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Summary of Thesis

I first perform a statistical analysis on a distribution of pre-stellar core masses. Each core
is split into a small number of stars, and two stars are chosen using a prescription based on
stellar masses to form a binary system. The rest of the stars are taken to be singles. From this
sample of binaries and singles, I compute the stellar initial mass function, the binary frequency
and mass ratio distribution as a function of primary mass. I then test if the observed binary
frequencies and mass ratios are compatible with this self-similar mapping of cores into stars. I
show that self-similar mapping can reproduce the observed binary frequencies and mass ratios
well, so long as the efficiency is rather high (≈ 100%), and each core fragments into about 4 or
5 stars.

Using the code Seren view, I then perform N-body simulations with core-clusters. I
investigate the formation of multiple systems, and qualify the dependence of their parameters
and longevity on certain initial conditions, including (i) the number of stars in a core-cluster,
(ii) the variance of masses in those stars, (iii) the virial ratio and (iv) radial dependence of
stellar density. I expand on those results by including (a) a prescription for the influence of
disks during stellar flybys, (b) different initial spatial configurations of the stars (i.e. line and
ring clusters) and (c) a background potential due to residual gas in the core-cluster. The full
range of periods observed in the field cannot be explained by the distribution of periods of
pure binaries alone, which is too narrow. However, the wide range can be explained either
by combining the periods of pair-wise orbits of all multiple systems, i.e. the widest periods
observed are in fact pair-wise orbits of higher-order multiples with unresolved companions, or
by considering a distribution of pre-stellar cores that have a range of virial ratios.
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Chapter 1

Observations of Star Formation

This chapter is an overview of the processes involved in star formation, and observational

techniques used to probe the various stages. I start with the material needed to form stars,

called the interstellar medium, and identify regions of high density believed to be the precursors

of stars; pre-stellar cores. I discuss their mass distribution and observational techniques used to

identify them. These cores collapse to form a star, or a small cluster of stars. The distribution

of masses of these stars is the Stellar Initial mass Function, whilst the distribution of the mass

of stellar systems is the System Initial Mass Function. Stellar clusters are discussed, and how

they often dissipate with time. Finally, an outline for the thesis is presented in Section 1.3.3.

1.1 The Interstellar Medium

Very fine dust grains and atoms, collectively called the interstellar medium, fill the space

between the stars in a galaxy. In some regions this interstellar medium clumps together to

form features that are denser than their surroundings, the largest of these features being called

giant molecular clouds. These giant molecular clouds have masses of 103 to 107 M�, densities

of 102 to 103 cm−3 and scales of between 5 and 200 pc. The dust within these giant molecular

clouds plays two roles in increasing the concentration of molecules such as H2. Firstly, the

dust acts as a catalyst for the formation of molecules, and secondly, if the giant molecular

cloud is large enough, the dust acts as a shield against ultra violet radiation, which dissociates

molecules. As a result, the gas within giant molecular clouds is primarily molecular hydrogen.

The dust also keeps the gas temperature down by radiating the energy imparted to the dust

grains from collisions with hydrogen molecules, making it easier for the gas to collapse and

form stars. Molecular hydrogen has a very small moment of inertia, and doesn’t have a dipole

moment (meaning that certain transitions are forbidden in the gas phase), and so the energy

levels are widely spaced. The temperatures found in giant molecular clouds (about 10 K) are not

high enough to excite the molecular hydrogen from its ground states, meaning that molecular
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1.2. Core Mass Function

hydrogen is very difficult to observe in these environments (van der Tak 2012). So less common

molecules have to be observed, which are hoped to trace, or lie in the same distribution as

molecular hydrogen, for example, C18O, H13CO+ (which are tracers of dense gas), and NH3,

and look for their emission lines. Giant molecular clouds are generally gravitationally bound

and may contain several sites of star formation.

Within these giant molecular clouds, turbulent motion leads to smaller features, that are

again, denser than their surroundings, which are called clumps. Clumps are gravitationally

unbound and are thought to be the precursors of stellar clusters. Dense features are also seen

within these clumps, some of which are massive and dense enough to be gravitationally bound.

These are generally called cores. It is believed that these cores will eventually collapse to form

a star, or a small sub-cluster of stars (see Padoan & Nordlund 2002; Li et al. 2004), and so they

are called pre-protostellar cores, or pre-stellar cores for short (Ward-Thompson et al. 1994).

These cores are often aligned along filaments (Myers 2013).

1.2 Core Mass Function

Determining the masses of these pre-stellar cores is no easy problem, because of the difficulties

in observing molecular hydrogen, as discussed on the previous section. The most common

method of measuring the mass of a core is to process the millimetre or sub-millimetre thermal

dust emission. The distribution of these core masses is called the Core Mass Function, or CMF.

Observers believe the CMF to have either a log normal distribution, or a three part power

law in the star formation regions studied, which include Aquilla (Könyves et al. 2010), the Pipe

Nebula (Alves et al. 2007; Rathborne et al. 2009), Ophiuchus (Motte et al. 1998; Johnstone

et al. 2000; Stanke et al. 2006; Young et al. 2006; Simpson et al. 2008; Enoch et al. 2008),

Orion (Johnstone et al. 2001; Johnstone & Bally 2006; Nutter & Ward-Thompson 2007; Motte

et al. 2001), Serpens (Testi & Sargent 1998; Enoch et al. 2008) and Perseus (Enoch et al.

2006, 2008). The average CMF over all star formation regions peaks at about 1 M�, with a

logarithmic standard deviation of about 0.45±0.15. These results agree with theoretical models

by Padoan & Nordlund (2002), Padoan et al. (2007) and Hennebelle & Chabrier (2009) which

also show that the CMF can be approximated by a log normal merging into a power law at high

masses. However, it should be noted that the cores as found by Padoan & Nordlund (2002),

Padoan et al. (2007) and Hennebelle & Chabrier (2009) are gravitationally bound structures.

Most surveys of CMFs define cores using column density, meaning that the cores they find

are not guaranteed to be gravitationally bound, and may not go on to form stars. Typically, a

pre-stellar core before collapse will have a radius of the scale 0.01 to 0.1 pc, a density of ∼ 10−18

g/cm3 and a temperature of ∼ 10 K. A typical radius after collapse will be ∼ 100’s of AU.

The shape of the CMF is constant from region to region. But the position of the peak shifts
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from ∼0.1 M� in nearby low-mass regions (ρ-Ophiuchus Motte et al. 1998), to ∼1 M� in more

distant high mass regions (Orion, Nutter & Ward-Thompson 2007).

Others are more sceptical about the shape of the observationally derived CMF. For example,

Reid et al. (2010) use simulated images of star forming regions to test their observational

techniques, and argue that the noise, source blending and spacial filtering all perturb the core

masses to the point where a log normal distribution is found - simply as a result of the central

limit theorem (see Section 3.1). They also show that the characteristic mass of the cores is

related to the angular resolution of the map from which the core mass function is derived.

Hence star formation regions further away would appear to have a higher characteristic mass

than regions closer to the Sun. They conclude that existing measurements of the CMF are

highly compromised by limitations such as sensitivity, angular resolution, distance uncertainty,

and spatial filtering of larger scale emission.

Unlike stars, which appear as points, cores are extended objects with no clear boundaries.

Hence a core boundary has to be defined, which may either include too much of the background

radiation or not capture the entire core. Features on the map are divided into cores or filaments

either by eye (Tothill et al. 2002; Ward-Thompson et al. 2000; Nutter & Ward-Thompson 2007)

or a clump finding algorithm such as Gaussclump (Stutzki & Guesten 1990) or Clumpfind

(Williams et al. 1994). However, the properties of cores found by these different techniques

do not always correlate with each other. Also, cores do not have trivial shapes, which makes

identifying a core more difficult (see Lomax et al. 2013, for a discussion on the 3-D shape and

orientation of the clumps).

The use of grey-body fits to estimate the mean dust temperatures, the mass opacity coeffi-

cients needed to convert fluxes into masses, and the distances assumed for the star formation

regions all also introduce their own errors when using dust continuum emission maps.

1.2.1 Pre-stellar Stages and Classes

A protostar is a condensed object which will eventually become a star, but has not yet reached

the main sequence stage. Lada (1987) formulates a theoretical class system for protostars, as

follows:

Stage 0 Most of the mass of the core is still in the envelope as opposed to the protostar. This

phase lasts about 104 to 105 yr.

Stage 1 Most of the mass is now in the central star and its disk, but there is still a substantial

envelope. This stage lasts about 105 yr.

Stage 2 The protostar no longer has an envelope, but it still has a massive disk. These

protostars move along the Hayashi track, shrinking and becoming less luminous with an
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approximately constant surface temperature and colour. Then the temperature increases

with increasing luminosity along a Henyey track. This stages lasts about 106 yr.

Stage 3 The disk has mostly been accreted onto the protostar, and is in an active phase of

planet building. The protostar slowly contracts, until hydrogen burning starts at the zero

age main sequence. This stage lasts about 107 yr.

The process of core collapse to form a star is divided up into the following observational

classes. Note that the numbering of classes usually correspond to the same numbering for the

theoretical stages, but that orientation effects (the angle at which we view the protostar) can

cause overlap.

Class 0 Andre et al. (1993) introduces this class. The protostar can be observed in the mil-

limetre and sub-millimetre wavelengths, but is not detectable in the infra-red (T ≤ 30 K).

The protstar tends to drive very powerful outflows. As the protostar ages, its outflows

become less dense, but have faster speeds.

Class I The peak of the Spectral Energy Distribution (or SED) is caused by warm circumstellar

dust shells. The SED is broader than black body, rising for wavelengths greater than 2

microns. It has a spectral index a = d log(λFλ)
d log(λ)

of 0 < a ≤ 3. The protostar is still

embedded, but can now be best detected at infra-red wavelengths.

Class II The star has emerged from its parent cloud, and become a T-Tauri star, or a class

II object. This is referred to as the birth line, and corresponds to a point at which the

envelope around the protostar becomes optically thin to optical radiation. The SED is

broader than black body, and flat or decreasing for wavelengths greater than 2 microns.

Hα emission is detected. The SED agrees well with models of pre-main sequence stars

having circumstellar disks. This class has a spectral index of -2 < a ≤ -0.

Class III Weak-line T-Tauri stars, or Class III objects have reddened black body SEDs, with

little or no excess near infrared emission. They are more X-ray luminous than Class II

on average. This class has a spectral index of -3 < a ≤ -2

Examples of proposed characteristic SEDs for Classes I, II and III can be found in Figure

2 of Lada (1987).

A variety of detection methods are used for young low mass stars, including:

• Radio and X-rays for non-thermal and transient events.

• Millimetre continuum surveys to determine the mass and structure of the dust.

• Far-infrared for providing luminosity information for the embedded stages.
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• Mid-infrared for probing the disk.

• Near-infrared for probing the inner disk and star.

• Visible and ultraviolet for probing the star and ongoing accretion.

• Lithium is an indicator of a young, low mass star. The temperature needed for Lithium

to be destroyed (it interacts with a proton to form Helium) is just below the temperature

needed for hydrogen burning at 4 ∗ 106 K. As a young star is convective, once this tem-

perature is reached in the core, most of the Lithium is quickly destroyed. Therefore, as a

general rule, if lithium is present, the star is likely not hydrogen burning.

Figure 1.1 is a copy of Figure 2 of Tohline (2002). It shows the evolutionary track of the central

region of a pre-stellar core in the temperature-density plane. The track from A to B is the

core’s initial isothermal core collapse. At point B, the centre of the core becomes opaque to its

cooling radiation. This inner core is called the first core, or the first hydrostatic core. It has

a temperature of about 170 K, and is very short-lived, with a lifetime of 102 to 103 yrs (Bate

2011). Pezzuto et al 2012 have observed hydrostatic core candidates, and found them to have

separations of ≈ 103 AU, and sizes of 48 to 130 AU. Saigo and Tomisaka 2011 predict a smaller

size of 20 AU for the first cores, and a size of 100 AU for the surrounding disk. The discrepancy

may be due to Pezzuto et al observing the hybrid disk and core.

The first core collapses adiabatically between points B and C, accreting from the outer

envelope as it does so. At 300 K, molecular hydrogen can be rotationally excited. At point C,

the temperature is high enough to dissociate molecular hydrogen (2000 K). The energy released

from collapse is used to dissociate the molecular hydrogen, keeping the temperature roughly

constant, and so the collapse is approximately isothermal between points C and D. At point D,

the inner part of the first core collapses, the is called the second collapse, forming the second

core. The Class 0 stage of a protostar starts here. Between points D and E we have pre-main

sequence contraction.

When a core fragments into a small stellar cluster, there are several stages along this evo-

lutionary path at which it can do so (Chen et al. 2013).

• Initial clump/filament fragmentation: This occurs when the large scale clump or fila-

ment fragments before the collapse of the individual cores. The cores will typically have

separations of ∼ 103 to 104 AU (Kauffmann et al. 2008; Launhardt et al. 2010).

• Prompt/isothermal fragmentation: This occurs at the end of the core’s isothermal collapse

phase. The fragments will have separations of 102 to 103 AU (Tohline 2002).

• Adiabatic fragmentation: This occurs when the collapse enters the adiabatic accretion

phase. The fragments will have separations of 3 to 300 AU (Machida et al. 2005, 2008;

Goodwin & Kroupa 2005).
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• Secondary fragmentation: This occurs during the core’s secondary collapse phase. The

fragments will have separations of 0.01 to 0.1 AU (Machida et al. 2008).

Figure 1.1: This figure is a copy of Figure 2 from Tohline (2002).
The evolutionary trajectory (solid curve) of the central region of a protostellar gas cloud is
shown in the temperature-density plane, (patterned after Figure 3 of Tohline 1982.) The slope
of each segment of the curve is indicated by the value of the effective adiabatic exponent γ.
The density is shown both in g cm3 (bottom horizontal axis) and in cm3 (top horizontal axis);
the temperature is given in degrees Kelvin. Also shown along the top of the plot is the orbital
period of a binary system that has the equivalent mean density.

Chen et al. (2013) have observed multiple sources in prestellar cores, and have found them to

have typical separations of a few 100s to a few 1000s of AU.

1.3 Stellar Initial Mass Function

At the end of the Class III stage, a protostar becomes hot enough to start burning hydrogen.

It is at this point that it becomes a star, and starts its life on the main sequence. The Stellar

Initial Mass function (StIMF) is given by ξ (logM) = dN
d log[M ]

where M is the mass of a star

when it reaches the main sequence, N is the number of stars in a logarithmic mass range log [M ]

and log [M ] + d log [M ].
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The properties of a star, its evolution, and its effect on its environment is largely determined

by its mass. Therefore, in order to understand the process of star formation, and predict

its effect on galaxies, clusters, and on the cosmos, we need to have a good knowledge and

understanding of the StIMF.

In order to measure the StIMF, we cannot simply look up in the sky, determine the masses

of all the stars we see and plot their relative abundances on a graph. This would be the present

day mass function (PDMF). Stars of different masses have different lifespans, and so we would

expect to see a greater number of long-lived stars than their short-lived counterparts. High-

mass stars are short-lived, they exhaust their fuel much quicker than low-mass stars, and so are

rare in the galaxy. Low-mass stars live for a long time, and so are abundant. But even if we

correct for these lifetimes, we still make the assumption that the StIMF doesn’t change with

time. Clusters of stars can be good places to observe the StIMF as all the stars are roughly the

same age and have the same metallicity. In order to be useful laboratories, the clusters need

to be (i) old enough to be open, i.e. all the enshrouding dust surrounding the protostars needs

to have been cleared so that all its members can be detected, but (ii) not be so old that they

have lost their low-mass members to ejection and high-mass members to death.

The three main approximations for the StIMF are due to Salpeter (1955), Kroupa (2001)

and Chabrier (2005). Chabrier proposes that for field stars near the sun, the number of stars

per logarithmic bin of masses, dN/ d logM , can be described by a log normal function below

one solar mass M�, which peaks at about a fifth of a solar mass. Above M�, he proposes that

the StIMF can be described by a power law with slope −1.3, i.e. a Salpeter slope (Salpeter

1955). Kroupa (2001) uses a three part power law to describe the StIMF. Above 10 M�, the

StIMF is extremely poorly known.

Chabrier (2005) StIMF

ξ(logM) =

0.093 exp
(
− (logM−log 0.2)2

2∗0.552

)
, M ≤M�

0.041M−1.35±0.3, M ≥M�.
(1.1)

Kroupa (2001) StIMF

ξ(M) ∝Mαi (1.2)
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α0 = +0.3± 0.7 0.01 ≤M/M� < 0.08,

α1 = +1.3± 0.5 0.08 ≤M/M� < 0.50,

α2 = +2.3± 0.3 0.05 ≤M/M� < 1.00,

α3 = +2.3± 0.7 1.00 ≤M/M� (1.3)

The StIMF is quite well constrained, and uniform. Studies in various locations find very

little, or no variation with either environment or metallicity.

The Malmquist bias affects magnitude limited samples. It states that brighter objects are

easier to see, and so bright stars further away will be seen, but faint stars at the same distance

will not be seen. It can be difficult to know if a star is close and faint, or bright and far away.

More bright objects will be included in the sample, as the volume over which they can be

detected is much larger, even if they are not truly more abundant.

1.3.1 System Initial Mass Function

Many stars (>53% for solar type stars, Raghavan et al. 2010) are in multiple systems. A multiple

system consists of two or more stars that are mutual nearest neighbours, are gravitationally

bound, and are likely to remain so for a significant amount of time. Multiple systems which

consist of just two stars are called binaries, while those that consist of three stars are called

triples, and those which consist of four stars are called quadruples. Any system with three or

more members may be referred to as a higher-order multiple. I define hierarchical quadruples

to be a multiple system of four stars where the stars are arranged hierarchically, i.e. a binary

is orbited by a single star. This triple system is orbited by a fourth star (usually) much further

out. Double quadruples are defined to be two sets of close binaries orbiting a common centre of

mass. A multiple system can be split (sometimes in various ways) into two subsystems, each of

which either satisfies the definition above, or is a single star. The orbit of two centres of mass

around each other constitutes the pairwise orbit.

Note that when a core collapses, it will produce several stars. This collection of stars, whilst

not stable, may initially be bound. To distinguish this state from more long-lived and stable

multiple systems, it will be referred to as a core-cluster.

The StIMF is the initial mass function of stars regardless of what role they play in a multiple

system, whether primary, secondary or even single. The System Mass Function (SysIMF) is

the distribution of the masses of systems, where the mass of a system is the sum of the masses

of its components.

In the early 2000s, there was a disagreement between the StIMF inferred from (i) the

photometric Hubble Space Telescope (HST) luminosity function Gould et al. (1997) (ii) and
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the nearby 5.2 pc luminosity function as evaluated by Henry & McCarthy (1990). Even after

corrections for metallicity and a larger sample, the two mass functions did not agree.1

Chabrier (2003) realises that the HST survey, because it ‘sees’ much further, would not

be able to resolve binaries, unlike the 5.2 pc survey. Therefore the luminosity function as

determined by the HST is the luminosity function of systems, and not of single stars. To

determine the StIMF, Chabrier performs monte carlo simulations. He takes the 5.2 pc mass

function, and draws either 1 or 2 masses in an equal ratio (50% binary fraction). Assuming

that the total magnitude of the unresolved binary systems is

Msys = −2.5 log
[
10−0.4M(M1) + 10−0.4M(M2)

]
(1.4)

where M is the magnitude, he finds a luminosity function. He compares his results to those

found by the HST, and shows that the two are compatible. He finds that the system mass

function has the form

ξ(logM) = 0.076 exp

(
−(logM − log 0.25)2

2 ∗ 0.552

)
M ≤M�. (1.5)

1.3.2 Cores and Clusters

When the protostars first form, the core has not yet used up all its gas by either converting

it into stars (the protostars can still accrete matter at this stage) or expelling it out of the

core-cluster with stellar winds. This residual gas causes a gravitational potential well, and it is

thought that this potential may help to form stable multiple systems by keeping the stars from

escaping too early, giving them a bit more time to establish themselves in a stable configuration

before the gas is accreted or dispersed.

Another effect due to the residual gas is the formation of protostellar disks. As material in

the core falls towards the protostar, it flattens into a disk which surrounds the protostar. The

stars within a single core will interact gravitationally, and the presence of disks will affect those

interactions by providing a means of dissipation of energy, making it more likely that the stars

involved will form a long-lived multiple system. The energy lost by the stars involved is, to

within an order of magnitude, the binding energy of the material stripped from the disk during

the encounter (Clarke & Pringle 1993; Heller 1993).

Collections of pre-stellar cores, sometimes known as clumps, are believed to be the precursors

of stellar clusters. The stars in a cluster will have a range of velocities. The fastest of the stars

will generally have a velocity greater than the escape velocity of the cluster, and so will leave.

1M < M� for both StIMFs
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The total energy of the cluster has now decreased, and the cluster contracts, becoming denser.

As a result, there are more interactions between the remaining stars. These interactions allow

the exchange of kinetic energy between the stars, and if a star’s kinetic energy is increased

enough, it becomes unbound and escapes. The cluster can then continue to collapse. This

collapse can be halted by the energy released by multiple systems as they interact with other

systems, and their internal binding energy increases. (See Vesperini 2010; Goodwin 2010).

Brown dwarfs are objects with masses between the opacity limit at 0.003 M� and the

hydrogen burning limit at 0.075 M� (80 MJ). (This includes the boundary at the deuterium

burning limit at 0.013 M� or 13 MJ). Because brown dwarfs fade with age, they are most

easily spotted when young and at their brightest.

There is some debate regarding whether brown dwarfs are formed in the same way as stars,

or if they are formed via a different mechanism. Standard cloud fragmentation models seem to

have difficulty in making brown dwarfs, but other more successful proposed mechanisms include

embryo ejection (Reipurth & Clarke 2001; Kroupa & Bouvier 2003) and disk fragmentation

(Whitworth et al. 2010). If the binary statistics for brown dwarfs show the same trends as

higher mass stars, then it can be inferred that brown dwarfs form in the same way as their

higher mass counterparts. If not, then they are likely to have formed via a different mechanism.

High mass stars (M > 10 M�) have very short lifetimes of the order of a few million years,

whereas the average lifetime of a cluster is a few Gyr. As a result, high mass stars will have

typically used up all their fuel before the cluster is dissolved, and its stars become a part of the

field population.

1.3.3 Thesis Plan

In Chapter 2 I will review present some of the properties of multiple systems, and summarise

the observational data relating to them. I will also discuss some of the techniques used in

observing multiple systems, and different classification models. This will give a basis to which

simulations can be compared.

In Chapter 3 I will discuss the possibility that the shape of the StIMF is inherited directly

from the CMF, i.e. self-similar mapping. I will also discuss some of the objections to this

model. I will set up a model to investigate whether the binary frequency and mass ratios are

compatible with self-similar mapping of core masses into the StIMF.

In Chapter 4 I will present the results of the mapping model. I will show that both the

binary frequency for solar and sub-solar-mass stars, and the mass ratios for G and M-dwarfs

can be reproduced assuming a self-similar mapping from cores to stars. The tightest constraints

are found for the average number of stars formed in a core, and the average efficiency of a core.

In Chapter 5 I will set up a suite of small-N body simulations. These simulations will

follow the N-body dynamics of core-clusters and investigate the production of stable, long-lived
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multiple systems. The aim will be to investigate if N-body dynamics are compatible with the

results of the self-similar mapping model.

In Chapter 6 I will present the code Seren view, in particular the Hermite integrator,

which is used to follow the N-body dynamics of the core-clusters. I will then present the results

of testing the recovery of properties of eccentric binaries, and circular triple systems.

In Chapter 7 I will discuss the properties of multiple systems, and how they can be computed

in simulations. I will also discuss how to identify multiple systems, and introduce a parameter

to quantify the stability and longevity of multiple systems.

In Chapter 8 I will present the first half of the results of the N-body simulations of core-

clusters, focussing on uniform, spherical distributions of stars. I will discuss the properties, of

binaries, triples, hierarchical quadruples and double quadruples formed with the fiducial model,

varying the average number of stars formed in a core, varying the virial number of the cores,

and the standard deviation of stellar masses produced by a single core.

In Chapter 9 I will discuss the second half of the results of the N-body simulations of core-

clusters. This half includes non-uniform and non-spherical configurations of the stars, as well

as forms of dissipation between the stars. I will discuss the properties, of binaries, triples,

hierarchical quadruples and double quadruples formed with varying the density gradient of

stars, adding dissipation effects due to disks and a background potential due to residual gas, a

line cluster and a ring cluster.

In Chapter 10 I will summarize the conclusions of both the self-similar mapping model

and the N-body simulations of core-clusters. The structure of higher-order multiples are found

to give the best indication of the initial conditions of core-clusters. I finish my thesis with

suggestions for future work that could further constrain the parameters of star formation.
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Chapter 2

Multiple Stellar Systems

The capture of a passing star is very difficult and many, if not most, stars are in multiple systems.

Hence the stars within a multiple system must usually have been bound together gravitationally

from the time of formation (Goodman & Hut 1993). Any star formation theory must be

able to predict not only the existence of these multiples systems, but also their properties,

including the wide range of periods and separations observed. In this Chapter, I introduce

statistics that describe the properties of a collection of multiple systems. I then go on to

describing different classification methods for binary systems, and typical observational methods

for detecting, and determining properties of multiple systems. I summarise the observational

data regarding multiple systems, including distributions of fractions of multiplicity, mass ratios,

periods, eccentricities and higher-order multiples. This will allow me in later chapters to set a

standard to which the results of theoretical models and simulations can be compared.

There isn’t a single number that can fully describe the statistics of a collection of multiple

systems. The most complete statistic would be S : B : T : Q, where

S = the number of single stars

B = the number of binary systems

T = the number of tertiary systems, and

Q = the number of quadruples,

but even that doesn’t give the structure of higher order multiples. A variety of statistics are

commonly used in the literature, and are defined by Reipurth & Zinnecker (1993).

The probability that a given system is multiple,

Multiplicity Frequency =
B + T +Q+ ...

S +B + T +Q+ ...
. (2.1)
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If only binary systems are being considered, this is sometimes referred to as the binary frequency,

B/ (S +B).

The companion probability is the probability of a given star being a part of a multiple

system,

Companion Probability =
2B + 3T + 4Q+ ...

S + 2B + 3T + 4Q+ ...
. (2.2)

The average number of pairwise orbits per multiple system,

Pairing Factor =
B + 2T + 3Q+ ...

B + T +Q+ ...
. (2.3)

Each of the above can also be expressed as a function of primary mass.

Each pairwise orbit in a multiple system can be described by (among other things) its

eccentricity e (shape), period P , semi-major axis a and mass ratio q, where

q =
Ms

Mp

. (2.4)

For pairwise orbits involving two stars, Ms is the mass of the smaller star and Mp is the mass

of the larger star. For the outer orbit of triple systems, Ms is the mass of the outer star, and

Mp is the mass of the inner binary, M1 +M2.

These multiple system properties can help us constrain stellar formation models. For exam-

ple, the average semi-major axis corresponds to the characteristic size of the core at the time

of fragmentation (see Sterzik et al. 2003), the overall multiplicity frequency and mass ratio

distributions are determined by the physics of fragmentation (Delgado-Donate et al. 2004), and

an individual system mass ratio will depend on the accretion history after the protostars have

been formed (Bate & Bonnell 1997).

2.1 Types of Binaries

For the rest of the chapter, I refer to classifications and observations of binaries. However, the

statements made can usually be applied to any pairwise orbit in a multiple system.

Binaries can be grouped in a number of different ways. For example, one method groups

the binaries according to the state of their Roche Lobes, the region of space around a star in a

binary system within which matter is gravitationally bound to that star. The groups include

• Detached binaries: Both stars are wholly within their Roche lobe, and evolve indepen-

dently. This group includes the majority of binaries.
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• Semi-detached binaries: Also known as accreting binaries. One star fills its Roche lobe

and transfers material to its companion via an accretion disk.

• Contact binaries: Both stars fill their Roche lobes, and have a common envelope. They

may eventually merge.

A second method groups the binaries according to their stability.

• Soft binaries: These are binaries with typically wide orbits and lower-mass primaries.

These systems are easily disrupted.

• Hard binaries: These are binaries with typically narrow orbits and higher-mass primaries.

Theses systems are difficult to disrupt.

The final method groups binaries into the mode by which they can be identified and observed;

visually, spectroscopically, photometrically and astrometrically. These observational classifica-

tions of binaries are not directly related to their intrinsic properties, but are indicative of the

detection method(s) sensitive to its components. As a result, a binary may be simultaneously

in more than one of these classifications. These methods for detecting binaries are generally

complementary, e.g. visual and spectroscopic methods are useful for detecting binaries, whereas

astrometric and photometric methods are useful for determining the parameters of the binary

system. These same methods can also be used to detect extra-solar planets.

2.1.1 Visual Binaries

Visual binaries are those binaries whose components can be resolved visually.

Visual binaries are usually detected at either optical or infrared wavelengths using ground

based telescopes, and so are subject to atmospheric affects which can shift or blur images of

a source, and so reduce the precision and resolution of astrometric observations. Adaptive

optics are used to overcome the atmospheric effects, and techniques include (i) passing different

combinations of binaries through the reference point spread function of a single star to find the

best fit to the image seen, (ii) using speckle interferometry, which employs fourier transforms

to try and capture the original target and (iii) using lucky imaging, which takes a large number

of very short snapshots, and adds the best of the exposures together to get an image. Adaptive

optics, whilst effective, are often complicated and time consuming.

Visual binaries tend not to be binaries with a small separation or low mass-ratio. This is

because there is a brightness-separation bias relating to visual binaries. The closer a companion

is to its primary star, the brighter (and hence more massive) it has to be in order to be detected.

This also means that binaries need to be relatively close by in order to be identified as such.

Stars that happen to sit either in front or behind a star can appear to be associated with

the star along the line of sight, especially for large separations where contamination from field
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stars becomes significant. However, these chance projections can be weeded out by considering

either their parallax, or their proper motion/radial velocities. If any of these quantities differ

largely between the two objects, it can be said that they are simply a chance projection.

If the distance is known, and the system has been observed for a large fraction of its period,

then the orbital parameters can be used to find the masses. The average of the separation

as seen by the observer, through a combination of projection and ellipticity is shown by van

Albada (1968b) to be very close to the semi-major axis, which is required for mass estimates.

However, many visual binaries have periods of hundreds or even thousands of years, and so

only a small fraction of their orbits have been tracked. If the orbital parameters have not yet

been fully determined, it is difficult to obtain the masses and other intrinsic properties.

