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1 INTRODUCTION
Wireless sensor networks (WSNs) allow for
wireless communications between embedded
devices that can be deployed for long periods
in harsh environments. Because of their flex-
ibility, WSNs are applicable to a wide variety
of domains and a lot of research has been done

to determine the best topology for a network, or
the best routing protocol. Much of this research
is aimed to solve a specific problem and can be
difficult to translate to other scenarios.

There is already substantial research on the
the various routing protocols that have been de-
veloped for WSNs. [3] and [2] survey routing
protocols highlighting the constraints of deploy-
ing a WSN, such as battery life, transmission
medium or coverage, and how each protocol ad-
dresses changes in the topology of a network as
well as aiming to be as energy efficient as possi-
ble.

In this paper, we explore the higher level ar-
chitecture of a sensor network and propose the
Knowledge Based Hierarchical Architecture for
Sensing (K-HAS), an architecture designed to
utilise the knowledge related to its environment
in order to classify sensed data. We define
sensed data as data that originates from a node
that is related to what that node has been tasked
to sense.

There has been research into sensor networks
that use context-awareness in order to improve
the quality of the sensed data, as well as the life-
time of the network. In [25], sensors have been
used to monitor the movements of patients and
adapt their power usage based on the behaviour
of the patient.

K-HAS aims to extend context-awareness in
order to use the knowledge of its environment
to classify the sensed data. We call a sensor’s
knowledge of its environment local knowledge,
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Sensor networks are driven by the activities of their
deployed environment and they have the potential
to use data that has previously been sensed in or-
der to classify current sensed data. In this paper,
we propose the Knowledge-Based Hierarchical Ar-
chitecture for Sensing (K-HAS), an architecture for
Wireless Sensor Networks (WSNs) that uses differ-
ent tiers within a network to classify sensed data.
K-HAS uses three tiers for in-network classification:
the lower tier actively senses the data and packages it
with relevant metadata, the middle tier processes the
data using a knowledge base of previously classified
sensed data and the the upper tier provides storage
for all data, a global overview of the network and
allows users to access, and modify classifications in
order to improve future classifications. Initial exper-
iments on the performance of the individual compo-
nents of K-HAS have proven successful and a proto-
type network is planned for deployment in the Kin-
abatangan Wildlife Sanctuary, Malaysia.
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which we define as: knowledge of an area that
can be gained from experience or experiments
within that area [9]. An example of local knowl-
edge is: a biologist knowing that a particular
species is only active in a certain area of an oth-
erwise uninhabited forest. If this knowledge is
encoded onto a sensor then that node could pre-
liminarily classify that data before it reaches the
base station. We present our prototype network
as a vision-based WSN but the design of K-HAS
is such that it is suited to any type of WSN.

The rest of this paper is structured as follows:
Section 2 provides an overview of our testbed
for K-HAS. Section 3 describes the design prin-
ciples and background research. Section 4 intro-
duces the K-HAS architecture. Section 5 high-
lights an example scenario for K-HAS and Sec-
tion 6 provides a preliminary evaluation of our
architecture. Section 7 covers some of the re-
lated work while Section 8 concludes our find-
ings and highlights any future work.

2 REQUIREMENTS

Sensor networks, typically, do not have much
processing power and are designed to maximise
battery life. Most current deployments of WSNs
that perform real-time event processing within
the network perform operations on text-based
data, or delegate the more complex processing
to a sink node, or the base station. A few exam-
ples of such a network can be found in [6] and
[26].

However, in more recent years there has been
an increase in the processing capabilities of sen-
sors and some research has been carried out to
use the increased power of sensors to process
more complex data. Some have used this to
maximise bandwidth efficiency by compressing
images [10].

We believe that, through the use of in-network
processing, a WSN is able to process vast quan-
tities of data and identify patterns in the data it
has sensed previously, providing a higher quality

of information (QoI) the longer it is deployed.
In order to test this, we needed a real-life sce-

nario that could provided a physical testbed and
would allow us to compare the results of our
work with results from previous efforts.

2.1 Danau Girang Research Area
Cardiff University’s School of Biosciences is
working with the Malaysian Sabah Wildlife De-
partment to provide a field centre, called Danau
Girang, within the Lower Kinabatangan Wildlife
Sanctuary, shown in Figure 1. Danau Girang is
used by researchers at Cardiff University, as well
as other institutions.

Figure 1: Map of Danau Girang Field Centre

There are long term PhD students that stay in
the field centre for extended periods and shorter
term Masters schemes that allow for projects
that last around 6 months. Danau Girang also
offers field courses that allow students to expe-
rience practical field work and carry out small
research projects.

22 motion-sensitive wildlife cameras have
been set up along the Kinabatangan River, as
well as up to 1km deep into the forest, for
the Kinabatangan Carnivore Programme which
aims to look at the presence of carnivores in
a corridor of forest between the Kinabatangan
River and palm oil plantations, as well as an iso-
lated lot of forest. The images from these cam-
eras are used in a variety of the research that is
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undertaken at Danau Girang.
The cameras are triggered by infrared sensors

and images are then stored on a memory card.
Students at the field centre then go out to one
half of the deployed cameras every 2 weeks in
order to change the batteries and retrieve the SD
cards. Because of the large area that the cameras
are in, it is not feasible to collect the SD cards of
all the cameras in one day, so the task is split
into two. Images are transferred onto a netbook
and processed manually, by the students.

