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Abstract

Objective: LC-MS/MS phospho-proteomics is an essential technology to help unravel the complex molecular events that
lead to and propagate cancer. We have developed a global phospho-proteomic workflow to determine activity of signaling
pathways and drug targets in pancreatic cancer tissue for clinical application.

Methods: Peptides resulting from tryptic digestion of proteins extracted from frozen tissue of pancreatic ductal
adenocarcinoma and background pancreas (n = 12), were labelled with tandem mass tags (TMT 8-plex), separated by strong
cation exchange chromatography, then were analysed by LC-MS/MS directly or first enriched for phosphopeptides using
IMAC and TiO2, prior to analysis. In-house, commercial and freeware bioinformatic platforms were used to identify relevant
biological events from the complex dataset.

Results: Of 2,101 proteins identified, 152 demonstrated significant difference in abundance between tumor and non-tumor
tissue. They included proteins that are known to be up-regulated in pancreatic cancer (e.g. Mucin-1), but the majority were
new candidate markers such as HIPK1 & MLCK. Of the 6,543 unique phosphopeptides identified (6,284 unique
phosphorylation sites), 635 showed significant regulation, particularly those from proteins involved in cell migration (Rho
guanine nucleotide exchange factors & MRCKa) and formation of focal adhesions. Activator phosphorylation sites on FYN,
AKT1, ERK2, HDAC1 and other drug targets were found to be highly modulated ($2 fold) in different cases highlighting
their predictive power.

Conclusion: Here we provided critical information enabling us to identify the common and unique molecular events likely
contributing to cancer in each case. Such information may be used to help predict more bespoke therapy suitable for an
individual case.
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Introduction

Protein phosphorylation is a common process modulating the

activity of oncogenic and tumor suppressor proteins [1–3]. In

many cases, phosphorylation results in switch-like changes in

protein function, due to modulation of protein folding, substrate

affinity, stability, and activity of its substrates, in turn affecting

signaling pathways controlling cell proliferation, migration,

differentiation, and apoptosis, dysregulation of which contribute

to the cancer phenotype [4]. Pancreatic cancer is one of the most

aggressive malignant neoplasms with a median survival of 6

months. A significant proportion of patients are diagnosed at an

advanced stage where therapy options are very limited [5]. As is

the case for other cancers, molecular targeting therapy is

promising for treatment of advanced or recurrent pancreatic

cancer [6]. Although a variety of molecular targeting drugs have

been available in the last decade and many others are also

expected in the next few years, a breakthrough is still required for
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prediction of drug effects and drug selection. For example,

sorafenib, a multi-kinase inhibitor acting on hyperactive vascular

endothelial growth factor receptor, platelet-derived growth factor

receptor and Raf, has proven efficacy in some patients with

advanced hepatocellular carcinoma [7], but we cannot currently

predict its effect on an individual patient before starting treatment.

To overcome these difficulties, it seems crucial to establish an

analytical approach to help drug selection, where expression and

activity of multiple drug targets are comprehensively assessed on a

case-by-case basis. Phosphorylation is a key event modulating

protein activity, therefore measuring protein phosphorylation is a

useful indicator of activation status.

There are hundreds of anti-cancer drug targets and oncogenic

signaling proteins that are relevant to therapeutic selection

therefore measuring expression and activation status of all using

the current gold standard analysis, immunohistochemistry (IHC),

is not feasible. In this respect, IHC maintains a role as a validation

tool. Reverse phase protein microarrays (RPMA) have limitations

due to a limited antibody repertoire and poor specificity/cross

reactivity. In addition, genomics-based technologies do not allow

phospho-signaling measurements. Liquid chromatography - tan-

dem mass spectrometry (LC-MS/MS) based proteomic approach-

es have been developed to identify and quantify thousands of

proteins and their phosphorylation sites [8,9]. In this study we

have developed an LC-MS/MS based phospho-proteomic work-

flow (SysQuant) to overcome many of the technical and bio-

informatic difficulties involved in effectively quantifying expression

and activity of signaling proteins, many of which are drug targets,

at a global or system wide level in tumor tissue. We compared

frozen resected tissue (tumor versus non-tumor background) from

twelve cases of pancreatic head ductal adenocarcinoma and

increased throughput utilising reporter ion isotopologues of TMT,

resulting in 8-plex reagents and therefore the ability to run eight

samples simultaneously [10,11]. Molecular events likely to

contribute to cancer were identified common to all cases however

some were unique to an individual case or subgroup. There also

appeared to be a relationship between time of recurrence and the

grouping of cases following principal component analysis of the T/

NT ratios of phosphopeptides. Phosphopeptide analysis using

SysQuant may identify new therapeutic targets and also help

stratify patients into different treatment regimens based on the

activation status of signaling pathways and known drug targets.

Materials and Methods

Ethical aspects and research protocol were approved by the

BioBank Committee of the Institute of Liver Studies, King’s

College Hospital (Reference No. 08/H0704/117). All participants

provided written informed consent to use their tissue samples for

research. Twelve cases of pancreatic head ductal adenocarcinoma

were selected (Table S1 in Tables S1). Additional non-confidential

clinical information such as tumor stage, gender and recurrence

can be seen for each case in Tables S2 & S3 in Tables S1. Tumor

(T) tissue samples were taken from the pancreatic tumor masses,

while non-tumor (NT) samples were from the pancreas away from

the tumor mass. All tissue samples were frozen within 30 minutes

of surgical resection and stored [at 280uC] until analysis by

SysQuant (median time of storage [18.5 months] range [4–28

months]. T versus NT were compared using SysQuant and

experimental details are described in the Methods S1 document.

In summary, this entailed protein extraction from tissue specimens

(mg amounts used for each specimen are shown in Table S4 in

Tables S1), trypsin digestion of proteins into peptides, TMT 8-plex

labelling of peptides (tumor and non-tumor tissue from 4 cases per

TMT 8-plex) followed by mixing to form a single 8-plex sample

mixture (see Table S5, in Tables S1). Each TMT 8-plex sample

was then split into three independent aliquots, each of which was

further split into 12 fractions by strong cation exchange (SCX)

chromatography (Table S6, in Tables S1). The first set of 12 SCX

fractions were then analysed directly by LC-MS/MS using

duplicate data dependent acquisition runs followed by a third

run using time dependent rejection of all features identified in runs

1 & 2. The remaining two sets of 12 fractions were first enriched

for phosphopeptides using either immobilised metal affinity

chromatography (IMAC) or TiO2 (Table S6, in Tables S1). The

resulting 24 phosphopeptide enriched fractions were also analysed

by LC-MS/MS. In total 108 separate LC-MS/MS runs were

performed for each TMT 8-plex sample. Raw mass spectrometry

data were searched against the human UniProtKB/Swiss-Prot

database using Mascot and Sequest (via Proteome Discoverer).

Peptide spectrum matches (PSMs) were rejected if identified with

only low confidence ($5% FDR), showed #75% phospho-RS

probability score, and had missing quantification channels (e.g. not

all peaks for isobaric tags visible in spectra). Raw intensity values of

isobaric tags from PSMs passing filters were used for quantifica-

tion, but first normalised using sum-scaling (as shown in Figure S1)

to reduce potential experimental/systematic bias. Log2 ratios were

calculated from isobaric tag intensities, showing the regulation

between T over NT for each case. A phosphopeptide T/NT log2

ratio is the median T/NT log2 ratio from all PSMs unique to that

specific peptide sequence. A protein T/NT log2 ratio is the

median T/NT log2 ratio from all unique non-phosphorylated

peptides unique to that specific protein. One sided t-test (one-

sample location test) was used to calculate p-values. P-values were

plotted against log2 T/NT ratios on Volcano plots to identify

significantly regulated peptides. At the protein level, annotation

using GO-terms, KEGG-pathways and Drugbank information

were added, and proteins were also mapped to pathways using

resources such as DAVID and STRING. At the phosphorylation

site level annotation using PhosphoSitePlus were added, including

known functional and biological/pathological role of the phos-

phorylation site. Partial Least Squares Discriminant Analysis (PLS-

DA) was used to model and investigate the multivariate dataset to

identify outliers and groups from all peptide isobaric tag intensities

from each filter passing PSM, as well as log2 T/NT ratios

(phosphopeptides) from all arms of the workflow (IMAC, TiO2

and non-enriched). The SysQuant workflow, combining phospho-

proteomic sample preparation, LC-MS/MS analysis, and bioin-

formatics analysis, was used to identify important molecular events

we believe contribute to pancreatic cancer in the cases analysed

here.

Results and Discussion

All peptides identified by Sequest and Mascot in this study were

exported from Proteome Discoverer and can be viewed on the zip

Files S1, S2, and S3. File S1 contains all peptides (phosphorylated

and non-phosphorylated) identified from the specimens in TMT 8-

plex-1, File S2 contains all peptides identified from specimens in

TMT 8-plex-2, and File S3 contains all peptides identified from

specimens in TMT 8-plex-3. These Supplemental zip Files display

detailed information including Sequest Xcorr, Mascot ions scores,

DM [ppm], Percolator q-values, and other important information.

Data from these excel documents were input into in-house

bioinformatic tools to identify biologically relevant events.

In total we identified 6,543 unique phosphopeptides sequences

(6,284 unique phosphorylation sites), from 2,101 proteins (Table 1).

