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Abstract

Advances in data gathering have led to the creation of very large collections across

different fields like industrial site sensor measurements or the account statuses of

a financial institution’s clients. The ability to learn classification rules, rules that

associate specific attribute values with a specific class label, from this data is

important and useful in a range of applications.

While many methods to facilitate this task have been proposed, existing work has

focused on categorical datasets and very few solutions that can derive classification

rules of associated continuous ranges (numerical intervals) have been developed.

Furthermore, these solutions have solely relied in classification performance as

a means of evaluation and therefore focus on the mining of mutually exclusive

classification rules and the correct prediction of the most dominant class values.

As a result existing solutions demonstrate only limited utility when applied for

data characterization tasks.

This thesis proposes a method that derives range-based classification rules from

numerical data inspired by classification association rule mining. The presented

method searches for associated numerical ranges that have a class value as their

consequent and meet a set of user defined criteria. A new interestingness mea-

sure is proposed for evaluating the density of range-based rules and four heuristic

based approaches are presented for targeting different sets of rules. Extensive

experiments demonstrate the effectiveness of the new algorithm for classification

tasks when compared to existing solutions and its utility as a solution for data

characterization.
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Chapter 1

Introduction

Recent advances in data generation and collection have led to the production

of massive data sets in commercial as well as scientific areas. Examples of such

data collections vary from data warehouses storing business information, biological

databases storing increasing quantities of DNA information for all known organ-

isms and the use of telescopes to collect high-resolution images of space [10, 57].

The speed at which data is gathered has far exceeded the rate at which it is being

analysed.

Data mining is a field that grew for the purpose of using the information contained

in these data collections and out of the limitations of existing techniques to handle

the ever growing size as well as the evolving types of data. Data Mining, often

referred to as Knowledge Discovery in Databases (KDD), refers to the nontriv-

ial extraction of implicit, previously unknown and potentially useful information

from data in databases. While data mining and knowledge discovery in databases

(or KDD) are frequently treated as synonyms, data mining is actually part of the

knowledge discovery process. Business applications range from predictive mod-

els for management decision making, to pattern extraction for customer services

personalisation as well as optimisation of profit margins.

Since the goal was to meet the new challenges, data mining methodologies are

strongly connected, and often build upon existing areas of data analysis. Just

like with any rapid growing research field, data mining methods have evolved as

different research challenges and applications, stemming from different areas, have

emerged. A significant portion of research work has actually focused on defining

the field and/or its relationship to existing fields [19, 36, 47, 53, 69, 93].
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Chapter 1. Introduction 2

1.1 Classification Rule Mining

The problem of discovering knowledge in data is complex to define. The three

main areas of data mining tasks consist of classification, association analysis and

clustering [36, 52, 106]. Classification is the task of constructing a model from

data for a target variable, referred to as the class label. Association analysis is

the discovery of patterns of strongly associated features in the given data whereas

clustering seeks to find groups of closely related data values so that data that are

clustered together are more similar than with the remaining data.

In certain cases, however, the desired result of the data mining process may not be

as discrete as described and the designed solution is a combination of more than

one of the above tasks. An example of this is the area that this thesis is focused

on, associative classification rule mining [74], where the goal is mining associations

of data variables that are also associated with a specific class label. The following

examples show the difference between a typical classification algorithm like Naive

Bayes [61] in Figure 1.1 and an association rule mining algorithm like RIPPER [22]

when used to mine associations only for a specific target variable in Figure 1.2. The

data used are that of the well known iris dataset which is described in Table 1.1.

Attribute sepal length sepal width petal length petal width class

Type numeric numeric numeric numeric categorical

Table 1.1: Description of the iris dataset. The possible class values are 〈iris −
setosa, iris− versicolor, iris− virginica〉.

Note in Figure 1.2 that the RIPPER algorithm generates a complete model and

not independent rules. In order for each rule to be a complete classification rule

its predicate needs to include the negation of any preceding rules in the model.

A typical classification solution, however as in Figure 1.1, presents its results in a

single model.

2



Chapter 1. Introduction 3

Figure 1.1: Classification model built by Naive Bayes for the iris dataset.

Figure 1.2: Classification rules model built by RIPPER for the iris dataset.

3



Chapter 1. Introduction 4

1.1.1 Mining of Continuous Data Ranges

Another important distinction between data mining tasks is based on the type of

data mined. The type of each attribute is indicative of its underlying properties

and therefore an important aspect of a data mining method is the type of data

it is designed to mine. The iris data used in the example consists of numerical,

more specifically continuous, data attributes. In real world applications this is

expected to be the case in the majority of tasks since real world data collections

often contain real numbers. However existing work in the area of classification rule

mining has focused primarily on mining data of a categorical nature. Applying

these solutions on continuous values requires discretization of the given data.

For example, a possible discretization of the petal length attribute of the iris

dataset would transform the continuous attribute into a categorical one with three

possible values 〈(−∞, 2.45], (2.45, 4.75], (4.75,+∞)〉 so that a method designed

for a categorical attribute can be applied. These solutions may be applicable on

continuous data that have been transformed to categorical but determining a good

way of transforming real values to categorical ones constitutes another research

problem in itself.

Not all existing solutions require continuous data to be discretized. Algorithms

like RIPPER, in the given example, choose the best value at which to split a con-

tinuous attribute so that one of the resulting ranges maximizes a target measure.

In some cases a rule may actually contain a range of continuous values like in Fig-

ure 1.2 the rule (petallength ≥ 3.3) and (petalwidth ≤ 1.6) and (petallength ≤
4.9)⇒ class = Iris-versicolor includes the range petallength ∈ [3.3, 4.9] but this

is the result of two binary splits that first selected the petal-length values that

were ≥ 3.3 and amongst the values that met the requirements (petallength ≥
3.3) and (petalwidth ≤ 1.6) another binary split was performed at petal length

4.9. Furthermore, any relation of the form attribute ≤ v may be interpreted as

a range attribute ∈ (−∞, v] where −∞ may also be replaced with the vmin of

attribute. Regardless of representation, however these ranges are the result of

binary splits. This thesis presents a solution that for all continuous attributes

attempts to mine multiple continuous ranges directly from the real(R) values of

an attribute.

4



Chapter 1. Introduction 5

1.2 Research Challenges

The data mining area has been developed in order to address limitations of tra-

ditional data analysis. However, the fast evolution of modern data collections

continues to pose a plethora of important research challenges in the development

of data mining solutions. This section presents an overview of these challenges

and discusses how they relate to the solution presented in this thesis.

• Scalability: Advances in data generation and collection have led to datasets

of a very large size becoming more and more common. Therefore, modern

data mining solutions need to be scalable in order to handle these datasets.

The development of scalable algorithms may require the implementation of

novel, efficient data structures, an efficient reduction of the problem space via

sampling techniques or the development of a solution that may be executed

in parallel threads. The area of parallel executed solutions is evolving fast

and is expected to address many of the limitations of current data mining

solutions [26, 62]. Typically, scalability refers to the number of records(rows)

in a dataset but modern collections may include thousands of attributes for

each record, presenting researchers with the added challenge of high dimen-

sional data for algorithms whose complexity increases with the number of

attributes.

• Heterogeneous and Complex Data: Traditional data collections con-

sist of homogeneous data therefore simplifying the analysis process. Due to

the increasing number of areas where data mining is applied, however, new

cases arise where heterogeneous attributes need to be mined. More impor-

tantly, the inclusion of new types of complex data objects, in the forms of

text data, genomes and even structured text(code) in the case of XML doc-

uments requires the development of data mining solutions that incorporate

the relations between the mined data values.

• Distributed data sources: In some cases the data are not located in a

single central storage and possibly owned by many different legal entities.

Therefore, mining the data as a single dataset incorporating all the infor-

mation from individual sources poses an important challenge. Furthermore,

the issue of data privacy is another challenge when the aforementioned data

sources include sensitive information that may be used for the purpose of

mining the data but cannot, under any circumstance, be related to individ-

5



Chapter 1. Introduction 6

uals in the resulting model.

• Non traditional analysis: The traditional statistical approach focuses

mainly on the testing of hypotheses, rather than generating them from the

data as modern data mining tasks attempt to achieve. In order to effectively

discover knowledge in the data a data mining method needs to generate and

test a large number of hypotheses/models. The main areas of data mining, as

mentioned in Section 1.1, cover the traditional research problems but modern

analysis has diversified itself due to the incorporation of non traditional data

types as well as non traditional expectations from the results. Section 1.2.1

describes such a task that this thesis attempts to address.

1.2.1 The Data Characterization Challenge

In the example of Section 1.1 the expectation is the ability to effectively classify

any future iris specimen into one of the given classes. However, as explained

the nature of data mining has evolved and there are tasks that go beyond the

scope of predictive modelling. Large historical data collections cannot always be

modelled with sufficient accuracy, or due to the volume of the data it is possible

that constructing a complete model of the data is not realistic. In these cases the

desired data mining output is a set of hypotheses about specific data areas that

can be tested and verified by domain experts in order to gain knowledge on the

process.

Improving a process relies on a good understanding of it and the data used to

monitor it. Causality is the relation between an event and a phenomenon, referred

to as the effect [34], and in order to effectively comprehend a phenomenon and

either replicate or avoid it is necessary to comprehend its underlying mechanisms.

Consider the example of a high performance race car. Testing as well as racing

provides a team of engineers with a large volume of data regarding the car’s

performance. Due to time limitations as well as the lack of established knowledge

for the novel, cutting edge technologies employed it is not realistic to develop a

complete model of the car’s behavior and consequently the optimal performance.

The only realistic option is to identify positive scenarios, as data areas, and study

them in order to gain knowledge on the conditions that can potentially improve

overall performance. Alternatively, improvement may be achieved by identifying

negative, or undesirable scenarios and avoiding the conditions that constitute the

6



Chapter 1. Introduction 7

underlying causes. Note how we refer to improved, not optimal, performance

as there is no such guarantee in this case. Figure 1.3 graphically represents the

extraction of such data areas.

Figure 1.3: Mining data areas of interest.

In the given figure the data samples have been classified in three different classes

〈+,−, ∗〉 for 〈positive, negative, average〉 performance respectively. In the case of

mining continuous attributes these areas are represented as classification rules of

associated numerical ranges.

The distinctive difference in data characterization is that the value of the result

is not based on its effectiveness of predicting new, previously unseen, data but

improving the understanding of the existing dataset. In the classification context

the user asks for a data model that can be applied to a new, unlabeled dataset, in

characterization the desired output needs to be applicable to the training data and

provide information about the original dataset. This is because in characterization

we refer to users that aim to improve an underlying process and not only predict

future output.

1.3 Research Contributions

Mining a single optimal numerical range with regards to an interest measure can

be mapped to the max-sum problem. For a single attribute a solution using dy-

namic programming can be computed in O(N) [9]. When the desired optimal

range is over two numerical attributes then the problem is NP-hard [41, 42]. The

problem of mining multiple continuous ranges that optimize a given criterion can

7



Chapter 1. Introduction 8

be mapped to the subset sum problem that is NP-complete [23]. This thesis’ con-

tribution is a scalable, effective solution that employs a heuristics-based approach.

The presented methodology addresses datasets of continuous attributes and mines

continuous ranges without any form of pre-processing of the data.

The primary contribution, however, of the developed algorithm is to the non

traditional analysis challenge, focusing on addressing the data characterization

problem. The solution described in the following chapters mines multiple rules

of associated numerical ranges from continuous attributes that can be used in a

data characterization scenario. Due to the nature of the problem the algorithm

developed is using user-set thresholds, for the interest measures employed, as

input. The presented solution is flexible, allowing for users to tune the input

thresholds to different values that describe the targeted knowledge.

Extensive experiments demonstrate the effectiveness of the presented solution as

a classification algorithm as well as in the area of data characterization. Further-

more, the distinctive differences in evaluating prediction accuracy and characteri-

zation effectiveness are described and employed in a comparison that demonstrates

the advantages of the developed solution.

1.4 Thesis Organization

The remaining chapters of this thesis are structured as follows.Chapter 2 reviews

work in the related associative classification literature. Research on mining contin-

uous datasets as well as related rule association methods are analysed. Further-

more, an overview of existing interestingness measures for mining classification

rules is presented as well as a review of existing solutions that have or could

potentially address the data characterization problem.

Chapter 3 introduces important definitions and key concepts for the presented

methodology. Furthermore, the concept of bounded ranges is presented as a

method for reducing search space. The general algorithm is described for identi-

fying ranges from the continuous attributes and incrementally building them into

range-based rule candidates. Chapter 3 includes the concept and formal definition

of a novel interestingness measure designed specifically for continuous numerical

ranges. Also, the usage of a custom data structure for storing the candidates is

given as well as a presentation of the concept of splitting candidates into range-

based rules.

8



Chapter 1. Introduction 9

Following the general description, Chapter 4 presents four(4) different criteria for

splitting rule candidate rules into the resulting range-based classification rules.

The significance and exact methodology for each heuristic are explained along

with the strengths and weaknesses of each method.

Chapter 5 presents an evaluation of the developed solution compared to existing

algorithms. A comparative study is given for how the newly introduced interest

measure affects classification outcome on a series of datasets. The experimental

results for predicting unlabeled data using the described methods are provided

and compared against established rule mining solutions implemented in Weka

[51]. Chapter 5 also includes a series of experiments based on key aspects of the

characterization problem that demonstrate how the presented solution addresses

these tasks.

Finally, Chapter 6 concludes the thesis and discusses future directions for extend-

ing the presented work.

9



Chapter 2

Background Work

In this chapter, we present an overview of the literature on range-based classifica-

tion rule mining and discuss how existing techniques on related problems compare

to ours.

2.1 Range-Based Classification Rule Mining: Con-

cepts and Algorithms

In order to classify related work in the area of associative classification we use the

three main aspects of each approach as described below.

• The nature of the input data.

• The approach for mining the rules.

• The measures used for evaluating the rules.

The nature of the input data refers to the different types of datasets and their char-

acteristics. Two different types of data are categorical and numerical/continuous

whereas an example of data with special characteristics are time series data due to

the sequential relationship between data values. This chapter discusses methods

designed to handle different data types but focuses primarily on methods capable

of mining continuous data. The mining approach refers to the method used for

generating the rules whereas the evaluation measures concern the different criteria

employed in each case for determining each rule’s importance which we refer to as

interestingness.

10



Chapter 2. Background Work 11

The problem of deriving range-based classification rules can be viewed as a problem

of supervised discretization which we analyze in Section 2.2. In Section 2.3 we

present existing work on mining range-based association rules whereas in section

2.4 we examine work in the area of associative classification which covers methods

that incorporate characteristics of both association rule mining and classification.

A more detailed overview of the research space of associative classification can be

seen in Figure 2.1.

Figure 2.1: The research space of association mining.

Other approaches related to association mining that do not address the associative

classification problem, and are therefore not so closely related to our work are

reviewed in Section 2.6.

2.2 Discretization

One way to address the problem of mining continuous data is by discretizing the

continuous attributes. Discretization is the process of transforming a continuous

attribute into a categorical one [67, 77]. A special form of discretization is bina-

rization when continuous and categorical attributes are transformed into one or

more binary attributes.

Consider the database in Table 2.1 which represents a bank’s clients, their ac-

counts’ balance and other useful information. The table attributes Checking Ac-

count and Savings Account represent continuous features and could all be dis-

cretized. In Table 2.2 you can see the database after the attributes Checking

Account and Savings Account have been discretized.

In the aforementioned example a simple manual method of discretization is shown

in order to demonstrate the differences with Table 2.1. The hypothesis, in this case,

is that the organization holding the data chooses to group clients in pre-specified

ranges because, for example, it is believed that all clients with a checking account

11
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ClientID Checking Account Savings Account Loan

C1 2003.15 2000.0 long term
C2 0.0 100.3 short term
C3 56087.5 125000.0 -
C4 127.3 0.45 long term
C5 −345.2 5250.5 -
C6 11023.04 0.0 short term
C7 19873.6 22467.4 long term
C8 4187.1 0.0 -
C9 4850.36 445.2 short term
C10 8220.4 3250.12 long term

Table 2.1: Bank clients database.

ClientID Checking Account Savings Account Loan

C1 (2000, 5000] (1000, 5000] long term
C2 [0, 1000] [0, 1000] short term
C3 (50000, 100000] (100000, 250000] -
C4 [0, 1000] [0, 1000] long term
C5 [−1000, 0) (5000, 20000] -
C6 (5000, 20000] [0, 1000] short term
C7 (5000, 20000] (20000, 50000] long term
C8 (2000, 5000] [0, 1000] -
C9 (2000, 5000] [0, 1000] short term
C10 (5000, 20000] (1000, 5000] long term

Table 2.2: Bank clients database with account balance discretized.

balance in the range (50000, 100000] have the same characteristics. Curved brack-

ets are used when the corresponding value is not included in the range whereas

squared brackets are used for values that are included in the range. For example,

a value of 50000 is not included in the range (50000, 100000] but 100000 is. In

certain cases, discretization is a potential inefficient bottleneck, since the number

of possible discretizations is exponential to the number of interval threshold can-

didates within the data domain [32]. There have been attempts to address the

difficulty of choosing an appropriate discretization method given a specific data

set [17, 29].

Data can be supervised or unsupervised depending on whether it contains class

information. Consequently, supervised discretization uses class information while

unsupervised discretization does not. Unsupervised discretization can be seen in

early methods that discretize data in bins of either equal-width or equal-frequency.

This approach does not produce good results in cases where the distribution of

12
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the continuous attribute is not uniform and in the presence of outliers that af-

fect the resulting ranges [16]. Supervised discretization methods were introduced

where a class attribute is present to find the proper intervals caused by cut-points.

