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SUMMARY 

 

This thesis aims at interpreting the issues surrounding the implementation of 

small-scale EfW systems in the UK. To investigate these issues a case-study 

area was used and a techno-economic model has been applied to define the 

feasibility parameters of a modern Advanced Thermal Treatment process for 

around 20,000 tonnes of waste per year. Previous literature suggested the use 

of sensitivity and scenario analysis as an adequate method for research of 

these systems. 

A waste classification was performed in a typical rural environment. The 

waste streams analysed were MRF residues (end-of belt residue, trommel 

residue and ballistic separator residue) resulting from household waste and 

recycling waste. This data was fed into the techno-economic model.  

The results of the techno-economic model show that this type of facility is 

sensitive to variations in fuel properties, tonnages, operation and operational 

availability. Ideally a waste derived fuel would have high calorific value and 

low moisture content. However the analysis of municipal waste properties 

reveals that only a small part of the waste has these characteristics. Thus it is 

necessary to manipulate the calorific value in the overall waste stream in 

order to increase its potential for use in Advanced Thermal Treatment 

processes. 

Investment analysis included NPV (net present value) and IRR (internal rate 

of return) analysis of five scenarios which particularly reflected the impact on 

capital cost repayment. Results showed that the most attractive option for 

investment is the nominal situation which presented values of 17% IRR. All 

of the scenarios investigated returned a lower IRR, with values ranging from 

6% to 15%, which reflects its associated risk. 

The results obtained from the techno-economic model show that nominal 

scenario is economically feasible. However, alterations to chemical 

properties of the waste and operation of the thermal treatment processes 

impacts greatly on economic feasibility which reflects the high risk 

associated to investments of this nature. 

      

 

 

 



 iii 

 

ACKNOWLEDGEMENTS 

 

The author would like to express her thanks to Chris Saunders, Mark Saunders, 

Derek Smith and Tina Morris at LAS Recycling Ltd for their continued support, 

mentoring and guidance during this project. The author also recognises the input 

of the office staff, MRF staff and drivers for their assistance and collaboration. 

Special thanks to Professor Tony Griffiths and Dr Richard Marsh for their 

supervision over the course of this project.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv 

TABLE OF CONTENTS 

 

1. Introduction ............................................................................................................ 1 

1.Background ............................................................................................................... 2 

2.Waste Disposal Methods ........................................................................................... 5 

2.1 Recycling................................................................................................................ 5 

2.2 Composting and Anaerobic digestion .................................................................... 6 

2.3 Thermal treatment .................................................................................................. 6 

2.3.1 Incineration ......................................................................................................... 7 

2.3.2 Advanced thermal treatment ............................................................................. 10 

2.4 Landfill ................................................................................................................. 12 

3. Aims and objectives of thesis ................................................................................. 15 

4. Structure of thesis ................................................................................................... 17 

2. Literature review .................................................................................................. 18 

1. Introduction ............................................................................................................ 19 

2. Incineration in the UK ............................................................................................ 21 

3. Pyrolysis and Gasification ...................................................................................... 25 

3.2.1 Operating costs .......................................................................................... 26 

4.Political directives on waste management .............................................................. 29 

5. Resulting products .................................................................................................. 31 

6. Capital cost ............................................................................................................. 33 

7. Techno-economic models ...................................................................................... 34 

8. Conclusions ............................................................................................................ 35 

3. Case study area (CSA) and fuel analysis description ....................................... 36 

3.1 Background .......................................................................................................... 37 



 v 

3.2 Case-study area .................................................................................................... 38 

3.2.1 Materials recovery facility (MRF) ............................................................ 39 

4. Discussion .............................................................................................................. 52 

5.Conclusions ............................................................................................................. 58 

4. Methodology of techno-economic model ............................................................ 59 

4.1 Introduction .......................................................................................................... 60 

4.2 Overall structure ................................................................................................... 61 

4.3 Capital investment ................................................................................................ 63 

4.4 Cost ...................................................................................................................... 64 

4.5 Operation .............................................................................................................. 65 

4.6 Energy production ................................................................................................ 66 

4.7 Waste composition ............................................................................................... 68 

5. Economic model: sensitivity analysis results ..................................................... 70 

5.1 Introduction .......................................................................................................... 71 

Scenario 1 ................................................................................................................... 72 

Scenario 2 ................................................................................................................... 75 

Scenario 4 ................................................................................................................... 77 

Scenario 5 ................................................................................................................... 80 

Scenario 6 ................................................................................................................... 82 

Scenario 8 ................................................................................................................... 87 

Scenario 9 ................................................................................................................... 88 

Scenario 10 ................................................................................................................. 89 

5.2 Discussion of results ............................................................................................ 90 

5.2.1 Waste composition and characteristics ............................................................. 90 

5.2.2 Operating time and procedures ......................................................................... 92 



 vi 

5.3 Investment analysis .............................................................................................. 93 

5.4 Summary .............................................................................................................. 99 

5.5 Recommendations for future work .................................................................... 100 

6. Conclusions ......................................................................................................... 101 

References ............................................................................................................... 105 

Appendix A ............................................................................................................. 109 

 



 

 

 

1 

 

 
 

 

 

 

 

Introduction 



 

 

 

2 

1. Background 

Waste production has been a constant in History since the first communities 

emerged in the Neolithic Era. Waste, mainly composed of food and animal 

remains, would be deposited outside these settlements. It can be assumed that 

very quickly the need for disposing of waste in an adequate way was established 

in order to avoid the spread of disease and odour. Ancient civilizations developed 

specific recipients where waste would initially be deposited before final disposal. 

Early records from Ancient Greece point to the onset of the first waste disposal 

regulations at around 300 B.C. which shows that waste management has been a 

constant concern since the onset of civilization (Bilitewski, 1997). 

In more recent times, records show an increase in waste production associated to 

the industrial revolution (circa 1750 – 1800). In the UK, as industrial areas 

developed, the idea of establishing norms for the cleaning of towns began to 

emerge by the mid 18th century. Early examples of waste management legislation 

were first implemented in London with the publication of the 1846 Nuisance 

removal and Disease prevention act. The Public Health Act of 1875 was the first 

piece of legislation created to establish waste management norms. 

Further industrial development resulted in an increase in waste production which 

resulted in the introduction of waste disposal methods, such as landfill and 

incineration, which are still in use today. The term energy-from-waste describes 

waste management techniques that produce energy. Thermal treatment in 

particular refers to incineration, gasification and pyrolysis. The two last terms are 

also referred to as advanced thermal treatment as these are newer techniques that 

have a more positive environmental impact.  
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Over the next sections a more detailed description of these two methods will be 

provided. Other disposal methods such as recycling, composting and anaerobic 

digestion will also be discussed.  

In recent years, environmental matters have gained greater relevance both in the 

UK and at European Union level. This increased awareness lead to the 

publication of the European Union waste management directive providing 

guidance on transport, collection, recovery and disposal of waste (EU Waste 

Framework Directive, 2008). This piece of legislation aims at encouraging 

prevention and waste reduction, recovery of waste through re-cycling, reusing or 

reclamation and finally recovery of energy.  

The waste hierarchy, shown in figure 1, sets the order of waste disposal methods 

to adopt. According to these regulations energy recovery before final disposal is 

a more favourable method because it provides energy from a renewable source. 

These regulations set out that anaerobic digestion is preferable to composting 

since it provides the expectation of energy recovery. Furthermore, it establishes 

that recycling is preferable to energy from waste, which is preferable to landfill.  
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Figure 1. Waste hierarchy in 

http://northumberland.limehouse.co.uk/portal/planning/core_strategy/csio?pointI

d=s1335436077029 [accessed on 31/10/2013].  

 

The waste hierarchy provides a classification of waste disposal methods by order 

of environmental impact. The three first stages of the waste hierarchy 

(prevention, re-use and recycling) aim at reducing the amount of waste produced 

and at giving a new use to materials instead of disposing of them. Although it is 

possible to re-use and recycle materials, residual waste subsists. As shown in the 

waste hierarchy these materials should go through a process of energy recovery 

before final disposal. These processes are (depending on the type of waste): 

anaerobic digestion and thermal treatment. Over the next sections these disposal 

methods will be analysed in greater detail.  

Table 1 gives shows waste arisings by method and gives a perspective of the 

most common disposal methods. The number of sites permitted and the quantity 

http://northumberland.limehouse.co.uk/portal/planning/core_strategy/csio?pointId=s1335436077029
http://northumberland.limehouse.co.uk/portal/planning/core_strategy/csio?pointId=s1335436077029


 

 

 

5 

of waste processed per method shows that landfill was preferred to incineration. 

The data also shows that the use of incineration increased from 2011 to 2012. 

  

Table 1. Waste arisings by method in England and Wales in 2012, Environment 

Agency in 

http://www.environmentagency.gov.uk/research/library/data/150322.aspx 

[accessed online on 24th February 2014] 

Waste 
management 

method 

Sites 
permitted 

at end 
2012  

Sites that 
accepted 
waste in 

2012  

Millions 
tonnes 

managed 
in 2012  

Percentage 
change 

from 2000 
to 2012  

Percentage 
change 

from 2011 
to 2012 

  

Landfill  510  380  43.9  -48.0  -6.3 

Transfer  3,478   2,677   41.2  1.6   -0.9 

Treatment  2,319   1,649   46.3  309.9  11.0 

Metal 
recycling 

 2,662   1,316   15.3  58.5   -6.3 

Incineration  123  82  7.1  -  7.7 

Use of waste  219  163  4.0  -  110.2 

Land 
disposal  

 199  114  8.6  -  220.7 

Total  9,510   6,381   166.4  -  5.5 

 

2. Waste Disposal Methods 

2.1 Recycling  

Recycling is defined as the process of transforming waste into new material so 

that it can be given a new use. There is evidence to suggest that ancient 

civilizations would reuse metals during times of resource depletion such as 

during a war (Bilitewski, 1997). Victorian records present evidence of domestic 

http://www.environmentagency.gov.uk/research/library/data/150322.aspx
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materials such as tin cans that would be applied to other situations after being 

used. Nowadays, recycling has become an increasingly important disposal 

method as a result of the implementation of environmental legislation. Recycling 

targets imposed by EU legislation have been increasing over time (Incineration 

of Municipal Solid Waste, 2013). 

 

2.2 Composting and Anaerobic digestion 

Composting is a waste management method in which the biological material is 

converted into a new use in agriculture. This method, which is also considered an 

energy-from-waste technology is applied only to biological material and its main 

end application is in agriculture. In anaerobic digestion, biological mater is 

broken down (in a similar process to composting). The resulting biogas from the 

process can then be used as a fuel in energy recovery processes (Anaerobic 

Digestion Strategy and Action Plan, 2011). 

2.3 Thermal treatment  

Thermal treatment or energy-from-waste (EfW) is a waste treatment method that 

makes use of a chemical reaction between waste (as a fuel) and oxygen. This 

method, as mentioned before, is particularly relevant as it sits on the penultimate 

stage of the waste hierarchy where energy recovery takes place and thus it is a 

preferred option to landfill disposal. Another important aspect of thermal 

treatment is that it reduces the mass of waste thus taking up less space on the 

final stage of disposal. Thermal treatment processes can be divided into two 

major categories: Incineration and Advanced thermal treatment (Soderman, 

2003). 
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The difference between these two methods is the quantity of oxygen involved in 

the chemical reaction with the waste. Figure 2 reflects the quantity of oxygen 

associated to thermal treatment systems.  

Appropriate waste characteristics include high calorific value and low moisture 

content. These aspects will be further described over the next section. 

Incineration involves a reaction with excess oxygen that will ensure complete 

combustion. Pyrolysis and gasification are defined as advanced thermal treatment 

because these processes require less oxygen than what is needed to combust the 

fuel. Pyrolysis takes place in an oxygen starved environment whilst gasification 

takes place in partial air.   

 

 

Figure 2. Relationship between level of oxygen and thermal treatment 

technology (adapted from DEFRA report on Incineration of Municipal Solid 

Waste, February 2013) 

 

2.3.1 Incineration 

Incineration involves a chemical reaction between waste and excess oxygen. This 

type of system may have an energy system associated to it or not. In the UK, all 
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operating incinerators have an energy recovery system in place (Fichtner, 2004). 