When cameras are first deployed they are able
to last for more than four weeks on a single
charge but the humidity does affect the battery
life within a short period of time and this is re-
duced to around two weeks. This could be due
to the fact that the internals of the camera are
exposed every two weeks and that the charging
method for the batteries is not efficient, as it is
limited by the fact that the field centre does not
provide 24 hour power.

Due to the dynamic nature of the rainforest
the cameras can be triggered often. The major-
ity of the pictures taken are ‘false triggers’. We
define false triggers as movement, not caused
by wildlife, that triggers the motion sensor in a
camera. This can be caused by the movement of
the sun throughout the day, reflections on water
or insects inside the camera.

In a period of 2 weeks more than 1,000 im-
ages can be taken, in extreme cases. Manu-
ally collecting and processing the images taken
is time consuming for the researchers and af-
fects research projects. Figure 2 shows the main
building at Danau Girang, where images that
have been collected from cameras are stored on
a netbook, into folders sorted by the camera.
These are then processed by research students in
the computer labs in the building. This involves
manually looking at each image and extracting
images that are relevant to projects ongoing at
Danau Girang. A single camera can yield more
than 300 images in a space of two weeks, de-
pending on activity in its location. The volume
of images that need to be processed is a com-

plex task for a researcher to accomplish, mak-
ing it easy to miss some important images. It is
also difficult for researchers to be aware of all
projects at Danau Girang.

Figure 2: The Main Building at Danau Girang

Investors in projects at Danau Girang often re-
quire images from the camera traps and it is cur-
rently a lengthy process to provide them. When
a request is made by a third party, a USB drive
is bought in the nearby town of Sandakan and
returned to Danau Girang. The drive is then
loaded with the relevant images and put on a
coach to return it to Sandakan, where it is posted
to the requester. This process can take weeks
and is clearly not the most efficient way to share
a large number of images.

K-HAS has been developed in order to au-
tomate the collection and processing of sensed
data, using the local knowledge of the environ-
ment where the network is deployed to aid auto-
matic classification. Danau Girang is the testbed
for the viability of this architecture.

3 DESIGN AND BACK-
GROUND

WSNs have constraints such as: power availabil-
ity, storage, transmission range and processing
capabilities [24], and the design of a network
needs to consider these constraints when select-
ing the nodes suitable for the intended purpose.
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When researching the choice of nodes for a
test deployment in Danau Girang, we encoun-
tered several limitations that restrict our options
for hardware, and the communication protocols.
Thick vegetation in the rainforest causes signifi-
cant signal loss (Section 5.2) and means that tra-
ditional communication protocols, such as Wi-
Fi, prove to be unsuitable. A study in [8] showed
that sensors deployed in the rainforest can expe-
rience signal loss of up to 78% when using Wi-
Fi as the communication medium.

Thick vegetation and the rainforest canopy
do not just affect wireless transmissions; the
amount of sunlight that reaches the rainforest
floor is also limited. This means that solar pan-
els are unable to provide a constant source of
power, limiting us to sensors that are capable of
running, without maintenance, on battery power
for a significant amount of time.

From our research, we discovered large vari-
ations between the features available on sensor
nodes. Some are designed to last for long pe-
riods on a single charge, but have very little
processing power, such as SunSpot motes [22].
Other sensors are capable of running desktop
grade software but are limited to battery life of
only a few hours,for example the IGEPv2 [20].

Such large variations in nodes make some
more suited to particular WSN deployments
than others. From this, we have identified three
categories of nodes. A node can be classified
based on its processing capabilities and is thus
suitable for WSNs with different purposes.

To classify these nodes, we must first present
the definitions of data and metadata. In [4]
data is defined as the illustration of information
in a formally organised way to be interpreted
and processed in order to accomplish comput-
ing tasks, such as an image. Subsequently, [7]
defines metadata as ‘data about data’ or, more
generally, metadata can be thought of as provid-
ing context for data, such as image properties
(size, date created etc.).

The definition for these nodes can be found in
the following section, introducing our architec-

ture.

3.1 K-HAS Architecture
K-HAS is split into three tiers, each tier has dif-
ferent responsibilities for handling sensed data.
Figure 3 outlines the design for our architec-
ture. The arrows depict the flow of knowledge
to and from the nodes, with the lower tier only
holding static knowledge bases, this means that
their knowledge bases are not updated when the
node is deployed but the information held in
their knowledge base can be used to update the
knowledge base of nodes in the middle tier. The
number of nodes shown are not fixed and, for ex-
ample: a network that implements K-HAS can
have multiple Data Aggregation nodes, or a sin-
gle Data Processing node.

