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Abstract 

Preconditioning, postconditioning and remote conditioning of the myocardium are well-

described adaptive responses that markedly enhance the ability of the heart to withstand a 

prolonged ischemia/reperfusion insult and provide therapeutic paradigms for cardioprotection. 

Nevertheless, more than 25 years after the discovery of ischemic preconditioning, we still do not 

have established cardioprotective drugs on the market. Most experimental studies on 

cardioprotection are still undertaken in animal models, in which ischemia/reperfusion is imposed 

in the absence of cardiovascular risk factors. However, ischemic heart disease in humans is a 

complex disorder caused by or associated with cardiovascular risk factors and co-morbidities, 

including hypertension, hyperlipidemia, diabetes, insulin resistance, heart failure, altered 

coronary circulation, and aging. These risk factors induce fundamental alterations in cellular 

signaling cascades that affect the development of ischemia/reperfusion injury per se and 

responses to cardioprotective interventions. Moreover, some of the medications used to treat 

these risk factors, including statins, nitrates and anti-diabetic drugs, may impact on 

cardioprotection by modifying cellular signaling. The aim of this article is to review the recent 

evidence that cardiovascular risk factors and their medication may modify the response to 

cardioprotective interventions. We emphasize the critical need to take into account the presence 

of cardiovascular risk factors and concomitant medications when designing preclinical studies 

for the identification and validation of cardioprotective drug targets and clinical studies. This will 

hopefully maximize the success rate of developing rational approaches to effective 

cardioprotective therapies for the majority of patients with multiple risk factors.  
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I. INTRODUCTION

Ischemic heart disease is one of the leading causes of death and disability in the industrialized 

societies. Effective treatment of acute myocardial infarction (MI) is based on procedures which 

promote the return of blood flow to the ischemic zone of the myocardium, i.e. reperfusion 

therapy. Reperfusion, however, may lead to further irreversible myocardial cell death, termed 

lethal myocardial reperfusion injury. Currently, there is no effective therapy for combined 

ischemia/reperfusion injury on the market, and routine pharmacological agents do not salvage 

the ischemic/reperfused myocardium. Therefore, the development of cardioprotective agents to 

limit the extent of infarcted tissue caused by ischemia/reperfusion injury is of great clinical 

importance. 

Earlier pharmacological approaches to attenuate the consequences of ischemia/reperfusion injury 

were of limited experimental efficacy or failed to translate into useful clinical treatments. 

However, in the last three decades, the heart has been shown to possess a remarkable ability to 

adapt to ischemia/reperfusion stress and this molecular plasticity of the heart in 

ischemia/reperfusion has been the focus of intense research in the hope that the underlying 

mechanisms may be amenable to therapeutic exploitation. Ischemic preconditioning, 

postconditioning, and remote conditioning of myocardium are well-described adaptive responses 

in which there is brief exposure to ischemia/reperfusion prior to sustained ischemia 

(preconditioning), or at the immediate onset of reperfusion (postconditioning), or in a remote 

tissue prior to, during, or at reperfusion after sustained myocardial ischemia (remote 

conditioning). All forms of conditioning markedly enhance the ability of the heart to withstand a 
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prolonged ischemic insult (Fig 1). The discovery of these endogenous cardioprotective 

mechanisms has encouraged the exploration of new ways to protect the ischemic/reperfused 

myocardium and has amplified our knowledge of the molecular basis of cell injury and survival 

mechanisms during ischemia/reperfusion.  

Ischemic heart disease develops as a consequence of a number of etiologic risk factors 

predisposing to atherosclerosis development; it always co-exists with other systemic disease 

states. These pre-disposing and/or co-existing conditions include systemic arterial hypertension 

with related left ventricular hypertrophy and disturbed coronary circulation (i.e. hypertensive 

heart disease); metabolic diseases such as hyperlipidemia, diabetes mellitus, obesity, insulin 

resistance, uremia; and heart failure. In addition, aging is a major risk factor predisposing to the 

development of ischemic heart disease. These risk factors and co-existing conditions exert 

multiple biochemical effects on the heart that affect the development of ischemia/reperfusion 

injury per se and interfere with responses to cardioprotective interventions. Moreover, routine 

drug therapies for these conditions, e.g. antihyperlipidemic, antidiabetic, antihypertensive, anti-

anginal, and anti-platelet drugs, as well as drugs indicated for non-cardiovascular diseases may 

also interfere with cardioprotective interventions.  

Since the original observations of the loss of preconditioning in hyperlipidemic rodents 

(Szilvassy et al., 1995, Ferdinandy et al., 2007), it has been well established that many of the 

cardiovascular risk factors may interfere with cardioprotection by conditioning strategies (see 

our earlier reviews: Ferdinandy et al., 1998; Ferdinandy, 2003; Ferdinandy et al., 2007, Ovize et 

al., 2010). Nevertheless, most experimental studies on cardioprotection are still undertaken in 
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juvenile healthy animal models, in which ischemia/reperfusion is imposed in the absence of the 

classical risk factors for cardiovascular disease. This has contributed, at least in part, to the slow 

progress of translation of preclinical results to clinical therapy. While some conditioning 

treatments in humans have shown promising results, other studies have shown no 

cardioprotective effect of conditioning in patients with acute MI (Heusch, 2013). Therefore, the 

development of rational therapeutic approaches to protect the ischemic heart requires preclinical 

studies that examine cardioprotection specifically in relation to cardiovascular risk factors and 

their medications. Moreover, to avoid unexpected ischemia-related safety problems, the 

interaction of drugs with endogenous cardioprotective mechanisms must be tested during 

preclinical and clinical phases of drug development as well as in post-marketing clinical studies.  

The aim of this review is to update our previous review (Ferdinandy et al., 2007) on the effects 

of risk factors on ischemia/reperfusion injury and cardioprotection, and to emphasise the ongoing 

critical need for preclinical studies which model the presence of risk factors and their 

pharmacological treatments. Such studies are required for the proper validation of molecular 

targets for cardioprotection, thereby maximizing the chances of success for translation of 

cardioprotection into the clinical arena and for the benefit of the majority of ischemic heart 

disease patients who have multiple risk factors and associated medications. Furthermore, we 

highlight that routine medications for cardiovascular and other diseases may show undesirable 

effects on endogenous cardioprotective cellular signaling mechanisms, thereby possessing a 

“hidden cardiotoxicity” that may manifest latently in the ischemic heart as increased sensitivity 

to ischemic challenge or a decreased capability to adapt to an ischemic challenge, i.e. attenuated 

cardioprotection achieved by conditioning.  
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II. EXPERIMENTAL APPROACHES TO CARDIOPROTECTION

II.A. Cardioprotection through preconditioning

Cardioprotection elicited by ischemic preconditioning remains one of the most powerful 

therapeutic interventions for limiting infarct size following acute ischemia/reperfusion injury. 

Despite ongoing intensive investigation, the actual mechanisms underlying its cardioprotective 

effect and their interaction remain largely unclear. A large number of signaling pathways are 

recruited at the cardiomyocyte sarcolemma through the activation of cell surface receptors by 

their endogenous ligands. Many of these signal transduction pathways appear to terminate at the 

mitochondria, and it is in this area where most of the recent research has been focused (Fig 2). A 

comprehensive review of all of the investigated mechanisms is beyond the scope of this review. 

The interested reader is referred to comprehensive reviews published elsewhere on the topics of 

ischemic preconditioning and its signal transduction (Heusch et al.,2008; Hausenloy, 2013).  

II.A.1. Mitochondria and preconditioning

Mitochondria appear to play two critical roles in the setting of ischemic preconditioning. Prior to 

the index ischemic event and in response to the preconditioning stimulus,  mitochondria are 

known to release signaling reactive oxygen species (ROS) which then activate key mediators of 

cardioprotection, which subsequently prevent the opening of the mitochondrial permeability 

transition pore (MPTP) in the first few minutes of myocardial reperfusion, thereby attenuating 

myocardial reperfusion injury and limiting infarct size.  
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II.A.1.a. The MPTP and preconditioning

The mechanism through which the signaling ROS are generated in response to the ischemic 

preconditioning stimulus is not clear but one suggestion has implicated the activation of the 

mitochondrial ATP-sensitive potassium channel (KATP), which is related to mitochondrial 

connexin 43 (Cx43) (Heinzel et al., 2005) and appears to be mediated via protein kinase G 

(PKG) and mitochondrial protein kinase C (PKC)-ε (Costa & Garlid, 2008). The K
+
 influx into 

mitochondria is believed to induce matrix alkalinization which then results in the production of 

superoxide from complex I of the electron transport chain. 

A number of experimental studies have linked ischemic preconditioning-induced 

cardioprotection to the inhibition of MPTP opening at the onset of reperfusion. The precise 

mechanism through which this is achieved remains undetermined but may involve the following: 

(1) activation of pro-survival pathways such as the reperfusion injury salvage kinase (RISK) or

survivor activating factor enhancement (SAFE) signaling pathways which then act to prevent 

MPTP opening either in a direct or indirect manner (Hausenloy et al., 2009; 2011b). There is 

evidence to suggest that one particular downstream mediator, glycogen synthase kinase-3β 

(GSK-3β), appears to mediate cardioprotection through the inhibition of the MPTP, although the 

mechanism through which this is achieved is unclear (Juhaszova et al., 2004); (2) activation of 

the mitochondrial KATP channel, which via mitochondrial PKC-ε, results in ROS-mediated 

inhibition of MPTP opening (Costa & Garlid, 2008); (3) attenuation of oxidative stress generated 

during myocardial ischemia thereby preventing MPTP opening at reperfusion (Clarke et al., 

2008).  
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Since 2007, several key developments have arisen with respect to the MPTP and its role in acute 

ischemia/reperfusion injury. Although mitochondrial cyclophilin D has been established as a 

regulator of the MPTP, the precise identities of the components of the MPTP remain unknown. 

Recent experimental studies have suggested that dimers of mitochondrial ATP synthase may 

constitute the MPTP (Giorgio et al., 2013; Bonora et al., 2013). Interestingly, an insight into the 

potential physiological role of the MPTP was provided by Elrod et al. (2010) who reported that 

mice deficient in mitochondrial cyclophilin D were more susceptible to calcium-overload, 

suggesting that the MPTP may mediate mitochondrial calcium efflux, a mechanism which had 

been first proposed in 1992 (Altschuld et al., 1992). Another important discovery was the 

identity of the mitochondrial calcium uniporter (De Stefani et al., 2011; Baughman et al., 2011), 

and the surprising observation that mice deficient in the uniporter were not protected from 

myocardial infarction despite being resistant to MPTP opening (Pan et al., 2013). 

II.A.1.b. Mitochondrial Connexin-43 and preconditioning

Recent experimental data have suggested that the gap junction sarcolemmal protein, Cx43, is 

also present in cardiac sub-sarcolemmal inner mitochondrial membranes, where it acts as a 

signaling mediator of ischemic preconditioning but not postconditioning (reviewed in Schulz et 

al., 2007). Cx43 is believed to form hemi-channels in the inner mitochondrial membrane thereby 

facilitating complex I function and the influx of K
+
 into mitochondria in response to the ischemic 

preconditioning stimulus (Boengler et al., 2012; Boengler et al., 2013a). The activation of the 

RISK or SAFE pathways is not involved in the protective function of Cx43 in ischemic 

preconditioning (Sanchez et al., 2013). 
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II.A.1.c. Mitochondria and new forms of cell death

The majority of experimental studies investigating the beneficial effects of conditioning the heart 

have focused on preventing cardiomyocyte death due to necrosis and/or apoptosis, and in this 

regard the mitochondria play a pivotal role. More recently, two further forms of cell death have 

been described. Both autophagy (including mitophagy) and regulated cell necrosis appear to be 

relevant to cardiomyocyte death induced by acute ischemia/reperfusion injury. Only an overview 

can be provided here, and the interested reader is referred to more comprehensive review articles 

(Giricz et al., 2012; Kaczmarek et al., 2013). 

Autophagy is an evolutionarily conserved process that mediates the degradation of cytoplasmic 

components via the lysosomal pathway under conditions of cellular stress. It has been suggested 

that autophagy may be an adaptive response to protect the cell against myocardial ischemia. 

Autophagy can be activated in response to ischemic preconditioning, whereas its activation at the 

time of reperfusion is thought to be deleterious (reviewed in Giricz et al., 2012). Mitophagy 

allows the removal of defective mitochondria and may also provide a cardioprotective response 

(Kubli & Gustafsson, 2012). This process is initiated by mitochondrial fragmentation and 

mitochondrial membrane depolarization which induces the translocation of the cytosolic 

ubiquitin ligase, parkin, to the mitochondrial outer membrane where it binds to mitofusin 2, 

which in itself has to be phosphorylated by phosphatase and tensin homologue (PTEN)–induced 

kinase 1 (PINK1) (Chen & Dorn, 2013), resulting in the removal of the damaged mitochondria. 

Abolishing mitophagy by knock-out of parkin abolishes cardioprotection by ischemic 

preconditioning (Huang et al., 2011).   
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Necrosis was previously considered to be an accidental, unregulated form of cell death. 

However, there also appears to be a regulated form of necrotic cell death, termed ‘necroptosis’ or 

‘programmed necrosis’ (reviewed by (Kaczmarek et al., 2013)). It is initiated by tumor necrosis 

factor-α (TNF-α) death domain receptor activation, the receptor-interacting protein  1 and 3 

kinases (RIPK1 and 3), the mixed lineage kinase domain-like protein (MLKL), and 

mitochondrial phosphoglycerate mutase/protein phosphatase (PGAM5), which then activates 

dynamin-related protein 1 (Drp1)-mediated mitochondrial fission resulting in cell death (Wang et 

al., 2012). Importantly, pharmacological inhibition of this novel death pathway has been reported 

to limit MI size and prevent adverse post-MI left ventricular remodeling (Lim et al., 2007; 

Oerlemans et al., 2012).  