Different methods use the class information for finding meaningful intervals in con-

tinuous attributes. Supervised and unsupervised discretization have their different

uses although the application of supervised discretization requires the presence of

a class attribute. Furthermore, the application of an unsupervised discretization

method requires a separate step of mining rules from the discretized data which is

why we focus, primarily, on supervised classification. Discretization methods can

also be classified based on whether they employ a top-down approach or bottom-

up. Top-down methods start with the full range of a continuous attribute and

attempt to gradually split it in smaller ones as they progress. Bottom-up meth-

ods start with single values and attempt to gradually build larger numerical ranges

by gradually merging them. Because of this we also refer to top-down methods

as split-based whereas we refer to bottom-up methods as merge-based. A repre-

sentation of the classification space for a discretization method can be seen in

2.2.

Figure 2.2: The research space of discretization.

2.2.1 Unsupervised Discretization

Binning is the method of discretizing continuous attributes into a specified num-

ber of bins of equal width or equal frequency. Regardless of which method is

followed, the number of bins k needs to be given as input. Each bin represents a

distinct discrete value, a numerical range. In equal-width, the continuous range of

a feature is divided into intervals of equal-width, each interval constitutes a bin.

13
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In equal-frequency, the same range is divided into intervals with an equal number

of values placed in each bin.

One of the major advantages of either method is their simplicity but their effec-

tiveness relies heavily on the selection of an appropriate k value. For example,

when using equal-frequency binning, many occurrences of the same continuous

value could cause the same value to be assigned into different bins. A solution

would be a post-processing step that merges bins that contain the same value but

that also disturbs the equal-frequency property. Another problem is data that

contain outliers with extreme values that require the removal of these values prior

to discretization. In most cases, equal-width binning and equal-frequency binning

will not result in the same discretization [77].

2.2.2 Supervised Discretization

Unsupervised binning is meant to be applied on data sets with no class information

available. However, there are supervised binning methods that address this issue.

1R [56] is a supervised discretization method that uses binning to divide a range

of continuous values into a number of disjoint intervals and then uses the class

labels to adjust the boundaries of each bin. The width of each bin is originally the

same and must be specified before execution. Then each bin is assigned a class

label based on which class label is associated with the majority of values in the

given bin, let that class label be Cm. Finally, the boundaries of each adjacent bin

are checked and if there are any values that are also associated with Cm they are

merged with the given bin. 1R is comparatively simple to unsupervised binning

but does not require the number of bins to be pre-specified, it does however, require

the definition of an initial width for each bin. Another way has been developed

for improving equal-frequency by incorporating class information when merging

adjacent bins, by using maximum marginal entropy [29]. In spite of their ability

to include the additional information neither approach has been shown to have

better results than unsupervised binning when used for the mining of classification

rules [77].

A statistical measure often employed in supervised discretization is chi-square

χ2 by using the χ2 − test between an attribute and the classifier. Methods that

use this measure try to improve discretization accuracy by splitting intervals that

do not meet this significance level and merging adjacent intervals of similar class

frequency [65]. There is a top-down approach, ChiSplit, based on χ2 that searches

14
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for the best split of an interval, by maximizing the chi-square criterion applied to

the two sub-intervals adjacent to the splitting point and splits the interval if both

sub-intervals differ statistically. Contrary to ChiSplit, ChiMerge [65] performs a

local search and merges two intervals that are statistically similar. Other ap-

proaches continue to merge intervals while the resulting interval is consistent [78]

or have attempted to apply the same criterion on multiple attributes concurrently

[110]. Instead of locally optimizing χ2 other approaches apply the χ2− test on the

entire domain of the continuous attributes and continuously merge intervals while

the confidence level decreases [11].

Another measure used to evaluate ranges is entropy. An entropy-based method

detects discretization ranges based on the classifier’s entropy.Class information

entropy is a measure of purity and it measures the amount of information which

would be needed to specify to which class an instance belongs. It is a top-down

method that recursively splits an attribute in ranges while a stopping criterion is

satisfied (e.g. a total number of intervals). Recursive splits result in smaller ranges,

with a smaller entropy so the stopping criterion is usually defined to guarantee a

minimum number of supported instances. An approach proposed by Fayyad et al.

examines the class entropy of the two ranges that would result by splitting at each

midpoint between two values and selects the split point which minimizes entropy

[35]. When the size of the resulting ranges does not meet the minimum description

length (MDL) the process stops. It has been shown that optimal cut points must lie

between tuples of different class values [35, 54], a property that we also use in our

approach. Other approaches attempt to maximize mutual dependence between the

ranges and the class label and can detect the best number of intervals to be used for

the discretization [20]. In [50] the authors merge the individual continuous values

in ranges of maximum goodness while trying to maintain the highest average-

goodness. This results in an efficient discretization but does not guarantee any of

the desired classification properties for the resulting ranges. Finally, CAIM [68]

uses class-attribute interdependence in order to heuristically minimize the number

of discretized ranges. The authors demonstrate that this approach can result in

a very small number of intervals, however unlike discretization, in range-based

classification a small number of ranges is not desired when there are class values

of low support.

Unlike discretization algorithms that are developed for the pre-processing step of

a data mining algorithm there are methods that are designed to alter the nu-

merical intervals based on the performance of an induction algorithm [15, 108].
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In some cases algorithms are developed to adapt the ranges so as to minimize

false-positives and false-negatives on a training data set [18, 81]. One important

limitation, however, is the need for a predetermined number of intervals. In ad-

dition to techniques that consider error-rate minimization there are methods that

integrate a cost function to adapt the cost of each prediction error to specific prob-

lems [60]. It has been shown that in order to determine the optimal discretization

that maximizes class information one only has to check a small set of candidate

data points, referred to as alternation points. However, failure to check one alter-

nation point may lead to suboptimal ranges [31]. This idea, has been extended to

develop very efficient top-down discretization solutions given an evaluation func-

tion [32] by removing any potential split-points that are proven suboptimal, from

the algorithms search space.

More recently, research in discretization has focused on adaptive discretization

approaches. Adaptive Discretization Intervals (ADI) is a bottom-up approach

that can use several discretization algorithms at the same time which are evalu-

ated to select the best one for the given problem and a given data set [6]. ADI

has also been extended to use heuristic non-uniform discretization methods within

the context of a genetic algorithm during the evolution process when a different

discretization approach can be selected for each rule and attribute [7]. The con-

cept of adaptive classification during the evolution process of a genetic algorithm

has been researched extensively [27, 46]. A comparison of the most well-known

approaches can be found in [5].

2.3 Range-based Associations

This section examines existing solutions that address the problem of mining range-

based rules from continuous data.

One of the first approaches at mining association rules from a data set that in-

cludes both continuous and categorical attributes was in [102]. The aforemen-

tioned solution mines a set of association rules but requires an equi-depth parti-

tioning(discretization) of the continuous attributes. Therefore, the desired ranges

can only result from merging these partitions and the original problem is mapped

to a boolean association rules problem. Table 2.3 demonstrates an example of

equi-depth partitioning of Table 2.1, note that the number of bins used for the

discretization do not have to be the same for every attribute.
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ClientID Checking Account Savings Account Loan

C1 [−1000, 4708.75] [0, 12500] long term
C2 [−1000, 4708.75] [0, 12500] short term
C3 (50378.75, 56087.5] (112500, 125000] -
C4 [−1000, 4708.75] [0, 12500] long term
C5 [−1000, 4708.75] [0, 12500] -
C6 (10417.5, 16126.25] [0, 12500] short term
C7 (16126.25, 21835] (12500, 25000] long term
C8 [−1000, 4708.75] [0, 12500] -
C9 (4708.75, 10417.5] [0, 12500] short term
C10 (4708.75, 10417.5] [0, 12500] long term

Table 2.3: An equi-depth discretization of Checking Account balance and
Savings Account balance into 10 bins.

Given Table 2.3 and two associations CheckingAc ∈ [−1000, 4708.75]∧SavingsAc ∈
[0, 12500] and CheckingAc ∈ (4708.75, 10417.5] ∧ SavingsAc ∈ [0, 12500] we can

merge them into one rule that the authors refer to as super-rule CheckingAc ∈
[−1000, 10417.5]∧SavingsAc ∈ [0, 12500]. As you can see from this example, this

approach results in association rule mining where the produced ranges depend

on the discretization criteria, therefore, experimentation is required for producing

appropriate bins that will give good results introducing an important limitation

to this methodology. The approach of discretizing continuous data into ranges

as a preprocessing step is a very popular one. In [64] a method is presented for

mapping pairs of attributes to a graph based on their mutual information (MI)

score. This method is based on the assumption that all interesting associations

must have a high MI score and therefore must belong in the same clique in the

graph. In some cases, however, researchers have presented the problem of mining

associations from data that is already stored in the form of numerical ranges [30]

which is essentially directly comparable to the aforementioned methods after the

discretization phase.

Different approaches have been described for directly generating numerical ranges

from the data. Given a numerical attribute and a categorical class label in [39]

the authors present an approach to solving two different problems. Mining the

range of the numerical attribute with the maximum support, given a confidence

threshold and mining the corresponding range with the maximum confidence given

a support threshold. Unlike previously described solutions, this approach includes

user defined thresholds for support and confidence, although for separate prob-

lems. Furthermore, it is only applicable to one attribute, or data sets of more
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attributes that only contain a single continuous attribute. An extension of this

was described in [41, 42] where the solutions presented mine optimal ranges from

two continuous attributes with a boolean attribute as the consequent. By using

dynamic programming the aforementioned solution is able to mine the numerical

range of maximum gain, an interest measure described in more detail in 2.5.1, but

the result is a single region of optimal gain. Therefore, the aforementioned ap-

proach does not address the problem of mining all range-based classification rules

even in the problem space of two continuous attributes. The difference between

the desired output in a two-dimensional problem space is represented in Figure

2.3.

(a) Single region of optimal gain. (b) Multiple admissible ranges.

Figure 2.3: Single optimal region compared to multiple admissible regions.

The problem of mining a single optimal gain region has been extended to mining an

approximation of the k optimal gain regions, as the problem of mining the k regions

of optimal gain is NP-hard, from a data set that contains both continuous and

categorical attributes [14]. The proposed method still relied in a pre-processing

step that places contiguous values with the same class label in the same bucket

and was still limited to a total of two attributes excluding the class label. In [72]

the authors also limit the problem space to two dimensions but take a different

approach, they develop a method for mining the most dense ranges, that is the

ranges with the most data points within the range, from the data. The concept of

data density is, actually, of particular interest when dealing with continuous data

ranges as we explain in Chapter 3. However, there is no evidence to support that

density by itself is a sufficient evaluation measure.

Other approaches have considered mining range-based rules as an optimization

problem and proposed solutions using a genetic algorithm. The mined rules are

associations between numerical ranges of attributes and not classification rules.

In [83] a solution is presented that uses an evolutionary algorithm based on a

fitness function that improves the generated ranges between generations. This

solution is able to mine overlapping ranges of high support but offers poor results
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in term of confidence. Quantminer [97] is a genetic-based algorithm that delivers

better results in terms of confidence and a reduced number of rules. The proposed

solution is efficient but offers no guarantees that its solutions will meet certain

thresholds.

2.4 Associative Classification

Classification rule mining and association rule mining are two popular data mining

tasks with distinct differences. Classification rule mining aims to discover a small

set of rules in the data to form an accurate classifier [92] whereas association rule

mining aims to find all the rules that satisfy some predetermined constraints [4].

For association rule mining, the target of mining is not predetermined, while for

classification rule mining the rule target can only be a specific attribute, the class.

Both classification rule mining and association rule mining are useful to practical

applications, therefore integrating the two tasks can be of great benefit. The

integration is achieved by focusing on a special subset of association rules whose

consequent is restricted to the class attribute. We refer to these rules as class

association rules (CARs) [74]. There are researchers, however, that have expressed

the opinion that due to the fact that associative classification techniques are often

evaluated based on prediction effectiveness that it is, essentially, another form

of classification [37]. However, even though prediction is often used to evaluate

associative classification methods it is not the only method. Moreover, we view

associative classification as a powerful method that is capable of addressing more

problems than just classification, especially when applied in real world problems.

An approach for mining associative classification rules from categorical data is

presented in [107] that seems to perform well compared to existing solutions.

Early approaches have also adopted a simple technique which relied on a two-step

process of mining associations from the data and then ranking the resulting rules

based on a selected evaluation measure. The top ranking rules were considered to

be the resulting associative classification rules as demonstrated in Figure 2.4.

Figure 2.4: Associative classification mining by filtering of association rules.
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This category of methods relies heavily on the selected evaluation measure and

produces variable results depending on the data set [63, 86]. In some cases heuris-

tics are applied to actively reduce the number of generated rules making the mining

algorithm more efficient [115]. Alternatively, other researchers have addressed the

problem of associative classification as a problem of modeling the data using R-

Trees based on the different class labels and then trimming the resulting models

in order to avoid overfitting and reduce the number of rules [71]. These solutions

prioritise classification performance and aim to increase data coverage with the

fewest rules possible. Besides being applied on categorical data only, these algo-

rithms avoid the mining of less general but more specific rules that may represent

important data characteristics as discussed in Section 1.2.1.

One popular method that can be employed for mining range based classification

rules is the C4.5 algorithm [92]. This is a partitioning based technique that only

looks for the best halving of the domain with regards to a specific class. It has a

quadratic time complexity for non numeric data that increases by a logarithmic

factor when numerical attributes are processed. C4.5 is inefficient when dealing

with strongly correlated numerical attributes. In order to improve this an approach

has been proposed that given a numeric attribute and a boolean class attribute

it can produce a more efficient branching for the given attribute [40]. Unlike

the original C4.5 algorithm , in the latter solution the attribute values are pre-

discretized in a user set number of ranges and the discrete ranges are merged in

order to produce an optimal branching that minimizes total entropy. Although

the described approach has proven to improve the size of the tree and can be

extended to work with class labels of more than two discrete values (non boolean),

its outcome relies on the user selecting an appropriate number of buckets for the

discretization whereas its classification accuracy is not evaluated. Furthermore,

the direct output of these algorithms is a Decision Tree (DT) that requires further

processing in order to transform the results into range-based classification rules.

Even with the additional post-processing, however, there is no guarantee that the

resulting rules meet any specific requirements (e.g. user specified thresholds).

2.5 Rule Evaluation

In this section we present measures that have been used by the research commu-

nity for the evaluation of classification rules, which we refer to as interestingness
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measures. We include measures that have originally been developed for associa-

tion rule mining but can also be used to evaluate classification rules. We focus on

interestingness measures that are applicable in the evaluation of range-based rules

and split them in two main categories: objective measures which we describe in

Section 2.5.1 and subjective measures which we describe in Section 2.5.2.

2.5.1 Objective Measures

An objective measure is based only on the raw data without considering any

existing user knowledge or requiring application knowledge. Therefore, objective

measures are based on probability theory, statistics, or information theory. In this

section we examine several objective measures for an association rule X ⇒ Y ,

where X is the rule antecedent and Y the rule consequent. We denote the number

of data records covered by the rule as cardinality(XY ) whereas N denotes the

total number of data records/tuples.

Support and confidence are the most popularly accepted interestingness measures

used for discovering relevant association rules and are also commonly used for

evaluating associative classifiers. Although, in many cases, they are appropriate

measures for building a strong model they also have several limitations that make

the use of alternative interestingness measures necessary. Researchers have exam-

ined the utility of retaining support and confidence as evaluation measures while

adding new ones [43].

Support(X ⇒ Y ) = P (XY )

Confidence(X ⇒ Y ) = P (X|Y )

Support is used to evaluate the generality of a rule, how many data records it

covers whereas confidence is used to evaluate a rule’s reliability. In literature,

coverage has also been used to evaluate rule generality whereas lift and conviction

[13] have been proposed as alternatives to confidence for evaluating rule reliability.
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Coverage(X ⇒ Y ) = P (X)

Conviction(X ⇒ Y ) =
P (X)P (¬Y )

P (X¬Y )

Lift(X ⇒ Y ) = P (X|Y )P (Y )

Generality and reliability are both desired properties for a rule but using two

different measures to evaluate them often leads to contradiction. As a result re-

searchers have proposed measures that evaluate both resulting in a single ranking.

Such a measure is the IS measure [85] which is also referred to as cosine measure

since it represents the cosine angle between X and Y . In [90] the authors propose

leverage that measures the difference of X and Y appearing together in the data

set compared to what would be expected if X and Y were statistically depen-

dent. Other measures bases around these criteria include Jaccard [105], Klosgen’s

measure [66] and two-way support [114].

Jaccard(X ⇒ Y ) =
P (XY )

P (X) + P (Y )− P (XY )

Klosgen(X ⇒ Y ) =
√
P (XY )× (P (Y |X)− P (Y ))

Leverage(X ⇒ Y ) = P (Y |X)− P (X)P (Y )

Two−Way Support(X ⇒ Y ) = P (XY ) log2

P (XY )

P (X)P (Y )

More specifically, in the area of association mining of transactional data researchers

have argued for the use of traditional statistical measures that mine correlation

rules instead of associations [75, 101]. Other researchers have attempted to mine

strong correlations by proposing new measures, like collective strength which can

indicate positive, as well as negative correlation [2, 3]. One drawback of collec-

tive strength is that for items of low probability the expected values are primarily

influenced from transactions that do not contain any items in the evaluated item-

set/rule and gives values close to one(1) which falsely indicate low correlation. A

different approach, as demonstrated in [98], is to calculate the predictive accuracy

of a rule while mining the data by using a Bayesian frequency correction based on

the training data distribution. The authors propose the elimination of a minimum

threshold for support and instead only require the user to specify the n preferred
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number of rules to be returned.

Collective Strength(X ⇒ Y ) =
P (XY ) + P (¬Y |¬X)

P (X)P (Y ) + P (¬X)P (¬Y )
∗

1− P (X)P (Y )− P (¬X)P (¬Y )

1− P (XY ) + P (¬Y |¬X)

An interestingness measure that was proposed specifically for evaluating range-

based classification rules is gain [41, 42], not to be confused with information

gain. Gain is used to evaluate the benefit from including additional data records

to a rule after the given confidence threshold θ has been met.