Figure 3: High level architecture for K-HAS

The upper tier contains the Data Aggregation
nodes and the sensor middleware, responsible
for aggregating all sensed data from the net-
work and holding all knowledge related to the
network. The middle tier consists of Data Pro-
cessing nodes. Sensors route data to the middle
tier for classification. This process requires local
knowledge in order to assist with the classifica-
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tion of sensed data. The lower tier are the Data
Collection nodes, tasked with routing the sensed
data to the middle tier and acting as intermedi-
ate storage. These tiers are explained in greater
detail below.

3.1.1 Lower Tier - Sensing

The lower tier of the network consists of Data
Collection nodes. These nodes are primarily
tasked with sensing their environment, but also
with routing the sensed to the middle tier, as well
as basic preprocessing of sensed data, through
the use of file metadata, such as creation time
and size.

These nodes have extremely basic processing
power and limited storage so they are only ca-
pable of reading basic file metadata and send-
ing files. Due to the reduced capabilities, Data
Collection nodes do benefit from long battery
life and they can run uninterrupted for several
months at a time.

Data Collection nodes contain a static knowl-
edge base that is encoded onto the node at the
time it is deployed. The knowledge base con-
tains basic information, such as: the area the
sensor is deployed, common activity in that area,
projects that the sensor is involved with and
times that they may be most active. With the
extracted knowledge from the knowledge base,
it is possible to attempt to classify the data;
although this step is not required, it can help
streamline the classification process in the mid-
dle tier.

3.1.2 Middle Tier - Processing

The middle tier acts as an interface between the
lower sensing tier and the upper tier, consisting
of Data Processing nodes. The nodes in this tier
act as sinks, receiving all data from sensors and
processing it before it is sent to the base station.
This reduces the flow of raw data to the upper
tier and allows users to ‘subscribe’ to specific
classifications of sensed data. For example: a

biologist within Danau Girang could subscribe
to custom alerts for pictures of crocodiles, while
a lecturer at Cardiff University could subscribe
to email updates for pictures of all carnivores.

The middle tier requires a dynamic knowl-
edge base that is updated by both the base station
and the Data Processing node(s). Nodes used in
the processing tier are capable of sensing their
environment but are tasked with the primary pur-
pose of processing sensed data.

Images taken by digital devices contain addi-
tional metadata, known as: ExChangeable Im-
age Format (EXIF) tags. These tags contain ex-
tra information about the image, for example:
exposure time, compression, moon phase and
GPS data (if available). Different camera mod-
els use different EXIF tags but tags are inter-
changeable and can be read universally.

Figure 4: EXIF tags from a Reconyx Wildlife
Camera

Figure 4 shows the output from the wildlife
cameras used at Danau Girang, containing more
information than some other cameras provide.
EXIF tags allows for local and global knowledge
to be combined in order to classify an image.
For example, the moon phase is global knowl-
edge but, coupled with the local knowledge of
the direction that the source camera is facing
and what animals would be active in that area of
the rainforest at that time of the month, a Data
Processing node would be able to classify the
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image without any image processing, or narrow
down the possibilities of what the image may
contain. If a classification cannot be gained from
the metadata of the image, or previous classifi-
cations from the same camera, then image pro-
cessing techniques are applied to the image. The
cameras used at Danau Girang are motion sensi-
tive and take 3 images, milliseconds apart, upon
each trigger. If a match cannot be made, the set
of images, as well as the extracted region of in-
terest (ROI) is sent to the base station to be clas-
sified by a professional. In the worst case: that
EXIF tags nor image processing can classify the
image, then the image is marked as empty and
sent to the base station as a false trigger.

Due to high processing demand, large
amounts of sensed data and the use of software
in multiple programming languages, a Data Ag-
gregation node is used. The biggest limitation
is the power consumption so nodes in the mid-
dle tier require a consistent power source such as
solar power. Although the rainforest canopy has
been mentioned as a limitation, the placement of
nodes in the middle tier are not restricted to the
location of cameras, thus allowing them to be
placed in areas of direct sunlight.

3.1.3 Upper Tier - Aggregation and Access

The Data Aggregation nodes provide a gateway
to the WSN through the internet, allowing global
access. Most important is the need to store all
sensed data, along with any classification meta-
data. One of our primary goals for the upper
tier is to use software that requires no technical
knowledge to use but allows an administrative
overview, as well as the ability to dynamically
adapt to changes in the network. Users with dif-
ferent requirements in the network can subscribe
to particular streams of sensed data, such as im-
ages of carnivores or images of crocodiles in a
defined region, and they are alerted via their cho-
sen method, e.g email. The Data Aggregation
node allows users to view all sensed data from
all deployed nodes, and their associated classi-

fications. A global knowledge base is also held
that stores information such as: the period that
all the nodes have been deployed, the location of
all nodes and any classifications that users have
subscribed to be alerted about.

A local web server is used on the Data Aggre-
gation node to allow multiple concurrent con-
nections. The server provides access to all
sensed data as well as the location of all de-
ployed nodes and any knowledge pertaining to
the nodes, for example, a node that has not sent
any images for three days could be marked with
a warning symbol as it may have run out of bat-
tery or filled its memory card. When data is re-
ceived that does not have a classification, users
can classify the data and the classification is
mirrored back to the respective Data Processing
node in the middle tier. This allows the user’s
classification to be used when similar sensed
data is processed.