II.A.1.d. Mitochondrial dynamics and cardioprotection

Mitochondria are no longer considered to be static organelles but are dynamic structures which 

are able to change their morphology by undergoing either fusion to generate elongated 

mitochondria which allows replenishment of damaged mitochondrial DNA, or fission to produce 

fragmented mitochondria to replace damaged mitochondria by mitophagy (reviewed in Ong & 

Hausenloy, 2010; Ong et al., 2013). Interestingly, cardiac mitochondria have been demonstrated 

to undergo fragmentation during myocardial ischemia under the control of the mitochondrial 

fission protein, Drp1 (Ong et al., 2010). Pharmacological or genetic inhibition of Drp1-mediated 

mitochondrial fission induced by ischemia has been reported to prevent MPTP opening and 

reduce MI size (Ong et al., 2010; Disatnik et al., 2013; Wang et al., 2011a). Somewhat 

surprisingly, the ablation of cardiac mitofusin 1 and 2 (known mitochondrial fusion proteins) 

also prevented MPTP opening and rendered hearts resistant to acute ischemia/reperfusion injury 
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(Papanicolaou et al., 2011; Papanicolaou et al., 2012). This unexpected result may be due to the 

pleiotropic non-fusion effects of these mitochondrial fusion proteins which include apoptosis 

induction, mediation of mitophagy, and tethering the sarcoplasmic reticulum to the mitochondria 

(de Brito & Scorrano, 2008a; de Brito & Scorrano, 2008b; Wang et al., 2012). A recent study has 

shown that pharmacological preconditioning using nitrite protected a cardiac-cell line by 

inhibiting ischemia-induced mitochondrial fission through the activation of protein kinase A 

(Pride et al., 2014). Whether ischemic preconditioning and postconditioning exert their 

cardioprotective effect by modulating mitochondrial morphology is not known.   

II.B Cardioprotection through postconditioning

One major limitation of ischemic preconditioning has been the necessity to apply the therapeutic 

intervention prior to the sustained index myocardial ischemia, the onset of which is unpredictable 

in patients presenting with MI. The discovery in 2003 of ischemic postconditioning by 

interrupting myocardial reperfusion with several cycles of short-lived ischemia has overcome 

this limitation (Zhao et al., 2003). The clinical applicability of ischemic postconditioning was 

realized only two years later in ST-segment elevated MI (STEMI) patients treated by 

percutaneous coronary intervention (PCI) using re-inflation of the coronary angioplasty balloon 

to interrupt myocardial reperfusion (Staat et al., 2005) (see section III for further clinical 

application of ischemic postconditioning). The protection afforded by ischemic postconditioning 

has been reproduced in most species tested although suitable algorithms may be model and 

species dependent (Skyschally et al., 2009). The modification of the reperfusion phase had been 

reported previously to confer cardioprotection by more gentle reperfusion (Musiolik et al., 2010). 
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In terms of the mechanistic pathway underlying ischemic postconditioning, many of the 

signaling pathways, but not all (Heusch et al., 2006), are shared with ischemic preconditioning. 

In brief, autacoids activate pro-survival signal transduction pathways, the majority of which 

converge on mitochondria and prevent MPTP opening at the time of reperfusion. A 

comprehensive review of all of the investigated mechanisms is beyond the scope of this review 

and we will only focus on the major developments since 2007. The interested reader is referred 

to comprehensive reviews published elsewhere on the topics of ischemic postconditioning 

(Hausenloy, 2013; Shi & Vinten-Johansen, 2012; Ovize et al., 2010; Burley & Baxter, 2009). 

II.B.1. Autacoid mediators of postconditioning

Initial experimental studies using pharmacological antagonists had implicated adenosine to be a 

key mediator of postconditioning through activation of the adenosine A2A receptor (Kin et al., 

2005), A2B receptor (Philipp et al., 2006), or A3 receptor (Kin et al., 2005; Philipp et al., 2006), 

but not the A1 receptor (Kin et al., 2005; Donato et al., 2007; Xi et al., 2008). A subsequent study 

found that mice deficient for the myocardial adenosine A2A receptor were resistant to ischemic 

postconditioning (Morrison et al., 2007). Since 2007, an increasing number of autacoid 

mediators of postconditioning have been described, including bradykinin (via the B2 receptor) 

(Penna et al., 2007; Xi et al., 2008), opioids (Pateliya et al., 2008; Jang et al., 2008; Zatta et al., 

2008), TNFα  (Lacerda et al., 2009), and sphingosine (Vessey et al., 2008a, b; Jin et al., 2008). 

II.B.2. Delaying the correction of pH at reperfusion

The acidic intracellular conditions produced during myocardial ischemia exert a strong inhibitory 

effect on the MPTP, keeping it closed during ischemia, despite calcium overload, increased 

inorganic phosphate, oxidative stress and ATP depletion. In the first few minutes of reperfusion 
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the wash-out of myocardial lactate and activation of the Na
+
-H

+
 exchanger and Na

+
-HCO3

-
 co-

transporter rapidly correct the intracellular acidosis, thereby releasing the inhibition on the 

MPTP and allowing the latter to open at the time of reperfusion (Halestrap et al., 2004; Yellon & 

Hausenloy, 2007). A number of experimental studies have reported that ischemic 

postconditioning may prevent MPTP opening by delaying the restoration of physiological pH at 

the onset of reperfusion (Fujita et al., 2007; Cohen et al., 2007), although the actual mechanism 

through which this might be achieved is not clear. Whether the stuttering reperfusion of the 

postconditioning protocol inhibits MPTP opening by delaying the washout of the myocardial 

lactate, attenuating oxidative stress production or activating the RISK or SAFE pathway is 

unclear.   

II.B.3.  Mitochondria and postconditioning

Experimental studies suggest that ischemic postconditioning prevents myocardial reperfusion 

injury and limits infarct size by inhibiting MPTP opening (Argaud et al., 2005). As with 

ischemic preconditioning, the mechanism through which this is achieved is not clear but a 

number of potential signaling pathways have been proposed: (1) the activation of the pro-

survival cardioprotective pathways such as the RISK, SAFE and NO-cGMP-PKG pathways at 

the onset of reperfusion inhibit MPTP opening (Andreadou et al., 2014; Hausenloy et al., 2005; 

Boengler et al., 2011a; Bopassa et al., 2006; Hausenloy et al., 2011b; Heusch et al., 2008; 

Heusch et al., 2011); (2) the delayed restoration in intracellular pH may inhibit MPTP opening 

(Cohen et al., 2007); (3) the reduction in ROS generated at reperfusion may prevent MPTP 

opening (Clarke et al., 2008).  
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II.C. Cardioprotection through pharmacological conditioning

Elucidation of the signaling pathways underlying ischemic conditioning in the heart has helped 

to identify a number of novel therapeutic targets for cardioprotection. These include targets in 

the signal transduction pathways linking the cell membrane to the mitochondria, and direct 

targets in the mitochondria. A number of pharmacological agents capable of mimicking the 

cardioprotective effects of ischemic conditioning continue to be investigated in the experimental 

setting, but there appear to be species differences, e.g. cyclosporine-A does not protect the rat 

heart (De Paulis et al., 2013). Some of these agents have been investigated in the clinical setting 

already. The most promising pharmacological cardioprotective agents and their potential targets 

include: cyclosporine-A (MPTP inhibition); metoprolol, matrix metalloproteinase (MMP) 

inhibition, glucagon-like peptide 1 (GLP-1) analogues (RISK pathway); nitrite/nitrates and 

soluble guanylate cyclase activators (NO-cGMP-PKG pathway) (reviewed in Andreadou et al, 

2014; Rassaf et al., 2014; Bice et al., 2014; Sharma et al., 2012; Stasch et al., 2011; Evgenov et 

al., 2006).   

II.D. Cardioprotection through remote conditioning

The major disadvantage of ischemic preconditioning and postconditioning as therapeutic 

interventions for limiting acute myocardial ischemia/reperfusion injury is that they both require 

the intervention to be applied directly to the heart, thereby limiting their clinical applicability. In 

this regard, the discovery in 1993 (Przyklenk et al., 1993), that the cardioprotective stimulus 

could be applied to remote myocardium, and later to a remote organ away from the heart, was a 

major advance.  This phenomenon has been termed ‘remote ischemic conditioning’ (reviewed in 
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(Hausenloy & Yellon, 2008; Vinten-Johansen & Shi, 2013)). However, the major breakthrough 

which facilitated the translation of remote ischemic conditioning into the clinical setting was the 

discovery in the experimental setting that the cardioprotective stimulus could be applied to the 

musculoskeletal tissue of the hind-limb (Oxman et al., 1997; Birnbaum et al., 1997). This was 

followed by the discovery in human volunteers that the cardioprotective stimulus could be 

applied to the arm or leg in a non-invasive manner by simply inflating and deflating a blood 

pressure cuff or similar device (Gunaydin et al., 2000; Kharbanda et al., 2002).  

An additional advantage with remote ischemic conditioning is its ability to confer 

cardioprotection when initiated at different time-points in relation to acute ischemia/reperfusion 

injury. It can be applied prior to myocardial ischemia (remote ischemic preconditioning) 

(Przyklenk et al., 1993); after the onset of myocardial ischemia but prior to reperfusion (remote 

ischemic perconditioning)(Schmidt et al., 2007); at the onset of myocardial reperfusion (remote 

ischemic postconditioning)(Andreka et al., 2007); and even after 15 min of reperfusion has 

elapsed (remote ischemic delayed postconditioning) (Basalay et al., 2012). Remote conditioning 

interventions thereby lend themselves to application in a number of different clinical settings of 

acute ischemia/reperfusion injury (see section III). Moreover, repeated daily episodes of remote 

ischemic postconditioning over a period of 28 days following MI in a rat model of acute 

ischemia/reperfusion injury have been reported to have beneficial effects on post-MI remodeling 

(Wei et al., 2011).      

Despite its discovery in 1993, the actual mechanism underlying the cardioprotective effect of 

remote conditioning remains unclear. The signal transduction pathway can be divided into three 
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stages: (1) the application of the ‘conditioning’ stimulus to the remote organ or tissue results in 

the generation of a cardioprotective signal, the nature of which is unclear; (2) the mechanism 

through which the cardioprotective signal is conveyed to the heart is currently unclear, but is 

believed to involve both neural and circulating humoral components; and (3) the recruitment of 

established cardioprotective signaling pathways within the cardiomyocyte (reviewed in 

(Hausenloy & Yellon, 2008)). Dissection of the individual contributions of these three sequential 

signaling steps has been an experimental challenge which remains unsolved. The current 

paradigm suggests that the conditioning stimulus within the remote organ or tissue generates 

autacoids such as adenosine, bradykinin and opioids, which result in the stimulation of the neural 

pathway to that remote organ or tissue (Liem et al., 2002; Redington et al., 2012; Jensen et al., 

2012). The neural pathway then relays the cardioprotective signal to the brainstem nuclei 

(Lonborg et al., 2012), where a humoral factor(s), as yet unidentified, is released into the 

circulation and carried to the heart to mediate the cardioprotective effect. Recently, involvement 

of the SDF-1α/CXCR4 axis has been shown (Davidson et al., 2013). Also, cardioprotection by 

remote ischemic preconditioning of the rat heart has recently been shown to be mediated by 

extracellular microvesicles released by brief periods of ischemia and acting as potential carriers 

of cardioprotective substances (Giricz et al., 2014). A comprehensive discussion of the potential 

mechanisms underlying remote ischemic conditioning is beyond the scope of this review and the 

reader is referred to comprehensive reviews on the subject (Hausenloy & Yellon, 2008; Vinten-

Johansen & Shi, 2013). The clinical application of this phenomenon is dealt with in the next 

section. 
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III. CLINICAL APPROACHES TO CARDIOPROTECTION

There are now a number of studies which have examined cardioprotection by ischemic 

preconditioning, ischemic postconditioning and remote conditioning in various clinical scenarios 

(Heusch, 2013).  

III.A. Ischemic preconditioning

Conceptually, ischemic preconditioning has been associated with pre-infarction angina i.e. 

unstable angina preceding acute MI. It is known that pre-infarction angina is associated with 

better clinical outcome than an abrupt acute MI without preceding episodes of angina (Heusch, 

2001; Rezkalla and Kloner, 2004). The causal attribution of protection with pre-infarction angina 

to ischemic preconditioning rather than collateral recruitment or more rapid reperfusion, as well 

as to the early versus the delayed form of ischemic preconditioning remains unclear. Although 

conceptually inferred for pre-infarction angina, ischemic preconditioning has been more 

empirically studied in interventional and surgical revascularization protocols (Fig. 3).  

During repeated balloon angioplasty, ECG alterations, pain sensation, lactate production, and 

creatine kinase release were found to be attenuated during the second as compared to the first 

coronary occlusion period, and this was taken as evidence of ischemic preconditioning (Heusch, 

2001). With the use of pharmacological antagonists, the causal involvement of adenosine, 

opioids, α-adrenoceptor activation and KATP was demonstrated. However, a caveat must be noted 

since reduced ST-segment elevation can be dissociated from reduced infarct size (Birincioglu et 

al., 1999) such that the selected endpoint of ischemic preconditioning’s protection may be 
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critical for successful clinical translation. There are also a number of studies where an ischemic 

preconditioning algorithm was used in coronary artery bypass graft or valvular surgery and 

protection was seen in terms of reduced release of serum biomarkers (creatine kinase-MB, 

troponin I or T) (Lu et al., 1997; Jenkins et al., 1997; Szmagala et al., 1998; Li et al., 1999; Teoh 

et al., 2002a, b; Ghosh and Galinanes, 2003; Buyukates et al., 2005; Codispoti et al., 2006; Ji et 

al., 2007; Amr and Yassin, 2010). However, not all studies were positive (Alkhulaifi et al., 1994; 

Perrault et al., 1996; Cremer et al., 1997; Kaukoranta et al., 1997; Illes and Swoyer, 1998; Pego-

Fernandes et al., 2001; Wu et al., 2001; Ghosh and Galinanes, 2003; Jebeli et al., 2010). Both 

positive and negative studies suffer from small cohort sizes and lack of clinical outcome as 

endpoint. Nevertheless, the impression is that ischemic preconditioning can be utilized to induce 

protection in elective cardiac surgery, and a meta-analysis of published studies suggests clinical 

benefit in terms of reduced arrhythmias, less inotrope support requirement and reduced intensive 

care unit stay (Walsh et al., 2008). 