2.1.2 Spectroscopic Binaries

Most binaries are identified using spectroscopy, and so are called spectroscopic binaries. The

spectral lines in an individual star shift from bluer wavelengths (moving towards us) to redder

wavelengths (moving away from us) periodically as it moves in its orbit. Single line binaries are

defined when spectral lines can only be seen from one star - but it can be identified as being

part of a binary because of the periodic motion. Double line binaries are defined when spectral

lines are seen from both stars.

Spectroscopic methods are very good at identifying companions within a few AU of the

primary, as small separations and high angular velocities produce large doppler shifts. However,

it is very difficult to detect binaries with low-mass ratios (q < 0.4) with spectroscopic methods

because of line blending problems. This leads to a bias for high-mass ratio systems detected

(i.e. it is even harder to detect low-mass systems spectroscopically than with visual methods).

The period of a spectroscopic binary is easily determined.

Spectroscopic methods can only detect motion towards, or away from the observer, with

the magnitude of the shift correlated to the stars radial velocity. As motion tangential to the

line of sight cannot be determined using spectroscopic methods, it is impossible to determine

the complete orbit of a purely spectroscopic binary. However, if the binary is also a visual or

eclipsing binary, we have a full picture of the orbit, and from Kepler’s laws, the masses can

be determined. Many spectroscopic binaries however are too close together to be observed

optically, meaning that we have only a small selection of binaries for which complete orbits can

be determined.

Although these binaries more often than not cannot be resolved into their separate compo-

nents, we can still make a good guess at the mass of the primary using the combined lightcurve

of the system. If the components are similar in mass, then the lightcurves will also be similar,

and the combined lightcurve can be taken as an approximation to that of the primary. If the

secondary is much smaller than the primary, then its luminosity will be much smaller, and will
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not contribute much to the total spectrum. So again, taking the spectrum of the system as

an approximation to that of the primary is reasonable. See Hartigan & Kenyon (2001) for a

discussion of the effects when neither of these approximations apply.

2.1.3 Photometric Binaries

Photometric, or eclipsing binaries occur when the plane of the orbit of the binary system

lies close to the line of sight. As one star passes in front of the other the total luminosity

decreases, and it is this periodic change in luminosity that can be observed. This is an unlikely

configuration, to be viewing the system exactly, or close to edge on, so photometric binaries are

rare. The binaries also need to be observed over a period of time over which an eclipse takes

place, in order to identify a system as a binary. This requires long term observations.

Eclipsing binaries yield a lot of information about their intrinsic properties, and are the

primary source for direct mass estimates, so long as mass transfer between the stars has not yet

taken place. The relative size (radii), and period can be determined quite easily. The semi-major

axis and masses can also be determined if radial velocity (spectroscopic) measurements are also

available. See Southworth (2012) for a review of determining the properties of photometric

binaries.

2.1.4 Astrometric Binaries

Astrometry is the precise (visual) measurement of the positions and movements of astrophysical

objects. Hence all visual binaries are also astrometric binaries, as their components can be

tracked astrometrically. However, if a secondary is too faint to be seen visually, the system can

still be identifed as binary if the primary is seen to ’wobble’ in the sky. This type of binary

will be astrometric, but not visual.

2.2 Observations of Multiple Systems

Each sample of multiple systems and observational technique will come with its own biases

and incompletenesses. For example, magnitude-limited surveys will overestimate the equal-

mass binaries fraction, as the volume over which a binary with a given primary mass can be

detected increases with the mass of the secondary (compare with the Malmquist bias). A

magnitude-limited sample will also favour the inclusion of double-lined spectroscopic binaries

(Branch 1976). A volume-limited sample has better completeness statistics, but smaller number

statistics, and often does not include the extremes in primary mass. Different observational

techniques and telescopes will only be sensitive to separations within a particular range, and so

any binaries with separations outside this sensitivity range will be missed. These incompleteness
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issues mean that the observed binary frequency is not going to be the true or intrinsic binary

frequency, but by accounting for these biases and incompletenesses, an estimate can be made

for the intrinsic properties of the population.

I use the following notation in this section. Solar-mass binaries are binaries whose primary

star has a mass 0.7 < M/M� < 1.3. Low-mass binaries have primaries of mass 0.1 < M/M� <

0.5, very low-mass binaries have primaries with mass M/M� ≤ 0.1, intermediate-mass binaries

have primaries with mass 1.5 < M/M� < 5 and high-mass binaries have primaries with mass

M/M� ≥ 8.

Solar-mass binaries are the most well studied binaries, given their proximity to the sun

and relative brightness. The first modern survey of solar-mass stars was Duquennoy & Mayor

(1991) and it was the standard for solar-mass stars for many years. Raghavan et al. (2010)

have now produced a more complete sample with better observational techniques, which has

replaced Duquennoy & Mayor (1991) as the standard for solar-mass stars.

Low-mass binaries are also abundant near the sun, but it can be more difficult to do mul-

tiplicity surveys with low-mass stars than solar-mass stars, due to their lower luminosity. The

first standard for low-mass binaries was Fischer & Marcy (1992). Modern surveys of low-mass

binaries include Delfosse et al. (2004), Dieterich et al. (2012) and Reid & Gizis (1997).

Very low-mass binaries are faint, and so difficult to detect. There are many surveys of

very low-mass binaries, but none constitute a large volume-limited survey. See Burgasser et al.

(2007) for a review of multiplicity in the sub-stellar regime.

Intermediate-mass stars are more difficult to work with than solar-mass stars, because the

steep mass-luminosity function makes detecting companions difficult. Spectroscopic surveys

include Carquillat & Prieur (2007) and Carrier et al. (2002). Visual surveys include Balega

et al. (2011) and Ivanov et al. (2006).

High-mass stars are very bright, but very far away, so are difficult to study. Most are still

found in the massive clusters or OB associations in which they were born, and studying high-

mass field stars is likely to paint a biased picture, as the majority of them are ‘runaways’ whose

systems are likely to have been disrupted (see Chini et al. 2012). Spectroscopic surveys of

individual clusters and associations include Kiminki et al. (2012), Sana et al. (2009) and Sana

et al. (2013) whilst visual surveys include Duchêne et al. (2001), Peter et al. (2012), Preibisch

et al. (1999) and Duchêne et al. (2001).

2.2.1 Multiplicity Frequencies

For field stars, the overall trend is for the multiplicity frequency (Equation 2.1) to increase

with primary mass (see Table 1 of Duchêne & Kraus 2013). Due to the lack of a large volume-

limited survey, a piecewise approach has to be taken to estimate the multiplicity frequency for

very low-mass stars. Spectroscopic surveys (Basri & Reiners 2006; Blake et al. 2010; Guenther
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& Wuchterl 2003; Reid et al. 2002; Tanner et al. 2012) suggest a multiplicity frequency of

about 5.2% for systems with separations less than 1 AU, whilst visual surveys (Bouy et al.

2003; Burgasser et al. 2007) suggest a multiplicity frequency of about 15% for systems with

separations greater than 2 AU. Combining these two gives a multiplicity frequency between 20

and 25%, remembering that undetected systems lie in the range 1 to 2 AU. The multiplicity

frequency for low-mass stars is about 26% (Delfosse et al. 2004; Dieterich et al. 2012; Reid &

Gizis 1997). Raghavan et al. (2010) find a multiplicity frequency of 44±2% for solar mass stars.

They subdivide their sample into higher and lower masses, and find a trend for the multiplicity

frequency to decrease with primary mass. Duchêne & Kraus (2013) note that intermediate-mass

stars probably have a multiplicity frequency ≥ 0.5.

Chen et al. (2013) find that Class 0 protostars, the youngest stars (see Section 1.2.1), have

a multiplicity frequency that is approximately twice as high as for their older siblings, Class

I protostars, and a multiplicity frequency that is approximately three times larger than for

field stars with a similar range of separations. Therefore it would appear that the multiplicity

frequency is set in the pre-main sequence stage. (see Duchêne 1999; Duchêne & Kraus 2013).

‘O’ stars can be grouped into ‘cluster and association’, ‘field’ and ‘runaway’ stars. If we

consider only confirmed companions of high-mass stars in clusters and associations as found

in Chini et al. (2012), Mason et al. (2009), and Sana & Evans (2011) we find a multiplicity

frequency that is greater than ≥ 0.8, and that estimate may increase with more observations.

The multiplicity among field and runaway stars is much lower (Chini et al. 2012; Mason et al.

2009).

2.2.2 Mass Ratios

Mass ratios are difficult to measure, and as a result, the mass ratios of binary systems are very

poorly constrained. However, there is a general consensus that the distribution of mass ratios

is close to flat (excluding q < 0.1, as these mass ratios are almost impossible to detect) for all

mass ranges greater than M ≥ 0.3 M�. Below this mass range, the mass ratios favour q = 1

systems. The mass ratios are best defined for binaries with solar-mass primaries.

Raghavan et al. (2010) show that solar-mass binaries have an overall mass ratio distribution

that is consistent with being flat. They split their sample into long- and short-period binaries,

and find that short-period binaries have a mass ratio distribution that peaks at q = 1, whilst

long-period binaries have a mass ratio distribution that peaks at q = 0.3.

For low-mass binaries, the mass ratio appears to be flat, with a possible favouring of high q

systems (Janson et al. 2012; Delfosse et al. 2004). Reid & Gizis (1997) find that short-period

systems peak more strongly at high mass ratios than long-period systems. Very low-mass

binaries are heavily skewed towards equal-mass systems with very few low mass ratio systems

(Burgasser et al. 2007).
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The mass ratios for intermediate-mass binaries are poorly constrained, but appear to be

flat, with a possibility of a small preference of small mass ratios (Shatsky & Tokovinin 2002;

Kouwenhoven et al. 2007).

Companions to high-mass stars are still in the pre-main sequence stage, and so making

mass estimates is difficult due to the uncertainty in the mass-luminosity models for pre-main

sequence stars. Observed mass ratio distributions range from a preference for low mass ratios

(Preibisch et al. 1999; Duchêne et al. 2001) to flat (with a possible peak at q = 0.8) (Kiminki

& Kobulnicky 2012; Sana et al. 2012).

Pre-main sequence binaries with small mass ratios are relatively easy to identify compared

to main sequence binaries, as the mass-luminosity function is very shallow. However, mass

estimates are not well constrained due to uncertainties in the mass luminosity models for pre-

main sequence stars (Hillenbrand & White 2004). Most surveys show that the mass ratio

distribution is roughly flat (e.g. Kraus et al. 2008, 2011; Lafrenière et al. 2008).

Chen et al. (2013) show that Class 0 protostars have a strong preference for small mass

ratios, with the majority of binaries having a mass ratio less than 0.5.

2.2.3 Periods and Separations

From Kepler’s laws, we know the semi-major axis is closely linked to the period (P 2 ∝ a3), with

a small dependence only on the total mass of the system. Therefore, any qualitative statement

relating to trends in the period can also be applied to trends in the separation, and vice versa.

The period distribution is very wide, spanning several orders of magnitude. Overall, the

median separation and width of the distribution decrease sharply with decreasing stellar mass.

However, high-mass stars show an additional strong peak at the shortest periods (Duchêne &

Kraus 2013).

Raghavan et al. (2010) show that solar-mass binaries have a log normal period distribution

with mean P ≈ 250 yr (a ≈ 45 AU) and dispersion σ
log[P/yr]

≈ 2.3.They also report that

younger systems are more likely to have wider separations, further evidence that these systems

are disrupted over time.

For low-mass stars, a log normal function is suitable for separations of less than 500 AU

with a mean of 5.3 AU and a period dispersion of σ
log[P/yr]

≈ 1.3 (Duchêne & Kraus 2013). For

larger separations of 0.2 to 0.3 pc, an Öpik-like, (f (a) ∝ a−1, Öpik 1924) distribution seems to

hold.

Very low-mass binaries are rare, but those that have been found tend to to have a separation

between 1 and 10 AU (Burgasser et al. 2007). Maxted & Jeffries (2005) and Allen (2007) both

fit a log normal to the separation distribution, finding a peak of 4 and 7 AU respectively, and

a dispersion of 0.6 ≤ σ
log[a/AU]

≤ 1.0 and 0.3 ± 0.1 respectively. But presently the distribution

is not well defined.
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Spectroscopic surveys are sensitive to small separations, whereas visual surveys find binaries

with large separations. Therefore the period, or the separation distribution (especially for

intermediate- and high-mass stars, which are further away) can appear to be bi-modal (Mason

et al. 1998; Duchêne & Kraus 2013). For example, compare the periods as found by the

spectroscopic survey conducted by Sana et al. (2012) and the visual survey conducted by Peter

et al. (2012). The bi-modal distribution is in all likelihood due to selection effects rather than

an intrinsically bi-modal distribution.

Connelley et al. (2008) investigate the separations of embedded binary systems (i.e. young

protostars), and find that the separation distribution is better described by a log uniform

function than a log normal.

2.2.4 Eccentricities

Eccentricities are very difficult to observe, as they require well-determined orbits, which can

only be found via several astrometric observations over a large fraction of the orbit. However,

there is a general trend for short period systems to have an eccentricity close to 0 over all mass

ranges. No population has a thermal distribution of eccentricities.

Raghavan et al. (2010) find that solar-mass binaries with periods greater than about 12 days

have a flat eccentricity distribution out to e = 0.6. Above e = 0.6, the eccentricity distribution

drops. Systems with periods less than 12 days are usually circularised, but there are a few

exceptions, possibly due to young systems that have not had time to be circularised.

Dupuy & Liu (2011) discuss the eccentricities of very low-mass binaries, and find that the

eccentricity distribution is flat. Unlike solar-mass binaries, there is no correlation between

period and eccentricity, and there are more circular orbits than for solar-mass binaries.

De Rosa et al. (2012) find that intermediate-mass stars have a preference for low-eccentricity

binaries, while Kiminki & Kobulnicky (2012) and Sana & Evans (2011) both find that high-mass

binaries also have a preference for low-eccentricity binaries.

2.2.5 Higher-order Multiples

Tokovinin (2008) conducts a survey of double quadruples and triple systems, and finds that

double quadruples tend to comprise four similar mass stars, i.e. both the inner and outer

mass ratios tend towards 1. The two inner pairs also tend to have comparable periods, whose

distribution differs from that of pure binaries. The outer period usually has a value 5 to 10

times greater than the inner periods.

Tokovinin also finds that triples have an excess of equal-mass triples, with an inner mass

ratio that tends towards 1, and a peak of the outer mass ratios at ≈ 0.39. The inner pairs of

triple systems tend to have shorter periods on average than pure binaries. As with the double
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quadruples, the outer period is usually about 5 to 10 times larger than the inner period.

Duchêne & Kraus (2013) state that approximately 25% of all solar-mass binaries are part

of higher-order multiples, and ≈ 21% of all low-mass multiple systems have three or more com-

ponents. Estimates cannot be made for any other mass range due to observational difficulties

in detecting higher-order multiple systems.
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Mapping from the CMF to the StIMF

Setup

This chapter has in part been published in Holman et al. (2013).

In the next two chapters, I test if the observed binary fraction for solar and subsolar-mass

stars and mass ratios for G and M-dwarfs are compatible with a self-similar mapping of cores

into stars. In this chapter, I discuss the similarity between the CMF and the StIMF, and the

possible explanations. I also present the results of previous studies investigating self-similar

mapping. I set up my self-similar mapping model, with the parameters and observational data.

I will then present and discuss the results in Chapter 4.

3.1 Self-Similar Mapping

A normal distribution is described by the equation

p (y) =
1

(2π)1/2σ
exp

{
− (y − µ)2

2σ2

}
dy, (3.1)

where p (y) is the probability distribution of y, µ is the mean of the distribution, and σ is the

standard deviation.

If we let y = log10 x
1, then dy ∝ dx/x. Substituting these expressions into Equation (3.1)

gives us,

p (x) =
1

(2π)1/2σx
exp

{
−
(
log

10
x− µ

)2
2σ2

}
dx, (3.2)

1Note that throughout the thesis, log is always to be taken to the base 10 unless stated otherwise
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which is called a log normal distribution.

When a large number of arbitrary functions with finite mean and variance are added, the

resultant distribution will tend towards a normal distribution, according to the central limit

theorem. Due to the same theorem when a large number of arbitrary functions are multiplied,

the resultant distribution will tend to a log normal distribution, as multiplication is the same

as addition in log space.

The CMF appears to have a similar shape to the StIMF, but shifted to higher masses by a

factor of ∼ 4 (see Könyves et al. 2010; Motte et al. 1998; Testi & Sargent 1998; Johnstone et al.

2001, 2000; Stanke et al. 2006; Nutter & Ward-Thompson 2007; Alves et al. 2007; Rathborne

et al. 2009). So why are the CMF and StIMF similar in shape, but shifted in mass? There are

several possible explanations for the similarity between the CMF and the StIMF.

• Firstly, it could be coincidence. There are a lot of different physical processes that go

into creating a star or a core (e.g. radiation, gravity, magnetic fields, turbulence), and the

combination of all these processes could produce two log normal distributions independent

of one another, as a result of the central limit theorem (see Chapter 3.1).

• Secondly, the shape of the core mass function may influence, but not completely determine

the shape of the StIMF.

• Thirdly, from this, it could be inferred that there is a self-similar mapping between the

CMF and the StIMF, i.e. a core of mass Mc will statistically produce stars with masses

f (Mc).

• Finally, another solution might be that the CMF and StIMF are not similar at all, but

that the supposed likeness is due to observational systematics and errors (see Sections 1.2

and 1.3).

Several different groups have investigated the validity of the third consideration (see Section

3.2), and each of them show that it is very easy to reproduce the StIMF from the CMF using

statistical methods. Consequently the shape of the StIMF may not place strong constraints on

the process of star formation. But none of these groups address whether a self-similar mapping

model can reproduce the properties of multiple systems. (Note that although some models do

consider multiplicity, observations are used as an input to the model. My model is unique in

that multiplicity statistics are predicted by the model). The aim of this project is to incorporate

a prescription for creating multiple systems within a self-similar mapping model, and determine

whether or not the resultant multiplicity statistics are compatible with observations, and as a

result, whether or not self-similar mapping can be ruled out.
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3.1.1 Objections to Self-Similar Mapping

There are some strong objections raised to self-similar mapping. In this section, I discuss some

of these objections.

Firstly, if each pre-stellar core collapses to create one star, with an efficiency of about 30%

as has been suggested by Alves et al. (2007), no multiple systems would be produced. Yet

multiple systems are common, especially in young clusters, and observers are continuing to find

more and more.

Secondly, low efficiencies of about 30% are inconsistent with the work of Matzner & McKee

(2000) who show that winds from a protostar are concentrated along two jets emanating from

the poles. Not much gas is dissipated, and the core would have a high efficiency of 25 to 70%

(Matzner & McKee 2000). Earlier lower estimates have assumed that the protostar emits winds

isotropically (e.g. Nakano et al. 1995).

Thirdly, self-similar mapping assumes that each core lives to about the same age before

collapsing to a star. But if some cores live longer than others, then the CMF as observed will

not correspond to the probability density of cores collapsing, per unit time, to form stars. For

example, if large cores evolve more quickly than smaller cores as suggested by Hatchell & Fuller

(2008), (It has been observed in Perseus that low-mass cores are more likely to be starless than

the high-mass cores), then we would observe fewer high mass cores in the CMF compared to

the distribution of core masses collapsing per unit time. On the other hand, the argument has

also been put forth that smaller cores evolve more rapidly than higher mass cores (It is stated

in Clark et al. 2007, that if each core contains the same number of Jeans masses, then the

density in low-mass cores must be high, and so the free-fall time must be shorter). Hence the

CMF would have fewer low mass cores than the distribution of cores collapsing per unit time.

Fourthly, the similarity between the CMF and the StIMF is the only observational evidence

for self-similar mapping.

The assumption that high-mass cores form first, and are already in the process of collaps-

ing when the low-mass cores are still being formed. However, this contradicts the turbulent

formation idea though, since in turbulence the small scales dissipate first.

Finally, Smith et al. (2009) find that cores in SPH2 simulations bear no resemblance to the

stars they later form, and that the mass of a star depends only on the accretion history of the

core and not its initial mass.

3.2 Previous Studies

In this section, I will discuss previous work and studies relating to self-similar mapping and

small-N cluster dynamics. This will allow me to form a basis for my own project.

2Smoothed Particle Hydrodynamics
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3.2.1 Mapping from the CMF to the StIMF

A number of authors have addressed the question of self-similar mapping from cores to stars.

A selection of these studies, along with a short summary of their results are given below.

Clarke (1996) considers N = 2 clusters only, and finds that these clusters produce a binary

frequency and mass ratio distribution that is only weakly dependent on primary mass. She in-

vestigates different distribution functions, and places less emphasis on observational constraints

than other studies.

Swift & Williams (2008) develop a statistical model that includes the power law tail of

the StIMF. They find significant degeneracy in the nature of core evolution in reproducing the

StIMF, and cannot draw any conclusions on N0 or η0 . They conclude that only mass-dependent

core evolution will affect the skew of the StIMF (γ
St

) whilst all other prescriptions only affect

the mean, µ
St

, and standard deviation, σ
St

.

Goodwin et al. (2008) discuss the consequences of mapping from the CMF to the StIMF

(their mapping is not strictly self-similar) on the multiplicity statistics for very low mass stars.

They assume a low efficiency of 27%, and show that a simple one-to-one mapping cannot

reproduce the abundance of brown dwarfs, but do not investigate how the binary frequency

might vary with primary mass.

Goodwin & Kouwenhoven (2009) make the observation that if each core forms a single

long-lived multiple system, then it is the System Initial Mass Function (SysIMF) that should

follow from the CMF, rather than the StIMF. They find that the mass ratio distribution and

binary frequency distribution assumed do not have much effect on the shape of the resulting

StIMF. Goodwin & Kouwenhoven also investigate the effect of mass dependent efficiencies and

find that a mass dependent efficiency can significantly change the width (variance) and shape

(skew) of the StIMF formed.

Chabrier & Hennebelle (2010) presented a statistical analysis of numerical simulations, and

suggest that the StIMF is correlated to the CMF within statistical fluctuations. These statistical

fluctuations broaden the StIMF and could possibly explain the excess of brown dwarfs.

Each of the above studies show that the StIMF can easily be derived from the CMF, and that

the shape of the StIMF is not strongly dependent on evolutionary parameters. However, even

when these papers do take into account multiplicity parameters, the binary statistics (binary

frequency and mass ratios) are often assumed in order to define the nature of core evolution.

Hence these papers cannot use predictions of multiplicity parameters to distinguish between

different evolutionary methods. As a consequence, they cannot draw any firm conclusions on

the input parameters, in particular the number of stars each core produces, N0, or the average

efficiency of a core, η0 .
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3.2.2 Dynamical Studies

A core-cluster with 3 or more members is often highly unstable, and the core-cluster ejects

members as singles to relax and stabilise the remaining members of the core-cluster. For a range

of stellar masses, the smaller stars are preferentially ejected, due to their lower gravitational

pull. The final stable state will usually result in the two most massive stars from each core

forming a binary system, and the rest forming single systems (van Albada 1968a; Anosova

1986).

McDonald & Clarke (1995) built on these results by including a prescription for dissipative

interactions between circumstellar disks. As in the purely gravitational case, the system decays

to form a binary and N − 2 singles. The primary tends to be the most massive star in the

small-N cluster, but the secondary is chosen randomly from the remaining stars. This is due

to energy loss between the disks as the stars pass close to one another, and so a star is likely

to be captured if it is one of the first to pass close to a massive star, regardless of its mass.

Sterzik & Durisen have published a number of papers investigating the N-body dynamics of

small-N clusters including. Sterzik & Durisen (1998) perform N-body simulations for N = 3, 4

and 5. They show that the product of a binary plus N-2 singles is an important mode of decay,

but not the only one. For un-equal mass systems, the binaries formed have a semi-major axes

about 5 times smaller than the original system size. The lowest mass stars always end up being

ejected as singles. zero velocities and a spherical geometries. Sterzik et al. (2001) investigate

initial clusters of 4 stars, and show that clusters of 4 stars show promise of reproducing the

multiplicity frequencies and mass ratios well. By 300 crossing times, all the clusters have

decayed into long-term stable sub-systems. Sterzik & Durisen (2003) show that dynamical

decay produces a multiplicity frequency that increases with primary mass. The mass ratio

distribution of brown dwarfs is expected to be flat. Finally, Sterzik et al. (2003) show that a

’random pairing’ does not reproduce a multiplicity frequency that increases with primary mass,

unlike dynamical biasing.

3.3 Set-up

3.3.1 Core Mass Function

We saw in Chapter 1 that both the CMF and StIMF can be described by a log normal merging

into a power law at high masses. For simplicity, during the course of this project only the log

normal sections of the CMF and the StIMF are considered. This does not change the basic

conclusions of the model, but makes the implementation and maths easier to understand and

more precise. The results are most relevant in the range 0.03 M� < M < 3 M�.

Taking this log normal approximation, and considering only variations in the peak and
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standard deviation, the CMF becomes:

dN
d log

10
[Mc/M�]

=
1

(2π)1/2σ
C

exp

{
−
(
log

10
[Mc/M�]− µc

)2
2σ2

C

}
,

where σ
C

is the logarithmic standard deviation, and µc is the peak of the CMF in logarithmic

units. Despite this approximation, the analysis still applies to a large proportion of stars. If

we consider that the log normal must merge smoothly into a power law, then for values of σ
St

= 0.55 and γ
St

= 1.35, i.e. the Salpeter slope, the log normal includes ≈ 60% of all stars. This

fraction increases as either or both σ
St

and γ
St

increases.

3.3.2 Initial Stellar and System Mass Functions

According to Chabrier (2005), the log normal section of the StIMF has a peak at 0.2 M� (or

µ
St

= −0.7), and a logarithmic standard deviation of σ
St

= 0.55. In contrast, the SysIMF is

parametrised by a peak at 0.25 M� (or µ
Sys

= −0.6) and a standard deviation of σsys = 0.6. I

use Chabrier’s StIMF in defining the quality factor (see Section 3.3.7). The SysIMF can also

be computed in the program, but is not used in determining the best fit model. This is simply

to reduce the number of free parameters of the model, however note that the position of the

best fit is not significantly changed by omitting the SysIMF (See Figure 4.13).

Although there are claims of weak dependence of the StIMF on environment (e.g. Elmegreen

et al. 2008), the dependence is weak and not established. I assume that the StIMF is universal.

3.3.3 Binary Frequencies

Stars are often found in multiple systems. Therefore any theory of stellar formation must also

predict the formation of these multiple systems. To create binary systems in the model, I take

two stars from each core (for those cores that fragment into 2 or more stars) and pair them

to form a binary system. The remaining N0−2 stars are assumed to be single stars. I do

not investigate higher order systems during the course of the project, in part to simplify the

model as much as possible, but also because the observational data on higher-order multiples

are currently not statistically robust.

Informed by the results of Section 3.2.2, I assume that at birth, each core forms a bound

core-cluster of N0 stars. Over time, this core-cluster is disrupted, so that the systems that enter

the field consist of one binary, and N0−2 singles. To investigate how much influence dissipation

may have during the dynamical evolution of a cluster, I will assume that the probability of

a star of mass M becoming a member of the binary system is proportional to Mβ. Large β

represents pure gravitational interaction, with no dissipative forces, whilst small β represents
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the influence of dissipation.

I choose to describe the binary population using the multiplicity frequency (see Chapter 2),

and as I am not considering higher-order multiples, I refer to it as the binary frequency. Note

that the long-lived binaries in the field are not the only ones to form, but simply the only ones

which survive long enough to be found in mature field star populations.

3.3.4 Mass Ratios

For each binary system, I define the mass ratio as

q =
M2

M1

, (3.3)

where M1 is the mass of the larger star, and M2 is the mass of its companion.

3.3.5 Assumptions

During the course of the project, I make the following assumptions:

• The central portions of both the CMF and StIMF are log normal.

• Mapping from the CMF to the StIMF is statistically self-similar.

• Initially, each core forms a bound core-cluster of N0 stars. However, by the time the stars

reach the field, the core-cluster has been disrupted, leaving a long-lived binary and N0−2

single stars.

• The probability of a star being a part of this long-lived binary system is proportional to

Mβ.

• The evolution of cores to stars does not depend on either metallicity or environment.

3.3.6 Parameters

I parametrise the evolutionary model with nine quantities. Five are considered ‘primary’ and

it is with respect to these that a best fit model is found. The influence of the remaining four

‘secondary’ parameters on the best fit model is then investigated.
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Primary Parameters

• N0: the average number of stars that each core will fragment into. A non-integer value

of N0 is allowed; when this is the case I divide the cores between the integer values so

that the average is correct. For example, when N0 = 2.2, 80% of the cores will produce

2 stars, and 20% of the cores will produce 3 stars. I investigate N0 between 1.0 and 7.0.

• η0 : the average efficiency of a core, i.e. the fraction of the mass of the core at the time of

observation that is converted into stars. I allow η0 > 1 to account for any accretion that

may take place after observation. I investigate η0 between 0.00 and 2.00.

• σ0 : the average logarithmic standard deviation in the stellar masses produced by a single

core. If σ0 is small, then all the stars produced by a single core will have similar masses.

As σ0 increases, the masses of stars produced by a single core vary more widely. σ0 is

allowed to vary between 0.00 and 0.50. I chose this range to reflect that σ0 must be

smaller than σ
St

.

• µc: the peak of the CMF in logarithmic units, where the peak of the CMF in solar masses

is equal to 10
µc

. Unlike the previous paramters, µc is constrained by observations, and

over time we can expect improvements. I allow µc to vary between −0.2 and 0.2.

• σ
C
: the standard deviation of the CMF in log

10
(M/M�). This is the standard deviation

of the combined CMFs inferred for all the star formation regions observed. I allow σ
C

to

range between 0.30 and 0.70. Note that in order for the mapping to be self similar, σ
C

must be less than σ
St

.

• β: the components of the binary system are chosen according to the probability distri-

bution Mβ. β � 1 implies purely gravitational interaction (the two most massive stars

form the binary), whilst a smaller β suggests some form of dissipation. β ranges between

-2 and 5.

Secondary Parameters

• χt : χt allows for a variation in the lifetimes of the cores, where the lifetime of a core it

proportional to M
χt

c allowing either larger cores to evolve faster (χt < 0), or smaller cores

(χt > 0), as discussed in Section 3.1.1. So although the log normal CMF (Equation 3.3)

is still the CMF observed, the number of cores evolving into stars per unit time becomes
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P
(
log

10
[Mc]

)
∝

∫ log
10 [M

′
c]=log

10
[Mc]

log
10 [M

′
c]=−∞

M ′ −χt
c

(2π)1/2 σ
C

exp

{
−( log�2

10
[M ′

c]−µc)2
2σ2

C

}
d log

10
[M ′

c] .

