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Schizophrenia is a common psychiatric disorder with a strong

genetic component. Recent studies applying new genomic

technology to large samples have yielded substantial advances

in identifying specific, associated DNA variants as well as

clarifying the underlying genetic architecture of the disorder.

The genetic liability of schizophrenia is now established as

polygenic, with risk alleles in many genes existing across the

full allelic frequency spectrum. It has also become apparent

that schizophrenia shares risk alleles with other

neuropsychiatric phenotypes, such as bipolar disorder, major

depressive disorder, autism spectrum disorder, intellectual

disability and attention-deficit hyperactivity disorder. These risk

variants aggregate in several sets of functionally related genes,

thereby providing novel insights into disease pathogenesis and

opportunities for research into discovering new treatments.
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Introduction
Schizophrenia is a debilitating psychiatric disorder,

characterised by hallucinations, delusions, thought dis-

order and cognitive deficits, and has a lifetime prevalence

of around 1%. Evidence for a substantial genetic contri-

bution comes from family, twin and adoption studies [1]

but the underlying causes and pathogenesis of the dis-

order remains unknown. The past few years have wit-

nessed marked progress in our understanding of genetic

risk at the level of DNA variation, which has been largely

driven by applying advanced genomic technologies to

very large samples. There is evidence that risk variants

occur across the full allelic frequency spectrum, many of

which are associated with other neuropsychiatric dis-

orders. Moreover, genetic associations involving different
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classes of mutations have now implicated specific bio-

logical pathways in disease pathogenesis. This review will

cover recent advances in schizophrenia genetics from

studies of de novo mutation, rare copy number variation

(CNV), rare single nucleotide variant (SNV, defined as

point mutations with a frequency less than 1%) and small

insertion/deletion (indel) mutations and single nucleotide

polymorphisms (SNPs, defined as point mutations with a

frequency greater than 1%) (Figure 1).

De novo mutations
High heritability estimates for schizophrenia suggest that

much of the risk is inherited [2]. However, alleles which

are not inherited, i.e. newly arising (de novo) mutations,

have also been shown to contribute to risk. In addition,

increased paternal age at conception, which is correlated

with the number of de novo mutations observed in an

individual [3,4], has been associated with increased

schizophrenia risk [5]. The first molecular evidence

associating de novo mutation with schizophrenia came

from studies of CNVs [6–8]. Across studies, the CNV

de novo mutation rate was found to be significantly elev-

ated in schizophrenia (�5%) versus controls (�2%), with

some evidence for a higher rate among patients with no

family history of the disorder [6–8]. The median size of de
novo CNVs > 100 Kb found in schizophrenia cases

(574 Kb [6–8]) is also larger compared with that in controls

(337 Kb [6–9]). Selection coefficients (s) between 0.12 and

0.88 have been estimated for CNVs robustly associated

with schizophrenia (a selection coefficient of 1 being

reproductively lethal) [10]. With this intensity of selection,

de novo CNVs at schizophrenia-associated loci are purged

from the population in less than five generations [10].

Studying gene-sets overrepresented for being disrupted

by de novo mutation in schizophrenia has provided novel

insights into biological pathways underlying the disorder.

For example, genes disrupted by schizophrenia de novo
CNVs are enriched for those in the post-synaptic-density

proteome [6]. This association is largely driven by genes

encoding members of the N-methyl-D-aspartate receptor

(NMDAR) and neuronal activity-regulated cytoskeleton-

associated protein (ARC) complexes, both of which are

involved in synaptic plasticity [6].