Gain = cardinality(XY )− θ ∗ cardinality(X)

Some researchers have proposed studying the relationship between support and

confidence by defining a partially ordered relation based on them [8, 113]. Based on

that relation any rule r for which we cannot find another rule r′ with support(r′) ≥
support(r) and confidence(r′) ≥ confidence(r) is an optimal rule [8]. This prop-

erty, however, can only be applied to an interestingness measure that is both

monotone in support and confidence and results in the single best rule according

to that measure.

In the area of classification rule mining the role of interestingness measures is

to choose the attribute-value pairs that should be included, a process defined as

feature selection [84]. The concepts of generality and reliability are also applicable

in classification rule mining. A classification rule should be as accurate as possible

on the training data and as general as possible so as to avoid overfitting the data.

Different measures have been proposed to optimize both these criteria. Precision

[89] is the equivalent of confidence whereas popular measures for feature selection

include entropy [91], gini [12] and Laplace [21].

Gini(X ⇒ Y ) = P (X)(P (Y |X)2 + P (¬Y |X)2) + P (¬X)(P (Y |¬X)2+

P (¬Y |¬X)2)− P (Y )2 − P (¬Y )2

Laplace(X ⇒ Y ) =
cardinality(XY ) + 1

cardinality(X) + 2
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In [44] the authors have shown that the gini and entropy measures are equivalent

to precision since they produce equivalent (or reverse) rankings for any set of rules.

All the objective interestingness measures proposed for association rules can also

be applied directly to classification rule evaluation, since they only involve the

probabilities of the antecedent of a rule, the consequent of a rule, or both, and

they represent the generality, correlation, and reliability between the antecedent

and consequent. However, when these measures assess the interestingness of the

mined rules with respect to the training data set and do not guarantee equivalent

results when used for the classification of previously unseen data. Furthermore,

with the exception of gain, the aforementioned interestingness measures have all

been developed for the purpose of mining rules of categorical attributes and need

to be appropriately redefined for range-based rules when that is possible.

Due to the large number of different measures used in association mining, re-

searchers have also focused on methodology for selecting the appropriate interest-

ingness measures for a given research problem [87, 105]. Specifically in the area

of classification rules researchers have proved that there are measures that can

significantly reduce the number of resulting rules without reducing the model’s

accuracy but their comparative performance is dependent on the different data

sets and there cannot be a clear recommendation of a single measure [59]. Fi-

nally, researchers have also defined objective measures that evaluate rules based

on their format [28, 38]. These measures, however, are not applicable when mining

continuous attributes.

2.5.2 Subjective Measures

A subjective measure takes into account both the data and the user. The defini-

tion of a subjective measure is based on the user’s domain or background knowl-

edge about the data. Therefore, subjective interestingness measures obtained this

knowledge by interacting with the user during the data mining process or by ex-

plicitly representing the user’s knowledge or expectations. In the latter case, the

key issue is the representation of the user’s knowledge, which has been addressed

by various frameworks and procedures in the literature [73, 76, 95].

The purpose of subjective interestingness measures is to find unexpected or novel

rules in the data. This is either achieved by a formal representation of the user’s

existing knowledge and the measures are used to select which rules to present to
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the user [73, 76, 99, 100], through interaction with the user [95] or by applying

the formalized knowledge on the data and reducing the search space to only the

interesting rules [88]. Even though useful, subjective interestingness measures

depend heavily on the user’s knowledge representation and have no proven value

in the area of classification rule mining.

2.6 Other Related Methods

As described in 2.1 there are techniques that do not address the problem of range-

based classification rule mining, but closely related areas like that of association

rule mining of categorical data and therefore present many concepts and methods

that are of interest.

In [70] the authors present an alternative to association rule mining that mines only

a subset of rules called optimal rules with regards to an interestingness measure

that is interchangeable. An optimal rule r is a rule for which there is no other

rule in the resulting set that covers a superset of the tuples covered by r and is

of higher interest. Even though, this approach improves efficiency significantly

by reducing the number of generated associations, optimality is only defined with

regards to a single evaluation measure which, as we have seen in Section 2.5 is

not always the case. In our work we have modified this principle to apply to more

than one evaluation measures.

The use of continuous attributes and the problems they present has also been ex-

amined in a different context. Researchers have considered the use of continuous

attributes when actually mining categorical data in order to represent specific data

properties. One such example is the use of an additional continuous attribute to

represent the misclassification cost of each record or each different class. In [79]

the authors extend this concept to misclassification costs that are actually numer-

ical ranges. Another related area is probabilistic databases [103] where each record

is associated with a probability of occurrence that is, obviously, a continuous at-

tribute. In [109] the authors attempt to mine association rules from a transactional

data base of market basket data but by also evaluating the numerical ranges of

quantities purchased for each item.
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2.6.1 Performance Optimization Methods

In recent years, the improvement of existing algorithmic solutions through parallel

executions has generated great interest due to the significant progress in the related

field. Therefore, some of the most noticeable work that could have a major impact

on associative classification rule mining is in the area of performance improvements

through parallel execution. One such framework, shown to significantly speed up

data mining algorithms is NIMBLE [45], which is a java framework implemented

on top of the already established tool MapReduce.

2.7 The Data Characterization Problem

Some of the issues we are trying to address with our approach go beyond what

traditional associative classification rule mining deals with, that is either classifi-

cation accuracy and rule interestingness. In the process of studying the problem of

associative classification we have identified several key points regarding the desired

output:

• Readability: The resulting rule set should be easy to understand without re-

quiring knowledge of the underlying methodology that produced the results.

• Interpretability: People who are considered experts in the field that the data

set belongs to, should be able to recognize the value of the presented rule

and be able to evaluate them based on their experience, if necessary through

the use of their own process-based measures.

• Causality: The goal of knowledge extraction from a given data set is of

reduced value if the resulting rules cannot be traced back to a source that

created the pattern, therefore identifying the underlying reasons for the rule

to exist.

These issues have been identified by other researchers in the areas of association

and classification rule mining and constitute areas of interest that are not ad-

dressed by state-of-the-art classification systems that only aim to generate a func-

tion that maps any data point to a given label with high accuracy [112]. Without

denying the importance of highly efficient classifiers, a complete associative classi-

fication approach serves the purpose of knowledge discovery. The authors in [94]

have attempted to address the issue by defining properties and then incorporat-
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ing these properties in the reported results through a newly defined rule format.

Another concept that researchers have found is not being addressed by existing

solutions in the area of data mining is causality [111]. Some researchers have con-

sidered the problem of mining rules from ranked data records [96]. This method

relies on ranking the data tuples according to a given criterion and then proceeds

to mine characterization association rules that are more often present in the top

ranking tuples than in the bottom ones. In a class labeled data set the presence

of a ranking criterion is not necessary as the class labels themselves play the role

of the desired property. Furthermore, the aforementioned method does not deal

with numerical ranges but, nevertheless, presents an excellent argument for the

importance of generating meaningful rules where the investigation of causality is

possible.

The method presented in this thesis addresses the points of readability and in-

terpretability by mining rules that are presented in a clear, readable format that

only requires basic knowledge of the meaning of the data attributes and the cor-

responding values. Furthermore causality investigations are possible since the

mined rules are independent, making it possible for domain experts to select spe-

cific rules to use for their investigation in addition to the users being able to tune

the number and quality of mined rules by providing different minimum thresholds

as parameters. The aforementioned criteria, however, are not the equivalent of

interestingness measures as they are not expressed as measurable quantities. This

is because any measure presented would rely on domain specific knowledge.

2.8 Summary

This chapter presented techniques in the existing data mining work that are re-

lated to the area of mining range based classification rules. The literature surveyed

is examined based on whether real values of continuous attributes are mined di-

rectly, the form of the rules resulting from the mining method and finally the

evaluation measures employed in each method. Other work that relates to the

associative classification problem is also presented as well as literature on data

characterization tasks or a related problem.

Supervised discretization methods have been surveyed that result in a clustering

of the continuous data space but do not include the concept of a classifier and

subsequently do not result in the creation of rules from the data collection. The
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review of discretization is important since it is a necessary step for applying most

methods developed for associative classification that focus on categorical data.

Because of this, these methods rely on a good discretization of the dataset as a

preprocessing step and cannot mine ranges from the data directly.

Furthermore an overview of existing interest measures used in rule induction

along with a comparative analysis demonstrating that the most efficient measures

have focused on addressing the inadequacies of the traditional support/confidence

paradigm and evaluating the tradeoff between the two. Reviewing of the work on

interest measures reveals the lack of interest measures developed for evaluating

rules on continuous attributes and the identifying properties of real values in the

data.

Finally, a review is given of work on mining solutions that generate rules but

cannot be considered purely association or associative classification solutions. The

concepts of data characterization and causal discovery are presented.
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Chapter 3

Range-Based Classification Rule

Mining

A classification rule mining method is evaluated against specific criteria. The aim

is the mining of a set of rules from the data that can achieve a high classifica-

tion accuracy when predicting new datasets but can also be used to effectively

characterize a given dataset.

Consider the example in Table 3.1 where the problem in question is to use a

dataset of existing bank customers, their accounts’ balance, the outstanding debt

in their loans and whether or not they have defaulted in their loan payments to

mine range-based classification rules like

Check.Acc. ∈ [19873.6, 56087.5] ∧ Sav.Acc. ∈ [22467.4, 125000]⇒ LoanDef : N

Because in a classification context the class attribute and its domain are normally

known it is usually not included in the rule description, so the aforementioned rule

description changes to

Check.Acc. ∈ [19873.6, 56087.5] ∧ Sav.Acc. ∈ [22467.4, 125000]⇒ N

.

The importance of this rule is determined by two separate things. The first thing

is the rule’s ability to classify/predict unlabeled data instances, that is clients for

who we are trying to determine whether or not they are likely to default on their

loan. This is referred to as evaluation of the rule as a classifier [52, 73, 74, 106].
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ClientID Checking Account Savings Account Outstanding Loans Default

C1 2003.15 2000.0 2800.0 Y
C2 0.0 100.3 75.8 Y
C3 56087.5 125000.0 0.0 N
C4 127.3 0.45 3250.6 Y
C5 −345.2 5250.5 8725.5 N
C6 11023.04 0.0 8725.5 N
C7 19873.6 22467.4 2420.25 N
C8 4187.1 0.0 575.4 Y
C9 4850.36 445.2 7230.2 Y
C10 8220.4 3250.12 25225 N

Table 3.1: Bank clients and issued loans data.

The second factor that affects a rule’s importance is the ability to use the rule

to identify the characteristics of clients who, in the given example, do not default

on their loan. The latter allows the investigation of the causes that make specific

clients default on their payments.

Section 3.1 contains necessary definitions for terms and concepts used in this chap-

ter. Section 3.2 presents the different measures employed in this thesis to evaluate

how each rule addresses the goals described. Finally the proposed methodology is

described in Section 3.3.

3.1 Preliminaries

Without loss of generality, we assume that data is contained within a single ta-

ble T (A1, A2, . . . , Am, C), where each Aj, 1 ≤ j ≤ m, is a numerical attribute

and C is a categorical class attribute. We denote the k-th tuple of T by tk =

〈vk,1, vk,2, . . . , vk,m, ck〉, where vk,j ∈ Aj, 1 ≤ j ≤ m. We may drop ck from tk when

it is not needed in the discussion.

In the rule example in Section 3, [19873.6, 56087.5] and [22467.4, 125000] are re-

ferred to as ranges. A formal definition is given below.

Definition 3.1.1 (Range) Let a and b be two values in the domain of attribute

A and a ≤ b. A range over A, denoted by [a, b]A, is a set of values that fall between

a and b. That is, [a, b]A = {v|v ∈ A, a ≤ v ≤ b}.

Each range covers a certain number of data tuples. In our example these are all the

clients whose data values for the corresponding attribute fall within the numerical
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range.

Definition 3.1.2 (Cover) Let r = [a, b]Aj
be a range over attribute Aj. r is said

to cover tuple tk = 〈vk,1, vk,2, . . . , vk,m〉 if a ≤ vk,j ≤ b. We denote the set of tuples

covered by r by τ(r).

As can be seen in Table 3.1 the ability of a client to pay back their loan is expected

to depend on several factors instead of a single one. In theory, it is possible that a

single attribute of the table constitutes a unique decisive factor in the repayment of

a loan and the fact that a single numerical range would be sufficient to “describe”

this phenomenon. This is the case of a direct correlation which is, however, of little

interest due to the simplicity of the solution and that direct correlations tend to

describe existing expert knowledge. Therefore, it is evident that in order to create

accurate rules it is necessary to associate ranges over more than one attribute and

create conjunctions that accurately describe the knowledge hidden in the mined

data. For the remainder of this thesis the following formal definitions of associated

ranges and range-based rules are used.

Definition 3.1.3 (Associated ranges) Let r1 = [a1, b1]A1 , r2 = [a2, b2]A2 , · · · , rh =

[ah, bh]Ah
be a set of ranges over attributes A1, A2, . . . , Ah respectively. r1, r2, . . . , rh

are associated ranges if we have τ(r1) ∩ τ(r2) ∩ · · · ∩ τ(rh) 6= ∅.

Definition 3.1.4 (Range-based rule) Let c ∈ C be a class value and r1, r2, . . . , rh

be a set of associated ranges. r1 ∧ r2 ∧ . . . ∧ rh ⇒ c (or simply r1, r2, . . . , rh ⇒ c)

is a range-based rule. We call r1 ∧ r2 ∧ . . . ∧ rh the rule’s antecedent and c the

rule’s consequent.

3.2 Interestingness Measures

This section presents the formal definitions of the measures employed in the pre-

sented solution for the evaluation of the extracted rules. Section 3.2.1 presents

the definitions for the support/confidence framework in the context of range-based

rules whereas Section 3.2.2 describes a previously undefined measure designed to

capture properties that are only relevant when mining continuous data ranges.
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3.2.1 Support-Confidence

The support and confidence measures are traditionally used in association rule

mining. They are indicative of a rule’s strength and reliability respectively. When

support is high it is an indication that the rule does not occur by chance. Fur-

thermore high confidence measures the reliability of the inference made by a rule,

given the rule antecedent how likely is the consequent.

Definition 3.2.1 (Support) Let T be a table and λ : r1, r2, . . . , rh ⇒ c be a

range-based rule derived from T . The support for λ in T is

σ(λ) =
|τ(r1) ∩ τ(r2) ∩ · · · ∩ τ(rh)|

|T |

where | · | denotes the size of a set.

Definition 3.2.2 (Confidence) Let T be a table and λ : r1, r2, . . . , rh ⇒ c be a

range-based rule derived from T . The confidence for λ in T is

γ(λ) =
|τ(r1) ∩ τ(r2) ∩ · · · ∩ τ(rh) ∩ τ(c)|
|τ(r1) ∩ τ(r2) ∩ · · · ∩ τ(rh)|

where τ(c) denotes the set of tuples that have class value c in T .

Example 3.2.1 Suppose we have the data in Table 3.1 and the rule

λ : [0, 4850.36]Check.Acc.∧ [0, 2000]Sav.Acc.∧ [75.8, 3250.6]Loan Out. ⇒ Y , then we have

σ(λ) =
|τ([0, 4850.36]Check.Acc.) ∩ τ([0, 2000]Sav.Acc.) ∩ τ([75.8, 3250.6]Loan Out.)|

|T |

=
|{t1, t2, t4, t8, t9} ∩ {t1, t2, t4, t8, t9} ∩ {t1, t2, t4, t7, t8}|

10

=
4

10
= 0.4

γ(λ) =
|τ([0, 4850.36]Check.Acc.) ∩ τ([0, 2000]Sav.Acc.) ∩ τ([75.8, 3250.6]Loan Out.) ∩ τY |
|τ([0, 4850.36]Check.Acc.) ∩ τ([0, 2000]Sav.Acc.) ∩ τ([75.8, 3250.6]Loan Out.)|

=
|{t1, t2, t4, t8, t9} ∩ {t1, t2, t4, t8, t9} ∩ {t1, t2, t4, t7, t8} ∩ {t1, t2, t4, t8, t9}|

|{t1, t2, t4, t8, t9} ∩ {t1, t2, t4, t8, t9} ∩ {t1, t2, t4, t7, t8}|

=
4

4
= 1
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3.2.2 Density

In example 3.2.1 rule λ achieves a very high confidence. However, continuous data

values have certain properties that are not present in categorical data. When

mining categorical data there are itemsets such as Red,Green,Blue that clearly

state that only records with the values Red,Green or Blue support it but when

describing a numerical range like [0.5, 8.2] any data value x with 0.5 ≤ x ≤ 8.2 is

covered by that range. This is because numerical values are by definition ordered

which is not true for categorical values, except in cases when a specific order is

explicitly defined.

Rule λ has optimal confidence (equal to 1) but looking at customer C7 it can be

seen that the value for outstanding loan debt is actually covered by the range

[75.8, 3250.6]Loan Out. even though C7 is not actually covered by rule λ. It is ev-

ident therefore that there is another property that needs to be considered when

evaluating a range-based rule, its concentration, that is how many of the tuples

that actually support the ranges support the rule. To address this issue a new

interestingness measure is defined, density.