In incineration systems the waste is fully oxidised which requires greater 

quantities of oxygen to ensure the process. Typically, incineration plants operate 

at 850°C or above. Inert materials are collected at the final stage of the process as 

bottom ash (Incineration of Municipal Solid Waste, 2013). 

Incineration consists of the combustion of waste in an oxygen rich environment. 

The image on figure 3 shows a diagram of a typical incineration plant and its 

main component parts. 

 

 

Figure 3. Typical incineration flowchart. Environmental Protection Department 

of Hong Kong, in 

http://www.epd.gov.hk/epd/english/environmentinhk/waste/prob_solutions/WFd

ev_IWMFtech.html [accessed: 7th November 2011] 

 

http://www.epd.gov.hk/epd/english/environmentinhk/waste/prob_solutions/WFdev_IWMFtech.html
http://www.epd.gov.hk/epd/english/environmentinhk/waste/prob_solutions/WFdev_IWMFtech.html
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The various parts of an incineration plant can be summarised as follows: 

The waste is tipped into the reception pit. This ensures a constant quantity of 

waste is always available to maintain the thermal process. 

The waste is then tipped into the combustion chamber. At this stage the air enters 

the system as primary then secondary air. The primary air enters the chamber 

through openings under the grates while the secondary air enters the chamber 

through an opening located above the area where combustion takes place. These 

components ensure complete combustion of the waste and manipulate the 

orientation and intensity of the flame created. Controlling these characteristics 

will prevent damage to the walls of the combustion chamber, which, otherwise, 

could result in blockage of the openings through excessive production of chars 

and other particles.  

There are three types of grate: roller grate, reciprocating grate and reversed feed 

grates.  

The chamber can also have different design configurations: counter-flow firing, 

middle-flow firing or parallel-flow firing. The design of the grate will influence 

the flame direction. The gases created from this stage ascend in the chamber and 

pass through the boiler.  

The steam resulting from this stage goes through a steam turbine where 

electricity is produced. It is also possible to recover heat from the EfW process 

and these systems occur in a range of settings including sole electricity 

production and combined electricity and heat production also known as 

combined heat and power (CHP). 

The resulting gases go through a series of cleaning components before being 

realised into the atmosphere. These vary accordingly to the type of system, 
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pollutants present and emissions control regulations imposed on the industry. 

Figure 4 shows the necessary steps for gas cleaning. Air pollution control (APC) 

considers the removal of dioxins and fly ash. APC include electrostatic 

precipitator, pre-collector, wet scrubber and fabric filter.  

 

 

Figure 4. Air pollution technology (Lima et al, 2012) 

 

2.3.2 Advanced thermal treatment 

Broadly speaking, the two existing advanced thermal treatment (ATT) systems 

are pyrolysis and gasification. These systems differ in the amount of oxygen 

present in the process. In pyrolysis the reaction takes place in an oxygen starved 

environment and temperatures are set between 450°C and 850°C. In gasification 

there is only enough oxygen to oxidise the waste and reaction temperatures are 

usually above 650°C.  The quantity of air required to complete combustion of 
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fuel is calculated through the equation of stoichiometry of oxygen/fuel reaction. 

The equivalence ratios (stoichiometric ratios) for pyro-gasifiers as shown in 

figure 5 are as follows: 

Gasification: 0.2 to 0.4 

Pyrolysis: 0 to 0.1 

Combustion: approximately 1.0 

 

                 

Figure 5.  Equivalence ratios for gasification, pyrolysis and combustion. (Reed, 

T., 1998) 
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ATT systems require sorting of the waste prior to processing to remove glass and 

other inorganic materials. In some situations it is necessary to further treat the 

waste to meet specific requirements on moisture content and particle size. 

(Advanced Thermal Treatment of Municipal Solid Waste, 2013) 

The resulting products from ATT processes include a solid residue (incineration 

bottom ash aggregate) and a product syngas containing mainly carbon monoxide, 

hydrogen and hydrocarbons. The resulting syngas from ATT processes varies in 

calorific value and composition depending on the technology. However, these 

systems have a tendency for issues associated to tar deposition which can lead to 

system failure.  

The pre-treatment of waste and the technical difficulties associated to tar 

production and deposition make this a challenging system for processing 

municipal solid waste (DEFRA, Incineration of Municipal Solid Waste, February 

2013). 

 

2.4 Landfill 

According to the EU official definition, landfill is a waste disposal site for the 

deposit of the waste onto or into land (i.e. underground), including internal waste 

disposal sites (i.e. landfill where a producer of waste is carrying out its own 

waste disposal at the place of production), and a permanent site (i.e. more than 

one year) which is used for temporary storage of waste, but excluding facilities 

where waste is unloaded in order to permit its preparation for further transport 

for recovery, treatment or disposal elsewhere, and storage of waste prior to 

recovery or treatment for a period less than three years as a general rule, or 
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storage of waste prior to disposal for a period less than one year. This has been 

the preferred option for waste disposal in the UK (Towards zero waste, 2010). 

However, this disposal method generates environmental issues. Landfill use 

produces a leachate which is associated to contamination of groundwater, thus 

potentially polluting water reservoirs; and air, through the emission of odours. 

Furthermore the use of landfill reduces the available space for construction 

resulting in the need of using the green belt for this type of activity. Moreover, 

from a waste management perspective landfill disposal prevents the re-use of 

materials. This has negative impact on recycling and ultimately will cause extra 

resources to be used.  

These damaging consequences lead to the European Union adopting measures to 

restrict landfill use through the introduction of the Landfill Directive (1999). In 

the UK, these measures were initially transposed into the implementation of the 

Landfill Tax (LFT) in 1996 in order to enable the UK to meet EU targets. The 

LFT applies to all waste disposed of via landfill at a licensed site and it is 

charged by weight at two different rates which can be seen in figure 6 (Landfill 

Directive, 1999). 
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Figure 6. The evolution of landfill tax charge from 1996 to 2014 (HMRC, 

Landfill Tax 2014)  

The lower rate is applied to inerts (inorganic compounds) such as those defined 

in Landfill Tax (qualifying material). The standard rate is applied to all other 

types of waste. 

Exemptions to the landfill tax include dredgings (materials removed from the 

water), mining and quarrying waste, pet cemeteries, filing of quarries (under 

certain conditions) and waste from visiting forces (Defra, 2007). 

The implementation of this legislation aims at reducing landfill use whilst 

making other disposal methods more attractive (Landfill Directive, 1999). 

Landfill Directive targets are as follows: 

- 50% by 2009 (compared to 1995 levels) 

- 35% by 2016 (compared to 1995 levels) 

The following section sets about to establish the research question investigated in 

this thesis and its adopted structure. 

Inerts 
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3. Aims and objectives of thesis 

It was established, earlier in this chapter, that thermal treatment plays an essential 

role in the waste hierarchy. It stands in the last position before final disposal 

enabling organic waste mass reduction whilst providing energy recovery. 

However, evidence points to the fact that this method is more often used in a 

large-scale set (over 100 000 tonnes per annum). This is mainly because the 

variability of the material is more pronounced on a smaller scale. Hence, the aim 

of this study is to contribute to the understanding of the difficulties behind 

implementing small-scale thermal treatment in small communities.  

The objectives of this thesis are: 

- To establish the constraints behind setting up small-scale (under 100 000 

tonnes per annum) thermal treatment facilities,  

- To identify the feasibility parameters of these systems operation via 

techno-economic modelling 

In order to analyse the feasibility of thermal treatment systems projected to smaller 

tonnages (less than 100 000 tonnes per annum), the following parameters were 

considered since these are mainly responsible for determining the performance of 

thermal treatment facilities (WRAP, A classification scheme to define the quality of 

waste derived fuels):  

- Composition,  

- Calorific value  

- Moisture content  

- Ash content 
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Thermal treatment benefits from waste-derived fuels which have a high calorific 

value and low moisture content. Calorific value can be defined as the energy 

contained in a material which is released during combustion (Lima et al. 2012). 

Moisture content is defined as the moisture present in waste and affects the calorific 

value as shown in figure 7. 

Ash content is defined by the quantity of inerts present in the waste. Although these 

particles do not react during the thermal process they will deposit at the end of 

system and will, thus, require further disposal.  

 

 

Figure 7. The relationship between calorific value and moisture content (Marsh 

et al. 2008) 

Figure 7 shows that there is an inverse relationship between moisture content and 

calorific value therefore the greater the moisture content the lower the calorific value 

will be. Consequently the most appropriate waste materials for EfW systems will be 

those which have high calorific values and low moisture content (Arena U., 2011).  

 



 

 

 

17 

4. Structure of thesis 

Chapter 2, which is divided in two sections, examines published literature on 

economic models applied to waste management and energy industries, such as 

coal fired and biomass powerstations.  

Chapter 3 includes the description of the case-study area and fuel analysis. 

Chapter 4 provides a methodology for the economic model used to analyse the 

feasibility of the use of small-scale thermal treatment technologies. Scenario 

analysis will be used to establish the sensitivity of the parameters investigated in 

the economic model. 

Chapter 5 presents the results of the techno-economic model and sensitivity 

analysis. 

Chapter 6 provides a summary of findings.  
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1. Introduction  

The aim of this chapter is to establish the key factors driving the analysis of EfW. 

In order to understand the principles affecting the implementation of EfW in the 

UK a review of existing literature is presented in this chapter.  

Disposing safely of large volumes of municipal waste is a matter of increasing 

environmental concern, on a global scale. As a case in point, findings from the 

Environmental Research Foundation (ERF) demonstrate that waste disposal via 

landfill can result in serious leakage of toxics into groundwater, and hence to 

public drinking supplies. Other methods of dealing effectively with waste 

disposal are therefore a priority in terms of protecting the environment, and 

indeed public safety.  

Climate change, which effect has been increased by human action as levels of 

carbon dioxide production grew with industrial development, has prompted 

governments world-wide to take action in order to minimise the impact. The 

Kyoto protocol was organised in order to provide a response to these effects on a 

global scale (Grubb, 2003).  

The need to suppress waste production and control waste disposal resulted in the 

implementation of the EU Landfill Directive which states that the percentage of 

waste disposed of via landfill must be reduced by 75% of the 1995 targets by 

2010; 50% of the 1995 level by 2013 and 35% of the 1995 level by 2020. 

However, as shown in Figure 8 the UK has taken longer than the rest of Europe 

to meet these targets. Traditionally, landfill disposal has been the preferred 

option in waste management in the UK however new technologies are slowly 

gaining more relevance and being implemented. Waste can be thermally 

processed in three different ways, as follows:  
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- Incineration which requires an excess amount of oxygen  

- Gasification which requires a limited amount of oxygen resulting in gas, ash 

and tar. 

- Pyrolysis which occurs in environments with no oxygen and results in gas, 

oil and tar being produced. 

 

  

Figure 8. The diagram below shows the progression of the rest of Europe 

compared to the UK (Lima et al., 2012) 

 

Thermal treatment in the UK is regulated by the EC Waste Incineration 

Directive. This piece of legislation sets the necessary requirements for the 

emissions to air, water streams and land; operational procedures; combustion 

conditions; monitoring requirements and public availability of data. The IPPC 

European 

Union 

 

UK 
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(Integrate Pollution Prevention and Control) sets the best available techniques in 

the industry. 

2. Incineration in the UK 

As discussed in Chapter 1 incineration is the preferred method to final landfill 

disposal in the waste hierarchy. This section presents the aspects surrounding 

EfW implementation. When considering implementing an EfW system it is 

important to consider the following costs: 

- Capital cost of purchase of the incinerator plant 

- Planning and permitting costs 

- Maintenance costs  

An example cost of building for a thermal treatment facility available on the 

DEFRA report on thermal treatment systems is given below: (Defra, Advanced 

thermal treatment of Municipal solid waste). The same report also gives the 

indication that larger facilities (set to above 350 000 tonnes per annum) offer a 

lower gate fee. 

 £145 - £200 m (for a moving grate incineration facility set to 150 000 

tonnes per annum to 350 000 tonnes per annum) 

The main sources revenue for this type of facility is the sale of energy in the form 

of electricity or heat. Occasionally it may be possible to find an outlet for 

incineration bottom ash (IBA) which can be used in construction as an aggregate 

(IBAA). EfW plants must obey to strict planning and permitting regulations. 

