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Objective. To investigate the role of death recep-
tor 3 (DR-3) and its ligand tumor necrosis factor–like
molecule 1A (TL1A) in the early stages of inflammatory
arthritis.

Methods. Antigen-induced arthritis (AIA) was
generated in C57BL/6 mice deficient in the DR-3 gene
(DR3�/�) and their DR3�/� (wild-type) littermates by
priming and intraarticular injection of methylated bo-
vine serum albumin. The joints were sectioned and
analyzed histochemically for damage to cartilage and
expression of DR3, TL1A, Ly-6G (a marker for neutro-
phils), the gelatinase matrix metalloproteinase 9
(MMP-9), the aggrecanase ADAMTS-5, and the neutro-
phil chemoattractant CXCL1. In vitro production of
MMP-9 was measured in cultures from fibroblasts,
macrophages, and neutrophils following the addition of
TL1A and other proinflammatory stimuli.

Results. DR3 expression was up-regulated in the
joints of wild-type mice following generation of AIA.
DR3�/� mice were protected against cartilage damage
compared with wild-type mice, even at early time points
prior to the main accumulation of Teff cells in the joint.
Early protection against AIA in vivo correlated with
reduced levels of MMP-9. In vitro, neutrophils were
major producers of MMP-9, while neutrophil numbers
were reduced in the joints of DR3�/� mice. However,
TL1A neither induced MMP-9 release nor affected the
survival of neutrophils. Instead, reduced levels of
CXCL1 were observed in the joints of DR3�/� mice.

Conclusion. DR-3 drives early cartilage destruc-
tion in the AIA model of inflammatory arthritis through
the release of CXCL1, maximizing neutrophil recruit-
ment to the joint and leading to enhanced local produc-
tion of cartilage-destroying enzymes.

Death receptor 3 (DR-3; also known as TRAMP,
lymphocyte-associated receptor of death, WSL-1,
Apo-3, TR3, and tumor necrosis factor receptor super-
family member 25 [TNFRSF25]) is the closest relative to
TNFR type I (TNFRI; TNFRSF1), one of the major
ligands for TNF�, the archetypal “master regulator” of
inflammation (1). Like TNFRI, DR-3 has an intracell-
ular death domain that can recruit downstream effectors
of apoptosis (2–7) but can also activate the transcription
factor NF-�B, inducing immune activation and differen-
tiation (8,9). It has a single TNFSF ligand, TNF-like
protein 1A (TL1A; TNFSF15) (9,10), that is closely
related in structure to TNF� (11).

In recent years, the DR-3/TL1A axis has emerged
as a key regulator of inflammation and autoimmunity in
its own right, with in vivo studies of transgenic mice
deficient for DR-3 or TL1A and those overexpressing
TL1A or dominant-negative forms of DR-3 providing
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compelling evidence for an essential role of the DR-3/
TL1A axis in many models of inflammatory and auto-
immune disease (12–22). In contrast to TNFRI, much of
the function of DR-3 has been attributed to its expres-
sion on T cells and natural killer T cells and its role in
driving the accumulation or maintenance (23) of Teff
cell numbers at sites of pathology, irrespective of their
lineage. Consistent with this, DR-3 has also been shown
to be essential for the development of efficient T cell
immunity to certain bacterial and viral pathogens
(24,25) and, in some cases, becoming essential for host
survival (25). DR-3 expression is not restricted to lym-
phoid cells. In cells of myeloid lineage, in vitro DR-3
signaling can influence cytokine release (26) and my-
eloid cell differentiation (27), while in nonhematopoietic
cells in vivo, DR-3 is expressed on neurones controlling
neuronal innervation (28) or can be triggered on tubular
epithelial cells to regulate responses to renal inflamma-
tion and injury (29,30).