Figure 1 shows identified peptide (phosphorylated and non-
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phosphorylated) distribution over all three arms (Non-enriched,

TiO2, IMAC) of the SysQuant workflow for each TMT 8-plex.

Figure 1 also illustrates the number of peptides detected in total for

all three analytical repeats (after combining numbers from

different fractions) in each and all TMT 8-plex samples. When

results from each of the parallel components (TiO2, IMAC, non-

enriched) are compared the benefits of a combined enrichment

approach and multiple analytical repeats (including utilisation of

the time dependent rejection list), are apparent. The largest total

number of phospho-peptides was seen using IMAC enrichment

which accounted for 79% of all unique phosphopeptides

identified. However, the TiO2 fractions uniquely identified nearly

19% of the total which would be missed using a single phospho-

peptide enrichment strategy (Figure 1: TMT 8-plex-ALL: A). The

same is true for the three analytical runs performed on each

sample. If a single data dependent run was performed only 20,318

unique peptides are seen (Figure 1: TMT 8-plex-ALL: D). A

second data-dependent run adds 5,868 peptides whilst the use of

the time dependent rejection list in run 3 allowed a further 3257

peptides to be identified overall. Collectively (run 2&3) this

represents an additional 45% over run 1 alone and 31% of the

total number of unique peptides. Importantly the peptides

identified in the third run are generally of lower abundance. We

also illustrate (Figure S2) the number of unique phosphopeptides

and non-phosphopeptides identified in each raw file, from each

SCX fraction, in each arm of the workflow (non-enrich, TiO2, and

IMAC), from each TMT 8-plex sample (TMT 8-plex-1, 2, & 3).

Of the 6543 phosphopeptides identified, 5409 were quantifi-

able. Due to the large number of quantifiable phosphopeptides

these must be viewed on a separate excel file (File S4), rather than

as part of the main document. File S4 displays the phosphopeptide

sequences, the phosphorylated residues and the protein name and

Uniprot accession number to which the peptide belongs. File S4

also displays all quantitative and statistical information relating to

the phosphopeptides in tumor versus non-tumor from all cases,

and also gives annotation information including known functional

effects of the phosphorylation event. This information was

extracted from the PhosphositePlus database and can be observed

in columns BM-CP. File S4 also provides functional information

relating to the protein, information extracted from GO terms

(columns CQ-DC) and whether such proteins are known drug

targets (columns DD-DG) extracted from the Drug Bank database.

For additional information regarding the relative protein abun-

dance and normalised phosphopeptide levels (phosphopeptide

normalised to protein level) refer to File S5. The relative

abundance of phosphopeptides in tumor versus non-tumor tissue

will change from case to case primarily due to changes in

expression level of the phosphorylated protein or due to

modulated activity of the kinases and phosphatases inducing or

reversing phosphorylation of the protein substrate, respectively. In

File S5 we normalise the relative abundance of a phosphopeptide

to the relative abundance of the respective protein. Relative

protein abundance is calculated using only non-phosphorylated

peptides therefore there are cases where we are not able to carry

out normalisation due to the absence of non-phosphorylated

peptides to some of the proteins.

PLS-DA
The first Principal Component (PC1) shows the variability

introduced due to the three different arms of the workflow. These

three arms IMAC, TiO2 and Total Protein (i.e non-enriched), as

shown in Figure 2A and Figure S3, have separated the variables

into 3 separate clusters. The solid black circle in Figure 2A depicts

the T2 hotelling space based on 95% confidence. PC1 explains

13.6% of the total variance in the dataset. The second Principal

Component (PC2) illustrates the variability introduced by different

TMT 8-plex channels. This variability highlights primarily the

patient to patient variance, which is 10.56% of the total variance

in the dataset. The between class variation, i.e Tumor (T) vs Non-

Tumor (NT), is shown by the third principal component (PC3)

which explains 14.36% of the total variance in the dataset.

Figure 2B and Figure S4 shows the grouping of variables into two

separate clusters, i.e. T and NT. Differences across the different

arms of the workflow has also affected PC3, which is illustrated by

the grouping of TotalProtein (non-enriched) peptides in a single

cluster in Figure 2B. Only patient 12 does not show any differences

in T compared to NT according to Figure 2B. The PLS bi-plots

demonstrate that there were no outliers in this dataset, as shown

on the Hoteling T2-Range plot (Figure S3). PLS confirmed that

the experiment was successful, and that there are significant

differences between T and NT. Differences across the three

different arms of the workflow exists, but TiO2 and IMAC have a

nearly equal correlation. Together PC1, PC2 and PC3 explain

38.52% of the total variance in the dataset. The remaining

variation in the dataset can be attributed to mixed effects of

analytical and biological variability.

In addition to investigating raw isobaric tag intensities in T &

NT specimens to identify outliers and groups, PLS-DA was also

used to investigate the log2 T/NT ratios from all phospho-peptides

(median from IMAC, TiO2, Non-enriched) in each case, as shown

in Figure 2C. A subtle relationship between the grouping of cases

and the time of recurrence appears to exit, however the number of

biological repeats would need to be increased before coming to

any final conclusions. That being said it is interesting to observe

cases 14 and 9 grouped closely and both cases experienced very

early recurrence at 2 and 5 months after surgery, respectively.

Cases 10 and 8 also grouped together, but far away from all other

cases. Case 10 showed recurrence at 31 months and case 8 had no

sign of recurrence even 23 months post-surgery. Cases 4, 12, 1, 7,

5, and 13 grouped together and these showed recurrence between

10 to 21 months post-surgery. Interestingly case 6, which is yet to

show recurrence, also grouped with the cases that showed

recurrence at 10 to 21 months. Case 11 did not group with any

other cases.

Significantly regulated protein expression
We determined the relative abundance of proteins in tumor

compared to non-tumor tissue, using median log2 T/NT ratios of

the non-phosphorylated peptides unique to each protein as

surrogates to calculate the relative abundance of the respective

proteins. A one sided t-test was used to calculate p-values and these

were plotted against log2 T/NT ratios on a volcano plot to detect

significant (Log2 T/NT$0.3 or #20.3 and p#0.05) regulations

over all cases (Figure 3A). In total there were 152 proteins

significantly regulated based on Log2 T/NT$0.3 or #20.3 and

p#0.05 (File S6_Sheet ‘Pro_TvNT.or,0.3_p,0.05’). Table 2

displays the 12 most significantly upregulated proteins in tumor

compared to non-tumor tissue, and also provides a description of

any known function of each protein or association with cancer

[13–31]. Overexpression of Mucin-1 is often associated with

cancer and we also found Mucin-1 to be significantly up-regulated

in pancreatic tumor tissue. Interestingly we found more significant

up-regulated proteins than Mucin-1, some of which may prove to

be more specific markers of pancreatic cancer, perhaps even new

therapeutic targets e.g. Homeodomain-interacting protein kinase 1

(HIPK1). HIPK1, which was elevated in tumor compared to non-

tumor in all cases (median log2 T/NT = 1.00; p = 1.59 E -04), is

one of four HIPK serine/threonine kinases known to interact with
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Figure 1. Number of Identified Peptides. Venn diagrams demonstrate the number of; A: unique phosphopeptide sequences, B: unique non-
phosphopeptide sequences, and C: total number of unique peptide sequences identified in the TiO2, IMAC, and/or non-enrich arm of the SysQuant
workflow, across all three TMT 8-plex samples in total (TMT 8-plex-ALL) and individually per TMT 8-plex (TMT 8-plex 1, TMT 8-plex 2, TMT 8-plex 3). D:
demonstrates the level of overlap we observe for peptide identifications from analytical run 1, analytical run 2, and analytical run 3 (including time
dependent rejection list compiled from identifications from run 1 and 2).
doi:10.1371/journal.pone.0090948.g001
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and regulate the activity of numerous cellular proteins including

several transcription factors and cofactors [32,33,34]. HIPKs have

been implicated in the control of a range of cellular pathways to

regulate various processes including the DNA damage response,

tissue specification, and proliferation [34].

To better understand the biological processes and KEGG

signaling pathways differing between tumor and non-tumor we

selected the accession numbers of all significantly modulated

proteins and uploaded these to the DAVID Bio-informatic

resource. The Focal Adhesion KEGG signaling pathway was

most significantly affected giving a Benjamini score of 1.0E-3.

Significantly modulated Focal Adhesion proteins included; Talin-

1, Filamin-A, Filamin-B, Filamin-C, Vinculin, Fibronectin,

Zyxin, and Myosin light chain kinase, smooth muscle (Figure 4

& File S6_Sheet; FA & lamellipodium). Talin-2, Focal adhesion

kinase 1 (FAK1), Protein phosphatase 1 regulatory subunit 12A

were also focal adhesion proteins and significantly modulated but

can only be seen in File S6, as these proteins were not

quantifiable in some cases and Figure 4 only shows proteins

quantifiable in all cases (e.g. no N/A). All of these focal adhesion

proteins, except FAK1, were significantly up-regulated in tumor

versus non-tumor suggesting increased size and/or frequency of

focal adhesions in cells within tumor. Focal adhesions are known

to play a role in migration of many cell types [35,36,37]. During

migration the focal adhesions can anchor cells to the extracellular

matrix following the formation of cell projections or protrusions;

such as pseudopodium, filopodium, and lamellipodium [37]. The

focal adhesion proteins Vinculin and Myosin Light Chain Kinase

are also known to be involved in formation of lamellipodia and

promote cell motility. On Figure 4 we list proteins known to be

involved in formation of growth projections and focal adhesions,

seen to be significantly modulated and measureable in all cases.

