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Abstract

Animal models are invaluable tools which allow us to investigate the microbiome-host dialogue. However, experimental
design introduces biases in the data that we collect, also potentially leading to biased conclusions. With obesity at
pandemic levels animal models of this disease have been developed; we investigated the role of experimental design on
one such rodent model. We used 454 pyrosequencing to profile the faecal bacteria of obese (n = 6) and lean (homozygous
n = 6; heterozygous n = 6) Zucker rats over a 10 week period, maintained in mixed-genotype cages, to further understand
the relationships between the composition of the intestinal bacteria and age, obesity progression, genetic background and
cage environment. Phylogenetic and taxon-based univariate and multivariate analyses (non-metric multidimensional
scaling, principal component analysis) showed that age was the most significant source of variation in the composition of
the faecal microbiota. Second to this, cage environment was found to clearly impact the composition of the faecal
microbiota, with samples from animals from within the same cage showing high community structure concordance, but
large differences seen between cages. Importantly, the genetically induced obese phenotype was not found to impact the
faecal bacterial profiles. These findings demonstrate that the age and local environmental cage variables were driving the
composition of the faecal bacteria and were more deterministically important than the host genotype. These findings have
major implications for understanding the significance of functional metagenomic data in experimental studies and beg the
question; what is being measured in animal experiments in which different strains are housed separately, nature or nurture?
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Introduction

Emerging evidence of an obesity-associated altered microbiome

with the potential to influence caloric extraction from the diet and

host energy metabolism [1–3] has fuelled a surge in both scientific

and public interest in the role of the microbiome in the

etiopathogenesis of obesity, with particular interest in the

functional properties of the gut microbiota, microbe-host signaling

and the possibility of using the microbiome as a therapeutic target.

However, evidence also suggests that the relationship between the

microbiota and obesity is complex, with contradictory findings

relating to the nature of the shift in the relative contributions of

phyla to the microbiota composition in obesity, and the question of

whether the observed shift in the microbiome is more associated

with a high-fat diet than genetically induced obesity per se [4–9].

Given the complexity of the host-microbiome relationship, it is

vital that experimental studies on microbiota composition are well-

founded at the most basic level as well as at the high end levels of

analytical phenotyping, genotyping and functional ecological

analysis.

Several rodent models have been developed to investigate the

role of the host’s genotype on the development of obesity. One

such model is the homozygous Zucker (fa/fa) obese rat, which is

characterised by an autosomal recessive mutation of the fa-gene,

encoding for the leptin receptor. This results in reduced sensitivity

to leptin, leading to hyperphagia, obesity and hyperinsulinaemia.

In contrast, the heterozygous (fa/+) and homozygous (+/+) Zucker

genotypes remain lean as they age and do not develop insulin

resistance. Previous analyses of the intestinal microbiota of the

Zucker rat found differences between obese and lean strains when

the animals were housed according to strain [10]. Therefore, we

have designed an experiment to explore the effect of age,

genotype, obese/lean phenotype, and cage environment on the

evolution and development of the faecal microbiota of the male

Zucker rat. We aimed to test the hypothesis that the obese

phenotype will result in the evolution of a faecal microbiome and

host metabotype distinct from the lean Zucker rats, independent of

cage or age. We evaluated this by including each of the three

different genotypes in each cage.
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Methods

Ethics statement
All animal work was carried out in accordance with the U.K.

Home Office Animals (Scientific Procedures) Act 1986 under a

Project Licence which was approved by the AstraZeneca Ethical

Review Committee. The specific protocols described in this paper

were also reviewed and approved by the local Departmental

Review to ensure that they adhered to the principals of minimising

animal suffering. The hypothesis/ethical review study code for the

animal study conducted at AstraZeneca was HETP24. The

protocol review document was ETP40.