More recently, exome sequencing studies have permitted

the evaluation of de novo SNV mutations and indels in

schizophrenia. In contrast to studies of de novo CNVs in

schizophrenia, the exome-wide rate of de novo SNV/indel

mutations is not increased in cases compared with the

population expectation [11��]. Some smaller studies have

reported slightly elevated rates of de novo SNV mutations,
www.sciencedirect.com
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Figure 1
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Schizophrenia risk alleles. Bullet points summarise some of the key findings covered in this review. MAF = minor allele frequency, OR = odds ratio,

CNV = copy number variation, SNV = single nucleotide variant, indel = insertion/deletion, ARC = activity-regulated cytoskeleton-associated protein,

NMDAR = N-methyl-D-aspartate receptor, FMRP = fragile X mental retardation protein, BD = bipolar disorder, MDD = major depressive disorder,

ASD = autism spectrum disorder.
as well as a greater proportion of de novo mutations

occurring as nonsynonymous, in schizophrenia compared

with controls [12–14], but these findings were not

observed in the largest study till date [11��]. However,

loss-of-function de novo SNV/indel mutations are

enriched among patients with poor educational attain-

ment (these cases did not have intellectual disability)

[11��]. Multiple schizophrenia loss-of-function de novo
SNV/indel mutations have been observed in two genes

(TAF13, SETD1A) [11,15], suggesting they are likely to

be relevant to the disorder.

The products of genes disrupted by damaging de novo
mutations in schizophrenia show greater connectivity in

protein–protein interaction (PPI) networks than expected

by chance [13] or compared with controls [14]. Genes

disrupted by nonsense de novo mutations in schizophrenia

have also been shown to preferentially occur in genes

subject to haploinsufficiency [12], suggesting many

are likely to be pathogenic. Despite the lack of an

increased exome-wide rate of de novo SNV/indel mutation
www.sciencedirect.com 
in schizophrenia, these mutations are enriched among

cases in previously associated sets of biologically related

genes. Specifically, the ARC and NMDAR postsynaptic

protein complexes, associated with schizophrenia in stu-

dies of de novo CNVs, have been further implicated through

significant enrichments in cases for nonsynonymous and

loss-of-function de novo mutations [11��]. Brain expressed

genes targeted by fragile X mental retardation protein

(FMRP) also show evidence for significant enrichments

of de novo SNV/indel mutations in schizophrenia [11��]
following an earlier observation for a similar enrichment for

de novo mutations in ASD [16]. Other sets reported to be

enriched for de novo mutations include those related to the

assembly of actin filament bundles [11��], genes related to

epigenetic regulation, specifically chromatin-remodelling

[12,13,15], and genes disrupted by de novo mutations in

ASD and intellectual disability (ID) [11��].

Rare copy number variations
Studies of rare (<1%) CNVs in schizophrenia have now

reported several reproducible associations. It is established
Current Opinion in Behavioral Sciences 2015, 2:8–14
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that patients with schizophrenia have a significantly

increased genome-wide burden of rare CNVs compared

with controls, with the strongest effect usually seen for

large (>500 Kb) deletions [17–20]. Since the discovery of a

deletion at 22q11.2 as the first schizophrenia-associated

CNV [21,22], analyses of rare CNVs involving >20,000

cases have revealed associations at more than 15 loci

[20,23,24] (Figure 2). The majority of these CNVs sub-

stantially increase the risk of developing schizophrenia,

with odds ratios (OR) between two and 60 [24]. As their

frequency among patients is often less than one in 500,

their individual contribution to the total population vari-

ation in schizophrenia genetic liability is small [25],

although collectively they are found in around 2.5% of

patients [24]. Most schizophrenia-associated CNVs are

large and recurrent, meaning multiple mutation events

have occurred at the exact same, or near identical, genomic

location. The breakpoints of recurrent CNVs are usually

flanked by repetitive genomic elements such as low copy
Figure 2
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repeats (LCRs), which mediate mutation through non-

allelic homologous recombination [26]. 10 recurrent CNVs

have been associated with schizophrenia at a level of

statistical support that survives correction for the multiple

testing of 120 potential recurrent CNV loci in the human

genome (Figure 2). Drawing biological insights from recur-

rent CNVs remains a challenge, largely because multiple

genes and regulatory elements are often disrupted. How-

ever, single-gene disrupting non-recurrent CNVs have also

been associated with schizophrenia at NRXN1, VIPR2 and

PAK7. These mutations have the potential to offer clearer

insights into disease pathogenesis, although only the

NRXN1 association survives correction for the multiple

testing of all human genes (�20,000). NRXN1 encodes a

synaptic cell adhesion molecule neurexin 1 that links

presynaptic and postsynaptic neurons [27].

