 6-well plate format. 

Further transfections were performed with this dose of lipoplex, scaled down to the 

required plate format when necessary. 

 

Dose optimisation was also performed with CD44 non-sd-siRNA lipoplex by varying 

the concentration of the siRNA whilst keeping the same volume of Lipofectamine 

RNAiMAX, proportionate to that used in earlier transfections with lamin A/C non-sd-

siRNA lipoplex. Again, the Western blotting technique was used to semi-quantify 

protein levels 48 h post-transfection (Figure 4.4). CD44 protein reduction in HaCaT 

cells was observed with CD44 non-sd-siRNA lipoplex concentration as low as 1 nM. 

However, subsequent CD44 siRNA lipoplex experiments were performed with 10 nM 

CD44 non-sd-siRNA lipoplex concentration for consistency with the lamin A/C non-sd-

siRNA dose. 
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Figure 4.3:  Lamin A/C siRNA lipoplex dose optimisation. Lamin A/C protein levels in 

HaCaT cells 48 h post-transfection with varying dose of non-sd-siRNA and 

Lipofectamine RNAiMAX lipoplexes. The bands were detected at 

approximately 70 kDa for lamin A, 65 kDa for lamin C and 55 kDa for α-

tubulin. * = the lamin C band on Blot 1, lane 1, 2 and 3 was unintentionally 

snipped away during the process but the samples are identical to the first 3 

lanes on the Blot 2 (indicated by the negative controls line) ran in a separate 

gel. The red open box encloses the lane with optimum siRNA lipoplex 

treatment dose.  (siGFP = GFP non-targeting non-sd-siRNA; siLamin = lamin 

A/C non-sd-siRNA; RNAiMAX = Lipofectamine RNAiMAX; treatment 

volume = 3000 µL) 

 

 
Figure 4.4:  CD44 siRNA lipoplex dose optimisation. CD44 protein levels in HaCaT cells 

48 h post-transfection with varying dose of non-sd-siRNA and 

Lipofectamine RNAiMAX lipoplexes. The bands were detected at 

approximately 92 kDa for CD44 and 55 kDa for α-tubulin. Non-specific bands 

were also detected at approximately 75 kDa and 80 kDa with the CD44 

primary antibody. The red open box encloses the lane with optimum siRNA 

lipoplex treatment dose. (TD101 siRNA = TD101 non-targeting non-sd-

siRNA; CD44 siRNA = CD44 non-sd-siRNA; RNAiMAX = Lipofectamine 

RNAiMAX; treatment volume = 1200 µL) 
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Several characteristic non-specific bands (Figure 4.4) were observed on the protein blot 

incubated with the selected CD44 primary antibody. It is unclear why these bands were 

detected but clear CD44 protein reductions were observed at the antibody’s expected 

protein band size for CD44 at 92 kDa, which were visually reduced in cells treated with 

CD44 non-sd-siRNA lipoplexes compared to the negative controls. When mRNA is 

silenced by the action of siRNA, protein translation is also suppressed. Protein 

reduction occurs when cellular protein degrades over time depending on its half-life, 

which ranges from approximately 45 min to 22.5 h (Eden et al. 2011). Therefore, it is 

also possible that the non-specific bands are more stable forms of CD44 protein 

isoforms with longer half-lives and hence are still present in cells at the tested time-

point. 

 

Consistent with what has been reported in the literature, siRNA lipoplex is efficient at 

concentrations as low as 1 nM, which indicates that siRNA delivered through a non-

viral liposomal system is a potent mediator of gene silencing (Elbashir et al. 2001a; 

Grunweller et al. 2003). A microarray study has suggested that delivery of siRNA at 

concentrations higher than 20 nM, complexed with a proprietary polymer/lipid 

formulation to human non-small cell lung carcinoma cells resulted in significant off 

target activation of immune response and non-specific gene induction (Semizarov et al. 

2003). The author attributed the unwanted effects to the toxicity of siRNA in a dose-

dependant manner. Therefore, it was encouraging that siRNA lipoplex used in these 

studies is effective at subnanomolar concentrations in human keratinocyte cells.   

 

To determine the duration of gene silencing effect of the siRNA lipoplexes, HaCaT 

cells were treated with lamin A/C and CD44 non-sd-siRNA lipoplexes. Lamin A/C or 

CD44 mRNA levels were then detected by performing RT-qPCR analysis on mRNA 

extracted from the cells at 1 h, 3 h, 6 h, 24 h, 48 h and 72 h post-transfection (Figure 4.5 

and 4.5). In cells treated with CD44 non-sd-siRNA, the transfection medium was 

replaced with growth medium 4 h post-transfection to determine whether limiting 

siRNA uptake to the initial 4 h affects gene silencing at later time-points (Figure 4.6).  
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Figure 4.5:  Lamin A/C mRNA levels in HaCaT cells at 1 h, 3 h, 6 h, 24 h and 48 h 

post-transfection with lamin A/C non-sd-siRNA lipoplex. Lamin A/C 

mRNA levels were relative to the non-targeting control (NTC) groups at each 

respective time-points and normalised to GAPDH endogenous control gene 

levels. (n = 3 transfection repeats, each with 3 qPCR assay replicates; error bar 

= standard deviation; *** = significant reduction in mRNA levels compared 

with non-targeting control, p < 0.001; ** = p < 0.01). (NTC = 10 nM GFP non-

targeting non-sd-siRNA + Lipofectamine RNAiMAX; Lamin = 10 nM lamin 

A/C non-sd-siRNA + Lipofectamine RNAiMAX) 

 

In cells treated with unmodified lamin A/C non-sd-siRNA lipoplex (Figure 4.5), a 

significant level of mRNA reduction (22.4%) within the first 3 h (p < 0.01) was 

observed and mRNA reduction increased with time and reached a maximum reduction 

of 86.8% at 24 h. mRNA reduction was significantly greater at 24 h post-transfection 

compared to the 6 h time-point (p < 0.001) but was not significantly greater than at 48 h 

(p > 0.05). An insignificant mRNA level increase at 48 h (74.8% reduction at 48 h) was 

observed, suggesting that unmodified non-sd-siRNA started to deteriorate past the 24 h 

time-point, possibly being degraded by nucleases. Cells were cultured in medium with 

siRNA throughout the time-points. However, nucleic acid-lipoplex formulations are 

usually prepared fresh before treatment, as they are known to form aggregates during 

storage resulting in compromised transfection efficiency. Therefore, it was hypothesised 

that the initial uptake of siRNA lipoplex sustained the level of mRNA silencing for up 

to 48 h.  
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To challenge the hypothesis, cells were transfected with CD44 non-sd-siRNA lipoplex 

where the transfection medium was replaced with growth medium in selected groups 4 

h post-transfection (Figure 4.6). In contrast to the study with lamin A/C, no significant 

mRNA reduction was observed within the first 3 h and the first time-point with 

significant level of mRNA reduction was at 6 h in both the medium change (18.6% 

reduction) and non-medium change groups (29.0% reduction). When cells were 

cultured in transfection medium (non-medium change) up to the time-points, gene 

silencing persisted for up to 72 h (mRNA reduction of 93.5% at 72 h), the furthest time-

point tested. However, when transfection medium was replaced with growth medium in 

cells 4 h post-transfection (medium change), mRNA reduction of up to 70.4% was 

observed at 24 h, which was significantly lower than the reduction of the non-medium 

change group at 24 h (mRNA reduction of 86.1%; p <0.001). Thereafter, mRNA levels 

increased in the medium change group up to a reduction of 45.6% at 72 h. 

  

It was previously thought that initial cellular siRNA lipoplex uptake causes sustained 

siRNA activity in cells, but this study demonstrated that siRNA lipoplex in medium 

may not be as unstable as reported and cellular uptake of siRNA persists for as long as 

siRNA lipoplexes are still present in the medium. The CD44 non-sd-siRNA used in this 

study is modified to increase stability against nuclease degradation, which is apparent 

by the sustained level of mRNA reduction of up to 72 h in the non-medium change 

group (Figure 4.6), compared to an observed insignificant increase in mRNA levels in 

cells treated with unmodified lamin A/C siRNA at 48 h under the same treatment 

condition (Figure 4.5). siRNA that are still complexed with transfection reagent are 

protected from nucleases degradation (Gershon et al. 1993; Xu et al. 1999) but siRNA 

lipoplex that has been internalised by cells is released from encapsulation, which 

renders it susceptible to degradation by intracellular nucleases. This study indicates the 

transient effect of siRNA lipoplex treatment and a future dosing regime would need to 

take into consideration the rate of drug clearance from its targeted organ and cells.  
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Figure 4.6:  CD44 mRNA levels in HaCaT cells at 1 h, 3 h, 6 h, 24 h, 48 h and 72 h 

post-transfection with CD44 non-sd-siRNA lipoplex. Transfection medium 

was replaced with growth medium with serum 4 h post-transfection in selected 

treatment groups. CD44 mRNA levels were relative to the non-targeting 

control (NTC) groups at each respective time-point and normalised to GAPDH 

endogenous control gene levels. (n = 3 transfection repeats, each with 3 qPCR 

assay replicates; error bar = standard deviation; *** = significant reduction in 

mRNA levels compared with non-targeting control, p < 0.001). (NTC = 10 nM 

TD101 non-targeting non-sd-siRNA + Lipofectamine RNAiMAX; CD44 = 

10 nM CD44 non-sd-siRNA + Lipofectamine RNAiMAX; NC = no change 

in transfection medium, C = transfection medium replaced with growth 

medium 4 h post-transfection)  

 

CD44 protein levels in HaCaT cells 24 h, 48 h and 72 h post-transfection were also 

determined through Western blotting (Figure 4.7). CD44 protein reduction (92 kDa 

band) was apparent as early as the 24 h time-point. It was also obvious that protein 

levels in treatment groups with medium change were slightly higher than the non 

medium change groups at 24 h, 48 h and 72 h. Results of the protein level analysis 

appear to be consistent with the mRNA levels. This suggests that post-transcriptional 

mRNA silencing causes reduction in protein levels, which demonstrates effective gene 

silencing. However, mRNA reduction and subsequent protein reduction did not always 

have a linear relationship, as reduction in protein level is dependent on the half-life of 

the target protein. 
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Figure 4.7:  CD44 protein levels in HaCaT cells 24 h, 48 h, and 72 h post-transfection 

with CD44 siRNA lipoplex. Transfection medium was replaced with growth 

medium with serum 4 h post-transfection in selected treatment groups. The 

bands were detected at approximately 92 kDa for CD44 and 55 kDa for α-

tubulin. Non-specific bands were also detected at approximately 75 kDa and 80 

kDa with the CD44 primary antibody. (TD101 = 10 nM TD101 non-targeting 

non-sd-siRNA + Lipofectamine RNAiMAX; CD44 = 10 nM CD44 non-sd-

siRNA + Lipofectamine RNAiMAX; NC = no change in transfection 

medium, C = transfection medium replaced with growth medium 4 h post-

transfection) 

 

siRNA lipoplexes were further tested for cell toxicity by performing a MTS cell 

toxicology assay in HaCaT cells (Figure 4.8). Results from the assay show that 

treatment with siRNA lipoplexes did not cause toxicity to cells as indicated by a level of 

cell viability similar to that of untreated cells (p > 0.05). This supports the use of siRNA 

lipoplexes as potentially effective and non-toxic transfection formulations. These results 

are consistent with other published studies reporting the high transfection efficiency and 

low toxicity associated with Lipofectamine RNAiMAX delivery to cell lines such as 

macrophages and human embryonic stem cells (Carralot et al. 2009; Zhao et al. 2008). 

However, more studies including dose-escalation toxicity studies in a few different skin 

cells lines like keratinocytes, melanocytes and fibroblasts with more than one type of 

cell viability assay like BrdU DNA synthesis assay and lactate dehydrogenase activity 

assay (Lappalainen et al. 1994), should be performed to ascertain the safety of siRNA 

lipoplexes for clinical use. 
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Figure 4.8:  Cell viability (MTS assay) following siRNA lipoplex treatment in HaCaT 

cells 48 h post transfection. The percentage viability was relative to 

normalised untreated cells. (n = 5 transfection repeats; error bar = standard 

deviation; TD101 Lipoplex = 10nM TD101 non-targeting non-sd-siRNA + 

Lipofectamine RNAiMAX; CD44 Lipoplex = 10 nM CD44 non-sd-siRNA + 

Lipofectamine RNAiMAX) 

 

4.3.1.2 Accell self-delivery siRNA 

Whilst, siRNA lipoplexes were being explored as a means for delivering siRNA to 

human skin, the availability of Accell sd-siRNA became apparent when an siRNA 

delivery research group targeting the skin in Santa Cruz, USA published a paper 

highlighting the efficiency of the sd-siRNA delivered to transgenic reporter mouse skin 

(Gonzalez-Gonzalez et al. 2010b). Collaboration with the group was set up as part of 

the National Institutes of Health (NIH) Grand Opportunities (GO Delivery!) initiative, 

resulting in the availability of Accell sd-siRNA for testing in human skin models 

(Chapter 4 and 5) and also in the in vivo transgenic reporter mouse skin model (Chapter 

6). The Go Delivery! grant aimed at gathering researchers with interest in skin gene 

delivery in a collaborative effort to jointly develop cutaneous nucleic acid delivery 

systems and analysis tools (Hickerson et al. 2011; Kaspar et al. 2009).  

 

Accell sd-siRNA is modified to facilitate cellular uptake without the need for a 

transfection reagent. However, due to its passive cell uptake mechanism, a much higher 

dosage is recommended (1 µM) compared to siRNA lipoplex (10 nM). A longer 

duration of treatment before gene silencing detection is also suggested. The optimum 

dose for transfection of Accell sd-siRNA in human keratinocytes cells was determined 
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by treating HaCaT cells with Accell sd-siRNA targeting the CD44 gene and protein 

extractions were performed 72 h post-transfection for Western blotting analysis as 

shown in Figure 4.9. 

 

 
Figure 4.9:  Accell CD44 sd-siRNA dose optimisation. CD44 protein levels in HaCaT 

cells 72 h post-transfection with varying dose of Accell sd-siRNA. The bands 

were detected at approximately 92 kDa for CD44 and 55 kDa for α-tubulin. 

Non-specific bands were also detected at approximately 75 kDa and 80 kDa 

with the CD44 primary antibody. The red open box encloses the lane with 

optimum Accell sd-siRNA treatment dose. (Accell TD101 siRNA = Accell 

TD101 non-targeting sd-siRNA; Accell CD44 siRNA = Accell CD44 sd-

siRNA) 

 

The optimum dose for gene silencing in HaCaT cells based on protein levels at 72 h 

post-transfection with Accell CD44 sd-siRNA was determined to be 1 µM sd-siRNA. 

Protein reduction was also observed with a lower dose of 0.5 µM sd-siRNA. It has been 

reported that siRNA lipoplex doses of more than 20 nM caused off target immune 

response (Semizarov et al. 2003). Microarray analysis conducted by the manufacturer of 

Accell sd-siRNA revealed that at 1 µM working concentration, the sd-siRNA induced 

minimal to no off-target effects (ThermoScientific 2011). The sd-siRNA is also claimed 

to be free from the toxicity and the inflammatory response associated with conventional 

lipid transfection reagents (Baskin et al. 2008; ThermoScientific 2011). This indicates 

that the off-target immune response observed with siRNA lipoplex of doses higher than 

20 nM is probably due to the formulation of siRNA encapsulated in liposomes rather 

than the siRNA on its own. siRNA lipoplex at low doses are non-toxic to HaCaT cells, 

as shown by the cell viability study in section 4.3.1.1, but pDNA lipoplexes were 

relatively toxic to HaCaT cells (Chapter 3).  
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It is also recommended that Accell sd-siRNA is delivered with Accell Delivery Medium 

(ADM), a serum-free growth medium that has been designed specifically for optimum 

cellular performance of the sd-siRNA, for a minimum of 72 h. However, the growth of 

HaCaT cells requires serum in the growth medium. Therefore, various treatment 

medium conditions were tested to determine their effect on gene silencing efficiency 

(Figure 4.10) and cell viability (Figure 4.11). Figure 4.10 shows that mRNA reduction 

was higher at 72 h post-transfection when cells were kept under constant exposure to 

sd-siRNA. There was insignificant difference between the mRNA reduction in HaCaT 

cells treated in ADM with 3% serum (82.8% reduction) and serum-free ADM (83.0% 

reduction). When the transfection medium was replaced with growth medium with 

serum 24 h post-transfection, the level of mRNA reduction was significantly lower 

compared with the non-medium change groups (61.6% reduction). Similar to what was 

found with siRNA lipoplex, mRNA reduction remains higher in cells constantly 

exposed to siRNA in the medium.  

 

 
Figure 4.10:  Accell sd-siRNA treatment medium condition optimisation. CD44 mRNA 

levels in HaCaT cells 72 h post-transfection with Accell CD44 sd-siRNA 

under various treatment medium conditions. CD44 mRNA levels were relative 

to the non-targeting control (NTC) groups at each respective time-points and 

normalised to GAPDH endogenous control gene levels. (n = 3 transfection 

repeats, each with 3 qPCR assay replicates; error bar = standard deviation; *** 

= significant reduction in mRNA levels compared with non-targeting control, p 

< 0.001). (NTC = 1 µM Accell TD101 non-targeting sd-siRNA; CD44 = 1 µM 

Accell CD44 sd-siRNA; ADM = Accell Delivery Medium)  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

*** ***

***

3% v/v serum ADM Serum-free ADM Serum-free ADM replaced with 
growth medium after 24h

NTC CD44Unt NTC CD44Unt NTC CD44Unt

Re
lat

ive
 C

D4
4 

m
RN

A 
lev

els



	  

	  

	  
CHAPTER 4 

	  
	   	  

165	  

 
Figure 4.11:  Cell viability (MTS assay) following various Accell sd-siRNA treatment 

medium conditions in HaCaT cells 48 h (A) and 72 h (B) post-transfection. 

The percentage viability was relative to normalised untreated cells. (n = 5 

transfection repeats; error bar = standard deviation; *** = significant reduction 

in cell viability compared with untreated control, p < 0.001; ** = p < 0.01). 

(NTC = 1 µM Accell TD101 non-targeting sd-siRNA; CD44 = 1 µM Accell 

CD44 sd-siRNA; ADM = Accell Delivery Medium) 

 

However, the cell viability studies conducted (Figure 4.11) revealed a significant 

reduction in cell viability of 8.3 to 20% in HaCaT cells treated with sd-siRNA in low 

serum (3% serum) or serum-free medium at 48 h (p <0.001) and reduction of 9.4% to 
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28.7% at 72 h (p < 0.01). When observed under the microscope, the cells treated with 

low serum or serum free medium appeared normal but were not as confluent (more 

empty spaces on the culture vessels where cells have not proliferated) as untreated cells 

or medium change cells at their respective time points. Thus, the reduction in cell 

viability was probably due to slower cell growth in low serum or serum free medium 

rather than cell toxicity. The cell viability studies revealed the importance of serum to 

the healthy growth of HaCaT cells. The culture of primary keratinocytes extracted from 

freshly excised human breast skin does not require the presence of serum. Therefore 

further studies were performed on primary keratinocytes as a more representative model 

to human skin. These studies are described in detail in section 4.3.3.   

 

To determine the duration of the gene silencing effect of the Accell sd-siRNA, HaCaT 

cells were treated with Accell CD44 sd-siRNA. CD44 mRNA levels were then detected 

by performing RT-qPCR analysis on mRNA extracted from the cells at 3 h, 6 h, 24 h, 

48 h and 72 h post-transfection (Figure 4.12). The serum free transfection medium was 

replaced with growth medium with serum 24 h post-transfection in all treatment groups 

to promote healthy cell growth.  

 

Accell CD44 sd-siRNA showed a significant level of mRNA reduction at 24 h (52.6% 

reduction) but the level of reduction is lower compared with CD44 siRNA lipoplex, 

where reduction was almost two-fold higher at 24 h (86.1% reduction). Nevertheless, a 

comparable level of CD44 mRNA reduction was achieved at 48 h with Accell sd-

siRNA (78.9% reduction). As mentioned, Accell sd-siRNA enters cells passively, which 

explains the apparent slower rate of gene silencing. Understanding the duration of gene 

silencing with Accell siRNA is beneficial in informing studies with excised human skin 

(Chapter 5).  
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Figure 4.12:  CD44 mRNA levels in HaCaT cells at 3 h, 6 h, 24 h, 48 h and 72 h post-

transfection with Accell CD44 sd-siRNA. Serum free transfection medium 

was replaced with growth medium with serum 24 h post-transfection. CD44 

mRNA levels were relative to the non-targeting control (NTC) groups at each 

respective time-points and normalised to GAPDH endogenous control gene 

levels. (n = 3 transfection repeats, each with 3 qPCR assay replicates; error bar 

= standard deviation; *** = significant reduction in mRNA levels compared 

with non-targeting control, p < 0.001; * = p <0.05). (NTC = 1µM Accell 

TD101 non-targeting sd-siRNA; CD44 = 1 µM Accell CD44 sd-siRNA)  

 

Accell sd-siRNA was again tested for toxicity under the optimised treatment conditions 

at 48 h post-transfection (Figure 4.13). Although delivered at a much higher dose, 

treatment with Accell sd-siRNA did not show any reduction in cell viability compared 

to untreated cells, similar to the results with siRNA lipoplex. Many studies have 

reported success in gene silencing following treatment of Accell sd-siRNA in in vitro 

cell culture or organotypic models (Baskin et al. 2008; Gupta et al. 2010; Hickerson et 

al. 2011) and in vivo models (Gonzalez-Gonzalez et al. 2010b; Lara et al. 2012; 

Nakajima et al. 2012)  but none of the studies have described findings of in vitro 

cellular toxicity associated with the sd-siRNA. However, the manufacturer of the Accell 

sd-siRNA (Thermo Fisher Dharmacon) has stated in its product brochure (available 

online), the in vitro transfection efficiency and cell viability data in 18 cell lines, not 

including human keratinocyte cells (ThermoScientific 2011). The data showed 
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reproducible gene silencing efficiency and good cell viability. It was also stated in the 

brochure that Accell siRNA has been tested for efficiency in more than 70 different cell 

lines in peer reviewed publications including primary keratinocytes (ThermoScientific 

2011). 

 

 
Figure 4.13:  Cell viability (MTS assay) following Accell sd-siRNA treatment in HaCaT 

cells 48 h post-transfection. Serum free transfection medium was replaced 

with growth medium with serum 24 h post-transfection. The percentage 

viability was relative to normalised untreated cells. (n = 5 transfection repeats; 

error bar = standard deviation; Accell TD101 = 1 µM Accell TD101 non-

targeting sd-siRNA; Non Accell CD44 = 1 µM CD44 non-sd-siRNA; Accell 

CD44 = 1 µM Accell CD44 sd-siRNA) 

 

4.3.2 In vitro fluorescent siRNA uptake in HaCaT cells 

The effect of siRNA in cells depends on efficient cellular uptake and cellular 

localisation of RNA to an area where RISC complex is located. siRNA uptake studies 

were performed to determine the ability of siRNA formulations in delivering siRNA to 

human keratinocyte cells.  

 

In studies performed with 10 nM BLOCK-iT Alexa 647 fluorescently labelled non-sd-

siRNA lipoplex, visualisation of treated cells under fluorescent microscope showed 

poor levels of fluorescent intensity. The Alexa 647 labelled siRNA used in the study 

emits fluorescence in the far-red spectrum and hence might not be visible by naked eye 

under the microscope but can be detected by the imaging system of the epifluorescent 

microscope. However, images capture showed poor level of fluorescence (data not 
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shown). Flow cytometry was also performed on treated cells at different time-points but 

data analysis revealed poor shifts in fluorescent signal intensity of cells treated with 

fluorescent siRNA lipoplex with apparent maximum siRNA uptake of 55% at 24 h post-

transfection (data not shown), which is one-fold lower than the observed silencing 

efficiency of siRNA lipoplex shown by RT-qPCR (section 4.3.1.1).  

 

Further investigation through visualisation of the siRNA lipoplex droplet under the 

fluorescent microscope revealed a decreased (tiny red fluorescent dots) fluorescence of 

siRNA encapsulated in the liposomal formulation (Figure 4.14). The positive control 

with the same concentration of naked fluorescent non-sd-siRNA showed intensely even 

fluorescence across the droplet. These results indicated that these methods of detecting 

fluorescent siRNA lipoplex uptake might not yield very meaningful results.  

 

 
Figure 4.14:  Fluorescent micrographs of BLOCK-iT Alexa 647 fluorescently labelled 

non-sd-siRNA (naked) and non-sd-siRNA lipoplex droplets. Red 

fluorescence was pseudocoloured red.  

 

A similar observation has been reported in the literature with an author highlighting the 

quenching effects of Alexa 488 labelled siRNA formulated into lipoplex and polyplex 

leading to decreased mean fluorescent intensity (MFI) than that of naked siRNA (Vader 

et al. 2010). Flow cytometry analysis of cells transfected with different lipoplex and 

polyplex formulation revealed different MFI values between different formulations and 

cellular uptake observation by fluorescent microscopy yielded similar results (Vader et 

al. 2010). An alternative method where MFI was measured after cells were lysed in 1% 

Triton X-100 and 2% SDS in PBS to dissociates all lipoplexes and polyplexes was 

claimed to be a better method for quantifying siRNA uptake (Vader et al. 2010). This 

quenching effect has also been observed with Cy3-labelled siRNA formulated in 

nanoparticles (Li et al. 2008). Therefore, the uptake of siRNA lipoplex determined 
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using flow cytometry or fluorescent microscopy could be underestimated and should be 

taken into careful consideration when performing quantitative comparative studies. 

 

Since Accell sd-siRNA enters cells in the absence of a transfection reagent, 

fluorescence studies with this modified sd-siRNA were more straightforward and 

allowed meaningful comparisons between cells treated at different time-points. HaCaT 

cells treated with Accell sd-siRNA were imaged using an epifluorescent microscope 

(Figure 4.15) at 0 h, 3 h, 6 h, 24 h, 48 h and 72 h before being processed for flow 

cytometry analysis (Figure 4.16). Cells were captured under the same exposure to allow 

meaningful comparison of fluorescent intensity at different time-points.    

  

At the 0 h time-point, cells were treated with siRNA that was immediately removed and 

washed 3 times with PBS. Cells were subsequently placed on ice to minimise cellular 

activity, imaged and harvested for flow cytometry analysis. When visualised under the 

fluorescent microscope, a tinge of red fluorescence on cells treated with Accell Red sd-

siRNA was observed, presumably due to the adherence of sd-siRNA to the cell 

membrane during the short duration of time (less than 5 s) the fluorescent siRNA was in 

contact with the cells. In cells treated with siGLO non-sd-siRNA at the same dose of 0.5 

µM, fluorescence was not detected up to the 6 h time-point. When the cells were 

subjected to flow cytometry at 0 h, analysis of the data (Figure 4.16 A) showed 

fluorescence shift in cells treated with Accell Red sd-siRNA compared to cells treated 

with Accell TD101 non-fluorescent sd-siRNA control and siGLO Red non-sd-siRNA.  

The shift in fluorescent intensity was however significantly less than cells that have 

obvious cellular internalisation of Accell Red sd-siRNA at later time points (3 h, 6 h, 24 

h, 48 h and 72 h). Therefore, the gate for cells with fluorescent siRNA uptake was set 

beyond the fluorescent shift at 0 h to consider the fluorescent shift at 0 h as siRNA 

adhered to the membrane but not internalised by the cells, resulting in low level of 

fluorescent intensity.  
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Figure 4.15:  Fluorescently labelled naked Accell Red sd-siRNA and naked siGLO Red 

non-sd-siRNA uptake at 0 h, 3 h, 6 h, 24 h, 48 h and 72 h in HaCaT cells. 

Representative fluorescence and bright-field micrographs of HaCaT cells 

treated with 0.5	   µM Accell Red sd-siRNA or 0.5	   µM siGLO Red non-sd-

siRNA. Serum free transfection medium was replaced with growth medium 

with serum 24 h post-transfection. Smaller micrographs inset of the bright-field 

micrographs represents enlarged fluorescent images at each respective time-

point. Red fluorescence was pseudocoloured red. 
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Figure 4.16:  Flow cytometry histograms showing fluorescent signal intensity in HaCaT 

cells treated with 0.5 µM naked Accell Red sd-siRNA or naked siGLO Red 

non-sd-siRNA at 0 h, 3 h, 6 h, 24 h, 48 h and 72h.  Serum free transfection 

medium was replaced with growth medium with serum 24 h post-transfection. 

Histograms are overlays of Accell TD101 sd-siRNA non-fluorescent control 

(solid grey), Accell Red sd-siRNA (red line) and siGLO Red non-sd-siRNA 

(blue line). Fluorescent cells were gated with reference to the shift in 

fluorescent signal intensity in cells treated with Accell Red sd-siRNA at 0 h 

(A) (considered as background fluorescence of siRNA stuck to the 

outermembrane of cells resulting in shift at significantly lower fluorescent 

intensity) to be less than 1%. The percentages of cells gated were expressed in 

red for Accell Red sd-siRNA and blue for siGLO Red non-sd-siRNA (average 

value of 3 transfection repeats). 
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At the 3 h time-point, flow cytometric analysis (Figure 4.16) revealed that Accell Red 

sd-siRNA was present in 98.3% of HaCaT cells, as demonstrated by the high level of 

fluorescent intensity seen in the cells on the fluorescent micrographs. Accell Red sd-

siRNA continued to be present in cells in subsequent time-points, even after the serum-

free transfection mediums containing siRNAs were replaced with growth medium with 

serum 24 h post-transfection. From the fluorescent micrographs (Figure 4.15), it was 

obvious that the fluorescent signal intensity of cells with Accell Red sd-siRNA reduced 

at 48 h and further reduced at 72 h. Flow cytometry analysis revealed that fluorescent 

siRNA was still present in all cells but the shifts in fluorescent signal were reduced with 

time after the 24 h time-point. After the 24 h time-point, cells no longer have siRNA in 

the medium for uptake and the siRNA that has been internalised were slowly degraded 

or were diluted during cell division.  

 

Cells treated with siGLO Red non-sd-siRNA appeared to have low levels of fluorescent 

intensity at 24 h, peaking at 48 h and then diluted at 72 h (Figure 4.15 and 4.16). It is 

unclear how the cellular uptake of non-sd-siRNA occurred without a liposomal carrier 

but subsequent gene silencing studies with a control group of 1 µM CD44 non-sd-

siRNA (Non-accell control) showed that in the absence of a transfection reagent, non-

sd-siRNA at the same dose of Accell sd-siRNA do not have any gene silencing effect 

(section 4.3.4.3). The observed mild fluorescence in cells treated with siGLO Red 

siRNA could be due to fluorescence trapped between cells and the culture vessel during 

cell growth or due to cellular internalisation of fluorescent fragments from degraded 

siRNA during cell division.  

 

The results from fluorescent sd-siRNA uptake studies support the results of the gene 

silencing studies, whereby the highest quantity of fluorescent siRNA was present in 

cells 24 h post-transfection (greatest shift in fluorescent signal intensity on the flow 

cytometry histogram; Figure 4.16 D) which resulted in the peak of mRNA silencing at 

48 h post-transfection. The dilution of fluorescent signal intensity at the 48 h time-point 

indicating reduction in sd-siRNA present in cells at this point, is reflected in an 

increased level of mRNA at 72 h. A previously published study reported sd-siRNA 

delivery efficiency to T-cells of approximately 50% (Chehtane and Khaled 2010). The 

cellular delivery efficiency of Accell sd-siRNA is far superior in human keratinocyte 
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cells and knowledge of this could prove invaluable in supporting the claim for use of 

the modified sd-siRNA in human skin.  

