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SUMMARY 

 
This thesis is concerned with the swirl stabilised combustion of gases with variable 

composition, primarily those derived from the gasification of carbonaceous material, 

and secondarily those that occur naturally, such as shale gas. 

  

During the course of this research the temporal composition of producer gas, derived 

from the gasification of biomass, was studied in order to ascertain the effect its 

variable fuel composition had on its combustion properties. Its variation was highly 

dependent on gasifier operation, and despite the stoichiometric air-to-fuel ratio and 

Wobbe Index of the fuel being consistent, high throat temperatures resulted in high 

hydrogen content and laminar flame speeds. 

 

Alterations in flame speed are linked to thermo-acoustic instabilities, flame extinction 

and damaging flame propagation. Acoustic response under combustion conditions 

was investigated, to determine how it altered over a flames stability range. Indicators 

of impending flame flashback and blowoff were found, which could be utilised to 

prevent such events from occurring in an appropriate control system, without the 

need for real time gas analysis. 

 

Flames with high hydrogen content display a propensity for flashback, especially in 

high turbulence burners, such as those found in gas turbines, where thermo-acoustics 

are also a significant problem. Variation in fuel composition, particularly in the 

proportion on hydrogen, exacerbates these problems. The diffusive injection effects of 

three gases on reacting flow structures were investigated as a method of improving 

the stability of pre-mixed flames. Carbon dioxide was found to improve flame stability, 

whilst reducing emissions during the combustion of syngas mixtures in a development 

gas turbine combustor. 

 

Monitoring acoustic response and diffusive injection are thus suggested as additional 

stabilisation methods for the combustion of gases with variable composition.  
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NOMENCLATURE 

ā = mean amplitude (-) 

A  = cross sectional area of tube (m2) 

ACRZ = cross sectional area of the CRZ (m2) 

Ae = area of burner nozzle exit (m2) 

AHMFR = cross sectional area of the HMFR (m2) 

Amp = area represented by each measurement point (m2) 

As  = cross sectional area of structure (m2) 

At = area of tangential Inlet (m2) 

Ath = throat area (m2) 

c = speed of sound (m/s) 

cc = correlation coefficient 

Cp = specific heat (kJ/kg∙K) 

CV = calorific value of the fuel (various) 

dc = the characteristic dimension of an obstacle (m) 

dd  = diameter of the particle (m) 

dmax = maximum distance between particles (m) 

dpixel = diameter of pixels (m) 

E = shear number 

F = focal ratio 

f  = frequency of oscillations (Hz) 

ft  = frequency to analyse 

G = pressure gain (-) 

Gx = axial momentum flux (kg/m∙s) 

Gθ = axial flux of tangential momentum (kg∙m/s) 

HP = sensible heat in products (kJ) 

HR = sensible heat in reactants (kJ) 

HR = sensible heat in reactants (kJ) 

HT = sensible heat (kJ) 

I = turbulent intensity (%) 

J0(E)  = 0th order Bessel function with argument E, BesselJ(0,E) 

J0(W) = 0th order Bessel function with argument W, BesselJ(0,W) 

J1(E)   = 1st order Bessel function with argument E, BesselJ(1,E) 

J1(W) = 1st order Bessel function with argument W, BesselJ(1,W) 

ke = turbulent kinetic energy (m2/s2) 

L  = characteristic length of exit (m) 

Lct  = length of tube between chamber and transducer (m) 
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Lt = throat effective length (m) 

Lte  = length of tube between transducer and end (m) 

m = mass (kg) 

Mf = magnification of the lens 

Nint = number of pixels (-) 

nmp = number of measurement points in structure (-) 

Ø = equivalence ratio (-) 

P = pressure 

P1 = pressure at condition 1 (Pa) 

P2 = pressure at condition 2 (Pa) 

Pc  = combustion chamber pressure 

Pr  = Prandtl number (ν /α) 

Pt  = pressure at transducer 

Q = volumetric flow rate (m3/s) 

QL = heat loss to burner (various) 

Qta = tangential flow rate (m3/s) 

Qto = total flow rate (m3/s) 

r = radius (m) 

R = universal gas constant (J/K·kg) 

rc = radius of centroid (m) 

re = characteristic radius or radius of burner nozzle exit (m) 

RM = momemtum ratio (-) 

Ro = Roshko number (Re∙St) 

rt = effective radius of tangential Inlet (m) 

S = swirl number (Gθ/(Gx∙re)) 

sg = specific gravity (-) 

SL = laminar flame speed (cm/s) 

ST = turbulent flame speed (cm/s) 

St = Strouhal number (f∙L/U) 

Stk = Stokes number (τ∙U/dc) 

T = absolute temperature (K) 

t = time (s) 

T1 = temperature at condition 1 (K) 

T2 = temperature at condition 2 (K) 

Tf = temperature of flame (K) 

Tp = temperature of product gases (K) 

Tr = temperature of reactant gases (K) 

Ū = mean velocity (m/s) 

U  = velocity (m/s) 



 

                                 PAGE |XVIII 
  

Ua = axial velocity (m/s) 

ua’ = root-mean-square of turbulent velocity fluctuations in the axial direction (m/s) 

ŪCRZ = mean velocity of the CRZ (m2) 

ŪHMFR = mean velocity of the HMFR (m2) 

Umax = maximum velocity (m/s) 

ump = velocity at measurement point (m/s) 

Ur = radial velocity (m/s) 

ur’ = root-mean-square of turbulent velocity fluctuations in the radial direction (m/s) 

Ut = tangential velocity (m/s) 

ut’ = fluctuating tangential velocity (m/s) 

V = volume of pressure transducer cavity (m3) 

V1 = volume at condition 1 (m3) 

V2 = volume at condition 2 (m3) 

Vc  = volume of Cavity (m3) 

vmax = maximum velocity (m/s) 

Vs = volume of structure (m3) 

W = wave number 

WI = Wobbe Index (CV/ρr
0.5) 

X = reflection coefficient 

X(f)  = the FFT 

x(t) = the time domain signal 

Xmp = x-coordinate of measurement point (m) 

y = propgation constant 

α = thermal diffusivity (m2/s) 

γ  = ratio of specific heats (-) 

δ = depth of field (mm) 

θ = phase shift (°) 

λ = frequency of the laser (Hz) 

μf = dynamic viscosity of the fluid (m2/s) 

ν  = kinematic viscosity (m2/s) 