(3.4)

• χσ0 : σ0 is replaced with σ0

(
Mc

M�

)χσ0
. This allows σ0 to vary with the core mass. For

χσ0 > 0, larger cores have a greater standard deviation, and for χσ0 < 0, smaller cores

have a greater standard deviation.

• χ
N0

: N0 is replaced with N0

(
Mc

M�

)χ
N0 . This allows the number of stars produced to vary

from core to core. For χ
N0
> 0, the larger cores fragment into more stars than the smaller

cores, for χ
N0
> 0; the smaller cores fragment into more stars.

• χη0 : η0 is replaced with η0

(
Mc

M�

)χη0
. This allows feedback from massive stars to be

included in the model. Since massive stars are thought to form in the larger cores,

feedback can either suppress star formation in the high mass cores, (χη0 < 0), or promote

it (χη0 > 0).

It is decided given the size of the parameter space, that the Markov Chain Monte Carlo

method would be the most efficient way to find the optimum set of parameters. I assume

that within these limits, all values are equally probably, outside these limits all values have a

probability of 0.

Output parameters

The program is written to calculate the following parameters,

• µ
St

: The peak of the StIMF in logarithmic units. The position of this peak in solar masses

is therefore equal to 10
µ
St .

• σ
St

: The standard deviation of the StIMF in log10M/M�.

• BFi: The binary frequency as a function of primary mass.

• MRij: The mass ratio distribution as a function of primary mass.

• µ
Sys

: The peak of the SysIMF in logarithmic units.

• σsys: The standard deviation of the SysIMF in log10M/M�.

Observational constraints are strongest for µc, σC
, µ

St
, σ

St
and BFi. I hope to use the

observational constraints on these parameters to provide an estimate of the parameters, N0, η0 ,

σ0 and β.
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3.3.7 Quality Factor

I can determine how well a set of model outputs correspond to observations by defining a quality

of fit. This is given by a sum of terms

Qx = −
y=Np∑
y=1

Wy(Xy − Vy)2
U2
y

, (3.5)

where Qx is the quality factor that is associated with the combination of input variables x =

(N0, η0 , σ0 , β, µc). Wy is the weight, Vy the observed value, Uy the uncertainty associated with

the output parameter y, and Np is the number of parameters we wish to use in calculating the

quality factor. Thus the full expression becomes

Q (µc, σC
, η0 , N0, σ0 , β) = −

Wµ
St

(µ
St
− Vµ

St
)2

2U2
µ
St

−
Wσ

St
(σ

St
− Vσ

St
)2

2U2
σ
St

−
i=6∑
i=1

{
WBFi

(BFi − VBFi)2
2U2

BFi

}

−
i=4∑
i=3

{
j=6∑
j=1

{
WMRij

(MRij − VMRij
)2

2U2
MRij

}}
. (3.6)

Tables 3.1 to 3.3 give the weights, observed values and uncertainties associated with each of

the parameters used in computing the quality factor. The observed values and uncertainties of

the StIMF are given by Chabrier (2005), and I give both the mean and the standard deviation

a weighting of 0.25, a total weight of 0.5 for the StIMF. This is summarised is Table 3.1.

Table 3.1: The first row of the table shows the observational, or expectation values for the StIMF
parameters, µ

St
and σ

St
as given by Chabrier (2005). The second row gives the parameters

weighting, and the bottom row gives the uncertainty on the expectation value.

Parameter Logarithmic mean Logarithmic standard deviation
µ
St

σ
St

Expectation values −0.70 0.55
Weights 0.25 0.25

Uncertainties 0.1 0.05

Table 3.2 shows the data for the parameters associated with the binary frequency. I use

four mass ranges over which to calculate the binary frequency. For very low-mass binaries, with

primaries of masses between 0.05 M� and 0.1 M�, I use the observed values and uncertainties
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given in Close et al. (2003), and label it i=1. For binaries with primaries with masses between

0.05 and 0.17 M�, I use the binary frequency and uncertainty given by Basri & Reiners (2006),

and label it i=2. For M-dwarf binaries with primary masses between 0.15 and 0.59 M�, I use

the binary frequency and uncertainty given in Janson et al. (2012), and label it i=3. Finally,

for solar-mass binaries, I use the binary frequency and uncertainty given by Raghavan et al.

(2010), and label it i=4. The binary frequency is given a total weight of 0.25 (0.0625 for each

observational bin).

I do not use the multiplicity of high-mass (M/M� ≥ 8) stars in computing the quality factor

as our analysis is most pertinent to the mass range where the log normal form of the StIMF

appears to be an acceptable approximation, i.e. 0.03 to 3 M�.

Table 3.2: I use four mass ranges over which to calculate the binary frequency, to correspond
with the following studies, Close et al. (2003) (i=1), Basri & Reiners (2006) (i=2), Janson et al.
(2012) (i=3), and Raghavan et al. (2010) (i=4). The mass ranges are given in the top half of
the table, with the observed multiplicity frequencies and their errors given in the bottom half.
Each expectation value has a weight of 0.0625, giving a total weight of 0.25 for the binary
frequencies.

Indicies, i 1 2 3 4

Min Masses, Mmin/M� 0.05 0.05 0.15 0.8
Max Masses, Mmax/M� 0.1 0.17 0.59 1.2
Expectation values, BFi 0.20 0.26 0.27 0.44

Uncertainties 0.15 0.10 0.03 0.02

I use two mass ranges over which to calculate the mass ratio distribution, corresponding to

the two studies with the most robust results. I use the mass ratio distribution and errors as

determined by Raghavan et al. (2010) (i=4) and Janson et al. (2012) (i=3). The mass ratio

distribution is binned into five bins of equal width 0.2, giving five observed values for each

study. Each observed value has a weighting of 0.025, with a combined weighting for the mass

ratios of 0.25. The sum of the weights for all the parameters is then equal to 1. I choose to

weight the observations in this way because the StIMF has only 3 parameters, whilst the binary

frequency has 4 parameters, and the mass ratios have 10 parameters. As the StIMF is the best

constrained observationally, I want these parameters to contribute more to the fitting than the

binary frequencies and mass ratios, hence those parameters have a heavier weighting. Between

the parameters for the mass ratios/binary frequencies, the errors will ensure that the best data

points will have a bigger affect on the quality factor.

A perfect fit, i.e. one where all the computed values are equal to their expectation values,

will have Q = 0. The best fit is the fit with the largest Q value. The magnitude of Q can

be interpreted as the number of standard deviations by which the predictions of a particular
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Table 3.3: I use two mass ranges over which to calculate the mass ratio distribution, corre-
sponding to the two studies with the most robust results. The top half of the table gives the
expectation values and errors relating to (i=4), or Raghavan et al. (2010), whilst the bottom
half of the table gives the expectation values and errors for (i=3), or Janson et al. (2012). The
mass ranges are given in the final column. Each value has a weighting of 0.025, with a combined
weighting of 0.25. The mass ratio distribution is binned into 5 bins.

1 2 3 4 5 Mass range
Ratio 0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 (M�)

Expectation values, MRij, (i = 4) 0.10 0.25 0.21 0.19 0.25 0.80-1.20
Uncertainties 0.03 0.05 0.05 0.04 0.05

Expectation values, MRij, (i = 3) 0.20 0.20 0.20 0.20 0.20 0.15-0.59
Uncertainties 0.05 0.05 0.05 0.05 0.05

integration depart from the observations.

3.3.8 Normalisation

I investigate two methods for normalising the masses of stars produced by a single core.

• Scaling 1: The random gaussian variables Gi are divided by the sum of the random

variables
∑

i Gi. This ensures that the sum of the masses of the stars is exactly η0Mc.

However, the larger random variables have a disproportionate effect on the normalisation,

producing (usually) one large star and several much smaller ones. The StIMF from this

normalisation is skewed towards low masses, and the skewness increases dramatically with

both σ0 and σ
C
. The effect is most noticeable when σ0 � σ

C
.

• Scaling 2: The random variables Gi are divided by N0m(σ0), where m(σ0) is the arithmetic

mean of a log normal centred at x = 1 (log(x) = 0) with logarithmic standard deviation

σ0 . The resulting StIMF does not have a skew, but the sum of the masses is no longer

exactly equal to η0Mc. Occasionally the sum of the mass of the stars even exceeds the

original mass of the core, especially at very large efficiencies. However, I note that it does

not matter if the sum of the masses of the stars exceeds the mass of the core on occasion,

as cores may continue to accrete material between the time of observation and when star

formation is complete.

Figures 3.1a and 3.1b, along with Table 3.4 show the comparison between these two nor-

malisations. Figure 3.1a shows how the StIMF produced using Scaling 1 changes with N0. A

core of mass 1.25 M�, efficiency η0 = 0.8 and a variance in the stellar masses σ0 = 0.2 is used.

The continuous, long dash, dotted and dot-dash lines show N0 = 2, 3, 4 and 5 respectively. The
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parameters of the resulting StIMF are shown on the left hand side of Table 3.4. Figure 3.1b

shows how the distribution of the total mass of stars (
∑N0

i Mi) changes with σ0 . A 1.25 solar

mass core with efficiency η0 = 0.8 is used. The continuous, long dash, dotted and dot-dash

lines show σ0 = 0.1, 0.2, 0.3 and 0.4 respectively. The variance of (
∑N0

i Mi) is given in the σ
TOT

column in Table 3.4. The vertical line in Figure 3.1 is plotted at M = 1.25 M�, and indicates

the proportion of cases in which
∑
Mi > Mc, the values for these proportions are given in the

final column of Table 3.4.
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Figure 3.1: Normalisation of Stellar masses within a core. Figure 3.1a shows the StIMF pro-
duced using Scaling 1, with a core of mass 1.25 M�, efficiency 0.8 and a variance in the stellar
masses of 0.2. The continuous, long dash, dotted and dot-dash lines show N0 = 2, 3, 4, and
5 respectively. Figure 3.1b shows the distribution of the total mass of stars (

∑N0

i Mi) created
from a 1.25 solar mass core with efficiency 0.8 using scaling 2. The continuous, long dash, dot-
ted and dot-dash lines show σ0 = 0.1, 0.2, 0.3 and 0.4 respectively. The vertical line in Figure
3.1 is plotted at M = 1.25 M�, and indicates the proportion of cases in which

∑
Mi > Mc.

When Monte Carlo searches using Scaling 1 and Scaling 2 are compared, it is found that

the results are almost identical and hence it does not matter which scaling I use. Note that

these two normalisations converge as N0 → ∞, but the difference becomes negligible even for

N0 ∼ 4. We could expect an error of 10% in the peak of the StIMF with Scaling 1, and an

error in σ
St

that decreases with σ0 . errors would be more significant for small N0. I proceed

using Scaling 2 only.
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Table 3.4: The parameters of the resulting StIMF as shown in Figure 3.1a are shown on the
left hand side of the table. The variance of the sum of the masses of stars produced in a core,
as shown in Figure 3.1b are given in the σ

TOT
column. The final column of Table 3.4 gives the

fraction of cases where the mass of the sum of the stars exceeds the mass of the core when the
efficiency is 80% for Scaling 2, Figure 3.1b. The values given in bold are the expected values
for a perfect self-similar mapping, by comparing these values with the actual values, we can get
a feel for how much the scalings will change the results.

Scaling 1 Scaling 2
µ
St

σ
St

γ
St

N0 σ0 σ
TOT

f80%

-0.33 (-0.30) 0.16 (0.2) -0.92 2 0.4 0.17 (0.40) 0.39
-0.51 (-0.47) 0.18 (0.2) -0.56 3 0.3 0.13 (0.30) 0.32
-0.64 (-0.60) 0.19 (0.2) -0.40 4 0.2 0.11 (0.20) 0.26
-0.74 (-0.70) 0.20 (0.2) -0.32 5 0.1 0.10 (0.10) 0.21
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Mapping from the CMF to the StIMF

Results

I run a numerical program that evolves a given CMF according to a simple set of rules into

a sample of binary and single stars. The properties of the resultant stars are compared with

observations of the StIMF, binary frequency and mass ratios as a function of primary mass.

I find that self-similar mapping is capable of reproducing the current observations if cores

fragment into about 4 or 5 of stars with an average notional efficiency of η0 ≈ 1.0 ± 0.3.

In this chapter I present and discuss the results of the mapping study described in Chapter

3. This chapter has in part been published in Holman et al. (2013).

4.1 Results

The density of points in the Markov chain with Q > −1 is plotted in Figure 4.1. The mean

and standard deviation of the peaks give us the best fit, and are given in Table 4.1. The best

fit has a quality factor of Q = −0.33. Note that the errors as quoted in Table 3.4 for Scaling 1

are of the same magnitude as the errors for the best fit values, but that Scaling 2 has an error

for the peak for the StIMF much smaller than that quoted in Table 4.1, but the error for µc

is greater than the error for the best fit. However, as will be explained later on, we are more

interested in constraining N0, which governs µc, than σ0 , which governs σ
C
, as observations are

closer to observing N0 than σ0 .

Figures 4.2 to 4.9 are slices through the parameter space centred on the best fit. The y-axis

parameter is the same for all the plots on a single row, as is the x-axis parameter on all plots on

a single column. The contours are 1σ, 2σ, 3σ, 4σ and 5σ, and the colour encodes the values of

Q (Figures 4.2 and 4.3), the contribution to the quality factor due to the StIMF, QIMF (Figures

4.4 and 4.5), the contribution to the quality factor due to the binary frequency, QBF (Figures

4.6 and 4.7) and the contribution to the quality factor due to the mass ratios, QMR (Figures
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Table 4.1: This table gives the mean and standard deviation of the peaks as shown in Figure
4.1, and are the values that give the best fit to observations.

Parameter Best Fit

µc −0.03± 0.10
σ

C
0.47± 0.04

η0 1.01± 0.27
N0 4.34± 0.43
σ0 0.30± 0.03
β 0.87± 0.64
Q −0.33

4.8 and 4.9).
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Figure 4.2: Slices through the parameter space centred on the best fit. The contours show
1, 2, 3, 4 and 5σ, and the colour encodes the values of Q, getting darker as the value of Q
decreases. The montage is shown over two pages for ease of reading. For a given column, the
x-axis parameter is the same, and for a given row, the y-axis parameter is the same. One can
see which parameters are correlated and which are tightly constrained by scanning along either
a row or a column.
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Figure 4.3: Slices through the parameter space centred on the best fit. The contours show
1, 2, 3, 4 and 5σ, and the colour encodes the values of Q, getting darker as the value of Q
decreases. The montage is shown over two pages for ease of reading. For a given column, the
x-axis parameter is the same, and for a given row, the y-axis parameter is the same. One can
see which parameters are correlated and which are tightly constrained by scanning along either
a row or a column.
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Figure 4.4: See caption for Figure 4.2. The colour now encodes the contribution to the quality
factor due to the StIMF.
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Figure 4.5: See caption for Figure 4.2. The colour now encodes the contribution to the quality
factor due to the StIMF.
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Figure 4.6: See caption for Figure 4.2. The colour now encodes the contribution to the quality
factor due to the binary frequency.
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Figure 4.7: See caption for Figure 4.2. The colour now encodes the contribution to the quality
factor due to the binary frequency.
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Figure 4.10 shows the best fit binary frequency, and observations of the same mass ranges.

The best fit model reproduces the observational results very well for Close et al. (2003), Basri

& Reiners (2006), Janson et al. (2012) and Raghavan et al. (2010), the four lowest mass bins.

The two highest mass bins represent surveys of O and B stars by Preibisch et al. (1999) and

Mason et al. (1998). I plot these to show that despite not being included in defining the best

fit, they agree very well with the model.

Figures 4.11 and 4.12 demonstrate that the mass ratios are reproduced fairly well by the

best fit model.

4.2 Discussion

4.2.1 Stellar Initial Mass Function

It is found when fitting the calculated StIMF to Chabrier’s model, that the primary variables

divide naturally into 2 groups, (N0, η0 , µc), and (σ
C
, σ0).

N0, η0 , and µc: This set of variables has a high influence on µ
St

, with very little effect on the

standard deviation σ
St

. By hypothesising that the peak of the CMF is shifted to lower values

by a factor equal to the effective efficiency relating to one star, i.e. η0/N0, and by taking logs

of both side we get

µ
St

= µc + log10(η0)− log10(N0), (4.1)

or equivalently,

F = 10(µc−µSt ) =
N0

η0

u 4± 1. (4.2)

σ
C

and σ0 : These two standard deviations have a large influence on the standard deviation

of the final StIMF distribution, but changes in these parameters do not affect µ
St

. The standard

deviations add in quadrature to produce the StIMF standard deviation.

σ
St

=
√
σ2

0
+ σ2

C
(4.3)

From this, we can infer that, as σ
St

and σ
C

are similar in size, σ0 cannot be too large.

As can be seen from Figures 4.2 to 4.9, µc has no effect on the quality factor at all - any

change is compensated for by a simple shift in the efficiency. Looking at Equation (4.1) in more
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Figure 4.8: See caption for Figure 4.2. The colour now encodes the contribution to the quality
factor due to the mass ratios.
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Figure 4.9: See caption for Figure 4.2. The colour now encodes the contribution to the quality
factor due to the mass ratios.
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massive bins are not used in the fitting procedure, but nevertheless fit the model very well
indeed.
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Figure 4.11: The mass ratios (filled boxes) as predicted by the best fit model in the mass range
of Bin 3. The non-filled boxes and their errors bars are the observational data according to
Janson et al. (2012).
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Figure 4.12: The mass ratios (filled boxes) as predicted by the best fit model in the mass range
of Bin 4. The non-filled boxes and their errors bars are the observational data according to
Raghavan et al. (2010).
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detail, it can be seen that for a given value of N0, any change in µc is compensated for by a

change in η0 , i.e.

10µcη0 = 10µStN0. (4.4)

We can see that it is very easy to reproduce the StIMF from the CMF, but there is a

degeneracy between N0 and η0 . I now show that binary statistics can break this degeneracy.

4.2.2 Binary Frequencies

The binary frequency is influenced strongly by N0 (see Figures 4.6 and 4.7)with troughs in the

quality factor at both N0 = 1 and 2, with a small peak at N0 = 1.5, and a larger peak for

N0 > 2. The troughs occur because when N0 = 1 or 2, all the systems produced are singles or

binaries respectively. Since astronomers observe a mixture of both single and binary systems,

these scenarios clearly cannot satisfy the expectation values, and so there is a poor quality

factor at these values.

To understand why the best fir occurs for N0 > 2, assume that on average, 60% of systems

are single, and 40% are binaries. For N0 = 1.4, the ratio of binaries to singles is correct.

However, consider that for 1 < N0 < 2 each core will either fragment into two stars, or collapse

to a single star with equal efficiency. The single stars will therefore always be larger on average

than the primaries in the binary systems. As a consequence, the binary frequency decreases

with primary mass. N0 = 3.5 also produces the correct ratio of binaries to singles. However, in

this case, the single stars are the ones left over after two stars from each core have been selected

for the binary system, and so they will tend to be the smaller stars. The binary frequency now

increases with primary mass, which is why the best fit occurs for N0 > 2.

As N0 increases, the binary frequency decreases across the mass range, preferentially in the

low mass regions, due to more low mass singles being produced, resulting in a steeper binary

frequency. A larger σ0 value will also produce a steeper slope due to the greater difference in

masses between the primary produced by a core, and its singles. Finally, a larger value of β

also produces a steeper slope of binary frequency against primary mass. This is because as β

increases, the high-mass stars in a core will almost always form the binary system, whereas the

smaller stars are almost always singles.

4.2.3 Mass Ratios

The best fit reproduces the mass ratios satisfactorily.

For N0 < 2, the mass ratio distribution is independent of N0. This is because only the

number of cores fragmenting into a binary changes. The manner in which a core forms a binary
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is the same.

β � 1 favours binaries with mass ratios approximately 1, as the two largest stars are

commonly chosen to form a binary. Since the stars will often be similar in size, the mass ratio

tends to 1.

As σ0 is increased, the larger the difference in masses, and the more likely it is that unequal

mass binaries are going to be produced. For σ0 = 0, every mass ratios is equal to 1, whilst

intermediate values of σ0 reproduce a flat mass ratio distribution.

Hubber & Whitworth (2005) find that the distribution of mass-ratios is strongly dependent

on σ0 , and only lightly dependent on N0. That result is reproduced in this experiment.

4.2.4 System Initial Mass Function

The SysIMF is given as an output from the program, but its dependence on the input parameters

was not investigated. However, I do find that the SysIMF peaks at higher masses, has a larger

standard deviation than the StIMF and skews slightly to lower masses. This is a result of

pairing stars with a probability biased towards the more massive stars, i.e. larger stars are

either removed (secondaries), or are given a greater mass (primaries), hence pushing the peak

to higher values. But low-mass stars are less likely to be in a binary system, and are not

affected so much as higher-mass stars, hence the distribution at low masses approaches that of

the StIMF, and the SysIMF has a skew towards lower masses.

4.2.5 Exponents

Now that a ‘best fit’ has been obtained, the values of χt , χσ0 , χ
N0

and χη0 are allowed to vary,

and the effects on the StIMF are investigated.

Table 4.2: Fixed Parameters. The following parameters were kept fixed as the exponents were
allowed to vary.

N0 η0 σ0 σ
C

µc
3.6 0.73 0.22 0.51 0.00

Figure 4.14 shows the effect of χη0 on the StIMF. η0 accounts for feedback from massive

stars. This feedback can either suppress star formation in the high mass cores, (χη0 < 0), or

promote it (χη0 > 0). There is no observable effect on either the mean or the skew of the StIMF.

The standard deviation of the StIMF however, increases as χη0 increases. This is because as χη0
increases, the high-mass cores produce even bigger stars, and the low-mass core produce even

smaller stars, and so the spread in stellar masses is greater. As χη0 decreases, the low-mass

cores produce more massive stars, and the high-mass cores produce smaller mass stars. The
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Figure 4.13: This graph shows the best fit CMF (solid black line) and StIMF (dashed line),
along with the SysIMF (dotted line). Note that if we were to plot Chabrier’s StIMF, it would
lie directly on top of the best-fit StIMF.
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average mass of a star is less dependent on the mass of the parent core, with all masses of cores

producing similar size stars. Hence, the standard deviation of the StIMF decreases.
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Figure 4.14: Variation of the StIMF with χη0 . The mean and skew of the StIMF remain roughly
constant with χη0 . The standard deviation of the StIMF increases as χη0 goes to higher positive
values, and decreases as χη0 goes to more negative values.

Figure 4.15 shows the variation of the StIMF with χ
N0

. For χ
N0

> 0, the larger cores

fragment into more stars than the smaller cores, for χ
N0
> 0; the smaller cores fragment into

more stars.

The peak of the StIMF moves towards larger masses as χ
N0

increases, and moves towards

smaller masses as χ
N0

decreases. This is because as χ
N0

increases, the smaller cores produce

fewer, more massive stars, meaning that fewer low-mass stars are produced. With increasing

χ
N0

, the skew of the StIMF towards lower masses increases, as smaller cores produce fewer,

more massive stars. The larger cores produce more stars, but these stars are limited in mass

by the core mass, and so the high-mass tail of the StIMF does not increase by as much as the

low-mass tail. This effect also means that the standard deviation of the StIMF decreases as

χ
N0

increases.

Figure 4.16 shows the variation of the StIMF with χt . χt allows either larger cores to evolve

faster (χt < 0), or smaller cores (χt > 0). The standard deviation and skew of the StIMF both
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Figure 4.15: Variation of the StIMF with χ
N0

. The peak of the StIMF moves towards larger
values as χ

N0
increases, and moves towards more negative values as χ

N0
decreases. With

increasing χ
N0

, both the skew of the StIMF and the standard deviation decrease.
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remain constant with any variation in χt , whilst the mean of the StIMF moves towards lower

masses as χt increases. As χt increases, fewer large cores collapse to form stars per unit time,

and so fewer high-mass stars are formed, and vice versa.
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Figure 4.16: Variation of the StIMF with χt . The standard deviation and skew of the StIMF
are constant. The peak of the StIMF moves to the left as χt increases.

Figure 4.17 shows the variation of the StIMF with χσ0 . For χσ0 > 0, larger cores have a

greater standard deviation, and for χσ0 < 0, smaller cores have a greater standard deviation.

The skew of the StIMF towards low-mass stars increases as χσ0 decreases. As χσ0 decreases,

the smaller cores have a larger σ0 , and so smaller stars than usual can be formed. This has the

effect of both shifting the peak towards lower masses, and producing a low-mass tail on the log

normal. The mass of the biggest star is limited by the mass of the core, and each core can only

produce one very massive star, and so, although the peak moves to higher masses still when

χσ0 , so we do not get a high-mass power law tail. The mean and standard deviation of the

StIMF remain constant.
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Figure 4.17: Variation of the StIMF with χσ0 . The skew of the StIMF increases with χσ0 ,
giving a low-mass tail to the log normal. The mean and standard deviation of the StIMF
remain constant.
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4.3 Conclusions

I find during the course of this project that a self-similar mapping can explain the similarity

between the CMF to the StIMF , so long as Equations (4.1) and (4.3) are satisfied. This leads

to a degeneracy between N0 and η0 . I can constrain the parameters by invoking the binary

frequency and mass ratios, leading to the best fit model given in Table 4.1. It is a combination

of fitting both the StIMF and the binary frequency that constrains the parameter space most

critically. This model is unique in that it fits the StIMF, binary frequency and mass ratios.

Self-similar mapping fits the observational constraints for the StIMF, binary frequency and

mass ratios for sun-like and M-dwarf primaries, so long as the efficiency is rather high, approx-

imately 100%. This is higher than previously proposed (e.g. η0 ∼ 0.3 Alves et al. 2007). We

would therefore expect that most of the mass of the core would end up on the mass of the stars.

Additional accretion would counteract any mass lost via outflows. Each core needs to fragment

into about 4 or 5 stars, and so most stars would not form in isolation. Higher values of N0 may

be possible, but the efficiency would have to be increased even further and each core would

have to produce more than one binary. β is smallish for the best fit, suggesting that there is

some form of dissipation between the stars, allowing the lower mass stars an opportunity to be

part of a long-lived binary.

Currently, observations cannot be used to break the N0, η0 degeneracy. However, as angular

resolutions improve, multiple protostars can now be directly observed in a core (Chen et al.

2013). As more observations are made, with increasingly better angular resolutions, it is likely

that observational contraints on N0 can be made, breaking the N0, η0 degeneracy.

Note that I do not claim, nor have I claimed at any point, that self-similar mapping is the

one and only answer. I do however say that at this point in time it cannot be ruled out, and at

the very least, can be used as a quick, back of the envelope guess of star formation conditions.
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Core Cluster Simulations

The second half of my thesis is concerned with the dynamical evolution of small-N core clusters.

A variety of different initial conditions are evolved using the N-body integrator in Seren view

(Hubber et al. 2013). The effect on the properties of multiple systems (Ncomp > 1) due to the

initial configuration of the system is analysed, with a view to explaining the observed properties

of binary and multiple systems. The results of the N-body dynamics will also be analysed to

see if they support, or contradict the results of the self-similar mapping of the first part of my

thesis.

The first work on small N-body clusters with a view to explaining the multiplicity properties

is due to van Albada (1968a). He starts with clusters of sizes 10 and 24, and finds that the

system disintegrates after on the order of ten to one hundred times the characteristic time scale

of the original group. What is left is a more or less stable multiple system with an average

membership of 5 for the 10-body cluster, and 8 members for the 24-body cluster.

5.1 Fiducial Model

The fiducial model is one that is closest to the self similar mapping model identified in Holman

et al. (2013), and is shown in Table 5.1.

5.1.1 Initial Positions

For a sphere with a power law density profile, the probability of a star being placed in (r, r + dr)

is

pr dr =
n(r)4πr2 dr

r=R
B∫

r=0

n(r)4πr2 dr

=
n(r)r2 dr

r=R
B∫

r=0

n(r)r2 dr

(5.1)
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Table 5.1: The parameters for the fiducial model are given in this table, with the parameter in
the left hand column, and its value in the right hand column. The fiducial model is chosen to
be the one closest to the self similar mapping model identified in Holman et al. (2013).

Parameter Value

N0 4
V 0.5
σ0 0.3
dm 0.0

Core Cluster Type Spherical
α 0

Plummer Potential OFF

From Equation (5.19), we can substitute n(r) into Equation (5.1).

pr dr =

n
B

(
r

R
B

)−α
r2 dr

r=R
B∫

r=0

n
B

(
r

R
B

)−α
r2 dr

(5.2)

We can then sample from this distribution by integrating Equation (5.2) to give us P (r). We

set this equal to a linear random deviate, R, and rearrange to find the radius r

P (r) =
2− α
R3−α
B

r3−α

2− α =

(
r

RB

)3−α

= R

r = R 1
3−αRB (5.3)

Note that for a uniform sphere, α = 0 and that all cores have a radius of 1 unless stated

otherwise (see Section 7.2.1.) We follow a similar prescription for θ and φ. For θ we have

pθ dθ =


0, θ < −π/2
sin(θ) dθ/2, −π/2 ≤ θ ≤ π/2

0, θ < π/2.

(5.4)

Integrating and rearranging Equation (5.4) gives us

θ = cos−1 (1− 2Rθ) . (5.5)
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For φ we have

pφ dφ =


0, φ < 0

dφ/2π, 0 ≤ φ ≤ 2π

0, φ > 2π.

(5.6)

Integrating and rearranging Equation (5.6) gives

φ = 2πRφ. (5.7)

Care has to be taken when using random number generators, as inbuilt functions will often

draw from the distribution [0,1), meaning that 1 will never be drawn as a random number. In

this case, one effect would be that a star would never be placed exactly on the z-axis. For a

large number of particles, this effect becomes a problem, but as I am using N0 < 6, this will

not affect my results.

5.1.2 Initial Velocities

We need to choose the velocities of the protostars in the cluster carefully, so that they satisfy

the required value for the virial parameter V =
Ekin
|Egrav|

(see Section 5.3).