III.B. Ischemic postconditioning

Ischemic postconditioning has been used in patients undergoing primary PCI for an acute MI 

(Fig. 4). The landmark study by Staat et al. (Staat et al., 2005) appeared only two years after the 

original experimental report of ischemic postconditioning in dogs (Zhao et al., 2003).  Several 

studies demonstrated reduced infarct size by reduced biomarker release (creatine kinase, creatine 

kinase-MB, troponin I) or by gadolinium-contrast MRI (Ma et al., 2006; Yang et al., 2007; Luo 

et al., 2007; Thibault et al., 2008; Laskey et al., 2008; Zhao et al., 2009b; Lonborg et al., 2010; 

Sorensson et al., 2010; Xue et al., 2010; Garcia et al., 2011; Luo et al., 2011; Ji et al., 2011; Liu 

et al., 2011a; Thuny et al., 2012; Durdu et al., 2012; Ugata et al., 2012; Mewton et al., 2013; Liu 
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et al., 2013). However, not all studies have reported positive findings (Freixa et al., 2011; 

Tarantini et al., 2012; Hahn et al., 2013; Dwyer et al., 2013; Elzbieciak et al., 2013). The sample 

size of the study cohorts was small, making them sensitive to false-negative type II errors. A 

systematic underestimation of the protective potential of ischemic postconditioning may result 

from lack of direct stenting. Direct stenting removes any residual stenosis and prevents coronary 

microembolization from the culprit lesion (Loubeyre et al., 2002) when further manipulated by 

the postconditioning manoeuvre (Heusch, 2012). With use of direct stenting, the consequences of 

immediate full reperfusion are compared to those of a postconditioning algorithm, without any 

interference by a residual stenosis or by coronary microembolization. Also, Ovize and colleagues 

who consistently reported protection with ischemic postconditioning always inflated the balloon 

upstream of the stent (Staat et al.,2005; Thibault et al.,2008; Thuny et al., 2012). A larger clinical 

trial recently failed to observe reduced peak creatine kinase-MB or a significant benefit in 

clinical outcome from ischemic postconditioning, but unfortunately this trial did not use direct 

stenting in most patients (Hahn et al., 2013). 

III.C. Remote ischemic conditioning

In recent years, remote ischemic conditioning has become the most popular form of mechanical 

cardioprotection, since the procedure is non-invasive, predictable, precise, safe and notably 

avoids manipulation of the coronary culprit lesion (Fig. 5). Remote ischemic preconditioning has 

been used in elective interventional revascularization (Iliodromitis et al., 2006; Hoole et al., 

2009; Prasad et al., 2013; Ahmed et al., 2013; Luo et al., 2013) and in surgical coronary 

revascularization (Gunaydin et al., 2000; Hausenloy et al., 2007; Venugopal et al., 2009; 

Thielmann et al., 2010; Rahman et al., 2010; Wagner et al., 2010; Ali et al., 2010; Hong et al., 
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2010; Karuppasamy et al., 2011; Kottenberg et al., 2012; Heusch et al., 2012b; Lucchinetti et al., 

2012; Young et al., 2012; Hong et al., 2012; Kottenberg et al., 2012, 2014; Thielmann et al., 

2013; Saxena et al., 2013). The procedure has also been applied in other forms of cardiac surgery 

(Cheung et al., 2006; Li et al., 2010; Zhou et al., 2010; Wu et al., 2011a; Xie et al., 2012; Young 

et al., 2012; Pavione et al., 2012; Lee et al., 2012; Albrecht et al., 2013; Jones et al., 2013; Pepe 

et al., 2013; Meybohm et al., 2013). Not all studies reported infarct size reduction, using 

biomarker release or imaging as endpoints. A common feature of all the negative studies appears 

to be the use of propofol anesthesia in some form; propofol has been demonstrated to abrogate 

the protection by remote ischemic preconditioning (Kottenberg et al., 2012, 2014; Bautin et al., 

2013).   

A few studies have also used a remote conditioning procedure during an ongoing acute MI 

before primary PCI; increased myocardial salvage was seen in one study (Botker et al., 2010), 

but no significant reduction in infarct size by biomarker release or imaging (Botker et al., 2010; 

Rentoukas et al., 2010; Munk et al., 2010). One recent study has demonstrated reduced infarct 

size, as assessed by biomarker release and MRI, when the remote lower limb conditioning 

protocol was started in a postconditioning mode at the onset of reperfusion in patients with acute 

myocardial infarction (Crimi et al., 2013). Three further studies have even reported reduced all-

cause mortality (secondary endpoint) in patients undergoing a remote conditioning protocol 

before elective PCI (Davies et al., 2013),  emergency PCI (Sloth et al., 2014) or surgical 

coronary revascularization (Thielmann et al., 2013). Another recent study reported no clinical 

benefit in patients undergoing elective cardiac surgery with a combined remote ischemic pre- 

and postconditioning protocol; however, this study also used propofol and did not report 
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protection in terms of biomarker release or imaging endpoints (Hong et al., 2014).  Also, no 

additive protection of local ischemic postconditioning with remote ischemic preconditioning was 

seen in the small-scale RIPOST-MI study in patients undergoing primary PCI for acute MI 

(Prunier at al., 2014). We therefore await the results of several ongoing multi-center trials on 

remote conditioning where mortality is a primary endpoint; these include ERICCA (Hausenloy et 

al., 2011a) (NCT 1247545), RIPHeart (NCT 01067703), or CONDI II (NCT 01857414). 

III.D. Pharmacological postconditioning

Our increasing understanding of the mechanisms underlying ischemic postconditioning has 

identified a vast array of signalling mediators, which can be targeted by pharmacological agents 

to recapitulate the cardioprotective effects of ischemic postconditioning. In this regard, a number 

of pharmacological approaches to limiting infarct size in STEMI patients undergoing primary 

PCI have been investigated (reviewed in Sharma et al., 2012; Hausenloy et al., 2013a). 

Unfortunately, many of these studies have failed to demonstrate any cardioprotective effect in 

the clinical setting, despite promising experimental animal data. This apparent failure can be 

attributed to a number of different factors. These include the use of animal models which do not 

adequately represent clinical reality e.g. due to lack of co-morbidities; and poor study design 

(Ludman et al., 2010; Ovize et al., 2010; Schwartz-Longacre et al., 2011; Hausenloy et al., 2010; 

Bell et al., 2012; Hausenloy et al., 2013a).  

More recently, several novel pharmacological approaches have been reported to limit infarct size 

when administered prior to reperfusion in primary PCI-treated STEMI patients (Table 1). Most 

promising among these therapies are cyclosporine-A, exenatide and metoprolol. Whether these 



26 

pharmacological postconditioning agents can actually improve clinical outcomes remains to be 

investigated, and in this regard, a large multi-center clinical outcome study is currently underway 

investigating cyclosporine-A (NCT 01502774).        

In summary, mechanical and pharmacological conditioning strategies are promising 

therapeutic options for cardioprotection in patients undergoing elective or emergency 

coronary revascularization, although there are several negative studies. Most of the clinical 

trials, both positive and negative, have been small. The positive trials have been conducted 

in selected patients under well controlled conditions, whereas the negative trials (e.g. on 

remote preconditioning) have been less selective in terms of patient recruitment and 

procedures (anesthesia, surgery). The observed lack of protection in the negative studies 

can in part be attributed to the presence of different risk factors, comorbidities and their 

medications in different patient cohorts, as well as to poorly validated drug targets in 

juvenile and healthy animal models, and poorly designed clinical studies (Ferdinandy et al, 

2007; Ovize et al., 2010; Hausenloy et al., 2013a). None of the existing studies has really 

raised a safety concern for the conditioning strategies. Larger studies with clinical outcome 

endpoints are necessary to gain more insight into the clinical applicability of conditioning 

strategies in different patient populations with different medications and confounding 

factors.  



27 

IV. EFFECTS OF MAJOR RISK FACTORS ON ISCHEMIA-REPERFUSION

INJURY AND CARDIOPROTECTIVE STRATEGIES 

In the mid 1990s, hyperlipidemia was the first cardiovascular risk factor to be associated with the 

loss of preconditioning cardioprotection in rabbits and rats (Szilvassy et al., 1995; Ferdinandy et 

al., 1998). Since then, it has been well established that in addition to hyperlipidemia, most of the 

other major risk factors and/or medications that target them may modify cardioprotective 

signaling leading to the loss or attenuation of cardioprotection by ischemic or pharmacological 

conditioning (see for extensive earlier reviews: Ferdinandy et al, 1998; Ferdinandy 2003; 

Ferdinandy et al, 2007). In this chapter, we review more recent evidence of the impact of the 

most important risk factors on ischemia/reperfusion injury and cardioprotection (Table 2).   

IV.A. Aging and Cardioprotection

IV.A.1. Ischemic/pharmacological preconditioning in aging

While ischemic and pharmacological preconditioning attenuate ischemia/reperfusion injury in 

juvenile hearts, most studies suggest a loss of protection in aged hearts (for review, see 

Ferdinandy et al., 2007;  Boengler et al., 2009; Przyklenk, 2011). Using endothelial function 

rather than myocardial infarct size as endpoint of protection in humans in vivo, increased age 

was associated with loss of protection by ischemic preconditioning against endothelial 

dysfunction after ischemia/reperfusion in the brachial artery (van den Munckhof et al., 2013).  
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A number of studies have focused on different components of the signaling cascades (for review, 

see Heusch et al., 2008), assessing differences between young and aged hearts that might explain 

the observed loss of cardioprotection with aging.  

IV.A.1.a Effect of aging on cardioprotective signaling

Cytosolic signaling. Blockade of the Na
+
/H

+
 exchanger protected myocardium from 

ischemia/reperfusion injury in aged rats, whereas anesthetic preconditioning did not (Liu and 

Moore, 2010). Cyclic AMP-dependent protein kinase (PKA) activation and Akt activation are 

critical for ischemic preconditioning-induced cardioprotection (Yang et al., 2013). The adenylyl 

cyclase activator forskolin, which promotes subsequent PKA activation, reduced infarct size in 

young but not in aged rat hearts (Huhn et al., 2012). The loss of cardioprotection in aged, 

diabetic Goto-Kakizaki rats was associated with a chronic up-regulation of Akt phosphorylation 

and a lack of further activation of Akt by ischemic preconditioning (Whittington et al., 2013b). 

The myocardial Akt isoforms Akt1 and Akt2 must be distinguished in their function for ischemic 

preconditioning’s protection. The lack of a protective response to ischemic preconditioning in 

Akt1 knockout mice was accompanied by impaired phosphorylation (and thus inactivation) of 

GSK-3β (Kunuthur et al., 2012). Similarly, lack of pharmacological preconditioning by 

isoflurane in aged rat hearts was associated with differences in the Akt/GSK-3β signaling 

pathway (Zhu et al., 2010), and pharmacological GSK-3β inhibition decreased infarct size in 

young but not in old rat hearts (Zhu et al., 2011). In aged rat hearts, sirtuin deacetylase-1 (Sirt1) 

activity was increased following ischemia/reperfusion as compared to young hearts (Adam et al., 

2013). While young Sirt1 knockout mice hearts could not be preconditioned (Nadtochiy et al., 

2011b), a drug-induced increase in Sirt1 activity did not elicit cardioprotection following 
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ischemia/reperfusion, suggesting that Sirt1 activity is necessary but not sufficient for the 

cardioprotective effects of ischemic preconditioning (Nadtochiy et al., 2011a) and is most likely 

not responsible for any observed age-related differences.  

Mitochondria. The different cytosolic signaling pathways activated by ischemic or 

pharmacological preconditioning converge at the level of mitochondria (for review, see Heusch 

et al, 2008; Boengler et al., 2011b; Wojtovich et al., 2012), and the opening of certain 

mitochondrial ion channels alone is sufficient to elicit protection (for review, see Wojtovich et 

al., 2012). Pharmacological preconditioning by helium, which protected young but not old rat 

hearts, could be abolished by blockade of the mitochondrial calcium-sensitive potassium channel 

(Heinen et al., 2008). As expected, pharmacological activation of the mitochondrial calcium-

sensitive potassium channel reduced irreversible injury induced by ischemia/reperfusion in 

young rat hearts but surprisingly was also effective in reducing infarct size in aged rat hearts 

(Huhn et al., 2012). GSK-3β inhibition significantly prolonged the time to MPTP opening 

induced by ROS in cardiomyocytes isolated from young but not from aged rat hearts (Zhu et al., 

2011; Zhu et al., 2013b). Attenuation of ischemic or pharmacological preconditioning’s 

protection in the aged heart was associated with failure to reduce adenine-nucleotide-translocase 

-cyclophilin-D interactions, a critical modulator of MPTP opening (Zhu et al, 2013b).

Cyclosporine A,  which binds cyclophilin D thereby delaying MPTP opening , reduced 

myocardial infarct size and time to MPTP opening in young rats, whereas it failed to 

significantly affect either infarct size or time to MPTP opening in old rats (Liu et al., 2011b). 

Four weeks of treatment with the superoxide scavenger tempol restored pharmacological 

preconditioning and cardioprotection by cyclosporine-A in old rats, and the reinstatement of the 
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cardioprotected condition was associated with delayed onset of MPTP opening (Zhu et al., 

2013a).  

IV.A.1.b. Gender paradox

Most of the experimental studies (for review, see Ostadal et al., 2009) confirm the clinical 

observations (Canali et al., 2012) that female hearts have an increased resistance to 

ischemia/reperfusion injury, associated with an altered distribution of PKC and ERK isoforms as 

compared to male hearts (Hunter et al., 2005). The already high tolerance of the adult female 

heart can be increased further by ischemic preconditioning. However, it seems that this 

protective effect of preconditioning in female animals depends on age: it was absent in the young 

female rat heart but it appeared with the decrease of resistance towards ischemia/reperfusion 

injury during aging (Ostadal et al., 2009). An increased resistance towards ischemia/reperfusion 

injury in aged female hearts could also be restored by a PKCε-activator administered prior to 

ischemia and restoration of protection was associated with an enhanced mitochondrial PKCε-

translocation (Lancaster et al., 2011). 