Definition 3.2.3 (Density) Let T be a table and λ : r1, r2, . . . , rh ⇒ c be a

range-based rule derived from T . The density for λ in T is

δ(λ) =
|τ(r1) ∩ τ(r2) ∩ · · · ∩ τ(rh)|
|τ(r1) ∪ τ(r2) ∪ · · · ∪ τ(rh)|

Example 3.2.2 Suppose we have the data in Table 3.1 and the rule λ as in 3.2.1,

then we have

δ(λ) =
|τ([0, 4850.36]Check.Acc.) ∩ τ([0, 2000]Sav.Acc.) ∩ τ([75.8, 3250.6]Loan Out.)|
|τ([0, 4850.36]Check.Acc.) ∪ τ([0, 2000]Sav.Acc.) ∪ τ([75.8, 3250.6]Loan Out.)|

=
|{t1, t2, t4, t8, t9} ∩ {t1, t2, t4, t8, t9} ∩ {t1, t2, t4, t7, t8}|
|{t1, t2, t4, t8, t9} ∪ {t1, t2, t4, t8, t9} ∪ {t1, t2, t4, t7, t8}|

=
4

6
=

2

3

With these basic concepts and measures defined, new methods for deriving range-

based rules that satisfy various properties are introduced in the following sections.

For brevity and when the context is clear, range-based rules will simply be referred

to as rules in the discussion.
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3.3 Methodology

Let T be an n×m table as defined in Section 3.1 and r1, r2, . . . , rk are range-based

association rules derived from T . We call a set of such rules RS a ruleset.

The number of associated ranges in T can be very high whereas the majority

of these ranges may not be of importance to the user. Therefore, the presented

solution allows the user to predefine a minimum threshold for all the measures

defined in Section 3.2 that the resulting associated ranges must meet. We denote

these thresholds as σmin, γmin, δmin. Given the table T we aim to extract the

ruleset RS that consists of all the range-based association rules that satisfy the

given constraints σmin, γmin, δmin.

This could be described as a skyline problem, clearly some rules are inferior to

others as but the goal is to find the ones that achieve the best balance between

the three measures described in Section 3.2.

3.3.1 Minimum Requirements

One obvious class of rules of interest are those whose support, confidence and

density measures are above a certain minimum threshold. That is, we wish to find

the rules that have some “minimum credibility” from a given data set. Because

the actual thresholds for these measures depend on the problem and the particular

dataset, the challenge is to find a solution that allows a user to specify these values

and be able to adjust them accordingly.

Definition 3.3.1 (Min-σγδ rule) A range-based rule λ is said to be a min-σγδ

rule if it satisfies the following properties:

1. σ(λ) ≥ σmin,

2. γ(λ) ≥ γmin, and

3. δ(λ) ≥ δmin

where σmin, γmin and δmin are user specified thresholds.

A naive solution to find all min-σγδ rules from a given table T is to examine all

possible combinations of ranges across all attributes to see if they have sufficient

support, confidence and density. This is shown in Algorithm 3.3.1.
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Algorithm 3.3.1: Naive method for finding min-σγδ rules

Input: data set T (A1, A2, . . . , Am, C) and parameters σmin, γmin and δmin

Output: a set of min-σγδ rules R

1 R← ∅
2 for each c ∈ C do

3 for each distinct λij : [a1, b1]Ai1
, [a2, b2]Ai2

, . . . , [aj, bj]Aij
⇒ c do

4 if σ(λij) ≥ σmin and γ(λij) ≥ γmin and δ(λij) ≥ δmin then

5 R← R ∪ λij
6 return R

In step 2, each class label c is examined separately. Step 3 generates all possible,

but distinct rules

λij : [a1, b1]Ai1
, [a2, b2]Ai2

, . . . , [aj, bj]Aij
⇒ c

where each Ais , s = 1 . . . j, is a different attribute in {A1, A2, . . . , Am}, each

[as, bs]Ais
is a range on Ais . Then each mined rule λij is checked to satisfy the

required minimum conditions in steps 3 and 4. Finally, a set of min-σγδ rules R

is returned in step 6.

Algorithm 3.3.1 is exhaustive in nature, i.e. it attempts to find all potentially

useful rules. It is, however, not efficient. Assuming that there are m attributes,

each attribute has p distinct values on average, and the class attribute has h

distinct values. Then Algorithm 3.3.1 will examine O(h× (p(p+1)
2

)m) ≈ O(h×p2m)

number of rules, which is far too expensive to compute for a non-trivial m.

To improve the performance of Algorithm 3.3.1, we introduce some “more re-

stricted” classes of rules. That is, instead of simply finding all the rules that

satisfy some minimal conditions, we will also establish some criteria that make

certain rules more desirable than others. This will help prune the search space in

computation. The following sections discuss different types of rules and different

heuristics that are designed for deriving them.

3.3.2 Consequent bounded rules

The first consideration, are rules whose ranges are “bounded” by the class label

in the consequent. We refer to these rules as consequent bounded rules. Figure 3.1
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below is used to illustrate these rules graphically.

Figure 3.1: Consequent bounded rules

Each rectangular box in Figure 3.1 represents the set of tuples covered by a range.

When these ranges jointly form a rule, λ : r1, r2, . . . , rh ⇒ c, two sets of values

in Figure 3.1 are of interest. The L(λ) set of values represents the lowest value

in each range whose corresponding tuples support the rule, and the U(λ) set of

values represents the highest such value. That is, tuples that are covered by

ri, i = 1 . . . h, but have values outside [li, ui], cannot support the rule. Thus, these

two sets of values effectively form “boundaries”on the ranges within which λ may

be supported. More formally,

Definition 3.3.2 (s-boundaries) Given a rule λ : r1, r2, . . . , rh ⇒ c, its lower

and upper s-boundaries, denoted by L(λ) and U(λ), are:

• L(λ) = {l1, l2, . . . , lh}, and li = arg min
∀t∈S

φ(t, ri)
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• U(λ) = {u1, u2, . . . , uh}, and ui = arg max
∀t∈S

φ(t, ri)

where S = τ(r1) ∩ τ(r2) ∩ · · · ∩ τ(rh), φ(t, ri) is a function that returns the value

of t in ri, and i = 1 . . . h.

Intuitively, a rule formed by ranges with lower and upper s-boundaries is preferred

to a min-σγδ rule whose ranges are defined on the same set of attributes and its

cover is a superset of the cover of the rule formed by s-boundaries. That is because

such a rule offers the same support and confidence as the min-σγδ rule does, but

has higher density.

Given a rule λ : r1, r2, . . . , rh ⇒ c, s-boundaries suggest that the ranges in λ

may be reduced without affecting its support and confidence. We can observe

that tuples covered by these boundary values (i.e the values in L(λ) and U(λ)),

may not have c as a class value, this suggests that we can reduce the ranges

in λ without affecting its support and confidence. Intuitively, it would be more

meaningful that the rules start and end with a tuple whose class value is c, which

is a special case of the proof in [35, 54] that optimal cut points for discretization

must lie between tuples of different class labels. This effectively requires us to

move the s-boundaries further inwards to the first tuple having a class c. These

two new boundaries are called c-boundaries and they are represented by the two

revised sets Lc(λ) and Uc(λ) in Figure 3.1. Formally,

Definition 3.3.3 (c-Boundaries) Given a rule λ : r1, r2, . . . , rh ⇒ c, its lower

and upper c-boundaries, denoted by Lc(λ) and Uc(λ), are:

• Lc(λ) = {a1, a2, . . . , ah}, and ai = arg min
∀t∈S∧C(t)=c

φ(t, ri)

• Uc(λ) = {b1, b2, . . . , bh}, and bi = arg max
∀t∈S∧C(t)=c

φ(t, ri)

where S = τ(r1)∩τ(r2)∩· · ·∩τ(rh), C(t) is a function that returns the class value

of t, φ(t, ri) is a function that returns the value of t in ri, and i = 1 . . . h.

Note that a rule formed by ranges with c-boundaries is not necessarily “better

than” those formed by ranges with s-boundaries, since in moving s-boundaries

to c-boundaries, support is sacrificed for confidence. However, c-boundaries are

intuitively preferred to supporting boundaries, as the amount of support that is

lost in the process is associated with the tuples that do not support c, the class of

the rule. Thus, in this work, the goal is to find a set of rules from a given table

that are min-σγδ, and are bounded by c-boundaries.

Definition 3.3.4 (Consequent bounded rules) A rule λ : r1, r2, . . . , rh ⇒ c
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is a consequent bounded rule (or c-bounded rule for short) if it is min-σγδ, and

for each of its ranges ri = [ai, bi], i = 1 . . . h, we have ai ∈ Lc(λ) and bi ∈ Uc(λ),

where Lc(λ) and Uc(λ) are the lower and upper c-boundaries of λ.

The following example illustrates all the concepts introduced in this section using

the example data in Table 3.1.

Example 3.3.1 Suppose that we have the following rule derived from the data in

Table 3.1:

λ : [4187.1, 56087.5]Check.Acc. ∧ [445.2, 125000]Sav.Acc. ⇒ N

The range λ : [4187.1, 56087.5]Check.Acc. is supported by {C3, C6, C7, C8, C9, C10}
whereas the range [445.2, 125000]Sav.Acc. is supported by {C1, C3, C5, C7, C9, C10}
and their conjunction is supported by {C3, C7, C9, C10}. Therefore the rule’s lower

and upper s-boundaries are L(λ) = {4850.36, 445.2} and U(λ) = {56087.5, 125000},
respectively. This is more clear when using Table 3.2.

But for the clients with Check.Acc. value 4850.36 and Sav.Acc. value 445.2 -

note that even though in this case these belong to the same client, C9 it does not

have to be so - the class label for LoanDef is Y , therefore L(λ) 6= LN(λ) =

{8220.4, 3250.12}. However since the clients with Check.Acc. value 56087.5 and

Sav.Acc. value 125000 do have a LoanDef value N , U(λ) = UN(λ). Therefore,

according to the definition, and assuming the min-σγδ conditions are met the

following is a consequent bounded rule:

λ′ : [8220.4, 56087.5]Check.Acc. ∧ [3250.12, 125000]Sav.Acc. ⇒ N

3.3.3 Finding Consequent Bounded Rules

In this section, the problem of mining consequent bounded rules from a given set of

data is examined. An overview of the proposed method is given in Algorithm 3.3.2

while the details of our solution are discussed in the following sections.. For

convenience, an association of i ranges will be referred to as an i-range in the

following discussion.
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Algorithm 3.3.2: Finding consequent bounded rules

Input: dataset T (A1, A2, . . . , Am, C) and parameters σmin, γmin and δmin

Output: a set of consequent bounded rules R

1 R← ∅, i← 1

2 for each ck in C do

3 LR1 ← generate-largest-1-ranges(T, σmin, ck)

4 while LRi 6= ∅ do

5 for each r̂ ∈ LRi do

6 R← R ∪ getRules(r̂, ck, σmin, δmin, γmin)

7 LRi+1 ← generate-largest-(i+ 1)-ranges(LRi, LR1, σmin)

8 i← i+ 1

9 return R

Algorithm 3.3.2 works as follows. Each distinct class value ck is considered in

turn (step 2). For each ck, a set of largest 1-ranges is generated at first, LR1, i.e.

the largest range in each attribute from which c-bounded rules may be derived

(step 3). As long as LR1 (and LRi in the subsequent iterations) is not empty,each

i-range r̂ in it is analyzed to see if c-bounded rules with i ranges in the antecedent

may be derived from it and any resulting rules are added to the set of current

results R (step 6). Then, (i + 1)-ranges are generated from i-ranges iteratively

(step 7), until no larger associated ranges can be produced (step 4). Finally, all

the mined consequent bounded rules R will be returned (step 9).

3.3.4 Generating Largest 1-ranges

To explain how largest 1-ranges are generated from T (step 3 in Algorithm 3.3.2),

a description is given of how T is represented in our method first. T is stored

as a set of columns, and each column Ai is represented by a triple 〈tid, val, c〉Ai
,

where val records the values of Ai sorted in an ascending order, tid records their

corresponding tuple identifiers, and c records their class values. The original tuple

identifier tid is stored because the sorting process changes the relevant position of

each value and the new tuple order differs for each Ai depending on the actual

values. For example after sorting the columns of Table 3.1 in ascending order (the

result can be seen in Table 3.2) there is no connection between individual values

and the corresponding client id (tuple in the original Table). tid serves as that

reference, that is values with the same tid were originally in the same tuple and
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refer to the same client id.

In the case of Table 3.1 the resulting structure after sorting the values per attribute

is shown in Table 3.2. Note that even though the largest 1-range differs for each

distinct class label ck, the sorted order of the values remains the same therefore

the sorting process is only performed once.

Checking Account

tid val c

t5 −345.2 N

t2 0.0 Y

t4 127.3 Y

t1 2003.15 Y

t8 4187.1 Y

t9 4850.36 Y

t10 8220.4 N

t6 11023.04 N

t7 19873.6 N

t3 56087.5 N

Savings Account

tid val c

t6 0.0 N

t8 0.0 Y

t4 0.45 Y

t2 100.3 Y

t9 445.2 Y

t1 2000 Y

t10 3250.12 N

t5 5250.5 N

t7 22467.4 N

t3 125000 N

Outstanding Loans

tid val c

t3 0.0 N

t2 75.8 Y

t8 575.4 Y

t7 2420.25 N

t1 2800 Y

t4 3250.6 Y

t9 7230.2 Y

t5 8725.5 N

t6 8725.5 N

t10 25225 N

Table 3.2: Table 3.1 after sorting values per attribute.

Sorting the values allows to examine each individual value as a possible start-

ing/ending point for the largest 1-range of an attribute for a given class label,

starting from the smallest and largest values and continuously reducing the range.

Algorithm 3.3.3 describes this process in more detail.

Algorithm 3.3.3: generate-largest-1-ranges

Input: T (A1, A2, . . . , Am, C), σmin and ck

Output: LR1

1 LR1 ← ∅
2 for each Ai in T do

3 〈tid, val, c〉Ai
← sort(Ai, ck)

4 〈tid, val, c〉Ai
← revise-range(〈tid, val, c〉Ai

)

5 if |〈tid, val, c〉Ai
| ≥ σmin then

6 LR1 ← LR1 ∪ {〈tid, val, c〉Ai
}

7 return LR1

40



Chapter 3. Range-based Classification Rule Mining 41

Algorithm 3.3.3 works as follows. First, each attribute Ai is converted (sorted) into

its triple structure 〈tid, val, c〉Ai
(steps 2 and 3). After sorting, the revise-range

function is used to remove the tuples whose class values are not ck at the two ends

(step 4). Once this is done and if it has enough support (| · | denotes cardinality),

the range is added to LR1 (steps 5 and 6). Note that strictly speaking, σmin× |T |
should be used, that is the number of supporting tuples, instead of σmin which

represents the support threshold itself, in step 5. Finally, LR1 is returned as the

result (step 7). The following example demonstrates this process for the data in

Table 3.2.

Example 3.3.2 Given the sorted values in Table 3.2 and for class Y , the generate-

largest-1-ranges functions returns the following three triples as LR1 for the corre-

sponding attributes:

Checking Account

w.r.t. Y

tid val c

t2 0.0 1

t4 127.3 1

t1 2003.15 1

t8 4187.1 1

t9 4850.36 1

Savings Account

w.r.t. Y

tid val c

t8 0.0 1

t4 0.45 1

t2 100.3 1

t9 445.2 1

t1 2000 1

Outstanding Loans

w.r.t. Y

tid val c

t2 75.8 1

t8 575.4 1

t7 2420.25 0

t1 2800 1

t4 3250.6 1

t9 7230.2 1

Table 3.3: LR1 ranges for the attributes of Table 3.1

Observe that these are the largest possible ranges from which Y -bounded rules may

be derived for each attribute.

Note that LR1 is generated with regards to a specific target class label therefore

the values of c change to a single bit which is 1 when the class label is the target

class label, the tuple containing this attribute value supports the target class, and

0 when it is any of the other class labels. The reasons for this representation of

class values will become more clear later.
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3.3.5 Generating Largest (i+ 1)-ranges

This section describes how largest-(i+1)-ranges may be generated from i-ranges by

attempting to merge i-ranges with each largest 1-range (step 7 in Algorithm 3.3.2).

Algorithm 3.3.4: generate-largest-(i+ 1)-ranges

Input: dataset LRi, LR1 and σmin

Output: LRi+1

1 LRi+1 ← ∅
2 for each l in LRi do

3 for each k in LR1 do

4 Lcand ← revise-range(l ∧ k)

5 if σ(Lcand) ≥ σmin then

6 LRi+1 ← LRi+1 ∪ Lcand

7 return LRi+1

This step is straightforward: for each largest i-range each largest 1-range is ex-

amined. The implementation of our algorithm uses a data structure that allows

us to avoid redundant pairings between an LR1 and an LRi that refer to the

same attribute. Section 3.3.6 offers a detailed description of this data structure.

If the candidate largest range, formed by the conjunction of the two ranges in

step 4, meets the given support threshold in step 5 then it is added as a largest

i-range in step 6. Finally, the new LRi+1 ranges are returned in step 7.A graphical

representation of the process of generating larger 3-ranges is given in Figure 3.2.

Figure 3.2: LR structure for storing candidate rules.
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3.3.6 LR Structure

Algorithm 3.3.4 employs a data structure specifically designed to store the largest

i-ranges. This section describes the aforementioned data structure in depth.

As demonstrated in Figure 3.3 the structure resembles a hash table where the role

of a key is played by an attribute index n and the hash function maps all the

associated ranges that include a range in An and attributes with index > n. Any

attributes with index < n are mapped to the attribute with the smallest index.

Figure 3.3: LR structure for storing candidate rules.

When generating largest i+1-ranges by merging 1-ranges with the largest i-ranges

in the existing structure, a largest 1-range for attribute Ak can only be merged

with ranges that have an index key > k so as to avoid duplicate checks while

merging.