These are applied from the early stages of the process through to the running of 

the facility and finally to the decommissioning of the facility. (DEFRA, 

Incineration of municipal solid waste, February 2013) 
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In the planning process it is necessary to consult all the relevant parties including 

the Local Authority (LA) and the community. Having held discussions with the 

planning authority it is necessary then to submit a planning application to the LA, 

which will then issue a decision notice. Should this be favourable then pre-

commencement conditions can be discharged. According to DEFRA the 

following must be considered when assessing the feasibility of an EfW plant: 

(WRAP, EfW development guidance) 

- Location where the facility will be implemented 

- The type of waste processed at the facility and to ensure this is available 

throughout the life of the EfW plant 

- Energy production, requirements, end user and associated costs 

- Running of the facility 

- Available government incentives 

- Gate fees and revenues 

- Planning and permitting 

- CAPEX and OPEX 

 

An environmental permit is required to operate an EfW facility. These are issued 

by the Environment Agency (EA) which is also responsible for ensuring the 

facility runs within the legal limits. Table 2 lists the existing thermal treatment 

facilities in the UK.  
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Table 2. List of existing thermal treatment plants in the UK (Adapted from 

DEFRA report February 2013) 

Incinerator plant Scale Energy recovery Established 

Edmonton, London 675000 tpa 55MWe 1975 

SELCHP, London 420000 tpa 35MWe 1994 

Tysesley, 

Birmingham 

350000 tpa 25MWe 1996 

Teesside 390000 tpa 30MWe 1998 

Coventry 240000 tpa 17.7MWe 

7.5MWth 

1975 

Stoke 200000 tpa 12.5MWe 1997 

Marchwood, 

Southampton 

165000 tpa 17MWe 2004 

Portsmouth 165000 tpa 17MWe 2005 

Nottingham 160000 tpa 14.4MWe 

44.2MWth 

1973 

Sheffield 225000 tpa 17MWe 

39MWth 

2006 

Wolverhampton 110000 tpa 7MWe 1998 

Dudley 105000 tpa 7MWe 1998 

Chineham 102000 tpa 7MWe 2003 

Kirklees 136000 tpa 10MWe 2002 

Grimsby 56000 tpa 3.2MWe 

3.3MWth 

2004 
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Isles of Scilly 3700 tpa No energy 

recovered 

1987 

Allington 500000 tpa 43MWe 2008 

Bolton 130000 tpa 7MWe 1971 

Ardley, 

Oxfordshire 

300000 tpa 24MWe 2014 

Lakeside, 

Colnbrook 

410000 tpa 37MWe 2010 

Runcorn  850000 tpa 86MWe 2013/14 

Devon 275000 tpa 20MWe 2014 

Cornwall 240000 tpa 16MWe 2014 

Crymlyn burrows 170000 tpa 5.7MWe 2002 

Lerwick 22000 tpa 7MWe 1998 

Dundee 120000 tpa 8.3MWe 1999 

Dumfries 65000 tpa 5MWe 2009 

 

It is possible to conclude from Table 2 that the majority of the existing facilities 

in the UK have been implemented in areas of large communities and have been 

projected to process more than 100 000 tpa. Only a small number of facilities 

have been implemented in rural areas where communities are spread through a 

large area and have been set to process less than 100 000 tpa.  
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3. Pyrolysis and Gasification 

Pyrolysis and gasification are referred to as advanced thermal treatment. The 

difference between these methods and incineration is that a lower amount of 

oxygen is used in the thermal reaction. Figure 9 shows that processes associated 

to pyrolysis and gasification and resulting materials power generation process. 

 

 

Figure 9. A representation of the gasification and pyrolysis processes (Defra, 

2007) 

 

Incineration is a method of disposal that can be located close to the point of 

waste collection thus reducing the costs of transportation and minimising the 

impact of waste disposal. Incineration reduces the volume of waste to 10% of its 

initial value and 33% of its original mass. A sterile ash is produced as a result of 

this process. The major point here is that, importantly, the process can be used as 

a source of energy which could feasibly be used to offset energy costs. An added 

advantage is that the bottom ash resulting from the process can be also sold to the 

aggregates industries for instance, generating another form of income. Overall 

this option is therefore more environmentally acceptable (RPS, 2008).  
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There is a high cost associated with initial investment in these systems. 

Operational and maintenance costs are also high. The generation of toxic 

pollutants must also be suppressed and controlled, also resulting in high costs. 

Plants operating prior to the implementation of the Waste Incineration Directive 

(WID) in the UK did not have efficient pollutants control systems which resulted 

in a very negative public opinion which persists years after the implementation of 

this regulation (RPS, 2008). 

 

Figure 10 Thermoselect process diagram, an example of gasification system. 

Interstate Waste technologies available at 

http://www.interstatewastetechnologies.com/images/Process-Overview.jpg 

[accessed online 15th February 2014] 

3.2.1 Operating costs 

High costs are associated with most stages of Incineration operations. When 

projecting such a system it is necessary to consider: 

- Sources of income 

http://www.interstatewastetechnologies.com/images/Process-Overview.jpg
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- Primary costs 

- Availability of operation 

 

The main potential sources of income are: 

- Energy sales; originating from the direct sale of energy created in the process 

- Gate fees; charged as materials arrive on site 

- Recovery of recyclables; resulting from the sale of recyclables that can be 

recovered from the processed materials 

- Recovery of Ferrous (magnetic) metal; resulting from the sale of materials 

arising from the recovery of metal in the ash 

- Bulk residues (off-site); originating from the sale of residues  

 

Primary costs originate from: 

- Residues disposal; cost associated with bottom ash disposal  

- Plant raw materials; cost of essential materials for operation (e.g. activated 

carbon used in cleaning systems)  

- Maintenance; regular maintenance will result in a cost since when the plant is 

inoperative it is not producing the materials that will generate profit  

- Labour;  costs associated with labour such as  

- Regulation and monitoring;  

 

While the plant is not operating it is not producing recyclates, nor charging for gate 

fees, nor profiting from energy sales. This means that while plants are not available 

to operate they are incurring in major losses. Therefore it is of vital importance to 

ensure that plants are operating regularly (Boukis I. Et al., 2009).  
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3.2.2 Electricity and heat generation  

The following data presents the income from energy sales and costs of ash disposal, 

based on a 24-hour operation over an operational period of 365 days. The feedstock 

material was based on the overall amount of waste presently produced by the MRF 

operation at the case-study area, LAS recycling (approximately 20 000 tonnes per 

annum at a net average CV of 12 MJ/kg) as identified in Lima (2012, a). 

No fuel enhancers were considered in these calculations (although details of these 

can be found in Lima (2012, b). Government incentives such as the Renewable Heat 

Incentive or Renewable Obligation Certificates were not considered as these will be 

awarded depending on the quantity of biomass present in the waste. Hence the case 

for consideration is a nominal operating scenario without additional potential 

benefits. 

Generally, advanced thermal treatment systems must operate continuously. This will 

ensure that production of electricity and/or heat is continuous and reliable. The 

production of electricity is in many cases a primary source of income in EfW plants 

consequently every day the plant is not operating will result in a loss of the plant 

operators. This matter should receive special attention when maintenance is required. 

Contingency plans must be in place to ensure that the economic feasibility of the 

plant is not compromised (Ilex Energy, 2005). 

Villanueva Perales et al (2011) analyses the economical feasibility of ethanol 

production through the application of a techno-economic model. This model includes 

the design and modelling of the process and selection of catalysts. Results indicate 

that the high price of a crucial component in the operation – rhodium catalysts – 

leads to higher production costs. The relationship between high pressure and lower 

operating costs is also identified in Trippe (2011) where the impact of alternative 
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gasification configuration on capital investment and production costs is analysed. 

This paper also concludes that the introduction of additional steam as a gasification 

agent results in increased production costs. Wood (2011) investigates the feasibility 

of biomass CHP systems and concludes that the optimum situation is achieved when 

electricity and heat are sold directly on-site and when the plant operates continually. 

In Wang et al (2011) the economic viability of hybrid heating CHP systems is 

explored. The paper concludes that fuel and heating costs are dominant contributors 

to operating costs. 

The factors identified in these papers contribute to the understanding of the research 

developed in this thesis. It is particularly relevant the impact of higher pressure in 

production cost is a technical detail of great significance. The negative impact of 

transport on the model is also identified. The authors also suggest that ideally these 

systems should operate continually.  

4.Political directives on waste management 

In the UK incineration activities in Wales and England are regulated by the 

Environment Agency. The UK Government is the entity responsible for issuing the 

legislation in the UK. 

The Waste Strategy 2007 stipulates that from the waste which cannot be recycled 

energy recovery must occur. The Government uses ROCS and enhanced capital 

allowances to encourage the use of the new technologies.  The Waste Policy Review 

2007 identifies key priorities for the government. These are:  

- The diversion of waste sent to landfill by increase of the recycling and 

recovery rates; 

- Focus on the carbon reduction benefits from the use of the waste hierarchy; 
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- Use of anaerobic digestion in the treatment of food waste; 

- Use of methane originating from existing landfills 

 

According to the government objective the aim of EfW is to recover the most energy 

possible from residual wastes not to process the most waste into energy. 

The UK complies with EU legislation which has been transposed into domestic 

legislation: such as the IPPC Directive, Waste Framework Directive, Hazardous 

Waste Directive and Waste Incineration Directive (WID). The WID is the most 

relevant piece of legislation. Significantly, it does not cover: 

 

- Vegetable waste 

- Waste from virgin pulp and paper making 

- Untreated wood waste 

- Cork waste 

- Radioactive waste 

- Animal carcasses 

- Experimental plants processing quantities under 50 000 tpa 

 

Incineration activities are regulated in the UK by: 

- Part A1: The Environment Agency 

- Part A2: The local authority (LA) 

- Part B: Strict monitoring of air pollution controlled by EA 

A permit application must include: 

- Description of the process (design, components, controls) 

- BAT (Best Available Technique) assessment  
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- Emissions to the Environment including monitoring 

- Dispersion modelling/environmental impact assessment 

- Health risk assessment 

- Efficient use of materials, water and energy 

- Noise and odour 

- Management 

 

EPR Permit restraints:  

- Plants must be compliant with permit conditions  

- It is only possible to operate a plant to the extent authorised by a permit 

- BAT must be in place, with no significant pollution being caused 

- When plants cease to operate action must be taken to ensure pollutants are 

controlled 

5. Resulting products 

The parameters influencing the products of an EfW system such as electricity and 

heat are commented in this section.  

Bridgwater et al (2002) compares different methods for power production in EfW 

systems. In this paper, conclusions suggest that the electricity production costs 

converge at the larger scale with the average electricity price paid in the EU. 

Therefore, there is potential for selling electricity directly to large consumers. 

Furthermore, this paper suggests the following situations in which profitability can 

be increased: 

 

- Selection of areas where electricity local price is higher than average 
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- Selection of situations where waste feedstocks can attract a gate fee rather than a 

cost 

- Selection of areas where there is a potential for co-production of speciality 

chemicals 

- Sale of excess char 

 

Previous experience resulting from the direct contact with this industry has shown 

that it is possible to locate areas where local price of electricity is higher than 

average but this will not necessarily drive the selection of a location to implement an 

EfW system. Furthermore, EfW systems fuelled by MSW derived fuels do not have 

the scope to attract significant gate fees instead this has fuel has been shown to 

operate with technical limitations. Vanreppelen et al (2011) investigates the 

feasibility of melamine formaldehyde resins (MF) and particle board (PB) in the 

production of activated carbon. Results show that the production of carbon at lower 

costs is associated to large manufacturers. By doubling the input rate by 2 tonnes per 

hour a significant reduction of 24% on selling price is achieved. This paper 

establishes a link between plant size and product cost.  

In Wood (2011) a techno-economic model is employed and scenario analysis was 

performed to ascertain the feasibility of BCHP. Results show that there is little 

variation in electricity break even selling price. The study further concludes that 

generally smaller systems are less profitable than larger systems. These findings are 

relevant to the research developed because they describe feasibility parameters for 

small-scale systems. In particular, the fact that a continuous operation is more 

favourable reflects the negative impact of breakdown or maintenance time on the 
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system’s economic feasibility. As on-site direct sale of electricity and heat are 

feasible this shows that grid-connections scenarios affect economic feasibility. 

In Mcllveen-Wright (2013) an assessment of electricity generation potential of MSW 

in Lagos, Nigeria is made. The model developed is based on the evaluation of BESP 

(break-even electricity selling price) and this variable is analysed against gate fee. 