ρ = density (kg/m3) 

ρr = relative density 

ρd = particle density (kg/m3) 

τ = particle relaxation time (s) 

ω  = angular frequency (rad/s) 
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ABBREVIATIONS 

 

AFR Air to Fuel Ratio 
AGSB Atmospheric Generic Swirl Burner 
BFG Blast Furnace Gas 
BIG-GT Biomass Integrated Gasification-Gas Turbine 
CB Cyclone Burner 
CCHP Combined Cooling, Heat and Power 
CHP Combined Heat and Power 
CI Compression Ignition 

CIVB Combustion Induced Vortex Breakdown 
CRZ Central Recirculation Zone 
CV Calorific Value 
DIGCCC Development Integrated Gasification Combined Cycle Combustor 
ERZ Edge Recirculation Zone 

FFT Fast Fourier Transform 
GC Gas Chromatograph 
GCV Gross Calorific Value 
GTCC Gas Turbine Combined Cycle 
GTRC Gas Turbine Research Centre 

HHV Higher Heating Value 
HMFR High Momentum Flow Region 
HPCR High Pressure Combustion Rig 
HPOC High Pressure Optical Casing 
IGCC Integrated Gasification Combined Cycle 
LHV Lower Heating Value 
NCV Net Calorific Value 
PFM Positive Flow Momentum 
PIV Particle Image Velocimetry 
PLIF Planar Laser Induced Fluorescence 
PPQ Pora Plot Q 

PVC Precessing Vortex Core 

RDF Refuse Derived Fuels 
RFM Reverse Flow Momentum 
RGA Residual Gas Analyser 
S50/50 Syngas blend: 50% Hydrogen and 50% Carbon Monoxide by volume 
S85/15 Syngas blend: 85% Hydrogen and 15% Nitrogen by volume 
SAFR Stoichiometric Air to Fuel Ratio 
SI Spark Ignition 
TCD Thermal Conductivity Detector 
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1.1 Background 

As the issue of climate change becomes increasingly prevalent in modern society, new 

renewable energy markets have developed as both the public and private sector strive 

to reduce emissions of greenhouse gases and the dependence on potentially 

unsecured resources (Liao et al., 2011). With the decommissioning and dismantling of 

many outdated generation plants, and few new installations to take their place, the 

UK is in special need of these new technologies to meet the increasing demand for 

power (Cockroft and Kelly, 2006). 

One such technology, the gasification of biomass or biowaste to produce electrical 

and/or thermal energy may be very important as a decentralised power source of the 

future (Melvin G.R, 2003). A significant advantage of using this method is that the 

producer gas, derived from an industrial gasification process can be used to generate 

power with existing equipment, such as internal combustion engines (Stassen and 

Koele, 1997) and potentially gas turbines (Fiaschi and Carta, 2007), allowing previously 

fossil fuelled systems to be converted. There are many examples of research into the 

firing of internal combustion engines with producer gas (Stassen and Koele, 1997, 

Tinaut et al., 2006, Mohon Roy et al., 2009, Sridhar et al., 2001), dating back to the 

second world war, where automobiles across Europe were equipped with gasifiers so 

they could be run on wood, as typically shown in Figure 1. The process has been used 

commercially in Combined Heat and Power Systems. 

  

Figure 1: Converted car during WWII 

The comparatively low Calorific Value (CV) of producer gas, typically in the range 3-7 

MJ/kg, means the conversion of equipment designed for use with fuels with high 

calorific values, such as gasoline or natural gas, often results in a significant de-rating 
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of the maximum power and reduced efficiency (Sridhar et al., 2001). A more pressing 

issue when using existing technologies such as internal combustion engines or gas 

turbines is the content of high molecular mass volatile organic compounds, often 

known as tar, in the producer gas. These organic compounds readily condense (Anis 

and Zainal, 2011) on working surfaces which can foul turbines, engines or other 

auxiliary equipment such as turbochargers. To minimise the detrimental effect of 

these tars, the producer gas could be used to produce thermal rather than electrical 

energy. Ultimately, this would allow the gas to be used ‘hot’ and without interaction 

with moving parts, avoiding the issue of tar condensation. Due to high gasification 

temperatures, the temperature of the producer gas leaving the gasifier is also high, 

typically 700-1000°C for a down-draft gasifier (Son et al., 2011) as used in this study. 

Extensive cooling and gas clean up is required for use with internal combustion 

engines, however this thermal energy could be utilised by firing in boiler systems, 

including systems originally designed for use with fossil fuels. Regardless of the 

combustion system, there is a compromise to be found between the added cost of 

ancillary equipment and flow meters capable of withstanding high temperatures, the 

condensation of organic compounds and wasted thermal energy. 

On a practical level direct combustion of producer gas is complicated by both its low 

CV and variable composition, notably its hydrogen content which has been shown to 

play a major factor in defining flame stability limits (Syred et al., 2012). To address 

these issues a swirl combustor can be utilised. Swirling flows occur in most forms of 

modern combustion equipment, from swirl induced by chamber geometry in internal 

combustion engines (Prasad et al., 2011), to high intensity combustion processes 

which utilise swirling flows to stabilise flames and reduce combustion length whilst 

increasing mixing rates (Syred and Beér, 1974). Swirl combustion has also been shown 

to be an effective method to burn producer gas (Syred et al., 2004, Kalisz et al., 2008). 

Syngas can be produced from the gasification of any carbonaceous material, 

historically coal is the most significant source of gasifier feedstock (Beychok, 1974).  

In 1959 it was demonstrated by the British Gas Council that Liquid Natural Gas (LNG) 

could be successfully imported, when the Methane Pioneer delivered 5000 m3 from 

Louisiana to Canvey Island (Tusiani and Shearer, 2007), and in 1965 the first North Sea 

gas reserves were discovered. However, prior to North Sea gas being brought ashore 
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in 1967 the United Kingdom’s centralised gas supply was Town Gas. Derived from 

gasified coal, a technology dating back to the 1790’s when used by William Murdoch 

as an illumination gas (Griffiths, 2004).  

Coal gas was also used extensively used in America and Germany; during the Second 

World War Germany became leaders in the field of coal gas research and carbon 

chemistry, with petroleum shortages being the spark that ignited the development of 

Fischer-Tropsch synthesis to produce fuel. 