If a user’s classification conflicts with the
classifications made by Data Processing nodes
then the node’s classification is stored but the
user’s classification is used. This is because we
believe that the knowledge of experts in the do-
main that a WSN is tasked to sense is more ac-
curate than the sensors knowledge. When a user
modifies a classification, the change is made on
the base station’s database and all Data Process-
ing nodes. These updates allow the classifier,
used primarily on the Data Processing nodes,
to learn from previous classifications and make
more informed classifications in the future.

Each Data Aggregation node would typically
be used as a Base Station and, as such, we would
expect more powerful hardware to be used that
would not provide limited storage. However,
Data Aggregation nodes also provide the option
to mirror their database to an external online ser-
vice that is relevant to the sensed data, for exam-
ple our prototype network is image-based so we
use Flickr [18]. This is beneficial for networks
that may not always have internet access or to
provide external access to users that may not be
based where the network is deployed, such as
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part-time researchers.
Many comparisons can be made between a

Base Station and a Data Aggregation node, such
as providing a local store for all sensed data
and allowing an administrative overview of the
whole network. However, multiple Data Aggre-
gation nodes does not mean that they will all
hold the same data, as they can each be used
for different purposes. Using Danau Girang as
an example, if two Data Aggregation nodes are
used then one could be for images that have been
classified with hunters in and the other would
hold all other data.

3.1.4 Network Topology

K-HAS has been designed to be used in a hy-
brid tree mesh topology. Data Collection nodes
and Data Processing nodes form a mesh network
relative to the locations of the deployed cameras,
with the tree topology formed by the Data Pro-
cessing node(s). In our prototype deployment,
every Data Collection node is connected directly
to a camera and a set of images is routed through
the Data Collection nodes to a single Data Pro-
cessing node (Section 3). Data Processing nodes
are tasked with serving a particular region of
the network and they build a knowledge base
for that subset. Data Processing nodes are con-
nected to the Data Aggregation node via a Wi-
Fi connection and the Data Aggregation node
is connected to the internet through Danau Gi-
rang’s satellite internet connection.

In our prototype, the upper tier’s internet con-
nection allows for sensed data to be uploaded,
for external access when the base station may
not have connectivity, as well as serving as a re-
mote backup. In our scenario, this provides the
ability for researchers to work remotely, being
alerted when images meet a predefined classifi-
cation while not requiring researchers to be res-
ident at Danau Girang. There is also the ben-
efit of using the expert knowledge of these ex-
ternal researchers, rather than relying on the re-
searchers at Danau Girang to confirm the clas-

sifications of the hundreds of images received
each week.

4 IMPLEMENTATION

4.1 Example Scenario

To illustrate how the prototype functions, we de-
scribe a walkthrough of our prototype network
in action, outlining the process undertaken when
an image is taken at a camera to the image reach-
ing the base station.

4.2 Sensing

A macaque moves in front of Camera 3, de-
ployed 500m inland from the Kinabatangan
River and triggers the motion sensor. A burst of
three images are taken and saved to the SD card.
The Data Collection node attached to the cam-
era detects the images on the SD card and adds
metadata to the image. Data Collection nodes
hold a static knowledge base, created at the time
of deployment, containing information relevant
to its tasked purpose.

The knowledge base on the triggered Data
Collection node denotes that the projects it is in-
volved with are the detection of crocodiles and
the detection of carnivores along forest corri-
dors. It is also encoded that it is facing the river,
as well as what its latitude and longitude are.
This metadata is added to the three images and
routed through the network to the middle tier.

4.3 Processing

The set of images and metadata are received by
the Data Processing node and the EXIF tags of
the image are inspected. Figure 4 shows how the
EXIF data for the image may look. Using these
tags and knowledge about the previous classi-
fications from Camera 3 a classification is at-
tempted.
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Figure 5: Original image taken by a Reconyx
Wildlife Camera in Danau Girang

Camera 3’s past 15 images have been false
triggers and the EXIF tags only show that the
image was taken during the day, so the moon
phase is not relevant. Because the images cannot
be classified through the metadata, they need to
be processed. The Data Processing node builds
a background model from the 3 images and at-
tempts to detect relevant objects in the fore-
ground, the first image in the set, unprocessed,
looks like Figure 5.

We use a computer vision package, called
the Open Source Computer Vision library
(OpenCV) [21], to build a background model
from the images taken by that camera and at-
tempt to identify objects in the foreground.
These are then extracted and the largest ROI is
used as the image contents. The ROI is com-
pared with previously classified ROIs stored on
the node and a match is made where possible.
The largest ROI is saved separately, shown in
Figure 6, and the metadata that originated from
Camera 3 is then checked. The metadata shows
that Camera 3 is tasked with the detection of car-
nivores so the Data Processing node searches the
database of previous classifications for ROIs that
match the ROI extracted from the image set.