IV.A.1.c Delayed preconditioning (second window of protection)

Twenty-four hour delayed anesthetic preconditioning with sevoflurane reduced infarct size in 

young but not in old rat hearts. Anesthetic preconditioning affected gene expression profiles 

(functional categories of cell defense/death, cell structure, gene expression/protein synthesis, 

inflammatory response/growth/ remodeling, and signaling/communication) of the cardiomyocyte 

in an age-associated pattern (Zhong et al., 2012). 
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IV.A.2. Aging and ischemic and pharmacological postconditioning

Ischemic or pharmacological postconditioning attenuates ischemia/reperfusion injury in young 

animal hearts (Skyschally et al., 2009). However, in most, although not all (Yin et al., 2009) 

studies, the protection is lost in aged hearts (for review, see Boengler et al., 2009 and Przyklenk 

et al., 2011). Comparing ischemic preconditioning and postconditioning, one study suggested 

that ischemic postconditioning was less affected by aging than ischemic preconditioning (Vessey 

et al., 2009). However, genetic characteristics, a minor difference in age, or the number of 

postconditioning cycles are all critical factors for the successful effect of ischemic 

postconditioning and must be taken into consideration (Boengler et al., 2008a; Boengler et al., 

2009; Skyschally et al., 2009; Somers et al., 2011). While there is no doubt that postconditioning 

protects human hearts (Heusch et al., 2013) there is some evidence that the extent of protection 

might depend on age. In a retrospective analysis, postconditioning the human heart by multiple 

balloon inflations failed to reduce irreversible injury in patients above the age of 65 years 

(Darling et al., 2007). Using the improvement of left ventricular function by postconditioning as 

endpoint, rather than  reduction of infarct size, a recent meta-analysis also suggested a beneficial 

effect of postconditioning only in patients younger than 62 years (Zhou et al., 2012).  

As with ischemic preconditioning, the more recent experimental studies have attempted to define 

specific alterations in the signaling mechanims leading to the failure of protection by 

postconditioning in aged as compared to young hearts.    
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IV.A.2.a Cytosolic signaling

Ischemic postconditioning reduced infarct size in young mice hearts and the protection was 

associated with an up-regulation of extracellular regulated kinase (ERK), but not Akt signaling. 

In contrast, postconditioning failed to limit infarct size in aged hearts, possibly as a consequence 

of the defect in ERK phosphorylation and increased MAPK phosphatase (MKP)-1 expression. 

Indeed, MKP inhibition restored the ischemic postconditioned phenotype in aged mice hearts 

(Przyklenk et al., 2008). Similarly, pharmacological postconditioning with isoflurane protected 

the heart in young but not in senescent rats; again the failure to activate the RISK pathway might 

have contributed to the attenuation of isoflurane-induced postconditioning effect in senescent 

rats (Chang et al., 2012). In one study with maintained reduction of infarct size by ischemic 

postconditioning in aged rat hearts (16-18 months), protection was accompanied by an increase 

in phosphorylation of Akt and GSK-3β similar to that measured in young rat hearts (Yin et al., 

2009). In addition to the RISK pathway, the SAFE pathway also appears to be affected by age. 

The signal transducer and activator of transcription-3 (STAT3), which is involved in 

ischemia/reperfusion injury and cardioprotection by conditioning protocols (Boengler et al., 

2008b), was less highly expressed and activated in aged mice hearts (Boengler et al., 2008a). 

Possibly, STAT3 plays a role in modifying mitochondrial function during ischemia/reperfusion 

such as ROS formation (Boengler et al., 2013b) and opening of the MPTP (Boengler et al., 2010; 

Heusch et al., 2011). While many postconditioning interventions are affected by age, 

pharmacological postconditioning with sphingosine reduced infarct size to the same extent in 

young and aged rat hearts (Vessey et al., 2009). Blockade of PKG or PKA attenuated the 

cardioprotection by sphingosine, suggesting that the cyclic nucleotide-dependent signaling 
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pathway utilized by sphingosine remains unaffected by age (Vessey et al., 2008a, b; Vessey et 

al., 2009). 

IV.A.2.b. Mitochondria

Similarly to what has been described for ischemic preconditioning, direct pharmacological 

inhibition of electron transport at reperfusion using amobarbital protected mitochondria and 

decreased myocardial injury in isolated aged rat hearts, even when signaling-induced pathways 

of postconditioning that are upstream of mitochondria were ineffective (Chen et al., 2012). 

IV.A.3. Aging and remote ischemic preconditioning

While remote ischemic preconditioning protects young and aged human hearts from 

ischemia/reperfusion-induced irreversible injury and improves patient outcomes after coronary 

artery bypass grafting, little is known about the age-dependency of the process. In a recent 

experimental study, remote ischemic preconditioning by lower limb ischemia did not protect 

against ischemia/reperfusion injury in isolated newborn rabbit hearts and even caused deleterious 

effects in these hearts, while it effectively reduced infarct size in adult rabbit hearts (Schmidt et 

al., 2014).  

Using endothelial function rather than irreversible myocardial injury as endpoint, healthy elderly 

people had a greater relative increase of flow-mediated vasodilatation after remote ischemic 

preconditioning than young individuals (Moro et al., 2011). Thus, whether or not an age-

dependency of remote ischemic preconditioning exists remains unknown at present.  
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Taken together, many studies demonstrate that protection by ischemic and 

pharmacological preconditioning (early and delayed phase) and postconditioning is lost in 

aged hearts. Loss of cardioprotection is related to alterations in cytosolic signaling cascades 

leading to modification in the opening of MPTP. However, direct stimulation of 

mitochondrial targets might be capable of inducing protection even in aged hearts.   

IV.B. Hypertension, cardiac hypertrophy and remodeling

Ischemic or pharmacological (e.g. adenosine-receptor agonist, propofol) preconditioning reduced 

infarct size in normotensive and hypertensive, hypertrophied rat hearts in vitro (Ebrahim et al., 

2007; Hochhauser et al., 2007; King et al., 2012) and in vivo (Dai et al., 2009). Similarly, 

pharmacological preconditioning with isoflurane six weeks after permanent coronary artery 

ligation reduced infarct size following ischemia/reperfusion in the remaining myocardium 

although hearts exhibited a substantial compensatory hypertrophy. The cardioprotection by 

isoflurane was abolished by inhibition of PI3K or KATP blockade, indicating that the established 

signaling cascade of protection was intact in the remodeled myocardium (Lucchinetti et al., 

2008). In contrast, ischemic postconditioning reduced infarct size in normotensive but not 

hypertensive rat hearts (Penna et al., 2010; Wagner et al., 2013). The phosphorylation of GSK-

3β was increased by ischemic postconditioning in normotensive rats. However, this increase was 

completely absent in hypertensive, hypertrophied rat hearts (Wagner et al., 2013). In anabolic 

steroid-induced cardiac hypertrophy, ischemic postconditioning failed to reduce infarct size 

following ischemia/reperfusion; postconditioning increased Akt phosphorylation regardless of its 

protective effects, but reduced expression of protein phosphatase expression was measured in 

protected hearts (Penna et al., 2011). Chronic captopril treatment significantly reduced left 
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ventricular hypertrophy in hypertensive rats and reduced infarct size following 

ischemia/reperfusion in isolated hearts from both normotensive and hypertensive rats. Ischemic 

postconditioning was unable to add its protective effect to that of chronic captopril even though 

treatment induced hypertrophy regression and almost completely normalized left ventricular 

pressure (Penna et al., 2010).  

Taken together, while preconditioning’s protection is still present in animals with 

hypertension and/or left ventricular hypertrophy, infarct size reduction by ischemic 

postconditioning appears to be lost. Once again the lack of protection by ischemic 

postconditioning relates to changes in the cytosolic signaling pathway. Treatment of the 

primary disease (hypertension, hypertrophy) does not restore the cardioprotection by 

ischemic postconditioning.   

IV.C. Hyperlipidemia and atherosclerosis

IV.C.1. Ischemia/reperfusion injury, ischemic pre-, post, and remote conditioning in

hyperlipidemia 

In epidemiological studies, there is a well-recognized relationship between serum total 

cholesterol concentration and the morbidity and mortality due to MI. Previously, this was 

attributed solely to the development of coronary atherosclerosis as a result of 

hypercholesterolemia. However, in the last two decades, a significant volume of evidence has 

accumulated showing that hyperlipidemia exerts direct effects on the myocardium that may 

interfere with cardioprotective mechanisms. Although there are some conflicting results, most of 

the preclinical studies, together with some small scale clinical studies, have shown that 



36 

hyperlipidemia per se, but not atherosclerosis, leads to a significant aggravation of myocardial 

ischemia/reperfusion injury and to attenuation of the cardioprotective effect of both early and 

late preconditioning. These studies were reviewed by us previously (Ferdinandy et al., 2007).  

More recent studies confirm the deleterious effects of hyperlipidemia on susceptibility to 

ischemia/reperfusion injury and on ischemic preconditioning. Expansion of infarct size in a 

hyperlipidemic pig model was shown by Osipov et al. (2009). The loss of the infarct limiting 

effect of ischemic preconditioning (Gorbe et al., 2011; Landim et al., 2013; Babbar et al., 2013; 

Yadav et al., 2010b; Xu et al., 2013) and late ischemic preconditioning (Yadav et al., 2012) have 

been shown in different models of diet-induced hyperlipidemia in rats.  

The loss of the infarct size limiting effect of ischemic postconditioning has been also confirmed 

in the last five years by several studies in hypercholesterolemic rats (Kupai et al., 2009; Landim 

et al., 2013; Wu et al., 2014) and in rabbit models (Andreadou et al., 2012; Iliodromitis et al., 

2010). In the fructose-fed hypertriglyceridemic rat heart, cholesterol lowering by fenofibrate 

restored ischemic preconditioning-mediated cardioprotection (Babbar et al, 2013). However, in 

one study ischemic postconditioning was still effective in hyperlipidemic rats (Zhao et al., 

2009a). The effect of hyperlipidemia on remote conditioning has not yet been reported.  

IV.C.2. Pharmacological cardioprotection in hyperlipidemia: implications for target validation

One of the most extensively investigated cardioprotective cellular signaling pathways is the NO-

cGMP-PKG pathway and elements of this signaling pathway are thought to be promising drug 

targets (Andreadou et al., 2014; Bice et al., 2014; Burley et al., 2007; Gorbe et al., 2010; Garcia-
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Dorado et al., 2009). However, Giricz et al. (2009) showed that although the NO donor SNAP 

which activates soluble guanylate cyclase, or BNP which activates particulate guanylate cyclase, 

or the stable cGMP analogue 8-bromo cGMP significantly reduced infarct size in normal rat 

hearts, none of these treatments was effective in hearts of rats fed a cholesterol-enriched diet. 

The loss of cardioprotection by activators of the cGMP-PKG pathway was possibly due to 

inactivation of PKG by oxidative dimerization of the kinase under hyperlipidemic conditions. 

These results indicate that drug targets upstream of PKG are less likely targets for 

cardioprotection, since activation of such targets does not provide cardioprotection in the 

presence of hyperlipidemia. Another recognized cardioprotective pathway includes KATP channel 

activation. However, it has recently been shown that the infarct limiting effect of either the non-

selective KATP activator cromakalim or the selective mitochondrial KATP activator diazoxide was 

abrogated in hyperlipidemic, cholesterol-fed rats (Csonka et al., 2014). Sevoflurane-induced 

delayed cardioprotection against ischemia/reperfusion injury was also lost in 

hypercholesterolemia, potentially via interference of hyperlipidemia with the 

iNOS/mitochondrial KATP channel pathway in rats (Zhang et al., 2012). Moreover, in 

hyperlipidemic Zucker obese rats, neither postconditioning nor the MPTP inhibitor cyclosporine- 

A could exert cardioprotection (Huhn et al., 2010). These results indicate that activation of the 

NO-cGMP-PKG pathway or KATP channels, and inhibition of the MPTP may not be ideal 

cardioprotective drug targets, since they are ineffective in the presence of hyperlipidemia, a 

frequent attendant condition in patients with ischemic heart disease.  

In contrast, the use of hyperlipidemic animal models of cardioprotection reveals some 

pharmacological targets that remain effective in the presence of hyperlipidemia. 



38 

Cardioprotection by preconditioning involves an approximately 20% inhibition of myocardial 

matrix metalloproteinase-2 (MMP2) (Lalu et al., 2002; Giricz et al., 2006).  However, MMP2 

inhibition by preconditioning is absent in hyperlipidemic rats. Giricz et al. (2006) showed that by 

mimicking the moderate MMP2 inhibitory effect of preconditioning with the inhibitor ilomastat, 

cardioprotection occurred both in normal and hyperlipidemic hearts. Effective cardioprotection 

by a moderate inhibition of intracellular MMP2 was confirmed recently by Bencsik et al., 

(2014). MMP2 inhibition as a pathway parallel to the known cardioprotective pathways has been 

confirmed by Bell et al. (2013). Dietary supplementation of red palm oil in rats with established 

hyperlipidemia was able to reduce infarct size associated with MMP2 inhibition (Szucs et al, 

2011). These results show that MMP2 inhibition might be a valid cardioprotective target, as 

moderate inhibition of MMP2 in the heart confers cardioprotection in both normal and 

hyperlipidemic animals subjected to MI (Dorman et al., 2010). Independent of MMP2 inhibition, 

Yadav et al. (2012) have shown that pharmacological inhibition of GSK-3β produced a late 

cardioprotected state in both normal and hyperlipidemic rats, possibly associated with HSP72 

induction. This may also suggest an MPTP-independent  effect of GSK3β inhibition.  

IV.C.3. Effect of hyperlipidemia on cardioprotective cellular mechanisms

The mechanism by which hyperlipidemia may influence the severity of myocardial 

ischemia/reperfusion injury and cardioprotection is not fully understood. However, decreased 

cardiac NO content, increased oxidative/nitrosative stress, inactivation of PKG, impairment of 

the mevalonate pathway, decreased heat-shock response, increased ecto-5'-nucleotidase activity, 

enhanced apoptotic cell death, as well as dramatic changes in cardiac gene expression profile 

have all been demonstrated as consequences of hyperlipidemia (see for earlier reviews: 
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Ferdinandy et al., 1998; Ferdinandy, 2003; Ferdinandy et al., 2007). Moreover, there is evidence 

that the microRNA expression pattern of hyperlipidemic rat hearts (Varga et al., 2013) and the 

gene expression patterns in the Zucker Diabetic Fatty rat strain  are changed (Sarkozy et al., 

2013),  indicating that the heart responds to the systemic hyperlipidemic state by concerted 

alterations in gene expression including genes controlling metabolic functions. We have also 

shown that hyperlipidemia changes Cx43 distribution in the sarcolemma and in the mitochondria 

(Gorbe et al., 2011). Hyperlipidemia also interferes with the nitrosative triggering signal of 

postconditioning in rats (Kupai et al., 2009) 

In summary, the majority of preclinical studies show that hyperlipidemia worsens the 

outcome of ischemia/reperfusion injury and attenuates the cardioprotective effect of both 

early and late preconditioning, postconditioning, and pharmacological conditioning via 

hyperlipidemia-induced changes in cardioprotective signaling pathways. Nevertheless, 

there are some promising targets that may be still effective in the hyperlipidemic heart e.g. 