 

The fluorescent siRNA uptake studies also highlight the fact that siRNA effects in cells 

are transient and vulnerable to degradation and dilution as cells divide. For more 

sustained effect of siRNA treatment both in vitro and in vivo, a daily or every alternate 

day dosing regime is required for prolonged gene silencing effect. In fact, a few 

published studies adopt either daily or every alternate day dosing regime over a 2 to 4 

weeks period for in vivo skin studies with Accell sd-siRNA (Gonzalez-Gonzalez et al. 

2010b; Hickerson et al. 2011; Lara et al. 2012).  

 

4.3.3 In vitro gene silencing and siRNA uptake in primary keratinocytes  

Previously, the gene delivery and silencing efficiency of Accell sd-siRNA and non-sd-

siRNA lipoplex was demonstrated in HaCaT cells. HaCaT cells are spontaneously 

immortalised human keratinocyte cells obtained from the distant periphery of a 

melanoma of a 62-year old male patient more than 25 years ago (Boukamp et al. 1988). 

Although many studies involving human skin models have utilised HaCaT cells as a 

representation of monolayer culture of human keratinocytes, the HaCaT cell lines 

undergoes multiple changes that correlates with transformed phenotype due to 

chromosomal alterations and mutations as it passages (Boukamp et al. 1997). Analysis 

on chromosomes of HaCaT cells in long-term culture (up to passage 225) revealed 

increased incidence of chromosomal translocations and deletions. However, 

investigation of chromosomal balance through comparative genomic hybridisation 

showed that most individual chromosomes remain unchanged, an indication of 

chromosomal balance in HaCaT cells that is stable for long-term culture (Boukamp et 

al. 1997).  

 

In order to ensure that the siRNA designed is as efficient in HaCaT cells as in human 

epidermal keratinocyte cells that will be used in subsequent ex vivo skin culture studies 

(Chapter 5), gene silencing (Figure 4.17 and 4.18) and siRNA uptake (Figure 4.20 and 

4.21) studies were performed in primary human keratinocytes extracted from freshly 

excised human breast skin of a 38-year old female. Experiments were performed at a 

smaller scale with reduced number of time-points due the limited number of primary 
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cells available. Transfection medium was replaced with keratinocyte specific growth 

medium 24 h post-transfection with siRNA lipoplex and Accell sd-siRNA to allow 

meaningful comparison of data. 

 

 
Figure 4.17:  CD44 mRNA levels in primary keratinocyte cells at 24 h, 48 h and 72 h 

post-transfection with CD44 siRNA lipoplex. Transfection medium was 

replaced with keratinocyte specific growth medium 24 h post-transfection. 

CD44 mRNA levels were relative to the non-targeting control (NTC) groups at 

each respective time-points and normalised to GAPDH endogenous control 

gene levels. (n = 3 transfection repeats, each with 3 qPCR assay replicates; 

error bar = standard deviation;  *** = significant reduction in mRNA levels 

compared with non-targeting control, p < 0.001). (Unt = untreated; NTC = 

10nM TD101 non-targeting non-sd-siRNA + Lipofectamine RNAiMAX; 

CD44 = 10 nM CD44 non-sd-siRNA + Lipofectamine RNAiMAX). 

 

The gene silencing results with both the CD44 non-sd-siRNA lipoplex (Figure 4.17) 

and Accell CD44 sd-siRNA (Figure 4.18) were comparable with that of HaCaT cells 

with some minor deviation. CD44 mRNA levels were lowest in cells treated with 

siRNA lipoplex at 48 h (21.37 ± 0.038%). In HaCaT cells, CD44 mRNA levels were 

considerably lower at 24 h, 48 h and 72h (between 6% and 14%) when the transfection 

medium was not changed. The transfection medium was replaced with growth medium 

24 h post-transfection in primary keratinocytes but the levels of mRNA silencing 
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seemed to have sustained for up to 72 h with no significant level of mRNA increase 

between the 48 h and 72 h time-points (p > 0.05). The longer duration of time that 

primary keratinocytes had to internalise siRNA lipoplex (24 h incubation with 

transfection medium) could have resulted in increased level of siRNA lipoplex, which 

prolonged the gene silencing effect of siRNA. 

 

 
Figure 4.18:  CD44 mRNA levels in primary keratinocyte cells at 24 h, 48 h and 72 h 

post-transfection with Accell CD44 sd-siRNA. Transfection medium was 

replaced with keratinocyte specific growth medium 24 h post-transfection. 

CD44 mRNA levels were relative to the non-targeting control (NTC) groups at 

each respective time-points and normalised to GAPDH endogenous control 

gene levels. (n = 3 transfection repeats, each with 3 qPCR assay replicates; 

error bar = standard deviation; *** = significant reduction in mRNA levels 

compared with non-targeting control, p < 0.001). (Unt = untreated; NTC = 1 

µM Accell TD101 non-targeting sd-siRNA; CD44 = 1 µM Accell CD44 sd-

siRNA)  

 

 

The primary keratinocyte cells were treated with Accell CD44 sd-siRNA in the same 

treatment condition as HaCaT cells (Figure 4.18). The level of CD44 mRNA reduction 

in primary keratinocytes at 24 h and 48 h post-transfection (Figure 4.18) was identical 

to that with HaCaT cells (Figure 4.12). At the 72 h time-point, there was a significant 
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level of mRNA increase in HaCaT cells (17.8% increase; p < 0.001) but not in primary 

keratinocytes. At 72 h, CD44 mRNA reduction in primary keratinocytes was 80.4%, 

which is an insignificant further 2.1% reduction compared to the level of mRNA 

reduction at 48 h (78.3% reduction; p > 0.05). The gene silencing effect of Accell sd-

siRNA in primary keratinocytes appeared to be more sustained than in HaCaT cells. 

This could possibly be because of a lower rate of cell growth in primary cells, which 

reduces the effect of siRNA dilution due to cell division.  

 

Apart from differences in cell growth rate, primary keratinocytes were treated and 

cultured in different media. Primary keratinocytes were treated and cultured in serum-

free keratinocyte specific medium. HaCaT cells were treated with serum-free 

transfection medium and then cultured in growth medium with serum 24 h post-

transfection. Unmodified siRNA are vulnerable to degradation by nucleases present in 

serum (Hickerson et al. 2008). Even though Accell sd-siRNA has been modified for 

increased nuclease stability, the presence of serum affects the functional stability of 

Accell siRNA, as the manufacturer recommends siRNA treatment in serum-free ADM. 

It is unclear whether subsequent culture (24 h post transfection) in growth medium with 

serum in HaCaT cells could have affected the intracellular stability of Accell sd-siRNA 

and hence affecting its gene silencing stability at the later time-points. 

 

Both the siRNA lipoplex and Accell sd-siRNA was tested for toxicity in primary 

keratinocytes 24 h, 48 h and 72 h post-transfection (Figure 4.19). There were 

insignificant differences in cell viability compared to untreated cells at all the tested 

time-points. This shows that the treatment with siRNA lipoplex and Accell sd-siRNA 

do not cause cell toxicity in primary keratinocytes, consistent with the safety profile in 

HaCaT cells.   
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Figure 4.19:  Cell viability (MTS assay) following siRNA lipoplex and Accell sd-siRNA 

treatment in primary keratinocyte cells 24 h (A), 48 h (B) and 72 h (C) 

post-transfection. Transfection medium was replaced with keratinocyte 

specific growth medium 24 h post-transfection. The percentage viability was 

relative to normalised untreated cells. (n = 5 transfection repeats; error bar = 

standard deviation; Accell TD101 = 1 µM Accell TD101 non-targeting sd-

siRNA; Non Accell CD44 = 1 µM CD44 non-sd-siRNA; Accell CD44 = 1 µM 

Accell CD44 sd-siRNA; TD101 Lipoplex = 10 nM TD101 non-targeting non-

sd-siRNA + Lipofectamine RNAiMAX; CD44 Lipoplex = 10 nM CD44 

non-sd-siRNA + Lipofectamine RNAiMAX) 
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The cellular uptake and localisation of fluorescently labelled Accell sd-siRNA at 6 h, 24 

h and 48 h post-transfection was investigated using fluorescent microscopy, flow 

cytometry and confocal microscopy. Cells treated with Accell Red sd-siRNA, siGLO 

Red non-sd-siRNA (non-sd-siRNA control) and Accell non-specific non-fluorescent sd-

siRNA (non targeting negative control) were observed under the epifluorescent 

microscopy (Figure 4.20), before being processed for flow cytometry analysis (Figure 

4.21). No fluorescence was observed with the negative control siRNA (images not 

shown). Cellular uptake of Accell Red sd-siRNA was complete at 6 h, as shown by a 

significant shift in fluorescent signal intensity on the flow cytometry histogram (Figure 

4.21) as well as brightly fluorescent cells with obvious fluorescent siRNA intracellular 

accumulation observed under the epifluorescent microscope (Figure 4.20).  This is 

consistent with what was found in HaCaT cells (section 4.3.2).  

 

 
Figure 4.20:  Fluorescently labelled naked Accell Red sd-siRNA and naked siGLO Red 

non-sd-siRNA uptake at 6 h, 24 h and 48 h in primary keratinocyte cells. 

Representative fluorescence micrographs of HaCaT cells treated with 0.5 µM 

Accell Red sd-siRNA or 0.5 µM siGLO Red non-sd-siRNA. Transfection 

medium was replaced with keratinocyte specific growth medium 24 h post 

transfection. Red fluorescence was pseudocoloured red. 
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The fluorescent intensity was visualised to be the highest at 24 h post-transfection and 

did not appear to have decreased significantly at 48 h (Figure 4.19). This was in contrast 

with the observation in HaCaT cells, whereby the fluorescent signal intensity appeared 

to be diluted at 48 h and further at 72 h (Figure 4.14). This supports the gene silencing 

study results, whereby sustained level of gene silencing was observed in primary 

keratinocytes up to 72 h post-transfection and supports the hypothesis that sd-siRNA 

remains longer in cells due a lower rate of cell growth and cell division. There is also a 

possibility that Accell sd-siRNA is simply more stable intracelullarly in primary 

keratinocytes and hence is degraded less than in HaCaT cells resulting in a more 

sustained duration of action.  Primary keratinocytes did not show any cellular uptake or 

membrane binding of siGLO Red non-sd-siRNA, which were prominent in HaCaT cells 

at 24 h, 48 h and 72 h (Figure 4.14 and 4.15). Again, this is possibly due to the lower 

rate of cell division in primary cells.  

 

 
Figure 4.21:  Flow cytometry histograms showing fluorescent signal intensity in 

primary keratinocyte cells treated with 0.5 µM naked Accell Red sd-

siRNA or naked siGLO Red non-sd-siRNA at 6 h, 24 h and 48 h.  

Transfection medium was replaced with keratinocyte specific growth medium 

24 h post transfection. Histograms are overlays of Accell TD101 sd-siRNA 

non-fluorescent control (solid grey), Accell Red sd-siRNA (red line) and 

siGLO Red non-sd-siRNA (blue line). Fluorescent cells were gated with 

reference to untreated cells considered as background fluorescence to be less 

than 1%. The percentages of cells gated were expressed in red for Accell Red 

sd-siRNA and blue for siGLO Red non-sd-siRNA (average value of 3 

transfection repeats). 

 

Primary keratinocytes were also grown and treated on coverslips before processing for 

confocal microscopy. Images were captured at every 0.6 µm from the top to the bottom 
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of the cells attached to coverslips over cell thickness of approximately 12 to 15 µm 

(Figure 4.22). The resulting 20 to 25 image frames were then stacked to provide 

projected 3D structures of the treated cells to allow visualisation of fluorescent siRNA 

localisation in cells, relative to the nuclei counterstained with Hoechst 33342. Analysis 

of images obtained using confocal microscopy revealed presence of Accell sd-siRNA in 

primary keratinocyte cells at all the tested time-points. Cells treated with siGLO Red 

non-sd-siRNA did not take up the fluorescent siRNA, with the exception of a few, 

presumably dead cells captured at 24 h with fluorescent siRNA in its nucleus. It was 

clear from the confocal images that Accell Red sd-siRNA taken up by cells were 

localised at the perinuclear region of the cells, close to the nuclear membrane but not in 

the nucleus.  

 

 
Figure 4.22:  Confocal micrographs of fluorescently labelled naked Accell sd-siRNA 

and naked siGLO non-sd-siRNA uptake at 6 h, 24 h and 48 h in primary 

keratinocyte cells. HaCaT cells were treated with 0.5 µM Accell Red sd-

siRNA or 0.5 µM siGLO Red non-sd-siRNA. Transfection medium was 

replaced with keratinocyte specific growth medium 24 h post transfection. 

Nuclei were counterstained with Hoechst 33342 and pseudocoloured blue. Red 

fluorescence was pseudocoloured red. Each image is a z-stacked projection of 

approximately 20 slices of images taken over a cell layer thickness of 

approximately 12 µm. 
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It has been said in a review of the RNAi machinery that the action where Dicer aids 

loading of siRNA into the RISC complex prevents free diffusion of siRNAs in the 

cytoplasm (Siomi and Siomi 2009). This would explain the accumulated presence of 

fluorescently labelled siRNA near the nucleus (Figure 4.22), where the RISC complexes 

are located. An earlier study, conducted with Cy3-labelled siRNA complexed to 

Lipofectamine 2000 (siRNA lipoplex), reported similar perinuclear localisation of 

fluorescent siRNA with accumulation around the nucleus (Grunweller et al. 2003). 

However, the image quality was poor and there was little indication on the transfection 

efficiency with the siRNA lipoplex (Grunweller et al. 2003). As previously mentioned, 

encapsulation of siRNA in liposomes following siRNA complexation with a 

transfection reagent resulted in fluorescence quenching (Vader et al. 2010). 

Fluorescence from the siRNA could be visualised under a fluorescent microscope when 

siRNA has escaped from the complexes. However, results with siRNA lipoplex should 

not be considered quantitatively. An in vivo study has also reported the delivery of 

Accell Green sd-siRNA to a rat brain through a single intracerebraventricular injection 

that resulted in convincing cellular uptake of the FAM-labelled sd-siRNA in different 

cell types of the adult rat brain, which also correlated to functional gene silencing in the 

respective brain regions (Nakajima et al. 2012). 

 

Taken together, the gene silencing and siRNA uptake studies in primary keratinocytes 

gave strong implication of the potential usefulness of the Accell sd-siRNA in an ex vivo 

human skin model (Chapter 5). Non-sd-siRNA lipoplexes may also be useful as they are 

effective at 100-times lower dose than the Accell sd-siRNA and studies in the following 

section (section 4.3.4) will further reveal the skin gene delivery potential of both siRNA 

formulations in a coated steel microneedle system.  

 

4.3.4 Characterisation of siRNA coating onto microneedle devices 

Microneedles are capable of penetrating the stratum corneum of human skin to allow 

effective delivery of nucleic acid (Birchall et al. 2005; Birchall et al. 2000; Chabri et al. 

2004; Coulman et al. 2006b; Gonzalez-Gonzalez et al. 2011; Ng et al. 2009; Pearton et 

al. 2008; Pearton et al. 2012) in a minimally invasive manner (Birchall 2006; Coulman 

et al. 2011; Haq et al. 2009). The ability of steel microneedles to deliver dry coated 

small molecules, macromolecules and vaccines to the skin is well established (Gill and 
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Prausnitz 2007a; Gonzalez-Gonzalez et al. 2011; Kim et al. 2012b; Kim et al. 2010; 

Pearton et al. 2012). However, the coated steel microneedle system has not previously 

been examined for the delivery of siRNA to the skin (Chong et al. 2013). Firstly, in 

order to utilise the coated steel microneedle system for the delivery of siRNA to the 

skin, the functional stability of siRNA following coating onto the surface of 

microneedles is characterised with the following in vitro functional activity studies.  

 

4.3.4.1 siRNA coating quantification 

In the preceding chapter with pDNA (Chapter 3), it has been discussed that pDNA 

coated onto steel microneedles did not readily dissolve when deposited in the skin, 

resulting in inconsistent observation of usually poor gene expression compared to the 

delivery of a liquid formulation of pDNA. This has been attributed to the relatively poor 

liquid solubility of pDNA (up to 6 mg mL-1) and insufficient fluid in the skin adjacent 

to the microneedle penetration area to dissolve coated pDNA payload (Pearton et al. 

2012). In contrast, siRNA is highly soluble with solubility of up to 200 mg mL-1 (Lara 

et al. 2012). The following study was performed to determine the ability to coat siRNA 

onto steel microneedles and then recover the full quantity of coated siRNA in a small 

volume of buffer in 5 min.  

 

The optimised pipette dip-coating method described in section 2.2.5.2 was used to coat 

steel microneedles with siRNA. Microneedle devices that were of identical needle 

dimensions (700 µm Regular; Cardiff University, UK) but with different densities of 

microneedles per array (5 or 10 microneedles) were respectively coated with the same 

theoretical maximum loading dose of siRNA. As shown in Figure 4.23, the method 

developed for coating steel microneedles resulted in a reproducible mass of siRNA 

coated onto and then recovered from each microneedle array. The microneedles were 

coated with a theoretical maximum loading mass of 35 µg siRNA and an average of 35 

µg siRNA was recovered from each microneedle array. The ability to recover siRNA 

was not affected by prolonged drying of the coated microneedles of up to 20 h. The 

error bar represents standard deviation, which shows reproducibility of the coating 

method for coating siRNA. 
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Figure 4.23:  siRNA coating onto steel microneedles. A theoretical maximum mass of 35 

µg of siRNA per microneedle device was loaded onto two sets of microneedle 

devices with different densities of microneedles per array (6 with 5 

microneedles per array and 6 with 10 microneedles per array). siRNA from 3 

devices was recovered from each set of microneedle devices at the drying time-

points. (h = hour; n = 3; error bar = standard deviation). 

 

4.3.4.2 Coated siRNA lipoplex functional stability 

siRNA lipoplexes require more complex preparation but they are more cost-effective 

since lower doses of freshly prepared siRNA is required for efficient transfection in 

monolayer cell culture. To determine whether the siRNA lipoplex remains biologically 

functional following coating and recovery from the surface of microneedles, lamin A/C 

non-sd-siRNA lipoplex and naked lamin A/C non-sd-siRNA were coated onto 

microneedles (5 × 700 µm Regular; Cardiff University, UK), allowed to dry and then 

recovered in a small volume of buffer. Naked lamin A/C non-sd-siRNA was then 

complexed with Lipofectamine™ RNAiMAX and then both the recovered non-sd-

siRNA lipoplex (siRNA lipoplex recovered) and naked non-sd-siRNA subsequently 

complexed to a transfection reagent (naked siRNA recovered + lipo) were delivered to 

HaCaT cells (Figure 4.2). Gene silencing was then determined at both the mRNA 

(Figure 4.24 A) and protein level (Figure 4.24 B) (Chong et al. 2013).  

 

Lamin A/C mRNA levels were significantly reduced in HaCaT cells treated with non-

sd-siRNA that were previously coated onto microneedles, recovered and subsequently 

complexed with a transfection reagent (naked siRNA recovered + lipo) before cell 

treatment (p < 0.001). The level of mRNA reduction of 85.4% was comparable to that 
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achieved with the positive control (non coated lamin A/C siRNA 10 nM + 

Lipofectamine RNAiMAX; 85.2% reduction). However, there was no reduction of 

lamin A/C mRNA when cells were treated with lamin A/C siRNA pre-complexed with 

transfection reagent prior to coating and recovery from microneedles (siRNA lipoplex 

recovered). Lamin A/C protein expression determined by Western blotting (Figure 4.24 

B) agreed with the reduction in mRNA levels determined by RT-qPCR (Figure 4.24 A).  

 

Non-sd-siRNA lipoplex formulations when freshly prepared have proven to be very 

effective in HaCaT cells and in primary keratinocytes at a dose as low as 1 nM in 

HaCaT cells. However, the microneedle coating, drying and recovery process 

diminished biological functionality of the siRNA that has been pre-complexed with a 

transfection reagent. This is possibly due to alteration in structural conformation of the 

cationic liposomal complex and/or the instability of the lipid-based reagent following 

the coating and drying processes (Chong et al. 2013). It has been suggested that nucleic 

acid-liposome complexes should be prepared immediately before use as they are prone 

to forming aggregates upon storage in liquid formulation, resulting in reduced 

transfection efficiency (Seville et al. 2002). However, some studies have demonstrated 

that in the presence of sugars as lyoprotectants, nucleic acid-liposome complexes can be 

freeze-dried, freeze-thawed or spray dried with minimal effect on the biological 

functionality of the lipoplex (Seville et al. 2002; Yadava et al. 2008). The presence of 

carbohydrate in a coating formulation has also been shown to improve the physical 

stability of pDNA following coating onto microneedle (Kim et al. 2010; Pearton et al. 

2012). Future studies could investigate the potential of stability-enhancing formulations 

for coating of siRNA lipoplex onto steel microneedles (Chong et al. 2013). 
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Figure 4.24:  Biological functionality of siRNA following microneedle coating. Lamin 

A/C mRNA (A) and protein (B) levels in HaCaT cells 48 h post-transfection 

with non-sd-siRNA. (A) Lamin A/C mRNA expressions were relative to the 

non-targeting negative control group and normalised to GAPDH endogenous 

control gene levels. (n = 3 transfection repeats, each with 3 qPCR assay 

replicates; error bar = standard deviation; ***significant reduction in mRNA 

expression compared with negative control, p < 0.001). (B) Lamin A/C protein 

expression with α-tubulin as the protein loading control. Lamin A/C siRNA 

recovered from microneedle devices (naked siRNA recovered) was 

subsequently complexed with Lipofectamine RNAiMAX for transfection in 

HaCaT cells. The same amount of siRNA (10 nM) was used across all the 

treatment groups. (Non-targeting control = GFP non-sd-siRNA 10 nM + 

Lipofectamine RNAiMAX; non- lipoplex control = lamin A/C non-sd-

siRNA 10 nM; positive control = lamin A/C non-sd-siRNA 10 nM + 

Lipofectamine RNAiMAX; naked siRNA pre-coat + lipo = lamin A/C non-

sd-siRNA pre-coating formulation diluted to 10 nM + Lipofectamine 

RNAiMAX; siRNA lipoplex pre-coat = lamin A/C non-sd-siRNA lipoplex pre-

coating formulation diluted to 10 nM; siRNA lipoplex recovered = lamin A/C 

siRNA lipoplex formulation (10 nM siRNA + Lipofectamine RNAiMAX) 

recovered after coating onto microneedles). 
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4.3.4.3 Coated self-delivery siRNA functional and storage stability 

Coating microneedles with siRNA lipoplex appears to have compromised the biological 

functionality of siRNA in vitro, which will probably translate to limited gene silencing 

efficiency in vivo. Naked siRNA was however still functional following coating and 

recovery from the surface of steel microneedles. This is encouraging due to the 

availability of Accell sd-siRNA, which can enter cells passively in the absence of a 

transfection reagent. Using the same coating method, microneedles were coated with 

Accell CD44 sd-siRNA and allowed to dry before recovery in a small volume of buffer. 

The recovered sd-siRNA was then delivered to HaCaT cells and gene expression 48 h 

post-tranfection was determined by performing RT-qPCR to analyse the CD44 mRNA 

levels (Figure 4.25). There was significant reduction in CD44 mRNA levels in cells 

treated with both the recovered sd-siRNA previously coated onto microneedles (Accell 

CD44 coated; 67.4% reduction) and the positive control with Accell CD44 sd-siRNA 1 

µM (74.5% reduction). Naked CD44 non-sd-siRNA (non-Accell CD44 control) at a 

dose as high as 1 µM did not reduce mRNA levels when exposed to cells without a 

transfection reagent. 

 

It has previously been noted that fluorescently labeled non-sd-siRNA when delivered to 

HaCaT cells at a dose of 0.5 µM resulted in the presence of fluorescent siRNA 

presumably in cells at 24 h, 48 h and 72 h post-transfection, with a level of intensity 

much lower than Accell sd-siRNA (section 4.3.2). The observed cellular fluorescence 

with non-sd-siRNA delivered at a dose of 0.5 µM (Figure 4.15 and 4.16) did not 

translate to gene silencing as shown in this study, where CD44 non-sd-siRNA delivered 

at a dose of 1 µM did not result in reduction in mRNA level (Figure 4.25). The 

intracellular target site of siRNA is the cytoplasm near the nuclear membrane, where the 

RISC complex is located, one barrier less than pDNA. However, in order for gene 

silencing effect to be significant, a sufficiently high concentration of siRNA needs to be 

present for sustained gene silencing efficiency (Carralot et al. 2009). It has been said 

with pDNA that without the presence of cationic lipids, cellular endosomal escape of 

naked pDNA internalised through endocytosis is inefficient and therefore is likely 

degraded in the lysosomes, which could also hold true for siRNA (Lechardeur and 

Lukacs 2006; Lechardeur et al. 2005; Wattiaux et al. 2000).  
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Figure 4.25:  Biological functionality of Accell sd-siRNA following microneedle coating. 

CD44 mRNA levels were determined in HaCaT cells 48 h post-treatment with 

siRNA. Serum free transfection medium was replaced with growth medium 

with serum 24 h post-transfection. CD44 mRNA expressions were relative to 

the Accell non-targeting negative control group and normalised to GAPDH 

endogenous control gene levels. (n = 3 transfection repeats, each with 3 qPCR 

assay replicates; error bar = standard deviation; ***significant reduction in 

mRNA expression compared with Accell non-targeting control, p < 0.001). 

(Accell non-targeting control = Accell control sd-siRNA 1 µM; non-Accell 

CD44 control = CD44 non-sd- siRNA 1 µM; Accell CD44 positive 

control=Accell CD44 sd-siRNA 1 µM; Accell CD44 coated = Accell CD44 sd-

siRNA recovered after coating onto microneedles, 1 µM).  

 

 

Having established the functional stability of Accell sd-siRNA coated and recovered 

from microneedles, the short-term stability of the coated sd-siRNA was tested. Analysis 

of the CD44 mRNA levels in HaCaT cells treated with recovered Accell CD44 sd-

siRNA that has previously been coated onto steel microneedles, allowed to dry and 

stored at 4°C revealed that Accell sd-siRNA remains biologically functional after 28-

days storage (Figure 4.26); prolonged storage did not result in any reduction of cell 

viability (Figure 4.27).  
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Figure 4.26:  Stability of Accell sd-siRNA coated onto steel microneedles. CD44 mRNA 

levels in HaCaT cells 48 h post-transfection with recovered Accell CD44 sd-

siRNA previously coated onto steel microneedles for up to 28 days. Serum free 

transfection medium was replaced with growth medium with serum 24 h post-

transfection. CD44 mRNA levels were relative to the non-targeting control 

(NTC) groups at each respective time-points and normalised to GAPDH 

endogenous control gene levels. (n = 3 transfection repeats, each with 3 qPCR 

assay replicates; error bar = standard deviation; *** = significant reduction in 

mRNA levels compared with non-targeting control, p < 0.001). (Accell non-

targeting control = Accell control sd-siRNA 1 µM; non-Accell CD44 control = 

CD44 non-sd- siRNA 1 µM; Accell CD44 positive control = Accell CD44 sd-

siRNA 1 µM; Accell CD44 coated = Accell CD44 sd-siRNA recovered after 

coating onto microneedles, 1 µM). 

 

A published study has indicated that unmodified siRNA is stable when stored in various 

conditions including multiple freeze/thaw cycles (up to 10 cycles), extended incubation 

(over 1 year at room temperature) and high temperatures (up to 95°C) for a short period 

of time (Hickerson et al. 2008). The integrity of siRNA was not affected under the 

aforementioned storage conditions as determined by polyacrylamide gel electrophoresis 

and functional biological assay. siRNA in contact with hair and skin at 37°C was also 

stable. However, the physical stability and biological functionality of siRNA was 

compromised following exposure to fetal bovine or human sera at 37°C for up to 48 h 

(Hickerson et al. 2008). The authors also reported that partial physical degradation of 
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siRNA, as observed by a change in electrophoretic mobility did not consistently result 

in loss of biological functionality, suggesting that siRNA retains biologically 

functionality despite partial degradation (Hickerson et al. 2008). Furthermore, siRNA 

lipoplexes (also used in the study mentioned) were found to be active at concentrations 

as low as 1 nM (section 4.3.1.1), which means that the amounts of siRNA lipoplex used 

in most formulations is in excess. It is possible therefore that full biological activity can 

be retained even if the siRNA is partially degraded.  

 

 
Figure 4.27:  Cell viability (MTS assay) in HaCaT cells 48 h post-transfection with 

recovered Accell sd-siRNA previously coated onto steel microneedles. 

Serum free transfection medium was replaced with growth medium with serum 

24 h post-transfection. The percentage viability was relative to normalised 

untreated cells. (n = 5 transfection repeats; error bar = standard deviation; 

Accell TD101 = 1 µM Accell TD101 non-targeting sd-siRNA; Non Accell 

CD44 = 1 µM CD44 non-sd-siRNA; Accell CD44 = 1 µM Accell CD44 sd-

siRNA; Accell CD44 coated = Accell CD44 sd-siRNA recovered after coating 

onto microneedles, 1 µM) 
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4.4 Conclusion 

The in vitro studies in this chapter demonstrate the gene silencing ability of siRNA 

lipoplex and Accell sd-siRNA in monolayer human keratinocyte cells. siRNA lipoplex 

resulted in higher level of gene silencing at earlier time-points compared to Accell sd-

siRNA. At later time-points, both siRNA formulations resulted in similarly significant 

levels of gene expression reduction. Reduction in mRNA levels generally resulted in 

reduction of protein levels. Cellular uptake studies performed with fluorescently 

labelled Accell sd-siRNA revealed complete siRNA internalisation within 3 h in HaCaT 

cells and the presence of fluorescent siRNA up to 72 h, the furthest time-point tested. 

siRNA was localised to the perinuclear region of the cells and was concentrated to an 

area close to the cell nucleus. Both the siRNA lipoplex and Accell sd-siRNA were 

equally as efficient in terms of gene silencing but siRNA lipoplex is more cost-effective 

as it mediated gene silencing at a dose 100 times lower than Accell sd-siRNA. 

 

Studies on the biological stability of siRNA lipoplex and Accell sd-siRNA coated onto 

microneedles revealed functional stability of recovered naked siRNA following coating 

onto the surface of steel microneedles. However, siRNA pre-formulated into lipoplex 

was not functional following coating and recovery from microneedles rendering the 

lipoplex formulation invalid for further ex vivo or in vivo studies. On the other hand, 

Accell sd-siRNA was stable following coating onto steel microneedles and storage at 

4°C for up to 28 days. The biological stability of Accell sd-siRNA coated onto the 

surface of steel microneedles taken together with the reported stability of unmodified 

siRNA when stored in various conditions provides strong support for the use of Accell 

modified sd-siRNA in the coated steel microneedle system (Chong et al. 2013; 

Hickerson et al. 2008). In all the published studies reviewed so far, studies with Accell 

sd-siRNA generally reported positive findings both in vitro and in vivo, which renders 

this formulation of naked modified sd-siRNA an exciting prospect for gene delivery to 

excised human skin, cultured in an ex vivo environment (Chapter 5). 
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5 Non-viral delivery of siRNA to ex vivo human skin 

5.1 Introduction 

The human skin is an attractive organ for delivery of nucleic acid as it is easily 

accessible and is the largest, outermost organ of the human body. Cutaneous siRNA 

delivery allows strategic modulation of local gene expression whilst avoiding systemic 

side effects. Theoretically, RNAi has a broad therapeutic potential due to the possibility 

of sequence-specific suppression of any disease-associated genes (Geusens et al. 