The BESP for 50 MWe is £9.57 £/ MWh for a 15 years repayment period and gate 

fee set a £50/tonne. Results suggest that a decrease in load factor impacts on BESP 

(Best electricity selling price). If capital costs are higher than 50% of load factor than 

it would not be possible to generate electricity at £39.5/MWh (current market price 

in Nigeria). The technology is still viable at a maximum 25% above base case capital 

costs. The results show the parameters within which the technology operates. 

6. Capital cost 

Capital cost – or investment cost – is the amount invested at the start of a project to 

cover for the cost of the technology.  

Wood (2011) investigates the feasibility of BCHP (Biomass fuelled CHP) systems. 

The paper identifies that small-scale BCHP systems can be economically viable 

when an attractive method of generating electricity and heat is applied. It also shows 

that these technologies can be viable without capital grant incentives when cost 

effective fuels are used.  

Dael (2012) makes a comparison between biomass conversion systems. The systems 

evaluated are digestion of the organic fraction of municipal solid waste, co-digestion 

of manure and co-substrates and integration. This paper establishes a connection 

between pre-treatment and investment costs. According to this author the costs of 

pre-treatment have a greater impact on NPV (net present value).  
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Two key aspects are identifies in these papers. Firstly, the use of cost effective fuels 

and an attractive method for electricity generation contribute to a small scale 

system’s feasibility. Secondly, the use of pre-treatment technologies has a negative 

impact on NPV which reflects the extra resources necessary to implement this 

technology in a system.  

7. Techno-economic models 

This chapter aimed at establishing key elements driving the analysis on EfW. In 

order to identify these factors a literature review including research papers developed 

in the area of waste management and economic analysis was performed. The 

information gathered from these papers shows that the preferred method to 

investigate economic feasibility is to create an economic model where information 

on chemical and physical properties on the type of waste investigated is included. 

Some economic model methods include Eclipse, Aspen Plus (Haro 2013), syncity 

(synthetic city) approach (Kostantinidis 2010) and the application of the Monte 

Carlo method through sensitivity and scenario analysis (Yassin, L. 2009). The main 

variables investigates in this model are electricity and heat selling price, capital cost, 

impact of legislation and running costs.  

Further to the variables analysed in the material investigated it was found that 

calorific value, moisture content and tonnages also have an important role 

influencing the feasibility parameters of EfW technologies. Direct contact with this 

industry showed that these factors influence the technical performance of the 

technology and, therefore, have a serious impact on feasibility. 

Over the next chapters a techno-economic model will be described and scenario 

analysis will be applied. The model will be based on the chemical and physical 
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properties found in the waste streams investigated. Scenario analysis will include 

variation in chemical and physical content, changes to legislation impacting upon 

EfW operation and changes to operating periods in the facility.  

8. Conclusions  

In this chapter the factors driving EfW analysis were presented. Firstly, it has been 

shown that the negative impact of waste disposal methods such as landfill and 

growing carbon dioxide production prompted governments on a world scale to issue 

legislation that would prevent and control activities with an environmental impact. 

As a result of steps taken, thermal treatment became an important waste disposal 

method. This method can be divided into the following categories: incineration, 

gasification and pyrolysis. These waste disposal methods require strict planning 

procedures that involve the Environment Agency and Local authority. In the UK, the 

majority of these facilities tend to be scaled above 100 000 tonnes per year and is 

located around major urban areas. The main political directives affecting these 

technologies are the Waste Strategy 2007, the Waste Policy Review and the Waste 

Incineration Directive (WID). ROCs (renewable obligation certificate) were 

introduced in order to encourage investment in advanced thermal treatment.  

In order to analyse EfW technologies it is necessary to investigate both technical 

aspects and economic aspects. Thus, techno-economic analysis is fundamental in this 

study.   

 

 

 

 



 

 

 

36 

 

 

 

 

Case study 
area (CSA) 

and fuel 
analysis 

description 
 

 

 

 



 

 

 

37 

3.1 Background 

As described in the introductory chapter of this thesis, the aim of this study is to 

firstly establish the constraints behind the implementation of small-scale thermal 

treatment facilities and, secondly, to determine the parameters within which such 

an operation is economically feasible. 

In order to understand the variables that affect a thermal treatment system, a 

techno-economic model was constructed. This method allows for an analysis of 

both the technological and economic factors impacting upon a system and the 

relationship between them. The techno-economic model was constructed through 

the use of an excel spreadsheet in which are included details of the EfW 

operation, electricity generation, waste composition and capital investment. In 

order to investigate the research question set in the introductory chapter of this 

thesis a case-study area (CSA) was selected. This will allow for the analysis of a 

real-life situation offering more accurate conclusions. A series of scenarios will 

be analysed in a techno-economic model in order to establish the sensitivity of 

the parameters analysed. These scenarios will cover a range of situations 

affecting waste composition, calorific value and moisture content of fuel and 

legislation changes. 

The next section is dedicated to the description of the CSA, including 

characteristics of the environment where it is located and explanation of the 

activity that takes place in the business, including the waste streams processed 

onsite and its physical characteristics (moisture content and calorific value). The 

next chapter defines the techno-economic model which is constructed based on 

literature review  and fed with CSA data to provide output based on small scale 

activities. Having established the methodology for the techno-economic model, a 
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group of scenarios will be presented. The techno-economic model analyses these 

scenarios which incorporate real-life situations into this study given that the 

background data is from an operating recycling facility. The results of which are 

then discussed in chapter 5 of this thesis.  

 

3.2 Case-study area  

The case-study area (CSA) is the area of activity of LAS Recycling Ltd which 

encompasses a 30-mile radius from Lampeter. Figure 1 shows the location of 

Lampeter in mid-Wales. Within this area, household waste (HW) and co-mingled 

recycling waste (CRW) collections take place every week (Owen, 2008). 

Household waste is also referred to as general waste and it is composed by a 

mixture of materials such as plastic and paper but shows great levels of 

contamination from biodegradable sources. Co-mingled recycled waste is 

composed by recyclates namely plastic, paper and metals. This stream tends to 

present little contamination from biodegradable sources. Table 3 represents the 

residues resulting from these waste streams. 

Although LAS Recycling Ltd operates with other types of waste streams, 

household and recycling wastes are the focus of this research. These ancillary 

activities, accounting for about 20% of the overall activity, will have a reduced 

impact upon a potential thermal treatment system because they account for a 

smaller quantity of the total waste processed onsite. The total area of activity 

includes part of the County of Ceredigion, Powys and Carmarthenshire. The 

main economic activities in the area are the production of meat and agricultural 
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products. The industrial activity is concentrated in small industrial areas in the 

following locations: Felinfach, Lampeter and Aberaeron.  

 

      

Figure 11. Map indicating the location of the case-study area. Ordnance survey, 

Getamap, 2014  

 

The CSA includes a Materials recovery facility (MRF) that processes 20 000 tonnes 

per annum of co-mingled recycled waste and household waste. A MRF is a 

separation system that aims at segregating certain types of material from a waste 

stream. It is primarily used to separate recyclates from a waste stream. The MRF at 

the CSA will be described in greater detail over the next section.  

3.2.1 Materials recovery facility (MRF) 

Figure 2 represents the process that takes place at the MRF on the CSA. The two 

waste streams collected (HW and CRW) are processed separately in the MRF and, 

therefore, there are two sets of the residues identified in the diagram: trommel and 

ballistic separator residues and end-of-belt residue.  



 

 

 

40 

 

Figure 12. Diagramatic representation of the Materials recovery facility at the 

CSA 

 

At the beginning of the process, the bags containing the waste go into a bag splitter 

allowing the waste to be processed in stream. After this stage an operator will 

manually remove bulky items or large pieces of fabric as these are likely to cause 

damage or prevent the mechanisms in the process to work normally.  
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After the initial stage, the waste passes through a trommel and a ballistic separator. 

In these components, small particles (under 5 cm) are removed from the waste 

stream. These systems operate by agitating the waste in a cylinder which allows 

particles of a certain size to fall through the sieves. The trommel removes three-

dimensional particles, such as plastic bottle tops, whilst the ballistic separator 

removes two-dimensional particles from the waste stream such as paper and card. 

The materials removed fall through to a cage originating two of the three types of 

residue in the process.  

In the next stage of the process the waste goes into a picking line where operators 

remove certain types of material from the waste stream. If household waste is being 

processed, the operators will select from the waste stream any materials that have 

recyclable value such paper or plastic. This type of selection is known as positive 

picking since the material selected is the one that has commercial value. On the 

contrary, if co-mingled recyclate waste is processed then negative picking will be 

used to remove materials that cannot be recycled from the waste stream.  

Finally, the waste goes into an overband magnet and an eddy-current separator 

where metallic materials are removed from the waste stream. After this stage the 

waste reaches the end of the process and it is referred to as end-of-belt residue.  

From the total amount of waste processed in the MRF the residue from the trommel 

account for 2.6% household unsorted waste and 2.2% co-mingled recycled waste, the 

residue resulting from the ballistic separator accounts for 2.8% household unsorted 

waste and 2.2% co-mingled recycled waste and the residue resulting from the end of 

the process – also known as end-of-belt residue – accounts for 4.4% household 

unsorted waste and 5.6% co-mingled recycled waste. 
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The end-of-belt residue resulting from the household waste process does not have 

any further recycling value, it is mainly composed of very fine particles, and it is 

disposed of via landfill. However, the same residue resulting from the process of the 

co-mingled recycled waste has a relatively greater quantity of plastic and paper than 

household waste. The MRF process delivers a greater quantity of household waste 

end-of-belt residue than of co-mingled recycled end-of-belt residue. If on the one 

hand the residue originating from the process of the co-mingled recycled waste is 

more adequate to thermal treatment, on the other hand a lot less of this material is 

processed which results in a lower overall calorific value. This will be further 

discussed over the next sections.  

 

Figure 13. Image of a materials recovery facility. LAS Recycling Ltd. MRF facility 

[online] Available at  [Accessed Accessed on 20th November 2013] 

 

In the CSA, the residue resulting from the MRF process is aimed at being disposed 

of through thermal treatment processes. As described in chapter 1, in order to 

establish the feasibility of thermal treatment systems it is important to select a fuel 

with adequate moisture content and calorific value and composition. The next 

Trommel 

Ballistic 

separator 
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sections describe the methodology undertaken to establish waste composition, 

moisture content and calorific value.  

 

3.2.2 Waste characterisation results 

The following table represents the waste streams analysed in the waste 

characterisation and its relationship to the MRF components. As mentioned at the 

beginning of this chapter household unsorted waste presents great levels of 

contamination from biodegradable sources for example expired foods and nappies. 

As this stream is processed through the MRF the following three residues originate 

from the process: trommel fines, ballistic separator fines and end-of-belt residue. The 

trommel fines tend to be small particles of plastic, paper or metal for example bottle 

tops. The co-mingled recycled waste tends to be composed of materials that are 

destined for recycling. 

 

Table 3. The resulting six residues from the MRF process 

 

 Trommel  Ballistic separator  End-of-belt  

Household unsorted 

waste 
Household unsorted 

trommel residue 

Household unsorted 

ballistic separator 

residue 

Household unsorted 

end-of-belt residue 

Co-mingled recycled 

waste 

Co-mingled recycled 

trommel residue 

Co-mingled recycled 

ballistic separator 

residue 

Co-mingled 

recycled end-of-belt 

residue 

 

Each of these residues was analysed to determine moisture content, calorific value 

and composition. The results of these tests will be presented below and discussed 

over the next section. Moisture content and calorific value were determined 

accordingly to BS EN 14774-3:2009 and BS EN 14918:2009 respectively. 
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The waste characterisation, which took place before calorific value and moisture 

content analysis, separated the waste into the following categories: 

 

- Paper 

- Plastic 

- Metal 

- Glass 

- Organic matter 

- Miscellaneous materials 

 

The category above described as organic matter is composed mainly of food and 

vegetation. The miscellaneous category describes waste materials such as textiles 

and those that are contaminated such as nappies and cat litter.  