Animals and sample collection
Three strains of male rat were used in this study, Zucker (fa/fa)

obese, heterozygous Zucker lean (fa/+), and Zucker lean (+/+)

(n = 6 per strain). The animals were bred on site, (Alderley-Park,

AstraZeneca) and housed in a conventional animal room in

Techniplast P2000 cages at standard room temperature and

humidity on a 12 h:12 h light:dark cycle. The pups were reared

with their mothers until separated at weaning; they were housed as

littermates in six cages, each containing one rat from each

genotype (n = 3 per cage). The rats in all six cages had different

mothers and fathers, and the three rats inside each single cage

were littermates. Food (SDS breeding diet RM-3) and water were

available ad libitum throughout the study. At weekly intervals,

from 5 to 14 weeks of age, the animals were transferred to a

procedures room, weighed, and placed individually in metabolism

cages, for no more than 2 hours, for urine and faeces collection.

Samples were collected at the same time of day to remove diurnal

effects on profiles. The rats had access to food and water whilst in

the metabolism cages. At 14 weeks of age, following urine and

faeces collection, animals were rendered insentient by inhalation of

a 5:1 mixture of CO2:O2, and a blood sample taken by cardiac

puncture into lithium heparin blood syringes. Urine was also

collected for metabolite analysis (data not shown, Lees et al., in

preparation) together with a terminal blood sample. Euthanasia

was confirmed by cervical dislocation. Faeces were stored at

240uC prior to 16S rRNA gene profiling analysis.

Sample preparation
For 16S rRNA gene profiling, four faeces collection time points

were selected from the ten time points of the study, when the

animals were: five, seven, ten and fourteen weeks of age. The

faecal DNA was extracted from at least two different pellets, with a

total weight of approximately 200 mg. The Qiagen QIAamp

DNA stool kit was used for DNA extraction, as per the

manufacturer’s instructions, with an additional bead-beating step

for homogenisation of sample and lysis of bacterial cells (0.1 g

0.1 mm sterile glass beads, FastPrep bead-beater (Q-BIOgene),

setting six (6 metres per second) for 20 seconds, repeated a further

two times with 5 minutes on ice between cycles). Following DNA

extraction, DNA concentration and purity was determined using a

NanoDrop Spectrophotometer (Thermo Scientific, Wilmington,

DE, USA), and diluted to a working concentration of 10 ng/ml.

The polymerase chain reaction (PCR) was used to amplify the V1-

V3 regions of the 16S rRNA gene from each DNA sample using

the primers shown in Table S1 and was performed in triplicate on

all samples using a C1000 Thermal Cycler (Bio-Rad, USA). PCR

mixtures (50 ml) contained Taq polymerase (0.25 ml, 5 U/ml

solution), buffer (10 ml), MgCl2 (3 ml, 1.5 mM), deoxynucleoside

triphosphates (dNTPs, 0.4 ml, 0.2 mM of each dNTP), 1 ml of each

barcoded primer, 1 ml of each sample DNA (10 ng), and 34.35 ml

H2O. The PCR cycle conditions were: 95uC for 5 min initial

denaturation, 25 cycles of amplification at 95uC denaturation for

30 s, annealing at 55uC for 40 s, and extension of 72uC for 1 min,

with a final extension of 72uC for 5 min. PCR products (created in

triplicate) were pooled for each sample, and purified using a

Qiagen QIAquick PCR purification kit, quantified, again using a

NanoDrop Spectrophotometer. The samples were normalised to

5 ng/ml, and 4 ml was transferred to a new micro-centrifuge tube

for pooling of samples. The samples were run on three PTPs (Pico

Titre Plates), and so were pooled in to three 1.5 ml micro-

centrifuge tubes. Samples were sent to the University of Liverpool

to be sequenced on a Roche 454 GS FLX sequencer. All

sequences are deposited in the European Nucleotide Archive

under accession number PRJEB5969.