2009b).  Published studies to date have reported the use of animal models or human 

skin equivalents as pre-clinical models for the delivery of siRNA to the skin. Ex vivo 

human skin represents a model with the closest physiological resemblance to in vivo 

human skin (Godin and Touitou 2007; Ng et al. 2009), avoiding the structural diversity 

of skin between species and the use of human skin equivalents, which have been shown 

to have less developed barrier functions than in vivo human skin (El Maghraby et al. 

2008; Netzlaff et al. 2005). Previous chapters described the optimisation of ex vivo 

human skin culture (Chapter 2), characterisation of microneedles as a physical skin 

disruption method to penetrate the stratum corneum (Chapter 2 and 3) and the 

optimisation of siRNA delivery to monolayer in vitro human skin models (Chapter 4). 

This chapter describes microneedle penetration through in vivo human skin visualised 

using the optical coherence tomography (OCT) imaging system and the delivery of 

Accell sd-siRNA via coated steel microneedles to freshly excised human breast skin in 

an ex vivo skin culture environment.  

 

5.1.1 Human skin imaging techniques 

In order for microneedles to target certain cell populations in the skin, it is imperative to 

have a basic knowledge of skin thickness for efficient delivery of therapeutic molecules 

to the target site. Skin thickness is measured using invasive and non-invasive 

techniques. Invasive techniques require acquisition of biopsy samples from post-

mortem or living human volunteers for further histological processing to visualise skin 

sections through light microscopy or electron microscopy (Therkildsen et al. 1998). 

Whilst microscopy methods can achieve images of high resolution and precision, skin 

biopsy samples are subjected to significant processing such as formalin fixation and 

cryosectioning (Lee and Hwang 2002; Sandby-Moller et al. 2003), which alters skin 

structure and may induce artefacts (Coulman et al. 2011; Huzaira et al. 2001). The 
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conventional formalin-paraffin processing distorts the anatomy of the stratum corneum 

making the stratum corneum measurements using this technique unreliable (Pfeiffer et 

al. 2000; Therkildsen et al. 1998).  

 

More recently, non-invasive techniques, such as in vivo confocal laser scanning 

microscopy are increasingly being used as they do not require tissue processing and can 

be performed in live skin, in situ (Huzaira et al. 2001; Sauermann et al. 2002). The 

concept of in vivo reflectance confocal laser scanning microscopy involves detection of 

photons back-scattering from living tissue that has been illuminated with a laser. This is 

a high resolution and high contrast imaging technique capable of scanning skin up to a 

limited depth of 250 to 300 µm, which is sufficient for epidermal measurements as it 

includes the epidermis and superficial dermis (Huzaira et al. 2001).  

 

With regards to non-invasive in vivo, in situ imaging of microneedle insertion into 

human skin, optical coherence tomography (OCT) have been used to visualise skin 

structure up to a depth of 2 mm from the surface of the skin (Coulman et al. 2011; 

Enfield et al. 2010; Huang et al. 1991). The principle of OCT is based on local optical 

backscatter, the technique being similar to ultrasound with light replacing sound. OCT 

technology is becoming routine in opthamology and is increasingly being developed for 

use in dermatology as better light source and detection system is becoming available as 

technology progresses. This leads to availability of improved OCT systems capable of 

imaging skin with increased speed, resolution, contrast and penetration depth (Alex et 

al. 2010; Coulman et al. 2011).  

 

5.1.2 Recent advances in siRNA delivery to human skin 

The first human skin clinical trial involving successful targeted delivery of functional 

siRNA to the skin of a patient with pachyonychia congenita was reported in 2009 

(Leachman et al. 2009). However, intradermal injection of the therapeutic siRNA 

caused considerable pain, prompting investigation of less invasive methods for the 

delivery of siRNA to sensitive skin (Lara et al. 2012; Leachman et al. 2009). Other skin 

conditions caused by aberrant gene expression with potential for siRNA treatment 

include allergic skin diseases (Inoue et al. 2007; Ishimoto et al. 2008; Ritprajak et al. 

2008), alopecia (Nakamura et al. 2008), hyperpigmentation (Kim et al. 2012a), psoriasis 
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(Funding et al. 2006; Jakobsen et al. 2009; Johansen et al. 2006), skin cancer (Hoeflich 

et al. 2006; Matsumoto et al. 2006; Nakai et al. 2010; Nakai et al. 2007; Sharma et al. 

2005; Tao et al. 2005; Tran et al. 2008) and wound healing (Thanik et al. 2007). 

 

Most in vivo siRNA delivery studies reported were performed on laboratory generated 

or animal skin through electroporation, low-frequency ultrasound delivery or 

subcutaneous injection of naked or liposomal siRNA (Gonzalez-Gonzalez et al. 2009; 

Inoue et al. 2007; Nakai et al. 2010; Nakamura et al. 2008; Sharma et al. 2005; Tran et 

al. 2008). siRNA delivery based on topical application of cream formulations (Ritprajak 

et al. 2008; Takanashi et al. 2009; Thanik et al. 2007) and peptide enhancer (Hsu and 

Mitragotri 2011) has also been reported. 

 

Microneedles have been reported as a minimally invasive skin disruption method to 

penetrate the skin’s stratum corneum barrier for local cutaneous delivery of siRNA 

(Chong et al. 2013; Gonzalez-Gonzalez et al. 2010b; Lara et al. 2012). Studies on 

siRNA delivery to the skin using microneedle devices so far has been limited to 

delivery of siRNA to in vivo mouse skin (Chong et al. 2013; Gonzalez-Gonzalez et al. 

2010b) and in vivo human skin equivalents grafted onto immunocompromised mice 

(Lara et al. 2012).  There are considerable interspecies skin architecture differences 

between human and mouse skin and therefore the effect of siRNA delivery to mouse 

skin may not be directly translated to human skin (Godin and Touitou 2007). 

Commercially cultured human skin equivalent grafted onto immunocompromised mice 

represents a promising in vivo human skin model but developing a siRNA delivery and 

detection method in ex vivo culture of freshly excised human skin could prove to be a 

simple and exciting prospect for pre-clinical testing of therapeutic siRNA.  

 

5.1.3 Aim and objectives 

The aim of this chapter was to develop an optimised method for delivery of siRNA and 

detection of gene silencing in ex vivo human skin following siRNA delivery via coated 

steel microneedles. The objective of the experiments were:  

• To characterise human skin in terms of skin thickness across different sites of a 

healthy human volunteer as imaged using an optical coherence tomography (OCT) 

system.  
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• To visualise the physical skin disruptions caused by application of steel 

microneedles on healthy human volunteers using OCT.  

• To test the ability of siRNA-coated steel microneedles to deposit siRNA into 

excised human skin. 

• To quantify fluorescent siRNA uptake by epidermal cells following coated 

microneedle administration using flow cytometry on single cell suspensions of ex 

vivo human skin cells. 

• To quantify gene expression in ex vivo human skin following functional siRNA 

delivery by microneedles using RT-qPCR on RNA extracted from treated skin 

epidermis. 
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5.2 Methods 

Unless specified, the suppliers of all reagents and materials have previously been 

mentioned or were obtained from Thermo Fisher Scientific, UK. 

 

5.2.1 Human skin imaging using optical coherence tomography (OCT) 

5.2.1.1 OCT imaging of human skin 

Various sites of the human skin including the forearm, palm, arm, breast, upper 

abdomen, lower abdomen, dorsal gluteal and thigh on a healthy 27 year old female 

volunteer was imaged using the VivoSight OCT system (Michelson Diagnostics, UK) 

following written consent and full ethical approval from Cardiff School of Pharmacy 

and Pharmaceutical Sciences School Ethics Committee (reference 123-28). OCT 

imaging was performed as previously described (Coulman et al. 2011). Briefly, a hand-

held probe was placed on the skin of the subject and a real-time preview was performed 

to view cross-section of the skin on a computer screen with software connected to the 

OCT probe to optimise parameters to ensure the sampling area was sufficiently covered. 

Images were then captured where each transverse sections was an area of 6 mm in 

length across the sampling area and 2 mm in depth into the skin and were separated by a 

4 µm gap between each transverse sections capturing 500 transverse sections across 

each sampling area forming a 6 mm (length) × 2mm (depth) × 2mm (height) 3-

dimensional skin block. 

  

5.2.1.2 OCT imaging of microneedle insertion into human skin 

Steel microneedles of various needle densities were tested on healthy 34 year old and 41 

year old male subjects following written consent and full ethical approval from Cardiff 

School of Pharmacy and Pharmaceutical Sciences School Ethics Committee (reference 

123-28). The treatment area was imaged before, during and after microneedle insertion. 

A proposed treatment area of 2 × 5 cm in the left hand of the volunteer sterilised with 

70% isopropyl alcohol swab (University Hospital Supplies Ltd, UK) before imaging 

with a hand-held probe as described in section 5.2.1.1. After the initial pre-treatment 

images were captured, the selected treatment area was swabbed prior to the application 

of microneedles. Microneedles were inserted manually into the skin at a pressure 

sufficient for skin penetration, held in place for 5 s and then retracted. The treated area 
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was imaged as described in section 5.2.1.1 and the edge of the imaging area was marked 

so that imaging of the treatment area could be repeated. Some steel microneedles were 

also imaged in situ, by tilting the array following insertion and subsequently capturing 

images over the microneedle treated area with the hand-held probe as previously 

described. Images over the microneedle treated area were also captured 1 h and 4 h 

post-treatment. 

5.2.1.3 Data processing and analysis of OCT images 

After acquisition, the image data saved was exported to a dicom format and analysed 

using ImageJ (National Institute of Health, USA). Using ImageJ, the 3D image stack 

was resliced to obtain en face view of the tissue imaged. 

 

5.2.2 siRNA modification and sequences 

Accell sd-siRNAs utilised in this chapter are as described in section 4.2.1.2 (Accell 

CD44 sd-siRNA and Accell TD101 non-targeting sd-siRNA) and section 4.2.1.3 

(Accell Red sd-siRNA).  

 

5.2.3 Ex vivo siRNA uptake in excised human breast skin 

5.2.3.1 Coating of fluorescent siRNA onto steel microneedle devices 

Electropolished steel microneedle devices (5 × 700µm; Georgia Institute of 

Technology, USA) were coated with fluorescently labelled Accell Red sd-siRNA using 

the pipette tip dip-coating method as described in section 2.2.5.2 to provide a theoretical 

maximum loading of 2 µg siRNA coated onto each microneedle device. The coated 

steel microneedles were imaged using the Leica DM IRB epifluorescence microscope 

and imaging system before and after insertion into freshly excised human breast skin as 

described in section 5.2.3.2. 

 

5.2.3.2 siRNA coated microneedles application to excised human skin 

Human breast skin samples were acquired and prepared as described in section 2.2.3.2 

and were surface dapped-dry with sterile lens tissue paper. The excised skin was 

stretched and pinned using 1 cm push pins on a planar corkboard with the epidermal 

side facing up. Further grease moisture was minimised by applying 70% isopropyl 
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alcohol swab on the surface of the skin. Microneedles coated as described in section 

5.2.3.1 were inserted manually into the skin surface at a pressure sufficient for skin 

penetration and left in place for 10 min before being removed. On a skin area of 8 mm x 

8 mm dimension, 4 arrays of microneedle devices were administered in an evenly 

spaced manner to cover the area with 20 microneedle penetration sites as illustrated in 

Figure 5.1. The stretch of the treated skin pinned to the corkboard was then minimally 

loosened before being cut using an 8 mm diameter biopsy punch (Figure 5.2). The 

treated skin samples were then incubated in a hanging insert organ culture setup as 

described in section 2.2.3.3 for 0 h, 3 h, 6 h, 24 h and/or 48 h. After incubation, treated 

skin samples were subjected to vigorous rinsing in PBS for 5 min and then wiped with 

isopropyl alcohol swabs to remove fluorescent material from the surface of the skin. 

The samples were then either (i) embedded in OCT medium and frozen on dry ice for 

cryosectioning (section 5.2.3.3) or (ii) subjected to epidermal sheet separation for 

imaging (section 5.2.3.3) or further processing for flow cytometry (section 5.2.3.4). 

 

 
Figure 5.1:  A schematic diagram of the orientation of steel microneedle devices coated 

with Accell siRNA inserted into an area of freshly excised human breast 

skin of approximately 1 cm x 1 cm surface area.  
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Figure 5.2:  A schematic diagram of the skin area treated with coated microneedles 

and the area cut by 8 mm biopsy punch for subsequent culture.  

 

5.2.3.3 Visualisation of fluorescent siRNA delivery to human skin 

Treated skin samples were incubated for 24 h, subjected to vigorous rinsing in PBS and 

then embedded in OCT, frozen on dry ice and then cryosectioned as described in section 

2.2.4.7. Skin sections captured onto microscope slides were kept frozen at -80°C until 

visualisation. Frozen skin sections were defrosted for 5 min before being mounted with 

VECTASHIELD® Mounting Medium containing 1.5 µg mL−1 4,6-diamidino-2-

phenylindole (DAPI; Vector Laboratories Ltd., UK) for nuclear staining. siRNA 

deposition was then visualised under the Leica DM IRB epifluorescence microscope 

and imaging system.  

 

Alternatively, treated skin samples incubated for 0 h, 3 h, 6 h, 24 h and 48 h were 

subjected to vigorous rinsing in PBS before epidermal sheet separation with 3.8% w/v 

ammonium thiocyanate in PBS as described in section 2.2.4.2. Separated epidermal 

sheets were fixed in 4% (w/v) paraformaldehyde in PBS for up to 24 h at 4°C. The fixed 

epidermal sheets were rinsed 4 times in PBS for 5 min each time and stained with 5 µg 

mL−1 Hoechst 33342 in PBS for 60 min at room temperature. The epidermal sheets 

were then rinsed 4 times in PBS for 5 min each time and mounted on microscope slides 

with Dako fluorescence mounting medium. The mounted epidermal sheets were 

visualised under the Leica DM IRB epifluorescence microscope and imaging system. 
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5.2.3.4 Quantification of siRNA uptake in human epidermal cells 

Fluorescent siRNA treated skin samples incubated for 24 h were subjected to vigorous 

rinsing in PBS before epidermal sheet separation with an enzyme cocktail solution 

containing 2 caseinolytic units mL-1 solution of Dispase II, 197 units mL-1 solution of 

Collagenase D and 20 units mL-1 solution of DNase I from bovine pancreas in RPMI 

medium as described in section 2.2.4.2. A single cell suspension of epidermal cells were 

then extracted from the epidermal sheets using the method described in section 2.2.4.3 

with slight modification. Following trypsin activity and the addition of soybean trypsin 

inhibitor, cells were centrifuged at 400 × g for 5 min at room temperature. The cell 

pellet was gently resuspended in 0.025% v/v DNase 1 with 10% v/v FCS in PBS and 

incubated at 37°C for 1 h. Cells were then filtered through a 70 µm cell strainer and 

centrifuged at 400 × g for 5 min. Cell pellets were rinsed once by resuspending the 

pellet in PBS.  

 

Cells were then centrifuged and re-suspended in PBS containing near-infrared (IR) 

LIVE/DEAD® Fixable Dead Cell Stain (Life Technologies, UK) and prepared 

according to the manufacturer’s recommendation. Cells were incubated in the live dead 

stain for 30 min at 4°C and then centrifuged and resuspended in 100 µL flow cytometry 

buffer containing 1% bovine serum albumin (Sigma Aldrich, UK) and 0.1% sodium 

azide (Sigma Aldrich, UK) in PBS. Cells were rinsed in flow cytometry buffer twice 

before being resuspended in 100 µL flow cytometry buffer containing 1% bovine serum 

albumin (Sigma Aldrich, UK) and 0.1% sodium azide (Sigma Aldrich, UK) in PBS and 

transferred into flow cytometry tubes. The cells were fixed with 200 µL fixing buffer 

containing 1% paraformaldehyde and 0.1% sodium azide in PBS and analysed by flow 

cytometry within a week.  

 

The flow cytometric analysis was performed as recommended by the instrument 

manual. The frequency of fluorescent cells in the APC-Cy7 and PE channel 

(corresponding to fluorescence of near-IR live dead stain and Accell Red DY-547 

fluorescence), out of a total of at least 106 events analysed per sample was recorded. 

The data collected was analysed with the FlowJo Flow Cytometry Analysis Software 

for Mac Version 8.8 using method as described in section 3.2.7.1.2. A viable cell 

population was selected from cells that had not taken up the live dead marker.  
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Following flow cytometry, the single cell suspension of epidermal cells remaining was 

centrifuged, resuspended in PBS and counterstained with 5 µg mL−1 Hoechst 33342 in 

PBS for 30 min at room temperature. Cells were centrifuged and rinsed 3 times in PBS. 

Cell pellets were then resuspended in a small volume of PBS (up to 50 µL) and 5 µL of 

cell suspension was transferred to a microscope slide, allowed to dry and mounted in 

Dako fluorescent mounting medium with coverslip. Cells were then imaged using the 

Leica DMI6000B confocal microscope system and analysed using the method described 

in section 2.2.4.6. 

 

5.2.4 Ex vivo gene silencing in excised human breast skin 

5.2.4.1 Coating siRNA onto steel microneedle devices 

Electropolished steel microneedle devices (5 × 700µm; Georgia Institute of 

Technology, USA) were coated with Accell CD44 sd-siRNA using the pipette tip dip-

coating method as described in section 2.2.5.2 to provide a theoretical maximum 

loading of 20 µg siRNA coated onto each microneedle device.  

 

5.2.4.2 siRNA coated microneedles application on excised human skin 

Human breast skin samples, acquired and prepared as described in section 2.2.3.2, were 

surface dapped-dry with sterile lens tissue paper. The excised skin was then processed 

as described in section 5.2.3.2 and then treated with steel microneedles coated with 

Accell CD44 sd-siRNA as described in section 5.2.4.1. The treated skin samples were 

then incubated in a hanging insert organ culture setup as described in section 2.2.3.3 for 

48 h. After incubation, treated skin samples were subjected to epidermal sheet 

separation with 3.8% w/v ammonium thiocyanate in PBS as described in section 2.2.4.2 

and stored in RNAlater® solution (Life Technologies, UK) at -20°C. For each treatment 

group, 2 biopsy punch samples that were treated similarly were pooled to allow 

sufficient tissue sample for RNA extraction.   

 

5.2.4.3 siRNA delivery dose quantification 

Steel microneedles were coated with Accell CD44 sd-siRNA as described in section 

5.2.4.1. For each skin sample specimen, 12 microneedle devices were coated with a 

theoretical maximum loading of 20 µg siRNA per device. Skin specimens were treated 
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with 8 siRNA-coated microneedle devices for two punch biopsies (Figure 5.2) from 

each treatment group and the remaining 4 siRNA-coated microneedle devices were 

retained. All 12 used and unused siRNA coated microneedle devices were then washed 

in a small volume of buffer (50 µL) with agitation for 5 min to recover siRNA from the 

surface of the microneedles. The concentration of the recovered siRNA was measured 

using the NanoVue spectrophotometer as described in section 3.2.1.5 and the mass of 

siRNA recovered was calculated as described in section 3.2.5.1.  The mass of siRNA 

deposited on the skin was calculated by deducting the average mass of siRNA 

remaining on the microneedles that have been used to treat the skin sample from the 

unused coated microneedles.  

 

5.2.4.4 Visualisation of skin disruption by siRNA coated microneedles 

Physical skin disruption on excised human breast skin caused by siRNA coated steel 

microneedles was assessed using the OCT system, as described in section 5.2.1.  

 

5.2.4.5 Quantification of gene silencing in human epidermis 

Cardiff University Central Biotechnology Services (CBS) performed RNA extractions 

from human epidermal skin samples. Epidermal sheets stored in RNAlater® solution at -

20°C were transported on ice to the CBS for RNA extraction. Briefly, the tissue samples 

were homogenised in lysis buffer from the Qiagen RNeasy Mini kit (Qiagen, UK) using 

IKA T10 Basic Ultra-Turrax Disperser (Cole-Parmer Instrument Co. Ltd, UK). RNA 

was then extracted according to the instructions of the Qiagen RNeasy Mini kit and 

eluted in 30µL nuclease free water. The quality and purity of extracted RNA was tested 

using the Agilent 2100 Bioanalyzer (Agilent Technologies, UK). 

 

CD44 gene expression in the RNA samples were analysed by quantifying CD44 mRNA 

levels using RT-qPCR as described in section 4.2.7.1.3 and section 4.2.7.1.4. All data 

points reported are the mean and standard error of three replicate qPCR assays.  

 

5.2.5 Data processing and statistical analysis  

Data processing and statistical analysis was performed as described in section 3.2.9.  
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5.3 Results and discussion 

5.3.1 Human skin imaging using optical coherence tomography (OCT) 

There are various factors such as body site, gender, age and skin type, that affect the 

thickness of healthy human skin epidermis (Sandby-Moller et al. 2003). 

Conventionally, human skin epidermis thickness is measured using invasive techniques 

that require acquisition of biopsy samples from human volunteers for further 

histological processing to visualise skin sections through light microscopy (Therkildsen 

et al. 1998). The availability of non-invasive imaging systems allows analysis of in vivo 

epidermal skin thickness that prevents alteration of skin structure and artefacts cause by 

the invasive techniques (Coulman et al. 2011; Huzaira et al. 2001).   

 

 
Figure 5.3:  A comparison of human breast skin transverse sections obtained through 

(A) light microscopy of cryosectioned unfixed skin biopsy sample from a 

83-year-old female subject and subsequently subjected to H&E staining 

and (B) in vivo OCT imaging of skin from a 27-year-old subject. (Yellow 

line = thickness of the epidermis) 

 

Figure 5.3 compares transverse sections of human breast skin obtained through light 

microscopy of haematoxylin and eosin (H&E) stained cryosection of unfixed skin 

biopsy from a 83-year-old female subject and in vivo OCT imaging of skin from a 27-

year-old subject. From the images, it was obvious that light microscopy of H&E stained 
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transverse section produced an image of higher resolution than OCT imaging. The 

objective of the light microscope could be increased to further magnify the image for 

precise measurement of the skin epidermis and stratum corneum thickness, which is not 

achievable with current technology of the OCT imaging system (Figure 5.4). However, 

excised human skin loses its natural elasticity, resulting in alteration of the tension in 

skin structure. The process of H&E staining and subsequent alcohol dehydration for 

mounting onto microscopy slides also affects skin structure leading to false 

measurement of skin thickness.  

 

 
Figure 5.4:  A comparison of human breast skin of magnified transverse sections 

obtained through (A) light microscopy of cryosectioned unfixed skin 

biopsy sample from a 83-year-old female subject and subsequently 

subjected to H&E staining and (B) in vivo OCT imaging of skin from a 27-

year-old subject.  

 

Overall, OCT imaging is able to distinguish epidermis from dermis to allow 

measurement of epidermis thickness at its natural in vivo state. It is more difficult to 

separate the thickness of the stratum corneum (SC) and viable epidermis due to low 

resolution of the images (Figures 5.5 and 5.6), with the exception of the palm. The 

epidermis represents the upper layer of skin including the stratum corneum and the 

viable epidermis. Human palmar skin has a characteristic thickened stratum corneum 

that is easily distinguishable from the transverse section shown in Figure 5.5. The 

stratum corneum is defined by the region of consistent dark grey band, approximately 

145 µm in thickness with the presence of eccrine sweat glands that have distinctive 

spiralling structures. A thin, distinctively darker contour separates the stratum corneum 

from the viable epidermis, which was approximately 160 µm in thickness.  
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Transverse sections of skin in other regions of the body revealed surface skin structure 

that differs significantly from the thicker skin on the palm (Figure 5.5 and 5.6). The 

stratum corneum in other body sites was almost indistinguishable by OCT imaging but 

appeared as the thin bright region that was approximately 10 to 20 µm in thickness. A 

region of consistent dark grey band approximately 70 µm to 100 µm in thickness 

defines the viable epidermis. The dermal layer is defined by a light grey region below 

the viable epidermis with identifiable blood vessels that appeared as horizontal 

elongated and darkened areas. En face projection of skin surfaces showed variation in 

the characteristic pavement pattern of the skin folds with hairs protruding from the 

surface of the skin. These observations were consistent with a previously published 

study using a similar OCT technique reporting the structure of palm and upper arm skin 

(Coulman et al. 2011).  

 

A study performed using invasive technique on skin biopsies of 71 healthy volunteers in 

different sites of the body including the forearm dorsal, shoulder and buttocks has 

reported average thickness of between 11.0 µm and 18.3 µm for stratum corneum and 

between 56.6 µm and 81.5 µm for viable epidermis (Sandby-Moller et al. 2003). The 

study also revealed that variation in epidermal thickness is mainly explained by body 

site, but there is significant individual variation. There was direct correlation between 

stratum corneum thickness and pigmentation but inverse correlation between stratum 

corneum thickness and the number of smoking years. Thickness of the cellular 

epidermis had positive correlation with blood content, which was greater in males than 

in females. Age and skin type was found to have no correlation with epidermal 

thickness (Sandby-Moller et al. 2003). Another invasive study performed on 452 

biopsies on 28 different regions of healthy skin including palm, sole and eyelid on 

Korean men and women revealed a range of epidermal thickness of 31 µm to 637 µm 

(Lee and Hwang 2002).  

 

Another study performed using a non-invasive technique with near-IR reflectance 

confocal microscopy of 10 healthy volunteers in different skin sites including the 

forehead, cheek, inner and outer forearm, lower back and leg revealed in vivo skin 

thickness of between 8.08 µm and 13.66 µm for stratum corneum, between 50.83 µm to 

65.44 µm for the suprapapillary plate of the viable epidermis and between 101.58 µm to 

134.55 µm for the depth of rete pegs (Huzaira et al. 2001).  The epidermis thickness of 
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skin from different sites of a 27-year-old female subject as measured using OCT 

imaging system generally agreed with what was observed in other published studies 

(Coulman et al. 2011; Huzaira et al. 2001; Lee and Hwang 2002; Sandby-Moller et al. 

2003) 

 

 
Figure 5.5:  En face and transverse sections of skin at different upper body sites of a 

27-year-old female subject obtained through in vivo OCT imaging. 

Transverse sections were from the middle regions of the en face images. 

(Yellow line = thickness of the epidermis; ED = epidermis; SC = stratum 

corneum; SD = sweat duct) 
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Figure 5.6:  En face and transverse sections of skin at different lower body sites of a 

27-year-old female subject obtained through in vivo OCT imaging. 

Transverse sections were from the middle regions of the en face images. 

(Yellow line = thickness of the epidermis; ED = epidermis) 
 

The study of skin thickness at different sites using the OCT imaging system highlights 

that it is not a high resolution technique for precise measurement of skin thickness but is 

a quick non-invasive technique to image healthy or diseased human skin in vivo prior to 

treatment with microneedles. Pre-determining skin thickness could assist the selection 

of microneedle length and size ideal for delivery of therapeutic molecules to its target 

site of the epidermis, dermis or both. One of the advantages of steel microneedles is that 

the manufacturing process allows mass production of microneedles of any length, shape 

and size at low cost per unit to suit various skin thickness across different body sites. 
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Furthermore, a non-invasive method is ideal when surgical incision or skin biopsy on 

diseased skin may exacerbate the condition or potentiate pain.  

 

5.3.2 OCT imaging of microneedle insertion into human skin 

Conventional microneedle delivery studies often characterise the depth and morphology 

of channels created by microneedle insertion through histological methods, which 

involve skin biopsy and sectioning. These studies are not usually conducted on in vivo 

human skin but rather on ex vivo excised human skin or animal models. Human skin 

that has been excised from the body suffers from considerable changes to the 

biomechanical properties of the tissue, which should be taken into consideration when 

interpreting the result of microneedle penetration. The principal of OCT imaging uses 

local optical backscatter. Therefore, the technique is capable of reflecting light from 

steel microneedle devices to allow in vivo, in situ imaging of microneedle penetration 

into skin of human volunteers (Coulman et al. 2011). In situ microneedle penetration on 

the back of the hand and palm of human volunteers with healthy skin was captured 

using the OCT imaging system (Figure 5.7). 

 

From the en face projection and transverse section of the in situ microneedle insertion 

OCT images (Figure 5.7), visible skin deformation upon microneedle insertion was 

observed, indicating skin compression below the point of individual needle insertion 

(Coulman et al. 2011). Skin folds around the microneedle penetration site were more 

prominent in the en face projection of the surface of the palm skin compared to the 

surface of the back of hand skin, possibly related to the thickness of the stratum 

corneum, which is thicker and more resistant to penetration on the palm. Both sets of in 

situ microneedle insertion experiments in different skin sites show incomplete 

microneedle insertion or microneedle retraction due to the skin’s elasticity. 

Nevertheless, light reflectance from the tip of microneedles was seen in transverse 

sections with a depth of up to 300 µm from the surface of both the palm and back of 

hand skin, which is approximately 40% the length of a 700 µm microneedle.  
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Figure 5.7:  En face and transverse sections of in situ blank steel microneedle (5 × 

700µm Regular, Cardiff University) insertion into the skin at the back of 

the hand of a 34-year-old male subject and palm of a 41-year-old male 

subject obtained through in vivo OCT imaging. Transverse sections were 

from the middle regions of the control en face images or resliced across the 

microneedle penetration sites of the treated en face images. (Yellow line = 

thickness of the epidermis; Yellow arrow = microneedle penetration site; ED = 

epidermis; SC = stratum corneum; MND = microneedle device) 

 

Following the removal of microneedle device from the back of the hand, en face 

projection of OCT images (Figure 5.8) revealed distinct darkened spots corresponding 

to the spacing of microneedles in the microneedle device (5 × 700µm Regular, Cardiff 

University). Transverse sections across the length of the penetration sites distinguished 

by the appearance of darkened spots on the en face image revealed upper skin punctures 

in the epidermis of up to approximately 100 µm in depth from the surface and 90 µm in 

width. Underneath the skin punctures, trails of vertical discrete darkened areas were 

observed, which was the artefact from the channels created above as optical light travels 

through the punctured skin epidermis with delayed backscattering, leaving a trail of 

shadow in the dermis. The microchannels created by microneedle insertion appeared 

primarily in the upper layer of the epidermis and not the dermis, possibly due to the 

presence of elastic connective tissue that quickly tighten deformed skin in the dermis.    
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Figure 5.8:  En face and transverse sections of blank steel microneedle (5 × 700µm 

Regular, Cardiff University) penetration site on the skin at the back of the 

hand of a 34-year-old male subject obtained through in vivo OCT imaging. 