Samples of each of these categories were analysed in order to establish moisture 

content and calorific value of the waste. Each of these tests were performed in the 

summer and repeated over winter to determine variance with seasonality (Feo and 

Malvana, 2012). Ash content analysis was excluded from these tests as this material 

is not reactive during thermal processing these materials are also referred to as inerts 

and are subject to a different tax rate as they are considered to have less of an effect 

environmentally. 
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3.2.2.1 Moisture content results 

Table 4: Household unsorted residue 

 

 

Moisture content results are presented in tables 4 (Household unsorted residues) and 

5 (co-mingled recycled residues). In each table a comparison between summer and 

winter results is presented in order to establish the effect of seasonality. In table 4 

results show that there is an overall increase in moisture content in the winter. This 

results from the presence of organic matter and miscellaneous categories. Plastic and 

paper categories show little variance with seasonality. The co-mingled recycled 

stream reveals a greater increase in moisture content. 
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Table 5: Co-mingled recycled residue 

 

 

Results show that household unsorted trommel residue there is an increase in 

moisture content in the winter except for a drop in the plastic stream. In the 

household unsorted ballistic separator stream there is a drop in moisture content in 

the plastic and paper categories but an increase in the organic matter and 

miscellaneous categories. In the household unsorted end-of-belt residue there is a 

drop in moisture content in plastic and paper categories and an increase in the 

organic matter and miscellaneous categories. In the co-mingled recycled residue 

stream, an increase is registered in the trommel and ballistic separator streams across 

all categories. in the end-of-belt stream there is an increase in the plastic category 

and a slight drop in the paper and miscellaneous categories. 
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3.2.2.2 Calorific value as received (Ar) results 

Table 6: Household unsorted residue 

 

 

Results of calorific value as received (Ar) are presented in tables 6 (household 

unsorted residues) and 7 (co-mingled recycled residues). These tables establish a 

comparison between summer and winter results showing the impact of seasonality 

on calorific value. Summer values show that there is an increase in calorific value 

over the winter months in the household unsorted waste stream. In the co-mingled 

recycled waste there is a slight drop in calorific value. In the household unsorted 

residue an increase in calorific value (Ar) is registered in the winter across all 

streams and categories with the exception of the organic matter category in the 

trommel stream. 
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Table 7: Co-mingled recycled residue  

 

3.2.2.3 Calorific value dry-basis results 

Table 8: Household unsorted residue 

 

Results of calorific value on a dry-basis are presented in tables 8 (household 

unsorted residues) and 9 (co-mingled recycled residues). These tables show a 
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comparison between summer and winter values. Results show that there is an 

increase in calorific value in the winter months. An increase in calorific value on a 

dry-basis is registered in the winter months on both household unsorted and co-

mingled recycled residue.  

 

Table 9: Co-mingled recycled residue 
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3.2.2.4 Waste composition 

Table 10: Household unsorted residue 

 

 

Results of variance in tonnages are shown in tables 10 (household unsorted residue) 

and 11 (co-mingled recycled residue). These results show an increase in tonnages in 

the winter. The greatest increase is associated with co-mingled recycled residue. 

Household unsorted trommel residue registers a drop in tonnages in the winter 

months in plastic, paper, metal and organic matter categories. The glass and 

miscellaneous categories register an increase in winter months. In the ballistic 

separator stream there is an increase in plastic, metal and miscellaneous categories 

whilst there is a drop in the paper, glass and organic matter categories. The end-of-

belt residue shows an increase in tonnages in the winter months except for the paper 

category. The co-mingled recycled trommel category shows an increase compared to 

summer months. The same tendency appears in the ballistic separator stream. The 

end-of-belt residue shows a drop in tonnages across all categories except for metal 

and glass. 
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Table 11: Co-mingled recycled residue 
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4. Discussion 

Although there is no real consensus in the industry as to what should constitute a 

waste derived fuel, it is generally accepted that the CV and moisture content will 

greatly influence the performance of EfW systems. Absolute minimum threshold CV 

values are available from EfW manufacturers, but these will differ based on the 

individual EfW system. Given the properties of the materials under consideration in 

tables 4 to 11 there are three potential options to raise the CV of the resulting EfW 

feedstock to above a typical threshold of 10 MJ/kg. These are: 

 Option 1: To reduce the moisture content of the overall mix in order to increase 

the CV. 

 Option 2: To add an external component with a higher CV to the mixture and 

hence raise the resultant average CV. 

 Option 3: To remove some of the low CV components in the mixture, hence 

raising the concentration of high CV components. 

Option 1 (partial drying) requires the use of an industrial dryer system to reduce the 

moisture content of the waste and promote CV to the threshold value.  This will 

result in higher net project costs and a reduction in overall process energy efficiency, 

since thermal energy will most likely have to be purchased in order to dry the 

materials.  The key advantage of this option is that the processed material will to 

some extent be homogenised (i.e. a high proportion of the EfW feedstock will be at 

the threshold CV), resulting in a more consistent operation of the EfW plant. 

Option 2 (blending with a high CV component) requires the addition of a third-party 

waste stream with a higher CV. An example of this could be automobile tyres or low 

value and non-recyclable plastics. The main advantage to this approach would be the 
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comparative simplicity of blending, compared to the expense of a drying process. 

This option does increase risk to the project, since the supply of the high CV 

component must be reliable and consistent, to ensure a constant, secure supply of 

EfW plant feed, above the threshold CV. 

Option 3 (removal of low CV components) requires further sorting in a MRF-type 

operation. Whilst this option eliminates the risk of procuring either a dryer or high 

CV feedstocks, it poses a number of risks in terms of plant operation. It may (for 

example) be difficult training staff in the removal of low-CV components, ensuring 

the consistent operation of facility. There will also be a disposal problem for the 

rejected component, since this rejected material will not be suitable for EfW systems. 

 

 

Figure 14: Graph of CV with moisture content for a variety of comparatively low 

CV fuels. Also included in the graph is the 10MJ/kg threshold suggested 

by the author’s discussions with technology providers. (Marsh et al, 2008) 
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Table 12 shows the amount of additional dry material required per original kg of 

waste component (as received) in order to raise the original material CV to the 

10MJ/kg threshold CV. Two materials were chosen as the fuel enhancer, based on 

experience and likely waste streams within the proximity of the test site; these were 

waste tyres and non-recyclable plastic. It was assumed that these materials would be 

available dry, and hence their dry CVs were used in the evaluation. CVs of 30 and 40 

MJ/kg were used for tyres and plastic respectively. 

 

Table 12: Mass of enhancement component to upgrade CV to 10MJ/kg required per 

kg of original component. [Based on CV of tyres 30MJ/kg; dry plastic 

40MJ/kg; n/a indicates component is above 10MJ/kg as received and does 

not require additional material.] 

 

Component  Amount of tyres 

(kg per kg of component) 

Amount of dry plastic 

(kg per kg of component) 

 

Co-mingled 

recycled 

waste 

Residue 0.05 0.04 

Fines (Trommel) n/a n/a 

Fines (ballistic 

separator) 

n/a n/a 

 

Household 

unsorted 

waste 

Residue 0.27 0.18 

Fines (Trommel) 0.35 0.23 

Fines (Ballistic 

separator) 

0.28 0.19 
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Table 13 shows the projected revenue obtained through the sale of electricity and 

heat based on typical generating efficiencies of 25% for heat and electricity. To 

improve clarity, Figure 15 provides a schematic representation of how the total 

potential energy from the approximately 20 000 tonnes of waste would be converted 

into saleable heat and electricity, with an estimation of the income from these 

streams. The sale price of electricity has been modelled at £0.10 £/kWh and heat at 

£0.2 £/kW. This information was obtained from representatives of the industry and 

are generic values for electricity and heat sale. For the purpose of this study it was 

assumed that a heat customer would be located in the vicinity of the EfW plant and 

therefore, there was no requirement for grid connection. The sale of electricity and 

heat resulting from an EfW plant is subject to demand of energy. Furthermore, it is 

important to consider the potential revenue from sale of energy versus the cost of 

implementing the necessary structures such as grid connection. 
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Table 13. Potential, electrical and heat energy available from the thermal treatment of waste for the operating scenario considered, 

with estimated income from the sale of electricity and heat. Values are calculated for 1 year of continuous operation. 

 Waste 

   

Mass of waste 

 

Calorific 

Value  

Potential 

Energy 

Potential 

Energy 

Electrical 

Energy 

Electrical 

Energy  

Thermal 

Energy 

Thermal 

Energy  

    Tonnes  GJ/tonne GJ kWh kWh Income £ kWh Income £ 

Household 

unsorted 

waste 

Residue 14,751 12.5 184,535 5.13 × 107 1.28 × 107 3.20 × 106 1.28 × 107 2.56 × 105 

Trommel 2,921 7.9 23,047 6.40 × 106 1.60 × 106 4.00 × 105 1.60 × 106 3.20 × 104 

Ballistic separator 974 7.7 7,451 2.07 × 106 5.17 × 105 1.29 × 105 5.17 × 105 1.03 × 104 

Co-

mingled 

recycled 

waste 

Residue 1,127 23.5 26,530 7.37 × 106 1.84 × 106 4.61 × 105 1.84 × 106 3.68 × 104 

Trommel 100 8.9 885 2.46 × 105 6.15 × 104 1.54 × 104 6.15 × 104 1.23 × 103 

Ballistic separator 33 10.4 343 9.53 × 104 2.38 × 104 5.96 × 103 2.38 × 104 4.77 × 102 

Total    19,906   242,791     4.22 × 106   0.34 × 106 
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Figure 15. Schematic representation of the distribution of electricity and heat originated from a total of 19,906 tonnes of waste per year. 
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19,906 T/year  
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ηheat =  25% 
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5. Conclusions 

This chapter described the waste available at the case-study area providing 

information on moisture content, calorific value on a as received and dry basis and 

waste composition.  

From the information in tables 4 to 11 it is possible to conclude that the higher 

calorific value waste is found in the co-mingled waste stream. However this type 

of waste is available in less quantity than household waste. This situation impacts 

on the performance of EfW systems and therefore options for calorific value 

manipulation were provided. The effects of varying the properties of the waste 

streams are further analysed in chapter 5.   
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4.1 Introduction 

This chapter describes the methodology of the techno-economic model. The 

model is organised in different sections namely costs, operation, capital 

investment and energy production. The model is constructed on an excel 

spreadsheet and each section is represented by a table (Patel, 2011). There is a 

separate tab for waste composition and capital cost and then for each of the ten 

scenarios considered in the scenario analysis. 

Capital cost tab includes repayment period calculations and it is linked to the 

waste composition tab. The capital cost tab also establishes the link between 

calorific value and moisture content of the waste and repayment period.  

The waste composition values are fed into the running and operating costs table. 

The resulting value from this table is then fed into the energy production table. 

Finally, the results of these tabs are used in a separate sheet for capital 

investment cost calculations.  

A base case scenario will be used to describe a nominal situation in the case-

study area. In order to establish the feasibility of the variables involved, a 

scenario analysis approach was taken. This method is commonly used when it is 

important to establish the parameters within which these variables occur (Arena, 

2010).  

The model initially presents the base case scenario which includes the waste 

available and its potential for energy production (which is calculated from 

variables such as calorific value). Scenario analysis include an estimation of the 

potential energy from the waste available and the revenue it can generate through 

the sale of electricity and heat. Waste composition, capital investment and 

operation are also considered in the scenario analysis. In the model, a theoretical 
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situation was evaluated in which the thermal treatment technology is 

incorporated in an existing MRF-type operation where EfW is being added as an 

enhancement to the current capability and thus it does not take into account 

transport costs from the point of origin of the waste to the point of energy 

production. In this particular situation the transport costs value would be null, 

since waste collection and delivery would be provided by the customer.  

4.2 Overall structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Structure of techno-economic model 
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The costs of setting up a network through which the electricity and heat could be 

transmitted onto to other areas were not considered because it was assumed that 

the end customer would be in the same area where energy production is taking 

place. To clarify it is assumed in the techno-economic model that the EfW 

facility would be integrated in the MRF and that the end customer, typically, a 

manufacturing process that would consume energy on a permanent basis. 