The plasma membrane spanning extracellular matrix receptors

(Integrins) are essential components of the focal adhesions

however we did not observe statistically significant modulation

of any integrin expression but did observe significant modulation

of integrin phosphorylation, as discussed later. The assembly of

focal adhesions also involves activation of Rho signaling as well as

myosin-induced contractility [37]. Figure 4 also shows Myosin 9,

10, 11, and 14 were significantly elevated in tumor compared to

non-tumor tissue.

Functional roles of four proteins in Figure 4 (LIM and SH3

domain protein 1, Moesin, Palladin, and PDZ and LIM domain

protein 7) have already been discussed in table 2, but Alpha-

actinin-4 (ACTN4) is an actin-binding protein with multiple roles

in different cell types. In non-muscle cells, it is found along

microfilament bundles and adherens-type junctions, where it is

involved in binding actin to the membrane. It is believed to be

involved in metastatic processes as Li Fu et al [38] demonstrated

that overexpression of ACTN4 in combination with 67 LR is

associated with Esophageal squamous cell carcinoma (ESCC)

progression. They demonstrated that ACTN4 was differentially

expressed in ESCC tissue compared to normal tissues and that

expression levels of ACTN4 were progressively increased from

stage I to III. Clinicopathological correlation using TMA revealed

that overexpression of ACTN4 was significantly associated with

advanced tumor stage (P = 2.6E-2) and lymph node metastasis

(P = 4.9E-02) [38]. Plectin has also been proposed as a cancer

biomarker, especially for pancreatic cancer [39]. Although

normally a cytoplasmic protein, plectin is expressed on the cell

membrane in pancreatic ductal adenocarcinoma (PDAC) and can

therefore be used to target PDAC cells [39]. Our study confirms

that both cancer biomarkers are significantly over expressed in

tumor compared to non-tumor tissue in pancreatic cancer patients
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(median log2 T/NT = 0.29 and p-value = 3.33E-02 for ACTN4,

and median log2 T/NT = 0.32 and p-value = 1.63E-03 for

Plectin).

Catenin delta-1 is necessary to the formation of cell–cell

adhesion (adherens junctions) through its interaction with the

cytoplasmic tail of classical and type II cadherins. Catenin delta-1

Figure 2. Partial Least Squares Discriminant Analysis (PLS-DA). A: PC1 and PC2 score plot of the first two principal components describing
13.6% (PC1) and 10.6% (PC2) of the total variance in the data (raw isobaric tag intensities from each PSM passing set filters). The circle depicts the T2
hotelling space based on 95% confidence. B: PC2 and PC3 score plot of the next principal components describing 10.6% (PC2) and 14.4% (PC3) of the
total variance in the data. C: PC1 and PC2 score plot of the first two principal components describing 25.8% (PC1) and 19.3% (PC2) of the total
variance in the data (median log2 T/NT ratios of all quantifiable phosphopeptides in each case). Here we also display the time of recurrence in months
for each case, following surgery.
doi:10.1371/journal.pone.0090948.g002

Phosphorylome in Pancreatic Cancer

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e90948



Phosphorylome in Pancreatic Cancer

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e90948



also modulates the activities of the Rho family of GTPases (RhoA,

Rac, and Cdc42), suggesting that along with other Src substrates,

catenin delta-1 regulates actin dynamics. Thus, catenin delta-1 is a

master regulator of adherens junction formation, and likely

participates in regulating the balance between adhesive and motile

cellular phenotypes [40]. Here we observe significantly decreased

levels of the catenin delta-1 in tumor compared to non-tumor

tissue (median log2 T/NT = 20.29 and p-value = 1.34E-02).

When considering the important role catenin delta-1 plays in

forming/maintaining adherens junctions between epithelial cells,

and considering our observed decrease in expression and

phosphorylation of this protein it suggests that these events may

contribute to dissociation of epithelial cells, hence epithelial to

mesenchymal transition in pancreatic cancer.

Of particular interest is discovering that Myosin light chain

kinase (MLCK) is significantly overexpressed in tumor compared

to non-tumor tissue (median log2 T/NT = 0.5 & p-value = 2.95E -

02). MLCK is a Ca2+/calmodulin-dependent protein kinase that

regulates a variety of cellular functions, such as, muscle

contraction and cell migration, via phosphorylation of myosin

light chain proteins. Since tumor cell migration is a key step in

tumor spread, myosin light chain kinase (MLCK) may be regarded

as a therapeutic target for preventing tumor spread. In fact,

MLCK activation and expression have been found to be positively

related with metastatic propensity. Moreover, MLCK inhibitors

have been shown to diminish the invasiveness of various cancer

cells [41]. Interestingly cases 14, 9, 4, and 13 have highest levels of

MLCK and three out of the four of these cases also demonstrate

very early recurrence (2 months, 5 months, 10 months, & the

longest with 21 months recurrence, respectively). Perhaps these

four cases would benefit from MLCK inhibitor therapy if patient

stratification were based on high expression of the drug target in

tumor versus non-tumor. Case 10 showed the lowest levels of

MLCK in tumor compared non-tumor correlating with this case

showing the longest time before recurrence of 31 months. MLCK

also plays a role in p38 MAPK signaling a pathway demonstrating

increased activity in several of the tumors in this study, as discussed

later.

Observing increased Myosin expression in tumor tissue is also of

particular interest as MYH9 (median log2 T/NT = 0.29 and p-

value = 5.93E-03), MYH10 (median log2 T/NT = 0.23 and p-

value = 2.18E-02), & MYH14 (median log2 T/NT = 0.35 and p-

value = 2.03E-02) are all cellular myosins that are critical to

cytokinesis, cell shape, and specialized functions such as secretion

and capping. During cell spreading these three, play an important

role in cytoskeleton reorganization, focal contacts formation (in the

central part but not the margins of spreading cells), and MYH10

induces lamellipodial extension while this function is mechanically

antagonized by MYH9, which is believed to cause lamellipodial

retraction. MYH11 (median log2 T/NT = 0.34 and p-va-

lue = 2.75E-02) is a muscle cell myosin required for muscle

contraction.

In Figure 5 & 6, we select significantly modulated proteins

quantifiable in all 12 cases and associated to the GO terms

‘proliferation’ and ‘DNA damage or DNA repair’, respectively.

Again we see HIPK1 and Mucin-1 selected as proteins of interest

however significant elevated tumor expression of several other

proteins listed here such as STAT3, HDAC1&2, and Hepatoma

derived growth factor also evoke interest especially as they are

potentially effective therapeutic targets to anti-neoplastic agents.

Sum scaling was used to normalise for any adverse effects on

quantification from potential experimental or systematic bias. In

Figure 7 we also display the relative abundance of blood proteins

(Serum albumin and Hemoglobin A&B), the mesenchymal cell

marker (Vimentin), and some cellularity markers (Glyceraldehyde

3-phosphate dehydrogenase & Prelamin A/C). We observe slightly

more GAPDH and Prelamin A/C in the tumor tissue of most

cases. Elevated GAPDH may be due to slightly higher cellularity

or elevated glycolysis in tumor, yet elevated Prelamin A/C is more

suggestive of elevated nuclear envelope and therefore cellularity.

Six out of twelve of the cases display slightly elevated Vimentin

while five out of twelve display slightly reduced levels of Vimentin.

Vimentin was almost two fold higher in the tumor of case 14

suggesting high mesenchymal cell content in this tumor, perhaps

relevant to case 14 early recurrence after only two months. A

possible concern is the very different relative abundance of

Haemoglobin and Serum albumin from case to case. These blood

proteins are clearly very high in the non-tumor tissue of case 4 and

case 13. Following protein extraction from tissue we performed

protein assay to ensure equal protein amounts in each sample,

however it seems much of the protein content from non-tumor

tissue of case 4 and case 13 is from blood. The high content of

blood proteins in the non-tumor tissue of case 4 and 13 may

slightly skew the relative abundance ratios of other proteins

perhaps explaining the particularly high levels of Myosins, Myosin

light chain kinase, and Filamins in tumor tissue from case 4 and

13. For future investigations we will take steps to remove any

residual blood.