These microneedle penetration sites correspond to skin disruption caused by 

microneedle insertion in Figure 5.7. Transverse section were resliced across the 

microneedle penetration sites of the treated en face image. (Yellow line = 

thickness of the epidermis; Yellow arrow = microneedle penetration site; ED = 

epidermis) 

 

A short-term time-scale study was also performed to determine the effect of steel 

microneedle penetration over 4 hours on the forearm skin of two male volunteers with 

healthy normal skin (Figure 5.9 and 5.10). En face projection of the OCT images 

showed distinct darkened spots created by microneedle penetration, similar to that 

found in the back of hand skin (Figure 5.8). The darkened spots appear to be most 

prominent at 0 h time-point and appear less contrasting at later time-points. Transverse 

sections across the microneedle penetration sites of the en face images showed obvious 

vertical trails of darkened area, up to 100 µm in width, representing artefact from the 

micron-scale channel in the broken epidermis above that appeared less obvious at 1 h 

and 4 h time-points. These observations indicate that the microchannels created slowly 

fade as microwounds created by microneedle insertion heal with time. When 

microneedles are withdrawn, skin’s elastic properties rebound the skin back to its 

original conformation and the wound healing process of inflammation, re-
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epitheliasation and remodelling takes place resulting in pore closure to maintain the 

integrity of the skin barrier (Barrientos et al. 2008; Menon et al. 1992).  

 

 
Figure 5.9:  En face and transverse sections of blank microneedle (5 × 700µm Regular, 

Cardiff University) penetration sites on the forearm skin of a 34-year-old 

male subject at 0 h, 1 h and 4 h after microneedle insertion obtained 

through in vivo OCT imaging. Transverse sections were from the middle 

regions of the control en face images or resliced across the microneedle 

penetration sites of the treated en face images. (Yellow line = thickness of the 

epidermis; Yellow arrow = microneedle penetration site; ED = epidermis; HF 

= hair follicle) 
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Figure 5.10:  En face and transverse sections of blank microneedle (5 × 700µm Regular, 

Cardiff University) penetration sites on the forearm skin of a 41-year-old 

male subject at 0 h, 1 h and 4 h after microneedle insertion obtained 

through in vivo OCT imaging. Transverse sections were from the middle 

regions of the control en face images or resliced across the microneedle 

penetration sites of the treated en face images. (Yellow line = thickness of the 

epidermis; Yellow arrow = microneedle penetration site; ED = epidermis) 

 

A study investigating the kinetics of pore resealing after steel microneedle insertion 

using electrical impedance measurements in human subjects showed that in the absence 

of occlusion, pores formed by microneedles recovered their barrier properties within 2 

hours regardless of microneedle geometry (Gupta et al. 2011). In the presence of 

occlusion, the skin resealing time varies from 3 h to 40 h depending on the geometry of 

microneedles used (Gupta et al. 2011; Wermeling et al. 2008). The skin resealing 

kinetics is affected by factors such as microneedle length, density and the cross-

sectional size a microneedle (Gupta et al. 2011).  The authors hypothesised that skin 

occlusion provides an artificial barrier that reduces transepidermal water loss, 

preventing the formation of a water gradient that is required for initiation of cellular 

response to repair the disrupted stratum corneum barrier (Gupta et al. 2011; Menon et 

al. 1992). The observations reported in the skin resealing study provided insight towards 
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the safety and efficacy of microneedle-based drug delivery approaches (Gupta et al. 

2011). The ability to prolong the presence of microchannels after microneedle 

application is useful for delivery of drug-loaded patches for sustained drug delivery into 

the skin.  Upon patch removal, the skin rapidly reseals resulting in termination of the 

delivery, which is an inherent safety feature (Gupta et al. 2011; Wermeling et al. 2008). 

The quick resealing of microchannels under non-occlusive conditions reduces the risk 

of infection following microneedle treatment (Gupta et al. 2011).  This provides a good 

indication of the safety of non-occlusive drug-coated microneedle systems, which is 

used for the delivery of siRNA to the skin in this thesis. 

 

Denser microneedle arrays, with more closely spaced microneedles in the device (10 × 

700µm Regular, Cardiff University) were also tested on the forearm skin of both the 

healthy male volunteers (Figure 5.11). From the en face projections and transverse 

sections across the microneedle penetration sites of the en face images, denser 

microneedles appear to have created microchannels that are less prominent than the 

regular devices (5 × 700µm Regular, Cardiff University). The skin is composed of 

nonlinear viscoelastic layers, which are easily deformed upon microneedle application 

to its surface (Crichton et al. 2011; Groves et al. 2012). Upon insertion into the skin, 

microneedles that are more closely spaced are bound to encounter more resistance from 

the natural elasticity of in vivo human skin, resulting in less penetration, compared to 

microneedle devices with less dense spacing. A study has shown that microneedles with 

longer length (≥600 µm vs. <600 µm) and lower microneedle density (2000 needles per 

cm2 vs. 5625 needles per cm2) were more easily inserted into the skin as they overcome 

skin deformation (Yan et al. 2010). This highlights the importance in determining the 

ideal microneedle length and spacing when designing microneedle arrays to minimise 

skin resistance whilst covering the treatment area sufficiently. 
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Figure 5.11:  En face and transverse sections of blank microneedle (10 × 700µm 

Regular, Cardiff University) penetration sites on the forearm skin of a 34-

year-old (P1) and 41-year-old (P2) male subjects at 0 h after microneedle 

insertion obtained through in vivo OCT imaging. Transverse sections were 

from the middle regions of the control en face images or resliced across the 

microneedle penetration sites of the treated en face images. (Yellow line = 

thickness of the epidermis; Yellow arrow = microneedle penetration site; ED = 

epidermis) 

 

5.3.3 Ex vivo siRNA uptake in excised human breast skin 

After establishing the ability of steel microneedles in penetrating the stratum corneum 

barrier layer of skin in vivo, the ability to deposit siRNA in human skin was determined 

using excised human breast skin in an ex vivo skin culture system. In the preceeding 

chapter (Chapter 4), Accell modified sd-siRNA was found to be suitable for coating 

onto steel microneedles with maintained siRNA functionality for up to 28 days. Accell 

sd-siRNA was also efficient and non-toxic in vitro. Therefore, the following studies 

with ex vivo human skin investigated the delivery of Accell sd-siRNA to excised human 

skin via coated steel microneedles.  

 

Firstly, the ability to evenly coat the surface of steel microneedles with Accell sd-

siRNA using the pipette tip dip-coating method was determined by imaging a series of 
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microneedle devices coated with fluorescently labelled Accell Red sd-siRNA. For each 

skin specimen treated (n = 3), a set of 10 microneedle devices (5 × 700µm, Georgia 

Institute of Technology) was coated. Out of the 10 microneedle devices that were 

coated, 3 devices were randomly selected for inspection under the fluorescent 

microscope.  

 

The image of an individual coated microneedle shown in Figure 5.12 A, which shows 

even distribution of fluorescent siRNA coated on the surface of steel microneedle was 

representative of other microneedles inspected. The microneedles were then imaged 

again following insertion into excised human breast skin. Figure 5.12 B represents the 

microneedle shown in Figure 5.12 A after insertion into human skin for 10 min before 

retraction. This particular microneedle penetrated the skin to a depth of approximately 

650 µm, as shown by removal of siRNA from the surface of microneedles when placed 

in the the skin. The depth of microneedle penetration differs between devices and 

position of microneedles in the array but skin penetration depth of at least 50% the 

microneedle length was achieved with all microneedles in the array, with an average of 

approximately 70% the length of the microneedles (Figure 5.13 A).  

 

 
Figure 5.12:  Fluorescence and bright-field overlay images of an electropolished 

microneedle (from an array of 5 × 700µm, Georgia Institute of 

Technology) coated with approximately 0.4 µg fluorescent Accell Red sd-

siRNA pre- (A) and post- (B) insertion into excised human breast skin. The 

images shown are representative of other microneedles analysed in the array 

and devices used. Red fluorescent from the sd-siRNA was pseudocoloured red. 
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It was also important to determine whether the siRNA recovery method by washing a 

microneedle device in a small volume of buffer provides complete removal of material 

from the surface of microneedles. Fluorescent siRNA coated microneedles that had 

been inserted into excised human skin were imaged before and after washing in a small 

volume of buffer with agitation for 5 min (Figure 5.13). As shown in Figure 5.13 B, 

near complete removal of siRNA from the surface of steel microneedles was achieved 

with the recovery method used, providing confidence in the efficiency of the method, 

even in microneedles that have been inserted into human skin. 

 

 
Figure 5.13:  Fluorescence and bright-field overlay images of a set of two 

electropolished microneedles (from an array of 5 × 700µm, Georgia 

Institute of Technology) coated with approximately 0.4 µg fluorescent 

Accell Red sd-siRNA per microneedle post-insertion (A) into excised 

human breast skin and then post-recovery (B) in a small volume of buffer. 

The images shown are representative of other microneedles analysed in the 

array and devices used. Red fluorescent from the sd-siRNA was 

pseudocoloured red. 

 

Figure 5.14 A shows digital images of excised human breast skin, stretched and pinned 

to foiled corkboard with steel microneedles inserted in the skin in an orientation 

illustrated in Figure 5.1 for each biopsy sample. Figure 5.14 B and C show digital en 
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face images of areas of skin samples from two different skin specimens with obvious 

fluorescent siRNA deposition in the penetration sites following microneedle retraction. 

Figure 5.14 D shows a digital image of a treated skin biopsy supported at air liquid 

interface in a hanging insert organ culture setup for incubation until analysis. These 

digital images clearly show microneedle penetration and siRNA depositions that were 

appropriately spaced over a biopsy sample area for consistent data analysis. In-plane 

microneedle devices are easier to manipulate in laboratory settings but future clinical 

application of microneedles is likely to involve design of evenly spaced microneedles in 

multiple arrays in a device to cover a sufficient treatment area.  

 

The deposition of fluorescently labelled Accell Red sd-siRNA was determined using a 

histological method where unfixed treated skin samples were frozen for cryosectioning 

and then observed under the fluorescent microscope, before (Figure 5.15) and after 

(Figure 5.16) mounting in fluorescent mounting medium containing the nuclei 

counterstain, DAPI. As depicted in Figure 5.15, microneedle insertion resulted in 

penetration of the stratum corneum, epidermis and dermis, with visible channels, areas 

without skin autofluorescence, observed up to a depth of approximately 550 µm from 

the surface. Figure 5.16 depicts microneedle penetration site 2 that clearly shows a layer 

of skin epidermis with a high number of closely arranged nucleated cells stained by 

DAPI. Fluorescent sd-siRNA deposition appeared to concentrate in the upper layer of 

the epidermis and diffused in the dermis around the site of penetration.  

 

Depending on its target site, microneedle geometry, length and density can be 

manipulated to allow targeted delivery to the desired skin layer (Al-Qallaf and Das 

2009). For more uniform penetration, mechanical insertion devices may be used to 

prevent variation in application force and depth induced by manual microneedle 

insertion (Singh et al. 2011; Verbaan et al. 2008). In the experimental setup of the 

excised human breast skin, removal of skin from its natural in vivo environment would 

have resulted in considerable biomechanical changes to the tissue, which resulted in 

deeper microneedle penetration with less effort. Nevertheless, the dermal layer of the 

skin is still present in the excised human skin setup, stretched and pinned to foiled 

corkboard, providing considerable similarity to the elasticity of in vivo skin 

environment. Therefore, microneedle penetration is often not the full length of the 

microneedles but between 50 to 90% the length of the microneedles.  
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Figure 5.14:  En face digital images of excised human breast skin with (A) in situ 

microneedles penetration, (B) a microneedle array post-insertion into the 

skin with fluorescent Accell Red sd-siRNA deposition sites following 

coated microneedle insertion,  (C) enlarged equivalent of image B, and (D) 

a punch biopsy of treated skin in a hanging insert organ culture setup. 

(Microneedle device used = 5 × 700µm, Georgia Institute of Technology; each 

microneedle coated with approximately 0.4 µg fluorescent Accell Red sd-

siRNA) 
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Figure 5.15:  Fluorescent transverse section images of excised human breast skin of a 

49-year-old female subject treated with Accell Red sd-siRNA-coated 

microneedles at 24 h post-delivery. Skin section autofluorescence was 

pseudocoloured green and red fluorescent from the sd-siRNA was 

pseudocoloured red  (Microneedle device used = 5 × 700µm, Georgia Institute 

of Technology; each microneedle coated with approximately 0.4 µg 

fluorescent Accell Red sd-siRNA) 
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Figure 5.16:  Fluorescent transverse section images of excised human breast skin of a 

49-year-old female patient treated with Accell Red sd-siRNA-coated 

microneedles at 24 h post-delivery. Red fluorescent from the sd-siRNA was 

pseudocoloured red and Hoechst 33342 nuclei counterstain was 

pseudocoloured blue. (Microneedle device used = 5 × 700µm, Georgia 

Institute of Technology; each microneedle coated with approximately 0.4 µg 

fluorescent Accell Red sd-siRNA) 

 

If therapeutic siRNA is delivered to the deeper layer of the dermis where blood vessels 

are present, the effect of systemic siRNA absorption needs to be taken into 

consideration. Unmodified siRNA is vulnerable to rapid degradation by nucleases 

present in serum, therefore siRNA is probably degraded following clearance from the 

skin into the blood stream or tissues with higher nuclease activity (Hickerson et al. 

2008; Layzer et al. 2004). Unmodified siRNA also has a rapid renal clearance with a 

reported elimination half-life of 6 min (Soutschek et al. 2004). On the other hand, 
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modified siRNA conjugated with cholesterol resulted in significantly increased stability 

in vivo with elimination half-life up to 95 min (De Paula et al. 2007; Soutschek et al. 

2004). This raises safety concerns of local cutaneous siRNA delivery with regards to 

systemic side effects. Some skin conditions are dominant-negative genetic skin 

disorders with gene mutation that only occurs within a particular cell population in the 

skin (Leachman et al. 2008). Properly designed siRNA targeting mRNA specific to the 

local genetic mutation coupled with prior testing to establish minimal off target effects 

and nonspecific gene silencing could address this safety concerns as systemically 

absorbed siRNA will have no target to cause side-effects. 

 

The epidermal distribution and uptake effect of fluorescently labelled Accell Red sd-

siRNA over 48 h post-delivery with coated microneedles was investigated by 

fluorescent microscopy of epidermal sheets separated chemically using ammonium 

thiocyanate (Figure 5.17). For samples at 0 h, the skin sample was treated by coated 

microneedle insertion for 10 min before microneedle withdrawal. The sample was then 

immediately incubated in ammonium thiocyanate for 30 min for epidermal sheet 

separation before epidermal sheet fixing in paraformaldehyde. Therefore, the treated 

skin epidermis sample at 0 h has in fact been exposed to siRNA for 10 min before 

epidermal sheet separation and 40 min before epidermal sheet fixation.  

 

From Figure 5.17, fluorescent sd-siRNA was present in cells proximal (within 

approximately 50 µm) to the penetration site at 0 h. siRNA deposition appeared more 

diffused (approximately 100 µm) at 3 h, with brighter sd-siRNA fluorescence in cells 

proximal (approximately 50 µm) to the delivery site. At 6 h, the area of siRNA 

diffusion was similar to 3 h but the area of brighter sd-siRNA fluorescence in cells 

proximal to the delivery site reduced to approximately 30 µm. Fluorescent signal 

intensity appeared to be reduced at 24 h and further reduced at 48 h with an 

approximate siRNA diffusion area of 70 µm at 24 h and 40 µm at 48 h. Brighter sd-

siRNA fluorescence in cells proximal to the delivery site reduced to approximately 20 

µm at 24 h and to almost non-existence at 48 h. The rate of fluorescent siRNA signal 

reduction seems to be consistent with that observed in monolayer cell culture of human 

keratinocyte cells (Chapter 4), whereby siRNA fluorescent intensity was highest at 3 h 

and fluorescent intensity visibly reduced after 24 h. 
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Figure 5.17:  Fluorescent images of the excised human breast skin epidermis of a 51-

year-old female patient treated Accell Red sd-siRNA-coated microneedles 

at 0 h, 3 h, 6 h, 24 h and 48 h post-delivery. Red fluorescence from the sd-

siRNA was pseudocoloured red and Hoechst 33342 nuclei counterstain was 

pseudocoloured blue. (Microneedle device used = 5 × 700µm, Georgia 

Institute of Technology; each microneedle coated with approximately 0.4 µg 

fluorescent Accell Red sd-siRNA) 

 

Flow cytometry was performed on epidermal cells extracted from 3 human skin 

specimens that had been microneedle treated with coated Accell Red sd-siRNA 24 h 

previously. Flow cytometric analysis revealed siRNA uptake of between 10.1% and 

30.6% in epidermal cells of 3 excised human skin specimens treated with fluorescently 

labelled Accell Red sd-siRNA (Figure 5.18).  
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Figure 5.18:  Flow cytometry histograms showing fluorescent signal intensity in 

epidermal cells extracted from excised human breast skin of (A) 49-year-

old, (B) 78-year-old and (C) 38-year-old female patients treated with 

Accell Red sd-siRNA-coated microneedles at 24 h post-delivery. 

Histograms are overlays of untreated (solid grey) and Accell Red sd-siRNA 

(red line). Fluorescent cells were gated with reference to the shift in fluorescent 

signal intensity in HaCaT cells treated with Accell Red sd-siRNA at 24 h 

(considered as fluorescence due to siRNA uptake, fluorescence intensity below 

that considered as fluorescence of siRNA stuck to the outermembrane of cells). 

The percentages of cells gated were expressed in red for Accell Red sd-siRNA. 

(Microneedle device used = 5 × 700µm, Georgia Institute of Technology; each 

microneedle coated with approximately 0.4 µg fluorescent Accell Red sd-

siRNA; each treatment group (epidermis from two 8 mm diameter punch 

biopsies) treated with approximately 10 µg Accell sd-siRNA) 

 

In skin samples treated with Accell Red sd-siRNA, a shift of fluorescence intensity 

above the untreated baseline was observed in almost all cells in the sample. Cell 

extraction was a 3 h process involving enzymatic separation of epidermis from the 

dermis, cell dissociation with trypsin and then DNase incubation with multiple 

centrifugation steps. During the cell extraction steps, cells were kept viable and it is 

possible that cell activity would have resulted in fluorescent siRNA diffusion from cell 

to cell, resulting in a shift in fluorescent signal above baseline fluorescence in a 

proportion of cells that were not proximal to the siRNA delivery site. Cells were gated 

so that cells that have obviously taken up siRNA and not cells with siRNA stuck to the 

outermembrane were selected. As a positive control, HaCaT cells that were treated with 

the same fluorescent sd-siRNA for 24 h or flow cytometry compensation beads labelled 

with a similar fluorophore were processed together with all skin specimens and a 
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narrow gate that was representative of the positive control population was used to define 

epidermal cells that have taken up siRNA. Even with the cautious fluorescent shift 

gating, it was difficult to establish the validity of the flow cytometry data without 

further optimisation. Development of a more robust technique to measure fluorescent 

siRNA uptake in the skin is required and could be exploited in the future. 

 

Epidermal cells from two of the same patient samples were further subjected to confocal 

microscopy in the absence (Figure 5.19) and presence (Figure 5.20) of nuclei 

counterstain with Hoechst 33342. Confocal images from the human skin specimens 

(Figure 5.19) showed low levels of fluorescence in most cells with high levels of 

fluorescence in a few cells. The 3 h long cell extraction process mentioned involves 

many incubation steps with high volumes of reagents that could have diluted any freely 

diffusing fluorescent sd-siRNA present in the reagents several fold. Therefore, it is 

unlikely that cells that have not taken up siRNA during the skin incubation period of 24 

h would have taken up sufficient siRNA for intense fluorescence over the 3 h tissue 

processing time. It was therefore encouraging to be able to detect cells with intense red 

fluorescence using confocal microscopy.  

 

Specimen 2 was also imaged with fluorescent channels for the near-IR live dead marker 

(performed prior to cell fixation) and also the Hoechst 33342 nuclei counterstain 

(performed after flow cytometry) (Figure 5.20). Dead cells that have taken up the near-

IR live dead marker (pseudocoloured green) displayed low level of red autofluorescence 

in the same channel as the fluorescently labelled Accell Red sd-siRNA. This can be 

seen from the image of the control cells whereby red fluorescence was not present in 

any live cells (live cells are not stained by the live dead marker). In treated cells, all 

cells had a low level of red fluorescent signal including the live cells and higher levels 

of red fluorescent signal were found in some live cells, which clearly indicates siRNA 

uptake in those cells. The results from confocal microscopy support the flow cytometry 

studies, providing evidence that epidermal cells, presumably proximal to the 

microneedle penetration site, are able to take up Accell sd-siRNA delivered via coated 

microneedles. 
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Figure 5.19:  Fluorescent (left column) and fluorescent and phase contrast overlay 

(right column) confocal images of epidermal cells extracted from excised 

human breast skin epidermis of 49-year-old (Specimen 1) and 78-year-old 

(Specimen 2) female patients treated with Accell Red sd-siRNA-coated 

microneedles at 24 h post-delivery. Red fluorescent from the sd-siRNA was 

pseudocoloured red. Each image is a z-stacked projection of approximately 30 

slices of images taken over a cell layer thickness of approximately 20 µm. 

(Microneedle device used = 5 × 700µm, Georgia Institute of Technology; each 

microneedle coated with approximately 0.4 µg fluorescent Accell Red sd-

siRNA; each treatment group (epidermis from two 8 mm diameter punch 

biopsies) treated with approximately 10 µg Accell sd-siRNA) 
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Figure 5.20:  Fluorescent confocal images of epidermal cells extracted from excised 

human breast skin epidermis of a 78-year-old (Specimen 2) female patient 

treated with Accell Red sd-siRNA-coated microneedles at 24 h post-

delivery. Red fluorescent from the sd-siRNA was pseudocoloured red, near 

infrared fluorescent from live dead marker pseudocoloured green and Hoechst 

33342 nuclei counterstain was pseudocoloured blue. Each image is a z-stacked 

projection of approximately 30 slices of images taken over a cell layer 

thickness of approximately 20 µm. (Same sample as Figure 5.19 specimen 2)    
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Several published in vivo studies with animal models have reported successful delivery 

and cellular uptake of fluorescently labelled Accell sd-siRNA to adult rat brain 

(Nakajima et al. 2012) and mouse footpad skin (Gonzalez-Gonzalez et al. 2010b). In the 

study with mouse footpad skin, siGLO Red non-sd-siRNA was directly compared with 

Accell Red sd-siRNA following soluble protrusion array device (PAD) delivery. PAD is 

essentially a soluble microneedle device made of polyvinyl alcohol (PVA) polymer. 

siGLO Red non-sd-siRNA was found to moderately distribute in the epidermis near the 

deposited “plug” with no clear evidence of cellular uptake. In contrast, Accell Red sd-

siRNA appeared more widely distributed throughout the epidermis of mouse paw with 

red fluorescence signal that localised mainly in the perinuclear region of epidermal 

cells, suggesting cellular uptake and localisation in the cytoplasm (Gonzalez-Gonzalez 

et al. 2010b).  

 

Fluorescent sd-siRNA distribution in human skin epidermis seems to be localised to the 

microneedle penetration site (Figure 5.17). Accell Red sd-siRNA in the human skin 

study was delivered to skin surface that had been swapped with 70% isopropyl alcohol, 

which could have dehydrated the surface of the skin. The thicker coat of siRNA 

deposited at the microneedle penetration site resulted in intense fluorescence 

overexposure at the deposition sites (Figure 5.16 and 5.17), which could have led to a 

false negative visualisation of siRNA uptake in cells further away from the deposition 

sites. In the mouse skin study, PAD microneedles are more closely spaced (1 mm 

spacing) (Gonzalez-Gonzalez et al. 2010b) than in-plane steel microneedles (1.5 mm 

spacing). The difference in observed Accell Red sd-siRNA distribution in in vivo mouse 

skin and ex vivo human skin could also be attributed to interspecies variability in skin 

architecture (Godin and Touitou 2007). Also, siRNA delivered to in vivo mouse footpad 

skin, where the treated mouse is allowed to regain consciousness following anaesthetic 

effect and roam around the cage, might have aided siRNA distribution throughout the 

footpad skin layers.  

 

Nevertheless, Accell sd-siRNA is shown to be readily taken up by keratinocyte cells in 

monolayer cell culture, including primary keratinocyte cells extracted from freshly 

excised human breast skin, as demonstrated in the preceding chapter (Chapter 4). 

Keratinocytes are the main cell population in human skin epidermis and taken together 

these results provide confidence that if Accell sd-siRNA is deposited in the viable layer 
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of the epidermis with minimally invasive microneedle devices, it should be taken up at 

least by cells proximal to the deposition area. For more widespread distribution of 

Accell sd-siRNA in human skin epidermis, siRNA can be delivered using more closely 

spaced microneedles in an array or multiple devices can be delivered to the same 

treatment area to maximise skin deposition area.  

 

5.3.4 Ex vivo gene silencing in excised human breast skin 

Subsequent studies were performed in an attempt to detect functional gene silencing in 

excised human breast skin following Accell CD44 sd-siRNA delivery via coated steel 

microneedles. Steel microneedles were coated with either Accell CD44 sd-siRNA or 

Accell TD101 non-targeting control sd-siRNA and then delivered to 6 freshly excised 

human skin specimens (Table 5.1). CD44 gene expression was then analysed 48 h post-

delivery by RT-qPCR to determine the levels of siRNA mediated gene silencing.  

 

Table 5.1:  List of human breast skin specimens with their respective age that were treated 

with functional Accell sd-siRNA-coated microneedles.  

 

Human Skin Specimen No. Age (-year-old) Gender 
1 unknown Female 
2 54 Female 
3 54 Female 
4 70 Female 
5 69 Female 
6 50 Female 

 

The ability to coat steel microneedles with siRNA of high concentration (siRNA 

solubility of up to 200 mg mL-1) allows the loading of high doses of siRNA onto steel 

microneedles (up to 40 µg). Coating using the pipette tip coating method provides 

accurate estimation of theoretical maximum siRNA loading onto the surface of steel 

microneedles based on known siRNA concentration and predetermined coating 

reservoir volume. siRNA coated onto steel microneedles can then be recovered by 

washing in a small volume of buffer, the concentration of nucleic acid of which can be 

quantified using high sensitivity UV spectrophotometer to establish the efficiency of the 

coating technique by quantifying the actual amount of siRNA loaded onto the 

microneedle devices (Chong et al. 2013). The optimised microneedle coating and 
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siRNA recovery techniques lead to the ability to accurately quantify siRNA deposition 

payload in the skin after microneedle delivery. 

 

For each human skin specimen, 12 microneedle devices were coated, 4 of which were 

randomly selected for siRNA recovery for quantification to determine the average 

siRNA coating dose (pre) and the remaining 8 devices were delivered to the excised 

human breast skin. The amount of siRNA left on the microneedle devices after (post) 

delivery to human skin was then recovered and quantified (Figure 5.21).  

 

 
Figure 5.21:  Accell sd-siRNA coating recovered from the surface of steel microneedles 

pre- and post-insertion into excised human breast skin. A theoretical 

maximum loading mass of 20 µg of sd-siRNA per device was loaded (pre). 

(Microneedle device used = 5 × 700µm, Georgia Institute of Technology; 

TD101 = Accell TD101 non-targeting control sd-siRNA; CD44 = Accell CD44 

sd-siRNA; n = 4 for pre; n = 8 for post; error bar = standard deviation; S1 to S6 

= human skin specimens with age specified in Table 5.1) 

 

As depicted in Figure 5.21, for a theoretical maximum loading dose of 20 µg, between 

16.0 ± 1.58 µg and 23.9 ± 3.26 µg Accell sd-siRNA was coated onto the microneedle 

device. Between 73.3 ± 7.02 % and 93.3 ± 3.48 % siRNA was then deposited into 

excised human breast skin (Figure 5.22), leaving between 1.4 ± 0.73 µg and 5.4 ± 1.87 

µg siRNA on the microneedles post-insertion into human skin (Figure 5.21). The ability 

to accurately determine theoretical maximum nucleic acid loading and then quantify 

delivery dose via coated steel microneedles is a novel achievement (Chong et al. 2013) 
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as previously reported microneedle delivery dose was based on rough estimates of drug 

loading and presumed delivery dose estimated from average depth of coated 

microneedle penetration (Gill and Prausnitz 2007a; Gill et al. 2010; Gonzalez-Gonzalez 

et al. 2011) or estimation based on observed microneedle tip dissolution in the case of 

soluble microneedle devices (Gonzalez-Gonzalez et al. 2011; Lara et al. 2012).  

 
Figure 5.22:  Percentage of Accell sd-siRNA deposited into excised human breast skin 

specimens as calculated from Figure 5.21. (Microneedle device used = 5 × 

700µm, Georgia Institute of Technology; TD101 = Accell TD101 non-

targeting control sd-siRNA; CD44 = Accell CD44 sd-siRNA; n = 8; error bar = 

standard deviation; S1 to S6 = human skin specimens with age specified in 

Table 5.1) 

 

Skin penetration after blank and coated steel microneedle insertion on freshly excised 

human breast skin was compared using the OCT imaging system (Figure 5.23). The en 

face projection showed contrasting darkened spots that represent the microneedle 

penetration sites following blank microneedle insertion. The distinct penetration marks 

appeared to be more obvious than the penetration marks left by in vivo blank 

microneedles insertion in the back of hand and forearm skin of male volunteers (Figure 

5.8, 5.9 and 5.10). Transverse sections across the microneedle penetration sites revealed 

distinct microchannels on the skin epidermis and neighbouring superficial dermis as a 

result of blank microneedle insertion (Figure 5.23). In contrast, the appearance of 

microneedle penetration marks left by siRNA-coated microneedles was less contrasting 

with the natural skin tone of the en face projection. It is possible that whilst blank steel 

microneedles created what seemed like empty micron-scale channels, coated steel 
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microneedles may have deposited the siRNA payload into the microchannel, leaving a 

less obvious conduit. Transverse sections across the microneedle penetration sites 

revealed distinct microchannels that were not as wide or deep as those left by blank 

microneedles. This indicates that siRNA might have been deposited in the channels. 

However, this is an isolated observation, which needs to be repeated in more samples 

but is a nevertheless an encouraging observation.  

 

 
Figure 5.23:  En face and transverse sections of blank microneedle and siRNA coated 

microneedle (both devices 5 x 700µm, Georgia Insititute of Technology) 

penetration sites on excised human breast skin of a 38-year-old female 

patient at 0 h after microneedle insertion obtained through in vivo O.C.T. 

imaging. Transverse sections were from the middle regions of the control en 

face images or reslices across the microneedle penetration sites of the treated 

en face images. (Each coated microneedle coated with approximately 4 µg 

Accell CD44 sd-siRNA; Yellow line = thickness of the epidermis; Yellow 

arrow = microneedle penetration site; ED = epidermis) 

 

Finally, siRNA mediated gene silencing ex vivo was determined by quantifying mRNA 

levels of target gene (CD44) in excised human breast skin specimens that were treated 

with Accell CD44 sd-siRNA or Accell TD101 non-targeting control coated 

microneedles. Steel microneedles were inserted in the same orientation depicted in 

Figure 5.1, left in place for 10 min to allow sufficient time for the siRNA payload to 

dissolve before microneedle withdrawal. The treated skin area was then biopsied as 

shown in Figure 5.2. It was previously estimated that approximately 16.7 µg siRNA was 
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deposited from each microneedle device (Figure 5.21 and 5.22). Each treatment area 

was treated with 20 microneedles from 4 devices and approximately 16 microneedle 

puncture sites were in each 8 mm punch biopsy that was subsequently cultured for 48 h 

in a hanging insert organ culture setup before epidermal separation for RNA extraction 

and RT-qPCR quantification of the CD44 mRNA levels (Figure 5.24). Each treatment 

group (each bar on Figure 5.24), for which total RNA was extracted from two 8 mm 

diameter punch biopsies, was treated with approximately 53.4 µg siRNA.  