The self-gravitational potential energy is computed as

Egrav = −
s=N0−1∑
s=1

s′=N0∑
s′=s+1

MsMs′

|rs − rs′ |
, (5.8)

and the kinetic energy is computed as

Ekin = −
s=N0∑
s=1

1

2
Ms|vs|2. (5.9)

Random, unscaled velocities are drawn from a Maxwellian distribution,

Pv′k dv′k =
1

(2π)1/2
exp

(−v′2k
2

)
dv′k. (5.10)

We want to scale these velocities to a user-specified virial parameter. The new velocities are
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vs = γv′s, (5.11)

where

γ =

√
|Egrav|V
Ekin

. (5.12)

Therefore,

vs =

√
|Egrav|V
Ekin

dv′s. (5.13)

5.1.3 Drawing and Normalising Stellar Masses

In Chapter 3, two different methods of scaling the stellar masses of a core are discussed. Scaling

1 produces a group of stars with the correct total mass, but the distribution is skewed towards

lower masses. Scaling 2 produces a log normal distribution of stellar masses, but the total mass

of the stars does not equal exactly the efficiency times the mass of the core. For this chapter a

new method is introduced, Scaling 3, which scales the masses of the protostars in such a way

that the variance in the masses of stars formed in each core is always exactly equal to σ0 , and

the total mass is always exactly equal to 1 dimensionless unit. This new method is as follows.

We draw N0 random gaussian deviates,

`i = σ0Gi, i = 1 toN0. (5.14)

The standard deviation of these deviates is

σ` =

√
`2 − `2. (5.15)

When each deviate is scaled by σ0/σ`,

`′i =
σ0`i
σ`

, (5.16)
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the deviates have the correct standard deviation. However, the sum of the masses is not yet

correct, so the deviates are rescaled simply by dividing throughout by the total desired mass

Mi =
10`

′
i

i=N0∑
i=1

10`
′
i

=
M ′

i

i=N0∑
i=1

M ′
i

(5.17)

We now have a distribution of masses whose sum equals the desired total mass, and whose

standard deviation equals σ0 . All the cores will have a total mass equal to 1 (see Section 7.2.1)

5.1.4 Duration of Simulations

The simulations run for at least 500 computer times units. After this, if all systems in the

simulation have a fidelity factor of 0.99999 or greater, the simulation is allowed to terminate,

as the parameters are unlikely to change with further computation. There is a maximum time

limit of 10,000 computer time units, at which time the simulation is terminated whatever the

values of the fidelity parameters.

5.2 The Number of Stars Produced by a Core

Holman et al. (2013) carry out a study in mapping from the core mass function to the initial

mass function, and find that for the binary frequency to have the correct form, each core

cluster needs to collapse to form on average 4 or 5 stars. Goodwin & Kroupa (2005) argue that

each core needs to produce between 2 and 3 stars in order to reproduce the high multiplicity

frequency for young stellar populations.

Observations of Class 0 protostars have found that several cores show evidences of two

or more bright sources (Chen et al. 2013). It can be expected that N0 will be more tightly

constrained as observational techniques improve.

In order to investigate the parameter space, I will consider values of N0 (the number of stars

produced per core) in the range 2 to 6.

5.3 Virialisation

The virial parameter V , is defined as the ratio of the total kinetic energy of a core cluster to

its total potential energy. For an isolated core cluster, this can be written as:
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V =

∑
i

1
2
Mi|vi|2

−
i=N0−1∑
i=1

j=N0∑
j=i+1

MiMj

|ri − rj|

=
total kinetic energy

total potential energy
(5.18)

The overall expected behaviour of the core cluster can be determined by considering the

magnitude of the virial parameter, V . If V < 0.5, then the core cluster is sub-virial, and will

collapse. If V = 0.5, then the core cluster is stable, and will remain at roughly the same size.

If V > 0.5 then the core cluster is super-virial, the stars will move apart, and the core cluster

will expand.

To cover each of these three cases, I will consider three values for the virial parameter, 0.2

(sub-virial), 0.5 (virial) and 0.8 (super-virial).

5.4 Variance in Stellar Masses Produced by a Single

Core

In their mapping study, Holman et al. (2013) find that the optimum value for σ0 , the standard

deviation in the stellar masses produced by a single core to be of the order 0.3. Hubber &

Whitworth (2005) find that a higher value of σ0 = 0.5 is optimal when the stars are initially

placed within a ring core cluster. Current observational limits prevent the determination of

σ0 from observations. However, multiple protostars are now beginning to be resolved within

individual cores (Chen et al. 2013), and it is expected that as techniques improve, better mass

estimates of the protostars will be gained, and estimates of σ0 can be made.

I will consider values of σ0 in the range 0.0 to 0.5.

5.5 Density Gradient

The stars formed by a single core are placed randomly within a spherically symmetric density

profile. This density is chosen to have the form

n(r) =

nB
(
r

R
B

)−α
, r < R

B

0, r > R
B
.

(5.19)

Here, n
B

is the density of stars at the surface of a sphere with radius R
B

.
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Three values for α are considered. Firstly α = 0, which corresponds to a uniform density

sphere, and then α = −1 and α = −2, which correspond to the density falling off with radius.

Note however, that the change in distribution is unlikely to have an affect on the final statistics,

due to the small number of stars being considered.

5.6 Ring Cluster

When rotation is included in models of core collapse (e.g. Bonnell & Bate 1994; Cha & Whit-

worth 2003; Hennebelle et al. 2004) the core sometimes overshoots centrifugal balance and

bounces back at the end of the second collapse phase to form a dense ring which fragments into

a small (N0 < 6) number of protostars. The systems formed by this process will have separa-

tions of a few R�, and will tend to have components of similar mass. Hubber & Whitworth

(2005) perform N-body simulations of various realisations of a ring cluster, and compare the

multiplicity statistics to those in the field. However, they fail to find a satisfactory model that

reproduces both the StIMF and the multiplicity fraction satisfactorily. In order to investigate

this scenario, I consider the situation where stars form on the circumference of a circle. For the

ring cluster, each star is assigned a circular velocity equal to |vi| ∝
∑
mi/r. To generate initial

conditions for the ring cluster, stars are placed on the circumference of a circle with a radius of

1 (dimensionless units), with each star occupying an arc of the circle with length proportional

to its mass.

5.7 Line Cluster

When a turbulent core collapses, shock-waves create filamentary structures. If conditions are

right, contraction along the filament will stall, and the filament will fragment (Krumholz et al.

2007). (See also Bate et al. 2002a,b, 2003). For certain equations of state, filaments can also

form via gravitational collapse. This happens when Γ < 1 for a polytropic equation of state, in

this case, pressure support is too weak to form cores, so gravitational contraction proceeds much

quicker than Γ > 1, and shocks creating a network of sheets and filaments (Peters et al. 2012).

Bonnell et al. (2008) also show that fragments can form through gravitational compression as

the filament infalls into a gravitational well. The tidal shears act to limit the mass increase due

to accretion. In order to investigate the filament scenario, I will consider the situation where

stars form along a line. The stars in the line cluster are assigned random initial transverse

velocities as informed by Krumholz et al. (2007). For the line cluster, stars are placed along a

filament of length 2 dimensionless units, taking up a length proportional to their mass.
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5.8 Protostellar Disks

Protostellar disks are inferred through interferometry and SED modelling. They form almost

as soon as the molecular core has collapsed, and have masses that scale with the associated

stellar masses (Chen et al. 2013). They have lifetimes ranging from 1 Myr to 10 Myr, with

a median between 2 Myr and 3 Myr (Williams & Cieza 2011). Sicilia-Aguilar et al. (2013)

conclude that disks are likely to play a role in early time protostar interactions.

The parameter dm is defined to be the ratio of the mass of the circumstellar disk, Mdisk, to

the mass of its host star, Mstar,

dm =
Mdisk

Mstar

. (5.20)

Stars with disks essentially have a larger interaction cross-sectional area than stars without

disks. When a star passes through the disk of another star, the energy used in disrupting and

unbinding some of the disk material comes from the kinetic energy of the star, slowing it down,

and making it easier to be captured. The extent to which a disk affects the momentum of

a passing star depends on both the orientation of the disk and the direction of the passing

star with respect to the rotation of the disk. McDonald & Clarke (1995) investigate N-body

interactions including effects of massive disks (dm = 0.75), and find that the dissipative effects

of the disks increases the low fraction of low-q systems.

The disks are assumed to be massless as far as the N-body dynamics are concerned, they

only play a role when interactions take place. Three cases will be considered, dm = 0 (i.e. the

stars have no disks), dm = 0.5 and dm = 1.0.

Star A is considered to be within the disk of star B if it lies within a spherical region around

star B with the same radius as the disk of star B. To find the velocity shift for star A, I find

all the neighbours which have disks that A lies within. We call these stars B. For each disk B,

I find all the stars that lie within its disk, and call them C (but not including star A).

For each disk that star A lies within, I move to the center of mass frame for stars A, B and

C. I compute the estimated time and distance at periastron (tperi, rperi) between A and B, and

X1, the energy lost in the interaction, which we have assumed to be the energy required to

unbind the disk material down to a radius rperi.

X1 =
MAMdB

RdB

(√
RdB

rperi
− 1

)
−

rA<rC<RdB∑
C

MCMdB

RdB

(√
RdB

rC
− 1

)
. (5.21)

Here, MdB, RdB is the mass and radius of the disks surrounding star B and rC is the distance

between star B and star C. The second term of Equation (5.21) reduces X1 by the amount of
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energy that each other star contributes to unbinding the same section of disk. This will be all

stars that lie further out than A, but still within the disk of B.

Dummy variables X2 and X3 are also computed,

X2 =


0, star B is not within the disk of star A

MBMdA

RdA

(√
RdA

rperi
− 1

)
, star B is within the disk of star A

, (5.22)

X3 = MA |vA|+MB |vB|+
∑
C

MC |vC | . (5.23)

If (X1 +X2) /X3 < 1, then the stars have the energy required to unbind the disk material

outside periastron. If they don’t, then no interaction takes place.

We cannot follow exactly the same prescription as McDonald & Clarke (1995), who intro-

duce instantaneous velocity changes at the point of periastron. This is because the Hermite

integration scheme that Seren view uses requires a smoothly changing acceleration and jerk.

Therefore we smooth out the interaction as given by McDonald & Clarke (1995) to avoid the

instantaneous velocity changes. I choose to use an inverse tan function to smooth out the

interaction,

v′A = vA

{
1− λ

[
1

2
+

2

π
tan−1

(
t− tperi
t�

)]}
. (5.24)

where lambda is a factor governing by how much the velocities are reduced during the interac-

tion. Here, tperi is the time at periastron, vA is the velocity of star A before interaction with

the disk, and v′A is the corrected velocity. Using the above quantities, we can now determine

the quantities needed for the Hermite integration.

λ =

√
1− X1 +X2

X3
(5.25)

a =
−2λvA

π

(
1 +

(
t− tperi
t�

)2
) (5.26)

ȧ =
−4λvA

π

(
1 +

(
t− tperi
t�

)2
)2 (5.27)
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If stars A and B are moving apart, and A is the outermost star in the disk, then the disk

mass and radius of star B are updated,

MdB =
MdBrB
RdB

(5.28)

RdB = rB, (5.29)

where rB is the current separation between A and B.

5.9 Background Potential

When stars form, they find themselves embedded within an envelope of gas - i.e. the core from

which they have formed. This envelope of dust and gas provides a gravitational potential well,

which keeps the stars from moving too far away, at least while it has significant mass (Classes

0 and I). When a core forms multiple stars, it is thought that this gravitational potential well

may help in forming a stable multiple system.

Instead of doing a full-blown hydrodynamical simulation involving the residual gas, which

would be very time-consuming, the potential of the residual gas of a core can be treated

analytically, approximating it with a Plummer potential. Reipurth & Mikkola (2012) perform

N-body simulations of triple systems embedded in a time varying Plummer potential.

Potp =
−Mp√

r2 +Rp (t)2
, (5.30)

where Mp is the mass of the residual gas and Rp is the radius over which it extends. They find

that over time, an initially compact system evolves to form a close binary orbited distantly by

the third star. They find that stable triple systems have wide outer orbits compared to their

inner orbits, and hence the outer star is well separated from the inner pair, even at periastron.

I use the same Plummer sphere as used by Reipurth & Mikkola (2012), with Mp = 1. Rp is

set initially to a value of 1, but is allowed to expand linearly with time as follows,

Rp = s̄

(
1 +

t

texpansion

)
. (5.31)

Here, s̄ is the average initial separation between the stars, t is the time and texpansion is the

time scale over which the Plummer sphere expands.
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tp =
texpansion
tcrossing

, (5.32)

where tcrossing is the crossing time of the core cluster. Note that as tcrossing = 1, then tp =

texpansion.

I will set tp = 10, 30, 100 and 300.

I use a Plummer sphere with a mass that is constant, but radius that increases linearly as

Rp (t) = s̄

(
1 +

t

tp

)
, (5.33)

where Rp (t) is the radius of the Plummer sphere after a time t, and s̄ is the average initial

separation between the stars, and the initial radius of the Plummer sphere, at time 0. The

potential at radius r due to the Plummer sphere with a time-varying radius is then

Pot =
−Mp√
r2 +R(t)2

, (5.34)

and the acceleration of a particle at radius r due to the Plummer sphere is

a (r) =
−Mpr

(r2 +R(t)2)3/2
, (5.35)

and the jerk on the same particle due to the Plummer sphere is

ȧ (r) =
3MprR(t)2

tp (r2 +R(t)2)5/2
(5.36)

The expression for the virial parameter has to be updated to include the effects of the

Plummer potential:

V0 =

∑
i

1
2Mi|vi|2

i=I−1∑
i=1

j=I∑
j=i+1

{
MiMj

|ri−rj | +
−Mp√
|ri|2+R2

0

+ MP

R0

} (5.37)

where the last term in the denominator is to shift the zero of the background potential to
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the centre. Hence the velocities will not be changed much by the addition of the background

potential.

5.10 Summary

The previous sections represent a large parameter space which is difficult to explore fully.

Therefore a fiducial, or reference, model is defined and each of the parameters are varied one

at a time. By comparing the output to that of the fiducial model, we can get a feel for how

that particular parameter affects the multiplicity statistics.

Table 5.2 summarises all the initial conditions that are investigated, as discussed in the

previous sections, with the fiducial model parameters shown in bold.

Table 5.2: This table summarises all the initial conditions that are investigated, with the fiducial
model parameters shown in bold.

Parameter Description Values

N0 Number of stars per core 2, 3, 4, 5, 6
V Virial parameter 0.2, 0.5, 0.8
σ0 Variance of stellar masses 0.1, 0.2, 0.3, 0.4, 0.5
dm Disk to stellar mass ratio 0.0, 0.5, 1.0

Core Cluster type Initial distribution of stars Spherical, Ring, Filament
α Density gradient 0, −1, −2

Background Potential Dissipation time scale 0, 10, 30, 100, 300
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I define a multiple system as a group of two or more stars that are both mutual nearest

neighbours, and are gravitationally bound. But for a system with three or more members, the

association will never be permanent, one or more of its members will be ejected in time, leaving

behind a more tightly bound system with fewer members. However, some of these systems are

stable enough to survive for a many thousands of orbits, and could be called quasi-stable.

As the three body problem is non-integrable, there is no firm criterion for defining the

longevity of a triple system. A few definitions of ‘stability’ have been suggested. Eggleton &

Kiseleva (1995) introduce the idea of ‘n-stability’. For a system to be ‘n-stable’, it must be

in an hierarchical configuration, and it must persist in the same hierarchical configuration for

a period of 10nPo, where Po is the period of the outermost orbit. This usually occurs when

the inner system and outer stars are well separated at closest approach (see their Equation 2).

Anosova (1986) suggested that generally, a triple system is unstable with a half-life of

tdecay = 14

(
R

AU

)3/2(
Mstars

M�

)−1/2
yr, (6.1)

where R is the size of the system and Mstars is the total mass of the components.

In this Chapter, I first present the equations used to determine the orbital parameters of

a pairwise orbit in a system. I define a fidelity parameter, that tracks the changes in the

orbital parameters for each of the pairwise orbits in a multiple system. If these do not change

significantly over the period of an orbit, I consider the system to be long-lived. If the system’s

orbital properties are changing significantly, the system is considered unstable and short-lived.
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6.1 Equations of Motion for Binary Systems

The equation for the acceleration of particle i due to gravitational influence of itot - 1 other

particles in physical units is

d2ri
dt2

=

j=itot∑
j=1(j 6=i)

GMj(rj − ri)

|rj − ri|3
, (6.2)

where ri is the position of the particle i, G is the gravitational constant, and Mj is the mass of

particle j.

6.2 Multiple System Parameters

At any instant during the course of the simulation, I know the masses, positions, velocities and

accelerations of the particles. What I would like to know, is if any combination of those stars

constitute a multiple system; and, if it does, what are its parameters, e.g. eccentricity, period,

energy, semi-major axis, mass ratio and fidelity.

When a binary or multiple system has been identified, and its parameters computed, it is,

for the purposes of searching for multiple systems, replaced with a single point at the centre of

mass. It is with respect to this centre of mass that other stars are compared when computing

the binding energy, reducing the problem to a two-body problem each time.

6.2.1 Binding Energy

The binding energy of a multiple system is the sum of the kinetic and gravitational potential

energies in the centre of mass frame,

Ebinding =
N∑
i

1

2
Mi|vi|′2 −

N−1∑
i

N∑
j=i+1

GMiMj

|r′i − r′j|
, (6.3)

where v′i is the velocity and r′i is the position of star i in the centre of mass frame, computed

using

v′ = v − vc, vc=

∑
iMivi∑
iMi

, (6.4)

r′ = r − rc, rc =

∑
iMiri∑
iMi

. (6.5)
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Here v is the velocity in the original frame of reference, vc is the velocity of the centre of mass,

and Mi is the mass of particle i.

For two particles, Equation (6.3) expands out to

Ebinding =
M1|v1|2

2
+
M2|v2|2

2
− (M1v1 +M2v2)vc +

(M1 +M2) |vc|2
2

− GM1M2

|r1 − r2|
, (6.6)

where

vc =
M1v1 +M2v2

M1 +M2

. (6.7)

Simplifying further gives us

Ebinding = M1M2

{ |v1 − v2|2
2 (M1 +M2)

− G

|r1 − r2|

}
. (6.8)

If the binding energy is negative, then the pairwise orbit is gravitationally bound, and is it

a potential multiple system.

6.2.2 Semi-Major axis

The semi-major axis a, gives the characteristic size of the pairwise orbit, and is equal to

a =
GM1M2

(−2Ebinding)
, (6.9)

where Ebinding is the binding energy of the system, and is given by Equation (6.8).

6.2.3 Mass Ratio

The mass ratio of each pairwise orbit is taken to be

q =
Ms

Mp

. (6.10)

For a pairwise orbit involving only two stars, Ms is the mass of the smaller star, and Mp is

the mass of the larger star. For a pairwise orbit involving more than two stars, Mp is the total

mass of the inner system and Ms is the mass of the outermost star (which is usually smaller
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than Mp). In the case of double quadruples, Mp is the total mass of the more massive pair,

whilst Ms is the total mass of the less massive pair.

6.2.4 Eccentricity

The eccentricity e relates to the shape of the orbit. An eccentricity of 0 denotes a circular orbit,

a value of eccentricity 0 < e < 1 is an elliptical orbit, getting longer and thinner as e increases.

e2 = 1 +
2 (M1 +M2)L

2
totalEbinding

G2M3
1M

3
2

(6.11)

where Ltotal is the total angular momentum of the pairwise orbit.

6.2.5 Period

The period of an orbit P is the length of time it takes for a system to return to its original

position in the centre of mass frame of reference.

P =
2πG

(M1 +M2)
1/2

{
M1M2

(−2Ebinding)

}3/2

. (6.12)

6.2.6 Fidelity Parameter

I test the fidelity of a system by tracking how much the orbital parameters change with time.

Consider an orbital parameter, which I will call X. The inertial average of X is defined as

X̄ (t) =

∫ t′=t

t′=−∞
X (t′) exp

(
t′ − t
P (t)

)
dt′

P (t)
(6.13)

where P (t) is the period of the pairwise orbit being tested, and t is the current time . As a

result,

dX̄

dt
=
X (t)− X̄ (t)

P (t)
, (6.14)

and we can update X̄ with

X̄ (t+ ∆t) = X̄ (t)

{
1− ∆t

P (t)

}
+X (t)

{
∆t

P (t)

}
. (6.15)
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The fidelity parameter is computed using at least two of the orbital parameter inertial averages,

which I call a and b.

F (t) =

{(
a (t)

|a (t)− ā (t) + `|

)2

+

(
b (t)

|b (t)− b̄ (t) + `|

)2
}1/2

`

(a2 (t) + b2 (t))1/2
. (6.16)

` is an arbitrary number, to prevent singularities. I choose to use the energy and semi-major

axis to calculate the fidelity parameter. If the orbital parameters remain constant, the fidelity

parameter will approach a value of 1.00 after the pairwise orbit has completed approximately

ten orbits.

Equations (6.17) to (6.21) are expressions for the number of possible combinations for

binaries, triples, hierarchical quadruples and double binary quadruples respectively for a cluster

of N0 stars.

# possible binaries =
N2

0 −N0

2
(6.17)

# possible triples =

(
N2

0 −N0

2

)
(N0 − 2) (6.18)

# possible double binaries =
1

2

[(
N2

0 −N0

2

)(
(N0 − 2)2 − (N0 − 2)

2

)]
(6.19)

# possible hierarchical quadruples =

(
N2

0 −N0

2

)
(N0 − 2) (N0 − 3) . (6.20)

(6.21)

Table 6.1 shows the number of possible combination of binaries etc for core-clusters of size N0

= 2 to N0 = 6, along with the total number of possible combination of multiple systems, up to

4 components. For small-N core clusters, it is well within the capabilities of modern computers

to test every possible combination, to see if they form a bound multiple system.

A matrix is created to store the fidelity parameters of each of the possible multiple system

combinations. Each of the possible combinations are checked, to see if they form a bound

system. If they are not bound (See Section 6.2.1), then the fidelity of the system and all higher

order hierarchical systems involving that sub-system are set to 0. Consequently any systems

that become dissociated, and then recombine, will have no memory of previous associations.

If they are bound, the fidelity is computed, and the binding energy of higher order multiples

involving that binary are also computed. A binary is only retained for testing if the components

are mutual nearest neighbours. Hierarchical triple systems are only retained for testing if the

separation between the binary centre of mass and the third star is greater than the binary

– 75 –



6.2. Multiple System Parameters

Table 6.1: The table lists the number of possible combinations for binaries (column 2), triples
(column 3), double binaries (column 4) and hierarchical quadruples (column 5) for various
values of N0 (column 1). The total number of combinations I have to keep track of are given in
the final column. Although this number rises quite rapidly, of the order O(N3

0 ), it is still well
within the capabilities of todays computers even for quite large values of N0

N0 B T QB QH Number of Combinations

2 1 0 0 0 1
3 3 3 0 0 4
4 6 12 3 12 25
5 10 30 15 60 95
6 15 60 45 45 180

separation, and the binary centre of mass and the outer star are mutual nearest neighbours. A

similar prescription is followed for hierarchical quadruples. A double quadruple is retained for

testing if both pairs of stars consist of mutual nearest neighbours, the two pairs of stars are

mutual nearest neighbours and the semi-major axis of the outer orbit is greater than both the

semi-major axes of the inner pairs.

The simulation is ended when all the bound systems have a fidelity greater than 0.9999

(and the simulation has run for a minimum of 500 crossing times), or the simulation has run

for 10,000 crossing times, which ever comes first.

– 76 –



Chapter 7

Seren view

Seren view is a hybrid SPH1 and N-body code based on the code Seren (Hubber et al. 2011).

In this chapter I describe the Hermite integration scheme used for the N-body calculations of

Seren view, and finish with a simple test for identifying and evaluating the parameters of

eccentric binaries and triple systems.

7.1 The Hermite Integrator

Seren view uses a fourth order Hermite integration scheme based on Makino & Aarseth

(1992) to integrate the motion of the star particles. The fourth order Hermite integration

scheme has been chosen over the leapfrog integrator that is used for the SPH calculations, as

it conserves energy better than the leapfrog. The fourth order Hermite integration scheme can

also be considered the higher order equivalent of the leapfrog scheme, meaning that the force,

prediction and corrections steps are all computed at the same point in the timestep for both

schemes (Hubber et al. 2013).

The acceleration as of a star particle s is given by

as = −G
Ns∑
i=1

Miφ
′
sir̂si, (7.1)

where G is the gravitational constant, Mi is the mass of star i, Ns is the total number of stars

and r̂si is the unit vector pointing from star i to star s. The gravitation force kernel φ′s includes

a smoothing length, over which gravity is softened, which prevents violent two-body collisions

with other stars. φ′si is computed by integrating W , the SPH smoothing kernel,

1Smoothed Particle Hydrodynamics
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φ′si (rsi, h) =
4π

r2si

rsi∫
0

W (r′, h) r′
2
dr′ (7.2)

where rsi is the scalar distance between stars s and i. The jerk, or time derivative of the

acceleration is given by the time derivative of Equation (7.1),

ȧns =
∂

∂t

(
−G

Ns∑
i=1

Miφ
′
si

rsi
|rsi|

)
. (7.3)

Expanding out and computing all the partial derivatives gives

ȧns =−G
Ns∑
i=1

Miφ
′
si

1

|rsi|
∂rsi
∂t

−G
Ns∑
i=1

Miφ
′
sirsi

∂

∂t

1

|rsi|
−G

Ns∑
i=1

Mi
∂φ′si
∂t

r̂si

=−G
N∑
i=1

Miφ
′

|rsi|
vsi +3G

N∑
i=1

Mi (rsi · v)φ′

|rsi|3
rsi − 4πG

N∑
i=1

Mi (rsi · v)W

|rsi|2
rsi. (7.4)

Once the jerk and acceleration have been computed, the predicted positions and velocities of

the stars at the end of the timestep can be calculated.

rn+1
s = rns + vns∆t+

1

2
ans∆t2 +

1

6
ȧns∆t3 (7.5)

vn+1
s = vns + ans∆t+

1

2
ȧns∆t2. (7.6)

The acceleration and jerk (an+1, ȧn+1) are then recomputed using the updated positions and

velocities. From this we can work out

äns =
2 [−3 (ans − an+1

s )− (2ȧns + ȧn+1
s ) ∆t]

∆t2
(7.7)

...
an
s =

6 [2 (ans − an+1
s ) + (ȧns + ȧn+1

s ) ∆t]

∆t3
. (7.8)

The last step is the correction step where the higher order terms are added to the position and

the velocity vectors.
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rn+1
s = rn+1

s +
1

24
äns∆t4 +

1

120

...
an
s∆t5 (7.9)

vn+1
s = vn+1

s +
1

6
äns∆t3 +

1

24

...
an
s∆t4. (7.10)

Seren view uses standard block timestepping, ∆t = ∆tMax/2
n where n = 0, 1, 2, 3...., i.e.

any positive integer. A particle can move to any lower timestep at the end of its step, but can

only move up one level, and then only if the steps are syncronised. This prevents the timesteps

oscillating, but allows the timesteps to be reduced quickly when needed.

7.2 Dimensionless Units

The computations themselves are done using dimensionless units. This is so that the numbers

don’t get so large/small that information is lost due to computer precision. The results are

then scaled to physical units after the simulations have finished.

To convert physical units (x) to dimensionless units (x̂), the physical units are divided by

a characteristic scale, (xchar), i.e.

x̂ =
x

xchar
, (7.11)

where x is any physical quantity, for example mass, length, time etc. These characteristic scales

have the same units as their corresponding physical units. They can be related to one another

via the following equations,

tchar =

√
L3
char

GMchar

, (7.12)

vchar =

√
GMchar

Lchar
, (7.13)

where L is length, t is time, M is mass and v is velocity.

For ease of computation, both the dimensionless mass of the core and its dimensionless

radius are set to 1. As a result, the crossing time is approximately one dimensionless unit as

well.
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7.2.1 Convolving

For ease of integration, dimensionless units are used during the simulations. Each core has a

mass and radius equal to 1, meaning that the line cluster has a length of 2, and the ring cluster

has a radius of 1 also. After the simulations have finished, the dimensionless mass and radius

are convolved with observed distributions of core masses and radii to produce the final binary

frequency and period distributions.

Before a core collapses, its radius is approximately

Rcore (Mc) =

0.1 pc (Mc/M�) , Mc < M�

0.1 pc (Mc/M�)1/2 , Mc > M�
(7.14)

(c.f. Larson 1981; Myers 1983). If we substitute Equation (7.14) into Equation (7.12) we can

determine what the characteristic time is for a core of a given mass.

t
�

=

0.5 Myr (Mc/M�) Mc < M�

0.5 Myr (Mc/M�)1/4 Mc > M�.
(7.15)

7.3 Testing for Eccentric Binaries and Triples

Seren view calculates the properties of any binary and higher-order multiple systems that

form during the simulation. Whilst the code has been tested with circular binaries, to see that

the binary properties are accurately recovered, no testing had been done with eccentric binaries.

So in order to test the accuracy of the parameters as measured by Seren view, binaries are

set up with known period, mass ratio and eccentricity. The values found by Seren view are

compared to the input values, giving an idea of the accuracy. The same test is then repeated

for triple systems, but with the eccentricity set to zero.

7.3.1 Initial Conditions of Multiple Systems

For this test I set up binary and triple systems with known parameters. I then allow them

to evolve with Seren view for 1000 dimensionless time units, and compare the output values

with the initial values.