The described structure is employed for the generation of each LRi, 1 ≤ i ≤ n for

each class label ck in the given data. Based on the description of Algorithm 3.3.4,

however, each LRi structure is only needed for the generation of LRi+1 and the

corresponding resources may be freed afterwards.
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3.3.7 Splitting Largest Ranges Into Consequent Bounded

Rules

This section explains how consequent bounded rules are generated in LRi (step 6

in Algorithm 3.3.2). Unfortunately, finding all valid consequent bounded rules

according to Definition 3.3.4 is still too expensive. This is because consequent

bounded rules may overlap. For example,

[0.12, 1.25]A1 ∧ [1.22, 3.55]A2 ⇒ c1

and

[0.94, 1.55]A1 ∧ [2.12, 4.05]A2 ⇒ c1

can both be valid rules, i.e. they both satisfy minimum support, confidence and

density requirements, and yet one does not subsume the other. This significantly

increases the search space for finding the rules.

To reduce complexity and allow for more realistic performance, we consider, as a

heuristic, the splitting of largest ranges into “non-overlapping” consequent bounded

rules. However, outside the context of splitting a specific largest range, the de-

signed solution still mines overlapping rules due to the overlap between largest-

ranges.

Definition 3.3.5 (Overlapping rules) Let λ and λ′ be two structurally identi-

cal c-bounded rules (i.e. involving the same set of attributes and the same class

value):

λ : [a1, b1]A1 ∧ [a2, b2]A2 ∧ · · · ∧ [ah, bh]Ah
⇒ c

λ′ : [a′1, b
′
1]A1 ∧ [a′2, b

′
2]A2 ∧ · · · ∧ [a′h, b

′
h]Ah
⇒ c

λ and λ′ are overlapping if there exists at least one pair of ranges [aj, bj]Aj
and

[a′j, b
′
j]Aj

such that they overlap.

Thus, to find non-overlapping rules is equivalent to saying that once a c-bounded

rule is found, the associated ranges in this rule will not be allowed to be extended

or reduced to form another rule. This turns the initial search problem into a

partition problem, i.e. if a large range does not satisfy minimum confidence and

density requirements, it may be split into smaller ones to check if they do. This

is more efficient. Chapter 4 will introduce several partitioning heuristics that use

different criteria to achieve the best possible split.
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The methods described in Sections 4.1.1, 4.1.2, 4.1.3 and 4.1.4 describe heuristics

that the presented solution employs in step 6 of Algorithm 3.3.2 for the generation

of consequent bounded rules from the generated LRi.

As explained in [48, 49] due to the monotonic nature of support while splitting the

largest ranges the resulting rules’ support may only decrease. This, however, is

not necessarily true for the other interestingness measures used in this approach.

The following definitions describe the relationship between the new ranges that

result from splitting and the range-based association rules that consist of these

ranges.

Definition 3.3.6 (Subrange) Let r1 = [a1, b1]A and r2 = [a2, b2]A be two ranges

on an attribute A. r1 is a subrange of r2, denoted by r1 v r2, if a1 ≥ a2 and

b1 ≤ b2. If either a1 > a2 or b1 < b2, we denote the subrange as r1 @ r2.

Definition 3.3.7 (Subrule) Let ar1 : r1, r2, . . . rh ⇒ c and ar2 : r′1, r
′
2, . . . r

′
k ⇒ c

be two range-based association rules derived from table T . We say that ar1 is a

subrule of ar2, ar1 ≺ ar2 if for each ri in the antecedent of ar1 there exists an r′j

in the antecedent of ar2 such that ri v r′j.

The concept behind splitting is a sacrifice of support in order to increase confidence

and/or gain. There are, however, no guarantees that after splitting a range the

resulting rules will have increased confidence or gain in which case the resulting

rules do not provide any improved knowledge on the dataset. Definition 3.3.8

formally describes this case in detail.

Definition 3.3.8 (Rule redundancy) Consider two range-based association rules

r and r′ with the same consequent c. If r ≺ r′ with γ(r) ≤ γ(r′) and δ(r) ≤ δ(r′)

then we call r redundant.

3.4 Summary

This chapter introduced our novel framework for generating range-based classifi-

cation rules. The key terms and concepts used in this work have been defined,

including the definition of a new measure covering a data property specific only

to rules on continuous data ranges.

A general to specific solution has been defined along with the challenges of imple-

menting such a method. Furthermore, the concept of consequent bounded rules

45



Chapter 3. Range-based Classification Rule Mining 46

has been defined as a solution to reducing the complexity of the original problem.

The aforementioned rules are mined from largest-ranges that have also been de-

fined in this chapter along with an algorithmic solution describing the incremental

construction of these ranges.

Finally the criteria used for splitting largest-ranges into rules that meet given

criteria in the form of threshold values have been defined. The following chapter

demonstrates different heuristics designed to address the splitting of largest ranges

into range-based classification rules.
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CARM Algorithm

A largest-range constitutes the search space where consequent bounded rules may

be mined from and may even itself constitute a consequent bounded rule since, by

definition, it meets the given criteria of σmin, γmin, δmin.

This chapter presents the Characterization Associative Rule Mining (CARM) al-

gorithm for mining range-based rules. Section 4.1 presents methods developed for

the purpose of splitting a largest range in consequent bounded rules.

4.1 Heuristics

Each heuristic is driven by a specific goal. Modifying the criterion for splitting,

results in a separate heuristic based method for mining consequent bounded rules.

The splitting process as referred in Section 3.3.7 is achieved by removing a specific

range from a given largest range as shown in Figure 4.1.

Figure 4.1: Graphic representation of a range split.

Note that the range selected for removal is not considered as one of the resulting

ranges. Furthermore, it is possible that one of the resulting ranges r1, r2 will be
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empty and the actual split will generate a single range. The methods described in

this section utilise a different heuristic each to mine range-based rules.

4.1.1 Maximum Support Heuristic

Support is a measure of strength for a rule. The larger the support of a rule,

potentially the more significant the rule is. Thus, it makes sense to consider a

class of rules whose support is somewhat “maximized”. In this section, a method

for finding maximally supported rules is described.

Definition 4.1.1 (Max-σ rule) A range-based rule λ : r1, r2, . . . , rd ⇒ c is said

to be a max-σ rule if it satisfies the following properties:

1. λ is a min-σγδ rule,

2. For each range ri, i = 1 . . . d in λ, L(ri) and U(ri) each contain at least one

tuple whose class is c,

3. There does not exist another rule λ′ : r′1, r
′
2, . . . , r

′
i, . . . , r

′
d ⇒ c such that

(a) σ(λ′) > σ(λ) and rj v r′j, j = 1 . . . d, or

(b) σ(λ′) = σ(λ) and there exists at least one r′j such that r′j @ rj.

Definition 4.1.1 requires some explanation. Conditions 1, 2 are included so that a

max-σ rule will still have some minimum credibility. Condition 3 is to ensure its

“uniqueness”. To illustrate this, consider the following example:

Example 4.1.1 Suppose that we have the following three rules and they all have

the required minimum support, confidence and density in Table 3.1:

λ1 : [2003.15, 4850.36]Check.Acc. ∧ [75.8, 7230.2]Loans Out. ⇒ Y

λ2 : [0, 4850.36]Check.Acc. ∧ [75.8, 7230.2]Loans Out. ⇒ Y

λ3 : [0, 4850.36]Check.Acc. ∧ [0, 8725.5]Loans Out. ⇒ Y

λ1 is not a max-σ rule since its antecedent includes the associated range

[2003.15, 4850.36]Check.Acc. @ [0, 4850.36]Check.Acc. of λ2’s antecedent and (σ(λ2) =

0.5) > (σ(λ1) = 0.3), violating Condition 3(a) in Definition 4.1.1. λ2 is not a

max-σ rule either since [75.8, 7230.2]Loans Out. @ [0, 8725.5]Loans Out. and σ(λ2) =

0.5 = σ(λ3), violating Condition 3(b) in Definition 4.1.1.

In order to generate rules that meet the criteria described in Definition 4.1.1 a

solution was developed and implemented employing the heuristic described in the
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following section.

Maximum Support Split

In order to maximize the support of the rules resulting after the split this heuristic

looks for the smallest range (i.e the range of minimum support) with a class label

different than the one in the rule’s consequent, in a given largest i-range. The

process is described in detail in Algorithm 4.1.1.

Algorithm 4.1.1: Maximum support rule generation

Input: A largest i-range l, parameters σmin, γmin and δmin and the target class

label ct

Output: A ruleset R

1 R← ∅
2 Q← ∅
3 Q← Q.enqueue(l)

4 while Q 6= varnothing do

5 q ← Q.dequeue()

6 if σ(q) ≥ σmin then

7 if γ(q) ≥ γmin ∧ δ(q) ≥ δmin then

8 R← R ∪ q
9 else

10 < r1, r2 >← maxSupportSplit(q)

11 Q← Q.enqueue(r1)

12 Q← Q.enqueue(r2)

13 return R

The algorithm describes how each largest range is checked as a possible result,

notice how in step 3 the given largest range will be the first to be examined, if

it meets the given thresholds and if it does will be added to the resultset R in

step 8. If the candidate rule does not meet the confidence or density requirement

but does meet the minimum support requirement it is split using the method

described in Algorithm 4.1.2 in two new rules in step 10 that are then added to

the existing queue in steps 11, 12. Therefore, the presented method is effectively

performing a breadth-first search in the tree resulting from a recursive split of the

given largest i-range using the presented heuristic. Any node of the tree that does
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meet all requirements is added as a result since further splitting can only decrease

its support. For the same reason any candidate that does not meet the minimum

support threshold is omitted (a consequence of step 5 in the algorithm).

Algorithm 4.1.2: maxSupportSplit

Input: A rule r : g1 ∧ g2 ∧ · · · ∧ gi ⇒ ct

Output: Two rules r1 and r2

1 gmin ← findRangeWithMinNegSeq(r, ct)

2 < g′min, g
′′
min >← removeMinNegSeq(gmin)

3 r1 ← g1 ∧ g2 ∧ g′min ∧ · · · ∧ gi
4 r2 ← g1 ∧ g2 ∧ g′′min ∧ · · · ∧ gi
5 return < r1, r2 >

Algorithm 4.1.2 is rather straightforward. The range with the lowest support and

a class label different than the target class is detected in step 1. By removing

the aforementioned range the original range gmin is split in two new ranges g′min

and g′′min in step 2. These ranges are then used in conjunction with the other

unmodified ranges and form the two resulting rules in steps 3 and 4. There are

specific (but infrequent) cases when one of the two ranges may be empty.

The process of splitting a rule r : [v6, v9]A1 ∧ [u4, u7]A2 ⇒ ck into two new rules by

removing the smallest range in length where the class value is not ck is shown in

Table 4.1 and Table 4.2. In the provided example vi represents the sorted values

of attribute A1 for tuple i in the original table T whereas ui represents the sorted

values of attribute A2 for the same tuple.

Table 4.2 is generated by removing a single value in this case. Note that neither of

the resulting rules has support ≥ σ(r) which is why this method stops splitting as

soon as a rule that meets the given thresholds is generated. In this case, however,

it is presumed that r did not meet one of the γmin, δmin thresholds and it was split

so that r′1 could be generated with γ(r′1) > γ(r).
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A1

val ck

v6 1
v10 1
v1 0
v14 1
v7 1
v11 1
v2 1
v12 1
v5 0
v13 0
v3 0
v4 1
v16 1
v15 0
v8 0
v9 1

A2

val ck

u4 1
u2 1
u10 1
u16 1
u3 0
u5 0
u8 0
u15 0
u11 1
u7 1

Table 4.1: The original rule r.

A1

val ck

v6 1

v10 1

A2

val ck

u4 1

u2 1

u10 1

u16 1

u3 0

u5 0

u8 0

u15 0

u11 1

u7 1

A1

val ck

v14 1

v7 1

v11 1

v2 1

v12 1

v5 0

v13 0

v3 0

v4 1

v16 1

v15 0

v8 0

v9 1

A2

val ck

u4 1

u2 1

u10 1

u16 1

u3 0

u5 0

u8 0

u15 0

u11 1

u7 1

Table 4.2: The resulting rules r′1 : [v6, v10]A1 ∧ [u4, u7]A2 ⇒ ck and r′2 : [v14, v9]A1 ∧
[u4, u7]A2 ⇒ ck.

A graphic representation of the complete method is given in Figure 4.2.
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Figure 4.2: Tree generated by maximum support splits.

4.1.2 Maximum Confidence Heuristic

Confidence is a measure of validity for a rule. A highly confident rule is considered

a valid knowledge on the dataset. Thus, it makes sense to consider a class of rules

whose confidence is somewhat “maximized” based on a different splitting criterion

than in Section 4.1.1. This section describes how maximally confident rules may

be mined.

Definition 4.1.2 (Max-γ rule) A range-based rule λ : r1, r2, . . . , rd ⇒ c is said

to be a max-γ rule if it satisfies the following properties:

1. λ is a min-σδγ rule,

2. For each range ri, i = 1 . . . d in λ, L(ri) and U(ri) each contain at least one

tuple whose class is c,

3. There does not exist another rule λ′ : r′1, r
′
2, . . . , r

′
i, . . . , r

′
d ⇒ c such that

(a) γ(λ′) ≥ γ(λ) and rj v r′j, j = 1 . . . d, or

(b) γ(λ′) = γ(λ) and there exists at least one r′j such that r′j @ rj.

Definition 4.1.2 is similar to Definition 4.1.1. Conditions 1 and 2 are included so

that a max-γ rule will still have some minimum credibility whereas Condition 3

ensures its “uniqueness”. Example 4.1.2 demonstrates this:

Example 4.1.2 Suppose that we have the following three rules and they all have

the required minimum support, confidence and density in Table 3.1:
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λ1 : [0, 4850.36]Check.Acc. ∧ [0, 100.3]Sav.Acc. ⇒ Y

λ2 : [0, 4850.36]Check.Acc. ∧ [0, 2000]Sav.Acc. ⇒ Y

λ3 : [0, 4850.36]Check.Acc. ∧ [0, 5250.5]Sav.Acc. ⇒ Y

λ1 is not a max-γ rule because its antecedent includes the associated range

[0, 100.3]Sav.Acc. @ [0, 2000]Sav.Acc. of λ2’s antecedent and γ(λ2) = 1 = γ(λ1), vi-

olating Condition 3(a) in Definition 4.1.2. λ3 is also not a max-γ rule since

[0, 2000]Sav.Acc. @ [0, 5250.5]Sav.Acc. and (γ(λ2) = 1) > (γ(λ3) = 5
7
), violating Con-

dition 3(b) in Definition 4.1.2.

Section 4.1.2 describes a method that uses a maximum confidence heuristic in

order to get rules that meet Definition 4.1.2 by splitting the given largest range.

Maximum Confidence Split

Unlike the method described in 4.1.1 this approach aims to maximize confidence,

therefore the split method in this case splits the rule after removing the largest

range with a class label different than the rule’s consequent. The motivation is

simple, whereas in 4.1.4 the removal of the minimum range with a class label

different than the rule’s consequent aims to increase confidence and density, in

order to meet the given thresholds by removing the smallest number of tuples

possible, so as to keep support as high as possible, this approach prioritizes con-

fidence maximization which is achieved by removing negative instances from a

rule’s supporting tuples. Algorithm 4.1.3 describes this approach.

As with Algorithm 4.1.2 a breadth-first search method is employed and each largest

range, starting with l in step 3 is being split. The criteria for stopping the expan-

sion of the search tree is again the minimum support threshold in step 6 because

support is the only monotonic interest measure used. The confidence and density

of the new rules resulting from splitting a range may increase, actually the very

purpose of this heuristic is to increase confidence but when a split occurs the re-

sulting rules’ support can only decrease. In step 8 the rule found with maximum

confidence is recorded while every new rule that results from splitting in step 9, is

added to the queue in steps 11 and 12. Note that unlike Algorithm 4.1.1 the rule

that is currently the one with the maximum confidence is itself added to the queue

for further splitting based on the aforementioned principal of increasing confidence

with every split. Algorithm 4.1.3, as explained, uses a different method to split

the rules which is described in detail in Algorithm 4.1.4.
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Algorithm 4.1.3: Maximum confidence rule generation

Input: A largest i-range l, parameters σmin, γmin and δmin and the target class

label ct

Output: The rule with the maximum confidence rmax

1 rmax ← ∅
2 Q← ∅
3 Q← Q.enqueue(l)

4 while Q 6= ∅ do

5 q ← Q.dequeue()

6 if σ(q) ≥ σmin then

7 if γ(q) ≥ γmin ∧ δ(q) ≥ δmin ∧ γ(q) ≥ γ(rmax) then

8 rmax ← q

9 < r1, r2 >← maxConfidenceSplit(q)

10 Q← Q.enqueue(r1)

11 Q← Q.enqueue(r2)

12 return rmax

Algorithm 4.1.4: maxConfidenceSplit

Input: A rule r : g1 ∧ g2 ∧ · · · ∧ gi ⇒ ct

Output: Two rules r1 and r2

1 gmax ← findRangeWithMaxNegSeq(r, ct)

2 < g′max, g
′′
max >← removeMaxNegSeq(gmax)

3 r1 ← g1 ∧ g2 ∧ g′max ∧ · · · ∧ gi
4 r2 ← g1 ∧ g2 ∧ g′′max ∧ · · · ∧ gi
5 return < r1, r2 >

The process is very similar to that in Algorithm 4.1.2. The range with the highest

support and a class label different than the target class is detected in step 1. By

removing the aforementioned range the original range gmax is split in two new

ranges g′max and g′′max in step 2. These ranges are then used in conjunction with

the other unmodified ranges and form the two resulting rules in steps 3 and 4.

The example provided in Table 4.3 and Table 4.4 uses the same rule r but splits

it using the method described in this section.
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A1

val ck

v6 1
v10 1
v1 0
v14 1
v7 1
v11 1
v2 1
v12 1
v5 0
v13 0
v3 0
v4 1
v16 1
v15 0
v8 0
v9 1

A2

val ck

u4 1
u2 1
u10 1
u16 1
u3 0
u5 0
u8 0
u15 0
u11 1
u7 1

Table 4.3: The original rule r.