Data processing
Samples were processed using the Ribosomal Database Project

(RDP) pyropipeline [11] to remove any reads that were less than

250 base pairs, ,Q20 and contained any ambiguities (Ns). The

filtered sequences were classified using the RDP classifier [12] and

the relative proportions of phyla and families calculated. To

account for variation in sequence reads per sample, the samples

were normalised to the lowest sequence count per animal [13]

(Table S2). The resultant relative abundance values were used for

multivariate (PCA) and univariate (one-way ANOVA) statistical

analysis. UniFrac distances (both unweighted and weighted [14])

were calculated using Mothur v 1.28.1 [13].

Statistical analysis
UniFrac unweighted distances were analysed by non-metric

multidimensional scaling (NMDS) in R [15]. The UniFrac

unweighted distances were analysed at each time point using an

unpaired Student’s t test after normality of data had been ensured.

Univariate statistical analysis of relative abundance values was

performed using GraphPad Prism version 6 software (GraphPad

Software, San Diego, CA). To meet the assumptions of the one-

way analysis of variance (ANOVA), the data were assessed for

normality prior to analysis using the D’Agostino-Pearson test, and

the Bartlett’s test for equality of variance. The differences between

samples from differing time points were assessed using one-way

ANOVA and Tukey-Kramer multiple comparisons test. Analysis

of the samples at the individual operational taxonomic unit (OTU)

level was undertaken in STAMP [16] using genotype, cage and

week as the three main discriminators. The means for each OTU

were tested using an ANOVA and corrected for multiple testing

using the Bonferroni correction. In addition, the data were divided

into four time points and tested independently of each other to

remove the time factor from the analysis and to allow for the effect

of cage and phenotype to be measured at the OTU level.

Multivariate analysis of relative abundance values
To aid interpretation of the data and quickly visualise trends

associated with age, genotype and cage environment, principal

component analysis (PCA) was applied to the relative abundance

data [17]. The relative abundance values were filtered so that only

bacteria detected in at least 75% of animals per group were

included in models. PCA was performed on mean-centred, Pareto-

scaled [18] data for phylum-level data, using SIMCA 12.0

(Umetrics 2009). For PCA modelling of family-level profiles, data

were again mean-centred and a log10 transformation was required

due to the distribution of the data [19].

Age and Microenvironment Effect on Zucker Rat Microbiome
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Results

Metataxonomic characterisation of the faecal microbiota
Data generated from the 16S rRNA gene profiling of faeces

from rats aged five, seven, ten and fourteen weeks of age were

examined with respect to age- and phenotype-related variation,

and also the effects of housing (cage effect) were considered.

Age-related development of the gut microbiota
Based on UniFrac distances (Figure 1) and the 16S rRNA gene

profiling of the faecal samples, the intestinal microbiota showed

clear age-related trends at the phylum, family and OTU level. At

the phylum level there was a decrease in the Firmicutes:Bacter-
oidetes ratio (from an average ratio of 5.38 at week five, to 1.05 at

week fourteen), with both phyla varying with increasing age

(Figure 2A). At the family level, aging in the Zucker rat was

associated with a reduction in Bacteroidaceae and Peptostrepto-
coccaceae, and an increase in Ruminococcaceae and Bifidobacter-
iaceae (Figure 2B). Statistical analysis using one-way ANOVA was

not appropriate due to the heteroscedasticity of the relative

abundance data at both the phylum and family level (when

comparing values from differing time points, the variance of the

groups differed significantly), as judged by Bartlett’s test for equal

variances. Transformation of the data failed to resolve this issue.

When each dataset was tested across the four time points, 24

OTUs were found to vary significantly due to age (Table S3 and

Figure S2). The differences ranged from 15-25% enrichment for

OTU001 (Clostridium XI (family Peptostreptococcaceae)) in week 5

compared to weeks 7, 10 and 14. While OTUs 035 and 051

changed between 0.4 and 0.5% and were enriched in week 14

compared to the other weeks for both OTUs. Seventeen OTUs

varied when each time point was analysed independently of each

other time point (Table S4 and Figure S3). For week five, 3 OTUs

varied between the cages; at week seven, 5 OTUs; at week ten, 3

OTUs; and at week fourteen, 8 OTUs varied. There were no

consistent changes in the OTUs between cages. For example, cage

3 at week 5 showed enrichment of OTU017 (genus Bacteroides
enriched between 10-15% over all other cages) and OTU032