Rheumatoid arthritis (RA) is a chronic inflam-
matory disease characterized by immune cell infiltration
into the joints, which eventually leads to destruction of
cartilage and bone. Proinflammatory cytokines such as
TNF� and interleukin-6 (IL-6) are critical for control-
ling the pathogenic process (31,32). A role for the
DR-3/TL1A pathway has been proposed in RA, because
the frequency of DR-3 gene duplication is higher in
patients with RA compared with healthy individuals
(33). In contrast, TL1A levels are increased in RA serum
(34), synovial fluid, and synovial tissue, and the expres-
sion of TL1A can be induced by immune complex–
stimulated monocytes in RA (35). This has been borne
out in in vivo studies demonstrating that DR3�/� mice
with experimental inflammatory arthritis are resistant
to bone erosion, while treatment with antagonistic anti-
bodies was protective in wild-type (WT) mice (21).
Mechanistically, this effect has been attributed to the
control of multiple late events in the arthritis disease
process, from effector Th17 cell development (36) and
differentiation of macrophages into osteoclasts (21) to
the potential action of TL1A on osteoblasts (37).

In the current study, we investigated the in vivo
role of the DR-3/TL1A pathway in early events in
antigen-induced arthritis (AIA), uncovering previously
overlooked functions of this proinflammatory pathway
that have an impact on neutrophil recruitment and
cartilage degradation.

MATERIALS AND METHODS

Animals. DR3�/� mice and their age-matched
DR3�/� (WT) littermates (ages 6–12 weeks) were used in the

experiments; these mice were derived from a mouse colony
with heterozygous DR-3 expression that was founded from
mice provided by Cancer Research UK (38). AIA was gener-
ated in male mice only. All procedures were approved by the
local Research Ethics Committee and were performed in
accordance with Home Office–approved licenses PPL 30/1999,
30/2361, and 30/2480.

Generation of murine AIA. AIA was generated as
previously described (39). Briefly, mice were subcutaneously
immunized with 1 mg/ml of methylated bovine serum albumin
(mBSA) and Freund’s complete adjuvant (CFA), in conjunc-
tion with an intraperitoneal injection of heat-inactivated Bor-
detella pertussis toxin. A booster immunization of BSA and
CFA was administered 1 week later. Arthritis was induced in
the hind right knee joint via an intraarticular injection of 10
mg/ml mBSA, given 21 days after the initial immunizations.

Assessment of cartilage degradation. The mice were
killed on day 3 or day 21 after the induction of arthritis, for
assessment of inflammatory and pathologic changes within the
joint. For in vitro assays, whole murine patellae were incubated
with neutrophil lysates for 3 days. All samples were then fixed
in neutral buffered formalin and decalcified with formic acid
(10%) for 2 weeks at 4°C, prior to embedding in paraffin.
Serial sections (7 �m thick) were obtained, deparaffinized, and
stained with Safranin O–fast green or toluidine blue, both of
which are cationic stains that dye the acidic proteoglycan
present in cartilage tissue red or purple. Total cartilage depth
was then measured under 40� magnification using a line-
graduated scale. The depth of cartilage depletion was deter-
mined by measuring to the “tideline” created by the absence of
Safranin O–fast green or toluidine blue staining (Figure 2),
and a percentage relative to the total cartilage depth was
generated. Five points on the femoral head were measured to
give an overall score for each joint.

Immunohistochemical analysis. Expression of the tar-
get ligand/receptor was detected using anti-rat, anti-rabbit, or
anti-goat horseradish peroxidase (HRP)–diaminobenzidine
(DAB) staining kits (R&D Systems), depending on the pri-
mary antibody, and according to the manufacturer’s instruc-
tions. Briefly, sections were rehydrated, and endogenous per-
oxidase activity was blocked. Antigen unmasking was achieved
by incubating the sections in prewarmed trypsin–EDTA
(0.1%) in phosphate buffered saline (PBS) for 30 minutes at
37°C. Following the blocking steps, the sections were incubated
overnight with 4 �g/ml of rat anti–Ly-6G (Invitrogen), goat
anti–matrix metalloproteinase 9 (anti–MMP-9; Santa Cruz
Biotechnology), rabbit anti-CXCL1 (Clontech), goat biotinyl-
ated anti–DR-3 (R&D Systems), or isotype controls diluted in
PBS followed by biotinylated secondary antibody, according to
the manufacturers’ instructions. Sections were counterstained
with hematoxylin, dehydrated, and mounted in DPX. Positive
staining was visualized using a streptavidin–HRP conjugate
and DAB chromogen that stained positive areas brown. Im-
ages were captured using a digital camera (Olympus N457 or
Canon EOS 100D), and the proportion of brown pixels within
a particular area was measured using Adobe Photoshop CS3.5.
Five randomly selected areas were used to generate scores for
each sample.