Binaries

In this section I derive the initial conditions for eccentric binaries. The orientation of the orbit

is arbitrary, so for ease, I choose that at periastron, the system is aligned with the x axis, the
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plane of the orbit lies in the (x, y) plane, and the primary, M1, lies at positive x. The separation

of the stars at periastron (i.e. the minimum separation) is

smin = atotal (1− e) . (7.16)

Here e is the eccentricity, and atotal is the sum of the semi-major axes of the system, and is

equal to

atotal =
GM1M2

(−2Ebinding)
, (7.17)

where Mi is the mass of star i. Subscript 1 denotes a property of the primary star, and subscript

2 denotes a property of the secondary. Rearranging Equation (6.12) gives

−2Ebinding =

(
2πG

P
√
M1 +M2

)2/3

M1M2, (7.18)

where P is the period of the binary. Substituting this into Equation (7.17) and rearranging

gives

smin = G (1− e)

(
P
√
M1 +M2

2πG

)2/3

. (7.19)

To put the center of mass at x = 0, the following equations need to be satisfied,

M1x1 +M2x2 = 0 (7.20)

x1 − x2 = smin, (7.21)

where xi is the distance from the centre of mass of star i. I choose that the initial positions lie

on the x-axis. Therefore,

x2 = − M1smin
M2 +M1

(7.22)

x1 = smin + x2. (7.23)

By substituting Equation (7.19) into Equation (7.22), we get the following expression for the
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initial position of star 2,

x2 = −GM1 (1− e)

(
P

2πG (M2 +M1)

)2/3

. (7.24)

We can now substitute this into Equation (7.23) to get the initial position for star 1,

x1 = GM2 (1− e)

(
P

2πG (M1 +M2)

)2/3

. (7.25)

We can also derive the initial velocities of each star. If we substitute

ẏ2 =
M1ẏ1
M2

, (7.26)

|x1 − x2| = smin, (7.27)

and Equation (7.18) into Equation (6.6) (noting that the binary is set up in the centre of mass

frame, i.e. vc = 0) we get

−1

2

(
2πG

P
√
M1 +M2

)2/3

M1M2 =
1

2
M1|ẏ1|2 +

1

2
M2

(
M1|ẏ1|
M2

)2

− GM1M2

smin
(7.28)

Rearranging, and substituting in Equation (7.19) gives

|ẏ1| =
M2

M1 +M2

√
1 + e

1− e

(
2πG (M1 +M2)

P

)1/3

. (7.29)

Using M2|ẏ2| = M1|ẏ1|, we know that

|ẏ2| =
M1

M2

|ẏ1|, (7.30)

and so

|ẏ2| =
M1

M1 +M2

√
1 + e

1− e

(
2πG (M1 +M2)

P

)1/3

. (7.31)

At periastron, the velocity will be perpendicular to the position vector. I choose the binary to
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be in the (x, y) plane. As the stars are placed on the x axis, the velocities need to be in the y

direction. The velocities then become

ẏ1 =
M2

M1 +M2

√
1 + e

1− e

(
2πG (M1 +M2)

P

)1/3

ŷ (7.32)

ẏ2 =
−M1

M1 +M2

√
1 + e

1− e

(
2πG (M1 +M2)

P

)1/3

ŷ. (7.33)

7.3.2 Results

The binaries are allowed to run for 500 time units, and their parameters computed at the end

of the simulation.
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Figure 7.1: 100 eccentric binary systems are set up and allowed to evolve for 500 computer
time units. At the end of the simulation, the eccentricity and period of the binary systems are
determined. The top graph plots the error between the initial and final values for eccentricity
against the initial eccentricity. The bottom plot shows the same for the period.
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The errors in the period and eccentricity for the eccentric binaries can be seen in Figure

7.1, with eccentricity plotted on the top graph, and period plotted below. The error in the

eccentricity has no dependence on the initial eccentricity of the system. The error in the period

decreases with the initial period.
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Core Cluster Results: Part I

In this chapter I present and discuss the properties of long-lived multiple systems that form in

the core-cluster simulations described in Chapter 5. The first section deals with the fiducial

model, and the sections thereafter investigate N0, the number of stars produced per core, V ,

the initial virial balance of the core cluster and σ0 , the variance in the stellar masses in a single

core cluster.

I define the mass ratio of the outer orbit of a triple to be

q =
Mouter

Mbinary

. (8.1)

Similarly for the orbits of quadruples,

q =
Mmid

Mbinary

Mid orbits of hierarchical quadruples (8.2)

Mouter

Mtriple

Outer orbits of hierarchical quadruples (8.3)

Mbinary2

Mbinary1

Outer orbits of double binary quadruples. (8.4)

Note that in the final case Mbinary1 > Mbinary2 . No systems are double counted, for example, if

a binary system is found to form part of a triple system, then its properties are only included

in the inner orbits of triples, they will not contribute to the binary graphs and statistics.

The dimensionless masses of the cores are convolved with the CMF (Equation 3.3) to pro-

duce a multiplicity frequency as a function of primary mass. The dimensionless radii are

convolved with Equation (7.14) to find the radii of the core in physical units. Together with

the masses of the cores, the radii are used to compute the periods in years (Section 7.2.1).
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8.1 Fiducial Model

In this section I present and discuss the results of the fiducial model (see Table 5.1). I run 8920

models, which produces 6065 binaries, 2725 triples, 33 hierarchical quadruples and 165 double

quadruples.

Figure 8.1 shows the properties of the binaries. The eccentricities are thermally distributed,

as shown in Sub-figure 8.1a. The mass ratio distribution shown in Sub-figure 8.1b is the

distribution over the entire primary mass range. Note that the small number of systems with

q < 0.2 is due to the relatively small σ0 , i.e. for the majority of cores, there are no stars

disparate enough in mass to produce such low mass ratios. The period distribution shown in

Sub-figure 8.1c is very narrow (possibly due to the narrow range of core sizes and virial ratios

assumed), with a standard deviation of σ
P
∼ = 0.6 and a mean of µ

P
≈ 102.2 ∼ 160 yr. The

corresponding distribution of semi-major axes has the mean µsma = 101.4 = 25 AU and standard

deviation σsma ∼ 0.4 (see also Table 8.1).

Table 8.1: Mean and standard deviations of log10 (a/AU) and log10 (P/yr).

Fiducial

Binaries Triples
Inner Outer

period 2.246±0.480 2.297±0.436 4.484±1.041
sma 12.57±0.401 12.61±0.376 14.09±0.732

Table 8.2: Mean and standard deviations of log10 (a/AU) and log10 (P/yr).

Fiducial

Quad, Hierarchical Quad, Double
Inner Mid Outer Inner Outer

period 2.443±0.407 4.666±1.031 7.268±0.835 3.236±1.206 4.720±1.033
sma 12.70±0.370 14.21±0.739 15.97±0.608 13.16±0.778 14.27±0.716

The multiplicity frequency as a function of primary mass (Sub-figure 8.1d) has a steeper

slope than was predicted by the purely statistical arguments presented in Chapters 3 and 4,

due to the lack of dissipation (i.e. β � 0 in these simulations). In Sub-figure 8.1e) the graph

of M1 against M2 is plotted. The boundary is simply due to the allowed mass ratios given that

the total variance of the masses of the stars must equal σ0 . The plots as shown in Reipurth &

Mikkola (2012) spread across the entire plot. This is because in the Reipurth & Mikkola (2012)
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paper there was no set limit to the total mass of the system, nor to the standard deviation of

the masses in the core-cluster.

When looking at the properties of the triple systems (Figure 8.2), it can be seen in Sub-

figure 8.2a that there are fewer outer orbits with a high eccentricity than would be expected

with a thermal distribution. This is because the very eccentric outer orbits tend to be disrupted

at periastron, due to the close approach of the components, and the system is broken up. The

inner orbits (blue line), however, still have a thermal distribution. The mass ratio plot in Sub-

figure 8.2b shows an outer mass ratio distribution that tends toward q = 0. This is where a

binary tends to be orbited by a star that is smaller than the components of the binary. The

period distribution given in Sub-figure 8.2c for the outer orbits has a larger spread and is shifted

to longer periods than both the pure binaries, and the inner pairs of hierarchical triples (see also

Table 8.1). The graph of M1 against M2 is plotted in Sub-figure 8.2d, showing a distribution

that is similar to the distribution for pure binaries, save for a lack of low-mass components. The

graph of M3 against M2 +M1 is plotted in Sub-figure 8.2e. It can be seen that the majority of

systems have a dominant binary, for the majority of cases the third star is much smaller than

the inner binary.

Only a handful of hierarchical quadruples are produced (33 in total, see also Table 8.3) and

so the results shown in Figure 8.3 are less well constrained. The orbits of the inner pairs and

mid stars appear to have similar properties to the triple systems. The outermost orbits have a

high eccentricity (Subfigure 8.3a) as there have not been any stars have been ejected from the

core cluster, so no energy has been lost from the system, and the quadruple is only just bound

(V = 0.5). As we can see from Equation 6.11, a small binding energy means a high eccentricity.

The outermost star tends to be smaller than any of the inner components, as evidenced by the

strong mass ratio peak at q < 0.2 in Sub-figure 8.3b. The period of the outer orbits are shifted

again to longer times, with a mean of ∼20,000,000 yrs. The graph of M1 against M2 is plotted

in Sub-figure 8.3d, the graph of M3 against M2 + M1 in Sub-figure 8.3e and the graph of M4

against M3 +M2 +M1 in Sub-figure 8.3f. Due to low-number statistics, conclusions cannot be

drawn. Note however, that the straight line in Sub-figure 8.3d is simply a result of the condition

that the sum of the components by definition must add up to 1.

The statistics for double quadruples are shown in Figure 8.4, with the properties of the inner

pairs shown by blue lines, and the properties of the outer orbits by red lines. Sub-figure 8.4a

shows that there is a high fraction of outer orbits with high eccentricity for the same reason

as given above. The distribution of both inner and outer mass ratios (Subfigure 8.4b) shows

that the two inner pairs tend to have an intermediate mass ratio, with the majority of systems

having a mass ratio between q = 0.2 and 0.4. The period distribution for the outer orbits peaks

at a higher value than the inner pairs (∼ 104.7 yrs, see Table 8.2), and is comparable in scale

to the outer orbit of triples, rather than the outer orbit of hierarchical quadruples. The graph
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Figure 8.1: The properties for the 6065 binaries produced by the fiducial model. Frame a)
shows the normalised distribution of eccentricities, Frame b) shows the normalised distribution
of mass ratios, Frame c) shows the normalised distribution of periods [yr], Frame d) shows the
multiplicity frequency as a function of primary mass, and Frame e) plots M2 against M1.
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Figure 8.2: The properties of the 2725 triples formed in the fiducial model. Frame a) shows the
normalised distribution of eccentricities, Frame b) shows the normalised distribution of mass
ratios and Frame c) shows the normalised distribution of periods [yr]. The blue lines show
the inner periods, whilst the red lines show the outer periods. Frame d) plots M2 against M1,
whilst Frame e) plots M3 against M2 +M1.
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Figure 8.3: The properties of the 33 hierarchical quadruples produced by the fiducial model.
Frame a) shows the normalised distribution of eccentricities, Frame b) shows the normalised
distribution of mass ratios and Frame c) shows the normalised distribution of periods [yr]. The
blue lines show the inner periods, the red lines show the mid periods and the green lines show
the outer periods. Frame d) plots M2 against M1, whilst Frame e) plots M3 against M2 +M1,
and Frame f) plots M4 against M3 +M2 +M1.
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of M2 against M1 and M4 against M3 is plotted in 8.4c. The higher-mass binary lies in the

same distribution as the pure binaries, but the second binary tends to comprise smaller stars,

and so populate the bottom left corner of the graph. The graph of M4 +M3 against M2 +M1

is plotted in 8.4d. Note again, that the straight line in Sub-figure d is simply a a result of the

condition that the sum of the components must add up to 1.

Further analysis shows that the two larger stars tend to pair up, and the two smaller stars

tend to pair up. The more massive of the two pairs tend to have a smaller period, with a

similar distribution to the pure binaries. The period of the less massive pair has a much larger

standard deviation, ranging from a period of less than 1 to more than 100 dimensionless crossing

times (the pure binaries peak at 1 dimensionless crossing time). As pure binaries of the same

high period are not found, it can be assumed that being a part of a double quadruple helps

to stabilise the system. Or that every time a wide binary forms, a double quadruple is formed

around it. The can be seen in the high period tail for the inner pairs in Sub-figure 8.4c.

Figures 8.5a, 8.5b, 8.5c and 8.5d show plots of period against eccentricity for binaries, triples,

hierarchical quadruples and double quadruples respectively. We can see in Figure 8.5a that there

appears to be no correlation between the period and the eccentricity of the binaries, other than

the long-period binaries tend to have higher eccentricity. Almost all the binary systems are

very stable, with the fidelity approaching 1. The data for the triple systems displayed in Figure

8.5b shows that there is a trend for the outer orbits of triples with very high eccentricity to have

longer periods and lower fidelity parameters. This is because orbits with the same eccentricity

but smaller periods will have a smaller separation at periastron with the inner pair, and hence

the system is more likely to be disrupted. Whilst Figure 8.5c shows that the outermost orbits

of hierarchical quadruples have a very low fidelity, this could just be due to the fact that these

orbits have not yet completed a full orbit before the simulation was terminated. The data for

the double quadruples displayed in Figure 8.5d shows that the outer orbits have a lower fidelity

than the inner orbits. It also shows that the fidelity decreases as the eccentricity and/or period

increases, i.e. the more compact, circular systems are the most stable.

Table 8.3 shows the average number of multiple systems produced per core. Note that the

sum of binaries, triples and quadruples needs to add up to 1 or greater. This is because a core

will produce a minimum of one multiple system, or potentially an additional binary system,

giving a total of two for said core. The majority of cores produce a single binary, with most

others producing a triple system. It is noteworthy that approximately 5 times as many double

quadruples are produced as hierarchical quadruples.

The simulations show that the majority of cores (69%) produce systems involving the two

most massive stars in the core, and 85% of cores produce systems involving the most massive

star. As gravity is the only method of interaction between the stars, stellar mass plays a big

role in determining the components of multiple systems, explaining the large fraction of cores
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Figure 8.4: The properties of the 165 double quadruples produced by the fiducial model. Frame
a) shows the normalised distribution of eccentricities, Frame b) shows the normalised distribu-
tion of mass ratios and Frame c) shows the normalised distribution of periods [yr]. The blue
lines show the inner periods, whilst the red lines show the outer periods. Frame d) plots M2

against M1 and M4 against M3, and Frame e) plots M4 +M3 against M2 +M1.
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(a) The distribution of the 6065 binary sys-
tems in the (log10 (P/yr) , e)-plane for the
fiducial model. The colour of the points en-
codes the fidelity parameter.
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(b) The distribution of the 2725 triple systems
in the (log10 (P/yr) , e)-plane for the fiducial
model. Small circles represent inner orbits
and triangles represent outer orbits. The
colour of the points encodes the fidelity pa-
rameter.
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(c) The distribution of the 33 hierarchical
quadruple systems in the (log10 (P/yr) , e)-
plane for the fiducial model. circles represent
inner orbits, red triangles represent mid orbits
and squares represent outer orbits. The colour
of the points encodes the fidelity parameter.
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(d) The distribution of the 165 double quadru-
ple systems in the (log10 (P/yr) , e)-plane for
the fiducial model. Circles represent inner or-
bits and triangles represent outer orbits. The
colour of the points encodes the fidelity pa-
rameter.

Table 8.3: Average number of multiple systems produced per core.

Fiducial Binaries Triples Hierarchical Quadruples Double Quadruples

Fiducial 0.6799 0.3055 0.0037 0.0185
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producing systems involving the most massive stars.

– 94 –



Chapter 8. Core Cluster Results: Part I

8.2 The Number of Stars in a Core

In this section I present the results of varying the number of stars a core produces. I run

10000, 9873, 8920, 7595, 2728 simulations each for N0 = 2, 3, 4, 5, and 6 respectively, the

reduced number of simulations reflecting the increased computational time required. These

sets of simulations produce 9993, 9873, 6065, 4356, 1658 binaries for N0 = 2, 3, 4, 5 and 6

respectively. There are 0, 0, 2725, 3159, 1087 triples produced, 0, 0, 33, 146, 110 hierarchical

quadruples and 0, 0, 165, 223, 93 double quadruples are produced.

The properties of the binary systems produced are shown in Figure 8.5. There is a marked

effect on the resulting eccentricity distribution for binaries between N0 = 2 and N0 > 2 (see

Sub-figure 8.5a). For N0 = 2, there is no opportunity to redistribute energy by ejecting other

stars from the cluster. Therefore, the eccentricity distribution is no longer thermal, but is

instead f(e) = 1.5e2 + 2e3, where there are fewer low-eccentricity binaries, and more binaries

with eccentricities tending towards 1. For N0 > 2, the eccentricity distribution is thermal,

f(e) ∼ 2e, as energy can now be redistributed when stars are ejected. The final eccentricity

distribution does not alter as N0 is further increased.

In Sub-figure 8.5b we can see that there is also a marked difference between the mass ratio

distributions for N0 = 2 and N0 > 2. The standard deviation is always equal to σ0 , this being

a direct consequence of the normalisation technique (Section 5.1.3). For two stars, this is equal

to giving them a separation in logspace of 2σ0 as shown by the following proof,

Separation = 2σ0 = log10 (M1)− log10 (M2)

2σ0 = − log10

(
M2

M1

)
= − log10 (q)

q = 10−2σ0 (8.5)

For N0 = 2, and σ0 = 0.3, q is always equal to 0.25, and a vertical bold black line has been

drawn on Sub-figure 8.5b to show where this lies. As N0 increases, the mass ratio distribution

flattens out, and the peak at 10−2σ0 becomes less prominent. For N0 = 4, the peak is no longer

visible. q < 0.2 always has a small population, due to the fiducial value for σ0 . In Sub-figure

8.5c, the period distributions have been plotted. We can see in both this figure and Table

8.4 that as N0 increases, the peak of the period shifts to smaller values and the width of the

distribution also increases. This is because as N0 increases, there are more stars to kick out.

Each time a star is kicked out, energy is lost from the system, and the period of the remaining

system decreases. The total amount of energy lost varies each time a star is ejected. With a

larger N0, there is a greater spread in the total energy lost, and hence a greater spread in the

distribution of periods.
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Table 8.4: Mean and standard deviation of log10 (P/yr)

Nstar

Binaries Triples
Inner Outer

N0 = 2 2.957±0.438 —–±nan —–±nan
N0 = 3 2.559±0.460 —–±nan —–±nan
N0 = 4 2.242±0.482 2.291±0.438 4.478±1.034
N0 = 5 2.116±0.663 2.062±0.436 4.386±0.926
N0 = 6 2.082±0.908 1.897±0.431 4.382±0.898

Table 8.5: Mean and standard deviation of log10 (P/yr)

Nstar

Quad, Hierarchical Quad, Double
Inner Mid Outer Inner Outer

N0 = 2 —–±nan —–±nan —–±nan —–±nan —–±nan
N0 = 3 —–±nan —–±nan —–±nan —–±nan —–±nan
N0 = 4 2.455±0.393 4.677±0.942 7.280±0.837 3.221±1.221 4.706±1.052
N0 = 5 2.103±0.439 4.206±0.858 6.335±1.133 3.233±1.434 4.918±1.131
N0 = 6 1.907±0.415 4.017±0.908 6.020±1.046 3.242±1.567 5.133±1.070
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For N0 = 2, every star is part of a binary system, and so the multiplicity frequency is

100% for every primary mass range (see Subfigure 8.5 d, dotted line). The slope of the graph

of multiplicity frequency against primary mass becomes steeper as N0 increases, especially in

the high primary mass regime. Table 8.6 shows that as N0 increases, the percentage of cores

producing systems that involve the most massive stars decreases. Therefore, the more massive

stars are more likely to be singles, and the multiplicity frequency decreases in the high primary

mass regime. The graph of M1 against M2 is plotted in Sub-figure 8.5e. As N0 increases, the

average size of the components becomes smaller, as a result of dividing the total mass between

more stars. However, the shape of the distribution is constant with any changes in N0.

Table 8.6: Percentage of cores producing systems involving the most massive stars

Nstar Most massive star Two most massive stars

N0 = 2 1.00 1.00
N0 = 3 0.99 0.84
N0 = 4 0.96 0.77
N0 = 5 0.95 0.72
N0 = 6 0.93 0.66

Figure 8.6 shows the properties of the triple systems that are produced with the different

values of N0 = 4, 5 and 6 (neither N0 = 2 nor 3 produces any triples). The eccentricity

distributions for all orbits (see Figure 8.6a) follow the same distribution as the fiducial model.

In Sub-figure 8.6b we can see that both the outer and the inner period of the triples have a lower

fraction of low-q orbits as N0 increases, the effect being greater for the outer orbit. The inner

orbit has a flatter distribution for q > 0.2 as N0 increases, i.e. the outermost star becomes

larger compared to the inner pair, whilst the mass ratio distribution for the inner pairs are

much flatter than for pure binaries. The period distributions are shown in Sub-figure 8.6c. The

mean of the inner period decreases with increasing N0, for both the inner and the outer orbits.

This can be explain using the same argument as was invoked for the binaries, as N0 increases,

there are more stars to eject, and so more energy can be lost, hardening and decreasing the

period of the orbits. As the mean of the outer periods are not affected, the peaks of the inner

and outer period distributions move apart with increasing N0. In Sub-figure 8.6d M2 is plotted

against M1, and in Sub-figure 8.6d M3 is plotted against M2 + M1. The same trends are seen

for both the outer orbits and inner orbits as were seen for the binaries.

The properties of the hierarchical quadruples are shown in Figure 8.7. The eccentricity

distributions given in Sub-figure 8.7a show an outer orbit that has a strong peak at high

eccentricities, similar to the effect on the eccentricity of the binaries for N0 = 2. This peak

at e = 1 for the outer orbits decreases as N0 increases. Both the middle and inner orbits
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Figure 8.5: The variation of binary properties with N0. The dashed/dotted/thick solid/dot-
dashed/thin solid lines in each of the Frames describes the distributions attained when N0 =
2, 3, 4, 5 and 6 respectively. Frame a) shows the normalised distribution of eccentricities. The
black dashed lines show a thermal distribution (the straight line), and f (e) = 1.5e2+2e3, which
is a good fit to the N0 = 2 case. Frame b) shows the normalised distribution of mass ratios,
Frame c) shows the normalised distribution of periods [yr] and Frame d) shows the multiplicity
frequency as a function of primary mass, and Frame e) plots M2 against M1. 9993, 9873, 6065,
4356, 1658 binaries are plotted for N0 = 2, 3, 4, 5 and 6 respectively.
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Figure 8.6: The variation of properties of triples formed with N0. The thick solid/dot-
dashed/thin solid lines in each of the Frames describes the distributions attained when N0

= 4, 5 and 6 respectively. The blue lines show the inner periods, whilst the red lines show the
outer periods. Frame a) shows the normalised distribution of eccentricities, Frame b) shows
the normalised distribution of mass ratios and Frame c) shows the normalised distribution of
periods [yr]. Frame d) plots M2 against M1, whilst Frame e) plots M3 against M2 +M1. 0, 0,
2725, 3159, 1087 triples are plotted for N0 = 2, 3, 4, 5, and 6 respectively.
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possibly become more circular as N0 increases, but better number statistics would be needed to

confirm the trend. The mass ratios in Sub-figure 8.7b show that as N0 increases, the innermost

pair tends towards equal masses, inhibited perhaps only by the availability of equal mass

companions. Both the middle and outer mass ratio distributions have a peak between q =

0 and 0.2, but the size of this peak for the middle orbit decreases as N0 increases. We have

a situation where the components of the quadruple become more and more equal in mass as

N0 increases. The period distributions for hierarchical quadruples can be seen in Sub-figure

8.7c, and Table 8.5. The mean and standard deviations of the inner and middle orbits are

comparable to the inner and outer orbits of the triple systems. The mean period of each of

the orbits decreases as N0 increases. In Sub-figure 8.7d M2 is plotted against M1, in Sub-figure

8.7e M3 is plotted against M2 +M1 and in Sub-figure 8.7f M4 is plotted against M3 +M2 +M1.

Although the number statistics are small, it can be seen that the quadruples follow the same

trends as seen in both the triples and binaries.

The properties of double quadruples are shown in Figure 8.8. The peak of the eccentricity

distribution (See Sub-figure 8.8 a) of the outer period at 1 becomes less prominent as N0

increases. The eccentricity of the inner orbits remains unaffected by any change in N0. Sub-

figure 8.8b shows the mass ratios distributions. Both the outer mass ratio and the inner mass

ratio distributions become flatter as N0 increases, again suggesting that equal mass components

are preferred for quadruples than disparate mass components. The mean period of both the

inner orbits and outer orbits of double quadruples as seen in Sub-figure 8.8c and Table 8.5

increase with increasing N0. The effect is greater for the outer orbits, so that there is a greater

separation between the two pairs compared to their internal orbits. This is due to a combination

of effects. Firstly, given that there are more masses to choose from, the mass ratios become

flatter, so that equal masses are more likely. For a given orbit, a high mass ratio system is

more stable than a small mass ratio system. Secondly, ejecting excess stars can circularise the

orbit, which again is more stable than an eccentric orbit with the same period. Together, this

means that outer orbits with a given orbit that may have disintegrated in a core with lower

N0 are more likely to be stabilised in a core with higher N0. The effect is greater for higher

periods. Because the higher periods are not destroyed so effectively, the standard deviations

of the periods also increase with increasing N0. In Sub-figure 8.8d, M2 is plotted against M1

and M4 is plotted against M3. In Sub-figure 8.8e M4 + M3 is plotted against M2 + M1. The

trend of the inner binaries follows the same as all previous cases. The masses of the pairs also

decreases on average, as before, but with the added trend that the standard deviation of the

masses increases with N0. this is because as N0 increases, there is a greater range of masses

that 4 stars can add up to, or in other words, a greater range in masses that can be ejected

with escaping singles.

The period against eccentricity plots for the binaries are shown in Figure 8.9. Sub-figure
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Figure 8.7: The variation of properties of hierarchical quadruples formed with N0. The thick
solid/dot-dashed/thin solid lines in each of the Frames describes the distributions attained
when N0 = 4, 5 and 6 respectively. The blue lines show the inner periods, the red lines show
the middle periods and the green lines show the outer periods. Frame a) shows the normalised
distribution of eccentricities, Frame b) shows the normalised distribution of mass ratios and
Frame c) shows the normalised distribution of periods [yr]. Hierarchical quadruples cannot be
produced in cores that only produce 2 or 3 stars. Frame d) plots M2 against M1, whilst Frame
e) plots M3 against M2 +M1, and Frame f) plots M4 against M3 +M2 +M1. 0, 0, 33, 146, 110
hierarchical quadruples are plotted for N0 = 2, 3, 4, 5, and 6 respectively.
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Figure 8.8: The variation of properties of double quadruples formed with N0. The thick
solid/dot-dashed/thin solid lines in each of the Frames describes the distributions attained
when N0 = 4, 5 and 6 respectively. The blue lines show the inner periods, whilst the red lines
show the outer periods. Frame a) shows the normalised distribution of eccentricities, Frame b)
shows the normalised distribution of mass ratios and Frame c) shows the normalised distribu-
tion of periods [yr]. Frame d) plots M2 against M1 and M4 against M3, and Frame e) plots
M4 + M3 against M2 + M1. 0, 0, 165, 223, 93 double quadruples are plotted for N0 = 2, 3, 4,
5, and 6 respectively.
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8.9a shows the distribution for N0 = 2, Sub-figure 8.9b shows N0 = 3, 8.9c shows N0 = 4, 8.9d

shows N0 = 5 and 8.9e shows N0 = 6. The colour of the points encodes the fidelity parameter.

As N0 increases, small eccentricities are more likely to be occupied, especially for small periods.

N0 = 5 and 6 help to produce long period tails and a flat distribution of mass ratios. The upper

limit to P in Subfigure 8.9a is set by the maximum size of a core (see Section 7.2.1).

The period against eccentricity plots for the triple systems are shown in Figure 8.10. Sub-

figure 8.10a shows the distribution for N0 = 2, Sub-figure 8.10b shows N0 = 3, 8.10c shows N0

= 4, 8.10d shows N0 = 5 and 8.10e shows N0 = 6. The small circle represent the inner orbits,

whilst the triangles represent the outer orbits. The colour of the points represents the fidelity

parameter. The very high eccentricity systems have a very low fidelity parameter, and thus are

unlikely to survive long enough to reach the field. There is not much difference between the

different cases for N0.

The period against eccentricity plots for the hierarchical quadruples are shown in Figure

8.11. Sub-figure 8.11a shows the distribution for N0 = 2, Sub-figure 8.11b shows N0 = 3, 8.11c

shows N0 = 4, 8.11d shows N0 = 5 and 8.11e shows N0 = 6. The colour of the points represents

the fidelity parameter. The outermost orbits are more likely to have a higher fidelity parameter,

and hence survive into the field if N0 has a higher value. Lower eccentricities for the outermost

orbits are also more likely as N0 increases. All the very high eccentric outer orbits have a small

fidelity parameter, independent of N0.

The period against eccentricity plots for the double quadruples are shown in Figure 8.12.

Sub-figure 8.12a shows the distribution for N0 = 2, Sub-figure 8.12b shows N0 = 3, 8.12c shows

N0 = 4, 8.12d shows N0 = 5 and 8.12e shows N0 = 6. The colour of the points represents the

fidelity parameter. As N0 increases, smaller eccentricity outer orbits are more likely.

It can be seen in Table 8.7 that as N0 increases, the fraction of binaries are diminished

in favour of triples and quadruples. This is because there are more excess stars that can be

ejected, carrying away energy, leaving behind a hardened system. The percentage of hierarchical

quadruples increases more dramatically than double quadruples.

Table 8.7: Average number of multiple systems produced per core.

Nstar Binaries Triples Hierarchical Quadruples Double Quadruples

N0 = 2 0.9993 0.0000 0.0000 0.0000
N0 = 3 1.0000 0.0000 0.0000 0.0000
N0 = 4 0.6799 0.3055 0.0037 0.0185
N0 = 5 0.5735 0.4159 0.0192 0.0294
N0 = 6 0.6078 0.3985 0.0403 0.0341

With the requirement that the KS test must be rejected at the 1% level for all values of N0
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Figure 8.9: The distribution of binary systems in the (log10 (P/yr) , e)-plane. The colour of the
points encodes the fidelity parameter. Frame a) corresponds to N0=2, b) 3, c) 4, d) 5, and e)
6. 9993, 9873, 6065, 4356, 1658 binaries are plotted for N0 = 2, 3, 4, 5 and 6 respectively.
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Figure 8.10: The distribution of triple systems in the (log10 (P/yr) , e)-plane. Small circles
represent inner orbits and triangles represent outer orbits. The colour of the points encodes
the fidelity parameter. Frame a) corresponds to N0=2, b) 3, c) 4, d) 5, and e) 6. 0, 0, 2725,
3159, 1087 triple systems are plotted for N0 = 2, 3, 4, 5, and 6 respectively.
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Figure 8.11: The distribution of hierarchical quadruple systems in the (log10 (P/yr) , e)-plane.
Circles represent inner orbits, triangles represent middle orbits and squares represent outer
orbits. The colour of the points encodes the fidelity parameter. Frame a) corresponds to N0=2,
b) 2, c) 4, d) 5, and e) 6. 0, 0, 33, 146, 110 hierarchical quadruple systems are plotted for N0

= 2, 3, 4, 5, and 6 respectively.
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Figure 8.12: The distribution of triple systems in the (log10 (P/yr) , e)-plane. Circles represent
inner orbits and triangles represent outer orbits. The colour of the points encodes the fidelity
parameter. Frame a) corresponds to N0=2, b) 3, c) 4, d) 5, and e) 6. 0, 0, 165, 223, 93 double
quadruple systems are plotted for N0 = 2, 3, 4, 5, and 6 respectively.
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Table 8.8: This table shows the eccentricity, mass ratio and period distributions that for which
the null hypothesis can be rejected at the 1% level, as determined by the K-S test for the
different values of N0.