(genus Subdoligranulum enriched between 5–6% over all other

cages) and for cage 1 at week 5 OTU001 (genus Clostridium XI

enriched between 34–52% over all cages) was enriched. Only

OTU002 and OTU019 showed any changes from week to week

and only OTU019, changed from one to another i.e. week 10 to

week 14; however, only some of the cages showed the same change

between the two time points. In addition, the age of the animals

was the largest source of systematic variation in the PCA models of

the phylum and family level data (Figures S4A and S5A).

Impact of the cage environment
The intestinal bacteria profiles of animals from within the same

cage exhibited similarities at the phylum and family level, in spite

of the differing obese and lean phenotypes present within each

cage. In the taxon-based analysis, cage environment-associated

trends in the phylum and family-level datasets were not obvious

when all time points were considered together (Figures S4C and

S5C), as age at sample collection was the dominant source of

systematic variation, and obscured any cage-associated trends.

However, there was evidence of cage-environment associated

trends, at both the phylum and family-level, when each timepoint

was considered independently (Figure 3, Figure S6 and S7). Cage-

associated clustering of samples was also evident in the NMDS plot

based on the unweighted UniFrac distances between faecal

samples (Figure 1). The mean unweighted UniFrac distances of

animals from within the same cage were significantly lower (P,

0.0001) than animals from differing cages at each time point

(Figure 4), and significant differences between cohoused and non-

cohoused animals were also observed in the weighted UniFrac

distances at week 5 (P,0.001), week 7 (P,0.0001) and week 14

(P,0.01) (Figure S8). The effect of animal housing was most

prominent at the beginning of the study in samples from animals at

five and seven weeks of age, but differences persisted until the end

of the study (Figures S9 and S10). Significant differences were

found in the relative abundances of Bacteroidetes and Firmicutes at

the phylum level, and Bacteroidaceae, Lachnospiraceae, Peptos-
treptococcaceae, Porphyromonadaceae, Prevotellaceae and Rumi-
nococcaceae, at the family level, between the cages at weeks 5, 7

and 14 (P,0.05) (Table S5 and Table S6), with cages three and

four showing significantly higher Bacteroidetes at week 5; cages

one and two showing significantly higher Firmicutes at week 7; and

cage four showing significantly higher Firmicutes at week 14,

compared to all other cages. At the OTU level, only OTU061 was

different between cages (corrected P-value = 0.036) across all time

points. This OTU was found to be enriched in cage 3 when

compared to cages 2, 4, 5 and 6 and clusters in the genus

Bifidobacterium (Figure S11).

Phenotypic variation in the faecal microbiota
Food was available ad libitum and, despite exhibiting the

normal weight-gain-associated-phenotypes expected for these

animals (Figure S12 and S13), both multivariate and univariate

statistical analyses of the relative abundance values at the phylum,

family and OTU levels for samples across all time points, and each

timepoint separately, found no differences between the lean and

obese phenotypes (Figure 5, Figures S4B and S5B). No statistically

significant differences (P,0.05) were found in the relative

abundance values of bacterial phyla and families between the

three genotypes, except in the relative abundance of Proteobac-
teria, which was higher in samples from homozygous lean animals

at week 5 (Figure S14). In the phylogenetic analysis, the NMDS

plot based on the unweighted UniFrac distances failed to show any

clear genotype-based clustering of samples at any of the time

points (Figure S1). No differences were found when comparing the

mean unweighted (Figure 4) or weighted (Figure S8) UniFrac

distances from animals of the same and different genotypes.

Discussion

In this study, the age of the rats was found to be the most

significant source of systematic variation in the faecal bacterial

profile analyses at the phylum, family and OTU levels. Cohab-

itation had a significant impact on the intestinal microbiota, with

more similar communities derived from co-housed animals. The

impact of differences in host genotype and phenotype were largely

undetected.