In vitro cell culture. Human monocytes were ob-
tained from peripheral blood using density-gradient centrifu-
gation to purify mononuclear cells, followed by isolation with
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anti-CD14 microbeads according to the manufacturer’s in-
structions (Miltenyi Biotec). Macrophages were then gener-
ated by 7-day culture in RPMI 1640 supplemented with 10%
heat-inactivated fetal calf serum and macrophage colony-
stimulating factor (20 ng/ml; R&D Systems). Human neutro-
phils, skin, and synovial fibroblasts were isolated as previously
described (40–42). Ethics approval for all human experiments
was obtained from the Bro Taf Health Authority (Cardiff,
Wales, UK) prior to commencement of the study. Murine bone
marrow–derived macrophages were generated from bone mar-
row extracted from the femurs of DR3�/� and WT mice, as
previously described (21). Cells were cultured with or without
recombinant TL1A or murine soluble DR-3 (R&D Systems) at
the concentrations indicated, sometimes with additional stim-
uli such as interferon-� (IFN�) (26), lipopolysaccharide, or
antigen/antibody complexes (35). Supernatants were collected
over a 24-hour period, and the concentrations of enzymes,
chemokines, or cytokines were measured as indicated.

Enzyme-linked immunosorbent assays (ELISAs).
ELISAs for murine CXCL1 and human MMP-9 were per-
formed according to the instructions of the manufacturer
(R&D Systems).

Statistical analysis. Cartilage degradation and staining
readouts were percentages; therefore, Mann-Whitney non-
parametric U tests were used for statistical analysis. Student’s
t-tests were used in the analyses of protein concentrations
determined by ELISAs. Analyses were performed using
GraphPad Prism version 4. P values less than or equal to 0.05
were considered significant, and P values less than or equal to
0.01 were considered highly significant.

RESULTS

DR-3 expression in inflamed joints. Although the
DR-3/TL1A pathway has been shown to be essential in
the development of inflammatory arthritis in mice, and
that antagonism of this pathway can ameliorate disease
(21), relatively little is known about the expression
patterns of members of this pathway in the joint. Here,
we investigated DR-3 expression early in the inflamma-
tory process by staining joint sections with a polyclonal
antibody. As expected, synovial membrane sections from
the joints of WT mice showed minimal isotype staining,
and synovial membrane sections from the joints of
DR3�/� mice showed minimal anti–DR-3 staining
(Figure 1A) (mean � SEM 5.5 � 1.0% and 2.8 � 0.8%,
respectively). In contrast, strong signals for DR-3 were
recorded in synovial membrane sections (20.6 � 3.5%)
and anterior fat pad sections (20.2 � 1.7%) from the
joints of WT mice, 3 days after the generation of AIA
(13,21). The DR-3 signal was low or absent in sections
obtained from both of these areas in lateral control
knees, in which mBSA had not been injected (Figure
1A). These data showed that DR-3 is primarily absent in
healthy joints (some low-level expression may be present

Figure 1. Death receptor 3 (DR-3) expression in the joints of mice
with antigen-induced arthritis. Arthritis was induced in DR3-knockout
(DR3-KO; DR3�/�) mice and their DR3�/� (wild-type [WT]) litter-
mates, and the joints were prepared, sectioned, and stained for DR-3
as described in Materials and Methods. Antigen (methylated bovine
serum albumin [mBSA]) was administered into the right knee to
induce localized inflammatory arthritis. A, Representative high-
magnification (40�) photomicrographs showing (from top to bottom)
isotype staining in a right knee section from a WT mouse, anti–
DR-3 staining in a right knee section from a DR3�/� mouse, anti–
DR-3 staining in a right knee section from a WT mouse, and anti–DR-3
staining in a left knee section (contralateral negative control) from a
WT mouse. Bars � 45 �m. B, Quantification of positive staining, as
measured by the percentage of positive pixels within a particular area.
Values are the mean � SEM (n � 4–5 mice per group). P values were
determined by Mann-Whitney U test.
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in the synovial membrane) but is significantly and rap-
idly increased by the inflammatory process induced by
injection of mBSA (Figure 1B).