MMP-2. These findings emphasize the necessity for the development of new 

cardioprotective drugs that are able to reverse the increased susceptibility of 

hyperlipidemic hearts to ischemia/reperfusion stress and to enhance adaptive 

cardioprotective mechanisms in hyperlipidemic patients.  
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IV.D. Diabetes

Epidemiological studies and clinical trials have clearly shown that both type I (insulin-

dependent) and type II (non-insulin-dependent) diabetics are more prone to developing ischemic 

heart disease, including acute MI and post-MI complications (Baars et al., 2013; Otto et al., 

2012). The diabetic heart is more susceptible to acute myocardial ischemia/reperfusion injury 

(Marso et al., 2007; Alegria et al., 2007). 

IV.D.1. Ischemia/reperfusion injury in diabetes

Although it has long been known that diabetes is an independent risk factor for the development 

of ischemic heart disease and that the long term outcome of ischemic heart disease is worsened 

by diabetes in humans, inconsistency exists in the literature regarding the susceptibility of 

myocardium to acute ischemia/reperfusion injury in various animal models of diabetes (reviewed 

in Ferdinandy et al., 2007; Whittington et al., 2012; Miki et al., 2012). With respect to the 

preclinical animal studies, it appears that the susceptibility of the diabetic heart to acute 

ischemia/reperfusion injury is critically dependent on the duration and severity of the diabetes 

model and the experimental conditions of the acute ischemia/reperfusion injury model. 

In experimental studies, the diabetic heart has been shown to be less sensitive to acute 

ischemia/reperfusion injury in those experimental studies which used: (i) a short duration of 

diabetes (<6 weeks); (ii) glucose as the only substrate; and (iii) a no-flow acute 

ischemia/reperfusion injury protocol. In contrast, in studies where the diabetes model was more 

prolonged and severe, fatty acids were present in the substrate, and a low-flow acute 

ischemia/reperfusion injury protocol was used, the diabetic heart was found to be more sensitive 
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to acute ischemia/reperfusion injury (Whittington et al., 2012; Miki et al., 2012). In contrast to 

the inconsistent preclinical studies, the majority of clinical studies demonstrate worse outcome 

from acute myocardial infarction in diabetic patients. This suggests that the use of chronic 

diabetes animal models better reflects the clinical situation.   

A number of studies have examined cardioprotection in different experimental animal models of 

diabetes and in diabetic patients. The majority of studies show that the presence of diabetes may 

interfere with the cardioprotective mechanisms, attenuating the effectiveness of these therapeutic 

strategies. As expected in some of the animal diabetic models used in the experimental studies, 

there is some overlap with the related co-morbidities of obesity and metabolic syndrome, both of 

which may also impact on the efficacy of cardioprotection. Many of the therapies used to treat 

diabetes may also impact on the cardioprotective intervention (discussed in a later section V.C). 

Finally, some experimental studies are beginning to investigate the effect of one or more co-

morbidities on the efficacy of cardioprotective strategies, which better reflects the clinical setting 

in which multiple co-morbidities often co-exist with ischemic heart disease.     

IV.D.2. Cardioprotection by preconditioning in diabetes

The majority of preclinical experimental studies investigating the effect of diabetes on the 

myocardial response to either ischemic or pharmacological preconditioning have found that the 

presence of diabetes renders the heart more resistant to the infarct-limiting effects of 

preconditioning (reviewed in Ferdinandy et al., 2007; Miki et al., 2012). Recent experimental 

studies have also shown that the cardioprotective efficacy of pharmacological preconditioning 

using a variety of different agents including erythropoietin (Hotta et al., 2010; Miki et al., 2009), 
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δ-opioid receptor agonist (Hotta et al., 2010), isoflurane (Matsumoto et al., 2009), L-glutamate 

(Povlsen et al., 2009), remifentanil (Kim et al., 2010), helium (Huhn et al., 2009), is also 

impaired in the diabetic heart. Whittington et al. (2013b) investigated the combined effect of 

diabetes and age on the response of the diabetic heart to acute ischemia/reperfusion injury. As 

expected, the combination of aging (up to 18 months in the rat) and diabetes (Goto-Kaziaki rat) 

increased infarct size in response to acute ischemia/reperfusion and raised the threshold for 

ischemic preconditioning in a predictably additive manner.  

IV.D.2.a. Mechanisms contributing to resistance of the diabetic heart to preconditioning

A variety of different mechanisms have been suggested to contribute to the impaired response of 

the diabetic heart to preconditioning. These include impaired activation of known intracellular 

pro-survival signaling pathways such as the Akt and ERK1/2 components of the RISK pathway 

(Hausenloy & Yellon, 2007) and its downstream targets such as GSK3β, and the janus-activated 

kinase (JAK)-STAT3 components of the SAFE pathway (Lecour, 2009). More recent 

experimental studies have investigated the effect of chronic Akt activation on the myocardial 

response to preconditioning. Whittington et al. (2013b) found that in the aged rat heart (12-18 

months old) there was chronic activation of Akt, which was not further augmented in response to 

ischemic preconditioning, suggesting that in this setting Akt activation may not mediate 

cardioprotection. In this regard, Fullmer et al. (2013) showed that pharmacological (insulin) or 

genetic activation of Akt in the heart blocked the infarct-limiting effects of ischemic 

preconditioning.        
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Since 2007, experimental studies have investigated several novel mechanisms to explain the 

impaired response of the diabetic heart to preconditioning. Miki et al. (2009) reported that the 

presence of augmented endoplasmic reticulum stress in the diabetic heart blocked ERK1/2-

mediated phosphorylation of GSK3β, leading to increased susceptibility to MPTP opening and 

mitochondrial calcium overload. Hotta et al. (2010) showed that the angiotensin-II subtype 1 

receptor-mediated upregulation of calcineurin in the diabetic rat heart interfered with the 

phosphorylation of JAK2 and PI3K-Akt signaling, thereby affecting the efficacy of 

pharmacological preconditioning. Ajmani et al. (2011) provided data implicating caveolin, which 

was increased in the diabetic heart and interfered with eNOS activity, contributing to the 

inability of the diabetic heart to respond to ischemic preconditioning. Impaired mitochondrial 

biogenesis, secondary to a dysfunctional adiponectin-adenosine monophosphate activated kinase 

(AMPK) axis (Yan et al., 2013), and increased TNFα- induced oxidative stress (Su et al., 2013) 

were also proposed as mechanisms underlying the greater sensitivity of the diabetic heart to 

ischemia/reperfusion injury and its resistance to ischemic preconditioning. A recent study by 

Gurel et al. (2013) has provided preliminary data suggesting that in the diabetic heart the failure 

of ischemic preconditioning to localize hexokinase to mitochondria may contribute to the lack of 

cardioprotection. Finally, an intriguing study by Vinokur et al. (2013) suggests that altered iron 

metabolism may contribute to the response of the diabetic heart to acute ischemia/reperfusion 

injury and ischemic preconditioning. Under basal conditions diabetic hearts sustained less acute 

ischemia/reperfusion injury, a finding which was associated with basally increased levels of 

myocardial ferritin, a cardioprotective factor. Conversely, the failure of the diabetic heart to 

respond to ischemic preconditioning was found to be associated with an accelerated loss of 

myocardial ferritin during ischemia.  
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In order to overcome the resistance of the diabetic heart to preconditioning, several studies have 

used pharmacological agents to target the effectors of cardioprotection downstream of the 

impaired signaling pathways or have used pharmacological modulation of alternative 

cardioprotective pathways. In this regard, it has been shown that pharmacological inhibition of 

GSK-3β, a downstream target of Akt and ERK1/2, was able to reduce MI size in the diabetic 

heart (Miki et al., 2009; Yadav et al., 2010a). Other experimental studies have reported being 

able to pharmacologically precondition the diabetic heart using a variety of diverse agents 

including olprinone (a phosphodiesterase type 3 inhibitor) (Matsumoto et al., 2009), and even 

ginsenoside Rb1 (a pharmacologically active component of ginseng) (Wu et al., 2011b). 

IV.D.2.b. Restoring myocardial sensitivity to preconditioning in the presence of diabetes

Whether anti-diabetic therapy or another pharmacological agent can restore the sensitivity of the 

diabetic heart to preconditioning has been investigated. Gu et al. (2008) found that simvastatin 

treatment was able to restore cardioprotection elicited by ischemic preconditioning in the 

presence of hyperglycemia, and this effect was associated with the generation of NO. Pre-

treatment of diabetic Goto-Kakizaki rats with the anti-diabetic sulfonylurea glimepiride (which 

did not reduce infarct size itself) was demonstrated to restore the sensitivity of the myocardium 

to ischemic preconditioning, such that one cycle instead of three cycles of ischemic 

preconditioning was sufficient to limit infarct size (Hausenloy et al., 2013c). However, this effect 

of glimepiride in lowering the threshold for ischemic preconditioning appeared to be independent 

of serum glucose levels as the latter remained unchanged with glimepiride treatment (Hausenloy 
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et al., 2013c). Finally, chronic insulin treatment increases cardiac adiponectin and restores 

cardioprotective AMPK signaling (Pei et al., 2013). 

Experimental studies using human right atrial tissue harvested from patients undergoing 

coronary artery bypass grafting surgery have reported that myocardial tissue from diabetic 

patients is resistant to ischemic preconditioning when subjected to simulated acute 

ischemia/reperfusion injury (Ovunc, 2000; Barua et al., 2011). Barua et al. (2011) showed that 

the resistance to ischemic preconditioning could be overcome by modulating NO availability in 

atrial tissue from diabetic patients. Interestingly, Sivaraman et al. (2010) demonstrated that 

intensifying the ischemic preconditioning stimulus protected isolated human right atrial 

trabeculae harvested from diabetic patients against simulated acute ischemia/reperfusion injury. 

In this study, the inability to precondition the diabetic atrial tissue using a standard 

preconditioning protocol was associated with lower basal levels of Akt activation (Sivaraman et 

al., 2010). Furthermore, Wang et al. (2011b) reported enhanced expression of PTEN (a 

suppressor of Akt activity) through microRNA interference (Ling et al., 2013)) associated with 

reduced Akt and downstream eNOS expression in diabetic human atrial tissue.     

In vivo human data have confirmed the resistance of diabetic patients to the protective effect of 

ischemic preconditioning. Engbersen et al. (2012) have demonstrated using a forearm model of 

endothelial injury that the efficacy of ischemic preconditioning to reduce acute 

ischemia/reperfusion injury was lower in type 1 diabetic patients and was completely abolished 

in these patients during hyperglycemia. 
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IV.D.3. Cardioprotection by postconditioning in diabetes and metabolic syndrome

Experimental animal data suggest that the presence of diabetes and related conditions such as 

obesity and the metabolic syndrome may impact on the cardioprotective efficacy of both 

ischemic and pharmacological postconditioning. For ischemic postconditioning, using either a 

genetic or a chemically-induced murine model of diabetes, Przyklenk et al. (2011) found that the 

isolated perfused diabetic heart was resistant to the infarct-limiting effects of ischemic 

postconditioning when compared to the normoglycemic heart. In this study, the lack of response 

to ischemic postconditioning in the diabetic heart was associated with a failure to activate the 

ERK1/2 component of the RISK pathway. Using an isolated rat heart model of acute 

ischemia/reperfusion injury, Ren et al. (2011) demonstrated that the failure to postcondition the 

diabetic heart appeared to be linked to reduced myocardial expression of transient receptor 

potential vanilloid 1 channel (TRPV1), calcitonin gene related peptide and substance P (Babiker 

et al., 2012) have shown that the diabetic heart was resistant to a novel form of postconditoning 

using pacing (ten cycles of 30 seconds left ventricular pacing alternated with 30 seconds right 

atrial pacing) when compared to the non-diabetic heart.  

Further studies have demonstrated that pharmacological postconditioning using a variety of 

agents can also be affected by the presence of diabetes. Raphael et al. (2010) found that 

hyperglycemia abrogated the cardioprotection elicited by the inhaled anesthetic isoflurane, 

administered at the onset of myocardial reperfusion, using a rabbit in vivo model of acute 

ischemia/reperfusion injury, a finding which was associated with impaired activation of Akt-

eNOS. Similarily, the infarct-limiting effect of the inhaled anesthetics desflurane (Tai et al., 

2012) and sevoflurane (Drenger et al., 2011), administered at the onset of myocardial reperfusion 
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to rats in vivo, was abolished in the presence of diabetes. This was associated with a failure of 

these anesthetic agents to activate Akt, ERK1/2, GSK-3β (Tai et al., 2012) and STAT3 (Drenger 

et al., 2011). An interesting study by Potier et al. (2013) has suggested that there may be 

differential effects in the response to cardioprotection using different bradykinin receptor 

agonists in the presence of diabetes. It was shown that ischemic postconditioning, the ACE 

inhibitor ramiprilat or a bradykinin B2 receptor agonist, all reduced infarct size and activated 

Akt, ERK1/2 and GSK-3β in the non-diabetic heart but failed to do so in the diabetic heart 

(Potier et al., 2013). In contrast, the diabetic heart, but not the non-diabetic heart, was found to 

be amenable to pharmacological postconditioning using a bradykinin B1 receptor agonist (Potier 

et al., 2013).      

A number of experimental studies have investigated the cardioprotective effects of combining 

ischemic and pharmacological postconditioning in the diabetic heart. Badalzadeh et al. (2012) 

demonstrated that the isolated diabetic rat heart was resistant to cardioprotection by either 

ischemic postconditioning or cyclosporine A alone, but with the combination of interventions, a 

significant reduction in infarct size was observed.  In contrast, Fan et al. (2012) found that 

atorvastatin was able to postcondition the diabetic heart, despite it being resistant to ischemic 

postconditioning; when given in combination, an additive cardioprotective effect was seen. 