The predominant phyla detected in the faecal samples of the

Zucker rats in this study were Firmicutes and Bacteroidetes, with

significantly lower detection of Actinobacteria and Tenericutes; this

is consistent with previous analyses of faecal bacterial profiles from

rats [20,21], mice [22–24], and humans [1,3,25,26]; although

certain studies have seen much greater representation of bacteria

from the Actinobacteria phylum in humans [27,28], mice [8] and

rats [29] and the Proteobacteria phylum in rats [29]. Interestingly,

the average relative abundance of Tenericutes exceeded that of

Proteobacteria in samples from animals at five weeks old, in

contrast to other analyses of rat faecal microbiota [30,31]. The

observed actinobacterial variability may be due to the primers

used for the PCR [32] or the DNA extraction kit used [33], and it

is important to note that the hypervariable region of the 16S

Age and Microenvironment Effect on Zucker Rat Microbiome
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rRNA gene we selected to amplify (V1-V3) may underestimate the

contribution of Bifidobacteria to the faecal bacterial profile [34].

At the phylum level, the most significant age-related trend was a

decrease in the Firmicutes:Bacteroidetes ratio with increasing age,

in contrast to the findings of previous investigators [8,35]. Given

that the ages of the rats, 5–14 weeks, is more representative of

maturation than aging per se, it is likely that the age-related trends

observed here in the Zucker rat reflect normal development of the

microbiota towards a stable climax community. The composition

of the intestinal microbiota is known to vary throughout infancy to

adulthood, with further variation described in the elderly [36–38].

The increasing use of culture-independent direct sequencing

techniques will facilitate our understanding of precisely how the

intestinal microbiota varies with age, but these results demonstrate

the significance of age on the composition of the intestinal

microbiota and the importance of the consideration of this

Figure 1. Non-Metric Multidimensional Scaling (NMDS) based on the unweighted UniFrac distances between the faecal samples. A:
Samples are coloured by cage (1, red; 2, yellow; 3, green; 4, cyan; 5, dark blue; 6, purple). B: Samples are coloured by the age of the animals at sample
collection; the genotype of the animals is shown for week 5. All time points coloured according to genotype are shown in supplementary information
(Figure S1).
doi:10.1371/journal.pone.0100916.g001
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variable in the context of designing and interpreting animal

studies.

No significant differences were found between the intestinal

bacteria profiles of the three Zucker rat genotypes at either the

phylum or the family level in the taxon-based analyses, and

bacterial communities from the same genotype were not found to

be more similar than communities from animals of differing

genotypes when the UniFrac distance measures were compared.

This result is interesting in light of the attention given to the

possibility of an obesity-associated altered microbiome, with an

increased potential for energy harvest [1–3], and also considering

the clear phenotype-based differentiation observed in the 1H

NMR spectroscopy-based metabolite profiles of the urine, plasma

and tissues of these animals (Lees et al., in preparation).

In a previous study of the faecal bacterial profiles of the Zucker

rat, employing DGGE and fluorescence in situ hybridization,

differences between all three strains of the Zucker rat were

observed, in spite of no phenotypic difference between the two

lean strains. It was proposed that the microbiotal differences

between the two lean strains were due to host genotype influence

on the composition of the faecal microbiota [10]. However, in

contrast to the present study, the animals were housed according

to genotype, thus the cage environment (and coprophagic activity

of the animals) is likely to have been influential in the experimental

outcomes and may have reinforced or potentially enhanced any

differences.

Certain studies have alluded to a more complex involvement of

the microbiota in obesity than perhaps first indicated [4] and the

nature of the shift in the relative contributions of phyla to the

microbiota composition in obesity has also been contested [5].