Protection against early cartilage degradation in
the joints of DR3�/� mice. To examine the functional
significance of this increase in DR-3 expression, we
investigated cartilage degradation at both early (day 3)
and late (day 21) time points following generation of
AIA. Consistent with a previous report (21), DR3�/�

mice showed significant protection against cartilage de-
struction compared with their WT littermates on day 21
(mean � SEM 11 � 7% versus 50 � 6%; P � 0.006), as
measured by proteoglycan staining with Safranin O–fast

green (Figures 2A and B). Unexpectedly, this pattern
was also observed early in the inflammatory process on
day 3 after generation of AIA (17 � 5% in WT mice and
2 � 1% in DR3�/� mice; P � 0.03), as measured by
staining with Safranin O–fast green or toluidine blue
(Figures 2C and D). Thus, the DR-3/TL1A pathway
contributes to the development of early pathologic fea-
tures of inflammatory arthritis prior to exerting an effect
on Teff cell development and osteoclastogenesis in
murine models of inflammatory arthritis (21,36).

Concentrations of MMP-9 and ADAMTS-5 in the
joints of DR3�/� mice early in the course of AIA. In an
attempt to determine how DR-3 so rapidly contributes

Figure 2. Cartilage depletion in the joints of mice with antigen-induced arthritis (AIA). Arthritis was induced in WT and DR3�/� mice, and the
joints were prepared, sectioned, and stained as described in Materials and Methods. A, Representative Safranin O–fast green–stained joint sections
from WT and DR3�/� mice, 21 days after generation of AIA. B, Quantification of cartilage depletion in WT and DR3�/� mice on day 21. C,
Representative Safranin O–fast green–stained (top row) and toludine blue–stained (bottom row) joint sections from WT and DR3�/� mice, 3 days
after generation of AIA. D, Quantification of cartilage depletion in WT and DR3�/� mice on day 3, as measured by Safranin O–fast green staining.
In A and C, bars � 60 �m. In B and D, each data point represents a single mouse; horizontal lines show the mean. P values were determined by
Mann-Whitney U test. See Figure 1 for other definitions.
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to joint degradation, we investigated the level of
cartilage-destroying enzymes within the joints of
DR3�/� and WT mice in early AIA. MMP-9, a gelati-
nase that degrades type IV and type V collagen and has
an established role in cartilage degradation during RA
(43), was chosen because of previous reports that
MMP-9 release could be induced from the myeloid cell
line THP-1 in vitro by either crosslinking of DR-3 (44)
or the action of IFN� and TL1A (26). Consistent with
the observed reductions in cartilage depletion, MMP-9
levels were significantly reduced in the joints of DR3�/�

mice with AIA (mean � SEM 2.3 � 0.4%) compared
with the levels in WT mice (4.4 � 0.7%; P � 0.03) 3 days
after the initiation of AIA (Figures 3A–C). This was
primarily attributable to the presence of MMP-9 within
infiltrating cells in the fat pad (Figures 3A–C), but
MMP-9 was also detected in chondrocytes from the

joints of WT and DR3�/� mice (additional information
is available from the corresponding author). In contrast,
the levels of ADAMTS-5, the major aggrecanase in
mouse cartilage (45), in the joints of DR3�/� mice were
not different from the levels in WT mice (additional
information is available from the corresponding author).
Therefore, at this time point (day 3), levels of MMP-9,
but not ADAMTS-5, were dependent on the presence of
DR-3.