These data suggest that the diabetic heart may be amenable to cardioprotection if the intensity of 

the postconditioning stimulus is enhanced.  

Attempts have been made to recapture the cardioprotective effects of postconditioning by 

correcting the hyperglycemic state. In this regard, although insulin pre-treatment failed to restore 
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the sensitivity of the diabetic heart to postconditioning (Drenger et al., 2011), the transplantation 

of pancreatic islet tissue was able to reverse the effect of diabetes on the myocardial response to 

postconditioning (Przyklenk et al., 2011). 

In contrast to the above findings, Lacerda et al. (2012) found that despite the presence of 

diabetes, the murine heart was equally sensitive to ischemic postconditioning (6 x 10 second 

cycles of coronary arterial occlusion/reperfusion) as the non-diabetic heart. However, this 

discordant finding may in part be explained by the fact that the streptozotocin-induced diabetes 

was only initiated 5-10 days prior to MI. A recent study by Oosterlinck et al. (2013), using a 

genetic murine model of diabetes (ob/ob and DKO strains), demonstrated that the 

cardioprotective effect of ischemic postconditioning was attenuated, although this may in part 

relate to the use of a non-standard ischemic postconditioning protocol (3x10 second cycles of 

coronary arterial occlusion/reperfusion).  

Bouhidel et al. (2008) investigated the effect of obesity alone on the efficacy of ischemic 

postconditionin. They found that the leptin-deficient obese (ob/ob) mice was resistant to 

cardioprotection by ischemic postconditioning, and that this was associated with an inability to 

activate Akt, ERK1/2, p70S6 kinase, and AMPK. Using a rat model of the metabolic syndrome, 

Wagner et al. (2008) found that the Wistar-Ottawa-Karlsburg W (WOKW) rats were resistant to 

the cardioprotection elicited by ischemic postconditioning, and this was associated with an 

inability to phosphorylate ERK1/2 and its downstream effector GSK-3β. Huhn et al. (2009b; 

2010) reported that the Zucker obese rat was resistant to pharmacological postconditioning using 

either sevoflurane or cyclosporine A . The finding that the presence of a co-morbidity could 
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impact on the cardioprotective efficacy of cyclosporine-A is somewhat surprising as its target, 

the MPTP, is believed to be downstream of the signaling pathways affected by the co-morbidity. 

However, one can speculate that the co-morbidity may interfere with cardioprotection by 

modulating mitochondrial function. An interesting study by Pons et al. (2013) showed that 

regular treadmill exercise was able to protect the heart in obese (ob/ob) mice through the 

activation of pro-survival kinases (Akt, ERK1/2, GSK-3β, p70S6 kinase, AMPK) and in the 

absence of any improvement in metabolic profile. These findings suggest that regular exercise 

may have beneficial effects on the heart independently of any effect it may have on the metabolic 

profile.  

Despite the preclinical data demonstrating the resistance of the diabetic heart to both ischemic 

and pharmacological postconditioning, there have been no clinical trials investigating the effect 

of diabetes on the cardioprotective efficacy of postconditioning. This is despite a number of 

proof-of-concept clinical studies, comprising a significant proportion of diabetic patients, 

reporting beneficial effects of postconditioning in STEMI and coronary artery bypass graft 

surgery patients (see section III). Interestingly, Lemoine et al. (2008; 2010; 2011) found that 

human atrial trabeculae subjected to simulated acute ischemia/reperfusion injury were equally 

sensitive to the cardioprotective effects of pharmacological postconditioning using desflurane, 

whether harvested from diabetic or non-diabetic patients undergoing coronary artery bypass graft 

surgery. 
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IV.D.4. Cardioprotection by remote ischemic conditioning in diabetes

Despite the clinical potential of remote ischemic conditioning, there is a paucity of animal data 

investigating whether the diabetic heart is amenable to this cardioprotective intervention. 

Investigating the effect of diabetes in this setting can be quite challenging, given that the 

presence of diabetes may modulate signaling at any one or more of the following stages of the 

mechanistic pathway: the remote organ or tissue in which the conditioning stimulus is applied, 

the neuro-hormonal pathway which conveys the cardioprotective stimulus to the heart, and 

finally, the activation of intracellular pro-survival signaling pathways within the heart (reviewed 

in Hausenloy & Yellon, 2008).   

There has only been one experimental animal study published specifically investigating the 

cardioprotective efficacy of remote ischemic preconditioning in the presence of diabetes. Zhu et 

al. (2011b) found that the diabetic rat heart in vivo was amenable to infarct size reduction elicited 

by limb preconditioning (3x5 min cycles of hind-limb cuff inflation/deflation). However, it is 

important to note that in this study streptozotocin-induced diabetes was only initiated one week 

prior to MI. Whether remote ischemic preconditioning would have been effective in a chronic 

diabetes animal model remains to be determined. 

Remote ischemic conditioning, using a cuff placed on either the upper arm or leg to induce three 

or more cycles of brief ischemia and reperfusion, has been reported to have beneficial effects in a 

number of clinical settings including STEMI patients treated by primary PCI, coronary artery 

bypass graft patients and patients undergoing elective PCI (reviewed in (Hausenloy & Yellon, 

2008; Candilio et al., 2011; Heusch, 2013)). Although many of these clinical studies included 
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diabetic patients they did not specifically address the question of whether the diabetic heart was 

amenable to remote ischemic conditioning. 

Xu et al. (2014) found that a standard remote ischemic conditioning stimulus (3x5 min upper arm 

cuff inflations/deflation) did not reduce the magnitude or incidence of peri-procedural 

myocardial injury during elective PCI in older patients (mean age 69 years) with diabetes. 

However, it is difficult to distinguish the effect of diabetes from that of age on the remote 

ischemic preconditioning protocol. Furthermore, the authors of this study did not demonstrate 

that their remote ischemic preconditioning protocol was effective in a younger non-diabetic 

population (Xu et al., 2014). In an intriguing clinical study by Jensen et al. (2012) it was reported 

that diabetic patients with a peripheral neuropathy failed to produce a cardioprotective humoral 

factor in response to a standard remote ischemic preconditioning protocol (4x5 min upper arm 

cuff inflation/deflation), when compared to non-diabetic and diabetic patients who did not have a 

peripheral neuropathy. This finding supports the notion that an intact neural pathway from/to the 

remotely conditioned organ or tissue is required to elicit the cardioprotective humoral factor 

(Jensen et al., 2012). In this particular study, the cardioprotective efficacy of the humoral factor 

was tested in an isolated perfused rabbit heart ischemia/reperfusion model, and therefore whether 

the diabetic heart was amenable to remote ischemic preconditioning cardioprotection was not 

actually investigated (Jensen et al., 2012). A later study by the same research group investigated 

the impact of myocardial O-linked β-N-acetylglucosamine (O-GlcNAc) in remote ischemic 

preconditioning-induced protection (Jensen et al., 2013). They found that plasma dialysate 

harvested from either normal volunteers or diabetic patients treated with a standard protocol of 

remote ischemic preconditioning (3x5 cycles of upper am cuff inflation/deflation) was able to 
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protect naïve human right atrial trabeculae subjected to simulated ischemia/reperfusion injury, 

findings which were associated with increased levels of myocardial O-GlcNAc (Jensen et al., 

2013). These findings appear to suggest that increased myocardial levels of O-GlcNAc may 

indicate a cardioprotective phenotype.   

In summary, the majority of both preclinical and clinical data suggest that the diabetic 

heart is more susceptible to ischemia/reperfusion injury and that the cardioprotective 

effect of ischemic and pharmacological preconditioning and of postconditioning is impaired 

in the presence of diabetes. This impairment appears to be associated with deficient 

activation of pro-survival signaling pathways such as Akt, ERK1/2, AMPK and STAT3. 

Due to the limited pre-clinical and clinical studies available, whether or not the diabetic 

heart is amenable to remote ischemic conditioning is currently not known.  

IV.E. Kidney failure and uremia

Uremia, resulting from kidney failure, is a metabolic disease associated with a high prevalence of 

ischemic heart disease (Levey and Coresh, 2012). Therefore, one may speculate that a uremic 

state may also lead to the attenuation of endogenous cardioprotective mechanisms. However, 

Byrne et al. (2012) reported that ischemic preconditioning, remote conditioning, and 

postconditioning were still cardioprotective after 4 weeks of subtotal nephrectomy or adenine-

enriched diet-induced acute uremia in rats. They also showed in this model that the RISK and 

SAFE signaling pathways were unaffected. However, experimental models of acute uremia may 

not properly reflect the clinical situation, since uremia frequently remains unrecognised until its 

late stages (Levey and Coresh, 2012). Kocsis et al. (2012) studied if prolonged experimental 
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uremia of 30 weeks duration affects ischemic preconditioning. They found that although 

prolonged experimental uremia led to severe metabolic changes and mild myocardial 

dysfunction, the cardioprotective effect of ischemic preconditioning was still preserved 30 weeks 

after partial nephrectomy in rat hearts. However, it is not known if longer durations of uremia 

may interfere with postconditioning or remote conditioning. Human conditioning studies in 

uremia have not been reported.  

Taken together, the limited preclinical studies suggest that in spite of the complex systemic 

metabolic changes in uremia, cardioprotection by pre- and postconditioning is preserved. 

Nevertheless, further preclinical studies in long-term experimental uremia models, as well 

as clinical studies will be necessary to show if mechanical or pharmacological conditioning 

can still protect the heart in uremic patients.  

IV.F. The diseased coronary circulation

Experimental studies on myocardial ischemia/reperfusion are usually performed in healthy 

young animals; moreover, irrespective of age, these animals have a virgin coronary circulation. 

In clinical reality, atherosclerosis develops progressively over time. Plaque fissure and rupture 

are then acutely superimposed on the underlying atherosclerosis and further complicated by 

intraluminal platelet aggregation and coagulation. In contrast, experimental studies usually rely 

on abrupt closure and reopening of the epicardial coronary artery with external devices. 

Therefore, the status of both the epicardial coronary arteries and the coronary microcirculation is 

vastly different between clinical reality and most experimental models. We need to consider 
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these differences as confounders in translation of cardioprotective strategies (Heusch et al., 

2012a). In fact, in most but not all of the more clinically relevant conditions, a diseased coronary 

circulation tends to attenuate the efficacy of cardioprotection. 

IV.F.1. Epicardial coronary arteries

Atherosclerotic plaque rupture in an epicardial coronary artery with superimposed intraluminal 

thrombotic occlusion of the coronary arterial lumen is the culprit event which causes acute MI in 

the clinical setting. Primary PCI removes the occlusive thrombus, but – unless there is direct 

stenting – leaves the underlying atherosclerotic vascular lesion unaffected. Therefore, 

reperfusion does not occur through a fully patent epicardial coronary artery, but one with a 

residual stenosis. As a consequence, there is not abrupt, but attenuated, more gentle reperfusion. 

This gentle reperfusion will even be more prominent when thrombolysis is applied, giving slow 

thrombus dissolution. Gentle reperfusion per se attenuates reperfusion injury and reduces infarct 

size (Heusch, 2004), as has been demonstrated by gradual restoration of coronary perfusion 

pressure in isolated rodent heart preparations  (Nemlin et al., 2009) and slow restoration of 

coronary blood flow in larger mammals in vivo (Musiolik et al., 2010). Therefore, when 

comparing a group of patients undergoing a conditioning intervention to a purported control 

group, which inadvertently undergoes gentle reperfusion through a residual stenosis and thereby 

experiences some protection, the difference between the two groups which reflects the 

magnitude of cardioprotection by the conditioning intervention is diminished. Use of direct 

stenting removes any residual stenosis and coronary microembolization from the culprit lesion 

such that the consequences of immediate full reperfusion in the control group are compared to 

those of the postconditioning algorithm in the intervention group (Loubeyre et al., 2002; Heusch, 

2012). 
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IV.F.2. The coronary microcirculation

Plaque rupture is not only the causal index event which leads to acute MI;  minor plaque fissure 

or rupture may also precede or follow the index event, initiated either spontaneously and/or 

following mechanical intervention. In the absence of coronary occlusion, plaque fissure/rupture 

releases particulate debris from the underlying atherosclerotic lesion which is superimposed by 

intraluminal platelet aggregates and coagulation material. These atherothrombotic particles are 

then washed into the coronary microcirculation where they cause microembolization. Coronary 

microembolization with inert particles in dogs and pigs induces microinfarcts and an 

inflammatory reaction (Heusch et al., 2009). However, in patients the ruptured atherosclerotic 

plaque also releases soluble vasoconstrictor, pro-inflammatory and pro-thrombotic mediators 

which contribute to the impairment of coronary microvascular perfusion (Kleinbongard et al., 

2011). Both, the particulate debris and the soluble mediators not only impair coronary 

microvascular perfusion per se but may also interfere with cardioprotective conditioning 

strategies. 

As discussed previously (section III A), pre-infarction angina is associated with cardioprotection 

and probably represents a clinical correlate of ischemic preconditioning. In a pig model, 

coronary microembolization, which may occur clinically during pre-infarction angina, induces 

microinfarcts that add to the aggregate infarct size caused by the index MI. Coronary 

microembolization with inert particles in pigs neither induces acute ischemic preconditioning nor 

does it interfere with acute ischemic preconditioning (Heusch et al., 2009). However, on a 

somewhat more prolonged time frame, coronary microembolization causes the upregulation of 
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TNF-α over several hours which then induces cardioprotection (Skyschally et al., 2007); this 

form of protection following several hours after coronary microembolization was termed a “third 

window of ischemic preconditioning” (Heusch et al., 2007).  

The no-reflow phenomenon is the most severe form of coronary microvascular obstruction that 

occurs during reperfusion following acute MI and is associated with adverse prognosis. 