N0 System Type Eccentricity Mass Ratio Period

2 Binaries X X X
3 Binaries X X X
5 Binaries X X
6 Binaries X X
5 Triples inner X X
6 Triples inner X X
5 Triples outer X
6 Triples outer X
5 Hierarchical Quadruples inner X X
6 Hierarchical Quadruples inner X X
5 Hierarchical Quadruples mid X
6 Hierarchical Quadruples mid X
5 Hierarchical Quadruples outer X X X
6 Hierarchical Quadruples outer X X X
5 Double Quadruples inner X
6 Double Quadruples inner X X
5 Double Quadruples outer X X
6 Double Quadruples outer X X
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for a given property, we can say that the mass ratios of the binaries, triples, and hierarchical

quadruples (inner and outer) and the periods for the binaries, hierarchical quadruples (inner and

outer) and inner quadruples change with N0 with reasonable confidence (see Table 8.8). But

although many the distributions are statistically different, they are not different enough that

observers could distinguish between them. The possible exception is the mass ratio distribution

for N0 = 2 as compared to other values of N0. Note that the K-S tests have been performed

on the un-convolved distributions, and compared to the fiducial model.
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8.3 The Virial Parameter

In this section I present the results of varying the virial parameter, V . I run 9276, 8920, 8769

simulations for each case, V = 0.2, 0.5, and 0.8 respectively . These sets of simulations produce

6879, 6065, 6038 binaries, and 2258, 2725, 2221 triples, 8, 33, 25 hierarchical quadruples and

169, 165, 194 double quadruples for V = 0.2, 0.5, and 0.8 respectively.

In Sub-figure 8.13a we can see that as V increases, the peak of the eccentricity distribution

of the binaries at e = 1 becomes less prominent. Sub-figure 8.13b shows the mass ratio dis-

tributions, which change little with V . However, in Sub-figure 8.13c and Table 8.9 we can see

that the peak of the period distribution increases as V increases. In Sub-figure 8.13c and Table

8.9 we can see that the standard deviation also increases as V increases.

Table 8.9: Mean and standard deviation of log10 (P/yr)

Virial

Binaries Triples
Inner Outer

V = 0.2 2.045±0.458 2.081±0.434 4.395±1.086
V = 0.5 2.243±0.479 2.288±0.442 4.475±1.047
V = 0.8 2.475±0.506 2.492±0.447 4.676±1.033

Table 8.10: Mean and standard deviation of log10 (P/yr)

Virial

Quad, Hierarchical Quad, Double
Inner Mid Outer Inner Outer

V = 0.2 2.379±0.298 4.526±0.681 7.530±1.214 3.015±1.323 4.462±1.315
V = 0.5 2.474±0.311 4.697±0.996 7.299±0.823 3.252±1.202 4.736±1.021
V = 0.8 2.575±0.381 4.877±1.055 6.837±0.489 3.481±1.221 4.910±1.093

Sub-figure 8.13d shows the multiplicity frequency as a function of primary mass. As V
increases, the multiplicity frequency of high-mass stars decreases. If we compare this with

Table 8.11, we can see that this is because as V increases, the fraction of cores producing

systems involving the most massive stars decreases. Hence it is more likely that the most

massive stars are single, and the multiplicity frequency decreases. The graph of M1 against M2

is plotted in Sub-figure 8.13 d. There are no observable differences between the different values

of V .
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Figure 8.13: The variation of binary properties with V . The dashed/solid/dotted lines in each of
the frames describes the distributions attained when V = 0.2, 0.5 and 0.8 respectively. Frame a)
shows the normalised distribution of eccentricities, frame b) shows the normalised distribution
of mass ratios, frame c) shows the normalised distribution of periods [yr] and frame d) shows
the multiplicity frequency as a function of primary mass, and Frame e) plots M2 against M1.
6879, 6065, 6038 binary systems are plotted for V = 0.2, 0.5, and 0.8 respectively.
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Figure 8.14: The variation of properties of triples formed with V . The dashed/solid/dotted
lines in each of the Frames describes the distributions attained when V = 0.2, 0.5 and 0.8
respectively. The blue lines show the inner periods, whilst the red lines show the outer periods.
Frame a) shows the normalised distribution of eccentricities, Frame b) shows the normalised
distribution of mass ratios and Frame c) shows the normalised distribution of periods [yr].
Frame d) plots M2 against M1, whilst Frame e) plots M3 against M2 + M1. 2258, 2725, 2221
triple systems are plotted for V = 0.2, 0.5, and 0.8 respectively.
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Table 8.11: Percentage of cores producing systems involving the most massive stars

Virial Most massive star Two most massive stars

V = 0.2 0.97 0.77
V = 0.5 0.96 0.77
V = 0.8 0.90 0.70

Due to the low number statistics for hierarchical quadruples, (8, 33, 25 hierarchical quadru-

ples for V = 0.2, 0.5, 0.8 respectively), we cannot draw any firm conclusions about how the

properties of hierarchical quadruples change with V .

The properties of double quadruples produced are shown in Figure 8.15. Although more

double quadruples are produced than hierarchical quadruples (169, 165, 194 double quadruples

for V = 0.2, 0.5, 0.8 respectively), the number statistics are still too few, making it difficult to

draw any firm conclusions about the variation of double quadruples properties with V .

Figures 8.16, 8.17, 8.18 and 8.19 show the period against eccentricity graphs for binaries,

triples, hierarchical quadruples and double quadruples respectively. None of these graphs show

any significant difference between the different values of V .

Table 8.12 shows the average number of systems produced per core cluster. The total

number of systems produced on average decreases as V increases, as would be expected.

Table 8.12: Average number of multiple systems produced per core.

Virial Binaries Triples Hierarchical Quadruples Double Quadruples

V = 0.2 0.7416 0.2434 0.0009 0.0182
V = 0.5 0.6799 0.3055 0.0037 0.0185
V = 0.8 0.6886 0.2533 0.0029 0.0221

In summary, the only properties of multiple systems that are affected by the initial virial

balance of the core are the mean and standard deviation of the period distributions.

With the requirement that the KS test must be rejected at the 1% level for all values of V
for a given property, we can say that the periods of the binaries triples, inner periods of double

quadruples, and outer mass ratios of the triples change with V with reasonable confidence (see

Table 8.13). However, none of these distributions are different enough to be distinguishable

from the fiducial model observationally. Note that the K-S tests have been performed on the

un-convolved distributions, and compared to the fiducial model.

– 113 –



8.3. The Virial Parameter

0.0 0.2 0.4 0.6 0.8 1.0
Eccentricity

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

No
rm

al
is

ed
 F

re
qu

en
cy

a)

0.0 0.2 0.4 0.6 0.8 1.0
Mass Ratio

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
is

ed
 F

re
qu

en
cy

b)

0 2 4 6 8
Log[P/yr]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

No
rm

al
is

ed
 F

re
qu

en
cy

c)

0.0 0.2 0.4 0.6 0.8 1.0
M1

0.0

0.2

0.4

0.6

0.8

1.0

M
2

Dominant Single

Dominant In
ner S

yste
m

Dominant Single

Dominant In
ner S

yste
m

Dominant Single

Dominant In
ner S

yste
md)

V = 0.2
V = 0.5
V = 0.8

0.0 0.2 0.4 0.6 0.8 1.0
M1 +M2

0.0

0.2

0.4

0.6

0.8

1.0

M
3

+
M

4

Dominant Single

Dominant In
ner S

yste
m

Dominant Single

Dominant In
ner S

yste
m

Dominant Single

Dominant In
ner S

yste
me)

V = 0.2
V = 0.5
V = 0.8

Figure 8.15: The variation of properties of double quadruples formed with V . The
dashed/solid/dotted lines in each of the Frames describes the distributions attained when V =
0.2,0.5 and 0.8 respectively. The blue lines show the inner periods, whilst the red lines show
the outer periods. Frame a) shows the normalised distribution of eccentricities, Frame b) shows
the normalised distribution of mass ratios and Frame c) shows the normalised distribution of
periods [yr]. Frame d) plots M2 against M1 and M4 against M3, and Frame e) plots M4 +M3

against M2 +M1. 169, 165, 194 double quadruple systems are plotted for V = 0.2, 0.5, and 0.8
respectively.
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Figure 8.16: The distribution of binary systems in the (log10 (P/yr) , e)-plane. The colour of
the points encodes the fidelity parameter. Frame a) corresponds to V = 0.2, b) 0.5, and c) 0.5.
6879, 6065, 6038 binary systems are plotted for V = 0.2, 0.5, and 0.8 respectively.
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Figure 8.17: The distribution of triple systems in the (log10 (P/yr) , e)-plane. Small circles
represent inner orbits and triangles represent outer orbits. The colour of the points encodes
the fidelity parameter. Frame a) corresponds to V = 0.2, b) 0.5, and c) 0.8. 2258, 2725, 2221
triple systems are plotted for V = 0.2, 0.5, and 0.8 respectively.
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Figure 8.18: The distribution of hierarchical quadruple systems in the (log10 (P/yr) , e)-plane.
Circles represent inner orbits, triangles represent middle orbits and squares represent outer
orbits. The colour of the points encodes the fidelity parameter. Frame a) corresponds to V =
0.2, b) 0.5, and c) 0.8. 8, 33, 25 hierarchical quadruple systems are produced for V = 0.2, 0.5,
and 0.8 respectively.
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Figure 8.19: The distribution of double quadruples in the (log10 (P/yr) , e)-plane. Circles rep-
resent inner orbits and triangles represent outer orbits. The colour of the points encodes the
fidelity parameter. Frame a) corresponds to V = 0.2, b) 0.5, and c) 0.8. 169, 165, 194 double
quadruples are produced for V = 0.2, 0.5, and 0.8 respectively.
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Table 8.13: This table shows the eccentricity, mass ratio and period distributions that for
which the null hypothesis can be rejected at the 1% level, as determined by the K-S test for
the different values of V .

V System Type Eccentricity Mass Ratio Period

0.2 Binaries X
0.8 Binaries X X
0.2 Triples inner X
0.8 Triples inner X X
0.2 Triples outer X X X
0.8 Triples outer X X
0.2 Hierarchical Quadruples inner
0.8 Hierarchical Quadruples inner
0.2 Hierarchical Quadruples mid
0.8 Hierarchical Quadruples mid
0.2 Hierarchical Quadruples outer
0.8 Hierarchical Quadruples outer X
0.2 Double Quadruples inner X
0.8 Double Quadruples inner X
0.2 Double Quadruples outer X
0.8 Double Quadruples outer
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8.4 Standard Deviation of Stellar Masses Produced by

a Core

In this section, I present the results of changing the variance in the stellar masses produced by

a single core. I run 9427, 9218, 8920, 8709, 8350 simulations for each of the cases σ0 = 0.1,

0.2, 0.3, 0.4, and 0.5 respectively. These sets of simulations produce 6855, 6134, 6065, 6222,

6226 binaries, 2443, 2923, 2725, 2397, 2042 triples, 32, 48, 33, 22, 26 hierarchical quadruples

and 380, 242, 165, 106, 84 double quadruples for σ0 = 0.1, 0.2, 0.3, 0.4 and 0.5 respectively.

Figure 8.20 shows the binary properties. The eccentricity distributions become flatter as

σ0 increases (see Sub-figure 8.20a). The mass ratios as seen in Sub-figure 8.20b are strongly

affected by σ0 . As σ0 increases, low q values become more and more populated. The peak

shifts from the q = 0.6 to 0.8 bin, with no instances of q < 0.4 (σ0 = 0.1) to q = 0.2 to 0.4

(σ0 = 0.5), with a smooth transition for the intermediate values of σ0 . This is due simply to

the availability of companions. For a small σ0 , the stars are all of similar masses, and so small

mass ratios are not possible. For large σ0 , because there are only 4 stars, the probability of a

similar mass star being formed in the same core is unlikely.

For σ0 = 0.1, qmin = 0.5, qpeak = 0.6 to 0.8

For σ0 = 0.2, qmin = 0.2, qpeak = 0.4 to 0.6

For σ0 = 0.3, qmin = 0.1, qpeak = 0.2 to 0.4

For σ0 = 0.4, qmin = 0.0, qpeak = 0.2 to 0.4

For σ0 = 0.5, qmin = 0.0, qpeak = 0.2 to 0.4 (8.6)

In Sub-figure 8.20c and Table 8.14, we can see that the peak of the period distribution

increases with increasing σ0 . This is because for small σ0 , all the stars are of similar masses. So

when two stars are ejected, a lot of energy is carried away, and the binary is strongly hardened.

When σ0 is large, there is a greater range in masses. Preferentially, the two smallest stars are

ejected, but these don’t carry as much energy away, so the binary isn’t strongly hardened. The

standard deviation decreases as σ0 increases.

The multiplicity frequency as shown in Sub-figure 8.20d is also strongly affected by σ0 ,

as a consequence of the mass ratio distributions. A smaller σ0 will produce a much flatter

multiplicity frequency distribution than the fiducial, whilst a higher value of σ0 than the fiducial

will produce a steeper multiplicity frequency. This is because for small σ0 , stars formed in a

single core are of a similar size, the smaller cores producing smaller stars and the larger cores

producing larger stars. Due to the fact that the large and small stars are more segregated from

each other, the smaller stars have a greater opportunity to become primaries. For a larger σ0
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Table 8.14: Mean and standard deviation of log10 (P/yr)

Sigma

Binaries Triples
Inner Outer

0.1 2.020±0.573 2.082±0.409 4.477±0.958
0.2 2.133±0.522 2.230±0.409 4.459±0.924
0.3 2.243±0.482 2.305±0.430 4.493±1.031
0.4 2.350±0.474 2.327±0.455 4.416±1.009
0.5 2.448±0.476 2.329±0.473 4.416±1.112

Table 8.15: Mean and standard deviation of log10 (P/yr)

Sigma

Quad, Hierarchical Quad, Double
Inner Mid Outer Inner Outer

0.1 2.239±0.383 4.637±0.858 7.120±0.571 3.094±1.267 4.426±1.079
0.2 2.403±0.424 4.691±0.812 7.195±0.599 3.253±1.332 4.735±1.125
0.3 2.443±0.382 4.665±1.000 7.267±0.836 3.239±1.219 4.724±1.067
0.4 2.447±0.515 4.926±0.902 7.115±0.799 3.362±1.319 5.006±1.205
0.5 2.486±0.581 4.396±0.819 6.905±0.540 3.361±1.336 4.997±1.310
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there is a much greater range of masses in a single core, and the smaller stars almost always

give way to their larger siblings. The graph of M1 against M2 is plotted in Sub-figure 8.5 e.

As σ0 increases, the area of the graph that the distribution covers increases, due to the greater

disparity in stellar masses.

Figure 8.21 shows the change in properties of triples as σ0 is varied. Sub-figure 8.21a shows

the eccentricity distribution, which does not change much from the fiducial result, apart from

perhaps a tendency towards high eccentricities for σ0 = 0.1 for the inner orbit. The mass

ratio distribution of inner orbits as seen in Sub-figure 8.21b shows much the same result as the

binaries in Sub-figure 8.20b. The outer mass ratios peak more and more strongly at q = 0.0

to 0.2 for large values of σ0 , i.e. the binary is increasingly more likely to be orbited by a star

much less massive than itself. When σ0 is greater than the fiducial value of 0.3, a peak is seen

in the bin q = 0.2 to 0.4, while σ0 = 0.1 does not populate the q = 0.0 to 0.2 bin at all, simply

due to the non-availability of low-mass companions.

Sub-figure 8.21a, along with Tables 8.14 and 8.14 show the change in the period distribution

with σ0 . The inner periods change as discussed in the binaries section. The mean of the outer

periods on average decrease with σ0 , but the effect is much smaller. In Sub-figure 8.6d M2 is

plotted against M1, and in Sub-figure 8.6d M3 is plotted against M2+M1. As for the binaries, as

σ0 increases, the distribution covers a larger proportion of the graph. The distribution plotted

in Sub-figure 8.6d also approaches the asymptote of M3 +M2 +M1 = 1, i.e. as M4 approaches

0

Due to small number statistics, it is difficult to discern any trends in any of the properties

of hierarchical quadruples.

The properties for the double quadruples produced are shown in Figure 8.22. The eccen-

tricity distributions as shown in Sub-figure 8.22a do not show much change, apart from a slight

preference for high eccentricity outer orbits for large σ0 . As σ0 decreases, the mass ratios (Sub-

figure 8.22b) all tend towards 1, as all the stars are of a similar mass. Sub-figure 8.22c and Table

8.15 do not show any clear trend, possibly due to the low number statistics. In Sub-figure 8.8d,

M2 is plotted against M1 and M4 is plotted against M3. In Sub-figure 8.8e M4 +M3 is plotted

against M2 + M1. The trend seen here is the same as seen previously, that is as σ0 increases,

the distribution covers are larger portion of the graph. The distribution notably populates the

lower left corner of the graph, unlike the distribution of pure binaries.

Figures 8.23, 8.24, 8.25 and 8.26 show the period against eccentricity diagrams for the

binaries, triples, hierarchical quadruples and double quadruples respectively. Apart from more

low eccentricity binaries as σ0 increases, there is no variation between the different values of σ0 .

From Table 8.16 we can see that the average number of double quadruples decreases as

σ0 increases, showing that double quadruples are easiest to produce when stars are of simi-

lar masses. The average number of binaries produced increases for σ0 > 0.3 because double
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Figure 8.20: The variation of binary properties with σ0 . The dashed/dotted/thick solid/dot-
dashed/thin solid lines in each of the Frames describes the distributions attained when σ0 = 0.1,
0.2, 0.3, 0.4 and 0.5 respectively. Frame a) shows the normalised distribution of eccentricities,
Frame b) shows the normalised distribution of mass ratios, Frame c) shows the normalised
distribution of periods [yr] and Frame d) shows the multiplicity frequency as a function of
primary mass, and Frame e) plots M2 against M1. 6855, 6134, 6065, 6222, 6226 binary systems
are plotted for σ0 = 0.1, 0.2, 0.3, 0.4 and 0.5 respectively.
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Figure 8.21: The variation of properties of triples formed with σ0 . The dashed/dotted/thick
solid/dot-dashed/thin solid lines in each of the Frames describes the distributions attained when
σ0 = 0.1, 0.2, 0.3, 0.4 and 0.5 respectively. The blue lines show the inner periods, whilst the
red lines show the outer periods. Frame a) shows the normalised distribution of eccentricities,
Frame b) shows the normalised distribution of mass ratios and Frame c) shows the normalised
distribution of periods [yr]. Frame d) plots M2 against M1, whilst Frame e) plots M3 against
M2 +M1. 2443, 2923, 2725, 2397, 2042 triple systems are plotted for σ0 = 0.1, 0.2, 0.3, 0.4 and
0.5 respectively.
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Figure 8.22: The variation of properties of double quadruples formed with σ0 . The
dashed/dotted/thick solid/dot-dashed/thin solid lines in each of the Frames describes the dis-
tributions attained when σ0 = 0.1, 0.2, 0.3, 0.4, and 0.5 respectively. The blue lines show the
inner periods, whilst the red lines show the outer periods. Frame a) shows the normalised
distribution of eccentricities, Frame b) shows the normalised distribution of mass ratios and
Frame c) shows the normalised distribution of periods [yr]. Frame d) plots M2 against M1 and
M4 against M3, and Frame e) plots M4 + M3 against M2 + M1. 380, 242, 165, 106, 84 double
quadruple systems are plotted for σ0 = 0.1, 0.2, 0.3, 0.4 and 0.5 respectively.
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Figure 8.23: The distribution of binary systems in the (log10 (P/yr) , e)-plane. The colour of
the points encodes the fidelity parameter. Frame a) corresponds to σ0 = 0.1, b) 0.2, c) 0.3, d)
0.4 and e) 0.5. 6855, 6134, 6065, 6222, 6226 binaries are plotted for σ0 = 0.1, 0.2, 0.3, 0.4 and
0.5 respectively.
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Figure 8.24: The distribution of triple systems in the (log10 (P/yr) , e)-plane. Small circles
represent inner orbits and triangles represent outer orbits. The colour of the points encodes the
fidelity parameter. Frame a) corresponds to σ0 = 0.1, b) 0.2, c) 0.3, d) 0.1 and e) 0.5. 2443,
2923, 2725, 2397, 2042 triple systems are plotted for σ0 = 0.1, 0.2, 0.3, 0.4 and 0.5 respectively.
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Figure 8.25: The distribution of hierarchical quadruple systems in the (log10 (P/yr) , e)-plane.
Circles represent inner orbits, triangles represent middle orbits and squares represent outer
orbits. The colour of the points encodes the fidelity parameter. Frame a) corresponds to σ0 =
0.1, b) 0.1, c) 0.3, d) 0.4, and e) 0.5. 32, 48, 33, 22, 26 hierarchical quadruples are plotted for
σ0 = 0.1, 0.2, 0.3, 0.4 and 0.5 respectively.
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Figure 8.26: The distribution of double quadruple systems in the (log10 (P/yr) , e)-plane. Circles
represent inner orbits and triangles represent outer orbits. The colour of the points encodes
the fidelity parameter. Frame a) corresponds to σ0 = 0.1, b) 0.2, c) 0.3, d) 0.4, and e) 0.5. 380,
242, 165, 106, 84 double quadruples for σ0 = 0.1, 0.2, 0.3, 0.4 and 0.5 respectively.
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quadruples are no longer being produced, and are disintegrating to form binaries instead. The

number of binaries also increases for σ0 < 0.3, as it is easier to form binaries with equal mass

stars. The average number of both triples and hierarchical quadruples increases as σ0 decreases,

apart from at the smallest values of σ0 where double quadruples are preferentially produced.

Table 8.16: Average number of multiple systems produced per core.

Sigma Binaries Triples Hierarchical Quadruples Double Quadruples

0.1 0.7272 0.2591 0.0034 0.0403
0.2 0.6654 0.3171 0.0052 0.0263
0.3 0.6799 0.3055 0.0037 0.0185
0.4 0.7144 0.2752 0.0025 0.0122
0.5 0.7456 0.2446 0.0031 0.0101

We can see in Table 8.17 that the most massive stars are more likely to be singles when σ0

is small. This is because all the stars in a given core cluster have similar masses, and hence

have similar chances of being singles.

Table 8.17: Percentage of cores producing systems involving the most massive stars

Sigma Most massive star Two most massive stars

0.1 0.81 0.52
0.2 0.92 0.69
0.3 0.96 0.77
0.4 0.97 0.81
0.5 0.98 0.84

With the requirement that the KS test must be rejected at the 1% level for all values of

σ0 for a given property, we can say that the mass ratios of the binaries, triples (inner and

outer), hierarchical quadruples (mid) and double quadruples (inner and outer) and period for

the binaries and inner triples change with σ0 with reasonable confidence (See Table 8.18). The

mass ratio distributions would be possible to distinguish between observationally.
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Table 8.18: This table shows the eccentricity, mass ratio and period distributions that for
which the null hypothesis can be rejected at the 1% level, as determined by the K-S test for
the different values of σ0 .

σ0 System Type Eccentricity Mass Ratio Period

0.1 Binaries X X X
0.2 Binaries X X
0.4 Binaries X X
0.5 Binaries X X X
0.1 Triples inner X X X
0.2 Triples inner X X
0.4 Triples inner X X
0.5 Triples inner X X
0.1 Triples outer X X
0.2 Triples outer X
0.4 Triples outer X X
0.5 Triples outer X X
0.1 Hierarchical Quadruples inner X
0.2 Hierarchical Quadruples inner X
0.4 Hierarchical Quadruples inner
0.5 Hierarchical Quadruples inner X
0.1 Hierarchical Quadruples mid X
0.2 Hierarchical Quadruples mid X
0.4 Hierarchical Quadruples mid X
0.5 Hierarchical Quadruples mid X
0.1 Hierarchical Quadruples outer X
0.2 Hierarchical Quadruples outer X
0.4 Hierarchical Quadruples outer
0.5 Hierarchical Quadruples outer X
0.1 Double Quadruples inner X X
0.2 Double Quadruples inner X
0.4 Double Quadruples inner X
0.5 Double Quadruples inner X
0.1 Double Quadruples outer X
0.2 Double Quadruples outer X
0.4 Double Quadruples outer X
0.5 Double Quadruples outer X
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Core Cluster Results: Part II

In this chapter, I move away from spherically uniform density of stars, and investigate three

other initial configurations. These include a density profile that decreases with a power law,

n(r) = r−α, a ring cluster and a line cluster. I also investigate the influence of disks, and add

these to the fiducial model, line cluster and ring cluster.

9.1 Density Gradient

In this section I present the results of varying α. I run 8920, 8932, 8852 simulations for the

values of α = 0, −1, and −2 respectively. These sets of simulations produce 6065, 6102, 6029

binaries, 2725, 2710, 2682 triples, 33, 33, 26 hierarchical quadruples and 165, 162, 187 double

quadruples for α = 0, -1 and -2 respectively.

Few of the multiplicity properties change with a varying α. The means of the periods in-

crease as α is decreased, whilst the standard deviations decrease. The eccentricity distribution

of the outer orbit of triples becomes flatter, whilst the eccentricity of the corresponding inner

orbits becomes steeper. The outer mass ratio distribution also becomes flatter. The quadru-

ples have too few samples to discern any trends. There is no significant change in any other

properties, and even the changes mentioned are within the errors. Therefore, I simply present

the results of varying α, and do not discuss them any further.

With the requirement that the KS test must be rejected at the 1% level for all values of α

for a given property, we can say that only the period of the binaries and inner period of the

triples change with α with reasonable confidence. (See Table 9.5). However, the differences are

so small that they wouldn’t be able to be distinguished between observationally.
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Figure 9.1: The variation of binary properties with α. The solid/dotted/dashed lines in each of
the frames describes the distributions attained when α = 0, −1 and −2 respectively. Frame a)
shows the normalised distribution of eccentricities, Frame b) shows the normalised distribution
of mass ratios, Frame c) shows the normalised distribution of periods [yr] and Frame d) shows
the multiplicity frequency as a function of primary mass, and Frame e) plots M2 against M1.
6065, 6102, 6029 binaries for α = 0, −1 and −2 respectively.
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Figure 9.2: The variation of properties of triples formed with α. The solid/dotted/dashed lines
in each of the Frames describes the distributions attained when α = 0, −1 and −2 respectively.
The blue lines show the inner periods, whilst the red lines show the outer periods. Frame a)
shows the normalised distribution of eccentricities, Frame b) shows the normalised distribution
of mass ratios and Frame c) shows the normalised distribution of periods [yr]. Frame d) plots
M2 against M1, whilst Frame e) plots M3 against M2 + M1. 2725, 2710, 2682 triple systems
are produced for α = 0, −1 and −2 respectively.
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Figure 9.3: The variation of properties of hierarchical quadruples formed with α. The
solid/dotted/dashed lines in each of the Frames describes the distributions attained when α =
0,−1, and −2 respectively. The blue lines show the inner periods, the red lines show the mid
periods and the green lines show the outer periods. Frame a) shows the normalised distribution
of eccentricities, Frame b) shows the normalised distribution of mass ratios and Frame c) shows
the normalised distribution of periods [yr]. Frame d) plots M2 against M1, whilst Frame e)
plots M3 against M2+M1, and Frame f) plots M4 against M3+M2+M1. 33, 33, 26 hierarchical
quadruple systems are plotted for α = 0, −1 and −2 respectively.

– 135 –



9.1. Density Gradient

0.0 0.2 0.4 0.6 0.8 1.0
Eccentricity

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

No
rm

al
is

ed
 F

re
qu

en
cy

a)

0.0 0.2 0.4 0.6 0.8 1.0
Mass Ratio

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
is

ed
 F

re
qu

en
cy

b)

0 2 4 6 8
Log[P/yr]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

No
rm

al
is

ed
 F

re
qu

en
cy

c)

0.0 0.2 0.4 0.6 0.8 1.0
M1

0.0

0.2

0.4

0.6

0.8

1.0

M
2

Dominant Single

Dominant In
ner S

yste
m

Dominant Single

Dominant In
ner S

yste
m

Dominant Single

Dominant In
ner S

yste
md)

α= 0
α=-1
α=-2

0.0 0.2 0.4 0.6 0.8 1.0
M1 +M2

0.0

0.2

0.4

0.6

0.8

1.0

M
3

+
M

4

Dominant Single

Dominant In
ner S

yste
m

Dominant Single

Dominant In
ner S

yste
m

Dominant Single

Dominant In
ner S

yste
me)

α= 0
α=-1
α=-2

Figure 9.4: The variation of properties of double quadruples formed with α. The
solid/dotted/dashed lines in each of the Frames describes the distributions attained when α =
0,−1, and −2 respectively. The blue lines show the inner periods, whilst the red lines show the
outer periods. Frame a) shows the normalised distribution of eccentricities, Frame b) shows
the normalised distribution of mass ratios and Frame c) shows the normalised distribution of
periods [yr]. Frame d) plots M2 against M1 and M4 against M3, and Frame e) plots M4 +M3

against M2+M1. 165, 162, 187 double quadruples are plotted for α = 0, −1 and −2 respectively.
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Table 9.1: Mean and standard deviation of log10 (P/yr)

Alpha

Binaries Triples
Inner Outer

0 2.251±0.479 2.303±0.418 4.490±1.025
-1 2.282±0.473 2.318±0.441 4.451±0.989
-2 2.289±0.470 2.342±0.450 4.474±0.990

Table 9.2: Mean and standard deviation of log10 (P/yr)

Alpha

Quad, Hierarchical Quad, Double
Inner Mid Outer Inner Outer

0 2.483±0.406 4.706±1.001 7.308±0.875 3.188±1.223 4.673±1.063
-1 2.541±0.329 4.826±0.883 7.063±0.665 3.309±1.235 4.805±1.049
-2 2.464±0.371 4.540±0.761 7.181±0.811 3.358±1.292 4.911±1.055

Table 9.3: Average number of multiple systems produced per core.