Neutrophils as a major source of MMP-9. In
order to determine the potential source of DR-3–
dependent MMP-9, cell lines representing stromal and
infiltrating cell types within the inflamed joint were
established and tested for MMP-9 production in re-
sponse to TL1A. These included fibroblasts derived
from multiple sources (RA synovium, healthy skin, or
fetal foreskin), macrophages, and neutrophils. As ex-

Figure 3. Matrix metalloproteinase 9 (MMP-9) expression in the joints of mice with antigen-induced arthritis and MMP-9 production in vitro.
Arthritis was induced in WT mice and DR3�/� mice, and the joints were prepared, sectioned, and stained as described in Materials and Methods.
A and B, Representative joint sections from a WT mouse (A) and a DR3�/� mouse (B), 3 days after induction of arthritis, stained for MMP-9.
Arrowheads highlight areas of positive brown staining. Bars � 60 �m. C, Quantification of MMP-9 expression in WT and DR3�/� mice. D, MMP-9
production in cultures of rheumatoid arthritis fibroblast-like synoviocytes (RA FLS), healthy skin fibroblasts (fibs), human fetal foreskin fibroblasts
(HFFF), macrophages, and neutrophils treated with the indicated stimuli. In C and D, each symbol represents a single mouse (C) or a single subject
(D); horizontal lines show the mean. P values were determined by Mann-Whitney U test (C) and Student’s t-test (D). TL1A � tumor necrosis
factor–like molecule 1A; IFN� � interferon-� (see Figure 1 for other definitions).
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pected, fibroblasts produced only small amounts of
MMP-9 (on a per-cell basis), with skin fibroblasts and
fetal foreskin fibroblasts producing significantly more
than RA synovial fibroblasts (mean � SEM 0.15 � 0.01,
0.15 � 0.02, and 0.05 � 0.01 ng/hour/million cells,
respectively). In contrast, primary macrophages pro-
duced �20 times more MMP-9 (3.1 � 0.9 ng/hour/
million cells) than fibroblasts, and neutrophils generated
�800 times more MMP-9 (126 � 31 ng/hour/million
cells) than fibroblasts (Figure 3D).

Although this production was significant, neutro-
phils contained even larger (17-fold) intracellular stores
of MMP-9, as shown by testing lysed cultures by ELISA
(Figure 4A). Such lysates were also highly capable of
degrading articular cartilage in vitro (Figure 4B). How-
ever, although DR-3 was observed on the surface of
neutrophils (Figure 4C), and general activation using
fMLP significantly increased the production of MMP-9
by neutrophils, TL1A did not stimulate release of
MMP-9 (Figure 4D). In addition, TL1A and fMLP
activation had no significant effect on the release of the
neutrophil collagenase MMP-8, which was observed at

concentrations �50-fold less than those of MMP-9 in
neutrophil culture supernatants (Figure 4D). Indeed,
TL1A did not increase MMP-9 release from any of the
cultured cells examined (Figure 3D). Thus, although
neutrophils were the likeliest source of cartilage-
depleting MMP-9 in the joints of mice with AIA, TL1A
does not appear to elevate levels of MMP-9 by directly
inducing production.

Impaired neutrophil infiltration into the joints of
DR3�/� mice early in the course of AIA. We hypothe-
sized that DR-3 could control early pathologic changes
in the joint by increasing the number of infiltrating
innate effector cells bearing MMP-9, which would in-
clude macrophages and neutrophils. Previous studies
have indicated that there is no difference between the
level of macrophages in the joints of DR3�/� and WT
mice with AIA, early or late in the disease course, as
measured by F4/80 staining (21). The predominant cell
type involved in early infiltration into the joints of mice
with AIA are neutrophils, which can be observed as soon
as 6 hours after antigen injection (46). Thus, we stained
the joints of mice with AIA that were killed on day 3 for

Figure 4. Matrix metalloproteinase 9 (MMP-9) production by neutrophils. A, Concentration (conc) of MMP-9 in neutrophil culture supernatants
(S/N) and lysates. Values are the mean � SEM. B, Left, Representative whole murine patellae sections incubated with control media or neutrophil
lysates. Arrows indicate the tidemark used to determine cartilage degradation. Bars � 60 �m. Right, Percentage of cartilage degradation. C,
Histogram showing death receptor 3 (DR-3) expression on neutrophils, as determined by flow cytometric analysis. D, MMP-8 and MMP-9
production by neutrophils following in vitro activation. In B and D, each data point represents a single culture; horizontal lines show the mean. P
values were determined by Mann-Whitney U test (B) or Student’s t-test (D). TL1A � tumor necrosis factor–like molecule 1A; APC �
allophycocyanin.
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the neutrophil marker Ly-6G. The joints of DR3�/�

mice showed significantly less Ly-6G staining compared
with their WT counterparts (mean � SEM 1.3 � 0.5%
versus 5.3 � 0.9%; P � 0.001) (Figures 5A and B), and
this was primarily associated with cellular infiltration
into the fat pad (Figures 5C and D). Thus, the accumu-
lation or maintenance of neutrophil numbers in the joint
early after the generation of AIA was dependent on
DR-3 expression.