The use of coal as a fuel subsided significantly during the second half of the 20th 

century, with the majority of energy suppliers using oil and natural gas, which are 

cleaner burning fuels. However, unrest in the Middle East, amongst other factors, has 

resulted in a steep rise in oil prices, from being 20-30 US$/bbl in the 20 years prior to 

2003, to over 60 US$/bbl since 2005 (Williams, 2011). A similarly high price rise has 

also been seen in the price of natural gas due to the rapid industrialisation and huge 

increase in energy requirement in countries of expanding economies, such as China 

and India, with prices increasing from 5-6 US$/MBtu (0.005-0.006 US$/MJ) to over 10 

US$/MBtu (0.01 US$/MJ) in the same period (Williams, 2011). This price rise has 

driven an increase in coal use and improvement in technology to make its use less of 

an environmental burden. The discovery of vast shale gas reserves in the United States 

has again prompted their coal use to be stunted; this has simply caused import prices 

to the UK to be reduced. 

Despite the discovery of other, cleaner fuel sources and the increasing push to use 

renewable technology, in the UK, where there is a capitalist economy and a private 

power generation industry; profit will always be of primary importance to the 

generators themselves. As such coal is still an exceptionally widely used fuel, and is 

likely to stay that way for a considerable time as fossil fuel power generation will be 

required to fulfil base load capacity whilst renewable markets continue to develop, 

and overall demand increases. Figure 2 (a) (Simbeck, 2007), shows how the worlds 

gasification capacity has increased since 1970, and how major developments are 

planned in the very near future. There are multiple uses of Syngas other than power 

generation, with the various possibilities to manufacture chemicals and fuels. Indeed 

Sasol in South Africa use Lurgi gasifiers and the Fischer-Tropsch process to produce a 

variety of synthetic fuels and polymers, including kerosene that conforms to the strict 
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standards of Jet A-1 fuel. Figure 2 (b) shows how the current and planned global 

gasification capacity will be utilised, what is immediately obvious is the 450% increase 

in power generation capacity. 

 

(a)      (b) 
Figure 2:(a) World gasification capacity and (b) in what market area from Simbeck (2007) 

The utilisation of gasification in power generation in Integrated Gasification Combined 

Cycle (IGCC) enhances the environmental acceptability of coal. Coal derived Syngas is 

of ‘better’ quality than that of biomass, with higher energy and reduced moisture 

content. However, significant fuel processing is required before it can be fired in gas 

turbines. Typical fuel processing and preparation steps are shown in a typical IGCC 

plant layout in Figure 3 (Kunze et al., 2011). In order to improve gas calorific value 

pure oxygen is typically used as the gasifier oxidant, which requires an air separation 

unit.  

 

Figure 3: Simplified scheme of a typical case IGCC concept, from Kunze et.al. (2011) 

The syngas is then scrubbed, to remove particulate matter and tars, before the water 

gas shift reaction is utilised to increase the hydrogen quantity. The multi-step Claus 

process, first patented by Carl Friedrich Claus in 1883 (Gary and Handwerk, 1984), is 

used to remove sulphur from gaseous hydrogen sulphide. Acid gas removal, via amine 
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gas treating, is then employed to remove hydrogen sulphide and carbon dioxide 

(Baker, 2002). Prior to combustion, nitrogen previously separated from oxygen in the 

air separation unit, is used to dilute the fuel so it is acceptable for gas turbine 

combustion. Despite this significant gas processing, the final composition of the fuel is 

still subject to variations in compositions, of which gas turbines are very sensitive. 

The fuel that has been predominantly used for power generation in centralised plants, 

which utilise gas turbine systems, is natural gas. Nevertheless, it is also prone to 

variations in composition capable of impacting upon gas turbine operation (Abbott et 

al., 2012). 

Natural gas is a naturally occurring, hydrocarbon based, fuel that consists mainly of 

methane, but also contains varying quantities of higher alkanes, nitrogen, hydrogen 

sulphide and carbon dioxide. It is found in underground rock formations associated 

with coal beds and oil deposits, and is produced in the same way, as a combination of 

biogenic and thermogenic reactions (naturalgas.org, 2010).  

The first well specifically intended to extract natural gas was dug in 1821 in Fredonia, 

New York, and was used to produce light, as town gas had been in the UK and 

Baltimore previously (naturalgas.org, 2010). Natural gas was not extensively utilised 

prior to the technical advances in welding and pipe forming that resulted from WWII. 

This lack of transportability and ultimately the lack of end-use meant it was not 

economic to be utilised, and despite being the by-product of oil drilling was often 

flared or released to the atmosphere at the drilling site. 

Globally, there are still huge reserves of natural gas available, and whilst they provide 

an economic source of energy they will continue to be utilised. Russia, as shown in 

Table 1, has the largest reserves, and they export a great deal to neighbouring 

countries, including the United Kingdom, in the form of Liquid Natural Gas (LNG). The 

largest single reserve of natural gas in the world is Qatar’s North Field, which is a non-

associated offshore field containing all of Qatar’s estimated 25 trillion cubic meters. At 

the current level of extraction (Central Intellegence Agency, 2013) this would last 216 

years. Despite a drive to reduce reliance on fossil fuels, global production is actually 

increasing, with the world’s two economic super powers, the United States and China, 

being two of the five countries worldwide that produce in excess of 100 billion cubic 

meters of natural gas per year, as shown in Figure 4. 



 

                                 PAGE |7 
  

Table 1: Proved natural gas reserves of the World and top ten countries (Central Intellegence Agency, 2013) 

- World 208,400,000,000,000 m
3
 1 January 2011 est. 

1 Russia 47,570,000,000,000 m
3
 1 January 2012 est. 

2 Iran 33,070,000,000,000 m
3
 1 January 2012 est. 

3 Qatar 25,200,000,000,000 m
3
 1 January 2012 est. 

4 Turkmenistan 24,300,000,000,000 m
3
 1 June 2012 est. 

5 Saudi Arabia 8,028,000,000,000 m
3
 1 January 2012 est. 

6 United States 7,716,000,000,000 m
3
 1 January 2009 est. 

7 United Arab Emirates 6,089,000,000,000 m
3
 1 January 2012 est. 

8 Venezuela 5,524,000,000,000 m
3
 1 January 2012 est. 

9 Nigeria 5,110,000,000,000 m
3
 1 January 2012 est. 

10 Algeria 4,502,000,000,000 m
3
 1 January 2012 est. 

 

Aside from the increased demand for power, the discovery, and technology to extract, 

Shale gas has caused this increase in production, and further increases are predicted. 