Additionally, there is gathering support for the role of diet, rather

than obesity itself, in altering bacterial profiles, with shifts in the

intestinal microbiome found to be associated with a high-fat diet

rather than genetically induced obesity [4,6–8,39,40]. With these

studies in mind, it is perhaps unsurprising that a quantitative

difference in chow consumption, as would be expected between

the obese and lean phenotypes analysed here [41–45], did not

result in a difference in bacterial profiles between the obese and

two lean phenotypes. Nevertheless, a more recent analysis of the

leptin-resistant db/db mouse model identified compositional

differences in the gut microbiota between the genetically obese

and lean mice [46]; although, again it is unclear to what extent the

arrangement of animal housing contributed to these results.

Several studies have explored the regulation of the intestinal

microbiota by both host genes and the microenvironment in

rodents [7,47–50]. In a quantitative PCR-based analysis of several

germfree inbred strains of mice colonised with altered Schaedler

flora (ASF), the microenvironment was found to influence the

intestinal microbiota, with animals in differing cages showing

divergence in ASF profiles. However, cohabitation of differing

inbred strains of mice preserved most of the interstrain variation,

with species variation in coprophagic behaviour suggested as a

potential cause [49]. Further to this, Dimitriu and colleagues

found that the response of faecal bacteria profiles to cohousing was

strongly dependent on mouse genotype, with immunodeficient

mice being more resistant to bacterial colonisation than wild type

mice [51]. Similarly, Campbell and colleagues found host genetics

to significantly correlate with bacterial phylotypes. Cohabitation of

different strains revealed an interaction between host genetic and

environmental factors, with bacterial communities more similar

between co-housed animals, but with strain specificity maintained

[50]. However, in a study of five common laboratory mouse

strains, caging was found to contribute more variance to the

murine microbiota composition than variation in genetics (31.7%

compared to 19%, respectively), but inter-individual variance was

the largest contribution (45.5%) [7]. Here, the intestinal bacteria

profiles of animals from within the same cage showed clear

similarities at the phylum and family level in the taxon-based

analysis, in spite of the differing genotypes/phenotypes present.

Additionally, comparison of UniFrac distances demonstrated that

rats co-housed had significantly more similar bacterial communi-

ties than animals from different cages.

The obese and lean Zucker rats from within the same cage

shared the same mother and the same cage environment from an

early age and throughout the study. The maternal microbiota has

been shown to be a significant indicator of offspring microbiota

composition, irrespective of genetic background, resulting in

similarities between progeny despite strain differences [52].

Furthermore, a study comparing knock-out mice, deficient in

Toll-like receptors, with wild type animals, found that this genetic

difference had a minimal impact on the composition of the

microbiota, and that familial transmission of the maternal

microbiota was the dominant source of variation in progeny

microbiota composition [53]. The inheritance of the microbiota

was also shown by Ley and colleagues in lean and ob/ob mice at the

genus level; however, phylum-level distinctions between the two

phenotypes were also observed [22], indicating that phenotypic

differences may dominate in certain circumstances.

In addition to the influence of the maternal microbiota on the

intestinal bacteria of offspring, the immediate cage environment

has been shown to be a highly influential factor in microbiota

development [52,54] and cohousing of litters will likely have

reinforced inter-cage differences in the bacterial profiles of the

Figure 2. Relative abundances of bacteria across all 68 animal
samples ordered by time point. A: Phylum-level; key: ‘Others’
composed of TM7 and Verrucomicrobia. B: Family-level; key: ‘Others’
composed of the families: Alcaligenaceae, Anaeroplasmataceae, Bacilla-
ceae, Clostridiaceae, Enterobacteriaceae, Erysipelotrichaceae, Eubacteria-
ceae, Halomonadaceae, IncertaeSedis XIII, IncertaeSedis XIV, Lactobacilla-
ceae, Peptococcaceae, Pseudomonadaceae and Sphingomonadaceae.
Plot labels: O = obese, L = homozygous lean, H = heterozygous lean;
number indicates cage number 1–6.
doi:10.1371/journal.pone.0100916.g002
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Zucker rats. Rodents are coprophagic and ingestion of phenotyp-