Reduced expression of the neutrophil chemo-
attractant CXCL1 in the joints of DR3�/� mice. Several
potential mechanisms could explain the reduced expres-
sion of CXCL1 in the joints of DR3�/� mice. The most
obvious, considering DR-3 contains a death domain, is
an alteration in neutrophil survival. However, in vitro
experiments indicated that TL1A had no significant
effect on neutrophil death, as measured by staining
with fluorescein isothiocyanate–labeled annexin V/7-
aminoactinomycin D and flow cytometric evaluation,
with or without activating stimuli (additional informa-
tion is available from the corresponding author). An-

other possible explanation is that DR-3 controlled neu-
trophil recruitment. A number of chemokines have been
reported to attract neutrophils, but the release of human
IL-8 from the macrophage-like cell line THP-1 has
previously been shown to be triggered in response to
TL1A following IFN� priming (47). We therefore
stained the joints of mice with AIA for the murine
ortholog of IL-8, CXCL1 (also known as murine
keratinocyte-derived chemokine). DR3�/� mouse joints
showed significantly less staining for CXCL1 than joints
from WT mice (mean � SEM 11 � 2% and 26 � 4%,
respectively; P � 0.006) (Figures 6A–C). These data are
consistent with the hypothesis that a reduction in pro-
duction of neutrophil attractants such as CXCL1, rather
than any affect on survival or lifespan, causes the
decrease in neutrophil infiltration in DR3�/� mice early
in the inflammatory process of AIA.

DISCUSSION

The DR-3/TL1A pathway has recently emerged
as a potential therapeutic target in inflammatory arthri-

Figure 5. Expression of the neutrophil marker Ly-6G in the joints of mice with antigen-induced arthritis. Arthritis was induced in WT and DR3�/�

mice, and the joints were prepared, sectioned, and stained as described in Materials and Methods. A, Representative low-magnification
photomicrographs of joint sections from WT and DR3�/� mice stained for Ly-6G, 3 days after induction of arthritis. Arrowheads highlight staining
in the synovial membrane (red) or fat pad (yellow). B, Quantification of Ly-6G expression in the joints of WT and DR3�/� mice. C, Representative
high-magnification photomicrographs of fat pad sections from the joints of WT and DR3�/� mice. Arrowheads highlight staining of infiltrating cells.
D, Quantification of Ly-6G expression in fat pad and synovial membrane sections obtained from the right knees of WT and DR3�/� mice. Bars in
A and C � 60 �m. In B and D, each data point represents a single mouse; horizontal lines show the mean. P values were determined by
Mann-Whitney U test. See Figure 1 for definitions.
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tis, the antagonism of which could impair the mecha-
nisms that are controlled by this pathway. These include
the development of effector CD4� Th17 cells (36),
macrophage differentiation into osteoclasts (21), and
osteoblast function (37), all of which influence late
events in the inflammatory arthritis disease process
through an impact on bone turnover. Here, we show that
DR-3 also controls early stages of the pathogenic pro-
cess by regulating the initial damage to cartilage that
occurs prior to the events described above.

To our knowledge, DR-3 expression patterns in
the joint have not been previously described, and only
one study has shown the presence of its TNFSF ligand
TL1A in the joints of patients with RA (35). In the
current study, we show that DR-3 is present only at low
levels in unchallenged contralateral joints but is up-
regulated following injection of arthritis-inducing anti-
gen (Figure 1). The simplest interpretation of these
observations is that local antigen-driven signals induce
up-regulation of DR-3; however, a degree of caution is
required. The strongest DR-3 signals came from the
areas just below the synovial membrane and from within
the fat pad, but these signals localized to the same areas
that stained infiltrating neutrophils using Ly-6G (Figure
4). The fact that DR-3 was detected on the surface of
human neutrophils (Figure 4) and has also been ob-
served on macrophage-like cell lines and primary macro-
phages (26), means the extent to which increasing DR-3
signals can be attributed to induction of expression on
stromal cells versus its surface expression on infiltrating
cells cannot yet be judged. Interestingly, a more general
diffuse signal throughout the joints of WT mice with
AIA was also observed (Figure 1) and would be consis-
tent with the presence of soluble DR-3.