The U.S. was gearing up to increase the use of coal for energy production in IGCC 

plants, whilst the use of natural gas was maintained or slightly reduced. However, the 

discovery of huge reserves of shale gas has changed that. Figure 5 shows the annual 

production of natural gas, including that extracted from shale seams.  

 

Figure 4: Annual production of cubic meters of natural gas per year by country (Central Intellegence Agency, 2013) 

The United States, China and Russia, three of the world’s major economies, all 

produce in excess of 100 Mm3 each year, as do Canada and Iran. While the U.K. 

produces in excess of 10 Mm3 per year. With production levels so high, and increasing, 
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it is highly probably that natural gas, which can be used relatively cleanly and 

efficiently, will still play a major role in future energy production. 

Gas which is found in conjunction with an oil field is called ‘associated’ natural gas, 

whereas that found isolated is referred to as ‘non-associated’. These accumulations 

are the result of natural gas migration from gas rich shale, through sandstone 

formations, and is trapped by and impermeable formations known as the seal. Coal 

bed methane is also found deposited in coal seams, relatively close to the earth’s 

surface.  Shale gas is that which is extracted directly from the gas-rich shale. The 

advances in horizontal drilling technology, and ‘fracking’, have been crucial in 

facilitating this extraction. A schematic demonstrating the geographical positions of 

natural sources is shown in Figure 6. The requirement of deeper drilling, that can 

penetrate horizontally into the shale seam; to extract shale rather than ‘associated’ 

gas is indicated.  

 

Figure 5: History and prediction of U.S. natural gas production (U.S. Energy Information Administration, 2010) 

The technique of hydraulic fracturing, often referred to as fracking, was invented in 

1947. It uses the injection of high-pressure fluids, typically fresh water mixed with 

chemicals and sand, to induce fractures in shale rock. After the initial fracturing, the 

fluid is removed and a path is created for gases, including natural gas, to pass through 

to the well head. 

As of 2010 it was estimated 60% of new wells, for both oil and gas, were hydraulically 

fractured, and as of 2012, 2.5 million fracturing jobs had been performed, over one 

Trillio
n

 (ft
3) 
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million of which were in the U.S. (King, 2012). However, fracking has many critics, and 

due to the perceived risks has been suspended or banned in many countries. The 

reasons for the suspension of fracking in the United Kingdom included; the 

environmental and health risks due to potential ground water contamination, and 

geological risks due to induced seismicity when the artificial fractures coincide with 

pre-existing faults.  

With the aim of becoming a part of, what Prime Minister David Cameron in December 

2012 called, ‘the shale gas revolution’, the U.K. government opted for a new approach 

(Wright et al., 2012). Cuadrilla Resources Ltd., were granted permission to continue 

work, when a ban on hydraulic fracturing was lifted, despite causing earthquakes 

whilst fracking in 2011. The blanket ban was replaced by new controls and regulations, 

which were set up reduce the risks of induced quakes. Energy Secretary Ed Davey 

believed, ‘Shale gas could have potential to help the U.K. to diversify its energy mix 

and provide an indigenous source of gas to support the move to the low-carbon 

economy.’ (Bakewell, 2012) 

 

Figure 6: Schematic geology of natural gas sources (U.S. Energy Information Administration, 2010) 

Syngas, whether derived from biomass or coal, and natural gas, whether extracted 

from conventional fields or shale seams, are very different in composition and 

production. What they do have in common is that they will all have their part to play 

in future energy production, whether it is in distributed or centralised networks, and 

like other alternative fuels, such as biogas, they all have variable compositions.  
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1.2 Centralised and Distributed Power Generation 

In order to achieve maximum potential for efficiency in future electricity generation it 

has been heavily argued that current centralised model must be abolished in favour of 

a decentralised system (Greenpeace, 2005). The UK pioneered the centralised system, 

with sixteen low voltage networks, developed in the 1940’s to deliver electricity from 

thermal power plants to end users around the country. This type of system was 

adopted worldwide, to the extent that as of 2003, 93% of electricity supplied globally 

was via a centralised system (Brown, 2002). When it was initially developed coal was 

the primary fuel source for power generation, with large plants utilising the large and 

locally available reserves to produce heat and drive steam cycles. These coal fired 

steam turbine plants typically operated at an efficiency of only 33%, on a Higher 

Heating Value (HHV) basis, whilst producing 965 g/kWh of carbon dioxide (Strachan 

and Farrell, 2006). These figures include transmission losses, which in the UK have 

been recorded as high as 9.8% over a period of one year (OFGEM, 2003). The picture is 

largely the same worldwide; with the US power industry delivering 33% efficiency in 

2003, the same figure as 1960 (Casten, 2003). Since the development of Closed Cycle 

Gas Turbine power stations operating on natural gas, potential efficiency has 

increased markedly, reaching 50%, whilst producing a comparatively low 363 grams of 

carbon dioxide per kilowatt hour of electricity generated. 

Decentralised energy is that which is generated close to the point of end use, and is 

defined by the Office of Gas and Electricity Markets (OFGEM) (2001) as being 

produced by a plant rated at under 50 MW and connected to a local distribution 

network. However, plants of significantly higher power output are considered 

distributed if all of its output is consumed by the generator, and is therefore not 

connected to public networks. 

Just as the current and previous generation of coal-fired power stations were built 

close to coal seams, in order to reduce the emissions and costs associated with 

transportation, decentralised generation helps increase the viability and commercial 

attractiveness of renewable fuel sources, namely biomass and Refuse Derived Fuel 

(RDF). Unlike fossil fuels, the energy density in renewable fuels such as biomass and 

municipal waste is very low, which significantly increases the cost per kilowatt of 
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transportation. As the production of these sources is decentralised, it occurs on a 

small scale at sites connected to small distributed networks. They are not an attractive 

fuel for centralised generation. However if energy production occurred on the same 

scale, large amounts of this waste becomes an economically viable fuel source 

Another significant advantage of using a decentralised model is the ability to make use 

of ‘waste heat’ that is the by-product of electricity generation in co-generation 

systems. Co-generation refers to a system, often defined as Combined Heat and 

Power (CHP), which produces both useful electricity and useful heat. A further 

development is Tri-generation, or Combined Cooling, Heat and Power (CCHP) systems, 

which are those that also utilise absorption chillers to produce cooling, as and when 

required. A typical tri-generation model is capable of delivering 85% efficiency, with 

45% of the energy input converted to electricity, 40% converted to heating or cooling, 

and the remaining 15% making up heat and line losses (13% and 2% respectively) (San 

Martin et al., 2008). 