Figure 1 reflects the calculations in the techno-economic model. These 

calculations are divided into three stages. Firstly, calorific value, moisture 

content and total tonnages are calculated in the waste composition table. This 

table includes a separate row for each household and recycling waste stream 

namely trommel fines, ballistic separator fines and end-of-belt residue totalling 

six waste streams (see Chapter 3 for more detail). The characteristics included in 

the table are moisture content, calorific value and tonnages. These are 

discriminated in its monthly and annual values and include totals for both 

variables considered. Secondly, these values are incorporated in the energy 

production table which includes total calorific value, total tonnages, efficiency 

factor, selling price per unit of heat and electricity, total available energy, units 

produced and revenue per year. These values include a separate row for 

electricity and heat calculations but the resulting values feed into a separate 

section on this tab that calculates energy revenue per year, gate fee revenue per 

year, disposal costs and total revenue per year. These values are then fed into the 

capital cost calculation tab and are crucial in determining economic feasibility. In 

more detail, this table’s output is the total available energy which is result of the 

multiplication between the efficiency factor and the available energy. Revenue 

from energy sale is the result of the selling price multiplied by units produced.  
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Thirdly, the revenue from energy sale is fed into the capital cost calculations tab. 

This tab establishes a link between calorific value, moisture content and total 

repayment period, which is the number of years necessary to repay the 

investment.  

 

4.3 Capital investment 

Capital investment is the total amount of funds necessary to start an industrial 

project (DEFRA, 2012). This value accounts for the total amount borrowed plus 

interest rate. Interest rates vary with the type of loan available and the risk 

involved in the project. Traditionally EfW projects attract high risk, which is then 

reflected onto interest rates, because this is still considered an untested 

technology which is very sensitive to fluctuations in chemical and physical 

composition. Furthermore, there is a lack of pilot facilities that could assist by 

assessing technical performance. 

 In this section, the variables associated to capital investment, which are present 

in the economic model, are described.  

The capital borrowed (A) is the total amount financed through a loan, including 

interest rates. The principal amount (P), also known as initial investment, is the 

actual amount available for developing a project. The nominal rate (r) is the 

interest rate applied to a loan. Compound interest means that each year the 

interest is added to the principal amount. The symbol t expresses the length of 

the loan in years. 

In the economic model, the capital repayment section produces a calculation of 

profit after repayment. This is the result of the total revenue per year excluding 



 

 

 

64 

the total repayment per year. This value is used to establish the relationship 

between waste calorific value and number of years necessary to repay the capital 

investment. These values will be varied in the scenario analysis and the results of 

this will be presented over the next chapter. Investment analysis will also be 

presented in the next chapter and will include net present value (NPV) and 

internal rate of return (IRR) analysis.  

 

4.4 Cost 

In order to construct the techno-economic model it was necessary to define some 

costs relating to human resources and production costs. These are shown in Table 

14. The values used in this table were obtained from communications with EfW 

operators and based on an estimate from the expected waste tonnages. It is 

expected that the MRF will operate as an associated activity to the EfW 

operation and therefore it is necessary to maintain the same number of operators. 

 

Table 14. Running costs of facility including labour and disposal costs.  

Labour   

Operators £49 £/day 

Disposal  

Landfill costs £70 £/tonne 

Transport £30 £/tonne 

Gate fee £73 £/tonne 
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For the purpose of building the techno-economic model it is assumed that the 

EfW facility would be included in the MRF process. This means that the MRF 

operators could be trained to operate the EfW facility and thus are included in the 

same process. Based on the estimation of waste tonnages processed on site it is 

expected that the EfW operation would require 7 operators totalling 14 operators 

over a two-period shift (Villanueva Perales, 2011). Landfill costs include gate fee 

and transport cost and are estimated to be about £70 per tonne. (Let’s recycle).  

4.5 Operation 

In order to establish a techno-economic model it was necessary to fix factors 

such as days of operation per year, number of workers, tonnes processed in a day 

and cost of transportation. In this situation it was established that the thermal 

treatment facility would require two operators working full-time over 5 days a 

week for a period of 260 days per year taking into account periods of 

maintenance. The number of tonnes processed per year was considered to be 

about 20 000 tonnes.  

Table 15. Operation period  

Tonnes processed p/day 125 tonnes  

MRF   

Workers 7 

Period  

Days of operation p/week 5 

Days of operation p/year 260 

Transport p/tonne £30 £/tonne 
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4.6 Energy production 

In the energy production table (Table 16) the revenue per year is calculated 

through a series of fixed factors. This table translates the energy produced into an 

economic context providing a figure for revenue per year. This figure will then 

be used to calculate the feasibility of the scenarios analysed. This value was 

calculated in three steps: 

 

Available energy calculation 

 Available e = Total calorific value  × Total tonnes   [J] 

Total available energy calculation 

Total available energy = (Available e × efficiency) × conversion factor [J] 

Revenue p/year = total available energy × selling price per unit J [£ per year] 

 

The energy production table reflects the energy that can be generated as 

electricity or heat from the thermal processing of the resulting residues of the 

MRF process. The figures for total calorific value and tonnages are taken from 

the waste composition table.  

Efficiency was assumed to be 25% of all energy produced for each calculation 

(electricity and heat). The selling price per unit of energy was considered to be 

£0.03 for kWh electricity and £0.02 kWh heat. The total revenue per year is the 

sum of the revenue resulting from the sale of electricity and heat and the revenue 

resulting from gate fee charges excluding ash disposal costs. Ash disposal 

accounts for the disposal of the residue which results from thermal treatment 

processes. For ash content calculation see figure 16. The ash disposal value is 

calculated in the waste composition table. The values described in this section 
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are nominal figures. These variables were varied in the scenario analysis in order 

to reflect sensitivity of the parameters described. Waste characterisation 

calculations provide a total for calorific value content and tonnages across all 

waste streams processed in the MRF. 

These values were included in Table 16 and combined to calculate total available 

energy. 

 

Table 16. Energy production of electricity and heat based on calorific value of 

waste available 

 

ENERGY PRODUCTION Electricity  Heat 

Total CV 9.54 MJ/kg 9.54 MJ/kg 

Total Tonnes 19824 T 19824 T 

Efficiency 0.25 0.25 

Conversion factor (to joules) 278 278 

Selling price p/unit £0.03 £0.02 

Available energy 189127 189127 

T available energy 47281 47281 

Units produced 13144384 13144384 

Revenue p/year £394,331 £262,887 

      

Energy revenue p/year £657,219   

Gate fee revenue p/year £1,447,204   

Disposal costs (ash disposal) £44,566   

Total revenue p/year £2,059,857   

 

As described in previous sections the values above are fed from the waste 

composition table (calorific value and total tonnages). The calculations in this 

table are shown in Figure 15. The output of this table is the total revenue per year 

and it results from gate fee revenue and disposal costs. The total revenue per year 

was then fed into the capital investment table.  

Table 3 presents separate values for electricity and heat production although 

energy production is expected to be the same. Electricity and heat are charged at 
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different rates and this is reflected in the table. Consequently the revenue 

resulting from electricity is higher than heat energy revenue.  

4.7 Waste composition 

Calorific value, moisture content and ash content tests were applied to the six 

resulting residues from the MRF process. The results were combined in order to 

produce a representative estimate of all the residues processed. This calculation 

was necessary to estimate the overall energy production. Calorific value, 

moisture content and ash content were calculated both in the summer and the 

winter to reflect the effect of seasonality. The data collected from the CSA 

reflected monthly values for disposal costs and tonnages received on site, 

therefore monthly values were estimated. These values contribute to calculate 

total energy produced on a monthly basis. Calorific value and moisture content 

were determined using the methods established in BS EN 14918: 2009 and BS 

EN 14774 – 3: 2009. The output of the waste composition table is the average 

calorific value of the six residues.
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Figure 16. Screenshot of the techno-economic model (excel spreadsheet) 
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5.1 Introduction  

The results of the scenario analysis are presented and discussed in this chapter. 

The scenario analysis includes ten situations which will be used to establish 

feasibility parameters in the model. These scenarios reflect situations that are 

likely to occur in the economic and legislative context. The results of these 

situations were discussed based on its technical and economic effects on capital 

cost repayment period. This factor was used to measure the feasibility of the 

system. A maximum 10 year repayment period was selected as the point at which 

the facility was most likely to breakdown. Therefore, a scenario that would result 

in a repayment period longer than 10 years was deemed unfeasible. An 

investment analysis considering NPV and IRR is also included in this chapter. 

The conclusions of this exercise will establish the risk involved in EfW 

investments.  
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Scenario 1 

In scenario 1 the impact of an increase in plastic and paper recycling is 

investigated. An increase in recycling in these particular waste streams results in 

an overall reduction of these materials in the waste streams resulting from the 

MRF operation, to be exact, end of belt residue and trommel and ballistic 

separator fines. In this scenario waste reduction is analysed in increments. The 

reduction in recycling results in an overall reduction in waste tonnages. 

Therefore, higher recycling reductions result in overall waste tonnage reduction. 

This scenario is justified by the rising tendency in recycling targets set by 

European legislation in recent years which is expected to continue over future 

years. 

In order to investigate the impact of a potential increase in recycling plastic and 

paper a two-step approach was taken. Firstly, a reduction factor of 25% 

(equivalent to recycling waste reduction of 1000 kg), 50% (equivalent to 

recycling waste reduction of 1500 kg) and 75% (equivalent to recycling waste 

reduction of 2000 kg) was applied to plastic and paper across all waste streams. 

Secondly, the resulting CV was then applied to the total revenue calculation for 

each reduction factor. Results show that there is a pronounced drop in CV 

associated to a reduction factor of 75% in plastic and paper as shown in Figure 

17.  
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Figure 17. The effect of plastic and paper reduction on CV (MJ/kg) 

 

These results were then applied to the repayment period calculation (see Table 

18) which reveals that even with an abrupt drop in CV the EfW system is still 

economically feasible. This is evaluated through the capital cost repayment 

period. The project is still viable since its resulting values are still within a 10 

year maximum period which is considered by industry experts as the maximum 

longevity period for an EfW facility. 
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Figure 18. The effect of reducing plastic and paper on the repayment period 

 

Figure 18 shows that the increase in plastic and paper reduction impacts on the 

repayment period. It is important to note that the tonnage reduction in the 

recyclates stream does not cause a serious impact on the feasibility of the project. 

These results show that at a small scale, the most important aspect in feasibility 

of EfW systems is waste reduction rather energy production.  

A drop in CV seriously impacts upon technical performance but the overall effect 

on economic performance is minimal. However, the removal of plastic and paper 

would result in a potential delay of 2 years in capital cost repayment. 
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Scenario 2 

In scenario 2 a reduction in overall waste tonnages is investigated. Effectively 

this scenario investigates the impact of running the facility at different waste 

tonnages. This scenario is likely to occur on a temporary basis when for instance 

technical maintenance is required.  

In order to investigate the impact of this variation in operation an approach of 

reduction steps of 10% was taken. The initial step of 0% corresponds to the 

nominal situation and reflects a repayment period of 8.7 years. The next step of 

10% reflects a situation at which the facility is operating 90% of the tonnages it 

was projected to process and so on. 

A 100% reduction factor would correspond to no waste being processed in the 

facility which would result in the total operation shutting down and thus it is not 

considered in this study.  

 

Figure 19. Effect of waste tonnages reduction on capital cost repayment period 
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Figure 19 shows that a reduction from about 20% on overall waste tonnages 

received on site the capital cost could not be repaid within the 10 year target. 

This conclusion reinforces the importance of the EfW system as a waste 

treatment process rather than an energy production system as discussed in 

chapter 1. 

Scenario 3 

Scenario 3 investigates the impact of increased moisture content on the calorific 

value of the overall waste stream. As discussed in Chapters 1 and 2 calorific 

value drops with increasing moisture content. This situation can be temporary 

when associated to seasonality. Waste characterisation exercises show that 

moisture content increases in the winter as it is associated to higher pluviosity. 

Figure 20 shows that higher moisture content is associated to lower calorific 

value. The impact of these results on capital cost repayment period is shown on 

Figure 21.  

 

Figure 20. Relationship between increasing moisture content and calorific value 

in the waste streams at LAS recycling  
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Figure 21. Effect of increased moisture content on capital cost repayment period 

(in years) 

 

Figure 21 shows that higher moisture content is associated to a longer repayment 

period. In the case study area overall moisture content higher than 14% would 

result in a repayment period longer than 10 years. 

Scenario 4 

In scenario 4 an alteration to operation period is assessed. In the nominal 

situation the system operates 260 days per year allowing for maintenance and 

breakdown time. 

This scenario evaluates the impact on the capital repayment period of reducing 

the operating period up to 150 days per year. This situation could result, as an 

example, from prolonged failure of the EfW system or unavailability of waste.  
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Figure 22 shows the relationship between days of operation per year and 

resulting revenue. Results show that the operation becomes unfeasible under 152 

days of operation per year according to present values. 