At least 3 murine splice variants have been
described, including a soluble form lacking a transmem-
brane region (48), the expression of which is differen-
tially regulated by activation (7,25). The function of
these different splice variants is still poorly understood,
but soluble DR-3 should buffer the action of TL1A. In
mice, this may be particularly significant, because there
is no known murine homolog for human decoy receptor
3 (DcR-3), which is described as an additional soluble
decoy ligand for 3 TNFSF members (TL1A, FasL, and
LIGHT) (49), and its level has also been shown to be
increased in the serum of patients with RA (34). Human
DcR-3 also binds murine TL1A, FasL, and LIGHT (49),
and it is interesting that its systemic application in a
murine model of collagen-induced arthritis (CIA) re-
sulted in amelioration of disease associated with inhibi-
tion of effector CD4� T cells and B cells (50). This is
consistent with studies by our group and other investi-
gators demonstrating the role of DR-3 in AIA and CIA
(21,36), as is the ability of DcR-3 to inhibit osteoclasto-
genesis in vitro (51), but neither study determined the
dominant pathway(s) through which DcR-3–dependent
inhibition occurred. These differences between species
and the complexity of TNFSF and TNFRSF interactions
are clearly areas that should be studied further in
inflammatory diseases such as RA.

Although many MMPs, including MMP-1,
MMP-2, MMP-3, MMP-9, and MMP-13, have been
associated with the destruction of cartilage, tendon, and
bone in RA (43), the current study focused on MMP-9
because of several previous in vitro studies demonstrat-
ing its TL1A-driven release from macrophage-like cell
lines (26,44). MMP-9 is primarily a gelatinase but also
targets type IV collagen and is believed to further

Figure 6. CXCL1 expression in the joints of mice with antigen-induced arthritis. Arthritis was induced in WT and DR3�/� mice, and the joints were
prepared, sectioned, and stained as described in Materials and Methods. A and B, Representative joint sections from a WT mouse (A) and a DR3�/�

mouse (B), 3 days after induction of arthritis, stained for CXCL1. Bars � 60 �m. C, Quantification of CXCL1 expression in WT and DR3�/� mice.
Each data point represents a single mouse; horizontal lines show the mean. P values were determined by Mann-Whitney U test. See Figure 1 for
definitions.
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degrade extracellular matrix after the action of type I
and II collagenases such as MMP-1 and MMP-13.
Increasing levels of serum MMP-9 correlate with RA
severity (52,53), while MMP-9–deficient mice show re-
sistance to antibody-induced arthritis (54). Our data
showed for the first time that the absence of DR-3 is
associated with a significant decrease in MMP-9 expres-
sion at very early stages in the development of AIA.
Interestingly, the absence of DR-3 was not associated
with a change in the levels of ADAMTS-5, an aggreca-
nase responsible for cartilage degradation in osteo-
arthritis (55), suggesting that DR-3 signaling differen-
tially regulates the levels of some (e.g., MMP-9) but not
other cartilage-destroying enzymes at this early time
point in the AIA process. Further study at later time
points, when more effector Th17 cells would be present
in the joint, would be required to determine whether
the reported synergistic induction of ADAMTS-5 from
macrophages by TL1A and IL-17 occurs in AIA (56).

We also discovered that neutrophils produced
�40 times more MMP-9 in culture on a per-cell basis
than macrophages, with an additional capacity to pro-
duce �600 times more MMP-9 due to high intracell-
ular stores (Figures 3 and 4). Neutrophils also produce
MMP-8, although this collagenase was generated at
�50-fold lower concentrations than MMP-9 in our in
vitro cultures and was not significantly induced by
activation or exogenous TL1A (Figure 4D). This does
not preclude a role for MMP-8 in cartilage destruction
in inflammatory arthritides, but suggests that there may
be a hierarchy of MMP production from neutrophils,
several of which could contribute to cartilage destruction.