 

 
Figure 5.24:  CD44 mRNA levels in epidermal cells of human skin specimens treated 

with Accell CD44 sd-siRNA-coated microneedles at 48 h post-transfection. 

CD44 mRNA levels were relative to the non-targeting control (NTC) groups at 

each respective time-points and normalised to GAPDH endogenous control 

gene levels. (Microneedle device used = 5 × 700µm, Georgia Institute of 

Technology; NTC = Accell TD101 non-targeting sd-siRNA; CD44 = Accell 

CD44 sd-siRNA; n = 3 qPCR assay replicates; error bar = standard deviation; 

unpaired two-tailed t-test *** = significant reduction in mRNA levels 

compared with non-targeting control, p < 0.0001; ** = p <0.001)    

 

Significant CD44 mRNA reduction of 19.1 to 24.5% was found in 3 out of 6 treated 

skin specimens (specimen 1, 2 and 6). Insignificant CD44 mRNA reduction was found 

in another 2 skin specimens (specimen 3 and 4) and an increase in CD44 mRNA 

(specimen 5) was found in the remaining skin specimen. Consistent targeted mRNA 

reduction in skin tissue proved to be challenging, as the human skin is arguably the 
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most complex organ of the human body (Coulman et al. 2006a; Menon 2002). The 

human skin epidermis is formed from dividing basal keratinocytes that progressively 

differentiate and mature to form multiple skin layers in the viable epidermis over 

approximately 14 days. Cell differentiation and maturation terminates in the stratum 

corneum with the formation of anucleated keratin-filled corneocyte cell layer anchored 

in a lipophilic matrix to form densely cross-linked protein structure (Bouwstra and 

Honeywell-Nguyen 2002; Menon and Elias 2001).  

 

With constant cell differentiation in the viable layer of the skin epidermis and shedding 

of the stratum corneum, it is difficult to observe changes in mRNA levels mediated by 

siRNA following a single dose administration of siRNA. Most in vivo studies involving 

siRNA delivery to the skin have daily or every alternate day dosing regime over a 2 to 4 

week period (Gonzalez-Gonzalez et al. 2010b; Hickerson et al. 2011; Lara et al. 2012). 

It is technically impossible to apply a multiple dosing regime on excised human breast 

skin cultured in an ex vivo environment as skin removed from its in vivo environment 

deteriorates rapidly over time (Ng et al. 2009). Furthermore, physiological variability 

may exist between different skin donors that may affect treatment outcome and rate of 

skin deterioration during culture. From the point of surgery, excised human skin is 

stored and collected in organ culture medium at 4°C until the experiments were 

performed. The time lapse between human skin excision and skin treatment may have 

affected the freshness or viability of some of the excised skin samples. Moreover, the 

spacing and orientation of steel microneedles applied in these studies seem to deliver 

siRNA to cells proximal to the penetration site with localised siRNA diffusion, leaving 

the large surface area on the skin sample inaccessible to deposited siRNA.  

 

A recently published study (by a collaborating research group who provided the 

functional Accell sd-siRNA) demonstrated convincing CD44 gene silencing following 

Accell CD44 sd-siRNA delivery via soluble PAD microneedles on human skin 

equivalent grafted on immunocompromised mice (Lara et al. 2012). On each mouse, 

human skin graft of approximately 2×2 cm2 was microneedle treated with an estimated 

(base on observed average needle erosion) daily dose of 15 µg siRNA per mouse for 10 

days. For each treatment day, three consecutive arrays of 5×5 microneedle arrays with 2 

mm spacing between each microneedle was applied over the same treatment area. CD44 

inhibition of 45±6% was observed after CD44 sd-siRNA (n = 5) treatment of the skin 
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xenografts compared with non-specific sd-siRNA (n = 3). The observed reduction in 

CD44 mRNA levels was also supported by immunofluorescence of CD44 protein levels 

in histology sections of the skin samples (Lara et al. 2012). It appears that future clinical 

dosing of cutaneous siRNA delivery should involve frequent dosing with multiple 

applications of microneedle devices over the same treatment area to maximise surface 

area of siRNA deposition. 
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5.4 Conclusion 

The studies performed in this chapter provided strong evidence for the use of steel 

microneedles as a minimally invasive skin disruption method to deliver siRNA to the 

skin. Steel microneedles have been shown to penetrate the skin stratum corneum to 

deposit its coated siRNA payload in the viable epidermis as well as the dermis along the 

length of microneedle penetration. In vivo and ex vivo OCT skin imaging following 

microneedle penetration highlights the difference between the biomechanical properties 

of the skin in its natural in vivo environment and excised skin used in laboratory 

settings. Nevertheless, excised human skin represents a pre-clinical skin model with the 

closest skin architecture resemblance to in vivo human skin. 

 

Overall, the series of ex vivo skin experiments performed in this chapter highlights the 

difficulty in designing robust siRNA delivery and gene silencing detection studies in 

excised human skin. Fluorescent siRNA delivery studies provided information on 

siRNA deposition in excised human skin following microneedle administration and the 

diffusion characteristics of siRNA from the deposition sites. Quantification of cellular 

siRNA uptake with flow cytometric analysis was inconclusive but was confirmed by 

confocal microscopy whereby cells with visible cytoplasmic siRNA presence were 

observed. Gene silencing detection results were not consistent, as target mRNA 

reduction was significant in only 3 out of 6 human skin specimens. Given the single 

dosing regime applied in the study as well as the short duration of excised skin viability, 

it was remarkable to be able to detect gene silencing in an organ as structurally complex 

as the human skin.  

 

The techniques and knowledge acquired from these studies provides useful insight 

towards future development of clinical gene delivery strategies targeting the human 

skin. The positive results published on in vivo delivery of Accell sd-siRNA (Chong et 

al. 2013; Gonzalez-Gonzalez et al. 2010b; Lara et al. 2012) coupled with the efficiency 

of Accell sd-siRNA in monolayer in vitro culture of keratinocyte cells (Chapter 4) 

further supports the use of the modified sd-siRNA for local delivery of siRNA to the 

skin for the treatment of skin conditions caused by aberrant gene expression.  
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6 Delivery of nucleic acids to in vivo skin models  

6.1 Introduction 

It has previously been mentioned that the laboratory model with closest structural 

resemblance to in vivo human skin is excised human skin, cultured in an ex vivo 

environment. In the preceding chapter (Chapter 5), despite evidence of cellular uptake 

of fluorescent siRNA in ex vivo human skin, consistent detection of siRNA mediated 

gene silencing at the cellular level was not achieved. There were inherent difficulties in 

maintaining viability of long-term culture of excised human skin to accommodate the 

need for multiple siRNA dosing over a period of 7 to 14 days, as excised human skin 

deteriorates rapidly after 72 h in culture (Ng et al. 2009).  

 

Although in vivo mouse skin models are not representative of human skin, they have 

widely been used in laboratory testing of nucleic acid delivery to the skin (Gonzalez-

Gonzalez et al. 2011; Gonzalez-Gonzalez et al. 2009; Gonzalez-Gonzalez et al. 2010b; 

Hengge et al. 1996; Hsu and Mitragotri 2011; Inoue et al. 2007; Meykadeh et al. 2005; 

Nakai et al. 2010; Nakai et al. 2007). The skin barrier layer, the stratum corneum is also 

present in mouse skin, which can be tested for disruption by microneedle devices 

(Chong et al. 2013; Gonzalez-Gonzalez et al. 2011; Gonzalez-Gonzalez et al. 2010b). 

As part of the NIH “GO Delivery!” grant collaboration, a visit was made to laboratories 

in Stanford University and Transderm Inc. in the USA to share the coated steel 

microneedles gene delivery system, to take advantage of the sophisticated animal 

models and analysis tools available in collaborators’ facilities and to exchange gene 

delivery expertise between laboratories. This collaboration resulted in the investigation 

of delivery of nucleic acid such as pDNA and siRNA to mouse paw skin and transgenic 

mouse paw skin, respectively. 

 

6.1.1 In vivo skin models for nucleic acid delivery 

This thesis takes advantage of the availability of freshly excised human skin, which is 

the most relevant membrane for skin studies. However, the availability of fresh human 

skin is limited and therefore, animal skin, which includes primates, porcine, mouse, rat 

and guinea pig is frequently used by other research groups (Godin and Touitou 2007; 

Kim et al. 2012b; Wang et al. 2007). These animal skin models are more readily 
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available than human skin and are important in basic proof-of-concept research to 

improve the understanding of drug delivery across the skin barrier. 

 

In the case of nucleic acid delivery, mouse, pig skin and human skin or human skin 

equivalents xenografted onto immunocompromised mice are commonly used as in vivo 

models for gene expression or silencing (Gonzalez-Gonzalez et al. 2011; Gonzalez-

Gonzalez et al. 2009; Hengge et al. 1996; Hsu and Mitragotri 2011; Lara et al. 2012). 

Porcine skin has been shown to bear the closest structural resemblance to human skin 

with comparable skin permeability results (Godin and Touitou 2007) and epidermal 

gene expression patterns following intradermal delivery of naked pDNA (Hengge et al. 

1995; Hengge et al. 1996). In porcine ear skin, the thickness of stratum corneum is 

approximately 17 to 28 µm and thickness of viable epidermis is approximately 60 to 85 

µm (Jacobi et al. 2007), which is comparable to human skin (Huzaira et al. 2001; Lee 

and Hwang 2002; Sandby-Moller et al. 2003). Porcine skin is used in some in vivo gene 

delivery studies but it is used mainly as freshly excised skin, in an ex vivo culture 

environment similar to excised human skin (Hengge et al. 1996; Vogel 1999).  

 

Rodent skins are most commonly used in in vivo studies due to their availability, small 

size, uncomplicated handling and relatively low cost. However, a study comparing gene 

expression in the human, porcine and mouse epidermis following intradermal pDNA 

injection found that mouse skin expressed the reporter gene in the epidermis, dermis 

and underlying fat and muscle layers whilst gene expression was found predominantly 

in the viable layer of the human and porcine skin epidermis (Hengge et al. 1996). The 

mouse skin is thin with epidermis thickness of approximately 10 µm (Hansen et al. 

1984). As a consequence, it was more difficult to inject and resulted in significantly 

lower quantitative expression compared to human and porcine skin (Hengge et al. 

1996). The reason for differences in pattern and level of gene expression in mouse skin 

was unclear but it is thought to be related to structural difference between mice and 

human or pig skin (Hengge et al. 1996). 

 

6.1.2 Delivery of nucleic acid to mouse paw skin  

The studies in this chapter describe gene delivery to mouse paw skin. The mouse paw 

skin is considerably thicker than other parts of the mouse body with stratum corneum 



	  

	  

	  
CHAPTER 6 

	  
	   	  

241	  

thickness of approximately 50 µm and viable epidermis thickness of approximately 100 

µm (Gonzalez-Gonzalez et al. 2009). The mouse paw skin was selected for gene 

delivery studies due to its thickness and similarity in terms of upper skin layer 

composition to human skin. The collaborating group was also particularly interested in a 

monogenic skin disorder, pachyonychia congenita, which manifests mainly in human 

foot sole (Leachman et al. 2008; Leachman et al. 2009).   

 

6.1.2.1 pUbc-luc2/eGFP reporter plasmid DNA  

The pUbc-luc2/eGFP is a dual-mode reporter plasmid that co-expresses a variant of the 

bioluminescent firefly luciferase enzyme (luc2) fused to enhanced green fluorescent 

protein (eGFP) to enable localisation of regions of gene transfer and characterisation of 

the transfected cells within the skin. The plasmid utilises the human ubiquitin C (Ubc) 

promoter, which improves the uniformity of gene expression throughout the epidermal 

layers (Gonzalez-Gonzalez et al. 2011). The commonly utilised plasmid promoter, the 

human cytomegalovirus (CMV) promoter causes confined reporter gene expression in 

the upper layer (granular and stratum corneum) of the epidermis (Gonzalez-Gonzalez et 

al. 2010a; Sawamura et al. 2002).  

 

A previously published study has reported that pUbc-luc2/eGFP pDNA coated onto 

steel microneedles was capable of delivering higher amounts of nucleic acid that 

resulted in significantly sustained and prolonged expression of reporter gene compared 

to soluble biodegradable protrusion array device (PAD) (Gonzalez-Gonzalez et al. 

2011). In this collaborative study, the effect of increasing the amount of pDNA 

deposited using steel microneedle devices with different shapes (regular, serrated and 

concave), needle length (750µm and 500µm) and spatial density between one needle tip 

and another (1.6 mm and 0.8 mm) on reporter transgene expression was investigated.  

 

6.1.2.2 Tg CBL/hMGFP mouse  

The Tg CBL/hMGFP mouse that co-expresses click beetle luciferase (CBL) and 

humanised monster green fluorescent protein (hMGFP) genes in the skin was generated 

through cross-breeding of a silenced dual-reporter mouse (CBL and hMGFP) with a 

mouse expressing Cre recombinase driven by a keratin 14 (K14) promoter that was 

specific to keratinocytes (Gonzalez-Gonzalez et al. 2009). Gene expressions in the 



	  

	  

	  
CHAPTER 6 

	  
	   	  

242	  

resultant transgenic reporter mouse are driven by a synthetic “chick” β-actin (CAG) 

promoter, which is a hybrid of the human CMV immediate early enhancer element and 

β-actin promoter. The hybrid promoter results in localised gene expression in the 

epidermis, mainly as aggregates in the granular layer and uniformly throughout the 

stratum corneum. Expression of hMGFP mRNA is also confined to the upper epidermal 

layers (Gonzalez-Gonzalez et al. 2009). In previous studies, delivery of functional 

naked CBL3 non-sd-siRNA through intradermal injection (Gonzalez-Gonzalez et al. 

2009) and functional Accell CBL3 sd-siRNA through PAD (Gonzalez-Gonzalez et al. 

2010b) resulted in reporter gene silencing in the transgenic mouse model. The CBL3 

siRNA targets the CBL coding region of the CBL/hMGFP gene.  

 

The drug-coated steel microneedle system is a simple and cost-effective method for 

cutaneous delivery of sufficient doses of therapeutic nucleic acids with high 

reproducibility, biocompatibility and reliable skin puncture, giving the coated steel 

microneedle system prospective clinical advantages over alternative microneedle and 

other systems (Gonzalez-Gonzalez et al. 2011; Pearton et al. 2012). The ability to 

demonstrate gene silencing in vivo in a transgenic mouse model following functional 

delivery of Accell sd-siRNA through coated steel microneedles would further support 

the utility of the coated steel microneedle system for the delivery of nucleic acid to the 

skin.  

 

6.1.3 Aim and objectives 

The aim of this chapter was to determine the ability of steel microneedle devices in 

facilitating the delivery of nucleic acid to in vivo animal skin models and subsequently 

influence gene expression. The objective of the experiments were: 

• To deliver reporter pDNA to mouse paw skin using the coated steel microneedle 

system for gene expression 

• To investigate the effect of needle shapes, length and spatial density on pDNA 

delivery and expression 

• To deliver functional siRNA to transgenic mouse paw skin using the coated steel 

microneedle system for silencing of reporter gene 

• To quantify gene expression reduction by intravital imaging, RT-qPCR and 

fluorescence imaging 
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6.2 Methods 

Unless specified, the suppliers of all reagents and materials have previously been 

mentioned or were obtained from Thermo Fisher Scientific, UK. 

 

6.2.1 pUbc-luc2/eGFP plasmid DNA delivery to mouse paw 

These experiments were performed at either Transderm Inc., Santa Cruz, USA under the 

supervision of Dr. Roger Kaspar or Stanford University, Stanford, California, USA 

under the supervision of Dr. Christopher Contag with the help of Dr. Emilio Gonzalez-

Gonzalez and Dr. Maria Fernanda Lara. All materials except the steel microneedle 

devices were gifts from Dr. Roger Kaspar and Dr. Christopher Contag and were used as 

provided unless stated otherwise.  

 

6.2.1.1 pUbc-luc2/eGFP plasmid DNA 

The pUbc-luc2/eGFP pDNA is a 3.7 Kb construct generated by ligation of the Ubc 

promoter and the luc2/eGFP coding region of pFULG60 into the backbone of pCMV-

hMGFP/CBL with the aid of enzyme digestions (Gonzalez-Gonzalez et al. 2011). 

Ready prepared pDNA solutions of 4.6 mg mL-1 and 9.2 mg mL-1 concentrations were 

used. 

 

6.2.1.2 Animal models 

CD1 mice (Charles River, USA) were used according to procedures approved in animal 

protocol number 21627 by the Administrative Panel for Laboratory Animal Care at 

Stanford University, using the guidelines set by the Institutional Animal Care and Use 

Committees of the National Institutes of Health and Stanford University.  

 

6.2.1.3 Microneedle coating and delivery of pUbc-luc2/eGFP 

6.2.1.3.1 Coating pUbc-luc2/eGFP onto microneedle devices 

Steel microneedle devices (Cardiff University, UK) were coated with pUbc-luc2/eGFP 

pDNA using the pipette tip dip-coating method as described in section 2.2.5.2. Two sets 

of experiments (Experiment 1 and Experiment 2) were performed on two sets of mice 

with different loading doses of pDNA. 
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Experiment 1: For a set of 3 microneedle devices of the same dimension and design, 3 

µL of pUbc-luc2/eGFP pDNA 4.6 mg mL-1 in TE buffer was used to coat the 

microneedle devices (5 × 700µm Regular, 5 × 700µm Serrated and 5 × 700µm 

Concave) to provide a theoretical maximum loading of 4.6 µg plasmid DNA per 

microneedle device. The coated microneedle devices were then allowed to dry at 4°C 

for 18 h.  

 

Experiment 2: For a set of 6 microneedle devices of the same dimension and design, 

4.5 µL pUbc-luc2/eGFP plasmid DNA 9.2 µg µL-1 in TE buffer was used to coat the 

microneedles (5 × 700µm Regular, 10 × 700µm Regular, 5 × 700µm Serrated, 5 × 

700µm Concave, 5 × 500µm Regular and 10 × 500µm Regular) to provide a theoretical 

maximum loading of 6.9 µg pDNA per microneedle device. The coated microneedle 

devices were then allowed to dry at 4°C for 32 h.  

 

6.2.1.3.2 Liquid loading pUbc-luc2/eGFP onto microneedle devices 

Experiment 1: The pUbc-luc2/eGFP pDNA was liquid loaded onto steel microneedle 

devices (5 × 500µm Pocketed; Cardiff University, UK) by pipetting 1 µL pUbc-

luc2/eGFP pDNA 4.6 µg µL-1 onto the microneedles immediately before use to provide 

a theoretical maximum loading of 4.6 µg pDNA per microneedle device.   

 

6.2.1.3.3 Delivery of dry-coated pUbc-luc2/eGFP to mouse paw 

Mice were anaesthetised with 2-3% isoflurane during microneedles insertion. 

 

Experiment 1: Two cohorts of mice (3 mice per group) were treated with the solid-

coated or liquid loaded steel microneedles. The first cohort of mice were treated with 5 

× 700µm Regular coated microneedle devices on the left paws and 5 × 500µm Pocketed 

liquid-loaded microneedle devices on the right paws. The second cohort of mice were 

treated with 5 × 700µm Serrated coated microneedle devices on the left paws and 5 × 

700µm Concave coated microneedle devices on the right paws.  The coated and liquid-

loaded microneedle devices were held tightly with a pair of forceps and manually 

inserted into the middle region of mouse paw (in between the footpads) and held in 

place for 5 min. The microneedle devices were then left seated on the skin for an 
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additional 15 min (total insertion time 20 min) before being removed. Transgene 

expressions on the treated paws were analysed 24 h post treatment by in vivo 

bioluminescence imaging as detailed in section 6.2.1.4.2.  

 

Experiment 2: Three cohorts of mice (3 mice per group) were treated with the solid-

coated steel microneedles. The first cohort of mice were treated with 5 × 700µm 

Regular microneedle devices on the left paws and 10 × 700µm Regular microneedle 

devices on the right paws. The second cohort of mice were treated with 5 × 700µm 

Serrated microneedle devices on the left paws and 5 × 700µm Concave microneedle 

devices on the right paws. The third cohort of mice were treated with 5 × 500µm 

Regular microneedle devices on the left paws and 10 × 500µm Regular microneedle 

devices on the right paws. The coated microneedle devices were applied as described in 

Experiment 1. Transgene expression on the treated paws were analysed 24 h (Day 1) 

and 120 h (Day 5) post treatment by in vivo bioluminescence imaging as detailed in 

section 6.2.1.4.2.  

 

6.2.1.4 Analysis of pUbc-luc2/eGFP delivery and transgene expression 

6.2.1.4.1 Quantification of pUbc-luc2/eGFP deposition 

Prior to application, the mass of pDNA loaded onto each microneedle device was 

estimated from the mass of pDNA in the known volume of coating formulation that was 

used to coat the microneedles. Following application, the microneedle devices were 

rinsed with a small volume of buffer (100–150 µL) with agitation for 10 min to recover 

pDNA from the surface of the microneedles. The concentration of the recovered siRNA 

was measured using the NanoDrop spectrophotometer as described in section 3.2.1.5 

and the mass of plasmid DNA recovered was calculated as described in section 3.2.5.1.  

The mass of pDNA deposited on the paw skin was calculated by deducting the average 

mass of pDNA remaining on the microneedles after treatment from the theoretical 

maximum loading dose. Microneedle devices were then cleaned for re-use using the 

method described in section 3.2.5.2. 
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6.2.1.4.2 In vivo bioluminescent imaging of gene expression 

Mice were imaged at the indicated time points following microneedle application using 

the IVIS Spectrum Imaging System (Perkin Elmer, USA) (Contag and Bachmann 2002; 

Gonzalez-Gonzalez et al. 2011). Mice were anaesthetised with isoflurane and D-

luciferin (Biosynth International, Inc., USA) was injected (100 mL of a 30 mg mL-1 

solution; 150 mg kg-1 body weight) into the peritoneal cavity of the mice. After 10 min, 

the anaesthetised mice were imaged in vivo using the IVIS system. The resulting light 

emission was quantified using the Living Image software version 3.1 (Perkin Elmer, 

USA). 

 

6.2.2 siRNA delivery to the paws of transgenic mouse  

These experiments, except the skin sectioning and immunofluorescence imaging 

experiments were performed at either Transderm Inc., Santa Cruz, USA under the 

supervision of Dr. Roger Kaspar or Stanford University, Stanford, California, USA 

under the supervision of Dr. Christopher Contag with the help of Dr. Emilio Gonzalez-

Gonzalez, Dr. Maria Fernanda Lara and Dr. Tycho Speaker. All materials except the 

steel microneedle devices were gifts from Dr. Roger Kaspar and Dr. Christopher Contag 

and were used as provided unless otherwise stated.  

 

6.2.2.1 siRNA sequences 

Accell modified sd-siRNA (Accell CBL3 sd-siRNA; siRNA sequence: 5′-

UAACGAUCCACGACGUAAA) was used to target the CBL3 coding region of 

transgenic hMGFP/CBL mouse mRNA. A nonspecific self-delivery K6a_513a.12 

siRNA (Accell TD101 non-targeting sd-siRNA) targeting a keratin 6a mutation not 

present in the mouse model was used as a negative control (Hickerson et al. 2011). 

 

6.2.2.2 Animal models 

Transgenic (Tg) CBL/hMGFP mice (Gonzalez-Gonzalez et al. 2009), were obtained 

from the breeding colonies at Stanford University, Stanford, California, USA. 

Transgenic hairless (Tg-h) CBL/hMGFP mice (Chong et al. 2013) were bred by Dr. 

Emilio Gonzalez-gonzalez by crossbreeding Tg CBL/hMGFP mice, with skh1 hairless 

mice, purchased from Charles River (Wilmington, MA, USA). All mice were treated 
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according to the guidelines of both the National Institutes of Health and Stanford 

University.  

 

6.2.2.3 Microneedle coating and delivery of siRNA 

6.2.2.3.1 Coating siRNA onto microneedle devices 

The Accell CBL3 siRNA (Dharmacon, Thermo Fisher Scientific, USA) 70 µg µL-1 and 

Accell TD101 siRNA (Dharmacon, Thermo Fisher Scientific, USA) 80 µg µL-1 in PBS 

were coated onto steel microneedle devices (10 × 700µm Regular, 5 × 500µm Regular; 

Cardiff University, UK) using the dip-coating method described in section 2.2.5.2. Two 

µL of the siRNA coating solutions were loaded into pipette tips as reservoirs for 

coating. Then, steel microneedle devices (4 devices per treatment group) were coated 

with siRNA to provide a theoretical maximum loading of 35 µg Accell CBL3 and 40 µg 

Accell control sd-siRNA onto microneedle devices, respectively. The coated 

microneedle devices were then allowed to dry at 4°C for up to 18 h.  

 

6.2.2.3.2 Delivery of siRNA to the paws of transgenic mice 

Two cohorts of transgenic mice (4 mice per group) were treated with the siRNA-coated 

microneedles. The first cohort of hairless transgenic mice (Group 1) were treated with 5 

× 700 µm Regular solid-coated microneedle devices loaded with Accell CBL3 siRNA 

on the right paws. On the counterpart left paws, Accell TD101 non-targeting control 

siRNA were administered. The second cohort of transgenic mice (Group 2) were treated 

with 10 × 500 µm Regular solid-coated microneedle devices loaded with Accell CBL3 

siRNA on the right paws. On the counterpart left paws, Accell TD101 non-targeting 

control siRNA was administered.  

 

Mice were anaesthetised with 2-3% isoflurane prior to microneedle administration. The 

coated microneedle devices were applied as described in section 6.2.1.3.3. The mice 

were treated at the same location daily for 10 days, except day 2. At day 10, the mice 

were sacrificed by CO2 asphyxiation and the treated paw skin was removed by surgical 

dissection. Analysis of gene silencing was then performed using the methods detailed in 

section 6.2.2.4.  
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6.2.2.4 Analysis of siRNA delivery and gene silencing 

6.2.2.4.1 Quantification of siRNA deposition 

Prior to application, the mass of siRNA loaded onto each microneedle device was 

estimated from the mass of siRNA in the known volume of coating formulation that was 

used to coat the microneedles. Following application, the mass of siRNA deposited was 

quantified as described in section 6.2.1.4.1, substituting plasmid DNA with siRNA. The 

mass of siRNA deposited on the paw skin was calculated by deducting the average mass 

of siRNA remaining on the microneedles after treatment from the theoretical maximum 

loading dose. 

 

6.2.2.4.2 Quantification of protein expression 

Prior to initial treatment (Day 0), mice were anaesthetised with 2-3% isoflurane and 

imaged intravitally using the Maestro Optical imaging system (Perkin Elmer, USA) 

(Gonzalez-Gonzalez et al. 2010b; Hickerson et al. 2008). Imaging was repeated every 

alternate day, on days 2, 4, 6, 8 and 10 of the treatment regimen. An excitation filter of 

445–490 nm and a long-pass emission filter (515 nm) were used. Filter sets were set to 

capture images with 10 nm windows automatically from 500 to 850 nm using the 

Maestro software, with an automatically calculated exposure time. The resulting TIFF 

cube image was spectrally unmixed using a user-defined hMGFP protocol. Each 

spectrum was set by unmixing autofluorescence from a negative non-hMGFP 

expressing mouse analysed in parallel with a Tg CBL/hMGFP positive mouse to select 

appropriate regions. In the case of Tg-h mice, each spectrum was set by unmixing 

autofluorescence from a hairless skh1 negative non-hMGFP expressing mouse analysed 

in parallel with a Tg-h CBL/hMGFP positive mouse to select appropriate regions. The 

conditions and subject positioning for image acquisition were standardized to facilitate 

meaningful data comparison.  

 

Quantitative analysis was performed using ImageJ software by selecting the treatment 

area (avoiding the brighter footpads of each paw) and calculating the average signal 

(counts s-1 mm-1) at the various imaging time-points. The ratio of average signal in the 

right (CBL3 treatment) versus left (TD101 non-targeting control) paws was determined 

for each mouse, normalised with respect to the pre-treatment (Day 0) levels.  
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6.2.2.4.3 Quantification of gene expression  

At the end of 10-day treatment, skin tissues from three mice per cohort were 

immediately frozen in dry ice. Tissue from each sample was lysed by Dr. Maria 

Fernanda Lara using the Qiazol lysing reagent (Qiagen, UK) and homogenised for 120 s 

at 6 m s-1 in a FastPrep-24 ‘bead beater’ instrument (MP Biomedicals, USA) using D 

matrix to mechanically lyse the cells. Total RNA was isolated using the Qiagen RNeasy 

Mini Kit (Qiagen, UK) according to the manufacturer’s instructions. Total RNA 

isolated was quantified using the NanoDrop spectrophotometer, as described in section 

3.2.1.5.  

 

Reverse transcription on the isolated RNA was performed by Dr. Maria Fernanda Lara, 

using the Superscript III First Strand Synthesis system (Invitrogen Life Technologies, 

USA) with 1 to 2 µg of total RNA and random hexamer primers. The RT enzyme was 

heat denatured at 85°C for 5 min. The qPCR reactions were prepared by combining 1 

µL Taqman 20× gene expression assay, 10 µL Taqman 2× PCR mix and 9 µL of diluted 

cDNA samples in a 96-well plate. The qPCR reactions were run using the ABI 7500 

Fast Sequence Detection system (Applied Biosystems, USA). Taqman gene expression 

assays, specifically designed for hMGFP (hMGFP-F: 50-

CCCCAAGGACATCCCTGACT; hMGFP-R: TGCTTCGCTCCCACGAGTA and 

probe: 6FAM-TCAAGCAGACCTTCCCCGA-MGBN FQ; Applied Biosystem, USA) 

was used for the target gene and specific for CD44 (Hs00153304_m1) was used as the 

endogenous gene control. All data points reported are the mean of three replicate assays 

and the standard error is reported.  

 

6.2.2.4.4 Skin sectioning and immunofluorescence 

Skin tissue from the region between the footpads of one mouse per cohort was excised, 

embedded in OCT and frozen on dry ice. The samples embedded in OCT blocks were 

cryosectioned using the Leica CM3050S Cryostat. Skin sections of 10 µm thickness 

were captured onto microscope slides and then mounted with VECTASHIELD® 

Mounting Medium containing 1.5 µg mL-1 4,6-diamidino-2-phenylindole (DAPI; 

Vector Laboratories Ltd., UK) for nuclear staining. Transgene fluorescence was 

visualised using the Leica DM IRB epifluorescence microscope and imaging system. 
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6.2.3 Data processing and statistical analysis  

Data processing and statistical analysis was performed as described in section 3.2.9.  
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6.3 Results and discussion 

6.3.1 In vivo pUbc-luc2/eGFP delivery and expression in mouse paw 

To evaluate the effect of microneedle shape, length and spatial density on the effect of 

pDNA deposition and subsequent gene expression, microneedles of various dimensions 

and spatial densities were coated with pUbc-luc2/eGFP pDNA and delivered to mouse 

paw skin. Using the nucleic acid recovery method as previously described, the dose of 

plasmid DNA deposited on the skin was determined (Figure 6.1).  