Significantly regulated phosphopeptides
P-values and log2 T/NT ratios for phosphopeptides were

plotted on Volcano plots for IMAC, TiO2, and Non-enriched

arms of the workflow, to detect significant (median log2 T/NT$

0.75 or #20.75 and p#0.05) regulations over all cases, as shown

in Figure 3B–3D. Of the 5409 quantifiable phosphopeptides (File

S4), 635 showed significant regulation (Figure 3B–3D) and these

were from 408 unique proteins. The 408 protein accession

numbers were uploaded to the DAVID bio-informatics resource

which matched 14 of these proteins to the Tight Junction signaling

pathway; the KEGG signaling pathway seen to be most

significantly modulated in tumor relative to non-tumor

(p = 2.50E-05). In addition to determining which phosphopeptides

demonstrated significant differences in abundance between tumor

and non-tumor tissue when averaged across all cases, we also

wanted to determine which phosphopeptides were highly modu-

lated on a case by case basis. Accession numbers of proteins which

yielded phosphopeptides demonstrating log2 T/NT ratios of $1,

or #21 (More than 2 fold up-/down- regulated), were selected

separately from each case. Accession numbers were then uploaded

to the DAVID Bioinformatic resource which identified KEGG

signaling pathways which matched with greatest significance for

each case based on p-values and Benjamini scores (Table S7, in

Tables S1). KEGG pathways in Table S7 in Tables S1 with

Benjamini scores #0.05 were highlighted in Yellow. Based on p-

Figure 3. Number of significantly modulated proteins and phosphopeptides. Volcano plots showing 2log10 P-values in relation to log2 T/
NT ratios for; A: relative protein abundance (determined from median non-phosphopeptide log2 T/NT ratios), B: phosphopeptides measured in the
IMAC, C: TiO2, D: and Non-enriched arm of the SysQuant workflow. Red circles point out significantly modulated proteins (log2 T/NT ratios $0.3 or
#20.3 and p-values #0.05) and phosphopeptides (log2 T/NT ratios $0.75 or #20.75 and p-values #0.05). E: is a Venn diagram illustrating the
distribution of the 635 phosphopeptides across the three arms of the workflow that were significantly modulated.
doi:10.1371/journal.pone.0090948.g003
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Table 2. The top 12 most significantly up-regulated proteins in tumor compared to non-tumor background tissue, on average
over all 12 cases.

Uniprot-ID Protein p-values log2 T/NT Function Role in cancer References

P14618 Pyruvate kinase
isozymes M1/M2

4.2E-05 0.383 Glycolytic enzyme that catalyzes
the transfer of a phosphoryl
group from phosphoenolpyruvate
(PEP) to ADP, generating ATP

In addition to aerobic
glycolysis, regulates gene
transcription. Isoform M2
phosphorylates histone H3
at T11, which is related to
expression of cyclin D1 and
c-Myc, tumor cell proliferation,
cell-cycle progression, and
brain tumorigenesis.

Yang W, et al. Cell 2012.
Christofk HR, et al.
Nature 2008.

Q86Z02 Homeodomain-
interacting protein
kinase 1

1.6E-04 1.002 Belongs to the Ser/Thr family of
protein kinases and HIPK subfamily.
Phosphorylates p53, DAXX, and
MYB. Prevents MAP3K5-JNK
activation in the absence of TNF.

Known to be upregulated in
many tumor cell lines.
Involved in tumorigenesis
and tumor growth by its
oncogenic and
anti-apoptotic function.

Kondo S, et al. Proc Natl
Acad Sci USA 2003. Lee
D, et al. EMPO Rep 2012.

Q14847 LIM and SH3
domain protein 1

2.0E-04 0.496 Plays an important role in the
regulation of dynamic actin-based,
cytoskeletal activities

Involved in proliferation,
invasion and migration
of cancer cells.

Zhao L, et al. Gut 2010.
Grunewald TG, et al. Br J
Cancer 2007.

P37802 Transgelin-2 2.3E-04 0.519 Contains a conserved actin-binding
domain also known as the
calponin homolog (CH) domain,
suggesting a role in cytoskeletal
organization.

Overexpressed in various
cancers. Higher expression
levels were associated with
metastasis, advanced clinical
stage, and poor survival.
But its biological function
remains unknown.

Zhang Y, et al. Cancer Sci
2010.

Q92538 Golgi-specific brefeldin
A-resistance guanine
nucleotide exchange
factor 1

2.8E-04 1.397 Involved in mitosis. Phosphorylated
by CDK1. Promotes the activation
of ADP-ribosylation factor 5 (ARF5)
through replacement of GDP
with GTP.

Unknown. Morohashi Y, et al.
Biochem J 2010.

P21291 Cysteine and
glycine-rich
protein a1

4.0E-04 0.628 A cytoskeletal lin-11 isl-1 mec-3
(LIM)-domain protein. Involved in
smooth muscle differentiation.

Down-regulated in
hepatocellular carcinoma
and colorectal cancer. But,
its function is unknow.

Miyasaka KY, et al. Proc
Natl Acad Sci U S A.
2007. Hirasawa Y, et al.
Oncology 2006.

Q8WX93 Palladin 7.0E-04 0.588 Cytoskeletal protein that is
required for organization of
normal actin cytoskeleton. Roles
in establishing cell morphology,
motility, cell adhesion and cell-
extracellular matrix interactions.

Overexpressed in breast
cancer. Involved in cell
migration. Plays a key role in
the formation of podosomes,
actin-rich structures that
function in adhesion and
matrix degradation.

Goicoechea SM, et al.
Oncogene 2009.

Q14195-2 Isoform LCRMP-4 of
Dihydropyrimidinase-
related protein 3

7.0E-04 0.555 Necessary for signaling by class 3
semaphorins and subsequent
remodeling of the cytoskeleton.
Plays a role in axon guidance
and cell migration

Unknown. Weitzdoerfer R, et al. J
Neural Transm Suppl.
2001.

Q9NR12 PDZ and LIM domain
protein 7

7.4E-04 0.778 PDZ domain binds actin-binding
proteins such as b-tropomyosin,
while LIM domains interact with
proteins involved in mitogenic or
insulin signaling such as protein
kinases. Involved in bone
morphogenesis.

Promotes cell survival and
chemoresistance by
suppressing p53-mediated
apoptosis. Elicited p53
degradation by inhibiting
MDM2 self-ubiquitination
and increasing its ubiquitin
ligase activity toward p53
in cells.

Jung CR, et al. J Clin
Invest 2010.

P26038 Moesin 7.6E-04 0.334 A membrane-cytoskeleton linking
protein, belongs to the ERM
(ezrin, radixin and moesin) family.
Participates in various signaling
pathways and play a crucial role
in cell morphology, adhesion
and motility.

Involved in actin filament
remodelling and epithelial
mesenchymal transition.

Haynes J, et al. Mol Biol
Cell. 2011.
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values tight junction signaling pathway was determined to be

modulated between tumor compared to non-tumor in all cases

(12/12 cases), followed by adherens junction signaling (10/12

cases) and focal adhesion signaling (10/12). Figure 8 shows the

tight junction, adherens junction and focal adhesion KEGG

signaling pathways and the rectangles marked with red stars

indicate those proteins we identified as phosphorylated across all

12 cases. We also highlight the known anti-cancer drug targets in

these pathways as indicated in the figure legend. In Figure 9, we

display the log2 T/NT ratios of all significantly modulated

phosphopeptides from focal adhesion proteins, tight junction

proteins and adherens junction proteins that were quantifiable in

all twelve cases. We discuss some of these phosphorylation events

and their potential roles in pancreatic cancer in more detail

however it is beyond the scope of this study to discuss all. Our aim

is to make all the data available to the reader, in the form of tables

and supplemental files, but also select particular phosphorylation

events we believe to be of greatest interest and discuss them here in

more detail.

Phosphorylation of proteins associated with cell-cell or
cell-extracellular matrix (ECM) adhesions

On Figure 9 we show significantly elevated levels in tumor

compared to non-tumor of the phosphopeptide containing the

AFAP phosphorylation site S668 (median log2 T/NT = 1.50 and

p-value = 5.94E-03 for Non-enrich, median log2 T/NT = 1.02 and

p-value = 1.15E-02 for TiO2, median log2 T/NT = 1.03 and p-

Table 2. Cont.

Uniprot-ID Protein p-values log2 T/NT Function Role in cancer References

P15941 Mucin-1 8.6E-04 0.873 A transmembrane glycoprotein.
The alpha subunit has cell
adhesive properties. The beta
subunit contains
a C-terminal domain which is
involved in cell signaling, through
phosphorylation and
protein-protein interactions.

An anti-adhesion molecule
that inhibits cell–cell
adhesion. Promoting motility
and invasive properties by
reducing interactions
between integrins and the
extracellular matrix. Involved
in activation of Wnt and
MAP signal pathways, and
repression of the p53 gene.

Yonezawa, et al. Pathol
Int 2011. Wei X, et al.
Cancer Res 2007. Ren J,
et al. J Biol Chem 2002.

Q05682 Caldesmon 9.4E-04 0.597 A cytoskeletal protein. Stabilizes
actin filaments and involves in
myosin-actin interaction. Plays an
essential role during cellular mitosis
and receptor capping.

Inhibitory effects on cell
motility and migration. But
phosphorylation at particular
sites (i.e., S12) reduces the
anti-migratory effect.

Schwappacher R, et al. J
Cell Sci 2013. Mayanagi
T, et al. J Biol Chem 2008.