These data are consistent with the results of
several studies showing that neutrophils are a primary
source of MMP-9 in diseases requiring breakdown of
tissue, such as coronary heart disease (57) or stroke (58),
although their potential to contribute significantly to
MMP-9 levels in the inflamed joint has not previously
been described. Instead, it has been suggested that
macrophages are the primary source of MMP-9 in RA
(59,60). The potential role of neutrophils in the early
pathogenesis of RA seems to have mostly been ignored,
probably because patients often present with later-stage
disease, when joint damage has already occurred and
swelling has resolved. Historically, however, it has been
estimated that the turnover of neutrophils is extremely
high in inflamed joints (61), with the main role for
neutrophils in models of inflammatory arthritis being
attributed to the supply of proinflammatory leukotrienes
(62,63).

Intriguingly, we failed to reproduce the previous

in vitro findings of TL1A-driven MMP-9 release, al-
though this may in part have been attributable to our use
of primary cells, which may require additional signals for
priming. Kang and colleagues demonstrated these ef-
fects using THP-1 cells, which also required priming with
interferon-� (26). Instead, the role of the DR-3/TL1A
pathway at this early stage in the development of
inflammatory arthritis in murine AIA seems to be the
production of chemokines that attract neutrophils into
the inflamed joint. In humans, IL-8 (CXCL8) is consid-
ered to be the primary neutrophil chemoattractant and
has itself been reported to induce MMP-9 release
(64,65). Mice, however, do not have a CXCL8 homolog,
with CXCL1 (keratinocyte-derived chemokine) being
considered the murine functional ortholog of IL-8. To
our knowledge, there are no studies investigating
whether CXCL1 can trigger MMP-9 release, but it is
interesting to note that studies of human neutrophils
have suggested that signaling through CXCR2, and not
CXCR1, induces IL-8–dependent MMP-9 release (65).

CXCL1 levels were reduced in the absence of
DR-3 (Figure 6), but to date, we have been unable to
confirm the exact source of DR-3–dependent CXCL1 in
the joints of mice with AIA. Neutrophils, macrophages,
and epithelial cells have all been reported to release
CXCL1 (66,67). The pattern of more Ly-6G–positive
neutrophils in the fat pad but not around the synovial
membranes in the joints of WT mice (Figure 5) would be
consistent with a DR-3–independent source of CXCL1
from stromal cells, with further CXCL1 being provided
by infiltrating cells in a DR-3–dependent manner. How-
ever, our in vitro experiments in bone marrow–derived
macrophages from DR3�/� and WT mice have shown
both increases and decreases in DR-3–dependent
CXCL1 production triggered by the addition of TL1A
(data not shown). This is likely to reflect the intrinsic
plasticity of macrophages, coupled with the effects of
DR-3/TL1A signaling impacting on target cells at differ-
ent stages of differentiation. This has been previously
observed with CD4� T cells, in which TL1A inhibits the
differentiation of naive cells to Th17 cells but maintains
the numbers of these Teff cells once they are committed
to the IL-17–producing lineage (23).

The description of a reduction in the accumula-
tion of neutrophils in the joints of DR3�/� mice 3 days
after the generation of AIA is novel. Previous studies
have suggested that cellular infiltration at this time point
was not different between DR3�/� mice and WT mice
(21), but in those studies only macrophage infiltration
was investigated in any detail, using staining for F4/80.
Here, we used Ly-6G as a stain, with the microscopic
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study of Ly-6G–positive cells showing morphologic char-
acteristics of neutrophils (data not shown). In so doing,
we also identify neutrophils as a major source of MMP-9
early in the course of AIA and highlight a novel function
for DR-3, namely, the recruitment of neutrophils to in-
flamed joints. It is clear that the DR-3/TL1A pathway
regulates multiple functions relating to the development
of inflammatory and autoimmune disease, and further
study is required to determine how antagonism of this
pathway may be used as a potential treatment in the
future.
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