ically differing littermates’ faeces will have occurred from an early

age, contributing towards the development of a common

microbiome in animals occupying the same cage [55]. The

influence of the cage environment on the developing intestinal

microbiome was clearly demonstrated by Friswell and colleagues;

marked changes were observed in the gut microbiota of mice re-

located to new housing at four weeks of age, but not when mice

were re-located at eight weeks of age [52]. Additionally, Ma and

co-workers found that relocation of mice to new cages in a

different intracampus facility was associated with transient

variation in the composition of the faecal microbiota [53].

Furthermore, the effect of cage-environment has proved signifi-

cant in a previous analysis of bacterial recolonisation profiles in

rats following antibiotic exposure [56].

Germ free animal models have also been utilised to understand

the contributions of various factors to the development of the

microbiome; in a comparison of germ free mice either gavaged

Figure 3. Relative abundances of bacteria for all animals grouped according to cage, at weeks 5 and 14. A: Phylum-level; key: see
Figure 2 legend. B: Family-level; key: see Figure 2 legend. Data for weeks 7 and 10 are shown in Figure S9 (phylum) and S10 (family). Key: O = obese,
L = homozygous lean, H = heterozygous lean.
doi:10.1371/journal.pone.0100916.g003

Figure 4. Box plots of the unweighted UniFrac distances. Box
plots showing the median, lower and upper quartiles of the
unweighted UniFrac distances at each time point comparing the effect
of genotype and cage on the community structure. Whiskers were
calculated using the Tukey method; filled circles represent outliers. A
lower UniFrac distance indicates greater similarity between two
microbial communities (Student’s t test: ns = not significant; asterisks
indicate significant differences: ****P,0.0001).
doi:10.1371/journal.pone.0100916.g004

Figure 5. Mean relative abundances of bacteria for each
genotype at week 14 (n = 6 per genotype). A: Phylum level; key:
see Figure 2 legend. B: Family level; key: see Figure 2 legend. Mean
relative abundances of each phylum and family for each genotype at
each time point (weeks 5, 7, 10 and 14) are shown in Figure S15
(phylum) and S16 (family).
doi:10.1371/journal.pone.0100916.g005

Age and Microenvironment Effect on Zucker Rat Microbiome

PLOS ONE | www.plosone.org 7 September 2014 | Volume 9 | Issue 9 | e100916



with a microbiota harvested from adult wild type mice, or allowed

to acquire an intestinal microbiome from the cage microenviron-

ment, authors found that the cage microenvironment mitigated

the effects of the founding community [54]. More recently, a study

of germ-free mice gavaged with the cultured microbiota of a twin

pair discordant for obesity, demonstrated the significant impact of

within-cage coprophagy on host metabolism. Recipients of the

obese and lean microbiotas were co-housed, leading to certain

bacterial species successfully invading the microbiome of co-

housed animals, an effect that was diet dependent [57].

A potential limitation of our study is the lack of accurate

measurement of food intake, prohibited by the complex nature of

the animal housing design, which might have further strengthened

our conclusions. However, we are satisfied our assumptions are

reasonable, due to previous studies in our facility and a number of

publications detailing the relative food intake of obese and lean

Zucker rats of the same approximate age and bodyweight. Thus,

obese Zucker rats, fed ad libitum, were found to have an increased

food intake of between 30–60%, compared to the lean animals

[58–60]. Additionally, we acknowledge that the use of 454

technology, and level of sequencing employed here, will have

broadly characterized the samples in terms of the major patterns of

variation, and that less abundant species of the populations

sampled may not have been represented.

Conclusions

This study presents novel findings relating to how the faecal

microbiota in the Zucker rat develops with age through juvenile,

pubertal and post-pubertal stages. In addition, these results clearly

demonstrate the significance of both age and cage environment on

the composition of the faecal microbiota, in the context of an

obese animal model, with both variables exerting a greater

pressure on intestinal microbiota community structure than obese

or lean phenotype and chow consumption.