 

Figure 22 shows the relationship between days of operation and resulting 

revenue per year. These results were then applied to the capital cost repayment 

period calculations to establish the impact of the variation of the number of days. 

Figure 23 shows that the less the facility operates per year the less it produces 

and consequently the longer the repayment period becomes. Furthermore, results 

indicate that if the facility operates for less than 200 days per year it becomes 

unfeasible as the repayment period extends beyond 10 years. 
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Figure 23. Repayment period based on days of operation  
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Scenario 5 

Scenario 5 investigates the effects of the facility receiving more waste than what 

it was initially projected to. This situation could result from contractual issues or 

errors in the projection of the facility. An excess of waste tonnages at the facility 

would be reflected on an increase in landfill charges which would have an effect 

on revenue per year.  

An increase in waste tonnages would also result in an increase in overall ash 

content. This material forms a type of end-of-process residue, known as IBAA 

(incineration bottom ash aggregate) which has economic value. Although the 

commercialisation of this product is not yet common practise there is a potential 

for this as a source of revenue alternative to energy sale. 

 FIgure 24. shows the impact of receiving waste above the plant’s maximum 

capacity. If the facility receives more than 27 000 tonnes per year the impact on 

revenue turns the facility unfeasible. 
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Figure 24 shows that if the facility receives more than 27 000 tonnes per year the 

revenue is not sufficient to repay the capital cost over 10 years. These results 

were obtained from the capital cost repayment period calculation.
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Scenario 6 

In this scenario the impact of variation in household waste tonnages is evaluated. 

Household waste accounts for the greatest part of all waste received on site 

(93%) at the case study area. However, this type of waste is the least calorific 

component across waste streams (average calorific value of household waste is 

8.77 MJ/kg whereas unsorted recycling waste has a calorific value of 22.58 

MJ/kg). As household unsorted waste is present in a greater quantity than 

unsorted recycling waste the resulting CV drops to just under 10 MJ/kg. In this 

situation it is beneficial to introduce a calorific value enhancement option to 

ensure values do not drop under 10 MJ/kg. A decrease in household waste 

tonnages is an option that would result in overall higher calorific value (since 

proportionally there would be a greater quantity of recycled waste).  

This scenario aims at establishing the impact caused by reducing household 

waste tonnages which could result from the diversion of part of or the entire 

household component to another company due to contractual issues.  

Figure 25 shows that the reduction of household waste tonnages is associated to 

higher revenue per year.  
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Figure 25. Effect of variation in household waste tonnages on revenue per year 

 

 

Figure 26. Effect of household waste variation on calorific value 

 

Figure 26 shows that the reduction of household waste tonnages results in higher 

calorific value. In the “no household waste” scenario there is a great increase in 

calorific value. As discussed before this reflects that the composition of this type 
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of waste has higher calorific value as it has a great quantity of plastic and paper. 

Figure 26 shows that the reduction of household waste tonnages is associated to a 

faster repayment period.  

From a technical point of view the reduction of this type of waste is associated to 

higher calorific value which results in a better EfW performance. From an 

economic perspective this variation has a siginificant effect on reducing capital 

cost repayment period.  

The effect of completely removing household waste results in a repayment 

period of about 5 years as shown in Table 27. This means that the removal of this 

waste stream would speed up the repayment period reflecting that this type of 

waste has the preferred composition for EfW facilities. This conclusion suggests 

that industrial or commercial wastes which tend to have higher composition of 

plastic and paper are a preferred option for EfW facilities. 

 

 

Figure 27. Effect of waste tonnages reduction on repayment period 

 



 

 

 

85 

Scenario 7 

Scenario 7 investigates the impact of the reduction in calorific value of a specific 

category in the recyclates stream. For a better understanding of this scenario a 

specific case was investigated. In this example, the paper stream in the recyclates 

stream suffers a reduction. The impact of this alteration on overall calorific value 

and, consequently, repayment period, is investigated. This situation could 

originate from a change in the material caused by weather conditions, such as 

paper having higher moisture content during winter months, or by a permanent 

alteration such as the reduction of plastic carrier bags.  

A reduction of 80% was applied to the paper category in the recyclates stream. 

The household waste stream was kept at previous levels resulting in a calorific 

value of 9.39 MJ/kg. This level of reduction resulted in a drop of 3 MJ/kg in the 

unsorted recycled stream. The effect of this reduction does not impact greatly on 

the overall calorific value of the waste.  

 

Nominal situation 
  Winter MJ/kg Summer MJ/kg 

Household unsorted waste  

EOBR 12.71 EOBR 6.64 

T 7.64 T 3.08 

BS 7.4 BS 2.64 

        

Unsorted Recycled waste  

EOBR 23.55 EOBR 23.51 

T 10.96 T 11.68 

BS 12.13 BS 11.79 

 

Figure 28. Nominal situation (Excel exercise example) 
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Drop in CV (recyclates stream) 
 Winter MJ/kg Summer MJ/kg 

HUW   HUW   

EOBR 12.71 EOBR 6.64 

T 7.64 T 3.08 

BS 7.4 BS 2.64 

        

RCW   RCW   

EOBR 20.33 EOBR 19.81 

T 1.55 T 4.76 

BS 3.83 BS 1.32 

 

Figure 29. Drop in calorific value in the recyclates waste stream whilst unsorted 

household waste stream remains unaffected  

 

The variation of calorific value in the recyclates stream has little effect on the 

overall calorific value as shown in Figures 28 and 29. 

These results confirm the overriding effect of the unsorted household waste 

properties. From both a technical and economic perspective there is little impact 

from the variation of properties in the recyclates stream. 
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Scenario 8 

In scenario 8 the impact of landfill cost variation is evaluated. In the nominal 

situation ash resulting from the EfW operation is disposed of via landfill. 

Alternatives to landfill disposal of incinerator ash such applications in 

construction are only available limitedly. Therefore, landfill costs still have a 

significant impact on an EfW facility economics. In the nominal situation, 

landfill costs were set to £100 per tonne. Alterations to this rate might result from 

legislative changes. 

 

Figure 30. shows the relationship between landfill cost and repayment period 

 

Figure 30 shows that a drop in landfill cost (£/tonne) is accompanied by a lower 

repayment period. Consequently it is possible to conclude that the higher the 

disposal cost the longer it takes to repay capital cost. Furthermore, the graph in 

figure 30 shows that the repayment period is affected by steps of about 20 

£/tonne.   
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Scenario 9 

The impact of the variation of the selling price of heat is evaluated in scenario 9. 

The revenue of the EfW facility originates from the sale of electricity and heat 

which vary in selling price. For the purpose of this investigation the selling price 

of electricity has been estimated in £0.03 per unit and heat selling price at a rate 

of £0.02 per unit. This scenario may occur as the result of market fluctuations. 

To calculate the impact of the oscillation of heat selling price on capital 

repayment five values were applied to the repayment period calculations. Results 

of this are shown in Figure 31 and reflect the increase in repayment period as 

heat selling price drops. 

 

Figure31. The effect of heat sales on repayment period 

 

A reduction in heat sales would originate a higher repayment period. In this 

scenario a drop in heat sales in the order of 25% of the original price was 

evaluated. Within the margins evaluated there is a relevant impact on process 

feasibility.  
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Scenario 10 

Scenario 10 investigates the introduction of a drier as a calorific value 

enhancement technique. As discussed previously in chapter 1 and 2 the lower the 

moisture content the higher the calorific value of the waste (Marsh et al, 2008). 

When waste calorific value is found to be consistently low enhancement 

techniques are employed to minimise the impact of this on the EfW operation 

(Lima et al, 2012). The relationship between calorific value and moisture content 

suggests that there is a 1 to 2 MJ/kg increase in calorific value per each 5% drop 

in moisture content. Considering the resulting CV is 9.54 MJ/kg in the nominal 

scenario, an increase of 1 to 2 MJ/kg would enhance the calorific value to the 

region of 11 MJ/kg. The application of these values to capital investment 

calculations show that the introduction of a drier would result in a shorter 

repayment period, as indicated in Figure 32 

 

Figure 32. The relationship between repayment period in years and calorific 

value (MJ/kg) 
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Capital investment calculations, as shown in the graph in Table 32, show that in 

the nominal case scenario, for a calorific value of  9.54 MJ/kg a repayment 

period of 8.7 years is expected whilst for a 11 MJ/kg a shorter repayment period 

of 7.6 years can be expected. The introduction of this technology would result in 

a faster repayment period of between 10% to 15%.  

From a technical point of view the performance of the facility would benefit 

greatly from the implementation of a drier as it would mantain calorific value 

above 10 MJ/kg.  However, an assessment from an economic standpoint reveals 

that the cost of acquiring the equipment does not justify the investment in face of 

the reduced repayment period.   

5.2 Discussion of results 

Ten different scenarios were evaluated in order to establish sensitivity to 

variations in calorific value, moisture content, waste tonnages and operating 

procedures. The values applied to the scenario analysis reflect real life situations, 

knowledge of which was gained through working directly in this industry. 

Scenarios 1, 2, 3, 5, 6 and 7 reflect variations of waste composition and 

characteristics. Scenarios 4, 5, 8, 9 and 10 reflect changes to operating time and 

procedures.  

5.2.1 Waste composition and characteristics 

In Scenario 1, the reduction of plastic and paper in waste received on site is 

reflected on a decrease in calorific value. This has a serious impact on economic 

performance. However, the removal of plastic and paper would only result in a 

potential delay of 2 years in capital cost repayment but the repayment period 

would still be less than 10 years which means that the facility would still be 
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economically feasible. Scenario 2 shows that a reduction in overall tonnages 

impacts greatly on economic feasibility. The graph in Figure 19 shows that from 

a 20% reduction on overall waste tonnages received on site the capital cost can 

no longer be repaid within the 10 year target. The results obtained from Scenario 

1 and 2 show that the system is very sensitive to reduction in overall waste 

tonnages whilst variations in the plastic and paper stream produce little impact on 

repayment period. Scenario 3 evaluates the impact of increased moisture content 

in the system. Figure 19 shows that if moisture content increases above 15% than 

the impact on capital cost repayment make the investment unfeasible. Scenario 5 

investigates the impact of the system receiving more waste than what it was 

projected to receive initially. In this situation results show that the repayment 

period extends over 10 years once the facility is receiving more than 27 000 

tonnes of waste per year above a 20 000 tonnes per year limit. Scenario 6 shows 

that the impact of reducing waste tonnages on household waste has a positive 

effect in that it increases calorific value thus resulting in better EfW performance 

and also reduces the capital cost repayment period. In fact, if household waste is 

completely removed from the waste stream results show that the repayment 

period is reduced to 5 years as seen in Figure 26. Scenario 7 shows that the 

reduction of calorific value on recyclates stream has little impact on the overall 

performance of repayment period of the facility. 

Results show that whilst recycled waste is a more appropriate fuel for EfW 

technologies than household waste, because it has a higher calorific value and 

lower moisture content, there is less of it available. This is confirmed by the 

scenarios where the household waste stream is reduced and yet the facility is 

capable of maintaining technical performance. In the event a of complete 
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removal of  household waste the facility is even capable of delivering higher 

revenue. However, as disucssed in previous chapters, recycling waste accounts 

for a small part of all waste received on site. This means that household waste 

would have a greater impact on overall economics. Consequently these results 

demonstrate that the facility has a more important role as a waste reduction 

system rather than an energy production system based on capacity and type of 

waste processed.  

5.2.2 Operating time and procedures 

In scenario 4, the impact of suspending the operation for 150 days was 

investigated. Results shown in Figure 24 reflect that the less the facility is 

operating the longer the repayment period becomes. Furthermore results indicate 

that if the facility operates less than 200 days per year it becomes unfeasible as 

the repayment period extends beyond 10 years. 

Scenario 8 considers the effects of a decrease in landfill cost. Results shown in 

Figure 25 reflect that a drop in landfill cost (£/tonne) is accompanied by a lower 

repayment period. Furthermore, the graph in Figure 25 shows that the repayment 

period is affected by increments of about 20 £/tonne. Consequently it is possible 

to conclude that the higher the disposal cost the longer it takes to repay capital 

cost. 

Scenario 9 shows that a reduction in heat sales would originate a longer 

repayment period. In this scenario a drop in heat sales in the order of 25% of the 

original price was evaluated. These results show that it is very important to 

source heat customers. 
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Scenario 10 investigates the effect the introduction of a drier would have on 

capital repayment period. Results show that a faster repayment period of between 

10% to 15% would be achieved.   