1.3 Types of Gasifiers 

In simple terms, the process of gasification transforms a solid fuel into a gaseous one, 

allowing it to use in a variety of applications. In reality there are liquid and solid 

products of the process, of which the composition and quantity is dependent on the 

fuel type and the operation of the gasifier. There are many designs of gasifiers in 

operation all over the world, the overwhelming majority of  which can be placed into 

one of three categories (Basu, 2010). 

1. Entrained Flow Gasifiers use a dry-pulverised fuel, unlike other types of 

gasifier, with the pulverised feedstock entrained in the oxidant flow, which is 

often pure oxygen. This type of gasifier requires a high level of energy intensive 

fuel preparation, particularly if pure oxygen is used. They operate at very high 

temperatures that inhibit the formation of ash and particulates, and 

throughput of the fuel is also high, but as the gas requires cooling before using 

in most applications thermal efficiency is very low. 

2. Fixed Bed Gasifiers pass the gasification agent, typically air, oxygen, or steam, 

through a bed of carbonaceous material. There are two configurations of fixed 
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bed gasifiers, up and down draft, also known as counter-current or co-current 

respectively. The exit temperature of the producer gas is lower than that of an 

entrained flow gasifier; this leads to a higher overall thermal efficiency but 

higher particulate levels, which require extensive cleaning of the gas. Heat is 

required for the reaction to take place; this can be from external sources or by 

the combustion of a small amount of the fuel. 

3. Fluidised Bed Gasifiers suspend the fluidised fuel in the stream of the 

gasification agent. This is very beneficial when the fuel is biomass or RDF, 

whose ash, which is often high in corrosive material does not come into 

contact with the walls as would be the case in a slagging gasifier. However, the 

high level of oxidant required to maintain the structure of the bed means that 

temperatures are low, so a highly reactive fuel to achieve an efficient 

conversion from solid to gaseous fuel is required. 

1.4 Combined Heat and Power (CHP) Systems 

In a CHP system, the initial process uses fuel to produce electrical energy as the result 

of a combustion process. Obviously, this leads to the production of significant heat. 

Rather than allow this heat to be wasted, the thermal energy is extracted and utilised. 

The most useful form of heat is in the exhaust gases, which are at high temperature, 

although there are other sources of heat available from cooling systems. 

Combined heat and power systems are perfectly suited to distributed power 

generation, as the waste heat from the electricity production can be recycled and 

used to supply buildings heating demands. Using this waste heat allows the overall 

efficiency of a plant to reach extremely high levels compared to separate production 

of heat and power (Martens, 1998), the thermal efficiency of a plant is as dependant 

on the way heat is extracted as the amount available. 

Having the plant in close proximity to the end user allows effective use of the 

extracted heat; it is not practical or efficient to distribute over large distances. This 

close proximity is also ideally suited for the use of biomass, or waste derived fuels, 

resulting in a reduction in both the economic and environmental costs of 

transportation. The low calorific value, coupled with the high water and ash content of 

these fuels (Faaij et al., 1997) means that transportation costs per unit energy are very 
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high compared to fossil fuels. The combustion of producer gas in CHP systems has 

predominately been achieved using internal combustion engines, however there is 

significant work to utilise swirl flows in burner-furnace configurations and gas 

turbines, in order to increase plant sizes. The output power of a plant is dependent on 

the combustion apparatus, and the use of internal combustion engines practically 

limits the scale of these plants to 100kWel (Baratieri et al., 2009), a significant cause of 

this is the de-rating that occurs when low CV gas is used as the fuel (Stassen and 

Koele, 1997). The size and capacity of the engines and auxiliary equipment, compared 

to the power output is also a factor when considering increasing potential output, 

hence largely distributed use of this technology, rather than centralised power source. 

A practice that is exceptionally uncommon in the United Kingdom, but widely used in 

Denmark is the use of thermal stores. A significant factor in the increased use in 

Denmark is not down to the design of CHP systems, but more down to the fluctuating 

availability of electricity from wind turbines. In 2005 Denmark generated 29.3% of its 

electrical energy from renewable energy, of which 62.1% was from wind (European 

Commision, 2008). In 2010 the installed wind capacity was 3545 MW, with a further 

720 MW under construction (Danish Energy Agency, 2011). This high capacity means 

that low wind speeds can result in a large energy shortfall, one way to make up for this 

lack of electricity is to use highly efficient CHP plants. 

A CHP system, which does not have a heat store, is designed to meet a given electrical 

and heat demand. Should the electrical demand be significantly reduced, i.e. if wind 

turbines are operating to full capacity, then the CHP plant is required to operate 

simply to produce heat energy, meaning the electrical energy is effectively lost, 

significantly reducing the efficiency of the plant. This reduced efficiency will also occur 

when the electrical demand exceeds the thermal demand.  

1.4.1     Internal Combustion Engines 

Figure 7, shows the cycle of a four-stroke engine. The first part of the cycle involves 

the intake of air and fuel, and the second involves compression of the gases. The gases 

are then ignited, by either a spark, as shown in Figure 7, or by the compression. The 

final stage of the process is for the combustion products to be exhausted from the 

chamber. The second and third stages can be effected by variations in fuel 
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compositions, hydrogen content in particular, as auto-ignition can occur (Sridhar et al., 

2001). 

The standard approach, when using an internal combustion engine to fire producer 

gas is to add a Spark Ignition (SI) system to a Compression Ignition (CI) engine, 

benefiting from the robust construction of the CI engine with the spark used to ignite 

the low CV gas. Another approach is to co-fire the producer gas with diesel, or similar 

fuel, in a CI engine. Co-firing a diesel engine in dual fuel mode has been shown to have 

positive results due to the presence of hydrogen (Sahoo et al., 2011). The addition of 

the diesel provokes the ignition of all the fuel in the chamber; however, this approach 

remains dependant on external, non-renewable, fuel sources and therefore is not 

ideal.  