Alpha Binaries Triples Hierarchical Quadruples Double Quadruples

0 0.6799 0.3055 0.0037 0.0185
-1 0.6832 0.3034 0.0037 0.0181
-2 0.6811 0.3030 0.0029 0.0211

Table 9.4: Percentage of cores producing systems involving the most massive stars

Alpha Most massive star Two most massive stars

0 0.96 0.77
-1 0.95 0.77
-2 0.95 0.76
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Figure 9.5: The distribution of binary systems in the (log10 (P/yr) , e)-plane. The colour of the
points encodes the fidelity parameter. Frame a) corresponds to α = 0, b) −1, and d) −2. 6065,
6102, 6029 binary systems are plotted for α = 0, −1 and −2 respectively.
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Figure 9.6: The distribution of triple systems in the (log10 (P/yr) , e)-plane. Small circles
represent inner orbits and triangles represent outer orbits. The colour of the points encodes
the fidelity parameter. Frame a) corresponds to α = 1, b) −1, and c) −2. 2725, 2710, 2682
triples are plotted for α = 0, −1 and −2 respectively.
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Figure 9.7: The distribution of hierarchical quadruple systems in the (log10 (P/yr) , e)-plane.
Circle represent inner orbits, triangles represent mid orbits and squares represent outer orbits.
The colour of the points encodes the fidelity parameter. Frame a) corresponds to α = 0, b)
−1, and c) −2. 33, 33, 26 hierarchical quadruple systems are plotted for α = 0, −1 and −2
respectively.
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Figure 9.8: The distribution of double quadruple systems in the (log10 (P/yr) , e)-plane. Circles
represent inner orbits and triangles represent outer orbits. The colour of the points encodes
the fidelity parameter. Frame a) corresponds to α = 0, b) −1, and c) −2. 165, 162, 187 double
quadruple systems are plotted for α = 0, −1 and −2 respectively.
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Table 9.5: This table shows the eccentricity, mass ratio and period distributions that for which
the null hypothesis can be rejected at the 1% level, as determined by the K-S test for the
different values of α.

α System Type Eccentricity Mass Ratio Period

-1 Binaries X
-2 Binaries X
-1 Triples inner X
-2 Triples inner X
-1 Triples outer
-2 Triples outer
-1 Hierarchical Quadruples inner
-2 Hierarchical Quadruples inner
-1 Hierarchical Quadruples mid
-2 Hierarchical Quadruples mid
-1 Hierarchical Quadruples outer
-2 Hierarchical Quadruples outer
-1 Double Quadruples inner
-2 Double Quadruples inner
-1 Double Quadruples outer
-2 Double Quadruples outer
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9.2 Spherical Cluster with Disks

In this section I present the results of varying the size of the disks attending a star. I run

8920, 7427, 9082 simulations for dm = 0.0, 0.5, and 1.0 respectively. These sets of simulations

produce 6065, 4931, 5986 binaries, 2725, 2435, 2998 triples, 33, 18, 22 hierarchical quadruples

and 165, 110, 149 double quadruples for dm = 0.0, 0.5 and 1.0 respectively.

Due to the ad-hoc nature of the prescription for interactions including disks, the period and

eccentricity distributions cannot be wholly relied upon. They can be used as an indication of

what is likely to happen, but are not definitive. The mass ratios on the other hand are more

likely to be faithful.

The properties of the binaries produced are shown in Figure 9.9. Sub-figure 9.9a shows that

the eccentricities are not affected by the disk mass, whilst Sub-figure 9.9b shows that there

is no clear trend in the mass ratios distributions. Sub-figure 9.9c and Table 9.6 show that as

the mass of the attending disks is increased, the mean period of the binaries decreases. The

multiplicity frequency in Sub-figure 9.9d remains largely unaffected. The graph of M1 against

M2 is plotted in Sub-figure 8.5e. There are no observable differences that occur by adding disks.

Figure 9.10 shows the properties of triple systems. The eccentricities of orbits as seen in Sub-

figure 9.10a do not change. The mass ratios as shown in Sub-figure 9.10b show a distribution

for outer periods that decreases slightly in the low mass ratio regime. The mean of the period

as shown in Sub-figure 9.10c and Table 9.6 decreases as the disk mass is increased, whilst the

standard deviation for the outer periods decreases with disk mass. In Sub-figure 8.6d M2 is

plotted against M1, and in Sub-figure 8.6d M3 is plotted against M2+M1. Again, no observable

differences can be seen.

Due to low number statistics, no clear trends can be seen for any of the properties of either

hierarchical quadruples, or double quadruples.

Table 9.6: Mean and standard deviation of log10 (P/yr)

Disks

Binaries Triples
Inner Outer

Md = 0.0M∗ 2.257±0.476 2.289±0.434 4.476±1.034
Md = 0.5M∗ 2.167±0.505 2.176±0.467 4.303±0.998
Md = 1.0M∗ 2.161±0.496 2.185±0.474 4.330±0.972

Figures 9.11, 9.12, 9.13 and 9.14 show the distributions of period against eccentricity for bi-

naries, triples, hierarchical quadruples and double quadruples respectively. These distributions

do not change much as dm is increases, apart from increasing the number of low eccentricity

systems.
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Figure 9.9: The variation of binary properties with disk mass. The solid/dotted/dashed lines in
each of the Frames describes the distributions attained when dm = 0.0, 0.5 and 1.0 respectively.
Frame a) shows the normalised distribution of eccentricities, Frame b) shows the normalised
distribution of mass ratios, Frame c) shows the normalised distribution of periods [yr] and
Frame d) shows the multiplicity frequency as a function of primary mass, and Frame e) plots M2

against M1. 6065, 4931, 5986 binary systems are plotted for dm = 0.0, 0.5 and 1.0 respectively.
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Figure 9.10: The variation of properties of triples formed with disk mass. The
solid/dotted/dashed lines in each of the Frames describes the distributions attained when dm
= 0.0, 0.5 and 1.0 respectively. The blue lines show the inner periods, whilst the red lines show
the outer periods. Frame a) shows the normalised distribution of eccentricities, Frame b) shows
the normalised distribution of mass ratios and Frame c) shows the normalised distribution of
periods [yr]. Frame d) plots M2 against M1, whilst Frame e) plots M3 against M2 +M1. 2725,
2435, 2998 triple systems are plotted for dm = 0.0, 0.5 and 1.0 respectively.
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Table 9.7: Mean and standard deviation of log10 (P/yr)

Disks

Quad, Hierarchical Quad, Double
Inner Mid Outer Inner Outer

Md = 0.0M∗ 2.448±0.356 4.670±0.940 7.273±0.777 3.239±1.207 4.724±1.023
Md = 0.5M∗ 2.216±0.578 4.436±0.941 7.120±0.791 3.304±1.333 4.883±1.128
Md = 1.0M∗ 2.383±0.503 4.630±0.870 7.004±0.716 3.237±1.282 4.782±1.066
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Figure 9.11: The distribution of binary systems in the (log10 (P/yr) , e)-plane. The colour of
the points encodes the fidelity parameter. Frame a) corresponds to dm = 0.0, b) 0.5, and c)
1.0. 6065, 4931, 5986 binary systems are plotted for dm = 0.0, 0.5 and 1.0 respectively.
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Figure 9.12: The distribution of triple systems in the (log10 (P/yr) , e)-plane. Small circles
represent inner orbits and triangles represent outer orbits. The colour of the points encodes
the fidelity parameter. Frame a) corresponds to dm = 0.0, b) 0.5, and c) 1.0. 2725, 2435, 2998
triple systems are plotted for dm = 0.0, 0.5 and 1.0 respectively.
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Figure 9.13: The distribution of hierarchical quadruple systems in the (log10 (P/yr) , e)-plane.
Circles represent inner orbits, red triangles represent mid orbits and squares represent outer
orbits. The colour of the points encodes the fidelity parameter. Frame a) corresponds to dm =
0.0, b) 0.5, and c) 1.0. 33, 18, 22 hierarchical quadruple systems are plotted for dm = 0.0, 0.5
and 1.0 respectively.
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Figure 9.14: The distribution of double quadruple systems in the (log10 (P/yr) , e)-plane. Circles
represent inner orbits and triangles represent outer orbits. The colour of the points encodes the
fidelity parameter. Frame a) corresponds to dm = 0.0, b) 0.5, and c) 1.0. 165, 110, 149 double
quadruple systems are plotted for dm = 0.0, 0.5 and 1.0 respectively.
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Table 9.8 shows that there isn’t any firm trend in the average number of multiple systems

produced per core with dm, whilst Table 9.9 shows that the percentage of cores producing a

multiple system involving the most massive star, or the two most massive stars does not change

with dm.

Table 9.8: Average number of multiple systems produced per core.

Disks Binaries Triples Hierarchical Quadruples Double Quadruples

Md = 0.0M∗ 0.6799 0.3055 0.0037 0.0185
Md = 0.5M∗ 0.6639 0.3279 0.0024 0.0148
Md = 1.0M∗ 0.6591 0.3301 0.0024 0.0164

Table 9.9: Percentage of cores producing systems involving the most massive stars

Disks Most massive star Two most massive stars

Md = 0.0M∗ 0.96 0.77
Md = 0.5M∗ 0.95 0.76
Md = 1.0M∗ 0.94 0.76

The presence of these disks has little influence on the properties of the multiple systems

formed. This can be explained by the following argument. For the spherical cluster, the average

distance between stars is 1 dimensionless unit. The radius of the disk is taken to be 0.5 and 1.0

times the mass of the star for dm = 0.5, 1.0 respectively. So even in the most massive case, it is

unlikely that a star will start the simulation within another star’s disk. By the time stars get

close enough for the disks to interact, gravitational biasing has already taken effect, and so the

stars that get close enough to interact with the disks are those stars that would have formed a

multiple system anyway. The overall influence of the disks in this instance is simply to harden

the systems that would have formed anyway.

With the requirement that the KS test must be rejected at the 1% level for both values

of dm for a given property, we can say that the period for the binaries and triples (inner and

outer) and the outer mass ratio of the triples change with the addition of disks with reasonable

confidence (See Table 9.10). However, the differences are so small that the distributions could

not be distinguished between observationally.
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Table 9.10: This table shows the eccentricity, mass ratio and period distributions that for
which the null hypothesis can be rejected at the 1% level, as determined by the K-S test for
the different values of dm.

dm System Type Eccentricity Mass Ratio Period

0.5 Binaries X
1 Binaries X

0.5 Triples inner X X
1 Triples inner X

0.5 Triples outer X X
1 Triples outer X X

0.5 Hierarchical Quadruples inner
1 Hierarchical Quadruples inner

0.5 Hierarchical Quadruples mid
1 Hierarchical Quadruples mid

0.5 Hierarchical Quadruples outer
1 Hierarchical Quadruples outer

0.5 Double Quadruples inner
1 Double Quadruples inner

0.5 Double Quadruples outer
1 Double Quadruples outer
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9.3 Ring Cluster with Disks

In this section I present the results of setting the initial positions of stars on the circumference of

a ring, and then adding disks. I run 8920, 9116, 9056 simulations for the fiducial model, a ring

cluster and a ring cluster with disks of mass dm = 0.5 respectively. These sets of simulations

produce 6065, 8491, 8412 binaries, 2725, 1012, 1007 triples, 33, 28, 20 hierarchical quadruples

and 165, 176, 153 double quadruples for the fiducial model, ring cluster and ring cluster with

disks respectively.

The properties of pure binaries are shown in Figure 9.15. The eccentricity distribution

(Sub-figure 9.15a) shows a small tendency to produce more high-eccentricity orbits for the ring

cluster than the fiducial model. This is because in the ring cluster, binaries tend to consist of

stars that were initially nearest neighbours in the ring. As the stars are set up with purely

rotational velocities, the angle between the velocity of a star and the position vector with its

companion is initially very small. Circular orbits always have a velocity that is perpendicular

to the position vector, and so the system is set up in such a way that eccentric binaries are

favoured. The mass ratio distribution as shown in Sub-figure 9.15b shows a preference for low

mass ratio binaries. This can be explained by considering that the stars are initially placed

on the circumference of a circle, taking up an arc proportional to their mass. Smaller mass

stars will therefore be placed closer to a given star than stars with a larger mass. Because of

their proximity to their neighbours, smaller stars now have a greater chance to form a part of

a multiple system, and more low mass ratio binaries are produced. The lack of binaries with

mass ratio between 0.0 and 0.2 is due to a lack of low mass companions to choose from. As seen

in Sub-figure 9.15c and Table 9.11, the period distribution increases by a factor of 4.5 when

the stars are placed in a ring core cluster as compared to the fiducial spherical core cluster, due

to conservation of angular momentum. There is more angular momentum in the ring clusters

than the other clusters simply because of the way the clusters are set-up, and because there

isn’t an efficient method to transfer out the angular momentum, the orbits remain quite wide.

The multiplicity frequency as seen in Sub-figure 9.15d is slightly flatter for the ring cluster,

reflecting the fact that low mass stars have a greater opportunity to form part of a multiple

system. The plots of M1 against M2 as seen in Subfigure 8.5e show that the distribution does

not change with a ring cluster. The effects of disks on the distributions are the same as discussed

in Section 9.2. Note that as the stars are placed taking up an arc proportional to their mass,

the separation between stars is greater than the size of the disks.

The properties of triple systems are shown in Figure 9.16. As seen in Sub-figure 9.16a, more

high-eccentricity orbits are produced by the ring cluster for the inner orbits than the fiducial

model, similar to the pure binaries. The ring cluster produced far fewer low mass ratio outer

orbits, as can be seen in Sub-figure 9.16b. It can be observed that mass ratios of up to 2.5 are

populated, meaning that occasionally the outer star is more massive than the combined masses
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Figure 9.15: The variation of binary properties formed in ring clusters. The
solid/dotted/dashed lines in each of the Frames describes the distributions attained for the
fiducial model, ring cluster, and ring cluster with disks respectively. Frame a) shows the nor-
malised distribution of eccentricities, Frame b) shows the normalised distribution of mass ratios,
Frame c) shows the normalised distribution of periods [yr] and Frame d) shows the multiplic-
ity frequency as a function of primary mass, and Frame e) plots M2 against M1. 6065, 8491,
8412 binary systems are plotted for the fiducial model, ring cluster and ring cluster with disks
respectively.
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Table 9.11: Mean and standard deviation of log10 (P/yr)

Ring

Binaries Triples
Inner Outer

Fiducial 2.244±0.475 2.300±0.425 4.487±1.049
Md = 0.0 M∗ 2.896±0.550 2.794±0.435 5.049±1.002
Md = 0.5 M∗ 2.898±0.549 2.784±0.429 5.025±0.976

Table 9.12: Mean and standard deviation of log10 (P/yr)

Ring

Quad, Hierarchical Quad, Double
Inner Mid Outer Inner Outer

Fiducial 2.517±0.322 4.739±1.017 7.342±0.829 3.264±1.211 4.748±1.048
Md = 0.0 M∗ 2.754±0.459 5.105±0.815 7.127±0.544 3.912±1.291 5.474±1.002
Md = 0.5 M∗ 2.929±0.345 5.354±0.874 7.117±0.631 3.869±1.332 5.457±1.060

of the pair of inner stars that it orbits. This occurs when two small stars are placed next to

each other in the initial ring. Due to their proximity, they form a small binary, which is then

bound to a larger star in the cluster. The period distributions as shown in Sub-figure 9.16c

and Table 9.11 show that the mean of the period increases for both the outer and inner orbits

when the stars are placed in a ring cluster. In Sub-figure 8.6d M2 is plotted against M1, and

in Sub-figure 8.6d M3 is plotted against M2 + M1. Neither distribution changes with the ring

cluster.

The properties of hierarchical quadruples are shown in Figure 9.17. Due to low number

statistics, there are no discernible trends in the eccentricity distributions (see Sub-figure 9.17a).

The fraction of low mass-ratio systems decreases for both the mid and outer orbits, as shown

in Sub-figure 9.17b, whilst the mass ratio distribution for the inner pairs becomes flatter. The

mean of both the inner- and mid- orbits increase in period with the ring cluster (See Sub-figure

9.17 c and Table 9.12). However the mean of the outer-period remains unaffected. In Sub-

figure 8.7d M2 is plotted against M1, in Sub-figure 8.7e M3 is plotted against M2 +M1 and in

Sub-figure 8.7f M4 is plotted against M3 + M2 + M1, no plot chows any change with the ring

cluster.

The properties of double quadruples are shown in Figure 9.18. Fewer high-eccentricity

outer orbits are produced than for the fiducial model (see Sub-figure 9.18a), and more high-

eccentricity inner orbits are produced. The reduction of the fraction of high-eccentricity outer

orbits can be explained as follows. Binaries are often formed with stars that were initially placed
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Figure 9.16: The variation of properties of triples formed in ring clusters. The
solid/dotted/dashed lines in each of the Frames describes the distributions attained for the
fiducial model, ring cluster, and ring cluster with disks respectively. The blue lines show the
inner periods, whilst the red lines show the outer periods. Frame a) shows the normalised
distribution of eccentricities, Frame b) shows the normalised distribution of mass ratios and
Frame c) shows the normalised distribution of periods [yr]. Frame d) plots M2 against M1,
whilst Frame e) plots M3 against M2 +M1. 2725, 1012, 1007 triple systems are plotted for the
fiducial model, ring cluster and ring cluster with disks respectively.
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Figure 9.17: The variation of properties of hierarchical quadruples formed in ring clusters. The
solid/dotted/dashed lines in each of the Frames describes the distributions attained for the
fiducial model, ring cluster, and ring cluster with disks respectively. The blue lines show the
inner periods, the red lines show the mid periods and the green lines show the outer periods.
Frame a) shows the normalised distribution of eccentricities, Frame b) shows the normalised
distribution of mass ratios and Frame c) shows the normalised distribution of periods [yr].
Frame d) plots M2 against M1, whilst Frame e) plots M3 against M2 +M1, and Frame f) plots
M4 against M3+M2+M1. 33, 28, 20 hierarchical quadruple systems are plotted for the fiducial
model, ring cluster and ring cluster with disks respectively.
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side by side in the ring. Double quadruples are two of these pairs orbiting each other. As there

are only four stars in a ring, the centres of mass of the two pairs are likely to be on opposite

sides of the circle. The initial velocity of these centres of mass will therefore be approximately

perpendicular to the position vector between the two centres of mass, a favourable condition

for producing low-eccentricity orbits. The inner pairs have a larger fraction of highly eccentric

orbits for the same reason as given for the binaries (see beginning of this section). As seen in

Sub-figure 9.18b, the inner mass ratio distribution is flatter than the fiducial, whilst the outer

mass ratio distribution has a larger high mass ratio fraction. Sub-figure 9.18c and Table 9.12

show that the mean of the period increases with the ring cluster for both the inner and the

outer orbits. In Sub-figure 8.8d, M2 is plotted against M1 and M4 is plotted against M3. In

Sub-figure 8.8e M4 +M3 is plotted against M2 +M1. No changes are seen with the ring cluster.

The period against eccentricity plots for binaries, triples, hierarchical quadruples and double

quadruples are shown in Figures 9.19, 9.20, 9.21 and 9.22 respectively. Figure 9.19 shows that

more high-eccentricity, long-period systems are produced in the ring cluster compared to the

fiducial model, and the whole distribution is shifted to longer periods. The distribution for

triple systems and hierarchical systems are unaffected by the change in cluster type. Double

quadruple systems have outer orbits that not only populate the low eccentricities more than

the fiducial, but their fidelity is also much higher.

Table 9.13 shows that the ring cluster produces more binaries than the fiducial model, but

also that fewer triples are produced.

Table 9.13: Average number of multiple systems produced per core.

Ring Binaries Triples Hierarchical Quadruples Double Quadruples

Fiducial 0.6799 0.3055 0.0037 0.0185
Md = 0.0 M∗ 0.9314 0.1110 0.0031 0.0193
Md = 0.5 M∗ 0.9289 0.1112 0.0022 0.0169

With the requirement that the KS test must be rejected at the 1% level for both the Ring

cluster and Ring cluster with disks for a given property, we can say that the eccentricities for

the binaries, inner triples and double quadruples (inner and outer), the mass ratio distributions

for the binaries and triples (inner and outer), and period distributions for the binaries, triples

(inner and outer), inner hierarchical quadruples and double quadruples (inner and outer) change

with the ring cluster with reasonable confidence (See Table 9.14). The period of the binaries

and possibly the mass ratio distributions could be detected observationally.
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Figure 9.18: The variation of properties of double quadruples formed in ring clusters. The
solid/dotted/dashed lines in each of the Frames describes the distributions attained for the
fiducial model, ring cluster, and ring cluster with disks respectively. The blue lines show the
inner periods, whilst the red lines show the outer periods. Frame a) shows the normalised
distribution of eccentricities, Frame b) shows the normalised distribution of mass ratios and
Frame c) shows the normalised distribution of periods [yr]. Frame d) plots M2 against M1 and
M4 against M3, and Frame e) plots M4 +M3 against M2 +M1. 165, 176, 153 double quadruple
systems are plotted for the fiducial model, ring cluster and ring cluster with disks respectively.

– 158 –



Chapter 9. Core Cluster Results: Part II

0 2 4 6 8
Log[P/yr]

0.0

0.2

0.4

0.6

0.8

1.0

Ec
ce

nt
ric

ity

a)

0 2 4 6 8
Log[P/yr]

0.0

0.2

0.4

0.6

0.8

1.0

Ec
ce

nt
ric

ity

b)

0 2 4 6 8
Log[P/yr]

0.0

0.2

0.4

0.6

0.8

1.0

Ec
ce

nt
ric

ity

c)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fi
de

lit
y 

Pa
ra

m
et

er

Figure 9.19: The distribution of binary systems in the (log10 (P/yr) , e)-plane. The colour of
the points encodes the fidelity parameter. Frame a) corresponds to the fiducial model, b) ring
cluster, and c) ring cluster with disks. 6065, 8491, 8412 binary systems are plotted for the
fiducial model, ring cluster and ring cluster with disks respectively.
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Figure 9.20: The distribution of triple systems in the (log10 (P/yr) , e)-plane. Small circles
represent inner orbits, and triangles represent outer orbits. The colour of the points encodes
the fidelity parameter. Frame a) corresponds to the fiducial model, b) ring cluster, and c)
ring cluster with disks. 2725, 1012, 1007 triple systems are plotted for the fiducial model, ring
cluster and ring cluster with disks respectively.
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Figure 9.21: The distribution of hierarchical quadruple systems in the (log10 (P/yr) , e)-plane.
Circles represent inner orbits, triangles represent mid orbits and squares represent outer orbits.
The colour of the points encodes the fidelity parameter. Frame a) corresponds to the fiducial
model, b) ring cluster, and c) ring cluster with disks. 33, 28, 20 hierarchical quadruple systems
are plotted for the fiducial model, ring cluster and ring cluster with disks respectively.
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Figure 9.22: The distribution of double quadruple systems in the (log10 (P/yr) , e)-plane. Circles
represent inner orbits and triangles represent outer orbits. The colour of the points encodes
the fidelity parameter. Frame a) corresponds to the fiducial model, b) ring cluster, and c) ring
cluster with disks. 165, 176, 153 double quadruples are plotted for the fiducial model, ring
cluster and ring cluster with disks respectively.
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Table 9.14: This table shows the eccentricity, mass ratio and period distributions that for which
the null hypothesis can be rejected at the 1% level, as determined by the K-S test for the Ring
cluster.

Ring System Type Eccentricity Mass Ratio Period

Ring Binaries X X X
Ring + Disks Binaries X X X

Ring Triples inner X X X
Ring + Disks Triples inner X X X

Ring Triples outer X X
Ring + Disks Triples outer X X

Ring Hierarchical Quadruples inner X
Ring + Disks Hierarchical Quadruples inner X

Ring Hierarchical Quadruples mid X
Ring + Disks Hierarchical Quadruples mid

Ring Hierarchical Quadruples outer
Ring + Disks Hierarchical Quadruples outer X

Ring Double Quadruples inner X X
Ring + Disks Double Quadruples inner X X

Ring Double Quadruples outer X X
Ring + Disks Double Quadruples outer X X
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9.4 Line Cluster with Disks

In this section I present the results of setting the initial positions of stars along a line, and

then adding disks. I run 8920, 9642, 5911 simulations for the fiducial model, a line cluster and

a line cluster with disks of mass dm = 0.5 respectively. Fewer simulations for the line cluster

with disks are run due to the increased computational time required. These sets of simulations

produce 6065, 8293, 5248 binaries, and 2725, 1485, 928 triples, 33, 11, 7 hierarchical quadruples

and 165, 123, 69 double quadruples for the fiducial model, the line cluster and the line cluster

with disks respectively.

The properties of binaries produced are given in Figure 9.23. There are fewer high-eccentricity

binaries for the line cluster than the fiducial model (see Sub-figure 9.23a). The line cluster con-

figuration increases the fraction of low mass-ratio binaries, and adding disks increases it further

(see Sub-figure 9.23b). The mean of the period as seen in Sub-figure 9.23c and Table 9.15

decreases very slightly with the line cluster, and again when adding disks, whilst the multi-

plicity frequency as seen in Sub-figure 9.23d shows that the smaller stars are more likely to be

primaries, and larger stars are more likely to be singles in the line cluster. These effects can

be explained by considering the initial configuration of the system. The stars are placed along

a line, taking up a length proportional to its mass. Smaller stars take up only a short length,

so lie closer to its neighbours than more massive stars. This proximity, especially between two

smaller mass stars, means that they are more likely to form a binary system than in the fiducial

model. The more random choice of component means that there is a higher fraction of binaries

with a low mass ratio. As the stars start off closer, the binary systems are also more likely

to have a smaller period as well. The eccentricities of the binaries tend to be more circular

than the fiducial model because the stars are assigned initial velocities that are perpendicular

to the position-vector between the two stars. The cross product, and therefore the angular

momentum is then very high. From Equation 6.11, we can see that this would lead to a small

eccentricity of the system. The graph of M1 against M2 is plotted in Sub-figure 8.5e. There is

no change in the distributions with the lines cluster. The effect of disks on the distributions

are the same as discussed in Section 9.2.

Table 9.15: Mean and standard deviation of log10 (P/yr)

Line

Binaries Triples
Inner Outer

Fiducial 2.236±0.487 2.292±0.434 4.479±1.040
Md = 0.0M∗ 2.172±0.514 2.169±0.397 4.253±0.987
Md = 0.5M∗ 2.118±0.528 2.070±0.448 4.103±0.957
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Figure 9.23: The variation of binary properties formed in line clusters. The solid/dotted/dashed
lines in each of the Frames describes the distributions attained for the fiducial model, line
cluster, and line cluster with disks respectively. Frame a) shows the normalised distribution
of eccentricities, Frame b) shows the normalised distribution of mass ratios, Frame c) shows
the normalised distribution of periods [yr] and Frame d) shows the multiplicity frequency as a
function of primary mass, and Frame e) plots M2 against M1. 6065, 8293, 5248 binary systems
are plotted for the fiducial model, the line cluster and the line cluster with disks respectively.
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Table 9.16: Mean and standard deviation of log10 (P/yr)

Line

Quad, Hierarchical Quad, Double
Inner Mid Outer Inner Outer

Fiducial 2.491±0.299 4.713±0.877 7.316±0.780 3.231±1.226 4.715±1.065
Md = 0.0M∗ 2.112±0.499 4.280±1.006 6.943±0.516 3.025±1.281 4.452±1.143
Md = 0.5M∗ 1.913±0.567 4.015±0.740 7.542±1.115 2.994±1.314 4.463±1.142

The properties of triple systems are shown in Figure 9.24. The eccentricity distribution as

seen in Sub-figure 9.24a is flatter for the outer orbits of the triple systems formed in the line

cluster than those in the fiducial model. The mass ratio distribution in Sub-figure 9.24b has a

much lower fraction of low mass ratios for outer orbits, and has a high mass ratio tail, where the

outer star is larger than the mass of the inner pair. This occurs when two low mass stars are

placed side by side in the line. Because they take up a length proportional to their mass, they

are placed very close to one another and form a tight binary. This binary can then be bound to

a larger star nearby. The mean of the period decreases with the line cluster (Sub-figure 9.24c

and Table 9.15) for both inner and outer orbits. In Sub-figure 8.6d M2 is plotted against M1,

and in Sub-figure 8.6d M3 is plotted against M2 +M1.

Due to low number statistics, it is difficult to discern any trend for how any of the properties

of hierarchical quadruples change with the line cluster.

The properties of double quadruples are shown in Figure 9.25. Sub-figure 9.25a shows that

the line cluster produces fewer high-eccentricity systems, both for inner and outer orbits. The

inner mass ratio distribution as shown in Sub-figure 9.25b becomes flatter, whilst there are

fewer low mass ratio outer orbits. Double quadruples tend to be created in the line cluster

when the two larger stars each pair up with a smaller star to form two binaries that are then

similar in mass. This occurs when the two smaller stars are placed on the ends of the line

cluster, and the two larger stars in the middle. Sub-figure 9.25c and Table 9.16 show that the

means of the periods decrease with the line cluster, and the standard deviation increases. In

Sub-figure 8.8d, M2 is plotted against M1 and M4 is plotted against M3. In Sub-figure 8.8e

M4 +M3 is plotted against M2 +M1.

Figures 9.26, 9.27, 9.28 and 9.29 shows the period against eccentricity plot for binaries,

triples, hierarchical quadruples and double quadruples respectively. There is little difference

between the distributions of any of the system types.

The average number of binaries produced per core increases for the line cluster, whilst the

number of higher-order multiples decreases.

With the requirement that the KS test must be rejected at the 1% level for both the Ring

– 166 –



Chapter 9. Core Cluster Results: Part II

0.0 0.2 0.4 0.6 0.8 1.0
Eccentricity

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

No
rm

al
is

ed
 F

re
qu

en
cy

a)

0.0 0.5 1.0 1.5 2.0 2.5
Mass Ratio

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

No
rm

al
is

ed
 F

re
qu

en
cy

b)

0 1 2 3 4 5 6 7
Log[P/yr]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
is

ed
 F

re
qu

en
cy

c)

0.0 0.2 0.4 0.6 0.8 1.0
M1

0.0

0.2

0.4

0.6

0.8

1.0

M
2

Dominant Single

Dominant In
ner S

yste
m

Dominant Single

Dominant In
ner S

yste
m

Dominant Single

Dominant In
ner S

yste
md)

Fiducial
Md  = 0.0M ∗

Md  = 0.5M ∗

0.0 0.2 0.4 0.6 0.8 1.0
M1 +M2

0.0

0.2

0.4

0.6

0.8

1.0

M
3

Dominant Single

Dominant In
ner S

yste
m

Dominant Single

Dominant In
ner S

yste
m

Dominant Single

Dominant In
ner S

yste
me)

Fiducial
Md  = 0.0M ∗

Md  = 0.5M ∗

Figure 9.24: The variation of properties of triples formed in line clusters. The
solid/dotted/dashed lines in each of the Frames describes the distributions attained for the
fiducial model, line cluster, and line cluster with disks respectively. The blue lines show the
inner periods, whilst the red lines show the outer periods. Frame a) shows the normalised
distribution of eccentricities, Frame b) shows the normalised distribution of mass ratios and
Frame c) shows the normalised distribution of periods [yr]. Frame d) plots M2 against M1,
whilst Frame e) plots M3 against M2 + M1. 2725, 1485, 928 triple systems are plotted for the
fiducial model, the line cluster and the line cluster with disks respectively.
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Figure 9.25: The variation of properties of double quadruples formed in line clusters. The
solid/dotted/dashed lines in each of the Frames describes the distributions attained for the
fiducial model, line cluster, and line cluster with disks respectively. The blue lines show the
inner periods, whilst the red lines show the outer periods. Frame a) shows the normalised
distribution of eccentricities, Frame b) shows the normalised distribution of mass ratios and
Frame c) shows the normalised distribution of periods [yr]. Frame d) plots M2 against M1 and
M4 against M3, and Frame e) plots M4 +M3 against M2 +M1. 165, 123, 69 double quadruples
are plotted for the fiducial model, the line cluster and the line cluster with disks respectively.
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Figure 9.26: The distribution of binary systems in the (log10 (P/yr) , e)-plane. The colour of
the points encodes the fidelity parameter. Frame a) corresponds to the fiducial model, b) line
cluster, and c) line cluster with disks. 6065, 8293, 5248 binary systems are plotted for the
fiducial model, the line cluster and the line cluster with disks respectively.