Embolization of atherothrombotic debris, platelet and platelet/leukocyte aggregates, 

vasoconstrictor substances, edema and physical destruction of the capillary bed all contribute to 

the no-reflow phenomenon. Minor forms of microvascular obstruction are frequently observed 

following elective and emergency PCI (Heusch et al., 2013). Coronary microembolization which 

occurs during early reperfusion, may even be initiated by interventional manipulation of the 

culprit lesion, increasing infarct size. In a pig model of coronary microembolization during early 

reperfusion, a redistribution of embolizing particles into the infarct border zone is causal for 

lateral extension of the infarct (Skyschally et al., 2013). Many interventionalists abstain from 

postconditioning maneuvres by further manipulation of the culprit lesion after primarily 

successful reperfusion for fear of causing coronary microembolization and additional damage 

(Heusch, 2012). However, in pigs ischemic postconditioning is still effective in reducing infarct 

size even when associated with coronary microembolization, albeit to a lesser extent (Skyschally 

et al., 2013). Therefore, again it appears wise to perform postconditioning after direct stenting 

which prevents coronary microembolization from the culprit lesion (Loubeyre et al., 2002; 

Heusch, 2012). 
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Finally, we have to consider the impact of soluble mediators released into the coronary 

circulation, which not only contribute to microvascular obstruction per se, but may also induce 

cardioprotection. These include notably TNFα (Skyschally et al., 2007; Kleinbongard et al., 

2010; Kleinbongard et al., 2011) and endothelin (Kleinbongard et al., 2013a) but others might 

also be implicated. 

In summary, the coronary circulation is not only the primary origin of myocardial 

infarction and reperfusion, but also a major confounder of local cardioprotective strategies 

i.e. ischemic preconditioning and postconditioning.

V. Effects of concomitant medications used to treat risk factors and co-morbidities on

cardioprotection: hidden cardiotoxicity? 

Here we review recent data on the effect of the most frequently-encountered drug therapies for 

cardiovascular risk factors that may modify cardioprotective mechanisms and thereby modifying  

the efficacy of cardioprotection (Table 3). Very little is known on the possible unwanted effect of 

medications on the ischemic heart and endogenous cardioprotection, which may result in a 

latently developing cardiotoxicity (Golomb et al, 2009), which is termed now as “hidden 

cardiotoxicity”. Hidden cardiotoxicty of a medication may not be seen in the healthy heart, but 

may manifest only in the ischemic heart as an increased tissue injury due to an increased 

sensitivity to an ischemic challenge or a decreased capability to adapt to an ischemic challenge.  
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V.A. Nitrates and nitrate tolerance

Organic nitrates have been used for  more  than  100  years to prevent and alleviate symptoms of 

angina pectoris and to reduce blood pressure. However, the  main  limitation  of  long-term 

prophylactic nitrate  therapy  is  the  development  of  vascular  nitrate  tolerance,  which  leads 

to  the loss of clinical efficacy (see for review: Csont and Ferdinandy, 2005; Csont, 2010). It has 

been shown in preclinical studies that the presence of nitrate tolerance aggravates 

ischemia/reperfusion injury and leads to loss of the cardioprotective effect of preconditioning 

(see for review Ferdinandy et al., 2007). Since then, little progress has been made in this field. 

Nevertheless, Fekete et al. (2013) have recently shown that the presence of nitrate tolerance 

inhibits the infarct-size limiting effect of postconditioning in rats. Moreover, in  a  recent  human 

study, Gori et al. (2010) have reported that the endothelial preconditioning effect of a single dose 

of nitroglycerin  is  lost  upon  a  prolonged  exposure  to  nitroglycerin. Nevertheless, the acute 

administration of nitrates appears not to interfere with remote conditioning in patients 

undergoing coronary artery bypass graft surgery (Kleinbongard et al., 2013b).  

V.B. Statins and antihyperlipidemic medication

A number of large clinical trials and meta-analyses have shown that chronic administration of the 

most frequently used antihyperlipidemic drugs, statins (hydroxymethylglutarate co-A reductase 

inhibitors i.e. inhibitors of the mevalonate pathway), have potent cholesterol-lowering effects 

and reduce cardiovascular morbidity and mortality (Mills et al., 2011) even in low-risk patients 
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(Mihaylova et al., 2012). However, it seems that statin therapy is less effective in women 

(Gutierrez et al., 2012). Since the anti-ischemic effect of rosuvastatin, as shown by improved 

flow-mediated dilation after upper arm ischemia, may disappear after chronic treatment in 

patients (Liuni et al., 2012), acute statin loading therapy has been recommended for PCI recently 

(Benjo et al., 2014). However, acute statin therapy was found ineffective in a recent clinical trial 

in low risk PCI patients (Ludman et al., 2011). The possible mechanisms of the statin-induced 

cardioprotective effect are reviewed elsewhere (Ludman et al., 2009; Mahalwar and Khanna, 

2013).  

We have previously reviewed that statins protect the heart against ischemia/reperfusion injury in 

preclinical studies but may interfere with the infarct size limiting effect of preconditioning (see 

Ferdinandy et al., 2007). However, very little is known on the possible interactions of statins 

with cardioprotection by conditioning strategies. Kocsis et al. (2008) showed that 

preconditioning failed to decrease infarct size in rat hearts treated acutely with lovastatin, and 

that postconditioning failed to decrease infarct size after chronic lovastatin treatment. In this 

study, myocardial levels of coenzyme Q9 and phosphorylation of Akt were decreased due to 

lovastatin-treatment. Moreover, acute, but not chronic, lovastatin treatment increased the 

phosphorylation of p42 ERK. Szucs et al. (2013) have recently shown that activation of the 

mevalonate pathway with farnesol is cardioprotective; thus, one may speculate that inhibition of 

this pathway by statins may interfere with cardioprotective mechanisms. Accordingly, chronic 

atorvastatin treatment in diabetic rats with postconditining failed to show any cardioprotection 

(Fan et al., 2012). Upregulation by statins of PTEN, which then dephosphorylates PI3K, might 

contribute to the lack of endogenous cardioprotection following long-term statin-treatment 
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(Schulz, 2005).  In rabbits, short-term simvastatin treatment and postconditioning were unable to 

reduce infarct size, but pravastatin decreased infarct size, possibly via eNOS activation 

(Andreadou et al., 2012). Chronic simvastatin treatment, in contrast to postconditioning, was 

able to reduce infarct size in both normocholesterolemic and hypercholesterolemic rabbits 

(Iliodromitis et al., 2010). The effect of statins on remote conditioning has not yet been reported.  

In summary, although statins show a potential cardioprotective effect, some statins, 

depending on the duration of treatment, may interfere with the mechanisms of cardiac 

adaptation to ischemia/reperfusion stress. This may represent an uncharacterized 

deleterious effect of statins. Further preclinical and clinical studies are needed to explore 

the effect of statins on cardioprotection by conditioning strategies.  Nevertheless, the 

development of novel lipid lowering agents that do not interfere with innate mechanisms of 

cardiac stress adaptation may further improve the efficacy of lipid lowering therapy in the 

prevention of cardiovascular events in hypercholesterolemic patients. 

V.C. Anti-diabetic therapy

The treatments used to lower blood glucose levels in diabetic patients may impact on the 

cardioprotective efficacy of ‘conditioning’ strategies by modulating the underlying intracellular 

signaling pathways within the heart in two major ways. The anti-diabetic therapy may either 

interfere with the cardioprotective signalling pathway, thereby blocking the ‘conditioning’ 

strategy; or it may mimic the ‘conditioning’ strategy, thereby inducing cardioprotection 
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(reviewed in (Ferdinandy et al., 2007; Ye et al., 2011)). Through these effects, there is the 

potential for anti-diabetic therapies to impact on long-term cardiac outcomes in diabetic patients. 

In 2008, the US Food and Drug Administration issued requirements that novel anti-diabetic 

drugs must be shown not to increase the risk of cardiovascular events. It is well-established that 

anti-diabetic therapy can prevent microvascular complications of diabetes, but whether it can 

also reduce macrovascular complications and improve major cardiovascular outcomes such as 

myocardial infarction, stroke, heart failure, and fatal arrhythmias is unresolved.  

V.C.1. Anti-diabetic therapy and KATP channels

The activation of either the sarcolemmal or mitochondrial KATP channel within the 

cardiomyocyte is a critical step in the signaling pathway underlying both preconditioning and 

postconditioning (Ferdinandy et al., 2007; Hausenloy, 2013). It is well established in the 

preclinical literature that some long-acting anti-diabetic sulfonylureas (such as tolbutamide and 

glibenclamide), which act by blocking KATP channel activity in the pancreas to promote insulin 

release, also interfere with the signaling pathway underlying preconditioning and 

postconditioning by antagonizing KATP channel activity within the cardiomyocyte (reviewed in 

(Ye et al., 2011)). However, some of the newer shorter acting anti-diabetic sulfonylureas such as 

gliclazide and glimepiride do not appear to interfere with cardioprotection (Wu et al., 2007). A 

recent meta-analysis has confirmed that sulphonylurea use may elevate the risk of cardiovascular 

disease among patients with diabetes (Phung et al., 2013), although one long-term clinical 

outcome study failed to report any increase in cardiovascular events in diabetic patients treated 

with glibenclamide when compared to gliclazide (Juurlink et al., 2012). 
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V.C.2. Anti-diabetic therapy with mixed actions on cardioprotection

A number of anti-diabetic agents which are used to treat hyperglycemia in diabetic patients are 

known to confer cardioprotection; many of these appear to act through the activation of the 

signaling pathways underlying ‘conditioning’ interventions.  

Experimental studies have previously established that the anti-diabetic agents insulin and 

metformin can confer cardioprotection in animal MI models (Whittington et al., 2013a; Bhamra 

et al., 2008). Some of the newer anti-diabetic agents have also been reported to limit infarct size 

in the diabetic and non-diabetic heart, including: (1) thiazolidinediones such as rosiglitazone 

(Morrison et al., 2011; Palee et al., 2013), pioglitazone (Ye et al., 2010a; Ye et al., 2008); (2) 

GLP-1 analogues such as liraglutide (Noyan-Ashraf et al., 2009), exenatide (Timmers et al., 

2009); and (3) dipeptidyl peptidase-4  (DPP-4) inhibitors such as sitagliptin (Ye et al., 2010a; 

Hausenloy et al., 2013b; Sauve et al., 2010), and vildagliptin (Hausenloy et al., 2013b). The 

novel anti-diabetic agent, mitiglinide (Ogawa et al., 2007), has been found to affect the efficacy 

of preconditioning or postconditioning in the diabetic heart. However, not all studies have 

reported cardioprotective effects with these anti-diabetic agents (Kristensen et al., 2009; Yin et 

al., 2011).  

A number of clinical studies have either investigated whether anti-diabetic agents abolish 

cardioprotection or have investigated the anti-diabetic agent as a therapeutic intervention for 

limiting MI size. Large long-term clinical outcome studies have examined the effect of the anti-

diabetic therapy on major cardiovascular events. Hueb et al. (2007) have demonstrated in 
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diabetic patients that treatment with repaglinide (a KATP channel antagonist) blocked the ischemic 

preconditioning effect against exercise-induced myocardial ischemia. Using a similar clinical 

model, Rahmi et al. (2013) confirmed the negative effect of repaglinide on preconditioning but 

also found that vildagliptin did not block preconditioning´s protection.  

Administration of the GLP-1 analogue exenatide at the time of myocardial reperfusion has been 

reported to reduce infarct size in STEMI patients treated by primary PCI in two proof-of-concept 

clinical studies (Lonborg et al., 2012; Woo et al., 2013). The recent IMMEDIATE trial suggests 

that the beneficial effect of glucose-insulin-potassium therapy in STEMI patients may indeed be 

operative if administered in the ambulance en route to the primary PCI center while ischemia is 

ongoing (Selker et al., 2012).    

A number of large multicenter long-term clinical outcome studies have reported mixed results in 

terms of their impact on major ischemia-related cardiovascular outcomes with either better 

(metformin (Roussel et al., 2010)), worse (rosiglitazone (Nissen & Wolski, 2007)) or no effect 

(alogliptin (White et al., 2013) and saxagliptin (Scirica et al., 2013)). 

In summary, it is important to appreciate that many anti-diabetic therapies can either 

interfere with or mimic the cardioprotective intervention under investigation. It is 

important to take this into account when designing clinical studies of cardioprotection in 

diabetic patients.  
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V.D. Beta-adrenoceptor antagonists

The effect of ischemic preconditioning was abolished in isolated rat hearts following long-term 

oral treatment with propranolol or nipradilol (Suematsu et al., 2004). In contrast, landilol 

treatment during ischemic preconditioning in isolated rat hearts (Yu et al., 2010) or intravenous 

atenolol or esmolol, given before ischemia or at reperfusion, did not interfere with protection 

afforded by ischemic preconditioning in rabbit hearts in vivo (Iliodromitis et al., 2004). However, 

esmolol abolished the infarct size reduction achieved by flurane-induced anesthetic 

preconditioning (Lange et al., 2006). In isolated rat cardiomyocytes, hypoxia or anesthesia-

induced 24 hour delayed preconditioning was abolished by metoprolol (Goetzenich et al., 2011). 

Similarily, anesthesia-induced postconditioning was mediated in part by β-adrenergic signaling 

as infarct size reduction was again blocked by esmolol (Lange et al., 2009). While β-blockers 

might thus interfere with the protection afforded by preconditioning and postconditioning in 

healthy hearts in vivo, carvedilol restored the protection by ischemic preconditioning (Watanabe 

et al., 2006) or postconditioning (Oikawa et al., 2008) that was otherwise lost in hearts with a 

chronic coronary artery stenosis.  

Most recently, a meta-analysis of fifteen trials with a total of 1155 patients confirmed that remote 

ischemic preconditioning significantly reduced postoperative biomarkers of myocardial injury, 

and this effect was most significant in valve surgery and to a lesser extent in coronary artery 

bypass graft surgery. One major source of heterogeneity in the protective effect was the use of β-

blockers, suggesting that these drugs might attenuate the cardioprotective effect of remote 

ischemic preconditioning in patients (Zhou et al., 2013).  
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Currently, there is no clear answer yet as to whether β-blockers impact on endogenous 

cardioprotective signaling. However, the data provided so far highlight the need for further 

studies and more detailed analyses, given the wide-spread use of β-blocker therapy.  

V.E. ACE-inhibitors/AT1-receptor antagonists

ACE inhibitors and AT1-receptor antagonists when administered prior to ischemia and/or 

reperfusion reduce irreversible myocardial injury (Jalowy et al., 1998; Jancso et al., 2004; 

Messadi et al., 2010). However, the beneficial effects of ACE inhibitors and/or AT1-receptor 

antagonists become attenuated when COX2 inhibitors are simultaneously applied (Jalowy et al., 

1998). Both ACE inhibitors and AT1-receptor antagonists lower the threshold to achieve 

endogenous cardioprotection, especially in hearts with co-morbidities (Jaberansari et al., 2001; 

Ebrahim et al., 2007; Penna et al., 2010). 