Gene-set analyses have shown rare CNVs in schizophrenia

to be enriched among biological pathways previously
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implicated in schizophrenia, such as the NMDAR and

metabotropic glutamate receptor 5 (mGluR5) components

of the post synaptic density (PSD), calcium channel signal-

ling (see single nucleotide polymorphisms below) and

FMRP targets [20]. Additional gene-sets recently impli-

cated in rare CNV studies include signalling components

within the immune system, chromatin remodelling com-

plexes and targets of microRNA miR-10a [20].

Schizophrenia-associated CNVs have been shown to

increase risk for additional neuropsychiatric disorders

[28,29]. For example, schizophrenia-associated dupli-

cations of the Williams-Beuren and Prader-Willi/Angel-

man syndrome regions are also implicated in ASD [9,30],

deletions of 15q11.2 and 15q13.3 in epilepsy [31,32] and

duplications of 16p13.11 in attention-deficit hyperactivity

disorder (ADHD) [33]. Up to 72 pathogenic CNVs, which

include the majority of those presented in Figure 2, are

enriched in large cohorts of patients with early onset

neurodevelopmental phenotypes, such as ID, ASD and

congenital malformations (CM) [34,35]. It has been

suggested that individuals carrying more than one patho-

genic CNV are at greater risk of developing an earlier

onset neurodevelopmental disorder (ID/ASD/CM) com-

pared with schizophrenia [36]. In some instances, reci-

procal CNVs (i.e. deletion and duplications at the same

locus) appear to have different phenotypic effects. For

example, deletions and duplications at 16p11.2 are associ-

ated with obesity and low body mass index, respectively

[37]. In schizophrenia, duplications at 22q11.2 are signifi-

cantly less common than they are in controls, whereas the

deletion of this locus is one of its strongest risk factors

[38].

The CNVs in Figure 2 are considered to have fairly high,

but incomplete, penetrance for schizophrenia and for

other neurodevelopmental disorders, most having lower

penetrance for schizophrenia than the other disorders

[28�]. However, the incomplete penetrance of these

CNVs has recently been questioned in a large study

which showed the level of cognitive performance in

non-affected carriers of schizophrenia-associated CNVs

to be in-between that observed in schizophrenia patients

and population controls [39�].

Rare single nucleotide variant and insertion/
deletion mutations
Over the past few years, several publications have used

new sequencing technology to investigate rare inherited

(as opposed to de novo) alleles in schizophrenia. Intriguing

findings have been reported from some studies [40,41],

although their results largely remain inconclusive owing

to small sample size. Only one schizophrenia study till

date has employed exome sequencing in large samples

(2536 cases and 2543 controls) [42��]. No single rare allele

(MAF < 0.1%) was associated at genome-wide levels of

significance, and overall, the exome-wide burden of rare
www.sciencedirect.com 
variation was not increased in cases. However, a signifi-

cantly increased burden of rare, disruptive alleles was

observed in a set of 2546 genes selected for a higher

probability of being associated with schizophrenia. This

burden was distributed across a large number of genes. As

in the de novo CNV and SNV studies, significant enrich-

ments for rare disruptive SNVs and indels were found in

proteins affiliated with ARC and NMDAR genes, and

FMRP-targets, but also for voltage-gated calcium chan-

nels [42��]. This work demonstrates a contribution of

ultra-rare damaging alleles spread across a large number

of genes in schizophrenia, although larger samples are

required for robust associations to be made to specific

genes/alleles.