An exact match is not found but a match is
found similar to that of the flat-headed cat. The
set of images, metadata and the extracted ROI
are classified as a flat-headed cat and sent to the
upper tier. The ROI is saved to the Data Process-
ing node, with the associated classification.

Figure 6: Image with background removed and
largest ROI extracted

4.4 Base Station
In our prototype network, we are using a sen-
sor middleware, called Global Sensor Networks
(GSN) [1], that abstracts the physical connec-
tion of all sensors through the use of ’virtual sen-
sors’. GSN is a java based, open source middle-
ware that is designed to simplify the control of a
heterogeneous sensor network. When new sen-
sors are added to the network, as long as the un-
derlying support is in the middleware, the sensor
can be added using an XML file.

Figure 7: Example of a Virtual Sensor XML file

Figure 7 shows an example file of a virtual
sensor in GSN that periodically polls a directory
for images matching a specified file mask; the
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processing class defines the class used to pro-
cess the received data and the output structure
explains the structure of the data, in this case: a
string and two integers. From this, a sampling
rate is set and the directory to monitor is added.
All of the actual code used is abstracted from the
user but easily accessible. To perform any of the
processing, the Java classes, defined in the XML
file, are used and can be modified. The data that
is received in the specified structure is saved into
a table, of the same name as the virtual sensor.

GSN comes with support for a wide vari-
ety of sensors and any that are not supported
can be added through the Java classes. A Java
web server with a google maps based interface
to show all deployed nodes and the most re-
cent sensed data. Users can also access and
download data from one sensor, or many sensors
that match a specified query. GSN, running on
the Data Aggregation node, receives the images
from the Data Processing node through the vir-
tual stream of Camera 3. The images are saved
to the database and researchers that have sub-
scribed to images of flat-headed cats are notified.

Researchers then access the base station and
inspect the received images, choosing to re-
ject or accept the classification. In this case
the researcher would see Figure 6 and it would
be clear that the classification is incorrect.
The researcher corrects the classification to a
macaque and this would be changed within
GSN’s database. When internet access is avail-
able the sensed data stored on the base station,
is mirrored to an online image sharing service
in order to allow users, who do not have direct
access to the WSN, to view and classify data.
In our network, the data is viewable by all but
only approved users are able to modify any of
the data. Changes made on the photo sharing
service are also mirrored back to the base sta-
tion.

Once a researcher has confirmed, or updated,
a classification, and when the base station has
internet access, the images are then uploaded to
allow global access, with the new classification.

The change is then mirrored to the Data Process-
ing nodes, updating their database with the new
classification. When a Data Processing node
receives a similar image, the node compares it
with the ROI and classifies it as a macaque.

5 EVALUATION

The experiments in this section have been run
to show the viability of the tiers within the K-
HAS architecture, as well as the network topol-
ogy itself. They have been run using the hy-
brid tree/mesh architecture, explained in Section
3.1.4 as this is the topology used in Danau Gi-
rang.

5.1 Image Classification
During a typical three month deployment along
the Kinabatangan River more than 40,000 im-
ages can be taken. A large proportion of these
images can be classed as false triggers.

Section 3.1.2 explains that, using OpenCV,
we have implemented a programme that evalu-
ated images taken by the wildlife cameras, be-
tween the period of November 2010 and March
2011. During this time 40,123 images were
taken. Using the images, taken in sets of 3, and
separating the images taken by specific cameras,
we build a Gaussian background model and used
that to detect animals in the foreground, classi-
fying the detected foreground as the ROI, and
extracting it.

As mentioned in Section 4.1, Figure 5 shows
an image taken by a wildlife camera. The dy-
namic background and light levels should be
noted here. This image is number 1, in a set
of 3, a background model is built from these im-
ages and added to the pre-existing background
model built by that camera. The foreground of
the image is then extracted and ROIs, larger than
a threshold, are identified. The largest ROI is
then extracted from the image and saved sepa-
rately.
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From our visit to Danau Girang in 2011, we
collected images from two different three month
deployments, in two different lots in Danau Gi-
rang, giving us just over 70,000 of images to test
our approach. The images are sorted by the cam-
era and the date of collection. We process ev-
ery 3 images as one set, building a background
model of all three images.

We manually process all of the images ini-
tially, marking images that are empty as false
triggers. We then process the images, using our
application, and a resulting processed image is
created from every set of 3 images. If nothing
is detected in a set then no image is created and
that set is logged as empty.

There are four classifications that can be made
with images sets:

True positive: An ROI is extracted that con-
tains the animal in the set.

False positive: An ROI is extracted that con-
tains nothing of interest.

True negative: A false trigger is correctly iden-
tified and no ROI is extracted.

False negative: An image with interesting con-
tents is classified as a false trigger and no
ROI is extracted.

The processed images are then compared with
our manual findings. The accuracy of our appli-
cation is calculated by the following equation:

Accuracy = (Tp +Tn)/TotalSets (1)

Where Tp is the number of true positive sets
extracted and Tn is the number of true negative
sets.