In the context of the recent explosion of research into the

compositional and functional aspects of the intestinal microbiota,

these data emphasise the need to control for the effect of the

microenvironment on the intestinal microbiome. As a minimum

requirement, researchers need to be transparent regarding the

specific animal housing arrangements when publishing studies, to

allow for informed interpretation of data. This may be particularly

important in studies whereby group-housing of animals according

to genotype/phenotype acts to positively reinforce a particular

compositional or functional aspect of the intestinal microbiota,

effectively amplifying any differences between groups in differing

cages. The profound effects of the housing of experimental animals

on outcomes demonstrated here have clear implications for

investigations relating to the development of the intestinal

microbiota, and to microbiome-host co-metabolism, and should

be given greater attention when designing studies.
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ples collected from all animals at all time points (mean
centred, Pareto-scaled data; R2 = 0.99, Q2 = 0.96). Princi-
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percentage of explained variance described by each component.
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the sample was collected. B: Samples are coloured according to the

genotype of the animal. C: Samples are coloured according to the
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reference for the sample time points; the time points are not shown

in (B) and (C) to aid visualisation of potential trends.
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Figure S5 PCA scores plots generated using relative
abundance values of the six most abundant families:
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described by each component. A: Samples are coloured according

to the age (in weeks) at which the sample was collected. B: Samples
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visualisation of potential trends.
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Figure S6 PCA scores plots generated using relative
abundance values of the three most abundant phyla:
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shown for samples collected from all animals at weeks 5, 7, 10 and
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Figure S7 PCA scores plots generated using relative
abundance values of the six most abundant families:
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coccaceae. Plots are shown for samples collected from all
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coloured according to the cage (1–6) of each animal. Week 14 is

not shown here, as the Q2 was negative with the first component,
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Figure S8 Box plots showing the median, lower and
upper quartiles of the weighted UniFrac distances at
each time point comparing the effect of genotype and
cage on the community structure. Whiskers were calculated

using the Tukey method; filled circles represent outliers. A lower
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asterisks indicate significant differences: ** P,0.01; *** P,
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Figure S9 Relative abundances of bacteria at the
phylum-level for all animals grouped according to cage,
at each time point separately. Key: O = obese, L = homozy-

gous lean, H = heterozygous lean. Phylum key: ‘Others’ composed

of TM7 and Verrucomicrobia.
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Figure S10 Relative abundances of bacteria at the
family-level for all animals grouped according to cage,
at each time point separately. Key: O = obese, L = homozy-

gous lean, H = heterozygous lean. Family key: ‘Others’ composed

of the families: Alcaligenaceae, Anaeroplasmataceae, Bacillaceae,
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Figure S11 ANOVA of the means of the OTU061 shows
that this OTU was the only one to vary at any significant
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Figure S12 Body weights for each animal at 4 weeks
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(weeks 5 to 14). (A) obese (fa/fa) animals, (B) lean (+/+) animals

and (C) lean (fa/+) animals. Colour of data points indicates cage

number of the animal.
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Figure S13 Body weights for each strain at each week
including pre-study (at four weeks for age), data
expressed as mean ± standard error of the mean.
Asterisks indicate significant differences (one-way ANOVA,

followed by Tukey-Kramer multiple comparisons test, * P,0.05;

** P,0.01; *** P,0.001; **** P,0.0001). Green asterisks relate to

the comparison of (fa/fa) and (+/+); red asterisks relate to the
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Figure S14 Box plots of the relative abundance of
Proteobacteria for each genotype at each time point.
The median, lower and upper quartiles are shown. Whiskers were

calculated using the Tukey method; filled circles represent outliers.

Asterisks indicate significant differences (one-way ANOVA,

followed by Tukey-Kramer multiple comparisons test, * P,0.05;

** P,0.01; *** P,0.001).
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for each genotype (all time points included). B: mean
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