A1

val ck

v6 1

v10 1

v1 0

v14 1

v7 1

v11 1

v2 1

v12 1

v5 0

v13 0

v3 0

v4 1

v16 1

v15 0

v8 0

v9 1

A2

val ck

u4 1

u2 1

u10 1

u16 1

A1

val ck

v6 1

v10 1

v1 0

v14 1

v7 1

v11 1

v2 1

v12 1

v5 0

v13 0

v3 0

v4 1

v16 1

v15 0

v8 0

v9 1

A2

val ck

u11 1

u7 1

Table 4.4: The resulting rules r′1 : [v6, v9]A1 ∧ [u4, u16]A2 ⇒ ck and r′2 : [v6, v9]A1 ∧
[u11, u7]A2 ⇒ ck.
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Figure 4.3 is a graphic representation of the search tree generated from splitting

the largest range using the described heuristic. It should be noted that unlike

Section 4.1.1 the returned rule in this case is not necessarily a leaf in the search

tree.

Figure 4.3: Tree generated by maximum confidence splits.

4.1.3 Maximum Gain Heuristic

It is important to mine association rules whose confidence is high, and whose

support is sufficiently large. This problem is more complicated than just mining

the rules with maximum confidence given a support minimum threshold or mining

the rules with maximum support given a minimum threshold for confidence as in

both cases the results often maximize the target measure at the expense of the

second one which, in most results, is just above the minimum threshold. Intuitively

the best results have a high confidence without sacrificing too much support.

One way of achieving this is by using the method described in 4.1.2 with a very high

support threshold but this would be problematic for several reasons. First, since

the user does not have any data knowledge setting an appropriately high σmin will

require experimentation and even then it is possible that a standard σmin creates

problems since for different class labels a very high value may reduce the number of

results significantly and potentially remove useful results and therefore knowledge

from the final resultset. Because the goal is to only increase an interestingness
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measure if the increase in that measure justifies the potential cost in the others, a

different interestingness measure called gain, that has already been mentioned in

Section 2.5, and was originally used in [42] is employed. Below is a definition of

gain as it is used in this work.

Definition 4.1.3 (Gain) Let T be a table and λ : r1, r2, . . . , rh ⇒ c be a range-

based rule derived from T . The gain for λ in T is

gain(λ) = |τ(r1) ∩ τ(r2) ∩ · · · ∩ τ(rh) ∩ τ(c)| − γmin × |τ(r1) ∩ τ(r2) ∩ · · · ∩ τ(rh)|

where τ(c) denotes the set of tuples that have class value c in T .

The following example describes the evaluation of gain for a rule.

Example 4.1.3 Suppose we have the data in Table 3.1 and the rule

λ : [0, 4850.36]Check.Acc.∧ [0, 2000]Sav.Acc.∧ [75.8, 3250.6]Loans Out. ⇒ Y , and a given

threshold of γmin = 0.5 then we have

γ(λ) = |τ([0, 4850.36]Check.Acc.) ∩ τ([0, 2000]Sav.Acc.) ∩ τ([75.8, 3250.6]Loans Out.) ∩ τ(Y )|

− γmin × |τ([0, 4850.36]Check.Acc.) ∩ τ([0, 2000]Sav.Acc.)

∩ τ([75.8, 3250.6]Loans Out.)|

= |{t1, t2, t4, t8, t9} ∩ {t1, t2, t4, t8, t9} ∩ {t1, t2, t4, t7, t8} ∩ {t1, t2, t4, t8, t9}|

− γmin × |{t1, t2, t4, t8, t9} ∩ {t1, t2, t4, t8, t9} ∩ {t1, t2, t4, t7, t8}|

= 4− 0.5× 4 = 2

Since gain is used to evaluate the trade-off between support and confidence, and

because it is not a commonly used/known measure, there is no corresponding

threshold of gainmin. Definition 4.1.4 describes a max-gain rule in accordance to

Definitions 4.1.1, 4.1.2.

Definition 4.1.4 (Max-gain rule) A range-based rule λ : r1, r2, . . . , rd ⇒ c is

said to be a max-gain rule if it satisfies the following properties:

1. λ is a min-σγδ rule,

2. For each range ri, i = 1 . . . d in λ, L(ri) and U(ri) each contain at least one

tuple whose class is c,

3. There does not exist another rule λ′ : r′1, r
′
2, . . . , r

′
i, . . . , r

′
d ⇒ c such that
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(a) gain(λ′) ≥ gain(λ) and rj v r′j, j = 1 . . . d, or

(b) gain(λ′) = gain(λ) and there exists at least one r′j such that r′j @ rj.

Algorithm 4.1.5 describes a method that mines range-based association rules by

mining the rules of maximum gain from the largest ranges by following the de-

scribed process of splitting.

Algorithm 4.1.5: Maximum gain rule generation

Input: A largest i-range l, parameters σmin, γmin and δmin and the target class

label ct

Output: The rule with the maximum confidence rmax

1 rmax ← ∅
2 Q← ∅
3 Q← Q.enqueue(l)

4 while Q 6= ∅ do

5 q ← Q.dequeue()

6 if σ(q) ≥ σmin then

7 if γ(q) ≥ γmin ∧ δ(q) ≥ δmin ∧ gain(q) ≥ gain(rmax) then

8 rmax ← q

9 < r1, r2 >← maxConfidenceSplit(q)

10 Q← Q.enqueue(r1)

11 Q← Q.enqueue(r2)

12 return rmax

Same as before a breadth-first search method is employed and each largest range,

starting with l in step 3 is being split. Gain, like confidence and density is not

monotonic and therefore the expansion of the search tree only stops if the minimum

support threshold in step 6, is not met. In step 8 the rule found to have maximum

gain is recorded while every new rule that results from splitting in step 9, is added

to the queue in steps 11, 12. As in Algorithm 4.1.3 the split method employed

is that of Algorithm 4.1.4 which splits a range by removing the smallest range of

tuples that do not have the target class label. The reason why a new heuristic is

not developed for this case is because gain is used as a comparative measure as to

which rules in the search tree is the best, not as a splitting criterion.

Figure 4.4 is a graphic representation of the search tree generated from splitting

the largest range using the described heuristic. Same as with Section 4.1.2 the
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returned rule may be generated in any place in the search tree rather than being

a leaf.

Figure 4.4: Tree generated by maximum gain splits.

4.1.4 All Confident Heuristic

Sections 4.1.1, 4.1.2 and 4.1.3 presented three different approaches to mining range

based association rules driven by a different splitting method for generating a

search tree, and an interestingness measure for defining what the result will be

in each case. In this section, the described method takes a different approach,

by using the same methodology for splitting the largest range and generating the

search tree but mining a set of rules from each tree. Based on the description of

the research problem these rules will have to meet the σmin, γmin, δmin, furthermore

we define an additional criterion that is required in this method.

The motivation for this method is to mine as many useful rules as possible from

the search tree instead of only the best based on a specific interestingness mea-

sure. This is a point that becomes more clear in the voting method employed for

prediction experiments in Chapter 5. The generation, of a set of rules, that result

from the splitting of a single largest range presents the issue of rule redundancy

according to Definition 3.3.8. Because in any given subtree of the splitting tree

the root is the rule with largest support and any rule represented by a node in the

same subtree can only cover a subset of tuples of those covered by the root, then
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if the child node is a rule of decreased confidence and density compared to the

root adding it to the resultset adds no useful information to the results. Therefore

any rule that meets the described criteria is only added in the results if and only

if it is not redundant. Based on the nature of the splitting methodology any rule

node has to be checked against rules represented by nodes in the same branch of

the tree as the rest will be covering different tuples. An example of such case is

represented in Figure 4.5.

Algorithm 4.1.6 presents the aforementioned method that mines all range-based

association rules that meet the minimum thresholds and are not redundant, the

process of splitting is using Algorithm 4.1.4.

Algorithm 4.1.6: All-confident rule generation

Input: A largest i-range l, parameters σmin, γmin and δmin and the target class

label ct

Output: The ruleset R

1 R← ∅
2 Q← ∅
3 Q← Q.enqueue(l)

4 while Q 6= ∅ do

5 q ← Q.dequeue()

6 if σ(q) ≥ σmin then

7 if γ(q) ≥ γmin ∧ δ(q) ≥ δmin then

8 if q not redundant in R then

9 R← R ∪ q
10 < r1, r2 >← maxConfidenceSplit(q)

11 Q← Q.enqueue(r1)

12 Q← Q.enqueue(r2)

13 return R

The differences of Algorithm 4.1.6 compared to previously described methods are

in the returned result which is a ruleset R instead of a single rule and the additional

redundancy check in step 8. In more detail, the algorithm starts by assigning R

an empty set in step 1 and adding the largest range l to the queue in step 3. The

algorithm, as in the previous methods, stops expanding the tree for any rule that

does not meet the support threshold in step 6. In step 7 the rule being currently

considered is checked to meet the given thresholds for confidence, density and in
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step 8 for redundancy. Note that according to the description above only parent

rules may render their children redundant and therefore there is never the need of

removing a rule that was already added to R. Regardless if the rule was added to

R in step 9, provided that minimum support is met it is split in steps 10, 11, and

12 into two new rules, therefore expanding the search tree.

Figure 4.5 is a graphic representation of the search tree generated from splitting

the largest range using the described heuristic. Same as with Section 4.1.2 a rule

included in the resulting set may be generated in any place in the search tree

rather than being a leaf.

Figure 4.5: Tree generated by maximum gain splits.

The method presented in this section returns a set of non-redundant rules from the

tree generated by splitting each largest range. This is a distinctive difference when

comparing it with the other three methods. Due to the rule redundancy property

each of the resulting rules represents a different branch in the tree, a different rule

mined from the same original largest range. This property is important in the

data characterization problem because of the utility of having more than one rules

to describe the - possibly - more than one characteristics of a given data range.
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4.2 Summary

This chapter has presented four(4) different heuristics used for splitting the largest

ranges generated using the algorithms originally described in Chapter 3. Each

heuristic method is driven by a different interestingness measure that it attempts

to optimise while meeting the thresholds provided. The splitting method also

varies depending on whether a split is performed for optimal support or for optimal

confidence.

Each of the four methods creates a solution space of the rules generated by split-

ting the original largest range and while most methods select a single rule from

that space one of the methods described returns a set of all the non-redundant

rules that meet the given criteria. The following chapter evaluates the impact of

the aforementioned differences by comparing experimental results of the different

methods described here.
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Chapter 5

Evaluation of Range-Based

Classification Rule Mining

In this chapter a series of experiments are performed in order to evaluate how

range-based classification rule mining addresses the original problem described in

this thesis. The experiments described examine the effect on the resulting rules

of different thresholds for the newly introduced density measure. The different

proposed methods in Chapter 3 are compared in terms of prediction accuracy,

the comparison includes results for modern solutions C4.5 and RIPPER that can

also generate range-based rules. Results are presented for other established rule

measures besides pure prediction accuracy. Finally, the ability to mine character-

ization rules using the presented methods is evaluated.

The following sections describe these experiments and the corresponding results.

5.1 Data Description

A number of publicly available datasets are used for the method evaluation [24,

33, 58, 80, 82, 104]. All datasets were selected from the UCI repository, [1]. The

selected datasets are amongst the most popular datasets in the research commu-

nity and vary in tuple and attribute size as well as the nature of their numerical

attributes and the number of different class labels. Table 5.1 contains a summary

of the different characteristics of each of the aforementioned datasets.
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Dataset Tuples Attributes Attribute Types Classes

Breast Cancer

(Diagnostic) 569 30 Real 2

Ecoli 336 7 Real 8

Glass 214 9 Real 7

Image Segmentation 2310 19 Real 7

Iris 150 4 Real 3

Page Blocks 5473 10 Integer, Real 5

Waveform 5000 21 Real 3

Wine 178 13 Integer, Real 3

Winequality-Red 1599 11 Real 11

Winequality-White 4899 11 Real 11

Yeast 1484 8 Real 10

Table 5.1: Datasets

5.2 Classification Experiments

This Section presents the results of a series of experiments to evaluate the perfor-

mance of the developed methods in a classification task. The datasets presented in

Section 5.1 are used for prediction and the results are compared against established

association rule mining algorithms. Section 5.2.1 presents how the newly intro-

duced measure of density affects the prediction results whereas in Section 5.2.2 the

designed solution is compared to the prediction accuracy of the RIPPER algorithm

[22] and C4.5 [92].

5.2.1 Density Effect

Description

The method presented in Chapter 3 relies on using three interest measures for

the extracted association rules. The two traditional measures of support, con-

fidence and a new one defined as density. The user defines threshold values

for each one of these measures which must be met by all rules. The experi-

ments presented in this section study the effect of the density threshold value
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for given < support, confidence > values. The best pair of values for the <

support, confidence > thresholds have been experimentally determined.

In order to examine how the different values of δmin affect the prediction accuracy

of the generated rules a series of prediction experiments are performed for each

dataset described in Section 5.1. For a given percentage of the data to be used

for training, ranging from 50% to 90% using 10% increments, an optimal set of

values, when not considering density, for σmin, γmin is determined experimentally.

Using the aforementioned setting the δmin threshold is assigned different values

∈ [0, 0.75] and the resulting prediction accuracy is plotted for each case. These

experiments are performed using all four(4) methods as described in Chapter 4.

The results presented in Section 5.2.1 determine the best values to use for the

density threshold (δmin) when performing experiments on prediction accuracy. As

explained, δmin is one of the defined thresholds that all the rules must meet,

therefore the following experiments explore the effect that the newly introduced

measure can have to the resulting rules when this minimum requirement increases

gradually. Furthermore, rules that achieve higher density are more suitable for the

data characterization problem therefore the following experiments demonstrate the

loss in prediction accuracy for each method when attempting to mine range-based

association rules for characterization purposes.

Results

The graphics in this Section present the results for the experiments described

above, in Section 5.2.1 for all the datasets used in this chapter. Each graphic

represents all the five cases for different training data percentages for comparison.
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Figure 5.1: Density effect on prediction accuracy of breast cancer data.
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Increasing the density threshold reduces the number of rules that can be generated.

For some data sets this means that the prediction accuracy is reduced due to

the reduced number of generated rules that can be used for prediction. In the

case of the breast cancer dataset, however, the prediction results for methods 2

and 4 are quite resilient to density threshold increases. Method 3 demonstrates

different behaviour where its accuracy drops significantly past a certain density

threshold. Method 1 has the lowest accuracy of all methods but is the only one

that benefits from density threshold increases. This is because method 1 is mining

rules of increased support but does not attempt to increase confidence beyond the

specified γmin therefore in this case the increased density threshold improves the

confidence amongst the resulting rules and the overall prediction accuracy.
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Figure 5.2: Density effect on prediction accuracy of ecoli data.

The effect of increasing δmin is clear for all methods in the case of the ecoli data.

Prediction accuracy decreases as the threshold is increased with the only difference

being the rate of the decrease which seems to be higher for method 3. The conclu-

sion for the ecoli dataset is, however, clear, higher precision accuracy is achieved

by using a small threshold for density.

This dataset is a characteristic example where mining dense rules proves difficult.
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Therefore setting a high threshold for density effectively removes from the dataset

certain rules that were good classifiers (had a good effect on prediction accuracy).

Although this effects the prediction results for the proposed method as shown

in Figure 5.14, it is not necessarily an undesired effect since the aforementioned

rules are useful predictors but not so useful when the desired output is a set of

characterization rules that describe a dense data area.
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Figure 5.3: Density effect on prediction accuracy of glass data.

The density effect experiments for the glass dataset lead to similar results as for

the ecoli data. Lower values of δmin achieve the best prediction accuracy for all

methods. Method 3, specifically, is affected more drastically as prediction accuracy

decreases faster when the threshold increases to ≥ 0.2. It is worth noting, however,

that unlike the ecoli data results the method 2 demonstrates a loss in prediction

accuracy similar to that of method 3. The cause of this is that the most confident

rule changes as the density threshold increases (if it did not the prediction results

would be the same) whereas method 4 that mines all the rules that meet the

desired thresholds manages to achieve a relatively constant prediction accuracy.

These results are a product of the utility of mining overlapping rules that allow

for accurate prediction even when the most confident rules are removed from the

results.
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Figure 5.4: Density effect on prediction accuracy of image segmentation data.

A very low density threshold results in best accuracy prediction in the case of image

segmentation data. Interestingly, in the case of using 50% of the data for training

the prediction results for δmin ≥ 0.25 are better than for δmin ∈ [0.1, 0.15]. These

results mean that rules r with density δ(r) ∈ [0.1, 0.15] have very low accuracy

which is why the prediction results improve when these rules are excluded by

increasing the threshold. This case is different than the previous datasets shown

above. It is the first example where the most confident rules and the rules with

highest information gain are not the best predictors but it only occurs when using

≤ 70% of the data for training.
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Figure 5.5: Density effect on prediction accuracy of iris data.
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The iris dataset is a case where the designed solution performs very well in terms of

accuracy as can be seen in Figure 5.17. Figure 5.5 shows all methods maintaining

a high level of prediction accuracy for δmin ≤ 0.35. These results indicate that the

rules mined from the iris data have a high density even when density is not used

as a criterion, therefore separation between the different classes is not difficult.

The above is verified by the high accuracy achieved by the designed methods as

well as other mining solutions in Section 5.2.2.

Density effect in this case is limited in most cases and only affects method 4 when

using 70% of the data for training. The iris dataset has historical value but does

not seem to be representative of modern data collections. Furthermore it is a clear

case of a dataset that was originally constructed as a classification problem.
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Figure 5.6: Density effect on prediction accuracy of page blocks data.