Table 1 shows experiments run on a camera
deployed in Danau Girang for a three month de-
ployment, our initial run was on a subset of 879
images, or 293 sets, taken over the course of
three weeks. Out of the 293 sets, we have ex-
tracted 54 sets that were true positives and 38
false negatives. This means that in this subset

92 images were of interest and 54 were classi-
fied correctly. If we were simply evaluating how
effective our approach is at detecting interest-
ing images in this set, we would get an accu-
racy of 58%. However, 199 true negatives were
correctly identified and only 2 sets had an ROI
extracted when there was nothing interesting in
the set. This gives us an accuracy of 86%.

These preliminary results show that our
method is effective at detecting false positives
but is less effective at detecting false negatives.
It appears that these misclassifications primar-
ily come from black and white images taken at
night, images where minimal movement of the
animal has caused a trigger and images where
an animal has caused a trigger but it has been
too fast moving to be in the second two images.

After a longer deployment, we would be able
to build up a more substantial background model
to account for some of the animals being less dy-
namic in images and we expect this to decrease
our error rate thus reducing the number of false
negatives. While false negatives do mean that an
image with interesting contents is missed, these
should be expected in the initial runnings of our
approach. Data Processing nodes send all the
data of an image set to the Data Aggregation
node, all three initial images and the classifica-
tion (if any), and the input of researchers

5.2 Range of Wi-Fi
Studies have been done on how vegetation and
humidity can affect the performance of wireless
signals in the rainforest. In [8], tests in dense
rain-forests have shown signal degradation of
up to 78%, in wireless transceivers using the
2.4GHz frequency band. In order to test for our-
selves, we ran experiments on the impact of for-
est environments on 802.11g Wi-Fi, in the UK
and Malaysia.

In our initial evaluations of K-HAS, we used
Wi-Fi as the communication medium between
nodes because of its high data rate and inter-
operability with other devices. Our prototype
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True Positive True Negative False Positive False Negative Total Image Sets Accuracy %
54 199 2 38 293 86.34

Table 1: Table Name

Figure 8: IGEP v2 Data Processing Node

implementation uses an IGEP v2 sensor, shown
in Figure 8, categorised as a Data Processing
node with a 1GHz single core ARM processor,
512MB RAM and Wi-Fi connectivity. Again,
solar power is required to ensure these boards
can run uninterrupted but they could remain ac-
tive for just under a day on battery power. These
nodes are running a lightweight Linux operating
system, designed for the ARM architecture.

The IGEP nodes we used did not have any
additional hardware and the nodes were tested
without the use of an external antenna. A Java
application was written to periodically scan for
available networks and store those results in a
text file. One IGEP board was set as the base
station and attached to a tree, at the same height
it would be if it was attached to a camera, and
another was walked to specified points around
the base station at defined locations. These loca-
tions were chosen to include as many distances
as possible and as many different forms of ob-
stacle between the searching node and the base
station, such as: line of sight (LOS), medium
vegetation or thick trees.

This experiment was run in a wooded area in

Figure 9: Signal-to-Noise Ratio for Wi-Fi in UK
Woodland

the UK and in the rainforest at the Danau Girang
field centre in Malaysia. The specified maxi-
mum range of 802.11g is 120m. When con-
sidering attenuation and obstacles we were ex-
pecting the signal to be reduced by up to 50%
in the UK. However, we found that we received
a maximum range of 30m, with LOS. Figure 9
shows the results we experienced, while testing
in Cardiff, some of the drops in signal can be at-
tributed to dense foliage and readings that were
not LOS, but a maximum range of 31m, with an
SNR of 29.5 dBm, is considerably less than we
expected.

The graph does show a drop at 22m, this was
due to the dense foliage that restricted the LOS
between the base station and the receiving node,
with five runs of this test we observed the same
results. The primary aim of this experiment was
to prove the viability of Wi-Fi and to to ensure
our application functioned as intended, which it
did. Further experiments could have been run to
remove the anomaly but the results of the experi-
ments in Danau Girang were the more important
results.

Despite the poor range from the tests in the
UK, it was consistent with other studies report-
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Figure 10: Signal-to-Noise Ratio for Wi-Fi in
Malaysian Rainforest

ing signal degradation of up to 78% in areas with
moderate foliage. We visited Danau Girang in
2011 to gather the requirements of the network
and ensure the hardware is able to survive the
humidity. Range experiments were run in the
rainforest to see if a more humid environment
impacts range any further, Figure 10 shows this.

Comparing figures 9 and 10 shows that the
maximum distance to receive a signal is approx-
imately the same in Malaysia as it is in the UK.
There are more signal drops but this seems to be
due to denser foliage, blocking the line of sight.
However, it does suggest that the humid envi-
ronment of the rainforest does not have a signif-
icant impact on the received signal. It is clear
that the denser rainforest does impact the signal-
to-noise ratio in a much shorter distance from
the base station but a link is still made, allowing
for a successful transmission of data.

Due to the poor results of these experiments
we researched alternative methods to increase
the range without impacting the environment the
network is to be deployed in. We considered
using intermediate Data Collection nodes, not
attached to cameras, to account for the lack of
range but, because some cameras can be up to
1km apart, we would need more than 30 nodes
to create a connection between two locations.