Table 9.17: Average number of multiple systems produced per core.

Line Binaries Triples Hierarchical Quadruples Double Quadruples

Fiducial 0.6799 0.3055 0.0037 0.0185
Md = 0.0M∗ 0.8601 0.1540 0.0011 0.0128
Md = 0.5M∗ 0.8878 0.1570 0.0012 0.0117
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Figure 9.27: The distribution of triple systems in the (log10 (P/yr) , e)-plane. Small circles
represent inner orbits and triangles represent outer orbits. The colour of the points encodes
the fidelity parameter. Frame a) corresponds to the fiducial model, b) line cluster, and c) line
cluster with disks. 2725, 1485, 928 triple systems are plotted for the fiducial model, the line
cluster and the line cluster with disks respectively.
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Figure 9.28: The distribution of hierarchical quadruple systems in the (log10 (P/yr) , e)-plane.
Circles represent inner orbits, triangles represent mid orbits and squares represent outer orbits.
The colour of the points encodes the fidelity parameter. Frame a) corresponds to the fiducial
model, b) line cluster, and c) line cluster with disks. 33, 11, 7 hierarchical quadruple systems
are plotted for the fiducial model, the line cluster and the line cluster with disks respectively.
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Figure 9.29: The distribution of double quadruple systems in the (log10 (P/yr) , e)-plane. Circles
represent inner orbits, and triangles represent outer orbits. The colour of the points encodes
the fidelity parameter. Frame a) corresponds to the fiducial model, b) line cluster, and c) line
cluster with disks. 165, 123, 69 double quadruple systems are plotted for the fiducial model,
the line cluster and the line cluster with disks respectively.
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Table 9.18: This table shows the eccentricity, mass ratio and period distributions that for which
the null hypothesis can be rejected at the 1% level, as determined by the K-S test for the line
cluster.

Line System Type Eccentricity Mass Ratio Period

Line Binaries X X X
Line + Disks Binaries X X X

Line Triples inner X
Line + Disks Triples inner X

Line Triples outer X X X
Line + Disks Triples outer X X X

Line Hierarchical Quadruples inner
Line + Disks Hierarchical Quadruples inner X

Line Hierarchical Quadruples mid
Line + Disks Hierarchical Quadruples mid

Line Hierarchical Quadruples outer
Line + Disks Hierarchical Quadruples outer

Line Double Quadruples inner X
Line + Disks Double Quadruples inner X

Line Double Quadruples outer X
Line + Disks Double Quadruples outer

cluster and Ring cluster with disks for a given property, we can say that the eccentricities for

the binaries and outer triples, mass ratios for the binaries and outer triples, and periods for

the binaries, triples (inner and outer) and inner period of the double quadruples change with

the Ring cluster with reasonable confidence (See Table 9.14). However, these distributions are

unlikely to be distinguished between observationally.

– 173 –



9.5. Background Potential

9.5 Background Potential

In this section I present the results of introducing a background potential (See Table 5.2). I

present the results of changing tp. I run 8920, 7608, 9300, 9663, 3481 simulations for tp = 0, 10,

30, 100, and 300 respectively. These sets of simulations produce 6065, 4014, 5416, 7176, 3071

binaries, 2725, 3131, 3353, 2042, 247 triples, 33, 85, 91, 10, 0 hierarchical quadruples and 165,

23, 3, 3, 0 double quadruples for tp = 0, 10, 30, 100 and 300 respectively.

The properties of the binaries are shown in Figure 9.30. The eccentricity distributions of the

binaries in all cases are approximately thermal (see Sub-figure 9.30a). There are more equal-

mass binaries as tp is increased, as can be seen in Sub-figure 9.30b. The Plummer background

potential serves to compact the binary systems, reducing the mean of the periods further as the

longevity of the Plummer background potential increases. The standard deviation of the periods

also decrease, as long period binaries are suppressed (see Sub-figure 9.30c and Table 9.20). The

multiplicity frequency in Sub-figure 9.30d becomes a little steeper as tp increases because the

core-cluster is kept from dissolving for a time by the prolonged Plummer background potential.

This extra time allows the two most massive stars a greater opportunity to form the basis of

a multiple system. These two stars will be more equal in mass than a more random pairing,

explaining the increase in the proportion of high mass ratio binaries (see Sub-figure 9.30b).

The graph of M1 against M2 is plotted in Sub-figure 8.5 e, again there is no change with tp.

Table 9.19: Percentage of cores producing systems involving the most massive stars

Time Most massive star Two most massive stars

Fiducial 0.96 0.77
tp = 10 0.91 0.77
tp = 30 0.91 0.77
tp = 100 0.92 0.78
tp = 300 0.92 0.76

The properties of the triple systems produced are shown in Figure 9.31. tp has a strong

affect on the eccentricities of the triple systems (Sub-figure 9.31a). As tp increases, the peak

of the eccentricity distribution of the outer orbits moves towards smaller eccentricities. This is

because as tp increases, the Plummer background potential has time to compact the outer orbits

further. As the outer star of a system with an eccentric orbit passes close to the inner pair,

and is likely to be disrupted, meaning that the high eccentricity systems are more unstable.

The eccentricities of the inner orbits however remain roughly thermal, as for the pure binaries.

There are fewer low mass ratio outer orbits as seen in Sub-figure 9.31b as tp increases, i.e. the

binary is orbited by a larger star in comparison to the inner pair. The inner mass ratios are

less affected by the presence of the Plummer background potential. The means of the period
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Table 9.20: Mean and standard deviation of log10 (P/yr)

Time

Binaries Triples
Inner Outer

Fiducial 2.254±0.476 2.287±0.443 4.474±1.038
tp = 10 2.045±0.477 2.080±0.411 4.595±0.877
tp = 30 1.976±0.472 2.045±0.405 4.383±0.729
tp = 100 1.916±0.459 2.022±0.412 3.953±0.533
tp = 300 1.861±0.461 2.005±0.461 3.632±0.467

Table 9.21: Mean and standard deviation of log10 (P/yr)

Time

Quad, Hierarchical Quad, Double
Inner Mid Outer Inner Outer

Fiducial 2.447±0.384 4.669±1.039 7.272±0.777 3.224±1.211 4.708±1.029
tp = 10 2.091±0.400 4.341±0.910 5.931±0.841 3.486±1.609 5.405±1.134
tp = 30 2.055±0.436 3.908±0.758 5.399±0.755 2.902±1.361 4.605±0.371
tp = 100 2.161±0.361 3.604±0.383 4.795±0.495 4.059±2.056 6.553±0.562
tp = 300 —–±nan —–±nan —–±nan —–±nan —–±nan
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Figure 9.30: The variation of binary properties with tp. The thick solid/dotted/dashed/dot-
dashed/thin solid lines in each of the Frames describes the distributions attained when tp = 0,
10, 30, 100 and 300 respectively. Frame a) shows the normalised distribution of eccentricities,
Frame b) shows the normalised distribution of mass ratios, Frame c) shows the normalised
distribution of periods [yr] and d) shows the multiplicity frequency as a function of primary
mass, and Frame e) plots M2 against M1. 6065, 4014, 5416, 7176, 3071 binary systems are
plotted for tp = 0, 10, 30, 100 and 300 respectively.
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distributions as shown in Sub-figure 9.31c and Table 9.20 decrease as tp increases. The standard

deviations also decrease, because the presence of the Plummer potential prevents long period

systems forming, decreasing the possible spread of periods that systems can have. In Sub-figure

8.6d M2 is plotted against M1, and in Sub-figure 8.6d M3 is plotted against M2 +M1.

The properties of hierarchical quadruples are shown in Sub-figure 9.32. The peak of the

eccentricity distributions of both the mid and outer orbits moves to lower eccentricities as tp

increases (Sub-figure 9.32a). The distribution of mass ratios of each orbit as seen in Sub-figure

9.32b tends towards higher mass ratios as tp increases. As with the triples and binaries, the

mean of the period decreases as tp increases (see Sub-figure 9.32 c and Table 9.21). In Sub-

figure 8.7d M2 is plotted against M1, in Sub-figure 8.7e M3 is plotted against M2 +M1 and in

Sub-figure 8.7f M4 is plotted against M3 +M2 +M1.

The properties of double quadruples are shown in Figure 9.33. I will not discuss the results

of tp > 10, as the number statistics are too low to draw any firm conclusions. However, when a

short-lived Plummer background potential is added, the outer orbits become more circularised

(see Sub-figure 9.33 a, solid and dotted lines). A higher fraction of outer orbits have an equal

mass ratio than for the fiducial model, whilst the mass ratios of the inner periods are unaffected

(see Sub-figure 9.33b). Unlike the other multiple systems, the mean of both the inner and outer

periods as shown in Sub-figure 9.33c and Table 9.21 increases when a Plummer sphere is added,

however this result may be due to low number statistics. A lower fraction of double quadruples

are produced when a Plummer background potential is used, compared to the fiducial model.

In Sub-figure 8.8d, M2 is plotted against M1 and M4 is plotted against M3. In Sub-figure 8.8e

M4 +M3 is plotted against M2 +M1.

The distribution of systems in the (log10 (P/yr) , e)-plane are given in Figures 9.34, 9.35, 9.36

and 9.37 for binaries, triples, hierarchical quadruples and double quadruples respectively. The

diagram does not change with tp for the binary systems (Figure 9.34). But for the triple systems

(Figure 9.35), as tp increases, the period of the widest system decreases, the overall eccentricity

decreases, and the average fidelity increases. There are no low-fidelity triples produced when

tp is large. The outer orbit of the hierarchical quadruples (Figure 9.36) has a lower eccentricity

on average as tp increases. Due to low number statistics, no conclusions can be drawn from

(Figure 9.37).

When a short-lived Plummer background potential, (tp=10,30) is included in the model, the

number of binaries formed decreases in favour of triples and hierarchical quadruples (See Table

9.22). The background potential keeps the cluster from ejecting members too quickly, allowing

time for higher-order multiple systems to form. But as tp is increased, further, (tp=100,300), i.e.

the longer the time for which the Plummer sphere is influential, the more compact the systems

become, the effect being greatest for the outermost orbits. In order for a higher-order multiple

system to be stable, the semi-major axis of the outer orbit must be significantly greater than
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Figure 9.31: The variation of properties of triples formed with tp. The thick
solid/dotted/dashed/dot-dashed/thin solid lines in each of the Frames describes the distri-
butions attained when tp = 0, 10, 30, 100 and 300 respectively. The blue lines show the inner
periods, whilst the red lines show the outer periods. Frame a) shows the normalised distribu-
tion of eccentricities, Frame b) shows the normalised distribution of mass ratios and Frame c)
shows the normalised distribution of periods [yr]. Frame d) plots M2 against M1, whilst Frame
e) plots M3 against M2 + M1. 2725, 3131, 3353, 2042, 247 triple systems are plotted for tp =
0, 10, 30, 100 and 300 respectively.
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Figure 9.32: The variation of properties of hierarchical quadruples formed with tp. The thick
solid/dotted/dashed/dot-dashed/thin solid lines in each of the Frames describes the distribu-
tions attained when tp = 0, 10, 30, 100 and 300 respectively. The blue lines show the inner
periods, the red lines show the middle periods and the green lines show the outer periods.
Frame a) shows the normalised distribution of eccentricities, Frame b) shows the normalised
distribution of mass ratios and Frame c) shows the normalised distribution of periods [yr].
Frame d) plots M2 against M1, whilst Frame e) plots M3 against M2 +M1, and Frame f) plots
M4 against M3 + M2 + M1. 33, 85, 91, 10, 0 hierarchical quadruple systems are plotted for tp
= 0, 10, 30, 100 and 300 respectively.
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Figure 9.33: The variation of properties of double quadruples formed with tp. The thick
solid/dotted/dashed/dot-dashed/thin solid lines in each of the Frames describes the distribu-
tions attained when tp = 0, 10, 30, 100 and 300 respectively. The blue lines show the inner
periods, whilst the red lines show the outer periods. Frame a) shows the normalised distribution
of eccentricities, Frame b) shows the normalised distribution of mass ratios and Frame c) shows
the normalised distribution of periods [yr]. Frame d) plots M2 against M1 and M4 against M3,
and Frame e) plots M4 + M3 against M2 + M1. 165, 23, 3, 3, 0 double quadruple systems are
plotted for tp = 0, 10, 30, 100 and 300 respectively.
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Figure 9.34: The distribution of binary systems in the (log10 (P/yr) , e)-plane. The colour of
the points encodes the fidelity parameter. Frame a) corresponds to tp = 0, b) 10, c) 30, d) 100,
and e) 300. 6065, 4014, 5416, 7176, 3071 binary systems are plotted for tp = 0, 10, 30, 100 and
300 respectively.
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Figure 9.35: The distribution of triple systems in the (log10 (P/yr) , e)-plane. Small circles
represent inner orbits and triangles represent outer orbits. The colour of the points encodes
the fidelity parameter. Frame a) corresponds to tp = 0, b) 10, c) 30, d) 100, and e) 300. 2725,
3131, 3353, 2042, 247 triple systems are plotted for tp = 0, 10, 30, 100 and 300 respectively.
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Figure 9.36: The distribution of hierarchical quadruple systems in the (log10 (P/yr) , e)-plane.
Circles represent inner orbits, triangles represent middle orbits and squares represent outer
orbits. The colour of the points encodes the fidelity parameter. Frame a) corresponds to tp =
0, b) 10, c) 30, d) 100, and e) 300. 33, 85, 91, 10, 0 hierarchical quadruple systems are plotted
for tp = 0, 10, 30, 100 and 300 respectively.
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Figure 9.37: The distribution of double quadruple systems in the (log10 (P/yr) , e)-plane. Circles
represent inner orbits and triangles represent outer orbits. The colour of the points encodes
the fidelity parameter. Frame a) corresponds to tp = 0, b) 10, c) 30, d) 100, and e) 300. 165,
23, 3, 3, 0 double quadruple systems are plotted for tp = 0, 10, 30, 100 and 300 respectively.
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the semi-major axis of the inner orbit. As the system is compacted, the semi-major axis of the

outer orbits of some of the higher order multiples become too small compared to the semi-major

axis of the inner orbits, and the multiple system is no longer stable. The higher-order multiples

therefore degrade to pure binaries.

Table 9.22: Average number of multiple systems produced per core.

Time Binaries Triples Hierarchical Quadruples Double Quadruples

Fiducial 0.6799 0.3055 0.0037 0.0185
tp = 10 0.5276 0.4115 0.0112 0.0030
tp = 30 0.5824 0.3605 0.0098 0.0003
tp = 100 0.7426 0.2113 0.0010 0.0003
tp = 300 0.8822 0.0710 0.0000 0.0000

With the requirement that the KS test must be rejected at the 1% level for all values of

tp for a given property, we can say that the outer eccentricities of the triples, and the periods

of the binaries, triples (inner and outer) and the hierarchical quadruples (inner and outer)

change with tp with reasonable confidence (See Table 9.23). The different eccentricities could

be detected observationally, however, the peak of the period does not change sufficiently to be

detected easily observationally.
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Table 9.23: This table shows the eccentricity, mass ratio and period distributions that for
which the null hypothesis can be rejected at the 1% level, as determined by the K-S test for
the different values of tp.

tp System Type Eccentricity Mass Ratio Period

10 Binaries X
30 Binaries X
100 Binaries X X
300 Binaries X
10 Triples inner X X
30 Triples inner X X
100 Triples inner X
300 Triples inner X
10 Triples outer X X
30 Triples outer X X X
100 Triples outer X X X
300 Triples outer X X X
10 Hierarchical Quadruples inner X
30 Hierarchical Quadruples inner X
100 Hierarchical Quadruples inner X
10 Hierarchical Quadruples mid
30 Hierarchical Quadruples mid X X
100 Hierarchical Quadruples mid X X X
10 Hierarchical Quadruples outer X X
30 Hierarchical Quadruples outer X X X
100 Hierarchical Quadruples outer X X X
10 Double Quadruples inner
30 Double Quadruples inner
100 Double Quadruples inner
300 Double Quadruples inner
10 Double Quadruples outer
30 Double Quadruples outer
100 Double Quadruples outer
300 Double Quadruples outer
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Discussion and Conclusions

In this chapter, I summarise the work done in my thesis, and discuss further work that might

be done to extend these investigations.

10.1 Mapping from the CMF to the StIMF

I have found during the course of this project that a self similar mapping from the CMF to

the StIMF can be achieved, so long as Equations (4.1) and (4.3) are satisfied. This leads to

a degeneracy. I can further constrain the parameters by invoking the binary frequency and

mass ratios, which allows us to constrain the parameters to those found in Table 4.1. It is a

combination of fitting both the StIMF and the binary frequency that constrains the parameter

space most critically. This model is unique in that it fits the StIMF, binary frequency and mass

ratios.

Self-similar mapping fits the observational constraints for the StIMF, binary frequency and

mass ratios for sun-like and M-dwarf primaries, so long as the efficiency is high, approximately

100%. This is higher than previously proposed (e.g. η0 ∼ 0.3, Alves et al. 2007). We would

therefore expect that most of the mass of the core would end up in the mass of the stars.

Additional accretion would counteract any mass loss via outflows. Each core needs to fragment

into about 4 or 5 stars, and so most stars would not form in isolation. Higher values of N0 may

be possible, but the efficiency would have to be increased even further and each core would have

to produce more than one binary. The dynamical biasing parameter, β, is somewhat small in

the best fit, suggesting that there is some form of dissipation between the stars, allowing the

lower mass stars an opportunity to be part of a long lived binary.

Four secondary parameters are investigated, χt , χη0 , χ
N0

and χσ0 . These parameters allow

N0, σ0 , η0 and the lifetime of cores to vary with Mc. However, these parameters do not improve

the fit enough to warrant being included.

N0, η0 , and µc all have a high influence on µ
St

, whilst σ
C

and σ0 have a high influence on

– 187 –



10.2. Core Cluster Simulations

the standard deviation of the final StIMF distribution. As σ
St

and σ
C

are similar in size, σ0

cannot be too large (see Equation 4.3).

The slope of the binary frequency graph against primary mass gets steeper as either N0

increases, β increases or σ0 increases.

β � 1 produces binaries with mass ratios approximately equal to 1. For σ0 = 0, we would

expect all the mass ratios to be equal to 1. Intermediate values of σ0 will reproduce a flat mass

ratio distribution, whilst small values of σ0 will reproduce a mass ratio distribution that peaks

towards q = 1.

Note that I do not claim, nor have I claimed at any point, that self-similar mapping is the

one and only answer. I do however say that at this point in time it cannot be ruled out, and

may turn out to be useful as a rough and ready guideline.

10.2 Core Cluster Simulations

Using the best-fit results of the project described in Chapters 3 and 4 as a fiducial model, I

perform N-body calculations of small core-clusters to follow the production of multiple systems.

Using a fidelity parameter defined in this thesis, I investigate the dependence of the structure

and stability of these multiple systems on certain initial conditions, including the number

of stars in a core-cluster, the variance in masses in those stars, the virial ratio and radial

dependence of stellar density. I expand on those results by including a prescription for the

influence of disks during stellar flybys, the influence of different initial spatial configurations of

the stars (i.e. line and ring clusters) and the presence of a background potential due to residual

gas in the core-cluster.

The period distribution for the binaries formed in these simulations is always very narrow,

with a logarithmic standard deviation of approximately 0.6 to 0.7. The range of periods ob-

served in the field is much larger, with a logarithmic standard deviation of approximately 2.3

for solar-mass binaries (Raghavan et al. 2010, mean P ≈ 250 yr). However, the spread of

periods observed in the field can be partly explained by these simulations if some of the wider

periods observed are in fact the mid or outer orbits of higher-order multiples with unresolved

companions, the longest period systems being the outer orbits of hierarchical quadruples. Due

to the overlap in the period distributions of the inner, mid and outer orbits of multiple systems

(see Figures 8.2, 8.3 and 8.2), when observing in the field, it would not be possible to distinguish

between pairwise orbits of higher order multiples and very wide binaries by separation alone.

The combined distribution of all the possible pairwise orbits (including binaries) for the fiducial

model is given in Figure 10.1. The distribution consists of a log normal similar in spread and

mean to the distribution for pure binaries, with a high period tail. The spread of the periods

could be increased further by increasing the range of sizes of the cores, but also by allowing V
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to vary between cores. The peak of the period distribution moves from 102.0 to 102.4 for virial

parameters between 0.3 and 0.8.
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Figure 10.1: The combined period distribution of all the pair-wise orbits produced in the fiducial
model. The distribution consists of a log normal similar in spread and mean to the distribution
for pure binaries, with a high period tail.

Although long period systems are produced using this model, tight, spectroscopic-like bina-

ries are not reproduced. This is possibly a result of our models not incorporating protostellar

accretion, which has been shown to significantly harden binary systems (Umbreit et al. 2005).

The mass ratio distribution as found by Raghavan et al. (2010) is consistent with being

flat for q > 0.2, with a possible peak at q = 1. Duchêne & Kraus (2013) find a similar mass

ratio distribution for solar-mass short-period subsystems. Too few high mass ratio binaries

are produced in the majority of these simulations for the distribution to be consistent with

being flat, and a peak of the mass ratio at q = 1 is only possible if all the systems are double

quadruple and σ0 is large.

σ0 = 0.1 comes closest to reproducing the correct mass ratio distributions for triple sys-

tems as observed by Tokovinin (2008). Duchêne & Kraus (2013) summarise that long period

subsystems have a mass ratio preferentially less than 0.5, a result that is reproduced in these

simulations.

These simulations produce a large fraction of systems with high eccentricity, the distribution

being thermal in most cases, or having a strong peak at e = 1 for the outermost orbits if no

stars are ejected. The peak of the eccentricity distribution of the outer orbits of triples and

hierarchical quadruples can be shifted to smaller eccentricities if a Plummer sphere is influential

for a significant length of time, possibly reproducing the flat or falling eccentricity distribution

– 189 –



10.2. Core Cluster Simulations

0.0 0.2 0.4 0.6 0.8 1.0
Mass Ratio

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

No
rm

al
is

ed
 F

re
qu

en
cy

Figure 10.2: The combined mass ratio distribution of all the pairwise orbits produced in the
fiducial model.

observed in the field, (see Figure 15 of Raghavan et al. 2010). But note that the eccentricity

distributions of binaries and double quadruples are less affected. We never get circularization of

short period binaries, unlike that observed in the field (see Figure 14 of Raghavan et al. 2010),

because we do not include tidal interactions between stars.

Duchêne & Kraus (2013) state that for solar-mass and subsolar-mass systems, approximately

20 to 25% of multiple systems have 3 or more components. Most of the cases investigated in this

thesis produce higher order multiple fractions of at least 20%, but the line cluster, ring cluster

and N0 = 2 and 3 produce too many binary systems. The fraction of higher order multiple

systems can be increased either by increasing the number of stars per core, or implementing a

small value of σ0 . Increasing N0 increases the fraction of higher order multiple systems because

there are more excess stars that can be ejected, carrying away energy, leaving behind a hardened

system. A small value of σ0 will produce a higher fraction of higher order multiples because

multiple systems are more stable if their components are of roughly equal masses.

The best way to increase the fraction of hierarchical quadruples is to increase N0, whilst

the fraction of double quadruples can be increased by either increasing N0, and/or decreasing

σ0 . As the fraction of hierarchical quadruples rises more quickly than the fraction of double

quadruples as N0 increases, in order to reproduce the observation that more double quadruples

are found than hierarchical quadruples (see Figure 23 of Raghavan et al. 2010, who find 9 double

quadruples, and 2 hierarchical quadruple systems), N0 must be equal to about 4 or 5. This

range however could be larger, when considering that the average fidelity of the hierarchical

quadruples is lower than that of the double quadruples, meaning that the ratio of hierarchical

quadruples to double quadruples will decrease with time.

The sample analysed by Tokovinin (2008) has a triple system to double quadruple system
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ratio of approximately 9. Most of the cases investigated in this thesis produce too large a

fraction of triples, however, both the ring cluster and small σ0 reproduce the correct ratio.

Most hierarchical multiples found in these simulations consist of a subsystem of stars orbited

by a star on average smaller than the components of the subsystem. This is reflected in the

low mass ratios of the outer orbits. However, on occasion a subsystem can be orbited by a star

larger than the total mass of the subsystem’s components. This occurs for the line cluster, ring

cluster and large values of N0. This occurs for the non-spherical clusters because small stars

are placed preferentially closer together, and so they are more likely to form a binary system,

which can then be ’captured’ by a larger star. Compare with close brown dwarf/brown dwarf

binaries in orbit around solar-mass stars.

Tokovinin (2008) finds that double quadruples tend to comprise two pairs of stars that have

similar periods, with mass ratios tending towards 1. In these simulations, double quadruples

tend to consist of two dissimilar pairs. One pair has a short period, and is comparable to the

periods of pure binaries, and the second pair will have a period that is much larger than the

first. Had we taken into account the results of Hennebelle et al. (2004), who concluded that

stars formed in a ring tend to have similar masses, the properties of these quadruple systems

may have more closely matched those of the field. Taking into account the Bonnell & Bate

(1994) results that the initial separations of the stars are of the order a few solar radii would

produce tighter quadruple systems. Tokovinin (2008) also finds that the inner pairs of triples

tends to have a period distribution that is tighter than for binaries. This result is reproduced

with N0 = 5 and 6, σ0 = 0.4 and 0.5, the line cluster, and line cluster with disks, the ring

cluster, and ring cluster with disks, but not the spherical cluster with disks for some reason.

However, the difference is not very significant. In the remainder of the simulations, the inner

pairs have a period the pure binaries. This result may be explained in remembering that one

way a binary can be hardened is to throw out the third member of the system. 50% of triple

systems in the fiducial model have outer to inner period ratios of between 30 and 446. The

majority of triple systems over all the simulations have period ratios that range between about

22 to 812.

Several properties of the multiple systems are significantly different from the fiducial model

according to the KS test. However, for the majority of cases, the differences between the

distributions are too small to be distinguished between observationally. The exceptions are

the eccentricity distributions when tp is altered, the mass ratio distributions when σ0 is varied,

and the mass ratio distribution of N0 = 2 as compared to N > 2. The ring cluster produces

distributions of binary mass ratios and binary periods that could be distinguishable from those

produced by a spherical cluster.

The multiplicity frequency for solar mass stars is correct if either N0 = 5 or 6, or σ0 = 0.1,

N0 = 6 appears to produce also roughly the correct slope, but σ0 = 0.1 produces a slope that is
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too shallow. Otherwise, the slope of multiplicity against primary mass is too steep. This is as

a result of most multiple systems being formed from the most massive stars in the core-cluster.

This dynamical biasing is reduced for larger N0, larger V , larger σ0 , and decreasing tp.

The ring cluster produces double quadruple systems that have outer orbits that not only

populate the low eccentricities more than the fiducial, but their fidelity is also much higher,

meaning that these quadruples would be more likely to reach the field intact. For double

quadruples in general, the outer orbits have a lower fidelity than the inner orbits, with the

fidelity decreasing as both the eccentricity and period increases, i.e. the more compact, circular

systems are the most stable. This may be due to, in part, the fact that the widest systems have

not yet unfolded, i.e. the simulation was terminated before the outer system had completed a

full orbit.

No one set of initial conditions reproduced all the properties of multiple systems as observed

in the field. For the binaries in particular, the properties of multiple systems don’t appear to

provide a clear test of formation history. However, it was found that the structure of higher-

order multiples had a dependence on the initial configuration of the cluster, i.e. ring, line or

spherical. More observational data on higher-order multiples may lead to a determination of

the dominant mode of formation. For example, a large fraction of double quadruples compared

to hierarchical quadruples would indicate an initial ring configuration in the core.

10.3 Future Work

The models could be expanded to include additional parameters such as adding radial velocities

to the ring clusters, or adding velocities parallel to the filament in the line cluster. A rotation

parameter could also be included in the spherical models, and an initial disk cluster could be

investigated, to simulate the formation of stars in a ‘circumstellar accretion region’ (Boss 1996).

The inclusion of the rotation of the core may help to produce a flatter eccentricity distribution

of the multiple systems.

Accretion affects need to be investigated more thoroughly, as well as a more in-depth treat-

ment of disks. These may help to produce more spectroscopic binaries by hardening the systems

formed. Accretion will increase the mass of the protostars with time, and as a result the sys-

tem will shrink (Umbreit et al. 2005), and become more circular. Accretion can also lead to

equalisation of masses (Bate et al. 2002b). These effects could be included using analytical

arguments, as for these simulations, or by using a hybrid SPH and N-body code such as Gan-

dalf (Hubber etal. in prep.), to determine the influence of the embedded gas on the multiple

systems formed.

Other forms of dissipation can also play a role in N-body dynamics, including Kozai oscil-

lations and magnetic braking with disks (see Kroupa 1995, and references therein)
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Motte, F., André, P., Ward-Thompson, D., & Bontemps, S. 2001, A&A, 372, L41

Myers, P. C. 1983, ApJ, 270, 105

Myers, P. C. 2013, ApJ, 764, 140

Nakano, T., Hasegawa, T., & Norman, C. 1995, ApJ, 450, 183

Nutter, D. & Ward-Thompson, D. 2007, MNRAS, 374, 1413
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