 

The theoretical maximum loading doses of pDNA coated per microneedle device were 

4.6 µg for experiment 1 and 6.9 µg for experiment 2. The mass of pDNA deposited on 

mouse paw was determined by assuming that the difference in mass between the 

theoretical maximum loading dose and that of nucleic acid recovered from the coated 

microneedles after insertion into mouse paw was due to deposition within skin. In 

experiment 1 (Figure 6.1A), average doses of nucleic acid deposited per solid-coated 

microneedle device were between 2.076 ± 1.14 µg (5 × 700µm Regular; Cardiff 

University, UK) and 3.707 ± 1.79 µg (5 × 700µm Concave; Cardiff University, UK), 

which were statistically insignificant (p > 0.05). Liquid-loaded pDNA deposition was 

not quantified as visible liquid formulation of pDNA was deposited on top of the skin 

surface rather than within the skin, which would lead to inaccurate estimation of 

delivered dose.  

 

In experiment 2 (Figure 6.1B), the average doses of pDNA deposited per solid-coated 

microneedle device were between 0.811 ± 1.009 µg (10 × 500µm Regular; Cardiff 

University, UK) and 3.526 ± 0.5357 µg (5 × 700µm Regular; Cardiff University, UK). 

The differences in nucleic acid deposition between the treatment groups with top two 

highest depositions (5 × 700µm Regular and 5 × 700µm Concave; Cardiff University, 

UK) and top two lowest depositions (10 × 500µm Regular and 5 × 500µm Regular; 

Cardiff University, UK) were statistically significant (p < 0.05).  

 

The results show that microneedles of longer needle length (700µm) deposited higher 

doses of nucleic acid than microneedles of shorter needle length (500µm). Several 

studies have suggested that the length, tip sharpness, spatial density and hardness of 
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microneedles influence the skin penetration ability of microneedle devices (Verbaan et 

al. 2007; Yan et al. 2010). A study reported that manual application of steel 

microneedles fabricated from the tip of 30G hypodermic needles of 300 µm in length on 

human skin that has been dermatomed to a thickness of 300 to 400 µm was 

unsuccessful in piercing the skin through the stratum corneum (Verbaan et al. 2007). 

Microneedles of 550 µm length or longer were successful in piercing the skin. The 

authors postulated that microneedles have to be long enough to overcome the skin’s 

elasticity in order for skin rupture and puncture to occur following microneedle 

application (Verbaan et al. 2007).  

 

 
Figure 6.1:  pUbc-luc2/eGFP plasmid DNA deposited into mouse paws in experiment 1 

(A) where a theoretical maximum loading of 4.6 µg pDNA was coated per 

microneedle device and experiment 2 (B) where a theoretical maximum 

loading of 6.9 µg pDNA was coated per microneedle device. (n = 3; * = 

significant difference in plasmid DNA deposition between indicated groups, p 

< 0.05) 

A 

B 
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Another study investigating solid silicon needle length of 100 to 1100 µm and needle 

densities of 400 to 11900 needles cm-1 on heat separated human epidermal membrane 

reported significantly increased drug flux across epidermal membrane when 

microneedles of 600 µm and longer with needle densities of 2000 needles cm-1 or lower 

were used (Yan et al. 2010). Similar to the aforementioned study, the authors attributed 

the lower microneedle penetration ability with microneedles of shorter length to the 

skin’s elastic properties, allowing the skin to fold around the microneedles during 

insertion, leading to ineffective puncture, which is overcomed by microneedles of 

longer length (Yan et al. 2010). Furthermore, skin penetration improved with 

microneedles of the same length of 400 µm but with lower needle density of 2000 

needles cm-1 compared to 5625 needles cm-1. This phenomenon can be explained by the 

“bed of nails” effect, whereby the pressure required by each needle tip to rupture and 

penetrate the skin is insufficient due to distribution of microneedle application force 

over a higher density of microneedles (Yan et al. 2010).  

 

From experience, studies using steel microneedles of 250 µm (5 × 500µm Regular; 

Cardiff University, UK) resulted in varying degree of success in in vivo human skin, in 

vivo mouse skin and ex vivo human skin (data not shown). More force was required 

when applying the microneedles of shorter length and inconsistent penetration was 

achieved. In addition, the depth of microneedle penetration on the skin is usually less 

than the actual length of the microneedles as shown in previous chapters and by other 

studies (Kim et al. 2010; Verbaan et al. 2007), thus resulting in lower doses of nucleic 

acid deposited from microneedles of shorter length when the same loading dose of 

nucleic acid is coated. From Figure 6.1B, plasmid DNA deposition from in-plane 

microneedle devices of higher needle spatial densities (10 needles per device) appeared 

lower than their lower needle density counterparts (5 needles per device) but the 

differences were statistically insignificant (p > 0.05). 

 

Transgene expressions following pUbc-luc2/eGFP delivery via solid-coated and liquid-

loaded steel microneedles were detected as bioluminescent signals that were 

standardised to the same exposure between all the cohorts. Localised region of interests 

of the same dimension were drawn on the treated paws to allow meaningful comparison 

of relative luminescence (Figure 6.2).  
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Figure 6.2:  In vivo bioluminescent imaging of pUbc-luc2/eGFP expression in mouse 

paws 24 h post-treatment with pDNA solid-coated and liquid loaded onto 

microneedle devices (Experiment 1). Cohort 1 mice were treated with 5 × 

700µm Regular solid-coated microneedle devices on the left paws and 5 × 

500µm Pocketed liquid loaded microneedle devices on the right paws. Cohort 

2 mice were treated with 5 × 700µm Serrated solid-coated microneedle devices 

on the left paws and 5 × 500µm Concave solid-coated microneedle devices on 

the right paws. Luminescence signals expressed within the region of interest 

(ROI; marked with red circles) were quantified using the IVIS software 

(numbers in red text boxes). (All microneedles were from Cardiff University, 

UK) 

 

 
Figure 6.3:  Bioluminescence quantification of pUbc-luc2/eGFP expression in mouse 

paws 24 h post-treatment with pDNA solid-coated and liquid loaded onto 

microneedle devices (Experiment 1). (n = 3) 
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From experiment 1, reporter gene expression was detected following delivery of pUbc-

luc2/eGFP solid-coated onto microneedle devices (Figure 6.3). Bioluminescence values 

were comparable between all the solid-coated microneedles treatment groups (p > 0.05). 

Delivery of liquid-loaded pDNA did not result in transgene expression and therefore, 

was not pursued further in experiment 2. The pocketed microneedles were 500 µm in 

length with a cavity (pocket) in between each needle opening to a larger cavity in the 

middle of the microneedle device (Figure 6.4). The presence of the cavity greatly 

reduced the strength of the microneedles with several needles from each device 

breaking upon application on the mouse paws. Attempts to strengthen the microneedles 

by attaching the device to a metal piece proved futile as liquid-loaded delivery using the 

repaired microneedles failed to result in significant gene expression possibly due to the 

inability of these weak microneedles to penetrate the tough skin of mouse paws. Even if 

penetration was achieved by some of the pocketed microneedles, it is likely that liquid 

formulation of pDNA was deposited on the surface of the skin rather than into the skin. 

 

 
Figure 6.4:  En face and microscopic images of the 5 × 500µm Pocketed microneedle 

device (Cardiff University, UK).  

 

In experiment 2, mice were imaged for bioluminescence transgene expression at day 1 

and day 5 post-delivery (Figure 6.5). Overall, bioluminescence signals at day 1 were 

similar across all treatment groups (p > 0.05) (Figure 6.6). At day 5, bioluminescence 

signals for both the treatment groups in cohort 1 were significantly higher than the rest 

of the treatment groups in cohort 2 and 3 (p < 0.05; n = 3). Comparison between other 

treatment groups at day 5 did not reveal any significant differences (p > 0.05; n = 3).  
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Figure 6.5:  In vivo bioluminescent imaging of pUbc-luc2/eGFP expression in mouse 

paws day 1 and day 5 post-treatment with pDNA solid-coated onto 

microneedle devices (Experiment 2). Cohort 1 mice were treated with 5 × 

700µm Regular solid-coated microneedle devices on the left paws and 10 × 

700µm Regular solid-coated microneedle devices on the right paws. Cohort 2 

mice were treated with 5 × 700µm Serrated solid-coated microneedle devices 

on the left paws and 5 × 700µm Concave solid-coated microneedle devices on 

the right paws. Cohort 3 mice were treated with 5 × 500µm Regular solid-

coated microneedle devices on the left paws and 10 × 500µm Regular solid-

coated microneedle devices on the right paws. 
 

 
Figure 6.6:  Bioluminescence quantification of pUbc-luc2/eGFP expression in mouse 

paws day 1 and day 5 post-treatment with pDNA solid-coated onto 

microneedle devices (Experiment 2). (n = 3) 
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When comparing between day 1 and day 5, bioluminescence signals increased for 

cohort 1 and 2 whilst signals decreased in cohort 3. The parameter that was different in 

cohort 3 was the microneedle length, whereby in cohort 3 shorter microneedles (500 µm 

length) were used compared to cohort 1 and 2 (700 µm length). Cohort 3 also deposited 

the least amount of pDNA (Figure 6.1B) due to the needle length. However, there was 

no clear correlation between the amount of pDNA deposited (Figure 6.1) and the 

resulting transgene expression (Figure 6.6), suggesting microneedle length may play a 

crucial role in determining the depth of nucleic acid deposition, which consequently 

affects transgene expression in mouse paws.   

 

Previous work has shown that intradermal delivery of large doses of naked pDNA (20 

µg) resulted in one to two orders of magnitude higher intensity signal than the use of 

either coated steel microneedles or PAD, as measured by in vivo bioluminescent 

imaging at 24 h (Gonzalez-Gonzalez et al. 2011). Subsequent attempts to increase 

pDNA delivery using microneedle devices did not result in significant improvement and 

this was again demonstrated in this study. Up to 3.7 µg pDNA was delivered using 

microneedle devices of different needle shapes, length and spatial densities but an 

improvement in gene expression compared to previous studies with intradermal 

injection was not observed.  

 

It has previously been reported that an increasing volume of intradermal injection 

increases reporter plasmid expression, suggesting that naked nucleic acid uptake into 

skin cells following intradermal injections is driven by hydrodynamic pressure 

(Gonzalez-Gonzalez et al. 2010a). Such hydrodynamic pressure is not present in the 

delivery of pDNA solid-coated onto microneedle devices, which could explain the 

observed lower magnitude of reporter gene expression using microneedles. 

Furthermore, there is a limit to the coating capacity of the microneedles and therefore, a 

lower dose of therapeutic material could be delivered using microneedle devices 

compared to intradermal injections (Gill and Prausnitz 2007b).  

 

The mechanism of DNA uptake in epidermal cells following microneedle application is 

still unclear but has been postulated to involve transient cell membrane disruption 

during microneedle penetration. However, previous unpublished work by collaborators 

noted that delivery of unmodified siRNA using soluble microneedle devices did not 
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result in detectable functional gene silencing in mouse skin despite siRNA being a 

significantly smaller and shorter nucleic acid sequence. These results imply that cellular 

uptake mechanism in the complex multilayer structure of skin varies between nucleic 

acids types and sizes as well as the species of skin model tested.  

 

It was also interesting to observe that with the coated steel microneedles, prolonged and 

sustained gene expression occurred for more than 30 days post treatment that was an 

order of magnitude higher than with the PADs (Gonzalez-Gonzalez et al. 2011).  Apart 

from the higher dose of DNA delivered by the steel microneedle devices, the thin mouse 

skin and greater strength of solid steel microneedles may have resulted in deeper skin 

penetration of up to 700 µm (Kim et al. 2010). Therefore, pDNA delivered to the mouse 

skin using steel microneedles was probably deposited deep in the dermis or muscles of 

the mouse paw to allow sustained gene delivery and expression. In this study, where 

shorter (500 µm) steel microneedles were used, significantly less nucleic acid was 

deposited. Due to the reduced length of the needle, nucleic acid delivery could be more 

superficial as with the PAD compared to the use of regular length (700µm) steel 

microneedle devices. This observation could not be translated to human skin as the 

human skin has thicker dermis and subcutaneous layer than the mouse paw skin 

(Hengge et al. 1996). 

 

In chapter 3, delivery of reporter pDNA coated onto steel microneedles resulted in rare, 

inconsistent, irregular reporter gene expression in excised human skin. The same 

observation has also been reported in a publication, suggesting insufficient hydration in 

human skin to dissolved deposited pDNA payload (Pearton et al. 2012). In excised 

human skin, steel microneedles penetrate up to the superficial dermis whilst in mouse 

paws, penetration could be much deeper than the dermis.  Furthermore, the movement 

of mouse in the cage could potentially aid in the dissolution of pDNA plug deposited in 

the paw. This warrants an investigation in future human skin delivery studies via coated 

steel microneedles. The human skin could be hydrated with cream or lotion before 

treatment with coated microneedles to improve drug dissolution in the skin. 
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6.3.2 In vivo siRNA delivery and silencing in transgenic mouse paw  

The potential of modified Accell sd-siRNA-coated stainless steel microneedles to 

mediate gene silencing in vivo was examined in a well-established transgenic mouse 

model (Gonzalez-Gonzalez et al. 2009; Gonzalez-Gonzalez et al. 2010b). Accell CBL3 

sd-siRNA has been designed to target the CBL coding region of the hMGFP/CBL 

mRNA. Steel microneedles (10 × 700µm Regular and 5 × 500µm Regular; Cardiff 

University, UK) were coated with Accell CBL3 and Accell non-targeting control sd-

siRNAs  with theoretical maximum loading doses of 35 µg (Accell CBL3 sd-siRNA) 

and 40 µg (Accell non-targeting sd-siRNA) per microneedle device. The solid-coated 

microneedles were inserted into the central region of the Tg or Tg-h CBL/hMGFP 

mouse paws (Figure 6.7) and the doses of siRNA deposited in the skin were then 

quantified (Figure 6.8). The treatment was administered daily, except on day 2, for 10 

days.  

 

 
Figure 6.7:  Digital images of the Tg-h CBL/hMGFP mouse paws treated with Accell 

siRNA solid-coated onto steel microneedle devices.  

 

On day 1, the dose of siRNA deposited into the skin was relatively low (less than 15 µg) 

(Figure 6.8). The reduced deposition was probably due to inexperience in microneedle 

application to the mouse paw skin model resulting in inadequate skin insertion (Chong 

et al. 2013). Drug delivery efficiency from coated microneedles is influenced by factors 

such as coating formulation, coating uniformity, depth of microneedle penetration and 

the skin hydration (Pearton et al. 2012). In this case, the limiting factor was probably 

the microneedle penetration depth, as inserting an in-plane microneedle array into the 

contoured area of mouse footpad for the first time was technically challenging (Chong 
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et al. 2013). Moreover, as the microneedles were coated using a manual coating 

procedure, some of the materials would inevitably be coated on the base of the 

microneedle device, which would not be deposited on the mouse paw but would be 

accounted for when quantifying post-insertion (Chong et al. 2013). Thereafter, 

techniques improved with deposition of approximately 54% to 82% (19 µg to 33 µg) of 

loaded siRNA from the 10 × 700µm Regular microneedle devices and approximately 

27% to 67% (11 µg to 24 µg) of loaded siRNA from the 5 × 500µm Regular 

microneedle devices during each treatment. As expected, microneedles of shorter length 

(500 µm) deposited on average lower doses of siRNA.  

 

 
Figure 6.8:  siRNA deposition dose in mouse paws treated with Accell CBL3 or control 

sd-siRNA-coated microneedles (A.	   10 × 700µm Regular; B. 5 × 500µm 

Regular) on treatment days 1, 4, 5, 7 and 9 of the 10 day-regime. (n = 4; * = 

significant difference in siRNA deposition between the control and CBL3 

groups, p < 0.05; unpaired two-tailed t-test for each treatment time-point) 

 

At certain time-points, the average doses of siRNA deposited were significantly 

different between treatment groups but were not noteworthy as they were variable 

between time-points with no apparent trend. In the cohort of mice treated with 10 × 700 

µm Regular microneedle devices, the deposition dose of control sd-siRNA on day 1, 5 

and 9 was significantly (p < 0.05) higher than that of CBL3 sd-siRNA and the delivery 

dose of non-targeting control sd-siRNA was never significantly lower than the CBL3 

sd-siRNA (Figure 6.8A). The difference between siRNA doses deposited in the cohort 

of mice treated with 5 × 500µm Regular microneedle devices was statistically 

insignificant (Figure 6.8B). It is sufficient to note that on average, significant doses of 

siRNA were deposited on the treatment area from both the steel microneedle devices at 
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all the dose quantification time-points. Previous study has delivered an estimate of 120 

ng siRNA (10% of the coated dose) per treatment using three PAD arrays (4 × 5 needle 

array; 2 mm spacing between needles) every 48 hours (Gonzalez-Gonzalez et al. 

2010b). Steel microneedles have the capacity to load and deliver higher doses of 

siRNA, resulting in less wastage, which has important cost and clinical efficacy 

implications for the delivery of expensive biotherapeutics to the skin (Chong et al. 

2013).  

 

At the end of treatment at day 10, mice were sacrificed and tissue from the treated skin 

area was harvested from three mice per cohort for gene expression analysis (Figure 6.9). 

In the cohort of mice treated with 10 × 700µm Regular microneedle devices, hMGFP 

mRNA reduction was found in two out of three mice. Mouse 2 and mouse 3 showed an 

average relative mRNA reduction of 49% and 38%, respectively. In the cohort of mice 

treated with 5 × 500µm Regular microneedle devices, hMGFP mRNA reduction was 

found in one out of three mice. Mouse 2 had an average relative mRNA reduction of 

50%. Gene silencing at the mRNA level was undetectable in other mice in the cohorts.  

 

 
Figure 6.9:  hMGFP mRNA levels in transgenic CBL/hMGFP mouse paws treated 

with Accell CBL3 or control sd-siRNA-coated microneedles (A.	   10 × 

700µm Regular; B. 5 × 500µm Regular) over a 10-day treatment regime. 

hMGFP mRNA levels from the CBL3 treated paw were quantified relative to 

the non-targeting control treated paw and normalised to CD44 endogenous 

gene control. Each column corresponds to the mean of three qPCR replicates 

and the error bars indicate 95% confidence interval.  
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Overall, the qPCR data showed poor technical reproducibility but due to limited time 

and sample quantities, the studies could not be repeated. Nevertheless, there are several 

factors that could have contributed to the equivocal RT-qPCR results. This study was 

conducted with an aggressive daily treatment regime whilst the study with the PADs 

was conducted with a less aggressive treatment regime of every 48 h to allow time for 

recovery following treatment. A recovery time in between treatment could prove 

crucial, as application of more rigid steel microneedle devices would have resulted in 

deeper needle penetration than the PADs. At least 1 mouse per cohort bled on at least 

one foot during each treatment with the steel microneedle devices and visible skin 

surface (stratum corneum) peeling caused by steel microneedle application was 

observed in all the mice treated with the coated steel microneedle devices. Despite the 

apparent physical aggressiveness of steel microneedles treatment, the mobility of treated 

mice was not affected throughout the daily treatment regime for 10 days.  

 

It is likely that tissue injury could have affected the expression of endogenous CD44 

gene control used for qPCR normalisation. CD44 is a major receptor for hyaluronic 

acid, which is involved in tissue repair and wound healing (Chen and Abatangelo 1999; 

Zhao et al. 2013). Hyaluronic acid is elevated transiently in granulation tissue during the 

wound healing process and the increased presence of hyaluronic acid stimulates 

increased generation of CD44 receptors (Chen and Abatangelo 1999; Zhao et al. 2013). 

CD44 is perhaps not the ideal endogenous gene control for evaluation of mRNA levels 

in the skin that has been treated with an invasive therapy. Throughout the 10 days 

treatment duration, any injured mouse skin may be in a different stage of wound healing 

to the other leading to variation in endogenous gene control levels.  

 

CD44 was also the target gene in ex vivo human skin studies in the preceding chapter 

(Chapter 5). Different individuals have different wound healing capacity, which may 

lead to variation between endogenous gene levels. However, within the same human 

skin specimens, treatment conditions were standardised whereby the non-targeting 

control and CD44 treatment group were treated similarly with siRNA-coated 

microneedle once and then cultured for the same duration of 48 h. Since CD44 mRNA 

was targeted, similar levels of CD44 mRNA increase induced by microneedle treatment 

in both the control and CD44 treatment group would ideally lead to a wider gene 

silencing effect of CD44 siRNA in the skin, which is ideal for proof of concept gene 
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silencing studies. Results are affected if CD44 mRNA levels rise significantly higher in 

one treatment group than the other, which may lead to false positive or false negative 

interpretation of results, as seen by statistically insignificant gene silencing in 3 out of 6 

humans skin specimens. Nevertheless, measures had been taken to ensure procedure 

standardisation and with the efficiency of Accell sd-siRNA in vitro (Chapter 4), it could 

be assumed that if sd-siRNA delivered through microneedle devices has been deposited 

in the viable epidermis, it should be taken up by skin cells proximal to the microneedle 

penetration site.  

 

Prior to using CD44 as the endogenous control gene, K14 was used but hMGFP mRNA 

reduction was not detectable in any treated mice. K14 is a keratinocyte-specific protein 

and K14 mRNA and protein is expressed in the basal layer of healthy mouse skin 

epidermis (Gonzalez-Gonzalez et al. 2009). In response to epidermal injury, migration 

of basal keratinocytes that express K5 and K14 to the wound occurs to help restore skin 

integrity (Patel et al. 2006). It is probable that in the process of wound re-

epithelialisation in some mouse paw injured by microneedle insertion, K14 gene 

expression is altered (Patel et al. 2006; Usui et al. 2005).  

 

Regular size steel microneedle devices are considered minimally invasive in human skin 

but when applied to mouse skin would be considered highly invasive due to the 

difference in skin structure of both human and mouse skin and the sheer difference in 

size of both species. These equivocal mRNA results highlight the degree of challenge in 

studying gene silencing in in vivo and ex vivo skin models. Gene silencing detection in 

vitro can easily be performed following direct exposure of cells to relevant doses of 

siRNA in a controlled monolayer environment. It is a far greater challenge to deliver 

and evaluate gene silencing at the sub cellular level within the complex skin structure 

with accuracy and reproducibility (Chong et al. 2013). 

 

Ideally, qPCR should have been repeated using a different endogenous control gene but 

due to limitations in the amount of total RNA isolated from small tissue samples, 

repetition of qPCR quantification was not performed. If qPCR was to be repeated, 

careful selection and validation of endogenous control gene that is stably expressed at 

different stages of wound healing have to be performed. A published study has reported 

the identification of endogenous control gene stable at hourly-defined stages of wounds 
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in mouse skin model (Turabelidze et al. 2010) but with a daily treatment regime, it 

would have been impossible to identify the stages of wound repair the mouse paws were 

undergoing. Therefore, siRNA mediated gene silencing at the mRNA level may not be 

the best indication of treatment outcome if an aggressive treatment regime was 

employed as in the mouse paws or an acute minimally invasive treatment was 

administered as in excised human skin, which by its own right is wounded at the edges 

when biopsied.  
 

Nevertheless, the transgenic mouse model expresses GFP in the upper layers of the 

epidermis (granular layer and stratum corneum). This enabled assessment of the effect 

of siRNA delivery on protein expression through non-invasive intravital imaging 

(Gonzalez-Gonzalez et al. 2009). The effect of Accell sd-siRNA delivery through 

coated steel microneedles on hMGFP protein expression during treatment was evaluated 

using an intravital fluorescence imaging system pre-treatment and every other day 

throughout the treatment regime (Figure 6.10).  

 
Figure 6.10:  Intravital fluorescence imaging of hMGFP protein expression in the paws 

of (mouse 2 of both cohorts as a representative example) transgenic 

CBL/hMGFP mouse treated with Accell CBL3 or control sd-siRNA-

coated microneedles (A.	  10 × 700µm Regular; B. 5 × 500µm Regular) at 

pre-treatment, day 8 and day 10 of a 10-day treatment regime. hMGFP 

fluorescence images was captured through the Maestro imaging system and 

fluorescence was pseudocoloured green.  

 

In both cohorts, quantification of fluorescence signal intensity at the treatment sites of 

mouse paws treated with Accell CBL3 sd-siRNA revealed reduction in hMGFP protein 

expression after 8 and 10 days relative to the non-targeting control paws (Figure 6.11). 
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At the end of treatment, at day 10, the reduction in signal intensities ranged from 33% 

to 51% (average 39.2%; n = 4) in the cohort of mice treated with 10 × 700µm Regular 

microneedle devices and 32% to 63% (average 38.9%; n = 4) in the cohort of mice 

treated with 5 × 500 µm Regular microneedle devices. These results indicated that 

delivery of siRNA through coated steel microneedles mediated a reduction in hMGFP 

protein expression at the treatment area of both cohorts of mice.  
 

 
Figure 6.11:  Quantification of hMGFP protein expression in transgenic CBL/hMGFP 

mouse paws treated with Accell CBL3 or control sd-siRNA-coated 

microneedles (A.	   10 × 700µm Regular; B. 5 × 500µm Regular) at pre-

treatment, day 8 and day 10 of a 10-day treatment regime. Intravital images 

captured using the Maestro imaging system were processed through ImageJ 

and quantified. The ratio of the signal intensity of the CBL3 treated area was 

relative to the non-targeting control treated area and normalised to day 0 (pre-

treatment).  
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Figure 6.12:  Fluorescence microscopy of transverse sections (10 µm) of transgenic 

CBL/hMGFP mouse paws following 10 days of treatment with Accell 

CBL3 or control sd-siRNA-coated steel microneedles (10 × 700µm 

Regular). Two sets of representative images (A and B) are shown from 

different areas of the skin samples. In each set, hMGFP protein expression (and 

lack thereof) was visualised from mouse paws treated with Accell non-

targeting control (top panel of each set; A1 and A2; B1 and B2) or Accell 

CBL3 (bottom panel of each set; A3 and A4; B3 and B4) sd-siRNA. The left 

panel shows the fluorescence overlay and the right panel shows the 

corresponding bright-field images. hMGFP fluorescence is pseudocoloured 

green. Nuclei were counterstained with DAPI and pseudocoloured blue. 

 



	  

	  

	  
CHAPTER 6 

	  
	   	  

267	  

hMGFP expression in the paw skin from the remaining mouse in each cohort was 

analysed at the skin structure level using established histology methods. Unfortunately, 

the placement of paw skin tissue in OCT medium from the mouse treated with Accell 

CBL3 sd-siRNA coated onto 5 × 500µm Regular microneedle devices was 

misinterpreted during the skin sectioning process, resulting in sectioning perpendicular 

to transverse sections, rendering results from the skin sections void. Nonetheless, paw 

skin tissues from the mouse treated with Accell sd-siRNA coated onto 10 × 700 µm 

Regular microneedle devices was successfully processed and fluorescence microscopy 

of the skin sections confirmed reduction in hMGFP protein expression (Figure 6.12).  

 

Skin sections from the sample treated with the non-targeting control sd-siRNA (Figure 

6.12 A1 and A2; B1 and B2) show intense GFP signal from the expression of hMGFP 

gene in the upper layers of the epidermis (Gonzalez-Gonzalez et al. 2009), which is 

clearly reduced in the CBL3 treated paw (Figure 6.12 A3 and A4; B3 and B4). The 

images in Figure 6.12 were taken from two separate areas within the treated region and 

are representative of all the sections over the treated area of the samples. The bright-

field images (right panel in Figure 6.12) show that the stratum corneum is intact in all 

the sections, including the regions of low fluorescence, confirming that the reduced 

fluorescence in the CBL3 treated paw was due to a reduction in protein expression 

rather than an artefact as a result of physical disruption in the skin caused by 

microneedle treatment (Chong et al. 2013).  

 

In any microneedle delivery system, dosing capacity is one of the major limiting factors.  

A previous study have demonstrated that delivery of Accell sd-siRNA using PAD 

microneedles induced reporter gene silencing in the Tg CBL/hMGFP reporter mouse 

(Gonzalez-Gonzalez et al. 2010b). However, partial mRNA reduction of up to 50% (n = 

3) was achieved (Gonzalez-Gonzalez et al. 2010b) and it was thought to be related to 

limited dose loading capacity of the PAD microneedles. Therefore, steel microneedle 

devices were explored as an alternative for enhanced drug loading capacity with the aim 

of improving gene silencing efficiency (Chong et al. 2013; Gonzalez-Gonzalez et al. 

2011; Pearton et al. 2012).  The enhanced loading capacity of steel microneedles (up to 

40 µg) did not result in increased gene silencing efficiency at the mRNA level 

compared to previous study whereby an estimated 120 ng of siRNA was administered 

through PAD microneedles per treatment (Gonzalez-Gonzalez et al. 2010b). However, 
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the method of siRNA administration with the PAD microneedles was different. With 

regards to PAD delivery, siRNA was coated onto three separate arrays of 4 × 5 PAD 

microneedles (60 in total) to deliver the coated dose over a wider area (Gonzalez-

Gonzalez et al. 2010b). In contrast, an in-plane array of steel microneedles (5 or 10 

needles per device) was used to deliver the coated dose over a narrow skin region 

(Chong et al. 2013). It is a possibility from previous experience (Chapter 5) that fewer 

microneedle penetration sites may have restricted the number of cells exposed to the 

siRNA treatment, thus compromising the efficiency of gene silencing. It is also evident 

from publications describing cutaneous delivery of functional siRNAs that gene 

silencing at the mRNA level in excess of 50% is rarely observed, regardless of siRNA 

dose or method of delivery (Gonzalez-Gonzalez et al. 2009; Gonzalez-Gonzalez et al. 

2010b; Hsu and Mitragotri 2011; Lara et al. 2012). Therefore, even at a greater dose 

with well-validated qPCR endogenous control, detection of a further reduction in gene 

expression at the mRNA level may not be possible. 

 

From these results, higher loading capacity was achieved with steel microneedles but 

did not result in obvious biological advantage over the use of PAD microneedles in 

mouse skin. However, the drug-coated steel microneedle system is a simple delivery 

method capable of loading high doses of biotherapeutics and may potentially be 

beneficial in in vivo human skin tissue for the treatment of conditions that requires 

larger dose of therapeutic nucleic acid (Chong et al. 2013). Overall, this study 

demonstrated for the first time, functional siRNA delivery using the coated steel 

microneedle system to mediate reporter protein silencing in vivo.  
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6.4 Conclusion  

The specialised gene detection systems and techniques developed in collaboration and 

exploited in the in vivo studies detailed in this chapter greatly informed the research 

project. Despite the obvious differences in mouse models compared to human skin, their 

availability makes them widely used tools in gene manipulation studies. The study on 

reporter pDNA delivery to mouse paws showed that naked pDNA dry-coated onto steel 

microneedles of various dimensions and densities resulted in significant levels of gene 

expression, which previously failed to manifest convincingly in the ex vivo excised 

human skin model. Successful in vivo gene expression from deposition of dry-coated 

pDNA via steel microneedles confirms the value of the coated steel microneedle system 

in delivery of nucleic acid to the skin.  