5.3 Investment analysis 

Investment analysis is a tool used to establisht the riskiness of an investment and 

projects its potential return. This is very important because it aids decision 

makers identifying adequate businesses to invest in by providing a comparitive 

standard between different options. In EfW processes it is very important to 

identify the risk associsated to acquiring and installing these systems correctly . 

As discussed in Chapter 2, EfW technologies are associated to high risk 

investments because these are still considered to be an untested technology and, 

associated to this,  there is a lack of pilot facilities where the technology can be 

tested prior to an investment. 

 

Figure 33. Internal rate of return (relationship between net present value and 

discount rate) applied to the base case scenario. IRR = 17% 
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NPV (net present value) is an indicator of the value an investment adds to a 

business. If it is a positive value it means that an investment would add value to 

the business. If it is a negative value then it means that the investment would 

subtract value from the business and if the value is null than there is no economic 

impact on the business and the decision of implementing the investment should 

be based on other factors. 

 

Figure 34. The graph shows the IRR for Scenario 1 is approximately 15% 

 

In order to calculate the riskiness of an investment IRR is calculated. IRR is 

calculated by multiplying the return per year by the DCF (discount cash flow). 

The IRR is the point at which NPV is null. Figure 33 shows the IRR in the 

nominal situation. In this case IRR approximately 17%. IRR was applied to 

scenarios 1, 2, 3, 4 and 9 as these situations better reflect the impact of capital 

cost repayment. In the scenarios investigated IRR was always found to be lower 

than in the nominal situation and it oscilates between 6% and 15%. 
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Low IRR values reflect that an investment is very risky whereas high IRR values 

suggest a better internal return. 

The results of IRR analysis show that the highest IRR is associated to the 

nominal situation. The IRR of Scenario 1, shown in Table 18, is approximately 

15% which means that there is slightly more risk attached to this option than to 

the nominal situation. Scenario 1 investigates the impact of the reduction of 

plastic and paper so the results obtained from IRR show that the removal of these 

components causes a negative effect on the economic feasibility of the facility. 

 

 

Figure 34. The graph shows the IRR for Scenario 2 is approximately 10% 

 

In Scenario 2, the IRR is approximately 10%, as shown in Figure 34, thus 

reflecting that there is higher risk associated to reducing the overall tonnages 

present in the waste stream.  

By comparison, IRR analysis shows that the reduction of waste tonnages is a 

higher risk business option than the removal of plastic and paper.  
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The IRR of Scenario 3 is shown in Figure 35, and it is approximately 9%. This 

scenario investigates the impact of an increase in moisture content across all 

waste streams. Results show that this option also poses higher risk than the 

nominal situation. 

 

Figure 35. The graph shows the IRR for Scenario 3 is approximately 9% 

 

The IRR of Scenario 4 is represented in Figure 36. In this scenario the IRR is 6% 

which is the lowest value calculated across all scenarios investigated. 

Scenario 4 investigates the impact of the operation being suspended by 150 days 

and the results show that the impact of variations in operation is higher than the 

impact of variations in the chemical composition of the waste. 
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Figure 36. The graph shows the IRR for Scenario 4 is approximately 6% 

 

IRR of Scenario 9 is described in Figure 37, in this situation there is a drop in 

heat selling price. The IRR for this case is approximately 14%. Comparatively 

this situation has a lower risk associated to scenario 1. Although these scenarios 

1 and 4 reflect IRRs similar to the nominal situation the values achieved are 

lower and therefore these situations are considered to have higher risk associated 

to them. 

From the IRR analysis it is possible to conclude that the impact of the variation 

of chemical properties in the waste such as moisture content and calorific value 

does not have such a great impact as the variation of waste tonnages. This fact 

had become apparent in the scenario analysis. Investment analysis contributes 

significantly to clarify the impact from an economic perspective. 

These results show that EfW facilities at the scale investigated are more 

important as waste reduction processes rather than energy production systems. 
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Figure 37. The graph shows the IRR for Scenario 9 is approximately 14% 
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5.4 Summary  

 Scenario 1: the reduction of plastic and paper impacts greatly on calorific 

value but only represents a 2 year delay on repayment period 

 Scenario 2: the reduction of overall tonnages results in the system 

breakdown when tonnages drop below 20% 

 Scenario 3: If the moisture content in the waste increases more than 14% 

the system becomes infeasible 

 Scenario 4: if the operation is suspended beyond 200 days the system is 

not viable economically 

 Scenario 5: If the operation receives more than an extra 27 000 tonnes per 

year the system becomes infeasible 

 Scenario 6: A drop of 10 000 tonnes per year in household waste has a 

positive impact on the system economic feasibility as the repayment 

period drops.  

 Scenario 7: a drop in calorific value in the recyclates stream does not 

produce a significant impact in the process 

 Scenario 8: a reduction in landfill costs has a positive impact in the 

system 

 Scenario 9: A drop in heat selling price does not impact significantly on 

the process 

 Scenario 10: if  a drier is introduced in the process the repayment period 

drops  10 to 15% 

 Investment analysis show that the IRR in the nominal situation is 17% 

 IRR of scenario 1 is 15% 
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 IRR of Scenario 2 is 10% 

 IRR of Scenario 3 is 9% 

 IRR of Scenario 4 is 6% 

 IRR of Scenario 9 is 14% 

5.5 Recommendations for future work 

It is recommended that future work in this area includes: 

 Optimisation of routines in the techno-economic model which could 

advise the waste operators in selecting EfW systems 

 Introduction of other variables in the model such as transport and 

variation of electricity selling price 

 Real data from industry instead of the use of rough order magnitude costs 
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Waste production is a constant associated to human history. In modern times 

there has been an increase in waste produced which is associated to the industrial 

revolution. It is in this period that the first relevant pieces of legislation 

controlling waste disposal were produced. Landfill and incineration became the 

primary waste disposal techniques and these are still in use today.  

Waste disposal is now governed by European Union legislation which establishes 

an order of waste disposal methods. Waste arisings in the UK show that there is 

still too much waste being disposed of via landfill. Not only does this impact 

environmentally but there is also an economic impact associated to it since 

government measures imposed higher landfill costs to prevent its use.  

The aim of this thesis was, therefore, to contribute to the understanding of the 

difficulties surrounding the implementation of energy-from-waste particularly in 

smaller communities. The objectives were to establish the constraints behind 

setting up small-scale (under 100 000 tonnes per annum) facilities and to 

understand the feasibility parameters of this type of operation through the use of 

a techno-economic model. It should be noted that such a model has not 

previously been published in academic or professional literature and hence there 

was a definite need for this analysis to be undertaken. 

Previous literature shows that research undertaken in this area made use of 

techno-economic models based on the chemical and physical properties of the 

waste. At a second stage sensitivity and scenario analysis were used to establish 

feasibility parameters.  
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A description of the case-study area (CSA) and the fuel was provided. The 

information gathered shows that the waste received on the CSA has a high 

quantity of moisture content and low calorific value. This is the result of the 

composition of the waste streams which reflect a greater quantity of household 

waste whilst there is less recycling waste. As these characteristics are not ideal 

for EfW systems three options in calorific value manipulation were provided. 

These suggest that varying calorific value and moisture content in the waste 

produce an effect on the fuel. 

A description of the techno-economic model is provided to show how this was 

constructed and which variables were used. Sensitivity analysis results 

demonstrated that a successful operation of a small scale facility is more reliant 

on gate income than energy sales, and fluctuations in input tonnage are a greater 

concern economically than changes in calorific value. 

The results of the sensitivity analysis show that whilst the project is feasible at a 

nominal basis it attracts high risk which reflects that this technology is unproven 

and subject to variations in calorific value and moisture content. Furthermore, the 

results point to the fact that small-scale EfW systems are primarily relevant as a 

waste disposal method rather than an energy production system. This is shown 

through the impact that the variation of waste tonnages has on overall economics 

and in particular on the household waste stream.  

Results show that the variation of calorific value and moisture content on the 

recycling waste stream produces little impact on overall performance. This 

confirms that although this waste stream is more adequate to EfW systems the 
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fact that there is less of it results in a low impact. The results obtained from the 

techno-economic model show that the feasibility factors can be listed as follows: 

 High calorific value fuel 

 Low moisture content fuel 

 Facility must operate over 200 days per year 

 Low disposal cost favours the system feasibility 

 A facility projected to small scale cannot process more 27 000 tonnes per 

annum. 

These feasibility parameters establish operational and fuel conditions within which 

the system operates. Further to these technical aspects investment in EfW is 

discouraged by the lack of operating facilities where the process can be tested. 

Furthermore, these systems have traditionally been poorly received by the general 

public which has an impact on the planning process. 

It is recommended that future work in techno-economic models applied to EfW 

systems include the optimisation of routines in the techno-economic model and the 

introduction of other variables in the model such as transport and electricity selling 

price. Furthermore, the use of data obtained directly from EfW operators would be of 

great benefit to the research in this area allowing for more accurate results.   
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Waste characterisation tables  

A1. Moisture content during winter (%) 

Summer 

Category HTR HBSR HEOFR CRTR CRBSR CREOBR 

Plastic 42.11 21.05 26.67 6.67 11.11 2.31 

Paper 46.53 82.05 47.05 18.18 12.50 18.30 

Glass 0 0 0 0 0 0 

Metal 0 0 0 0 0 0 

Organic matter 37.50 48.78 46.94 0 0 0 

Miscellaneous 52.00 42.11 86.67 0 0 6.64 

A2. Moisture content during summer (%) 

Winter 

Category HTR HBSR HEOFR CRTR CRBSR CREOBR 

Plastic 0 12 12 12 12 12 

Paper 55.2 44.3 15.51 25.8 26.7 14.1 

Glass 0 0 0 0 0 0 

Metal 0 0 0 0 0 0 

Organic matter 47.5 70 70 65.5 64.4 0 

Miscellaneous 83.85 93.8 91.3 22.8 14.2 0 

 



 

 

 

111 

A3. Calorific value Ar (MJ/kg) during summer 

Summer 

Category HTR HBSR HEOFR CRTR CRBSR CREOBR 

Plastic 9.34 1.51 27.28 34.72 33.07 36.34 

Paper 1.68 1.37 6.06 10.31 11.37 11.42 

Glass 0.14 0.14 0.14 0 0 0 

Metal 0.7 0.7 0.7 0 0 0 

Organic matter 3.32 3.17 4.73 4.7 4.7 9.7 

Miscellaneous 0.15 2.33 1.45 20.6 0 19.07 

 

A4. Calorific value Ar (MJ/kg) during winter 

Winter 

Category HTR HBSR HEOFR CRTR CRBSR CREOBR 

Plastic 32.8 32.8 32.8 32.8 32.8 32.8 

Paper 6.73 7.39 15.8 10.58 10.14 9.8 

Glass 0.14 0.14 0.14 0 0 0 

Metal 0.7 0.7 0.7 0 0 0 

Organic matter 8.13 5.17 1.41 2.15 6.79 0 

Miscellaneous 16.71 14.99 17.11 22.38 18.59 15.8 
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A5. Calorific value on a dry-basis (MJ/kg) during summer  

Summer 

Category HTR HBSR HEOFR CRTR CRBSR CREOBR 

Plastic 32.3 32.3 37.2 37.2 37.2 37.2 

Paper 12.60 12.6 11.45 12.6 13.0 13.98 

Glass 0.14 0.14 0.14 0 0 0 

Metal 0.70 0.70 0.70 0 0 0 

Organic matter 0 3.17 8.91 4.7 4.7 8.91 

Miscellaneous 0 2.33 10.81 20.6 0 20.43 

 

A6. Calorific value on a dry-basis (MJ/kg) during winter 

Winter 

Category HTR HBSR HEOFR CRTR CRBSR CREOBR 

Plastic 37.2 37.2 37.2 37.2 37.2 37.2 

Paper 15.02 13.27 15.02 14.26 13.83 13.89 

Glass 0.14 0.14 0.14 0.14 0.14 0.14 

Metal 0.70 0.70 0.70 0.7 0.7 0.7 

Organic matter 14.64 4.7 14.64 18.16 19.10 0 

Miscellaneous 28.26 28.38 31.34 33.85 26.06 22.8 
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