Log2 T/NT ratios of the non-phosphorylated peptides from each protein were used as surrogates to calculate the relative abundance of the respective proteins. Log2 T/
NT ratios of the non-phosphorylated peptides were averaged over three arms of the workflow (IMAC, TiO2, Non-enrich).
doi:10.1371/journal.pone.0090948.t002

Figure 4. Significantly modulated lamellipodium and focal adhesion proteins. All proteins in this figure were shown to be associated with
the GO terms ‘lamellipodium’ & ‘focal adhesion’ and also shown to be significantly (p#0.05) up- or down- regulated in tumor compared to non-tumor
tissue and quantifiable in each case (e.g. all proteins containing NA for any case were excluded from the table). Log2 T/NT ratios of the non-
phosphorylated peptides from each protein were used as surrogates to calculate the relative abundance of the respective proteins. Log2 T/NT ratios
of the non-phosphorylated peptides were averaged over three arms of the workflow (IMAC, TiO2, Non-enrich).
doi:10.1371/journal.pone.0090948.g004
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value = 4.16E-03 for IMAC). File S4 & S5 also show elevated

levels of peptides containing the AFAP phosphorylation sites S664,

S665, and S668, but no non-phosphorylated peptides were

quantified therefore relative expression of AFAP could not be

quantified. Actin filament-associated protein 1 (AFAP) is an actin

cross-linking protein and has been shown to be significantly

increased in prostate carcinomas relative to normal prostatic

epithelium as well as benign prostatic hyperplasia [42]. Down-

regulation of AFAP has previously been shown to inhibit cell

proliferation and tumorigenicity in pancreatic cancer cell lines and

mouse models. Furthermore, down-modulation of AFAP can

result in decreased cell-matrix adhesion and cell migration,

defective focal adhesions, and reduced integrin beta-1 expression.

Increased expression of AFAP is associated with progressive stages

of prostate cancer and is critical for tumorigenic growth, in part by

regulating focal adhesions in a PKC-dependent mechanism.

Considering the important role AFAP plays in cancer and the

significantly elevated levels of phosphorylated AFAP detected in

pancreatic tumor tissue in this study, we believe AFAP and its

phosphorylation is most likely an important player in pancreatic

cancer particularly cell migration. It is not known which kinase

causes phosphorylation at these particular sites however it is

known that AFAP is a substrate of Src and PKC.

Catenin delta-1 was originally identified as a Src substrate, and

here we observe significantly decreased tumor levels of the

phosphopeptides containing the catenin delta-1 phosphorylation

sites S349, S352, and S857 (Figure 9). As discussed earlier,

quantification of non-phosphorylated catenin delta-1 peptides

confirmed its expression was significantly decreased in tumor

compared to non-tumor tissue, however the reduction in

phosphorylation was more pronounced than the reduction in

expression (File S4 & S5). We also quantified phosphopeptides

containing the catenin delta-1 phosphorylation sites; S47, S252,

S268, S269, S346, S861, and S864, however these were not

significantly modulated (File S4). Decreased expression and

phosphorylation of catenin delta-1 may play a role in epithelial

to mesenchymal transition in pancreatic cancer.

Junctional adhesion molecule A (JAM-A) phosphorylation site

S284 was decreased in tumor tissue compared to non-tumor tissue

of all cases (median log2 T/NT = 21.01 & p-value = 6.59E-05 for

IMAC). Phosphorylation of JAM-A at S284 is known to be a

critical step in the formation and maturation of tight junctions

[43]. Here we observe a significant decrease of JAM-A S284

phosphorylation in tumor tissue suggesting there is less tight

junction formation between tumor cells an event that could favour

epithelial to mesenchymal transition (EMT) of the cells and

consequently metastatic spread. We did not quantify any non-

phosphorylated JAM-A peptides however additional JAM-A

phosphopeptides were quantified as shown on File S4 & S5.

Rho guanine nucleotide exchange factor 2 (GEF-H1) is a

microtubule-associated guanine nucleotide exchange factor for

Rho GTPases [44]. Here, in Figure 9, we show significant increase

of the phosphopeptides containing GEF-H1 phosphorylation site

S174 in tumor compared to non-tumor. No non-phosphorylated

peptides from GEF-H1 were quantified so we were not able to

quantify relative protein abundance (File S5), however we did

quantify additional GEF-H1 phosphopeptides containing phos-

phorylation sites S152, S163, S177, S643, S645, and S932. The

doubly phosphorylated peptide containing sites S174 and S177

were also significantly increased but only quantifiable in cases 1–

10, not cases 11–14 (File S4). All GEF-H1 phosphopeptides except

that containing phosphorylation site S643 were elevated on

average in tumor compared to non-tumor. Guanine nucleotide

exchange factors (GEFs) activate monomeric GTPases by stimu-

lating the release of guanosine diphosphate (GDP) to allow binding

of guanosine triphosphate (GTP) [44]. The aberrant activity of

Ras homologous (Rho) family small GTPases (20 human

members) has been implicated in cancer and other human

diseases [44]. However, in contrast to the direct mutational

activation of Ras found in cancer and developmental disorders,

Rho GTPases are activated most commonly in disease by indirect

mechanisms. One prevalent mechanism involves aberrant Rho

activation via the deregulated expression and/or activity of Rho

family guanine nucleotide exchange factors (RhoGEFs). Rho

GTPases specifically regulate actin organization, cell motility

(through formation of lamellipodia and filipodia), polarity, growth,

survival and gene transcription [44]. Rho guanine nucleotide

exchange factors (RhoGEFs), such as GEF-H1, accelerate the

intrinsic exchange activity of Rho GTPases to stimulate formation

of Rho-GTP [44]. File S4 shows some additional GEFs with

significantly increased phosphorylation in tumor compared to

non-tumor, including; Rho guanine nucleotide exchange factor 11

at S251 and Rho guanine nucleotide exchange factor 17 at S420 &

S735. Inversely we observed significantly decreased phosphoryla-

tion of Rho guanine nucleotide exchange factor 12 at T703 &

S1327 & Rho guanine nucleotide exchange factor 17 at S764.

Here we also observe significant decrease in the phosphopeptide

containing Rho GTPase-activating protein 31 phosphorylation site

Figure 5. Significantly modulated proliferation proteins. All proteins in this figure were associated with the GO term ‘proliferation’ and also
shown to be significantly (p#0.05) up- or down- regulated in tumor compared to non-tumor tissue and quantifiable in each case (e.g. all proteins
containing NA for any case were excluded from the table). Log2 T/NT ratios of the non-phosphorylated peptides from each protein were used as
surrogates to calculate the relative abundance of the respective proteins. Log2 T/NT ratios of the non-phosphorylated peptides were averaged over
three arms of the workflow (IMAC, TiO2, Non-enrich).
doi:10.1371/journal.pone.0090948.g005
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S1432. Modulation of phosphopeptides from several other Rho

signal transduction proteins can be observed in File S4 by filtering

for the GO term ‘Rho protein signal transduction’ in the column

entitled ‘GeneOntologyGO’.

Integrin phosphopeptides were also observed to be significantly

modulated however some of these phosphopeptides were not

measureable in all cases (File S4 & S7). The doubly phosphory-

lated peptide containing the Integrin beta-4 phosphorylation sites

S1483 and S1486, was elevated more than two fold in the tumor

tissue compared to non-tumor tissue of case 1. This phosphopep-

tide was found to be significantly elevated in tumor tissue

compared to non-tumor across all measured cases. Integrin beta-

4 phosphorylation has been associated with the disassembly of cell

anchoring junctions, such as hemidesmosomes at the trailing edge

of migrating cells [45,46]. Such phosphorylation events have been

shown to be induced by Fyn (primarily at Tyrosine residues), PKC

(primarily at Serine residues), and other kinases [45].

Catenin alpha-1. The singly phosphorylated peptide con-

taining Catenin alpha-1 phosphorylation site S655 was elevated

more than two fold in tumor tissue compared to non-tumor, in

case 1 and in fact significantly elevated in tumor tissue on average

across all cases (Figure 9). Phosphorylation at S641, S655, and

S658, was elevated in tumor tissue of all but three cases (File S4),

two of those three being stage IIA. Interestingly phosphorylation of

catenin alpha-1 at S641 has been shown to lead to dissociation

between catenin alpha-1 and catenin beta-1 (beta catenin), leading

to increased transcriptional activation of beta-catenin and tumor

cell invasion [47].

Phosphorylation of protein kinases
In File S4, we filtered all proteins containing ‘kinase’ in their

name and imported these to Figure 10 & File S7. The

phosphopeptides in Figure 10 are quantifiable in all twelve cases

and significantly modulated in tumor compared to non-tumor. Of

particular interest was the observation that the phosphopeptides

from Serine/Threonine-protein kinase MRCK alpha containing

phosphorylation site S1629 were significantly elevated in tumor

compared to non-tumor. In fact, only in case 12 did we not see an

increase of this phosphopeptide in tumor tissue. In addition, File

S7 (Sheet; All Kinase phos) shows that phosphopeptides containing

MRCK alpha phosphorylation sites 1629, 1635, 1651, and 1654

were elevated in tumor relative to non-tumor, for most cases.