Single nucleotide polymorphisms
Genome-wide association studies (GWAS) of SNPs have

now identified a number of common schizophrenia risk

alleles [43–45]. Individually, these alleles have a weak

effect on schizophrenia risk, with ORs generally < 1.2,

although collectively they are estimated to account for

between a third and a half of the variation in schizophrenia

genetic liability [43,46,47]. Given the modest effect size

of these alleles, very large samples have been required

to obtain the necessary statistical power for associations

to be made at genome-wide levels of significance

(P < 5 � 10�8). Until recently, the number of individual

alleles identified at genome-wide levels of significance was

small (n < 30) [43], although en masse analysis of GWAS

data had established the disorder to have a polygenic

component likely to involve over a thousand common

alleles [43,46,48]. Recent successes in the identification

of schizophrenia common allele associations can largely be

attributed to the Schizophrenia Working Group of the

Psychiatric Genomics Consortium (PGC), which was cre-

ated with the aim to maximise sample size by combining

GWAS data from multiple international research groups

[49]. The latest data from the PGC identified 128 linkage

disequilibrium (LD)-independent genome-wide signifi-

cant associations in 108 distinct loci [45��]. The most

significant allelic association in schizophrenia is in the

extended major histocompatibility complex (MHC) on

the short arm of chromosome 6 [45��]. Identifying candi-

date genes from this association is a major challenge as the

existence of strong LD across this region of about 8Mb

makes it difficult to localise the association to one, or even a

few, of the hundreds of genes at the locus. The MHC’s

involvement in immunity suggests that immune dysfunc-

tion might play a role schizophrenia, although non-immune

genes are also found in this region [50]. Additional genome-

wide significant associations are found in genes long

believed to play a major role in schizophrenia, such as

the dopamine receptor D2 gene, which encodes the thera-

peutic target of most antipsychotic drugs [45��]. This

suggests that biological insights gained from other novel

common allele associations have the potential to identify

new drug targets. Gene-set analyses have not yet shown
Current Opinion in Behavioral Sciences 2015, 2:8–14
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any biological pathway to be significantly enriched for the

128 schizophrenia genome-wide significant associations

after correction for multiple testing, and a definitive

analysis is awaited [45��]. However, the associations are

enriched for enhancers expressed in brain, and also for

enhancers in tissues involved with immunity [45��].

Schizophrenia has been shown to share common risk

alleles with other psychiatric disorders, such as bipolar

disorder (BP), major depressive disorder (MDD), ASD

and ADHD [51]. The most powerful demonstration of

this comes from the en masse effects of SNPs which have

revealed a high genetic overlap between schizophrenia

and BP, a moderate overlap between schizophrenia and

MDD, and a small but significant overlap between schizo-

phrenia and ASD [46,48]. Combining GWAS data from

schizophrenia and BD has proved fruitful in identifying

common risk alleles [52,53], although polygenic risk

scores have also been able partly to distinguish between

these disorders, suggesting that some risk alleles may

confer more specific effects at the level of the psychiatric

phenotype [53]. Schizophrenia polygenic risk scores have

also been shown to predict lower cognitive ability [54],

suggesting these alleles contribute to the cognitive def-

icits associated with the disorder.

Conclusion
It is now established that the genetic architecture of

schizophrenia involves rare, common and de novo risk

alleles distributed across a large number of genes. Despite

substantial genetic heterogeneity, different classes of

mutation have been shown to converge onto common

biological pathways, implicating neuronal calcium signal-

ling, components of the post synaptic density, synaptic

plasticity, epigenetic regulation and the immune system

in the disorder. It has also become clear that schizo-

phrenia shares risk alleles with other neuropsychiatric

disorders, with evidence of a gradient of mutational

severity with intellectual disability and schizophrenia

at the most extreme and moderate ends of this spectrum,

respectively [55]. It is inevitable that further increases in

sample size in both GWAS and sequencing studies will

identify additional risk alleles and whole-genome se-

quencing will allow for more complex types of genetic

variation to be examined, while permitting the investi-

gation of rare alleles in regulatory elements.
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