 

The in vivo siRNA mediated gene silencing study in the transgenic mouse model 

demonstrated for the first time the utility of the simple coated steel microneedle delivery 

system for delivery of functional siRNA to the skin. The study also demonstrated great 

siRNA loading and dosing capacity, deposition of siRNA within the skin and siRNA 

functionality as shown by reduction in protein expressions in vivo. The results from the 

in vivo study also highlights the complexity in detecting functional gene silencing at the 

mRNA level in a complex multilayer organ such as the skin, especially when treatment 

results in tissue injury. Nevertheless, the excellent gene silencing efficiency of Accell 

sd-siRNA in vitro, strong evidence of siRNA uptake in vitro, indication of siRNA 

deposition and uptake ex vivo in excised human skin as well as evident gene silencing of 

hMGFP gene in vivo gives impetus for clinical use of the coated steel microneedle 

system for the delivery of therapeutic siRNA to human skin. 
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7 General discussion 

7.1 Overview 

In the majority of pre-clinical and clinical studies performed to date, nucleic acid is 

delivered to the skin through intradermal injection. However, intradermal injection 

causes significant pain, which may be potentiated in certain skin conditions (Leachman 

et al. 2009). Therefore, less invasive physical skin disruption methods are actively 

pursued for targeted delivery of nucleic acid to the skin. While the ability of 

microneedle devices to penetrate the stratum corneum barrier in a minimally invasive 

and pain-free manner (Gill et al. 2008; Haq et al. 2009; Widera et al. 2006) for delivery 

of a range of therapeutic substances (extensively reviewed by Kim et al. 2012b) and 

nucleic acid, particularly pDNA (Coulman et al. 2006b; Gonzalez-Gonzalez et al. 2011; 

Ng et al. 2009; Pearton et al. 2012) has previously been demonstrated, the potential of 

such systems for the delivery of siRNA had not been shown at the start of the PhD 

(Geusens et al. 2009b). siRNA mediated RNA interference is an exciting therapeutic 

prospect as skin conditions caused by aberrant gene expression can potentially be 

treated by supressing the overexpressing gene through targeting and disrupting mRNA 

with complementary base sequences. This thesis aims to understand gene expression 

and gene silencing in in vitro, ex vivo and in vivo skin models employing various gene 

detection systems to realise the potential of targeted nucleic acid delivery to the skin 

using microneedles. 

 

Firstly, in vitro and ex vivo human skin culture models were developed (Chapter 2). The 

relative ease of growth and maintenance of the immortalised HaCaT cell line helped in 

preliminary and optimisation experiments while primary keratinocytes cultured in a 

controlled monolayer environment bore closer biological proximity to keratinocyte cells 

in the corresponding excised human skin. Ex vivo human skin culture was employed as 

a relevant pre-clinical model for gene delivery and expression studies.  

 

Steel microneedles of various shapes and dimensions were then characterised. 

Previously, steel microneedles were coated with drug formulations using a reusable dip-

coating station that has a dead volume, resulting in poor estimation of coating dose, 

material wastage and possible contamination with residual materials from previous 

coating process. A new technique for dip-coating microneedles was developed (Chapter 
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2) using single use pipette tips as a reservoir for coating, which allows precise 

estimation of the coated material and quantification of nucleic acid deposition following 

skin treatment (Chapter 5 and 6). It was also found that electropolishing the surface of 

steel microneedles might result in improved drug removal from its surface following 

skin treatment but this did not affect highly soluble molecules such as siRNA.  

 

Genetic manipulation in human skin models through delivery of pDNA to human skin 

models was demonstrated in Chapter 3. Reporter gene expression was found in in vitro 

human keratinocytes following delivery of pDNA lipoplex and in the viable epidermal 

layer within human skin culture following delivery of aqueous formulation of naked 

pDNA by microneedle abrasion. Although in vitro pDNA delivery with non-viral 

vectors were moderately effective (37% efficiency) compared to a viral vector (90% 

efficiency) (Chen et al. 2003), the level of gene expressions was comparable with the 

highest found to date with commercially available lipid-based vectors in comparable 

human keratinocytes models (Ng 2010; Yamano et al. 2010).  

 

In human skin studies, naked pDNA was more efficient than a lipoplex formulation and 

therefore the value of lipid-based transfection reagents in gene delivery to human skin is 

ambiguous. Furthermore, pDNA lipoplexes were relatively toxic in vitro with observed 

reduction in cell viability following transfection. Therefore, it is ideal that the use of 

lipid-based vectors in the skin can be avoided. Human skin studies were conducted in 

only a small number of samples, but the observations were not isolated incidents, as 

previous studies have reported similar findings (Ng 2010; Ng et al. 2009; Pearton et al. 

2012). Microneedles were capable of penetrating the stratum corneum and assist the 

delivery of naked pDNA across the skin barrier into keratinocytes in the epidermis for 

subsequent transgene expression. However, reporter gene expression in the skin 

following pDNA delivery through microneedle abrasion was not found in every cell 

within the treatment area, rather in scarcely spaced populations of cells along the 

microneedle abrasion sites.  Even though gene expression in excised human skin was 

not better than previous findings (Coulman et al. 2006b; Ng et al. 2009; Pearton et al. 

2012) and might represent a significant challenge for skin conditions that require gene 

correction in a large population of skin cells, these results reiterated the great potential 

of microneedle-assisted pDNA delivery for applications such as DNA vaccination. Skin 

vaccination with pDNA only requires protein antigen expression from a few cells within 
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the epidermis for epidermal Langerhans cells to acquire the antigen and stimulate an 

immune response (Larregina and Falo 2005). The ability to achieve similar findings to 

previous studies was encouraging as studies with pDNA served to provide the basis and 

foundation of understanding genetic manipulation in human skin models using pre-

validated protocols for further investigation of nucleic acid delivery to human skin.  

 

Nucleic acid delivery to human skin models progressed with the delivery of siRNA to in 

vitro keratinocytes as the first step to developing and optimising methods for siRNA 

mediated gene silencing in human skin. Cationic lipids are commonly used as non-viral 

vectors to facilitate cellular uptake and release of siRNA from endosomal membranes 

following endocytosis. The siRNA lipoplex was highly efficient in mediating gene 

silencing of lamin A/C and CD44 model genes in in vitro human skin cells and visibly 

reduced target protein levels at a concentration as low as 1 nM, with no evidence of 

cellular toxicity at a concentration of 10 nM (Chapter 4). These initial studies 

demonstrated the high potency of siRNA as a mediator of gene silencing in human skin 

cells. 

 

Microneedle delivery of siRNA in the form of dry-coat on the surface of microneedles 

is advantageous because storage of siRNA in a solid state could improve its stability 

and coated solid microneedles are strong enough to penetrate the skin together with the 

coated payload to deposit coated drug in the skin. The suitability of siRNA lipoplex, 

delivered in its dry form through the coated steel microneedle system was investigated 

and it was found that the siRNA lipoplex lost its biological functionality following the 

siRNA coating and recovery process. If the siRNA lipoplex was functional following 

coating onto steel microneedles, it would have been ideal as siRNA lipoplex were 

highly efficient at low doses. Nevertheless, naked siRNA recovered following coating 

onto steel microneedles remained biologically functional, which is the first indication of 

the stability of siRNA coated onto the surface of steel microneedles.  

 

As part of the NIH funded “GO Delivery!” initiative, an international collaboration with 

Stanford University and Transderm Inc. (California, USA) was instigated. This resulted 

in the availability of proprietary Accell modified “self-delivery” siRNA that enters cell 

passively without the need of a carrier for testing in human skin models (Chapter 4 and 

5) as well as in an in vivo transgenic reporter mouse skin model (Chapter 6). Due to the 
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passive cellular entry mechanism of Accell sd-siRNA, in vitro gene silencing required 

approximately 100 times higher doses of siRNA than the siRNA lipoplex formulation. 

Accell CD44 sd-siRNA was efficient (up to 80% mRNA reduction at 48 h) in mediating 

gene silencing at concentration of at least 0.5 µM in human keratinocyte cells in vitro, 

with no evidence of cellular toxicity at a concentration of 1 µM. Cellular uptake studies 

provided sound evidence of sd-siRNA internalisation in both HaCaT and primary 

keratinocytes with presence of fluorescently labelled sd-siRNA in all cells within 3 h of 

treatment. Internalised siRNAs were localised in the perinuclear region of the 

keratinocyte cell cytoplasm, near the nuclear membrane where the RISC complexes are 

located. This series of in vitro studies demonstrated that siRNA-mediated gene silencing 

with naked sd-siRNA is efficient and non-toxic in human epidermal keratinocytes. This 

led to the hypothesis that if microneedles are used to overcome the skin’s physical 

barrier, Accell sd-siRNA deposited within the skin could effectively silence genes in 

cells proximal to the microneedle insertion site. The use of Accell sd-siRNA in a coated 

steel microneedle system was supported by its stability in storage (at 4°C) of up to 28 

days.  

 

Animal models are widely accepted as pre-clinical in vivo models to investigate nucleic 

acid delivery to the skin. However, mouse skin models are not a good representation of 

human skin due to interspecies variability that results in a different pattern of reporter 

gene expression following intradermal delivery of pDNA (Hengge et al. 1996). 

Therefore, developing a siRNA delivery and gene detection method in ex vivo culture of 

freshly excised human skin would provide a more suitable pre-clinical model to test 

therapeutic siRNA. siRNA coated steel microneedles penetrated the skin’s stratum 

corneum barrier and deposited siRNA in the viable epidermis as well as the dermis 

(Chapter 5). However, determination of siRNA uptake and gene silencing in the excised 

skin epidermis was challenging due to the short-term viability (up to 72 h) of the culture 

system. Confocal microscopy demonstrated the presence of isolated epidermal cells 

with siRNA uptake but attempts to detect gene silencing at the molecular level 

following a single administration of siRNA-coated microneedles gave equivocal results. 

This is probably because the viability of skin deteriorates with time and is likely to 

differ between different skin specimens, which are dependant on a surgery schedule and 

have limited availability throughout the year. Whilst administration of a single 

application of liquid pDNA following microneedle abrasion may be sufficient for gene 
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expression, multiple doses of siRNA delivered over a period of 7 to 10 days may be 

required to observe significant level of gene silencing within the structurally complex 

and self-renewing layers of the skin. Furthermore, several published studies in animal 

models have reported the in vivo gene silencing efficiency of Accell modified siRNA 

(Gonzalez-Gonzalez et al. 2010b; Nakajima et al. 2012). When a suitable human skin 

model becomes available, for example full thickness human skin xenografted onto 

immunocompromised mouse, the skills and insight gained with respect to siRNA 

delivery to the skin would be invaluable in designing future studies.  

 

The delivery of nucleic acids via coated steel microneedles was also investigated in 

mouse skin models to determine in vivo biological functionality (Chapter 6). pDNA was 

coated onto in-plane steel microneedle devices of different needle length, spatial 

densities and dimensions. pDNA liquid-loaded onto pocketed microneedle devices did 

not result in reporter gene expression in treated mouse paws as it was observed during 

microneedle administration that liquid loaded pDNA formulation deposited on the 

surface of the skin rather than into the viable layers of skin. Delivery of pDNA dry-

coated onto steel microneedles resulted in gene expression (observed via an intravital 

imaging system) in treated mouse paws. Longer (700 µm) microneedles deposited a 

greater dose of pDNA in the mouse paws but initial (24 h) reporter gene expression was 

similar across all treatment groups. After 5 days, reporter gene expression increased in 

mouse paws treated with longer microneedles but appeared to have decreased in mouse 

paws treated with shorter (500 µm) microneedles.  

 

The positive result achieved in this in vivo mouse skin study with pDNA coated steel 

microneedles was in contrast to that achieved with excised human skin (Chapter 3). 

Delivery of pDNA dry-coated onto steel microneedles resulted in inconsistent gene 

expression, presumably due to insufficient hydration in skin proximal to pDNA 

deposition to dissolve deposited pDNA or instability of the pDNA coated on the surface 

of steel microneedles. However, the mouse skin study has shown that pDNA remains 

biologically functional following coating onto the surface of steel microneedles. There 

are differences in skin structure and thickness between mouse paw skin and human skin, 

and therefore it is possible that longer microneedles deposited pDNA in the muscles of 

the mouse paws, which provided better hydration for the dissolution of the deposited 

pDNA and resulted in sustained release of pDNA over several days. The steel 
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microneedles are designed for use in human skin, to penetrate the stratum corneum in a 

minimally invasive manner, but when used in mouse skin it is possible that they deliver 

nucleic acids to deeper tissues. This study highlighted the inter-species differences in 

skin anatomy that should always be considered when designing and interpreting results 

from in vivo experiments using animal models.  

 

The functionality of siRNA delivered via coated steel microneedles was investigated in 

a transgenic reporter mouse model that expresses reporter gene in the upper layers of its 

epidermis, which can be silenced with specific Accell sd-siRNA (Chapter 6). Following 

microneedle delivery of siRNA, reporter mRNA level (in the paw skin tissue) was 

reduced in 2 out of the 3 mice studied. It is postulated that the equivocal change in gene 

expression at the mRNA level is due to lack of a suitable endogenous control gene for 

qPCR normalisation, which is stably expressed in skin that has been injured following 

daily microneedle application. As mentioned, the length and dimension of steel 

microneedles were designed for use in human skin and when applied to mouse paw this 

may be considered more invasive. Nevertheless, quantification of reporter gene 

expression and visualisation of fluorescent protein intensity in skin sections confirmed 

gene silencing at the protein level. This study demonstrated for the first time, functional 

siRNA delivery and reporter protein reduction in a transgenic mouse model using the 

coated steel microneedle system. 

 

Although a previous study has also shown functional siRNA delivery to mouse skin 

models through coated biodegradable PAD microneedles (Gonzalez-Gonzalez et al. 

2010b) with comparable gene silencing, at the protein level, steel microneedles are 

capable of loading significantly higher doses of nucleic acids to enable a greater dose to 

be deposited in the skin. siRNA loading onto an in-plane array of steel microneedles (5 

needles per array) of up to 40 µg (8 µg per needle) was demonstrated in this thesis and a 

higher dose of siRNA could potentially be coated. Coated steel microneedles are also 

capable of delivering up to 90% of their coated dose as shown by studies in Chapter 5 

and other published studies (Gill and Prausnitz 2007a; Gonzalez-Gonzalez et al. 2011; 

Kim et al. 2010). In contrast, PAD microneedles are capable of coating up to 2 µg 

siRNA per needle and only deposit approximately 15% of their coated dose. The higher 

coating capacity and deposition of coated dose from steel microneedles is advantageous 
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as sufficient doses of therapeutic materials can be delivered using this delivery system 

with minimal wastage of expensive biotherapeutics.  

 

Furthermore, the coated steel microneedle system could potentially be developed to 

produce pre-coated dose of biotherapeutics as a one step delivery device that could be 

prescribed to patients for self-administration. This would be particularly useful in 

improving patient compliance with the treatment of cutaneous skin disorders that will 

probably require life-long genetic correction, due to the self-renewing nature of the 

skin. The production of steel microneedles can also be easily adapted to create needles 

of different shapes and sizes to suit various applications to different sites of the body. 
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7.2 Current limitations and future studies 

Local manufacture of steel microneedle devices of various dimensions, needle length 

and spatial density was attempted for the first time. This resulted in production of 

microneedle devices that were unpolished with a rough surface, compared to 

electropolished microneedles obtained from other sources.  It was not apparent at the 

time of manufacture that the surface properties of the microneedles would influence 

dissolution of less soluble drug formulations, which has been demonstrated in 

preliminary studies in this thesis. Future design of steel microneedle devices should 

consider polishing the surface of the microneedles. Various drug dissolution profiles 

from both polished and unpolished microneedles could be compared to ascertain how 

the surface of steel microneedles may affect drug deposition in the skin.  

 

A novel, simple and precise microneedle dip-coating method was developed for the 

purpose of small-scale studies in this thesis. However, this method of manual 

microneedle coating is time-consuming and would be inefficient in large-scale coating 

of steel microneedles for clinical applications. The dose of drug that can be coated onto 

microneedles is often limited by drug solubility in the aqueous coating formulation and 

coating microneedles has the advantage of being able to layer on drug coats following a 

short period of drying time (30 s). An automated microneedle coating process that is 

capable of coating precise and sufficiently high doses drug formulation onto 

microneedles in a good manufacturing practice (GMP) environment has to be developed 

for future clinical applications. 

 

Both siRNA lipoplex and modified self-delivery siRNA formulations are highly 

efficient in delivering siRNA to human keratinocytes.  However, it was apparent from 

the in vivo mouse model and ex vivo human skin studies that the major limitation to 

gene silencing detection at the mRNA level in skin treated with physically invasive 

method is the selection of suitable endogenous control gene for qPCR normalisation. In 

response to tissue injury, certain endogenous genes may be over or under expressed, 

leading to inaccurate analysis of qPCR quantification. Identification and validation of 

endogenous control genes stable at all stages of skin treatment with microneedle-based 

therapies represents a significant challenge that could be undertaken in future studies in 

order to improve the accuracy of gene silencing detection at the mRNA level. 
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Otherwise, gene silencing detection at the protein level should always be performed 

alongside detection of mRNA levels. In a transgenic reporter mouse model, 

visualisation of target protein expression was possible but in the case of excised human 

skin, the short-term viability of the skin in culture poses significant challenges to 

quantifying protein expression. 

 

Comparison of results from the siRNA delivery studies in excised human skin with 

cutaneous siRNA studies reported in the literature suggests that multiple siRNA doses 

over a period of 7 to 10 days are required to observe significant levels of gene silencing 

within the complex skin strata (Gonzalez-Gonzalez et al. 2010b; Lara et al. 2012). 

Although there is evidence suggesting that incorporation of siRNA into the RISC 

complex improves intracellular stability of siRNA (Hoerter et al. 2011), the effect of 

siRNA is transient in comparison with stable genomic integration achievable with some 

viral vectors. Whilst the use of excised human skin as a representative model for pre-

clinical testing of cutaneous siRNA therapy has limitations due to restricted viability of 

the ex vivo skin culture systems, a recently published study by our collaborators 

demonstrates the suitability of full thickness human skin xenografted onto the back of 

immunocompromised mice as a pre-clinical model for siRNA testing (Lara et al. 2012). 

The potential of the coated steel microneedles for cutaneous delivery of nucleic acid 

could therefore be further tested using this skin model. 

 

Although sd-siRNA and siRNA lipoplex formulations were not toxic in vitro, there are 

significant concerns about the unwanted off target effects and immune response that 

may be induced by in vivo siRNA treatment. These concerns need to be addressed in 

suitable pre-clinical models before the potential of siRNA therapeutics can be realised 

in clinical practice (Vicentini et al. 2013). These studies were beyond the scope of this 

PhD thesis but it is important that future development of cutaneous siRNA treatment 

should involve detailed microarray and toxicology studies to determine if the 

therapeutic siRNA affects the expression of non-target genes within tissue. The 

systemic side effects of cutaneous siRNA delivery should also be investigated in 

suitable models to ensure clinical safety of localised siRNA delivery to human skin.  
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7.3 Concluding remarks  

Overall, the studies in this thesis provide new insight and improved understanding of 

nucleic acid delivery and gene detection in the skin.  Excised human skin studies 

involving pDNA provided evidence of the ability to deliver nucleic acid to the ex vivo 

skin culture model for transgene expression within epidermal cells. The potential of 

siRNA-based therapeutics in various skin models was shown in a series of in vitro, ex 

vivo and in vivo studies. Although it was not always possible to clearly demonstrate 

effective gene silencing at the mRNA level in skin tissues, in vitro and in vivo studies 

serve to confirm the potential of siRNA as a powerful class of gene inhibitors that has 

great potential in cutaneous disorders.  

 

The availability of modified sd-siRNA coupled with the skin delivery capability of 

microneedle devices shows promise for the simple, pain-free and potentially self-

administrable treatment of skin disorders cause by aberrant gene expression. 
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Chong, R. H. et al. 2013. Gene silencing following siRNA delivery to skin via coated 
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The development of siRNA-based gene silencing therapies has significant potential for effectively treating
debilitating genetic, hyper-proliferative or malignant skin conditions caused by aberrant gene expression.
To be efficacious and widely accepted by physicians and patients, therapeutic siRNAs must access the viable
skin layers in a stable and functional form, preferably without painful administration. In this study we explore
the use of minimally-invasive steel microneedle devices to effectively deliver siRNA into skin. A simple, yet
precise microneedle coating method permitted reproducible loading of siRNA onto individual microneedles.
Following recovery from the microneedle surface, lamin A/C siRNA retained full activity, as demonstrated
by significant reduction in lamin A/C mRNA levels and reduced lamin A/C protein in HaCaT keratinocyte
cells. However, lamin A/C siRNA pre-complexed with a commercial lipid-based transfection reagent (siRNA
lipoplex) was less functional followingmicroneedle coating. As Accell-modified “self-delivery” siRNA targeted
against CD44 also retained functionality after microneedle coating, this form of siRNAwas used in subsequent
in vivo studies, where gene silencing was determined in a transgenic reporter mouse skin model. Self-delivery
siRNA targeting the reporter (luciferase/GFP) gene was coated onto microneedles and delivered to mouse
footpad. Quantification of reporter mRNA and intravital imaging of reporter expression in the outer skin layers
confirmed functional in vivo gene silencing following microneedle delivery of siRNA. The use of coated metal
microneedles represents a new, simple, minimally-invasive, patient-friendly and potentially self-administrable
method for the delivery of therapeutic nucleic acids to the skin.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The concept of RNA interference (RNAi) emerged in 1998 [1] and
the functionality of a synthetic small interfering nucleic acid (siRNA)
in mammalian cells was demonstrated in 2001 [2]. Breakthrough
discoveries in recent years have led to a sustained interest in RNAi
research and numerous publications have now established the poten-
tial of siRNA technology both in vitro, in vivo and in clinical trials
(reviewed in [3,4]).

The skin has a large surface area and is themost accessible organ of
the body, thus lending itself to gene modification approaches [5–7].
Well controlled treatment of a confined area of the skin is possible
and any genetically modified region can be monitored and biopsied

for functional improvement and/or removed surgically if unwanted
side effects were to occur [8]. The successful development of siRNA
therapies has significant potential for the treatment of skin conditions
caused by aberrant gene expression, including allergic skin diseases
[9–11], alopecia [12], skin cancer [13–20], psoriasis [16], hyperpig-
mentation [21] and pachyonychia congenita [22,23].

One of themost significant challenges in siRNA therapy is the effec-
tive transfer of nucleic acid across cellular membranes. This challenge
is further compounded in the skin by the non-viable outermost barrier
layer, the stratum corneum. Previous studies have used hypodermic
needles for viable, intradermal delivery of therapeutic siRNA [22,23];
however the significant pain associated with localised injections
into diseased tissue has hindered progress to the clinic [22]. To pro-
vide a less invasive method for overcoming the stratum corneum bar-
rier, we investigate the use of steel microneedle devices for the
functional delivery of siRNA into the skin. To interact effectively with
the complex multi-layer structure of the skin, microneedles, typically
comprising a plurality of projections of micron-sized dimension, are
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designed to create micron-sized channels within the epidermal layer
through which therapeutic molecules and macromolecules can be de-
livered [24] in a pain-free manner [25–27].

Methods of microneedle-assisted drug delivery are commonly
categorised into four general approaches: (i) pre-applying solid mi-
croneedles before drug application to “punch holes” in the stratum
corneum barrier through which drugs can later pass, (ii) coating
drugs onto microneedles, (iii) incorporating drug into dissolving or
biodegradable microneedles, and (iv) injecting drugs through hollow
microneedles [28]. In previous studies, delivery of functional un-
modified siRNA through intradermal injection [29] and modified
self-delivery siRNA through a microneedle-based delivery system
called a biodegradable protrusion array device (PAD) [30] induced si-
lencing of reporter gene expression in the epidermis of a transgenic
mouse model. Steel microneedle devices have prospective clinical
advantages of simple and cost-effective manufacture with high repro-
ducibility, biocompatibility, reliable skin puncture and sufficient load-
ing capacity for nucleic acid therapies [31,32]. Our aim is to evaluate
the potential of stainless steel microneedles as a means to deliver
surface-coated siRNA to the target region, the viable epidermis, of
skin. Whilst we have recently demonstrated the utility of a similar
microneedle system for plasmid DNA delivery to skin [32], this is the
first study exploring the utility of this simple delivery system for
siRNA delivery. The study confirms appropriate siRNA loading onto
microneedles, siRNA depositionwithin skin and functionality, through
demonstrable gene silencing in vivo.

2. Materials and methods

All reagents and laboratory equipmentwere purchased fromThermo
Fisher Scientific (UK or USA) unless otherwise stated.

2.1. siRNA sequences

2.1.1. In vitro studies
The siRNA molecules used were a 19+2 format, synthesised with

two 3′ deoxythymidine (dT) overhangs. An unmodified non-self-
delivery (non-sd-) lamin A/C siRNA (lamin A/C non-sd-siRNA;
sequence: 5′-CUGGACUUCCAGAAGAACA) targeting human lamin
A/C mRNA was designed and synthesised by Eurofins MWG Operons
(Ebersberg, Germany). A nonspecific unmodified green fluorescent
protein (GFP) siRNA (control non-sd-siRNA; sequence: 5′-GGCUACG
UCCAGGAGCGCACC) targeting the GFP mRNA not present in the
human keratinocytes model was used as a control.

Accell modified self-delivery (sd-) CD44 siRNA (Accell CD44 sd-
siRNA) and non-Accell modified non-sd-siRNA (siSTABLE CD44 non-
sd-siRNA) targeting human CD44 mRNA (both siRNA sequence: 5′-
GGCGCAGAUCGAUUUGAAU) [33] were designed and synthesised by
Dharmacon Products, Thermo Fisher Scientific (Lafayette, CO, USA).
A nonspecific self-delivery K6a_513a.12 siRNA (Accell control sd-
siRNA) targeting a keratin 6a mutation not present in the human
keratinocytes model or the mouse skin model was used as control
[34].

2.1.2. In vivo studies
Accell modified sd-siRNA targeting the CBL coding region of trans-

genic hMGFP/CBL mouse mRNA (5′-UAACGAUCCACGACGUAAA; Accell
CBL3 sd-siRNA)was designed and synthesised by Dharmacon Products,
Thermo Fisher Scientific (Lafayette, CO, USA). Accell control sd-siRNA
was used as control.

2.2. Microneedle fabrication and coating

2.2.1. Microneedle fabrication, coating and characterisation
Stainless steel microneedle devices (containing either 5 or 10

needles of 700 μm length and 200 μm base width) were fabricated

from a stainless steel sheet by wire electrical discharge machining
(EDM). A coating method was developed to coat siRNA onto the sur-
face of the microneedles from a liquid formulation (Fig. 1A).

To determine the efficiency and reproducibility of the coating
method, 3 μL of unmodified siRNA (Dharmacon Products, Thermo
Fisher Scientific, Lafayette, CO, USA) (70 mg mL−1 in phosphate buff-
ered saline; PBS) was loaded into a 20 μL pipette tip as a reservoir for
coating. Microneedles (6 devices with 5 microneedles per array) were
coated with siRNA using the method described in detail in Fig. 1A and
were allowed to dry at 4 °C for either 1 or 20 h (3 devices for each
drying time) to provide a theoretical loading of 35 μg siRNA coated
onto each microneedle device. The method was repeated with another
6 devices with 10 microneedles per array. To determine actual loading,
siRNA was recovered from the microneedle devices by washing in
150 μL siRNA buffer for 5 min and the nucleic acid concentration
was quantified using the NanoDrop spectrophotometer (Thermo Fisher
Scientific, USA).

To visually characterise siRNA coating onto microneedles, 1 μL of
BLOCK-iT™ Alexa 647 fluorescent siRNA (1 mg mL−1 in PBS) (a gift
from Dr. Xavier de Mollerat du Jeu, Life Technologies, USA) was loaded
into a pipette tip and microneedles (10 microneedles per array) were
coated with siRNA using the method described in Fig. 1A to provide a
theoretical loading of 1 μg siRNA onto themicroneedle device. The coat-
ed microneedles were imaged using the Leica DM IRB epifluorescence
microscope and imaging system. Dry coated microneedles were manu-
ally inserted into excised human breast skin, obtained from surgical
procedures with informed consent and full ethical approval, left seated
for 10 min and then removed. The siRNAfluorescence remaining on the
microneedles post-delivery was imaged.

Fig. 1. (A) Simple and precise microneedle coating method. An illustration of siRNA
coating onto the surface of steel microneedles. (i) A volume of siRNA of known concen-
tration was loaded into a pipette tip as a reservoir for coating. (ii) Microneedles were
coated with siRNA by repeated immersions of the needles into the reservoir, with
30 s of air-drying time between each immersion. (iii) Microneedles were coated
until the reservoir was exhausted. (iv) The coated microneedles were allowed to fur-
ther dry at 4 °C. (B) Microneedle morphology. An array of ten steel microneedles of
700 μm in length. The inset micrograph image shows the microneedle geometry in
greater detail. (Bar=500 μm).
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2.2.2. Microneedle preparation for in vitro studies
Initial in vitro studies compared naked siRNA against siRNA com-

plexed with a lipid-based transfection reagent (Lipofectamine™
RNAiMAX; Invitrogen, Life Technologies, UK), termed a “lipoplex.”
Using the coating method described in Fig. 1A, naked lamin A/C
non-sd-siRNA pre-coating formulation (48 pmol in 8 μL PBS) or lamin
A/C non-sd-siRNA lipoplex pre-coating formulation (48 pmol in 8 μL
Lipofectamine™ RNAiMAX) was coated onto steel microneedle devices
(4 devices per treatment group; each with 5microneedles per array) to
provide a theoretical loading of 12 pmol siRNA on each microneedle
device. Coated microneedles were allowed to dry at 4 °C for 1 h before
the siRNAwas recovered bywashingmicroneedles in 50 μL siRNA buff-
er for 5 min. The recovered siRNA solutions were used to treat cells as
described in Section 2.3.2.

Accell control or Accell CD44 sd-siRNA was coated onto micro-
needle devices to determine the effect of microneedle coating on the
stability of sd-siRNA. A theoretical loading of 1.5 nmol siRNAwas coat-
ed onto each microneedle device, which was subsequently allowed to
dry at 4 °C for 10 h before the siRNA was recovered by washing the
microneedles in 60 μL siRNA buffer for 5 min. The recovered siRNA so-
lutions (20 μL of recovered siRNA solution containing approximately
500 pmol siRNA) were used to treat cells as described in Section 2.3.2.

2.2.3. Microneedle preparation for in vivo studies
Two μL of siRNA coating solution (70 mg mL−1 for Accell sd-CBL3

and 80 mg mL−1 for Accell sd-Control) in PBSwas loaded into a pipette
tip reservoir for coating. The steel microneedle devices (4 devices per
treatment group; each with 10 microneedles per array) were coated
with siRNA using the coating method described in Fig. 1A to provide a
theoretical loading of 35 μg and 40 μg Accell CBL3 and Accell control
sd-siRNA coated onto each microneedle device, respectively. Coated
microneedles were maintained at 4 °C for up to 18 h before use.