MRCK alpha is an important downstream effector of the Rho

GTPase, CDC42, and plays a critical role in the regulation of

cytoskeleton reorganization, formation of cell protrusion, and

promotes cell migration. The specific role of the phosphorylation

event S1629 is not yet known. We were only able to determine

relative expression of MRCK in Cases 7–10 (File S5). We can also

see on Figure 10, that tumor tissue showed elevated phosphory-

lation of; AP2-associated protein kinase 1, Dual specificity

mitogen-activated protein kinase kinase 2 (MEK 2), HIPK1,

Serine/threonine-protein kinase PAK 4 (Isoform 2) and Mitogen-

activated protein kinase kinase kinase 7 (TAK1). MEK2 is known

to be downstream of RAS/RAF and upstream of ERK1/2,

however there is no known function for the significantly up-

regulated in tumor phosphorylation site T394. PAK4 is a serine/

threonine protein kinase that plays a role in a variety of different

signaling pathways including cytoskeleton regulation, cell migra-

Figure 6. Significantly modulated DNA damage and repair proteins. All proteins in this figure were associated with the GO terms ‘DNA
damage’ & ‘DNA repair’, and also shown to be significantly (p#0.05) up- or down- regulated in tumor compared to non-tumor tissue and quantifiable
in each case (e.g. all proteins containing NA for any case were excluded from the table). Log2 T/NT ratios of the non-phosphorylated peptides from
each protein were used as surrogates to calculate the relative abundance of the respective proteins. Log2 T/NT ratios of the non-phosphorylated
peptides were averaged over three arms of the workflow (IMAC, TiO2, Non-enrich).
doi:10.1371/journal.pone.0090948.g006

Figure 7. Mesenchymal (Vimentin), general cellularity and blood protein markers. Log2 T/NT ratios of the non-phosphorylated peptides
from each protein were used as surrogates to calculate the relative abundance of the respective proteins. Log2 T/NT ratios of the non-phosphorylated
peptides were averaged over three arms of the workflow (IMAC, TiO2, Non-enrich).
doi:10.1371/journal.pone.0090948.g007
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tion, growth, proliferation and cell survival. Similarly to MRCK

alpha, PAK4 is activated by GTPases CDC42 and RAC1 which

results in a conformational change and a subsequent autophos-

phorylation on several serine and/or threonine residues, then

activates the downstream target RHOA that plays a role in the

regulation of assembly of focal adhesions and actin stress fibers.

Significantly elevated phosphorylation of TAK1 on S389 &

S439 in tumor tissue relative to non-tumor is also highly

interesting, as TAK1 is a serine/threonine kinase which acts as

an essential component of the MAP kinase signal transduction

pathway. TAK1 mediates signal transduction of TRAF6, various

cytokines including interleukin-1 (IL-1), transforming growth

factor-beta (TGFB), TGFB-related factors like BMP2 and

Figure 8. Signaling pathways highly modulated in pancreatic cancer. This schema summarizes all proteins identified as phosphorylated
from the following KEGG signaling pathways; Tight Junction, Adherens Junction and Focal Adhesion. Red stars indicate those proteins identified as
phosphorylated in any of 12 cases. Proteins highlighted by coloured circles are known drug targets.
doi:10.1371/journal.pone.0090948.g008
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BMP4, toll-like receptors (TLR), tumor necrosis factor receptor

CD40 and B-cell receptor (BCR). It also induces activation of

MKK/JNK signal transduction cascade and the p38 MAPK

signal transduction cascade through the phosphorylation and

activation of several MAP kinase kinases. Considering the role

TAK1 plays in activating signaling cascades, we believe phos-

phorylation of TAK1 at S389 & S439 may be of importance in

pancreatic cancer.

Phosphorylation of proteins associated with GO terms
‘DNA damage’ & ‘DNA repair’

Ten out of the twelve patients experienced tumor recurrence at

various time points after surgery and gemcitabine chemotherapy.

In fact 95% of patients with pancreatic cancer are expected to

show recurrence within 5 years of surgery and chemotherapy,

therefore even though cases 6 and 8 are yet to experience

recurrence we would expect this to occur eventually. Gemcitabine

is a nucleoside analogue used as chemotherapy. As with

fluorouracil and other analogues of pyrimidines, the drug replaces

one of the building blocks of nucleic acids, in this case cytidine,

during DNA replication. The process arrests tumor growth, as new

nucleosides cannot be attached to the ‘‘faulty’’ nucleoside,

resulting in apoptosis (cellular ‘‘suicide’’). Clearly however, the

inevitable problem of recurrence means the DNA damage induced

by gemcitabine is not always catastrophic enough to induce

apoptosis in all pancreatic cancer cells. Usually following DNA

damage the cells sense this due to DNA damage sensing proteins

which activate DNA repair mechanism and if the damage is too

great then they trigger apoptosis. Sometimes however the DNA

repair mechanisms can rescue the cancer cells from apoptosis

therefore leading to chemotherapy resistance and ultimately

recurrence and death. This resistance can be seen in glioblastoma

patients receiving DNA damaging chemotherapies who overex-

press the DNA repair enzyme (O6-methylguanine-DNA-methyl-

transferase (MGMT)); whereas patients with hyper-methylation of

the MGMT gene respond much better to these alkylating

chemotherapies. Epigenetic silencing of the MGMT gene by

methylation of the CpG islands of the promoter region has been

shown to correlate with loss of gene transcription and protein

expression. Loss of expression of the MGMT protein results in

decreased DNA repair and retention of alkyl groups, thereby

allowing alkylating agents such as carmustine (BCNU), lomustine

(CCNU), and temozolomide to have greater efficacy in patients

whose tumors exhibit hypermethylation of the MGMT promoter

and reducing the MGMT protein concentration. [48]. This

relationship between decreased expression of a DNA repair

protein (MGMT) and better response to alkylating chemotherapies

lead us to investigate the expression and phosphorylation status of

DNA damage sensing proteins and DNA repair proteins in our

dataset. In File S4, we filtered all proteins associated with the GO

Figure 9. Significantly modulated phosphopeptides from key signaling proteins. All phosphopeptides here were significantly modulated
in tumor compared to non-tumor tissue in at least one arm of the SysQuant workflow, quantifiable in all 12 cases, and from proteins shown to be
associated with the Focal Adhesion (FA), Adherens Junction (AJ), and Tight Junction (TJ) KEGG signaling pathways. Here we display the KEGG
pathway associated to the protein, the protein name, the global position of the phosphorylation site on the full length protein, the sequence of the
quantified phosphopeptides where lower case s/t/y signifies the phosphorylated residues, the median log2 T/NT ratio over all three arms (non-
enriched, TiO2 & IMAC) in each case, the t-test p-values calculated from all 12 cases for each arm of the workflow, and the median log2 T/NT ratio from
all cases in either the non-enriched arm or TiO2 arm, or IMAC arm of the workflow.
doi:10.1371/journal.pone.0090948.g009
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terms ‘DNA damage’ and/or ‘DNA repair’, then exported all of

those significantly modulated phosphopeptides to Figure 11.

Interestingly we identify two additional kinases (Mitogen-activated

protein kinase 14 & Serine/Threonine-protein kinase SMG1) that

were not shown in Figure 10, as Figure 10 only contained

phosphopeptides that were quantifiable in all 12 cases. Mitogen-

activated protein kinase 14 (MAP kinase p38 alpha) & Serine/

Threonine-protein kinase SMG1 (SMG-1) both contained signif-

icantly elevated phosphopeptides in tumor compared to non-

tumor however these were only quantified in cases 7–10 and cases

7–14, respectively. MAP kinase p38 alpha is activated by cell

stresses such as DNA damage and heat shock, as well as pro-

inflammatory stimuli such as interleukin-1. Activation occurs

through dual phosphorylation of Thr-180 and Tyr-182 by either

of two dual specificity kinases, MEK3 or MEK6, and potentially

also MEK4. MAP kinase p38 alpha phosphorylated on both Thr-

180 and Tyr-182 is 10–20-fold more active than MAP kinase p38

alpha phosphorylated only on Thr-180, whereas MAP kinase p38

alpha phosphorylated on Tyr-182 alone is inactive. Figure 11

demonstrates that MAP kinase p38 alpha must be greater than two

fold more active in tumor tissue of cases 8, 9 & 10, compared to

their respective non-tumor tissue.

Phosphorylation events that indicate activation status of
drug targets

To ascertain relative activation status of known drug targets in

tumor compared to non-tumor tissue in each case, we used relative

abundance of phosphopeptides containing phosphorylation sites

known to either induce enzyme activation or inhibition of such

drug targets. Figure 12 short lists all such phosphopeptides.

Fyn. The relative abundance of the peptide containing

phospho-S21 of the Tyrosine-protein kinase Fyn is elevated more

than two fold in tumor tissue compared to non-tumor tissue of case

1 (Figure 12). Phosphorylation of Fyn at serine 21 is reported to

activate Fyn kinase [49]. This suggests therefore, that Fyn is more

active in the tumor tissue compared to non-tumor tissue of case 1.

Interestingly, phospho-serine 21 of Fyn is detected in all 12 cases,

but it is only in cases 1, 8, 10, 13, and 14, that we observe elevated

levels in tumor compared to non-tumor. Inversely, the tumor

tissue of case 7 shows over a two-fold decrease of this

phosphopeptide compared to non-tumor tissue. Fyn is a target

of the approved kinase inhibitor Dasatinib therefore measurement

of the peptide containing phospho-S21 using our workflow may be

an attractive predictive marker for this drug.

MAPK1 (ERK2). The relative abundance of the peptide

containing phospho-T185 and phospho-Y187 of MAPK1 is

elevated more than two fold in tumor tissue compared to non-

tumor tissue of cases 5, 8, and 10 (Figure 12 and Table S8, in

Tables S1). Phosphorylation of MAPK1 at T185 and/or Y187 is

reported to activate MAPK1 [50]. This suggests therefore, that

MAPK1 is more active in the tumor tissue compared to non-

tumor tissue of cases 5, 8, and 10. Inversely, the tumor tissue of

cases 4 and 11 shows more than two fold reduction of this

phospho-T185 and phospho-Y187 containing phosphopeptide,

compared to non-tumor tissue. MAPK1 is an anti-cancer drug

target (AEZS-131 and SCH772984) and is also down-stream of

many other anti-cancer drug targets (Anti-HER TKIs, Anti-MEK

KIs), therefore measurement of the peptide containing phospho-

T185 and phospho-Y187 using our workflow may be a predictive

marker for these targeted anti-cancer therapies. We have also

measured the singly phosphorylated peptides containing phospho-

T185 or phospho-Y187, as well as the MAPK2 (ERK1) doubly

and singly phosphorylated peptides containing phospho-T202 and

phospho-Y204. SysQuant enables us to determine whether

MAPK2 is phosphorylated on T202 and/or Y204 and/or

MAPK1 is phosphorylated on T185, and/or Y187, yielding

critical signaling pathway activation status information, unattain-

able by western blotting and other antibody based assays.