We also researched wireless technologies that
are more common in sensor networks. This does
mean that the data rate is not as high as Wi-Fi

and error correction in packet streams is not al-
ways as robust, but it is more suited to sensor
networks, using less power and providing longer
range.

Finally, we considered using the researchers
or animals at Danau Girang, as ‘data mules’,
creating temporary links between nodes while
they are in the forest. However, the trip to Danau
Girang yielded the information that researchers
generally do not cover those distances in the for-
est and data delivery would be sporadic.

Although the range of Wi-Fi is poor, for our
requirements, in both Malaysia and the UK, it
has shown that the results we experience in the
UK are very similar to the results in Malaysia.
This means that tests we run in the UK should
be indicative of what we can expect in Danau
Girang.

5.3 Range of Digimesh
Due to the poor range results of Wi-Fi, we cre-
ated a second prototype of the network, us-
ing Digmimesh as the communication medium.
Digimesh is a proprietary wireless protocol,
based on the 802.15.4 standard and designed for
devices with limited power. Using the same fre-
quency as Wi-Fi, Digimesh has been reported
to provide 7km of range, with a data rate of
250kbps.

In our prototype implementation, we are us-
ing Waspmote sensor boards [11], a general
purpose Data Collection node that is capable
of transmitting through various communication
mediums. Our Waspmotes are provided with
Digimesh modules and a 2GB SD card to store
sensed data.

When testing the range of the waspmotes, we
followed a similar method to that which is out-
lined in Section 5.2, although we used Wasp-
mote sensor boards, equipped with 802.15.4
Digimesh modules. These modules allow for
native support of mesh networking that is more
advanced than that of Digimesh on its own.

One board is static in a location and running a
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C++ application to poll for nodes in the network,
once one is found it sends a message to the node
every 10 seconds. The second board is set to
scan the network and receive packets as soon as
a base node is found, this node is then moved to
different locations.

The receiving node prints out variables related
to the received packet, such as: RSSI, source
MAC address and packet ID. However, not all
packets are received so the RSSI can display 0 if
there are errors reading or if packet collision oc-
curs. We found this to affect the results and have
just used the two nodes to identify the maximum
distance they can be apart, while maintaining a
stable connection.

Initial experiments were run in a moderately
vegetated area in the UK which yielded 497m of
range. Limitations with buildings preventing us
from testing any further but the signal strength
still proved to be strong.

The initial results for the range tests proved
positive and Digimesh does seem to be a viable
solution to account for the lack of range when
using Wi-Fi. As the frequency is the same as
802.11g, thus licensing it for worldwide use, we
expected similar results in Danau Girang..

Experiments were run in 2 areas of the rain-
forest around Danau Girang and the results
yielded were not the same as we experienced in
the UK, and thick vegetation proved to have a
significant impact on the range, reducing it by
almost 50%.

In more open areas of the rainforest, we
achieved 199m on average, more dense regions
of the forest reduced this to 102m on aver-
age. While these results are not as high as we
achieved in the UK, they are still suitable to use
Digimesh in the deployment of a WSN that uses
K-HAS, in order to serve as a proof of concept.

6 RELATED WORK

There has been a lot of work in the use of WSNs
for habitat monitoring but there is a subset of this
research that is most relevant to our work. One
of the more notable is the Instant Wild project,
a network of 50 cameras in various locations
around the world [19], tasked with taking pic-
tures when motion is detected and uploading
them to the Instant Wild servers. The aim of In-
stant Wild is to crowd-source sensed data, pro-
viding a public web interface to all of the images
taken by 50 cameras. Users of the website can
view recent images, and thumbnails of possible
animals that may be in the image. Clicking on
these thumbnails counts as a vote and all of these
votes are shown, taking the majority vote as the
general consensus of the image contents.

The deployment of sensors on Great Duck Is-
land [15] for habitat monitoring has proven suc-
cessful and a simple architecture for clusters of
sensors to collect data about the island and its in-
habitants outlines how sensed data is made glob-
ally accessible. The readings from these sensors
are sent to a gateway, which then forwards all in-
formation to the base station, where it is stored.
A remote link to the base station allows external
access and providing remote users with sensed
data for processing.

There has been research in using local knowl-
edge to aid the deployment of sensors in harsh
environments, [16] uses the local knowledge of
the conditions of the environment for the nodes
to modify the cases and to coat the sensors
themselves before they are deployed in a harsh,
glacial environment.

Local knowledge of the topology of a WSN
has also been used to improve the efficiency of
routing in a network, a framework is introduced
in [14] that uses locations of nearby nodes to
make energy efficient decisions on routing pack-
ets to improve the performance of a network,
while not affecting the battery life.

The Digimesh protocol is becoming increas-
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ingly popular in WSNs, due to its flexible sup-
port for mesh networking. One such example is
a WSN that requires long range and long term
deployment with little human maintenance to
detect forest fires [5].