2.3. In vitro siRNA stability studies

2.3.1. HaCaT cell culture
Immortalised human keratinocyte cells (HaCaT cells) [35] were

received as a gift from Dr. Mark Gumbleton (School of Pharmacy
and Pharmaceutical Sciences, Cardiff University). Cells were cultured
in a growth medium consisting of Dulbecco's modified Eagle me-
dium (DMEM), supplemented with 10% foetal bovine serum (FBS),
100 unit mL−1 of penicillin and 100 mg mL−1 of streptomycin (all
Life Technologies, UK) at 37 °C in a humidified atmosphere containing
5% CO2.

2.3.2. Cell treatment
Before treatment, cells were seeded into 12-well plates at a density

of 2.5×104 cells cm−2 in 1 mL growth medium and maintained for
24 h. Cell populations were then treated using (i) GFP non-sd-siRNA
10 nM lipoplex (non-targeting control), (ii) naked lamin A/C non-
sd-siRNA 10 nM (non-lipoplex control), (iii) lamin A/C non-sd-siRNA
lipoplex 10 nM (positive control), (iv) naked lamin A/C non-sd-siRNA
pre-coating formulation diluted to 10 nM formed into lipoplex (naked
siRNA pre-coat+lipo) (v) naked lamin A/C non-sd-siRNA recovered
from microneedles and subsequently formed into lipoplex (naked
siRNA coated+lipo), (vi) lamin A/C non-sd-siRNA lipoplex pre-
coating formulation diluted to 10 nM (siRNA lipoplex pre-coat)
(vii) lamin A/C non-sd-siRNA lipoplex formulation recovered from
microneedles (siRNA lipoplex coated) and (viii) Opti-MEM® solution
(untreated). The final concentration of lipoplexes in treatment groups
with lipoplex was 1% v/v Lipofectamine™ RNAiMAX transfection re-
agent. Transfection complexes prepared according to the supplier's
recommended protocol were diluted with Opti-MEM® solution (Life
Technologies, UK) to a volume of 200 μL and added to the seeded cells
to a final transfection volume of 1200 μL. The final concentration of
siRNA across all treatment groups with siRNA was 10 nM (12 pmol in

1200 μL transfection volume). Cells were treated in quadruplicate
transfection with triplicate sample for mRNA quantification by RT-
qPCR and the remaining treatment sample for protein analysis by
Western blotting. Treated cells were incubated at 37 °C in a humidified
atmosphere containing 5% CO2.

For the Accell sd-siRNA study, cells were seeded into 24-well plates
at a density of 2.5×104 cells cm−2 in 0.5 mL growth medium and
maintained for 24 h. Cell populations were then treated using (i) Accell
control sd-siRNA 1 μM (Accell non-targeting control), (ii) siSTABLE
CD44 non-sd-siRNA 1 μM (non-Accell CD44 control), (iii) Accell CD44
sd-siRNA 1 μM (Accell CD44 positive control), and (iv) Accell CD44
sd-siRNA recovered from microneedles 1 μM (Accell CD44 coated).
HaCaT cells were treated with the siRNA diluted in serum-free Accell
delivery media (ThermoFisher Scientific, UK) at a volume of 500 μL
according to the supplier's recommended protocol. HaCaT cells were
treated by replacing the seeding media with the delivery mixture
containing siRNA. Due to the passive self-delivery nature of the Accell
siRNA, a higher final siRNA concentration of 1 μM (500 pmol in
500 μL treatment volume) is required for efficient gene silencing in
vitro. Treated cells were incubated at 37 °C in a humidified atmosphere
containing 5% CO2. After 24 h, the treatment media was replaced with
DMEM supplemented with 10% FBS and the cells were incubated for a
further 24 h. Cells were treated in triplicate transfection for mRNA
quantification by RT-qPCR.

2.3.3. mRNA quantification
Forty-eight hours following treatment, total RNAs from lamin A/C

non-sd-siRNA and Accell CD44 sd-siRNA treated cells were isolated
using the Ambion® PureLink™ RNA Mini Kit (Life Technologies, UK),
quantified (NanoVue spectrophotometer; GE Heathcare, UK) and
stored at −80 °C. Reverse transcription converted total RNA into
first-strand cDNA using random primers with the High Capacity
cDNA Reverse Transcription system (Applied Biosystems, Life Tech-
nologies, UK). Quantitative PCR was performed using the ABI
7900HT Fast Real-Time PCR system with TaqMan® Fast Advanced
Master Mix (Applied Biosystems). Target gene inhibition was mea-
sured using Taqman gene expression assays specific for lamin A/C
(Hs00153462_m1) or CD44 (Hs00153304_m1) and the endogenous
control GAPDH (Hs02758991_g1). All data points reported are the
mean and standard error of three separate treatments each with
three replicate qPCR assays.

2.3.4. Protein analysis
Following the transfection period (48 h), cells treated with lamin

A/C non-sd-siRNAwerewashed and incubatedwith ice-cold lysis buffer
(50 mM Tris–HCl, 150 mM NaCl, pH 8.0, 1% Triton X-100) containing
protease inhibitor cocktail (Roche, UK). The lysates were incubated on
ice for 10 min prior to centrifugation at 13 000 g at 4 °C for 10 min. Pro-
tein content was determined using a BCA (bicinchoninic acid) assay
(Sigma Aldrich, UK). Samples containing 15 μg of protein were mixed
with SDS sample buffer, heated at 95 °C for 5 min before being separat-
ed by electrophoresis on 10% resolvingMini-PROTEAN TGX precast gels
(Bio-Rad, UK) using the Bio-Rad Mini Protean 3 system (Bio-Rad, UK).
Proteins were transferred to nitrocellulose papers (Bio-Rad, UK) using
the Trans-Blot® Turbo Transfer System™ (Bio-Rad, UK), probed with
primary antibodies recognising lamin A/C (ab8984) (Abcam, UK) and
α-tubulin (T9026) (SigmaAldrich, UK) and detected using aHRP conju-
gated secondary antibody (32430) (Thermo Fisher Scientific, UK) and
Super SignalWest DURA solutions (Thermo Fisher Scientific, UK) devel-
oped onto Amersham Hyperfilm ECL (GE Healthcare, UK).

2.4. In vivo studies

2.4.1. Animal models
Tg CBL/hMGFPmice [29] were bred at Stanford University, Stanford,

California, USA. Tg CBL/hMGFP mice were crossed with skh1 hairless
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mice, purchased from Charles River (Wilmington, MA), to constitute
the transgenic hairless reporter mouse Tg-h CBL/hMGFP. Mice were
screened for reporter expression by intraperitoneal injection of luciferin
(100 μL of 30 mg/mL; 150 mg/kg body weight) and the live anaes-
thetised (2% isoflurane) mice were imaged 10 min later using the IVIS
200 Imaging System (Caliper Life Sciences). All animals were treated
according to the guidelines of both the National Institutes of Health
and Stanford University.

2.4.2. Mouse paw treatment
Mice were anaesthetised with 2–3% isoflurane prior to micro-

needle administration. A group of four Tg-h CBL/hMGFP mice were
treated on the right paw with microneedles (10 microneedles of
700 μm length) coated with Accell CBL3 sd-siRNA. The counterpart
left paw was treated with identical microneedles loaded with Accell
non-targeting control sd-siRNA. Themicroneedle devices weremanu-
ally inserted into the middle region of the mouse paw (between the
footpads) and held in place for 5 min. Devices remained in the skin
for an additional 15 min (total insertion time 20 min) before being re-
moved. Treatments were repeated at the same location daily for 10
days, except day 2. At day 10, the mice were sacrificed and the treated
paw skin was removed by surgical dissection.

2.4.3. Quantification of siRNA deposition
The mass of siRNA loaded onto each microneedle device, prior to

application, was estimated from the mass of siRNA in the known vol-
ume of coating formulation that was used to coat the microneedles.
Following application, the microneedles were rinsed using a fixed
volume of buffer (100 or 150 μL) for 5 min and the nucleic acid con-
centration was quantified using the NanoDrop spectrophotometer.
The mass of nucleic acid deposited into the mouse skin during each
treatment procedure was inferred by the mass balance between the
loaded siRNA and the siRNA remaining on the microneedles after re-
moval frommouse paws. Unpaired two-tailed t-tests were performed
to determine the statistical difference of siRNA deposited in the con-
trol and CBL3 group.

2.4.4. Intravital fluorescence imaging and quantification
Prior to treatment, mice were anaesthetised with 2–3% isoflurane

and imaged intravitally using the Maestro Optical imaging system
(Caliper LifeSciences now part of Perkin Elmer, USA), as previously de-
scribed [30,36]. Imaging was repeated on days 2, 4, 6, 8 and 10 of the
treatment regimen. Each spectrum was set by unmixing the autofluo-
rescence from a hairless skh1 negative non-hMGFP expressing mouse
from the spectra of a Tg-h CBL/hMGFP positive mouse analysed in par-
allel. The conditions and subject positioning for image acquisition were
standardized, facilitating meaningful comparison of data. Quantitative
data was extracted using ImageJ software (National Institute of Health,
USA) by selecting the treatment area and calculating the average signal
(counts s−1 mm−1) at the various time points. The ratio of average sig-
nal in the right (treatment) versus left (control) paws was determined
in each mouse and was normalised to the pre-treatment levels.

2.4.5. Skin sectioning and immunofluorescence
Skin tissue from the region between the footpads of one mouse

was excised, embedded in OCT and frozen on dry ice. Ten μm sections
(Leica CM3050S Cryostat; LeicaMicrosystems (UK) Ltd, UK)were cap-
tured onmicroscope slides andmountedwith VECTASHIELD®Mount-
ing Medium containing 1.5 μg mL−1 4,6-diamidino-2-phenylindole
(DAPI; Vector Laboratories Ltd., UK) for nuclear staining. Transgene
fluorescence was visualised using the Leica DM IRB epifluorescence
microscope and imaging system (Leica Microsystems Ltd, UK).

2.4.6. Gene expression quantification
RNA was isolated from the skin tissue (obtained from three mice

per cohort), reverse transcribed and subjected to qPCR as previously

described [29]. A Taqman gene expression assay, specifically designed
for hMGFP was used (hMGFP-F: 5′-CCCCAAGGACATCCCTGACT;
hMGFP-R: TGCTTCGCTCCCACGAGTA and probe: 6FAM-TCAAGCAGA
CCTTCCCCGA-MGBN FQ; Applied Biosystem, USA). TaqMan gene ex-
pression assay specific for CD44 (Hs00153304_m1) was used as the
endogenous gene control. All data points reported are the mean and
standard error of three replicate assays.

2.5. Data processing and statistical analysis

Graphs were generated and statistical analyses (unpaired two-
tailed t-tests) performed using Prism®5 forMac OS X (GraphPad Soft-
ware Inc. USA).

3. Results

3.1. Efficiency and reproducibility of siRNA coating onto microneedles

The pipette coating method, as shown in Fig. 1A, was used to coat
stainless steel microneedles with siRNA. Two sets of microneedle de-
vices of identical dimensions (Fig. 1B) but with different densities of
microneedles per array (5 or 10 microneedles) were coated. The
same volume and concentration of siRNA solution were used to coat
each set of arrays. Fig. 2 shows that the pipette reservoir method for
microneedle coating resulted in a meaningful and relatively repro-
ducible (approximately 35 μg) mass of siRNA coated onto and recov-
ered from each array of microneedles. The recovery of siRNA was not
affected by prolonged (20 h) post-drying of the microneedles.

3.2. siRNA distribution on microneedles before and after skin insertion

To determine the extent of microneedle coating and subsequent
in situ release of the siRNA, stainless steel microneedles were coated
with a fluorescently-tagged siRNA, allowed to dry, imaged, applied
to excised human skin and then re-imaged (Fig. 3). Fig. 3A shows a
relatively uniform coating of siRNA on the surface of a single repre-
sentative steel microneedle. Following a 10 min insertion into skin,
the vast majority of the coating was removed from the microneedle
surface (Fig. 3B).

3.3. Functionality of siRNA recovered from coated microneedles

In vitro cell studies were performed to determine whether siRNAs
retain biological activity following coating on steel microneedles.
Lamin A/C gene expression in HaCaT keratinocyte cells was analysed

Fig. 2. siRNA coating onto steel microneedles. A theoretical mass of 35 μg of siRNA per
microneedle device was loaded onto two sets of microneedle devices with different
densities of microneedles per array (6 with 5 microneedles per array and 6 with 10
microneedles per array). siRNA from 3 devices was recovered from each set of
microneedle devices at the drying time-points. (h=hour; n=3; error bar=standard
deviation).
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at both the mRNA (qPCR) (Fig. 4A) and protein (western blotting)
levels (Fig. 4B). Lamin A/C mRNA levels were significantly (pb0.0001)
reduced in cells treated with siRNA that had been previously coated
onto microneedles, recovered and subsequently complexed with
Lipofectamine™ RNAiMAX (naked siRNA coated+lipo) prior to treat-
ment. The level of siRNA-mediated lamin A/C reduction (85.4%) was

comparable to that achieved with the positive control (non-coated
siRNA lipoplex 10 nM; 85.2% reduction). When siRNA was pre-
complexed with the transfection reagent prior to coating and recovery
from microneedles (siRNA lipoplex coated) there was no reduction in
mRNA synthesis. Lamin A/C protein expression studies were also
performed to determine whether reduction in mRNA levels correlated
to a reduction in protein expression. Fig. 4B confirms that the reduction
inmRNA following treatmentwith lamin A/C siRNA, that has been coat-
ed and recovered frommicroneedles and subsequently complexedwith
transfection reagent (naked siRNA coated+lipo), translates to reduced
lamin A/C protein expression in HaCaT cells. siRNA pre-complexedwith
a transfection reagent (siRNA lipoplex) prior to coating and recovery
from microneedles (siRNA lipoplex coated) did not confer a reduction
in protein expression.

Coating microneedles with a binary lipoplex appears to compro-
mise the in vitro activity of the siRNA, which is likely to translate to
limited gene silencing efficiency in vivo. Given the encouraging stabil-
ity of naked siRNA coated ontomicroneedles, a further in vitro stability
study was performed usingmodified “self-delivery” naked siRNA con-
structs. Accell sd-siRNAs enter cells passively without the need for
lipid-based transfection reagents and are also modified for improved
stability. CD44 mRNA expression in HaCaT keratinocyte cells treated
with the modified sd-siRNA was analysed by RT-qPCR (Fig. 5). CD44
mRNA levels were significantly (pb0.0001) reduced in cells treated
with both the sd-siRNA that had been previously coated onto
microneedles and recovered (Accell CD44 coated; 67.4% reduction)
and the Accell positive control (Accell CD44 sd-siRNA 1 μM; 74.5% re-
duction). Naked CD44 non-sd-siRNA did not reduce mRNA synthesis
when applied to the cells in the absence of a transfection reagent
(non-Accell CD44 control).

3.4. Delivery of microneedle coated sd-siRNA and gene silencing in
transgenic mouse skin

Informed by the results of the in vitro siRNA stability studies, subse-
quent experiments examined the ability of Accell-modified sd-siRNA
coated stainless steel microneedles (Fig. 2) to facilitate gene silencing
in vivo. The central region of the CBL/hMGFP mouse paws was treated
with Accell CBL3 sd-siRNA targeted against the CBL coding region of

Fig. 3. Extent of siRNA coating pre- and post skin insertion. Fluorescence images of a
microneedle coated with approximately 0.1 μg of fluorescent siRNA pre- (A) and
post- (B) insertion into excised human breast skin. The images shown are representa-
tive of other microneedles analysed in the array. (Bar=200 μm).

Fig. 4. Retention of siRNA functionality following microneedle coating. Lamin A/C
mRNA (A) and protein (B) expression was determined in HaCaT cells 48 h post-
treatment with siRNA. (A) Lamin A/C mRNA expressions were relative to the
non-targeting negative control group and normalised to GAPDH endogenous control
gene levels. (n=3 transfection repeats, eachwith 3 qPCR assay replicates; ***significant
reduction in mRNA expression compared with negative control, pb0.0001). (B) Lamin
A/C protein expression with α-tubulin as the protein loading control. Lamin A/C
siRNA recovered from microneedle devices (naked siRNA coated) was subsequently
complexed with 1% v/v Lipofectamine™ RNAiMAX for transfection in HaCaT cells.
The same amount of siRNA (10 nM) was used across all the treatment groups.
(Non-targeting control=GFP siRNA 10nM+1% v/v Lipofectamine™ RNAiMAX; non-
lipoplex control=lamin A/C siRNA 10nM; positive control=lamin A/C siRNA
10 nM+1% v/v Lipofectamine™ RNAiMAX; naked siRNA pre-coat+lipo=lamin A/C
siRNA lipoplex pre-coating formulation diluted to 10nM+1% v/v Lipofectamine™
RNAiMAX; siRNA lipoplex pre-coat=lamin A/C siRNA pre-coating formulation diluted
to 10nM siRNA with 1% v/v Lipofectamine™ RNAiMAX; siRNA lipoplex coated=lamin
A/C siRNA lipoplex formulation (10 nM siRNA+1% v/v Lipofectamine™ RNAiMAX)
recovered after coating onto microneedles).

Fig. 5. Retention of Accell sd-siRNA functionality following microneedle coating. CD44
expression was determined in HaCaT cells 48 h post-treatment with siRNA. CD44
mRNA expressions were relative to the Accell non-targeting negative control group
and normalised to GAPDH endogenous control gene levels. (n=3 transfection repeats,
each with 3 qPCR assay replicates; ***significant reduction in mRNA expression com-
pared with Accell non-targeting control, pb0.0001). (Accell non-targeting control=
Accell control sd-siRNA 1 μM; non-Accell CD44 control=siSTABLE CD44 non-sd-
siRNA 1 μM; Accell CD44 positive control=Accell CD44 sd-siRNA 1 μM; Accell CD44
coated=Accell CD44 sd-siRNA recovered after coating onto microneedles, 1 μM).
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the hMGFP/CBL mRNA. Treatments were conducted daily and the for-
mulation was delivered as a dry coat. The doses of Accell control and
CBL3 sd-siRNA were approximately 40 μg and 35 μg per microneedle
device, respectively. The mass of siRNA deposited into the skin was
relatively low (less than 15 μg) on day 1 (Fig. 6A). Thereafter, approxi-
mately 50% to 85% of loaded siRNA (in the range of 20–30 μg) was de-
posited in the mouse paws during each treatment. The dose of control
siRNA that was deposited on day 1, 5 and 9 was significantly (pb0.05)
higher than that of CBL3 siRNA but the delivery of functional siRNA
was never significantly higher than the control siRNA.

At day 10, mice were sacrificed and the treated skin area was
harvested from three mice for RT-qPCR analysis (Fig. 6B). The level
of hMGFP mRNA was reduced in two out of three mice, with mouse
2 and mouse 3 showing a mean relative hMGFP mRNA reduction of
49% and 38%, respectively. No gene silencing was detectable at the
mRNA level in Mouse 1.

Intravital fluorescence images were captured every other day
throughout the treatment regime (Fig. 6C provides examples). The im-
ages captured using theMaestro imaging systemwere compared to de-
termine the effect of siRNA treatment on hMGFP protein expression

Fig. 6. hMGFP reporter gene and protein expression in transgenic CBL/hMGFP mouse paws microneedle treated with Accell CBL3 or control sd-siRNA over a 10-day treatment re-
gime. (A) Mass of siRNA deposited in mouse paws from the dry-coated microneedle devices. siRNA deposition in skin was estimated by subtracting the quantity of siRNA remaining
on the microneedle devices (10 microneedles) from the theoretical loaded quantity on treatment days 1, 4, 5, 7 and 9 of the 10-day regime. *Denotes a statistically significant
(pb0.05; unpaired two-tailed t-test) difference between control and treatment groups. (B) RT-qPCR quantification of hMGFP mRNA expression. hMGFP mRNA levels from the
CBL3 treated paw were quantified relative to the non-targeting control treated paw and normalised to CD44 endogenous gene control. Each column corresponds to the mean of
three qPCR replicates and the error bars indicate standard error. (C) hMGFP expression in the paws of mouse 2 (as a representative example), imaged intravitally with the Maestro
imaging system. Fluorescence is pseudocoloured green. (D) Quantification of hMGFP protein expression. Intravital images captured using the Maestro imaging system were
processed through ImageJ and quantified. The ratio of the average signal of the CBL3 treated area and non-targeting control treated area is normalised to day 0 (pre-treatment).
(E) Fluorescence microscopy of cross-sections (10 μm) of treated mouse paws following 10 days of treatment. hMGFP protein expression (or lack thereof) was visualised by fluo-
rescence microscopy of samples from mouse paws treated with Accell non-targeting control (top panel) or CBL3 (bottom panel) sd-siRNA. Two sets of representative images are
shown from different areas of the skin samples. In each set, the left panel shows the fluorescence overlay and the right panel shows the corresponding bright-field images. hMGFP
fluorescence is pseudocoloured green. Nuclei were stained with DAPI and pseudocoloured blue. (Bar=100 μm).
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(Fig. 6D). The fluorescence signal intensity at the sites treated with
microneedles coated with CBL3 siRNA showed a reduction in hMGFP
protein expression after 8 and 10 days as compared to the paws admin-
istered with the non-targeting control siRNA. The reduction in signal
intensity at day 10 ranged from 35% to 50%.

Paw skin from one mouse was also harvested and analysed using
established histology methods to characterise the degree and depth
of change in fluorescence signal intensity (Fig. 6E). Skin sections treat-
ed with the non-targeting control (upper panels of Fig. 6E) exhibit the
intense GFP signal arising from the transgenic protein in the upper
layers of the epidermis [29]. In the CBL3 treated paw (lower panels
of Fig. 6E) the fluorescent signal is clearly reduced. These images,
taken from two separate treatment areas, are representative of all
the transverse sections of the analysed samples. Brightfield images
(Fig. 6E) indicate that the stratum corneum is intact in the regions of
low fluorescence, confirming that the depleted fluorescence is due to
a reduction in protein rather than physical disruption of the skin.

4. Discussion

Greater understanding of the RNAi pathway is allowing researchers
to study and modify gene function in an unprecedented way [4]. How-
ever, the lack of suitable and effective delivery tools for siRNA is amajor
barrier to clinical exploitation. For example, whilst siRNA has shown
promise as an effective corrective therapy in severe genetic dermato-
logical conditions, the conventional hypodermic needle and syringe
delivery method was intolerable to patients [22]. Microneedles are
able to penetrate the stratum corneum barrier of human skin in a min-
imally invasive manner [37,38] to enable effective nucleic acid delivery
[31,32,39–44]. The use of steel microneedles to deliver molecules, mac-
romolecules and vaccines, as a dried coating, is now well established
[28,31,32,45,46]. However, this system has not previously been tested
for the delivery of siRNA to skin.

In order for a coated microneedle delivery system to be effective,
several factors need to be considered, including efficient and stable
microneedle coating formulations and procedures, effective skin pen-
etration performance and targeted and efficient drug deposition
[28,45,47]. A drug formulation with sufficient viscosity and surface
tension is important for uniform distribution of coated materials on
the microneedle surface. A coating formulation that is sufficiently
water-soluble is also important to enable the drug to dissolve quickly
upon insertion of the microneedles into the skin [32]. Moreover, the
mechanical strength and adhesive properties of a dried coating
should be sufficient to retain contact with the microneedles during
their insertion into skin [28]. siRNA is a small double-stranded RNA
molecule that is highly water-soluble. Therefore, a simple aqueous
formulation of fluorescently labelled siRNA was used to coat the sur-
face of steel microneedles. The coating procedure, involving placing a
formulation-loaded pipette tip over the microneedles, withdrawing,
allowing 30 s for drying and then re-applying, led to a relatively re-
producible and uniform coating of the microneedles. Using this meth-
od, we were able to load up to 40 μg of siRNA onto microneedles,
which is an order of magnitude higher than the nanogram quantities
of siRNA that have been loaded onto dissolvable microneedles in pre-
vious studies [30,33]. Following insertion into human skin and micro-
scopic inspection of the microneedles, the coating dissolved leaving
only residual fluorescence on the needle surface.

Having established a simple formulation and method to reproduc-
ibility coat appropriate quantities of siRNA onto steel microneedles,
we further investigated the functional stability of the coated siRNA.
Non-viral nucleic acid delivery commonly involves the use of lipid-
based cationic transfection reagents to facilitate cell uptake andprocess-
ing. The commercially available transfection reagent Lipofectamine™
RNAiMAX proved to be effective in transfecting the immortalised
human keratinocyte cell line employed in this study, with no significant
effect on cell toxicity (data not shown). This transfection reagent is also

effective in transfecting cultured monolayer primary human kerat-
inocyte cells isolated from excised human breast skin tissue (data not
shown) and could potentially therefore be useful for ex vivo or in vivo
applications.

When siRNAwas coated ontomicroneedles, allowed to dry and re-
covered, the siRNA remained fully functional as evidenced by marked
reduction of lamin A/C mRNA level and protein expression of lamin
A/C in cells treated with siRNA. In contrast to this, the biological
functionality of siRNA, when pre-complexed with Lipofectamine™
RNAiMAX diminished upon the microneedle coating, drying and re-
covery processes. We speculate that the coating and drying process-
es could result in a change in the structural conformation of the
electrostatic lipoplex complex and/or compromised changes to the
lipid reagent. It is known that nucleic acid–liposome complexes can
form aggregates upon storage, resulting in reduced transfection effi-
ciency and necessitating preparation of complexes immediately before
administration [48]. A number of studies have however demonstrated
the ability to freeze-dry, freeze-thaw or spray-dry siRNA-liposome and
DNA–liposome complexes in the presence of sugars as lyoprotectants,
with minimal effect on lipoplex functionality [48,49]. Indeed, as
carbohydrate-enriched formulations have shown to improve the phys-
ical stability of nucleic acid, in this case plasmid DNA, uponmicroneedle
coating [32,46], the value of these stability-enhancing formulations
when coating siRNA onto steel microneedles is worthy of investigation
in future studies.

Accell-modified “self-delivery” siRNA does not require a transfec-
tion agent to facilitate cell transfection. In vitro functionality studies
revealed that following the coating and recovery process Accell sd-
siRNA remained functional, as demonstrated by a significant reduction
of CD44 mRNA expression in HaCaT cells treated with Accell sd-siRNA
targeting the CD44 gene. Furthermore, as previous studies have
shown gene silencing in skin treated with Accell sd-siRNA coated
onto dissolvable microneedles [30,33] this form of sd-siRNA was
used to assess the in vivo functionality of siRNA delivered via coated
steel microneedles in a transgenic mouse model. The coating proce-
dure described in this study was able to dry coat up to 40 μg of Accell
sd-siRNA per array of 10microneedles. Recovery and quantification of
siRNA from microneedles following insertion into mouse model skin
suggests that 50% to 85% of the coated siRNA was deposited in the
mouse paw. The reduced deposition observed on treatment day 1
was likely attributable to inexperience in microneedle application in
this model, leading to inadequate skin insertion. The delivery efficien-
cy of nucleic acids from coated microneedles is a function of the coat-
ing formulation and its distribution on the needle, the depth of
microneedle penetration into skin and the hydration status of the tis-
sue proximal to the microneedles [32]. In this instance the major lim-
itation is likely to be needle insertion depth, as it proved technically
challenging to fully insert microneedles into the contoured footpad
area. Moreover, the manual coating procedure inevitably results in
some of the material being coated on the base of the microneedle de-
vice (Fig. 3). This material would not be deposited in the skin but
would be quantifiable post-insertion. Nevertheless, both the actual
dose and percentage deposited in the treatment area were significant-
ly greater than previously reported, where an estimated dose of
120 ng siRNA (10% of coated dose) was administered using biode-
gradable microneedle arrays [30]. The greater utilization of coated
material, with less wastage, could have important cost and efficacy
implications when delivering expensive biological therapeutics using
microneedles.

The transgenic mouse model used in the in vivo studies expresses
GFP in the upper epidermis (granular layer and stratum corneum), en-
abling functional assessment of intradermally administered siRNA
[29]. Visualisation and quantification of protein production, through
fluorescence intensity, were used to determine gene silencing. Quanti-
fication of fluorescence intensity in the CBL3-treated mouse paw (but
not the non-specific control-treated paw) indicates that microneedle
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delivery of siRNA resulted in a discernible reduction in protein expres-
sion. The observed reduction in reporter protein signal was confirmed
byfluorescencemicroscopy of skin sections, which illustrated a clear re-
duction in GFP signal in the upper regions of the epidermis, where the
hMGFP protein is predominantly expressed in this model. Transverse
sections confirmed that the reduction in fluorescence was not an arte-
fact, i.e. it was attributable to reduced protein expression rather than
physical disruption to the epidermis caused by the microneedle treat-
ment. To determine siRNA gene silencing at the mRNA level, RT-qPCR
quantification of hMGFP mRNA was performed from total RNA isolated
from mice at the end of the 10-day treatment. The supportive, yet
equivocal, nature of this mRNA data (a clear reduction of mRNA was
seen in two out of the three mice tested) reflects the degree of challenge
of inducing and analysing gene silencing in vivo. In in vitro studies, divid-
ing cell monolayers can be exposed directly to high concentrations of
siRNA and those cells can be easily recovered and characterised for gene
expression. Accurately and reproducibly delivering siRNA to a three-
dimensional tissue architecture and evaluating the functionality of
the nucleic acid at a sub-cellular level within that tissue is a far great-
er challenge. Nevertheless, taken together, the protein and mRNA data
presented in this study suggest that the siRNA coated onto, and released
from, steel microneedles remains functional and can be effectively de-
livered to skin to facilitate localised gene silencing in vivo.

A major limiting factor for microneedle systems is the dosing ca-
pacity. Gonzalez-Gonzalez et al. have previously shown that delivery
of Accell sd-siRNA from biodegradable microneedles can induce
gene silencing in the paws of a similar transgenic CBL/hMGFP reporter
mouse [30]. However, the loading capacity of these devices is restrict-
ed and thus dry-coated solid steel microneedles may provide an alter-
native for enhanced loading capacity [31,32]. The enhanced loading
capacity of the steel microneedles did not translate to gene silencing
efficiency above that observed in a previous microneedle study
where an estimated 120 ng of siRNAwas administered [30]. However,
in the previous study, siRNA was delivered over a wider area using
three separate arrays of 4×5 microneedles (60 in total) at each
time-point compared to the single row of 10 microneedles that was
employed in this study. It is possible that fewer microneedle penetra-
tions could restrict the cell numbers exposed to the siRNA treatment,
thus leading to a compromised gene silencing efficiency. It is also ap-
parent however that publications targeting siRNAs to skin rarely ob-
serve a silencing effect in excess of 50% [29,30,33,50], regardless of
siRNA dose or delivery method, and therefore a further reduction in
gene expression may not be possible, even at greater delivered dose.
Whilst the higher loading capacity achieved in our study lead to no ob-
vious advantage in mouse skin over the biodegradable arrays used in
this previous study, given the simplicity and improved loading capac-
ity of steel microneedles, this may well be advantageous in human
skin tissue in conditions where a larger dose of therapeutic siRNA
needs to be delivered.

These results serve to demonstrate, for the first time, the ability to
deliver siRNA using coated solid microneedles, resulting in reporter
protein silencing in vivo. siRNA delivery using steel microneedles
is attractive as such devices are simple and cost-effective for large-
scale manufacture. Once coating formulations and processes are fur-
ther optimised and automated, this system could provide a practical
minimally invasive, patient-friendly, self-administration alternative
for the delivery of therapeutic nucleic acids to the skin. Given these
encouraging data the next stage is to determine the effectiveness of
siRNA delivery using microneedles in human skin.
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