V.F. Calcium channel blockers

L-type calcium channel blockers (CCBs) are widely used as anti-anginal and antihypertensive

drugs. Experimentally, they reduce infarct size in almost all animal models of MI, with no 

apparent chemical class differences between different CCBs (i.e. 1,4-dihydropyridines, 

verapamil or diltiazem). However, protection is consistently higher when treatment is started 

before or during early ischemia with little benefit seen when the agents are given at reperfusion 

(Kleinbongard et al., 2012). Contrary to the promising experimental data, clinical trials in acute 

MI have been disappointing (Opie et al., 2000), probably because the agents need to be given 

prior to the onset of ischemia, or during the early ischemic phase. While studies on post- or 
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remote conditioning and CCBs are lacking, a single study in pigs demonstrated no interference 

of CCBs with cardioprotection by ischemic preconditioning (Wallbridge et al., 1996).  

V.G. Cyclooxygenase inhibitors

Cyclooxygenase (COX)-2 is involved in the protective signaling of preconditioning and 

postconditioning (Alcindor et al. 2004; Penna et al., 2008; Sato et al., 2007; Tosaka et al., 2011). 

Blockade of COX-2 can abolish the cardioprotective phenomena, most importantly delayed  or 

second window preconditioning  (Przyklenk and Heusch, 2003; Huhn et al., 2009a; Guo et al., 

2012). High dose aspirin – which blocks both COX-1 and COX-2 – interferes with endogenous 

cardioprotection (Ye et al., 2010b). Nevertheless, many patients with an acute MI receive high 

dose aspirin (>300 mg) orally or intravenously. Whether or not patient outcome would be 

improved with lower doses of aspirin remains to be elucidated, although recently COX-2 

inhibition was found to increase mortality in patients post-MI (Olsen et al., 2012). Again, 

whether such increase in mortality relates to the attenuation of endogenous cardioprotective 

phenomena, or is a consequence of reduced endothelial prostacyclin production on susceptibility 

to thrombosis, remains unanswered.  
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VI. Conclusions and future perspectives

The discovery of the remarkable cardioprotective effect of innate adaptive responses elicited by 

different conditioning strategies has fuelled intensive research in the last three decades to find 

key cellular mechanisms and drug targets for pharmacological cardioprotection as well as 

clinically applicable protocols for mechanical cardioprotection. Given the global scale of 

ischemic heart disease, surprisingly little effort has been made to uncover the cellular 

mechanisms by which major cardiovascular risk factors (see chapter IV.) and their medications 

(see chapter V.) may interfere with cardioprotective mechanisms.  

Most of the clinical trials with potential cardioprotective drugs have been unsuccessful so far. 

One of the reasons might be that target validation and preclinical efficacy and safety studies have 

been performed in juvenile, healthy animals subjected to ischemia/reperfusion injury. Here we 

have indicated data suggesting that validation of drug targets in co-morbid animal models would 

be essential for successful clinical translation (see chapter IV.C.2). Furthermore, we have 

highlighted that routine medications for cardiovascular and other diseases may exert undesirable 

effects on the ischemic heart and cardioprotective signaling mechanisms, thereby possessing an 

as yet largely unexplored “hidden cardiotoxicity” (see chapter V.).   

Proof-of-principle studies using mechanical conditioning strategies in patients undergoing 

elective, emergency or surgical coronary revascularization have successfully translated 

cardioprotection from animal experiments to human studies, although there are several negative 
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studies (see chapter III). The reasons for the negative studies can be attributed to the presence of 

risk factors, comorbidities and their medications in different patient cohorts. So far, such clinical 

studies have been completed in small cohorts of selected patients under tightly controlled 

conditions, usually with surrogate rather than clinical outcome endpoints. However, ongoing 

clinical outcome studies (e.g. CIRCUS, ERICCA, RIPHeart) will further determine whether 

ischemic conditioning can improve clinical outcomes in different patient cohorts.  

The body of evidence we have reviewed here underscores the critical importance of preclinical 

models and study designs that address cardioprotection specifically in relation to complicating 

disease states and risk factors. This more sophisticated approach is now an urgent necessity in 

experimental cardioprotection research in order to maximize the likelihood of identifying 

translatable effective approaches to therapeutic protection of the aged or diseased ischemic heart.  
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144 Legends for figures 

Figure 1. 

The concept of ischemia/reperfusion injury and cardioprotection by pre-, post and remote 

conditioning is expressed graphically in the figure, where shaded areas denote periods of 

ischemia. Myocardial ischemia and reperfusion leads to ‘ischemia/reperfusion injury’ 

characterized by the development of contractile dysfunction, arrhythmias, and tissue necrosis 

(infarction). Ischemic preconditioning is a well-described acute and subacute adaptive response 

in which brief exposure to ischemia/reperfusion markedly enhances the ability of the heart to 

withstand a subsequent ischemia/reperfusion injury. In this diagram, three brief periods of 

ischemia are used to precondition the myocardium against a subsequent period of ‘test’ ischemia 

that is longer than the preconditioning periods. Preconditioning induces protection in a biphasic 

pattern. Brief cycles of ischemia/reperfusion applied following a longer period of ischemia also 

confer cardioprotection against the consequences of myocardial ischemia/reperfusion, a 

phenomenon called ischemic postconditioning. Brief cycles of ischemia/reperfusion applied in a 

remote cardiac tissue or remote organ, e.g. kidney, limbs, before, during or right after a longer 

period of cardiac ischemia also provides cardioprotection, a phenomenon called remote 

conditioning. The cardioprotective effect of conditioning strategies results in attenuation of 

ischemia/reperfusion injury characterized by improvement of postischemic contractile function, 

decrease in the occurrence and severity of arrhythmias, and reduction of infarct size. Major 

cardiovascular risk factors and their medications influence the severity of ischemia/reperfusion 

injury and interferes with the cardioprotective effect of conditioning.   
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Figure 2.  

Mitochondrial reactive oxygen species (ROS, including O2
-
, H2O2) are at the center of 

cardioprotection and/or irreversible injury depending on the timing and quantity of their 

generation.  Several mitochondrial proteins contribute to the generation of ROS through 

modulation of proteins of the respiratory chain (connexin 43 [Cx43], STAT3, p66shc) or directly 

(monoamine oxidases, MAO). High amounts of ROS at the time of reperfusion contribute to 

irreversible tissue injury, probably by facilitating opening of the mitochondrial permeability 

transition pore (MPTP). The proteins contributing to the formation of MPTP are still under 

investigation, but dimerization of complex V or protein complexes involving adenine-nucleotide 

transporter (ANT), hexokinase (HK) and the phosphate carrier (PiC) have been proposed. Many 

factors apart from ROS are important for MPTP opening including binding of cyclophilin D 

(CypD), calcium (Ca
2+

), and ADP. Mitochondrial Ca
2+

 concentration and homeostasis is 

influenced by the close interaction with the SR/ER and specialized proteins for such interaction 

like mitofusins (Mfn). Under pathophysiological conditions, ADP can be generated by the 

reversed mode of complex V using ATP as substrate to maintain the inner mitochondrial 

membrane proton gradient. ATP will pass the outer mitochondrial membrane through the voltage-

gated anion channel (VDAC) and proteins such as Bcl2 or Bax, affecting channel open 

probability. Some other proteins modifying MPTP opening have been described such as glycogen 

synthase kinase  3β (GSK-3β), aldehyde dehydrogenase 2 (ALDH2) and protein kinase C-ε 

(PKCε). While high concentrations of ROS are detrimental, low amounts of ROS can trigger a 

cardioprotective state and are central to the endogenous protection by pre- and postconditioning. 

In this context, increases in mitochondrial potassium (K
+
) leads to increased 
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ROS formation and is central to endogenous cardioprotection. Here, mitochondrial ATP-

sensitive potassium channels (KATP) but also Cx43 play important roles. Nitrosylation of thiol 

groups (SNO) are also important for protein activity, and nitric oxide can be derived either by a 

mitochondrial nitric oxide synthase (mtNOS) or by a NOS isoform in close proximity 

to mitochondria, transported by caveolae-like structures into the mitochondria.    

Figure 3. Forest plot on the available clinical studies (state December 2013) on ischemic 

preconditioning. Grey bars indicate the standard error of the mean in the placebo group, black 

bars the % infarct size reduction with its standard error in the conditioned group (updated from 

Heusch, 2013). 

Figure 4. Forest plot on the available clinical studies (state December 2013) on ischemic 

postconditioning. Grey bars indicate the standard error of the mean in the placebo group, black 

bars the % infarct size reduction with its standard error in the conditioned group (updated from 

Heusch, 2013). 

Figure 5. Forest plot on the available clinical studies (state December 2013) on remote ischemic 

conditioning. Grey bars indicate the standard error of the mean in the placebo group, black bars 

the % infarct size reduction with its standard error in the conditioned group (updated from 

Heusch, 2013). 
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Clinical study Pharmacological 

postconditioning agent 

number 

of 

patients 

Effect Mechanism of cardioprotection 

Atrial natriuretic peptide 

J-WIND-ANP

(Kitakaze et

al., 2007)

 IV carperitide 72 hr infusion 

started after reperfusion 

569 15% reduction in MI size (72 hr 

AUC total CK)  

2.0% absolute increase in LVEF 

Atrial natriuretic peptide is a 

pharmacological activator of a number of 

pro-survival signalling pathways 

including the RISK and cGMP-PKG 

pathways. 

Cyclosporin A 

Piot et al. 

(2008) 

IV CsA (2.5mg/kg) 10 min 

prior to  primary PCI 

58 44% reduction in MI size (72hr 

AUC total CK) 

20% reduction in MI size (CMR in 

subset of 27 patients) 

28% reduction in MI size and 

smaller LVESV on CMR at 6 

months (Mewton et al., 2010) 

Cyclosporin-A is a known inhibitor of the 

mitochondrial permeability transition 

pore, a critical determinant of 

cardiomyocyte death. 

Exenatide 

Lonborg et al. 

(2012)   

IV infusion of exenatide 

started 15 min prior to  

primary PCI for 6 hr 

107 Increase in myocardial salvage 

index at 90d by CMR 

Reduced MI size as % of AAR at 

90 days by CMR  

Patients presenting with short 

ischemic times (≤132 min) had 
greater myocardial salvage   

Exenatide is a long-acting analogue of 

glucagon-like peptide-1 (GLP-1) which 

lowers blood glucose as well as limiting 

MI size through the activation of the 

RISK pathway.  

Glucose insulin potassium 

(GIK) therapy 

IMMEDIATE 

(Selker et al., 

2012) 

Intravenous GIK infusion for 

12 hrs started by paramedics 

in ambulance- prior to 

reperfusion 

357 Reduction in MI size and less in-

hospital mortality and cardiac arrest 

GIK promotes glucose metabolism 

during myocardial ischemia which has 

beneficial effects of cellular function. 

Metoprolol 



148 

Table 1: Clinical studies of PPCI-treated STEMI patients which have reported beneficial effects with a pharmacological agent 
administered at early reperfusion. AAR: Area at risk measured; AUC: area under the curve; CK: creatinine kinase; CMR: cardiac 
MRI; LVESV: left ventricular end-systolic volume; MI: myocardial infarct; NS non significant 

METOCARD-

CNIC 2013 

(Ibanez et al., 

2013) 

Intravenous metoprolol three-

5mg boluses administered in 

ambulance prior to PPCI. 

220 20% reduction in MI size (5-7 days 

by CMR) 

Metoprolol reduces myocardial oxygen 

consumption and may have direct 

cardioprotective effects on the 

cardiomyocyte. 

Nitrite (sodium) 

Frennaux et 

al.,   

NIAMI 

NCT01388504 

Intravenous bolus of sodium 

nitrite given 5 min prior to 

primary PCI. 

200 MI size as a % of AAR on CMR 

Results awaited 

Sodium nitrite releases nitric oxide which 

activates pro-survival kinases and 

protects against mitochondrial 

dysfunction. 

Mathur et al.,  

NITRITE-

AMI 

NCT01584453 

Intracoronary bolus of sodium 

nitrite over 30-60s at the time 

of primaryPCI. 

80 MI size (48hr Total CK) 

Results awaited 

As above. 

Adenosine 

Garcia-Dorado 

et al.,     

PROMISE 

NCT0781404 

Intracoronary bolus of 4mg 

adenosine    

201 MI size on CMR; NS  Adenosine has multiple cardioprotective 
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Risk factor  I/R injury preconditioning postconditioning remote conditioning 
_____________________________________________________________________________________ 
Ageing ↑ ↓ ↓ − CL 
Hypertension,  
hypertrophy & remodelling − − ↓ ND 

Hyperlipidemia ↑ ↓ CL ↓ ND 

Diabetes ↑ ↓ CL ↓ ↓CL 

Uremia, kidney failure ↑ − − ND 

Impaired coronary ↑            − ↑         ↓    ND 
microcirculation 
_____________________________________________________________________________________ 
Table 2. Effect of major risk factors on ischemia/reperfusion (I/R) injury as well as pre-, post-, and remote  
conditioning in the majority of the studies. CL: some clinical data are also available. ND: no data available.  
↑ enhance,  ↓  attenuate,  −  no effect 
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Medication I/R injury preconditioning  postconditioning remote conditioning 
_____________________________________________________________________________________ 
Nitrate tolerance ↑ ↓ ↓ ND 
Statins ↓ ↓ ↓ ND 

Antidiabetics: 
KATP inhibitors ↑ ↓ ↓ ND 
others  ↓ − − ND 

Beta blockers ↓ ↓− − ND 

ACE inhibitors ↓ ↑ ND ND 

AT1 antagonists ↓ ↑ ND ND 

Calcium channel blockers ↓− − ND ND         

COX inhibitors ↑ ND ND ND 
_____________________________________________________________________________________ 
Table 3. Effect of most common medications of cardiovascular risk factors on ischemia/reperfusion (I/R)  
injury as well as pre-, post-, and remote conditioning in the majority of the studies. It should be noted that  
very few data are availabe so far on the effect of medications on conditioning strategies.  
ND: no data available.  ↑ enhance,  ↓  attenuate,  −  no effect, 
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