Context Aware Systems (CAS) use multiple
sources of information to understand a situa-
tion, this generally involves a user and his, or
her, environment. In [23], the authors explore
how WSNs can be the source of information
for a CAS. This allows the handling of multi-
ple sources from a heterogeneous network by the
sensor middleware, passing on processed data
to the CAS. The main aim of this is to allow a
single CAS to be applicable to a number of do-
mains instead of being bespoke for a set of re-
quirements in a particular domain.

BScope is an architecture for WSNs that uses
an inference engine to apply contextual infor-
mation to sensed data [13], this is presented for
the use in assisted living environments, using
sensors to understand the movements of elderly
people within their homes. Contextual informa-
tion is also used in BScope to perform consis-
tency checks that the network is performing to
its required specifications and checks for node
failures, poor links between nodes or any outly-
ing errors.

Our research into applying knowledge bases
to images is not the only research that has mar-
ried image processing with other sources of
knowledge. Higher level semantics in Content
Based Image Retrieval (CBIR) are explored in
[12] and the authors have classified this work
into five categories. An example of these cat-
egories is the use of textual or visual sources
on the internet. This approach is similar to ours
but simply involves using a larger, less specific
knowledge base to retrieve images with content
that matches a specified query.

Cyclops is a bespoke Data Processing node
that has been developed to take images and
perform processing to detect objects or gesture
recognition. The performance of the Cyclops
node is shown in [17] and it is highlighted that

these nodes can be combined with other nodes
in heterogeneous WSNs.

7 CONCLUSION

This paper proposes K-HAS, an architecture for
wireless sensor networks to enable in-network
processing for the classification of sensed data.
Initial experiments have shown that Digimesh is
a suitable long range protocol for the transmis-
sion of sensing data. The processing of sensed
data on Data Aggregation nodes has proven to
be accurate in extracting relevant sections from
images.

One of our primary aims when designing K-
HAS was to create an architecture for a sensor
network that does not require technical expertise
to deploy or maintain. In the case of Danau Gi-
rang, this means that a computer scientist would
not be required to be on-site at all times and the
network could be maintained by the existing re-
searchers at the field centre. We have created a
web interface that runs with our chosen sensor
middleware, allowing users to change the posi-
tion of cameras and access sensed data from the
database, without the need to have knowledge of
SQL.

Ascertaining the distinction between the var-
ious capabilities of sensors, we have defined
three categories that can be used to aid the de-
cision of which sensors are suitable for WSNs
tasked with a particular purpose. Using these
categories, we have created a three tier architec-
ture to allow sensors to apply knowledge of their
environment, in order to classify the data before
it reaches the base station.

We have proposed a middle tier, with nodes
that serve a subset of the network, tasked with
using local knowledge to pre-process sensed
data, before it reaches the base station. Our pro-
posed upper tier allows a Data Aggregation node
to act as more than just a data store, providing
custom alerts for different users of the network,
dependent on the data they require, and allowing
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global access to the sensed data.
Preliminary tests, on hardware, software and

communication protocols, have proven to be
positive but further testing will be required to
test the full functionality of K-HAS.

K-HAS provides a knowledge base layer on
top of a sensor middleware to classify aggre-
gated sensed data at the base station. Currently,
the three tiers outlined have been developed, and
tested individually. We plan to finish develop-
ment on the Base Tier to integrate GSN with the
knowledge base to provide classifications at the
upper tier.

K-HAS is intended to be generic for any
WSN, regardless of domain, location or the type
of data it has been tasked to sense. We use
Danau Girang as an example as it is our current
testbed for our prototype network.

At present, the images are being processed in
sets of 3 as they arrive, independent of other
sets, we plan to modify our processing imple-
mentation to store a background model of all
the images from a particular camera and create
a comparison between the model and the im-
age sets that arrive. We hope that this will re-
duce the amount of interesting images classed as
false triggers but the dynamicity of the rainforest
makes the background of camera images change
dramatically during a 3 month deployment.

We plan on testing K-HAS with various
topologies to test its performance overall and
maximise the performance of each tier. Adding
wirelessly capable cameras could mean that one
Data Collection node would be able to handle
images taken by multiple cameras. An exam-
ple of this could be two cameras, located op-
posite each other, deployed on a path. Our
current topology requires two Data Collection
nodes, one for each camera, but a only one
would be required if the cameras were wireless
communication-enabled. This would also assist
in extracting local knowledge from images and
to confirm classifications, without the need for a
researcher, simply by checking if the two cam-
eras triggered at the same time and comparing

the classifications of the two image sets on the
Data Processing nodes.

Experiments have been performed using
Digimesh that have yielded results more than
suitable for a test implementation of an image-
based WSN, in Danau Girang. We plan to have
a beta of the software required for K-HAS to run
towards the end of 2012 and we expect to imple-
ment a WSN near to that time as well.

Interest has also been shown by the Sabah
Wildlife Department at the possible use of this
network to detect hunters as well as animals,
tasking the network with two purposes. This
would require using the Wildlife Department as
a second base station and sending all images that
contain humans to that base station and all oth-
ers would be routed to Danau Girang. We would
expect this ‘filtering’ of sensed data would be
made at the middle tier.
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