 

(a)                      (b)                     (c)                       (d)   
Figure 7: Stages of Four stroke IC engine (Colorado State University, 2007);   

(a) Intake, (b) compression, (c) spark ignited combustion and expansion, (d) exhaust 

The efficiency of firing producer gas in reciprocating engines has been reduced by 

restricting the compression ratio to around 12:1 to prevent auto-ignition early in the 

compression stroke and inducing a knock in the engine, however studies have shown 

that a compression ratio of 17:1 is achievable (Sridhar et al., 2001). 

Another issue is the for mentioned overheating and the further reduction of rated 

power that occurs when introducing high temperature, reduced CV, producer gas. 

Therefore the gas must be cooled prior to entering the combustion apparatus, rather 

than waste the heat it is possible preheat gasification air or use as a heat source in a 

CHP system by passing it through a heat exchanger.  

A significant increase in the long-term efficiency of a plant could be achieved by the 

installation of a thermal store (Fragaki and Andersen, 2011). Thermal stores use large 

water tanks to accumulate heat energy, when electrical demands exceed heat 
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demands the excess heat energy is transferred to the tank, effectively charging it, 

discharging of the heat energy happens when heat demands exceed electrical 

demands. The methods used to charge and discharge depend on the designs of each 

system; Figure 8 shows a simple schematic of a heat store. Excess heat is utilised in a 

heat exchanging heater, which heats the water in closed system. The water is stored 

in an insulated tank, and due to the effects of fluid dynamics, hot water is kept at the 

top. The heat can then be used when required. The example system in Figure 8 has a 

space heating as an extension of the closed water system, while mains water can be 

heated via a heat exchanger in an open system. 

 

Figure 8: Indication of idealised thermal store schematic 

1.5 Gasification of Biomass and Refuse Derived Fuel 

Biomass, in the form of wood, has been the fuel of choice for the majority of human 

history, until the advent of fossil fuels began the industrial revolution, and continues 

to be in many parts of the world (Lewis, 1981). The direct combustion of biomass is 

inefficient and produces high levels of pollutants which have a negative impact on 

human health (Johansson et al., 2003), the gasification of biomass produces a Syngas 

variant called Producer gas, the components of which include (Marsh et al., 2010): 

 Carbon Monoxide 

 Carbon Dioxide 

 Hydrogen 

 Methane, and higher hydrocarbons 

 Nitrogen (if air is used as oxidant) 
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Contaminated fuel streams such as RDF may also result in other gases, often sulphuric 

or hydrochloric acid, being present. 

The feedstock, and equally importantly, the design and operation of the gasifier will 

have an effect on the composition of the producer gas (Narvaez et al., 1996) which in 

turn may have significant effects on flame stability. In order for plants to operate 

economically and at higher efficiencies the processing of feedstock is kept to a 

minimum, this being the case composition of the feedstock will vary, obviously this 

will induce a variation in producer gas composition. Conditions inside the gasifier will 

also have an effect, at start up, when the gasifier is not at running temperature the 

composition, including particulate levels will vary, stabilising over time, during this 

stabilising process the gas would normally be flared. Commercially available fuels, 

such as Gasoline and Natural Gas, have a composition that does not vary greatly due 

to regulation by Standards, such as ASTM D975-14 (ASTM), the international standard 

for diesel. This steady composition greatly simplifies the design of combustion 

equipment. 

With regards to swirl combustion, hydrogen content of a gas is very important, studies 

have shown that a small variation in the percentage hydrogen content can have a 

significant effect on flashback limits (Syred et al., 2011). Flashback occurs when 

turbulent flame speed is greater than local fluid velocity, allowing the flame to 

propagate back into the burner. Two types of flashback were defined (Valera-Medina, 

2009), of which one, where the flame propagates to the premixed region of a burner 

was shown to have the potential to cause significant damage (Coghe et al., 2004).  

Similarly, for internal combustion engines hydrogen content of a fuel has impact on 

auto-ignition limits (Thiessen et al., 2010), this misfiring can cause damage to engines 

as well as effecting output power. 

Gas temperature, which is a result of gasifier operation and processing also has an 

effect on the stability of the gas, aside from any changes in composition the density of 

the gas is decreased. An accurate estimate of the expansion is achievable using the 

ideal gas law in Equation 1.1: 

                                                  
     

  
 

     

  
    Eq (1.1) 
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Where: P1 = Pressure at condition 1 (Pa)i 

  V1 = Volume at condition 1 (m3)ii 

T1 = Temperature at condition 1 (K) 

P2 = Pressure at condition 2 (Pa)i 

  V2 = Volume at condition 2 (m)ii 

T2 = Temperature at condition 2 (K) 

iapplicable to any unit of pressure, SI units shown 

iiapplicable to any unit of volume, SI units shown 

 

The results is a reduced amount of energy per unit volume of the producer gas, 

therefore cooling producer gas that leaves a gasifier at 400°C, 2 MJ/m3 to 40°C will 

increase the energy per unit volume to 4.6 MJ/m3. The effects of this temperature 

change, which will in turn affect the flow rates entering, mixing rates, and preheat 

temperature, must be assessed for each individual burner.  

When designing or modifying combustion apparatus to run on producer gas that is 

almost directly fed from a gasifier, the constantly changing composition and 

temperature of the gas must be accommodated to achieve safe operation. Changes in 

geometry or installation of additional control systems have the potential to solve the 

problems caused by variable composition. 

Due to the nature of the fuel, the producer gas tends to have relatively high levels of 

tar and particulates; these have impact on the design of combustion and pre-

combustion components in a power generation system. Pyrolysis and torrefaction, 

which occur to a limited degree in the majority of gasifiers (Basu, 2010), lead to the 

production of ash and tars. A case study by Marsh et al. (2010) recorded particulates 

levels, equal to 1.7% of the feedstock by mass, entrained in the gaseous stream exiting 

the gasifier, prior to gas processing. 

Many plants employ a scrubbing system that will remove high levels of these 

particulates, to avoid the impact that they may have on equipment further down the 

line and the effect they have on emission levels. The downsides of scrubbing the 

producer gas, which is at a high temperature when it leaves the gasifier, is the cooling 

effect that it has, which significantly reduces the thermal efficiency of the plant (Wu et 

al., 2009), this may be desired due to the concentrating effect it has on energy density. 
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It also generates another waste stream of potentially hazardous wastes that must be 

disposed of, at a cost to the operator. 