AKT1. The relative abundance of the singly phosphorylated

peptides containing phospho-S124 and the doubly phosphorylated

peptide containing phospho-S124 and phospho-S129 of AKT1 are

elevated more than two fold in tumor tissue compared to non-

tumor tissue of cases 4, 7, 10, and 13 (Figure 12 and Table S8, in

Tables S1). Phosphorylation of AKT1 at S124 and/or S129 is

reported to activate AKT1 [51,52]. This suggests that AKT1 is

more active in the tumor tissue compared to non-tumor tissue of

cases 4, 7, 10, and 13, therefore anti-AKT kinase inhibitors may

be effective in these patients. Interestingly Case 10 also demon-

strated elevated MAPK1 activity suggesting this patient may be a

candidate for dual AKT1 & MAPK1 inhibitor treatment, as such

combination strategies have proven efficacy in pancreatic cancer

cell lines and xenograft models [12]. Inversely, the relative lower

abundance of phosphopeptides containing these activator phos-

phorylation sites suggests AKT1 is less active in the tumor tissue

compared to non-tumor tissue of cases 1, 6, 8, 9, 11, and 14.

RAF1 & BRAF. Both are targets of Sorafenib the approved

targeted therapy for advanced renal cell carcinoma and advanced

hepatocellular carcinoma (HCC). The phosphopeptides contain-

ing the activator phosphorylation site S621 on RAF1 was elevated

more than two fold in tumor compared to non-tumor of cases 10

and 13, suggesting elevated RAF1 activity in these cases. In tumor

of case 14 there appears to be subtle increase in the activator

phosphorylation sites S621 on RAF1 and S729 on BRAF, yet

strong decrease in the inhibitor phosphorylation site S259 on

RAF1, suggesting RAF1 and BRAF are more active in the tumor

tissue of case 14. In future studies we plan to determine whether

RAF1 and BRAF phosphorylation status serve as predictive

markers to Sorafenib therapy in patients with advanced HCC. We

also show ARAF phosphorylation on Figure 12, despite ARAF not

being a known drug target of Sorafenib.

GSK3a. The peptide containing the Glycogen synthase

kinase-3 alpha phosphorylation site Y279 increased more than

two fold in the tumor tissue compared to non-tumor tissue of cases

1, 6, 13, and 14 (Table S8, in Tables S1, and File S4).

Phosphorylation of Y279 causes activation of GSK3a which then

induces cell survival, and reduces glycogen production [53].

GSK3a expression was measured in 8 out of 12 cases and shown to

be significantly over expressed on average in tumor.

The relative abundance of phosphopeptides containing activa-

tor or inhibitor phosphorylation sites can help determine the

relative activation status of; GSK3a and b, Histone deacetylase 1

and 2, RAF proto-oncogene serine/threonine-protein kinase,

Serine/threonine-protein kinase A-Raf, Dual specificity mitogen-

activated protein kinase kinase 6, Mitogen-activated protein kinase

14 (p38 MAPK), and over 20 others (File S4).

Several limitations need to be considered in this study. First,

phosphorylation status of tissue might have been modified during

sample collection. For example, although tissue samples were snap

frozen 30 minutes after resection, one cannot exclude the

possibility that ischaemia might have affected the phosphorylation

status, however our quality control steps such as PLS-DA suggests

our data has not been adversely affected by such issues. Second, as

whole pieces of tissue were analysed, we cannot determine which

phosphopeptides derives from cancer or stromal cells. However,

considering that not only cancer cells but also stromal components

are potential drug targets (i.e., inhibitors of angiogenesis), whole

tissue samples may prove more helpful in understanding activated

signaling pathways in cancer and to identify potential drug targets
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than micro-dissected cancer cells. Third, a common theme to

current data dependent mass spectrometry is its ability to define

the composition of complex proteomes/phosphorylomes and the

functions of these complexes however ‘‘undersampling’’ still exists,

that is, only a subset of the peptides will be identified if the

complexity of the peptide sample exceeds the analytical capacity of

the mass spectrometer e.g., when more peptides elute from the

HPLC column per unit time than can be analyzed, or low-

abundance peptides are below the instrument detection limit [54].

The undersampling issue (e.g presence of non-availables (N/A))

may explain why we can identify peptides in some but not all of

the three TMT 8-plex analysed in this study. Future instrumen-

tation and fractionation techniques will lead to complete proteome

analysis eradicating undersampling [9].

In summary, we show examples here demonstrating how our

LC-MS/MS proteomic workflow (SysQuant) can simultaneously

measure the expression and phosphorylation of 1000’s of proteins

in tumor tissue relative to non-tumor tissue, and show how such

measurements can be used to better understand the molecular

events leading to cancer, and therefore the most suitable inhibitory

agents, to treat a patient on a case by case basis. Within the field of

LC-MS/MS based proteomics there are many groups developing

very high quality analytical workflows to measure global protein

expression and phosphorylation, however most studies from these

groups are focused purely on either improving the sample

Figure 10. Significantly modulated phosphopeptides from key kinases. All phosphopeptides here were significantly modulated in tumor
compared to non-tumor tissue in at least one arm of the SysQuant workflow, quantifiable in all 12 cases, and from proteins shown to contain the
word ‘kinase’ in their protein name. Here we display the Uniprot accession number, the protein name, the global position of the phosphorylation site
on the full length protein, the sequence of the quantified phosphopeptides where lower case s/t/y signifies the phosphorylated residues, the median
log2 T/NT ratio over all three arms (non-enriched, TiO2 & IMAC) in each case, the t-test p-values calculated from all 12 cases for each arm of the
workflow, and the median log2 T/NT ratio from all cases in either the non-enriched arm or TiO2 arm, or IMAC arm of the workflow.
doi:10.1371/journal.pone.0090948.g010

Figure 11. Significantly modulated phosphopeptides from DNA damage or repair proteins. All phosphopeptides here were significantly
modulated in tumor compared to non-tumor tissue in at least one arm of the SysQuant workflow, and from proteins associated to the GO terms ‘DNA
damage’ or ‘DNA repair’. Here we display the Uniprot accession number, the protein name, the global position of the phosphorylation site on the full
length protein, the sequence of the quantified phosphopeptides where lower case s/t/y signifies the phosphorylated residues, the median log2 T/NT
ratio over all three arms (non-enriched, TiO2 & IMAC) in each case, the t-test p-values calculated from all 12 cases for each arm of the workflow, and
the median log2 T/NT ratio from all cases in either the non-enriched arm or TiO2 arm, or IMAC arm of the workflow.
doi:10.1371/journal.pone.0090948.g011
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preparation, or improving the LC-MS/MS analysis, or improving

the data analysis software tools (computational mass spectrometry

and/or bioinformatics), but rarely are these advancements and

improvements grouped into a seamless workflow and applied to

unravel the molecular events inducing cancer in a clinical setting.

We believe this study builds on and further improves the

technological advances in the field of LC-MS/MS proteomics

and demonstrates how we can translate these into clinical

oncology applications. This study demonstrates that LC-MS/MS

proteomic workflows have the potential to become clinical tests

and may improve clinical outcome for pancreatic cancer patients,

as well as other cancers. In future we aim to improve SysQuant by

reducing the turnaround time to two weeks (from receiving tissue

specimen to interpreting data), reducing required specimen size

from resected tissue to core needle biopsy, and also reducing

economic cost. These are some examples of essential improve-

ments to the current workflow for future applicability as a routine

clinical test.

Throughout the manuscript we selected proteins and phospho-

peptides significantly modulated then determined whether these

proteins are known to contribute to migration, invasion, prolifer-

ation and/or DNA damage/DNA repair. Of particular interest

was the observation of significantly increased expression of HIPK1

& MLCK, as well as observing significant increase in phosphor-

ylation of the Serine/threonine-protein kinase MRCK alpha; as all

three proteins may serve as effective new therapeutic targets.