Increasing the density threshold has an interesting effect on prediction accuracy

when using the page blocks dataset. As in other cases the best results are achieved

with a very low threshold because in that case the algorithm has more options to

construct range-based rules. However, when δmin ≥ 0.1 all methods achieve the

exact same accuracy which remains steady as the threshold increases, the actual

value only depends on the percentage of data used for training. This is due to the

nature of the dataset which consists of one dominant class label with a frequency
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percentage of 89.8%. The results shown in Figure 5.6 demonstrate that the rules

for every class label except the dominant one fail to meet the density criterion

when the threshold increases. With a low δmin method 4 achieves accuracy that is

greater than the frequency of the dominant class indicating that the all-confident

method is able to mine rules for the low frequency class labels as well as the

dominant one.
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Figure 5.7: Density effect on prediction accuracy of waveform data.

Figure 5.7 shows the effects of increasing the density threshold to be similar to the

majority of the experiments in this Section. Low values of deltamin result in better

accuracy. However, as can be seen in Figure 5.7 the loss in accuracy is low while

δmin ≤ 0.2 but significant when δmin ∈ [0.25, 0.3]. Even though the impact in this

case is not identical for all methods, the results indicate the same behaviour as

with the page blocks dataset where there is a characteristic maximum value for

δmin. Because the waveform data contain class labels of equal frequencies the loss

of accuracy affects all classes and is higher compared to the page blocks data.
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Figure 5.9: Density effect on prediction accuracy of wine data.

Prediction accuracy for the wine data is the highest overall of all the datasets.

Figure 5.9 shows how the resulting accuracy is not affected as significantly as it

was in other cases. More importantly, for methods 2, 3, 4 increasing the δmin value

up to 0.25 has little to no effect to the measured accuracy . Furthermore, all

methods increase in prediction accuracy for δmin ≥ 0.35 and unlike other datasets

the measured accuracy consistently increases for larger threshold values (method 3

demonstrates that behaviour only for δmin ∈ [0.35, 0.6]). These results are consis-

tent with what can be seen in Figure 5.20 where the average results are compared

to other algorithms, the wine data contain confident rules with high support and

density that achieve high prediction accuracy.

These results also indicate that the classification results for the presented solution

can improve by specifying a different threshold value in each case of different train-

ing data percentage. For consistency, however, the comparison in Section 5.2.2 the

same set of < γmin, δmin, σmin > values is used for all experiments on a specific

dataset.

79



Chapter 5. Evaluation of Range-based Classification Rule Mining 80

Figure 5.10: Density effect on prediction accuracy of red wine quality data.
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The wine quality datasets both for red and white data have a unique property,

not all the class labels are present in the dataset and the existing class labels

are unbalanced. This is an important property since it increases the difficulty of

prediction when the training data percentage is low. This is visible in Figure 5.10

where the accuracy in the cases of using 50%, 60% and 70% of the data for training

increases as the δmin threshold increases to mid-range values. When 80% of the

data is used for training the best accuracy is achieved for very low δmin values

which is also true for methods 3, 4 when using 90% of the data for training.

Method 1 is the exception to the above achieving relatively constant accuracy in

these experiments. The unbalanced class labels produce an interesting result since

method 2 that mines a single most confident range-based classification rule form

every consequent bounded rule is overall more accurate than method 4, that uses

the all-confident method for splitting.
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Figure 5.11: Density effect on prediction accuracy of white wine quality data.

The white wine quality dataset contains the same attributes as the red wine qual-

ity dataset but contains three times as many tuples. In this case the phenomenon

of increased accuracy for mid-range values of δmin is more evident as the train-

ing data percentage increases. In addition to the class imbalance that is present

in this dataset as well, the reason why mid-range δmin values achieve higher ac-

curacy is related to the average accuracy achieved overall. In our results, the

designed algorithm generates a large number of rules but the prediction results
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shown in Figure 5.11 show that the generated rules are not suitable for prediction

and that increasing the density threshold improves the prediction results. Note

that the rules generated for δmin = 0.35 are a subset of the rules generated for

δmin = 0.05 but filtering the lower density rules improves the accuracy achieved

by the remaining rules. Based on the above, density can be a useful measure

not only for characterization purposes but for prediction tasks as well when the

support/confidence measures are not sufficient.
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Figure 5.12: Density effect on prediction accuracy of yeast data.

Prediction accuracy, in the case of the yeast dataset is again highest when the

δmin threshold is set low. Figure 5.12 shows a difference in the effect of density

to method 4 when compared to the other methods. The all-confident method

is the only one that demonstrates an increase in prediction accuracy for δmin ∈
[0.2, 0.4] whereas, like the other methods, it remains relatively steady for δmin >

0.4. Method 4 is the only designed method that from each split mines all the rules

meeting the given criteria and not a single rule, therefore the improved accuracy

for higher density threshold can be attributed to the positive impact on prediction,

of the additional rules mined.

5.2.2 Prediction Accuracy

Description

The experiments presented in this section aim to evaluate the prediction accuracy

of the developed approach. As shown in Section 5.2.1 different thresholds affect
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the resulting rules significantly, therefore, before performing a comparison of the

developed methods, an optimal set of values for each < method, dataset > are

used to compare the results for each method.

Furthermore, in order to assess, the efficiency of the algorithm as a classification

method, the prediction accuracy of each method is compared against that of es-

tablished rule induction solutions. The algorithms used for comparison are Weka’s

[51] implementation of the RIPPER algorithm [22] which in Weka is referred as

JRip and the implementation of an improved C4.5 [92] referred to as J48.

For each dataset, experiments are performed by using 50%, 60%, 70%, 80% and

90% of the data for training and the resulting rules are used for predicting the

remaining unlabeled data. As the percentage of training data increases it is ex-

pected that the prediction accuracy improves because the mining algorithms have

more data to use for generating the rules. This is especially important in datasets

where certain class labels are infrequent in the training data resulting in a small

number of rules for these classes and consequently bad prediction results in the

unlabeled data with the same class labels. However, as the training data increase

in size it is also possible that the resulting rules over-fit the data, meaning the

rules are not general enough to cover the unlabeled cases and prediction perfor-

mance decreases.The training data are always selected by preserving the tuples’

order (e.g. when 50% of the Ecoli data is used for training, this means the first 168

tuples). This way, all algorithms use the exact same tuples as the training data

and are not allowed to select those tuples that provide the best results, so that

the comparison is consistent. The prediction decision is using a voting table for

each unlabeled tuple. For a dataset of n class labels the voting table v is an 1×n
table where the vi position of the table is the number of rules with consequent

ci that the given tuple meets. The prediction made by the algorithm is the class

label with the most votes.

Table 5.2 shows an example of a voting table. In this example we attempt to

classify an unlabeled tuple of a dataset with four possible class labels {c1, c2, c3, c4}.
The resulting table shows that the tuple was covered by a total of 13 rules that

were mined from the training data and that the majority of the rules (9) have

c3 as the rule consequent, therefore the prediction made by CARM is c3. In the

case that more than one class labels have the largest number of votes, selection

between these class labels is based on their corresponding support in the training

data.
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c1 c2 c3 c4

0 3 9 1

Table 5.2: A possible voting table

Results

This section presents the results of the prediction experiments described in Sec-

tion 5.2.2. A graphic is presented for each dataset with the results from all com-

peting algorithms followed by a short summary of the results in each case.

Figure 5.13: Prediction accuracy comparison for the breast cancer dataset

The maximum-support method scores lower than any other algorithm. This is

expected since the mined rules are not optimised for confidence, only γmin is met.

The maximum-confident method performs well compared to JRip and J48 but the

maximum-gain and all-confident methods clearly outperform competing solutions

except for J48 when using 90% of the data for training.
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Figure 5.14: Prediction accuracy comparison for the ecoli dataset

Both J48 and JRipper outperform the designed solution for the experiment on

ecoli data. This is a characteristic example of a dataset with many different,

very unbalanced, class labels. The competing algorithms that are designed as

classifiers ignore several of the infrequent class labels in the resulting model which

helps with classification results in this case because the frequency of these classes is

particularly low ([2, 20]). The designed algorithm, however, ignores class frequency

and if the class label is one that good rules may be derived from it all these rules

are included in the resulting rule set. This phenomenon affects the voting array

however, thus reducing prediction accuracy.
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Figure 5.15: Prediction accuracy comparison for the glass dataset

The glass dataset is another dataset with a large number of different, unbalanced

class labels. Because of its criminological origin the attributes are carefully se-

lected to sufficiently describe a trace of glass material. Methods 3 and 4 outper-

form the competing solutions overall, more specifically, the all-confident method

is consistently more accurate than 70% regardless of the data percentage used for

training.

Figure 5.16: Prediction accuracy comparison for the image segmentation dataset
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Image segmentation results show similar performance from methods 2, 3 and J48

whereas JRip and method 4 seem to be less accurate. The differences between

the solutions, however, are small. One important note in these results is the large

improvement of the maximum-support method when the training data percentage

increases to 70% or more. This is an indication that rules of high support serve

as good classifiers in these cases.

Figure 5.17: Prediction accuracy comparison for the iris dataset

The iris dataset is the most popular dataset in classification research, although it

is not as challenging for modern solutions. This is evident in the results where all

methods, including method 1, perform very well with accuracy > 85%.
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Figure 5.18: Prediction accuracy comparison for the page blocks dataset

The page blocks dataset includes integer as well as real values. Results demon-

strate that with the exception of the all-confident method, the developed algo-

rithms perform worse than the competing solutions. As is evident in Figure 5.18

the achieved accuracy is relatively high for all methods, including methods 1− 3.

Figure 5.19: Prediction accuracy comparison for the waveform dataset

The waveform dataset is the only dataset consisting of data generated from a

data-generator, the code for which is publicly available [104]. The generated data

includes noise which seems to affect the prediction accuracy of the developed
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algorithms less than for competing solutions. More specifically methods 2 − 4

predict more accurately than both JRip and J48 in every experiment, the difference

accuracy gradually decreases as the training data percentage increases. The only

exception is method 1 that has very low prediction accuracy.

Figure 5.20: Prediction accuracy comparison for the wine dataset

The wine dataset experiment is another case where all methods score high in pre-

diction accuracy overall. The developed method for maximum gain rules, achieves

the highest accuracy on average whereas unlike in most cases, the method mining

maximum confident rules performs better than the all-confident method.
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Figure 5.21: Prediction accuracy comparison for the wine quality red dataset

Figure 5.22: Prediction accuracy comparison for the wine quality white dataset

The wine quality datasets consist of data gathered in real world. The attribute

values are indexes commonly used as wine quality indicators. The presented ex-

periments include two datasets, one containing red wine data and one containing

white wine data. These datasets are of particular interest since they concern a

very realistic scenario. All methods achieve accuracy that is significantly less than

in the other experiments, indicating the difficulty of separating the different data

classes. Furthermore, not all of the predetermined classes are represented in the

dataset which is the expected scenario in a data characterization problem.
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The J48 algorithm achieves low accuracy in this experiment indicating that the

use of rule based solutions is better. The developed algorithms for all methods

perform well, indicating that the support based method is useful when mining data

of this nature. The all-confident method is the one achieving the best accuracy

on average for these data.

Figure 5.23: Prediction accuracy comparison for the yeast dataset

The yeast dataset consists of real data measurements of protein attributes. The

developed algorithms are used for predicting the localisation site of proteins based

on the aforementioned measurements. The class label frequencies are very un-

balanced with half the class labels only consisting less than 3% of the data each.

Methods 3, 4 outperform J48 but the overall best average accuracy is achieved by

JRip. This difference in performance is attributed to the relatively high accuracy

achieved by JRip when using only 50% of the data for training. Accuracy for

methods 3, 4 improves consistently as the number of training tuples increases.

Section 5.2.2 presents the results of the aforementioned experiments collectively

for a direct comparison of the average results achieved by each algorithm.

Prediction Accuracy Results Summary

Table 5.3 shows a summary of the average prediction accuracy results achieved in

the series of experiments presented here.

93



Chapter 5. Evaluation of Range-based Classification Rule Mining 94

Dataset
Algorithm

RIPPER C4.5 CARM CARM CARM

(JRip) (J48) M2 M3 M4

Breast Cancer

(Diagnostic) 93.63 94.88 93.55 96.51 95.8

Ecoli 79.6 79.87 74.36 73.2 75.25

Glass 68.94 65.6 61.09 70.86 78.85

Image Segmentation 86.06 88.92 88.69 88.52 87.46

Iris 92.69 91.58 90.96 93.62 92.62

Page Blocks 92.4 93.58 86.7 87.34 92.22

Waveform 78.4 75.47 80.97 81.18 81.79

Wine 93 94.88 95.45 96.62 93.03

Winequality-Red 48.94 47.3 49.69 52.68 52.07

Winequality-White 52.43 43.02 43.45 48.85 54.44

Yeast 55.62 50.54 48.91 53.75 53.3

Total Average 76.52 75.06 73.98 76.65 77.89

Table 5.3: Average Prediction Accuracy (%)

Table 5.3 summarises what was described in Section 5.2.2. The maximum support

method is omitted, since, as mentioned in Section 5.2.2, its prediction accuracy

was not comparable to the other methods. It is important to note that out of

the 4 times that the highest accuracy was not achieved by one of the methods

described in this thesis, 3 times the J48 implementation of C4.5 was the solution

with the best overall result. Overall, however, J48 performance was lower than

JRip which achieved the best accuracy only in one case.

The designed algorithms are created to address the problem of data characteri-

zation. The differences between characterization and classification are described

in detail in Section 5.3.1. The aforementioned, experiments, however, prove that

the classification performance of the new methods is comparable, and marginally

superior, compared to that of two of the most popular rule mining solutions in the

research community. In order to analyse the statistical significance of the results

presented in Table 5.3 one way ANOVA (analysis of variable) is employed [55].

The high p-value shown in Table 5.4 verifies that CARM results are comparable

to both C4.5 and RIPPER. Figure 5.24 provides a box plot of the results of each

method shown in Table 5.3.
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Source Sum of Degrees of Mean F-statistic p-value

squares freedom squares

Columns 101.5 4 25.372 0.07 0.9898

Error 17180.7 50 343.614

Total 17282.2 54

Table 5.4: ANOVA table for prediction summary results.

Figure 5.24: Box plot for prediction summary results.

5.3 Characterization

Section 5.2.2 presented a series of experiments that demonstrate the competitive-

ness of the designed solution in a classification context. The purpose of this thesis,

however, is to describe a solution that generates rules that are useful for charac-

terizing continuous data. This section presents specific aspects of range-based

classification rule mining that address the purpose of data characterization better

than the existing solutions.
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5.3.1 Differences Between Characterization And Classifi-

cation

The problem of mining characteristic rules from data is closely related to that of

classification. There are, however, distinctive differences. When mining classifi-

cation rules the importance lies with having rules that given a set of unlabeled

data tuples can accurately classify them in a pre-defined set of classes. From a

data characterization perspective, however, it is important to identify rules that

represent areas in the data of potential interest and can be used for generating

hypothesis that can be evaluated on the given problem space.

In classification the result is a model capable of classifying unlabeled data. Even

when this model consists of a set of association rules, like in the case of RIP-

PER, these rules should not be interpreted or evaluated individually. Evaluating

rules individually is possible after post-processing but in this case there are no

guarantees that the processed rules will be of interest.

Generally speaking classification focuses on mining knowledge that will be able

to accurately classify new, unseen data whereas characterization focuses on best

describing the given data and their multiple characteristics. Because of the above

in the case where the unlabeled dataset have the same underlying characteristics

as the mined data a good characterization solution will have good classification

results, but accurately predicting the unlabeled data does not mean that all the

characteristic and possibly useful rules are included in the mined ruleset. This

is why the features used for evaluating the resulting rules in Section 5.3.2 do not

refer to unlabeled data only but properties of the mined rules themselves with

regards to the mined dataset.

5.3.2 Characterization Evaluation

This section presents a comparison between range-based classification rule mining

and competing solutions with regards to specific features of the developed solu-

tion that serve the purpose of data characterization and are often overlooked by

methods designed specifically for classification.
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The Benefit Of Ranges And Overlapping Rules

All methods applied on continuous data that do not require pre-discretization,

perform a type of split of the data, thus generating numerical ranges. In existing

solutions, this is a binary split, in a form of a relation of greater-or-equal (≥)

or less-or-equal (≤). The developed method detects a numerical range, with an

upper and lower limit, that effectively splits the attribute values in three ranges.

A more important differentiation is rule overlapping. The developed method mines

overlapping rules which allows for alternative splits of the same problem space.

Both RIPPER and C4.5 attempt to split the space in disjunct areas of high confi-

dence, what differs is the strategy. In every step, however, the data space is split

and any tuple that is included in a resulting rule is excluded from the data points

that are used for further mining. Figures 5.25, 5.26 represent the two different

methods when mining a dataset of two different class labels. More specifically, Fig-

ure 5.25 demonstrates the split of a given data space using non overlapping rules.

Changing the rules requires mining the data again using different thresholds.

Figure 5.25: A model consisting of non overlapping rules

Mining overlapping rules is a greater challenge but allows the same tuple to be

mined as more than one different rules and by extension the complete data set to be

represented by more than one rule sets. In Figure 5.26 the different representations

consist of a single rule-set resulting from the described method. Note that not only

rules for the same class may overlap.

In the context of data characterization multiple representations of the given data

space allow for more options when evaluating the knowledge represented by the

rules.

Furthermore, the voting methodology during prediction gives a more complete
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Figure 5.26: A model consisting of several representations using overlapping rules

image for the unlabeled data when the number of different classes is higher. For

example, consider an unlabeled tuple where the voting table is Table 5.5.

class1 class2 class3 class4 class5

4 3 0 1 0

Table 5.5: An example of a voting table

When predicting using non-overlapping rules the unlabeled tuple may only be

covered by a single rule in the model which may be a default rule in the case of

RIPPER (a rule for any tuple not covered by the mined rules). However, there is
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no information about the relation of class1 and class2. If the two classes represent

conditions that a domain expert considers similar then this is actually a highly

confident rule, otherwise, if the two classes represent very different conditions it is

not. In any case the voting table provides important information for interpreting

the rule.