1.6 Integrated Gasification Combined Cycle Power Plants 

Utility companies continue to mix evolution with revolution and maintain varied 

portfolios of generating plants, as such, the established and profitable fossil fuel 

technologies will continue to be developed and implemented in order to meet the 

rising global energy demands. During the transition between the centralised, fossil-

fuelled system and a partially decentralised, renewable based system, fossil fuels must 

be used as efficiently and cleanly as possible, whilst remaining commercially viable. 

On a large scale, coal remains a major contributor to global energy production, despite 

the high levels and greenhouse gases and pollution produced. This is down to simple 

economy; large accessible reserves mean the cost of producing electrical energy via 

the oxidation of coal remains relatively low. IGCC plants offer a cleaner method of 

extracting electrical energy from coal than traditional coal fired, steam cycle plants. 

Despite this, they are still opposed by many who feel that rather than continuing to 

invest in improved coal technology, the money and effort should be directed toward 

renewable technologies (Whaley, 2007). 

A standard IGCC plant has five major components; an Oxygen Production Unit (OPU), a 

gasification system, a gas cleaning system, a Gas Turbine (GT) based primary 

generator, and a steam cycle based secondary generator, a new plant is likely to be 

specified with Carbon Capture and Storage (CCS) capabilities. 

1.6.1     Oxygen Production 

In order to yield a Syngas with a higher calorific value, ‘pure’ oxygen is used as the 

oxidiser. Due to the large quantities required, the oxidiser is produced on-site in the 

OPU, which is one of the most expensive components in an IGCC plant. The basis of 

OPU is an Air Separation Unit (ASU), of which there are several types, including ion 

and oxygen transport membranes, pressure swing absorption, and vacuum pressure 

swing absorption. However, the most cost effective, and therefore the most utilised, 

technology for oxygen production continues to be cryogenic distillation. The cryogenic 

distillation of air is a very energy intensive process that has been around for over 100 
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years, recent advantages in train size, structured packing in distillation columns and 

more complex cycle designs have reduced the power consumption (IEA., 2007), 

improving overall plant efficiency.  

1.6.2     Gas Cleaning and Processing 

The Syngas produced from the gasifier is not suitable for gas turbine combustion; the 

impurities in the gas would cause damage and blockages in the engine. Conventionally 

the Syngas is first cooled, so water vapour and semi-volatile matter condensates. The 

gas is then passed through an absorber to remove any soluble contaminants in the 

stream, producing a dry gas stream purified of water, ammonia and halides. 

The prime issue with firing producer gas instead of coal derived Syngas is the presence 

of tars entrained in the gas stream, whereas internal combustion engines are very 

tolerant gas turbines can be heavily affected. The turbine section is not sensitive to 

tars due to the very high temperatures, at which they are usually in vapour form, 

however the compressor section, or heat exchangers and piping before the GT may 

become blocked or fouled by the tars (Baratieri et al., 2009). This makes the firing of 

coal derived Syngas significantly less problematic. 

When derivation of the feedstock for the gasification process is from waste streams, 

the producer gas may become even less suitable for use in a gas turbine due to the 

potential hydrochloric or sulphuric acid components of the gas, which can react with 

and cause damage to the many parts, primarily the blades that are present in a gas 

turbine. 

The dry gas stream contains many impurities that must be removed before it enters 

the gas turbine; they are listed in Table 2. They are removed by using a number of 

techniques, including: 

 Absorption into a liquid 

 Absorption on a solid 

 Membrane permeation 

 Chemical conversion 

 Condensation 
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Once the gas has been cleaned shift reactors are used to convert carbon monoxide to 

carbon dioxide, producing hydrogen as a result. Prior to entering the gas turbine some 

of the carbon dioxide is removed and the gas is saturated with nitrogen from the ASU. 

Table 2: Impurities in the dry gas phase (Kohl and Neilson, 1997) 

1 Hydrogen Sulphide 
2 Carbon Dioxide 
3 Sulphur Dioxide 
4 Nitrogen Oxides 
5 Volatile Organic Compounds 
6 Volatile Chlorine Compounds 
7 Volatile Fluorine Compounds 
8 Nitrogen Compounds 
9 Carbon Monoxide 

10 Carbonyl Sulphide 
11 Carbon Disulphide 
12 Organic Sulphur Compounds 
13 Hydrogen Cyanide 

 

1.6.3     Gas Turbines 

The stages in a gas turbine, as shown in  Figure 9, are very similar to a conventional 4-

stroke reciprocating engine; compression, combustion and expansion through the 

turbine, providing work energy and exhaustion. Gas turbines rely heavily on the effect 

of swirl to allow a compact combustion chamber design whilst providing good mixing 

of the fuel with the primary combustion air. Designs vary for power generating and 

aviation derivatives to accommodate the difference in fuels, in power generation the 

fuel is normally gaseous, allowing a premix of fuel and air. In an aviation engine, 

where the liquid jet fuel is used, the air is swirled prior to the addition of atomised fuel 

to the flow.  

Since the discovery of natural gas in abundance, and a change in regulations in many 

countries allowed its use in electricity generation, gas turbines have become one of 

the most important technologies in thermal power conversion. For long periods gas 

turbines were an unattractive option due to their low efficiency, a problem caused 

primarily by the low temperature permitted in the turbine section. Figure 10 

demonstrates how significant improvements in the materials used for the turbine 

blades, firstly in metallic’s, and latterly in ceramics, coupled with advances in blade 

cooling allowed the maximum Turbine Inlet Temperature (TIT) to increase. This 
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temperature increase, coupled with larger pressure ratios in the compressor section, 

has resulted in the thermal efficiency of the turbine to increase from 15 to 45 % 

(Boyce, 2006). When used in a Combined Cycle Gas Turbine (CCGT) plant gas turbine 

systems are capable of reaching global electrical efficiencies of 60%, and with a 

significantly higher electrical efficiency than a typical CHP plant, which uses an internal 

combustion engine. This increased efficiency means a higher output for a given input 

and reducing emissions of greenhouse gases. 

 

Figure 9: Diagram of Gas Turbine (GE Energy, 2011) 

Biomass Integrated Gasification/Gas Turbine (BIG-GT) plants have the potential to 

significantly increase the electrical efficiency of a producer gas fired plants, with the 

obvious use in an IGCC plant, which is essentially a BIG-GT plant integrated into a 

combined cycle.  