Despite these significant increases in tumor on average across all

cases, we feel it is also important to highlight the interpatient

variability in the expression and phosphorylation of these and

other proteins e.g. cases 11 & 8 demonstrate substantially higher

levels of HIPK1 in tumor (log2 T/NT of 3.00 & 2.51, respectively),

while cases 7 & 6 do not show such high expression (log2 T/NT of

0.45 & 0.55, respectively); cases 13 & 4 demonstrate substantially

higher levels of MLCK in tumor (log2 T/NT of 2.05 & 1.84,

respectively), while cases 10 & 12 show reduced expression in

tumor (log2 T/NT of 20.67 & 20.17, respectively); and finally

cases 8 & 14 demonstrate substantially higher levels of phosphor-

ylation of MRCKa in tumor (log2 T/NT.3.00 & .2.00,

respectively), while case 12 shows reduced phosphorylation in

tumor. This interpatient variability again highlights the need for

suitable analytical capabilities, such as SysQuant, to determine the

molecular events likely contributing to cancer from patient to

patient, to then design more appropriate and bespoke treatment

strategies for each case. Due to the volume of data, we have not

been able to investigate the importance of every interesting

molecular event observed here, and therefore invite experts from

the oncology community focussed on specific areas of research to

download our supplemental files (especially Files S4, S5, S6, and

S7) and identify molecular events they feel also contribute to the

cancer phenotype and therefore hopefully develop more effective

therapeutics specific to inhibiting cancer. Our data gives a unique

insight into the expression levels and phosphorylation status of

thousands of proteins in clinical tumor tissue relative to the non-

tumor background tissue. This data can be used to help validate

theories and proposed mechanisms originating from functional

investigations in model systems or the pre-clinical setting.

Supporting Information

Figure S1 A: This MA-plot shows the log ratios vs. the log

intensities over the complete non-normalized data set. B: This

Figure 12. Phosphorylation indicates activity of drug targets. Here are examples of phosphopeptides that contain activator and inhibitor
phosphorylation sites on proteins known to be anti-cancer drug targets. Here we display the inhibitory drug, the protein name, the global position of
the phosphorylation site on the phosphoprotein, and the sequence of the phosphopeptide. The phosphorylated s/t/y residue in each peptide
sequence is in lower case. The log2 T/NT ratios displayed in each case were median values calculated from all three arms of the workflow.
Phosphopeptides in red contain activator phosphorylation sites, while phosphopeptides in blue contain inhibitor phosphorylation sites.
Phosphopeptides in black contain phosphorylation sites with no known function.
doi:10.1371/journal.pone.0090948.g012
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MA-plot shows the same as Figure S1A, but the data was

normalized by sum-scaling and therefore better zero-centred.

(PPTX)

Figure S2 Number of unique phosphopeptides and non-
phosphopeptides identified in each raw file, from each
SCX fraction, in each arm of the workflow (non-enrich,
TiO2, and IMAC), from each TMT 8-plex sample (TMT
8-plex-1 shown in S2A, TMT 8-plex-2 shown in S2B, &
TMT 8-plex-3 shown in S2C). Most of the non-phosphory-

lated peptides eluted in fractions 7 to 11, while the phosphorylated

peptides started to elute earlier but were more evenly distributed

throughout the chromatography run time, except for a clear spike

in the elution of phosphopeptides in fraction 6 from TMT 8-plex-

1,2&3 (IMAC), fraction 6 from TMT 8-plex-2&3 (TiO2), and

fraction 5&6 from TMT 8-plex-1 (TiO2).

(PPTX)

Figure S3 A: Hoteling T-Range plot shows no outlier’s at the T2

plot. B: PC1 and PC2 Score plot of the first two principal

components describing 13.6% (PC1) and 10.6% (PC2) of the total

variance in the data. The circle depicts the T2 hotelling space

based on 95% confidence. C: PLS Loading-plot PC1 and PC2.

(PPTX)

Figure S4 A: PLS Loading plot PC2 and PC3. B: PC2 and PC3

Score plot of the next principal components describing 10.6%

(PC2) and 14.4% (PC3) of the total variance in the data. C: Here

we zoom in on the total protein (non-enriched) cluster in Figure

S4B. D: The same Score plot like Figure S4B, only the enrichment

description in the label was deleted. E: Here we zoom in on the

total protein (non-enriched) cluster in Figure S4D.

(PPTX)

File S1 This is a zip excel file containing a list of all
peptides (phosphorylated and non-phosphorylated)
identified from all eight specimens in the TMT 8-plex-
1 sample. The file displays detailed information including;

Sequest Xcorr, Mascot ions scores, DM [ppm], Percolator q-

values, pRS-probabilities, raw quantification values, and other

important information.

(7Z)

File S2 This is a zip excel file containing a list of all
peptides (phosphorylated and non-phosphorylated)
identified from all eight specimens in the TMT 8-plex-
2 sample. The file displays detailed information including;

Sequest Xcorr, Mascot ions scores, DM [ppm], Percolator q-

values, pRS-probabilities, raw quantification values, and other

important information.

(7Z)

File S3 This is a zip excel file containing a list of all
peptides (phosphorylated and non-phosphorylated)
identified from all eight specimens in the TMT 8-plex-
1 sample. The file displays detailed information including;

Sequest Xcorr, Mascot ions scores, DM [ppm], Percolator q-

values, pRS-probabilities, raw quantification values, and other

important information.

(7Z)

File S4 In this excel file we display all measurable
phosphopeptides (5409) in all cases (12) from all arms of
the workflow (non-enrich, IMAC, TiO2). We display the

Uniprot accession number, full protein name, phosphorylated

residue number on full length protein, identified peptide sequence,

confidence score of phosphorylated residue (pRS probability), t-

test p-values for each arm of the workflow, and log2 T/NT ratios

for each phosphopeptide on average across all cases, and in each

individual case. We also display biological/functional relevant

information if known to each phosphosite (from PhosphoPhosite-

Plus), and to each protein (from GO and DrugBank databases).

(XLSX)

File S5 In this excel file we display all measurable
phosphopeptides but also display the relative protein
abundance. Relative protein abundance was determined by

measuring the relative abundance of all non-phosphorylated

unique to a specific protein (non-shared/non-homologous pep-

tides). Here we also normalise phosphopeptide levels to relative

protein abundance.

(XLSX)

File S6 All proteins listed in this excel file were shown
to be significantly up- or down-regulated in tumor
compared to non-tumor tissue. In the first sheet, proteins

were deemed significantly modulated if they displayed p-values#

0.05. In the second sheet of the file, proteins were deemed

significantly modulated if they displayed log2 T/NT#20.3 or $

0.3 & p-values#0.05. In the third sheet of the file proteins were

deemed significantly modulated if they were measureable in tumor

and non-tumor of all twelve cases (e.g. no non-available) and

displayed log2 T/NT#20.3 or $0.3 & p-values#0.05. The other

sheets in this excel file contained significantly modulated proteins

associated to the GO terms, DNA damage and repair,

proliferation, focal adhesions and lamellipodia, and others.

(XLSX)

File S7 Here, in the first sheet of this excel file, we
display all significantly modulated phosphopeptides
from proteins associated with Tight Junctions, Adherens
Junctions, and Focal Adhesions. In the second sheet we

display Integrin phosphopeptides. In the third sheet we display all

phosphophopeptides from Kinases. In the fifth sheet we filter

significantly modulated phosphopeptides (p#0.05) from kinases

which were measureable in all specimens. In the sixth sheet we

display all phosphopeptides from DNA repair proteins and in the

seventh sheet filter all those phosphopeptides from DNA repair

proteins which were significantly modulated (p#0.05). In the

eighth sheet we display all those phosphopeptides from proteins

associated with the GO term ‘migration’.

(XLSX)

Methods S1 This document contains supplemental
methods.
(DOCX)

Tables S1 This document contains Tables S1–S8. Table

S1, Fourteen cases of pancreatic head ductal adenocarcinoma

were selected from Institute of Liver Studies BioBank. Specimens

from cases 2 and 3 yielded low protein amounts during protein

extraction therefore were omitted from the study. Table S2,

Information on tumor stage and recurrence are shown here.

Yellow cases showed recurrence between 2 & 31 months after

tumor removal. The difference between stage IIA and IIB is only

the presence or absence of lymph node metastasis. Table S3,

Additional non-confidential clinical information about patient and

tumor. Table S4, Protein amounts from each sample per TMT 8-

plex, used for the SysQuant workflow in this study. Table S5,

Peptides from each specimen are labelled with different tandem

mass tags (TMT). All peptides from case 1 tumor, case 10 non-

tumor, and case 11 tumor were labelled with the 126 Da tandem

mass tag (TMT) while peptides from case 1 non-tumor, case 10

tumor and case 11 non-tumor were labelled with the lighter

127 Da tandem mass tag (TMT), and so on as shown below. The
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lighter 127 (127e) and heavier 127 only differ in mass by 6 milli-

Daltons, as do 129e and 129 reporter ions. Table S6, Nine aliquots

of TMT labelled peptides were separated by SCX-HPLC. Table

S7, Accession numbers of proteins which yielded phosphopeptides

demonstrating log2 T/NT ratios of $1, or #21 (More than 2 fold

up/down- regulated), were selected separately from each case.

Accession numbers were then uploaded to the DAVID Bioinfor-

matic resource (separately for each case) which identified KEGG

signaling pathways matched with greatest significance based on p-

values and Benjamini scores. KEGG pathways with Benjamini

scores #0.05 were highlighted in Yellow. Table S8, Case by case –

Here we selected all phosphopeptides displaying log2 T/NT ratios

$1 or #21, that also contain phosphorylation sites that are

known to either induce activation or inhibition of the

phosphorylated enzyme (based on PhosphoSitePlus database).

This was done for each case, on a case by case basis. T/NT is the

average log2 ratio of phosphopeptide in tumor versus background

tissue observed across all three arms of the workflow (IMAC,

TiO2, Non-enrich). We also indicate whether the enzyme is a drug

target based on the Drug Bank database.

(DOCX)
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