Result Consistency

One feature of data characterization is consistency. Classification relies heavily

on the data used for training the classifier(s) and adding to the training data

changes the results significantly. However, from a characterization perspective,

adding 10% of tuples to the training data should not differentiate the resulting

rules significantly since the data characteristics have not changed significantly.

In the graphics below there is a comparison of the absolute difference in prediction

accuracy when changing the percentage of data used for training, between JRip,

J48 and the max-gain and all-confident methods of the described algorithm.

Figure 5.27: Prediction accuracy consistency for breast cancer data.

99



Chapter 5. Evaluation of Range-based Classification Rule Mining 100

Figure 5.28: Prediction accuracy consistency for ecoli data.

Figure 5.29: Prediction accuracy consistency for glass data.

Three datasets were selected for these experiments. The Ecoli data represent the

most characteristic case where prediction using range-based rules is less accurate

than the competition, whereas the Glass dataset favors it. Finally, the breast

cancer dataset is used as a representative case of the average scenario, where the

presented method outperforms both competitive solutions.

The figures demonstrate that the all-confident method performs more consistently

than both JRip and J48 in most cases and with significant difference. The max-
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imum gain method performs well but not as well as the all-confident approach.

These results are an important point for the robustness of CARM as a classification

method, which is a positive feature when characterizing data.

Top k Rule Cohesion

Data characterization is an important, realistic problem with applications in many

data mining scenarios. Unlike classification, however, measuring the characteriza-

tion effectiveness of a data mining methodology, and more importantly comparing

the characterization effectiveness of different solutions is challenging since there

are no established methods of doing so. Result consistency, as presented in Sec-

tion 5.3.2 is an aspect of the presented algorithm that reinforces its value as a data

characterization solution. In this section another set of experiments is presented,

measuring the median density of the best k rules.

The motivation behind these experiments is to determine the characterization

value of the generated rules by measuring how dense are the best rules generated

from the data. Selecting the best rules is closely related to the characterization

problem, when trying to identify the characteristic knowledge derived from a mined

model a user is most likely to select a subset of k rules. For example, consider a

racing team that is using practice data to determine the best settings for a vehicle.

The team’s experts will be most interested in the knowledge derived by those laps

when performance is best rather than any other case. The criteria that determine

exactly which rules are best vary for different scenarios.

Selecting the set S of the k best rules, however, is not enough since there still

remains the challenge of determining how independent these rules are from the

remaining data, the tuples not covered by the rules in S. A rule is independent

when there is minimal overlap between the associated ranges and the data not

covered by it, therefore when its density is high. The following experiments use this

hypothesis to determine the characterization strength by comparing the median

value of density, δ of the k best rules for each dataset, where k = 10. In the results

presented in Table 5.6 the rules are selected using confidence whereas in Table 5.8

the rules are selected using support. In both cases the complete datasets were

used to mine the rules.
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Dataset
Algorithm

RIPPER C4.5 CARM CARM

(JRip) (J48) M3 M4

Breast Cancer

(Diagnostic) 0.398 0.015 0.41 0.41

Ecoli 0.126 0.013 0.058 0.229

Glass 0.089 0.026 0.122 0.122

Image Segmentation 0.147 0.021 0.313 0.313

Iris 1.0 0.32 0.625 0.625

Page Blocks 0.035 0.001 0.03 0.076

Waveform 0.075 0.011 0.019 0.035

Wine 1.0 0.325 0.337 0.337

Winequality-Red 0.018 0.009 0.02 0.03

Winequality-White 0.002 0.004 0.016 0.012

Yeast 0.110 0.007 0.026 0.015

Table 5.6: Median density cohesion for the 10 most confident rules.

Table 5.6 shows a summary of the results when the 10 most confident rules are

selected for comparison. One point clearly shown in above table is that C4.5 is

clearly outperformed by the other solutions in every single case examined. The

C4.5 algorithm mines rules by performing binary splits on numerical ranges, in

every experiment performed it results in more rules than RIPPER that achieve

higher confidence but the density of the resulting rules is reduced. RIPPER is a

special case, as seen in Table 5.6, it has the highest median density in 4 cases but

in the case of the iris and wine datasets this is because of the very small number

of rules actually generated by this method (3 rules for each dataset). This can be

easily identified in the results by comparing Tables 5.6 and 5.8 where the median

values for RIPPER are the same for 6 out of the 11 datasets since the selected

rules are exactly the same.

The methods presented in this thesis, however, outperform overall, both competing

solutions mining a high number of rules in every case and achieving comparatively

high density for the selected rules. More specifically method 4 performs better

than method 3 since the split methodology results in a set of all the rules meeting

the given thresholds instead of only the rule of highest gain.

Table 5.7 and Figure 5.30 show ANOVA results and the corresponding box plot
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for each algorithm. It is important to note that in the box plot the best results

for RIPPER are marked as outliers which is consistent with the experiments that

show the reason for the high values is the actual inability of the algorithm to mine

a large enough number of rules in these cases.

Source Sum of Degrees of Mean F-statistic p-value
squares freedom squares

Columns 0.23623 3 0.07874 1.31 0.2844
Error 2.4037 40 0.06009
Total 2.63993 43

Table 5.7: ANOVA table for density cohesion of 10 most confident rules results.

Figure 5.30: Box plot for density cohesion of 10 most confident rules results.

Table 5.8 shows a summary of the same results when the top 10 rules are se-

lected using support as the criterion for the selection. The comparative results for

C4.5 do not change, the tree-based mining algorithm achieves low density results

compared to the other methods. RIPPER results, excluding the iris and wine

datasets, are higher than C4.5 but not as high as the results of the presented

methods. An important remark is that for all methods selecting the rules with

best support results in better density. This is an indication that in most cases, in

the datasets used in this chapter, the algorithms that are trying to improve rule

confidence suffer a decrease in rule density.
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Dataset
Algorithm

RIPPER C4.5 CARM CARM

(JRip) (J48) M3 M4

Breast Cancer

(Diagnostic) 0.398 0.019 0.596 0.645

Ecoli 0.126 0.042 0.515 0.518

Glass 0.089 0.056 0.227 0.237

Image Segmentation 0.238 0.094 0.161 0.161

Iris 1.0 0.32 0.625 0.749

Page Blocks 0.035 0.021 0.999 0.999

Waveform 0.163 0.025 0.191 0.243

Wine 1.0 0.325 0.376 0.404

Winequality-Red 0.064 0.024 0.174 0.313

Winequality-White 0.056 0.009 0.482 0.684

Yeast 0.132 0.038 0.16 0.17

Table 5.8: Median density cohesion for the 10 most supported rules.

ANOVA results shown in Table 5.9 and Figure 5.31 demonstrate how the results

for C4.5 and RIPPER do not differ significantly from the selection of the 10 most

confident rules. These results indicate that unlike CARM these solutions are not

as flexible at focusing on a different measure and are primarily designed to target

highly confident rules which is the primary concern for classification solutions.

The two perfect density scores of RIPPER are again marked as outliers.

Source Sum of Degrees of Mean F-statistic p-value

squares freedom squares

Columns 0.91538 3 0.30513 4.2 0.0112

Error 2.90318 40 0.07258

Total 3.81856 43

Table 5.9: ANOVA table for density cohesion of 10 most supported rules results.
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Figure 5.31: Box plot for density cohesion of 10 most supported rules results.

5.4 Summary

The extensive experiments presented in this chapter evaluate the performance of

the designed algorithm when applied to either a classification or data characteriza-

tion task, using a collection of popular established datasets of variable properties

covering a large number of different cases.

In terms of classification, the presented algorithm achieved results comparable to

those of RIPPER and C4.5 and methods 3 and 4 proved better, by a small margin,

in terms of prediction in the series of experiments.

Furthermore, CARM was shown to be able to address challenges related to data

characterization. The evaluation in terms of results consistency and top-k rule

coverage show how the properties of mining overlapping rules and generating mul-

tiple alternatives to covering the given data set make CARM a better solution for

data characterization.
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Conclusions and Future Work

6.1 Conclusions

Due to the increasing number of data collections that are continuously being devel-

oped across different areas the need for data mining solutions that can translate

these datasets into useful domain knowledge has become increasingly relevant.

This thesis has examined the problem of a dataset containing real values as at-

tributes where the mining process needs to maintain the original properties of the

recorded values as real numbers. The desired result is a set of rules that can be

evaluated by domain experts and used for generating hypotheses on the given data

that can lead to previously hidden domain knowledge. The contributions of the

presented work can be summarised as follows:

• Range-based rules: This thesis proposed a novel solution that mines con-

tinuous ranges, including ranges that can overlap, that meet a set of given

thresholds for confidence, support and density. The resulting rules, there-

fore, meet the pre-determined requirements and optimise a heuristic-based

criterion.

The fact that no discretization is necessary on the data makes the mining

process simpler and also applicable in a wider range of datasets. Discretiz-

ing the continuous attributes essentially changes the nature of the data from

continuous to categorical, this is evident in the fact that the efficiency of

solutions that employ discretization is highly dependable on the discretiza-

tion itself. Therefore, as explained in Section 2.2, discretizing the data does

not resolve the problem of mining continuous attributes but transforms the
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problem into finding a proper discretization method. Furthermore, a good

discretization relies on the underlying data, therefore if the mined dataset

changes it is very likely that a new discretization will have to be found before

the mining application.

This is an important factor since many real world datasets contain real

values (e.g. mining of historical data collections of industrial production

sites). Using the designed solution alleviates the need for discretizing the

data and allows for direct mining of the data allowing for the mining of

overlapping ranges. Overlapping ranges allow for a specific data value to

be included in more than one of the resulting rules which is an important

feature in the exploratory analysis attempted in this thesis.

• Density measure: The solution described uses the traditional confidence

and support paradigm for evaluating rules. However, one of the key aspects

of this work is the nature of continuous data and the aforementioned mea-

sures were originally designed for mining solutions focusing on categorical

data. In order to evaluate how dense is a range-based rule, that is how many

of the data values are covered by the individual ranges but not by the rule,

the described solution proposes a new measure of density. Employing the

new measure during the mining process as a user set threshold allows for the

mining of dense rules.

The new measure can also be used in existing solutions by modifying the

mining algorithm to include it as a threshold or simply to evaluate the re-

sulting rules which is useful in the context of data characterization. When

evaluating rules for generating hypotheses dense rules will be preferable since

the described data are more independent of the remaining dataset.

A series of experiments in Section 5.2.1 also demonstrates how different

values for the density threshold affect the prediction results of the mined

rules.

• Heuristic based approaches: Chapter 4 describes four different heuris-

tic based algorithms for generating range-based classification rules. Each

method is based on optimising a different criterion therefore allowing for a

different approach to generating the resulting set of rules. The different cri-

teria applied result in a different split of the consequent bound rules. More

importantly, two methods, one based on splitting for the best gain rule and

the other based on splitting for best confidence and selecting all the rules
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that meet the user-defined thresholds, are shown to perform very well on

traditional prediction tasks as well as data characterization.

Specifically, an evaluation over a large number of publicly available datasets

shows the new methods outperforming overall the two established solutions

of Ripper and C4.5 in prediction in spite of not having been developed for

traditional classification tasks. The new methods are shown to handle well

the used datasets and performing particularly well in difficult data sets where

it is hard to identify good ranges in the data. Overall the designed methods

have been shown to be flexible due to the users ability of defining minimum

thresholds for the mined rules, effective in prediction tasks as well as in cases

where the goal is to find important data areas that can be used to discover

new data knowledge.

• Characterization: In the described scenario the requested solution needs

to go further than traditional data analysis. This thesis describes the defin-

ing properties of the data characterization problem and how it differs from

traditional analysis methods. A detailed explanation is provided for cases

when it is important to discover specific rules of characterization importance

rather than rules that simply achieve higher classification accuracy.

The limits of existing solutions have been previously identified in existing

work [94, 96, 111, 112] but the concept of mining classification rules for

the purpose of data characterization has not been addressed in the existing

literature. More importantly this thesis presents specific aspects of data

characterization that a rule mining solution needs to address in order to be

considered an efficient data characterization solution.

The max-gain and all-confident methods presented in this thesis are eval-

uated against the aforementioned criteria and shown to address the newly

defined aspects that are not covered by existing solutions.

6.2 Applications

There is a range of applications for CARM. Examples provided in this thesis,

represent areas where CARM can help extract important knowledge from the data.

A characteristic example, and one that served as an inspiration for the development

of CARM, is the analysis of a dataset recorded in a production facility where the
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data consists of real values that record at regular intervals the conditions of the

production process. The target classes are the classification of the process output

which can be in terms of efficiency (Good, Average, etc.) profitability (Very

profitable, Marginally profitable, etc.), it is also possible to repeat the analysis

using different classes as the target. Consider the example of a chemical process

that follows a production method. Historically this process will have been run

within certain parameters as long as profitability, safety and legislation compliance

are achieved. A classification model assumes that everything is known about the

process and may successfully predict the outcome within the same parameters but

CARM can help domain experts use the mined rules to discover possible areas of

improvement and under certain conditions to better understand the underlying

mechanisms.

This applies to other processes that have not been fully modelled like biochemical

reactions, financial data like stock values where the monitored data are numerical

and there is often a requirement of understanding (characterizing) what is in the

data. CARM would be ideal for these applications.

Any of the four methods described in Chapter 4 could be applied although experi-

mental results suggest focusing on the maximum gain and the all-confident method

to mine a set of candidate rules. The resulting rules can then be ranked and/or

evaluated so as to select data ranges to focus on for further exploration (hypoth-

esis generation). This point may be considered a weakness of CARM compared

to classification solutions that are more “automated” and do not require domain

knowledge to be applied on the resulting model, however large real-world pro-

duction processes are not fully mapped and the aforementioned models rely on

assumptions that may contradict domain knowledge.

6.3 Future work

This section examines possible ways of extending the work presented in this thesis.

First, Section 6.3.1 presents ways for improving the described solution by exploring

options that go beyond this thesis whereas Section 6.3.2 examines possibilities of

applying the presented work in different areas.
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6.3.1 Modifications

The problem of generating consequent bounded rules is covered in Chapter 4 and

the heuristics presented in Chapter 3 explore the options of splitting for generating

the rules quite conclusively. However, there is room for exploration in creating

a parallel executed algorithm, including categorical attributes in the mined data

and in the area of evaluating the resulting rule particularly in the context of data

characterization.

• Parallel execution: The most costly process in the presented algorithm is

the splitting of each consequent bounded rule in the LR structure. However,

each entry in the structure is independent of the others and the splitting

process can be mapped to run on a separate processor. Therefore, it is pos-

sible to modify the existing implementation to use a modern data processing

tool like [25] for executing the split processes in parallel.

Developing such a solution will improve the scalability of the existing algo-

rithm, especially in the case of datasets with a very high number of attributes

where the number of possible associations increases exponentially. Provided

that the resulting solution is efficient enough it is also possible to auto-

mate the process of identifying the optimal values for the given thresholds.

More specifically when a specific evaluation process is defined, like in the

exploratory analysis in Section 5.2.1, it is possible to automatically define

the optimal thresholds for σmin, γmin, δmin. This could prove useful when

developing a software tool that performs a complete mining process using

the solution in this thesis.

• Categorical data inclusion: CARM has originally been designed to mine

data consisting of real values only. The mining of ranges does not apply in

categorical data but CARM can be modified to handle categorical attributes

as well. A naive approach would be to split the dataset in two subsets one

containing the categorical attributes, where a standard a-priori like solution

can be applied, and one containing the continuous ones, where CARM is

applied, and attempting to intersect the resulting sets. A more efficient so-

lution, however, is to mine the frequent itemsets for each class label and then

apply CARM on the tuples supporting each itemset to mine the associated

numerical ranges. Note that even though it is possible to map categorical

attributes to integers and just apply CARM that would be incorrect because

sorting integer values in the first phase of the algorithm is meaningful for in-
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tegers but not for categorical values (we should instead consider all possible

combinations/sortings).

• Characterization measures: The lack of a clear definition of a data char-

acterization task is evident in the existing research literature. One of the

most challenging aspects of evaluating the described method was to define

characterization in ways that could be used to measure the effectiveness

of the resulting rules. Although a challenging task, it is possible to de-

velop measures like the ones developed for classification that would make

the characterization evaluation more straightforward. The development of

such measures can be based on real world data analysis of different domains.

Developing such measures would allow the creation of new heuristics based

on them or simply be used for the evaluation of the present and other existing

solutions. Alternatively, ranking mechanisms can be employed for ordering

of the resulting rules in terms of domain knowledge importance.

6.3.2 New Research Directions

Other aspects of future research work can be based on the possibility of applying

the work of this thesis in different areas and gathering feedback from real-world

applications.

• Data streams: An interesting application of the presented work would

be in the ever growing area of dynamic data streams (e.g. sensor data).

By removing the assumption that the original dataset is a complete data

collection that is available prior to data mining the nature of the research

problem changes drastically. Since the data is not is not readily available a

solution is to mine the existing data for the rules and then attempt to adapt

the mined rules to include data in the continuously recorded data.

This is a very challenging task but of high value in the context of mining

data from data streams. For example, in an industrial production facility

that records its process constantly mining a historical data collection the

opportunity would be created to adapt existing process knowledge, in the

form of previously mined rules, by incorporating newly created data.

• Readability, interpretability, causality evaluation: As described in

Section 2.7 the format of the resulting rules and the mining methodology in
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CARM are designed to address these issues. They are, however, not quan-

tifiable which creates opportunities for additional research. It is possible to

design a questionnaire for domain experts to compare the rules mined by

CARM with those mined by competing solutions in terms of the aforemen-

tioned qualities. Such a questionnaire could also allow experts to suggest

areas of improvement that can be investigated in future work and incorpo-

rated into CARM.
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