 

Figure 10: Increase in permissible turbine temperature and the technological drivers, adapted from Assadi and 
Ohlsson (2008) 
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The power rating of the turbine may suffer as a result of using producer gas, with its 

low energy content per unit volume. However co-firing with natural gas can 

compensate for this, firing with upward of 35% natural gas, on an energy basis, will 

allow for the full power rating of the turbine to be realised (Rodrigues et al., 2003). 

This co-firing may be an important step in realising the potential of BIG-GT plants in 

the short term, but using natural gas means there is still a reliance on externally 

supplied fossil fuels. 

1.7 Summary and Thesis Aims 

Energy requirement is increasing, and as a result, so is its production. This is true of 

the United Kingdom and the world as a whole. Despite this, there is both a moral and 

legislative drive to significantly reduce the emission of greenhouse gases, including 

carbon dioxide. To achieve this, new technologies must be developed and deployed, 

whilst the efficiency and capabilities of existing technologies must be increased.  

The use of gas turbines, boilers, and internal combustion engines, all well developed 

technologies, fired on alternative fuels, are viable methods for producing energy in the 

short to medium term. Alternative fuels range from those based on highly enriched 

hydrogenated blends, to those that are produced from bio-materials, and those that 

occur naturally.  

A property shared by many alternative fuels is a composition that is prone to variation. 

The initial aim of this thesis is to assess how changes in composition, with biomass 

derived producer gas and natural shale gas of particular interest, alter combustion 

properties.  The potential effect of alterations in combustion properties on flame 

stability are then considered to assess whether current fuel classification techniques 

are sufficient.  

Gas turbine technology in particular is evolving to cope with the use of these new 

fuels. However, operators are still finding problems with fuels that vary in 

composition. They are prevented from consistently operating under optimal 

conditions, posing a new challenge to produce more flexible equipment or operating 

procedures. 

Methods to aid in the stabilisation of alternative fuel combustion will increase their 

viability for energy production, whilst facilitating combustion under leaner conditions, 
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which will reduce emissions. This thesis aims to offer potential for additional 

stabilisation of flames in order to compensate for variations that occur in fuel 

composition. The monitoring of acoustic response, and diffusive dilution of fuels, 

particularly those with high hydrogen content, are the methods researched. 

1.8 Thesis Structure 

Chapter 1-  Provides a background into natural gas, the history of gasification, the 

sources of gasifier feedstock and the end use of the gaseous fuel 

produced. It also provides background information regarding the 

combustion processes used to extract thermal energy from the fuels, and 

the systems in which they are utilised. 

Chapter 2-  Reviews literature relating to swirl combustion, thermo-acoustic 

phenomena and the variable nature of the fuel sources discussed in 

chapter 1. 

Chapter 3-  Reviews the techniques used to investigate flame flow fields, acoustic 

oscillations, and the test rigs with which they were used. 

Chapter 4-  Details experiments in producer gas variability, and assesses how the 

variability in producer gas and natural gas composition affect combustion 

properties. 

Chapter 5-  Details experiments in burner acoustic response under isothermal 

conditions. 

Chapter 6-  Details experiments in burner acoustic response under combustion 

conditions. 

Chapter 7-  Details experiments into reactive and proactive structure augmentation 

using diffusive injection. 

Chapter 8-  Discusses the conclusions of this work, and the direction of future 

research. 

Chapter 9-  A bibliography of studies referenced in this work. 

Chapter 10-  Additional material relating to this thesis 
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Chapter 2:  Swirling Flows, Thermo-acoustics and 

Fuel Composition 
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2.1 Introduction 

Swirl combustion is a practice that has been heavily investigated for over half a 

century in many institutions all over the world, and is a hugely applied technology. 

Despite this activity there are still many unknowns and unexplained phenomena 

associated with the combustion of swirling flows. Due to their exceptional ignition, 

burnout and mixing characteristics they can be found in almost all industrial 

combustion processes, including refineries, furnaces, reciprocating engines and gas 

turbines (Hoffmann et al., 1994) where they are capable of stabilising the high 

intensity flames that these operations warrant (Froud. D, 1996). 

The primary reason for using swirl combustion is flame stabilisation. A stable flame is 

one that will not propagate beyond the design limits of the combustor, will not 

extinguish, and thus will not spontaneously re-ignite (Schefer, 1998). It is by no means 

the only method of flame stabilisation; others include the use of baffles, bluff bodies, 

or pilot flames, with different methods suiting different applications. The similarity 

between swirlers, baffles and bluff bodies is that they create low flow velocity or 

recirculation zones which in which the fluid velocity of the unburned mixture is less 

than, or equal to, its flame speed, which prevents the flame from blowing off. For a 

flame to be blown off, and extinguished, the local and global velocity of the flow must 

exceed the flame speed of the mixture. In swirling flows, velocity should be at its 

greatest when it is at the exit nozzle of the swirler, from that point an axial decay of 

the tangential velocity and radial pressure occurs (Syred, 2006). Ideally, the turbulent 

flame speed and fluid velocity are such that the flame will be stabilised at the point it 

exits the nozzle. If the flame speed drops then the flame will stabilise at a point 

further downstream. If the flame speed drops sufficiently, relative to local and global 

flow velocities, the flame will be unable to stabilise and ignite the unburned mixture, 

thus the flame will go out.  

Thermo-acoustics are the pressure fluctuations that result from a combustion process, 

most work in the field deals with the instabilities that develop as a result. The onset of 

these instabilities was first theorised by Lord Rayleigh (1896), who defined a criterion 

for their positive coupling. Thermo-acoustic oscillations always exist, however, 

without positive coupling they may not actually develop into instabilities capable of 
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having a negative effect on the combustion process. Indeed there are combustion 

systems that depend on sustained instabilities to achieve increased performance 

levels, including pulse combustors, ramjets and scramjets (Hathout, 2012, Lieuwen 

and McManus, 2003).  

Given a suitable phase relationship, acoustic oscillations and heat release pressure 

fluctuations within the combustion chamber can amplify to the extent that the flame 

can flashback or blowoff. There have been many passive techniques employed to 

prevent this, like Helmholtz resonators or acoustic dampers. These techniques are still 

widely used in practical applications, however research now tends to focus on active 

techniques (Stone and Menon, 2002), which are extremely varied, but are capable to 

reacting dynamically to system changes and can target a wide range of frequencies. 

Syngas, has a great number of definitions, in this context it is a synthetically produced 

fuel, with usually two of its main constituents being hydrogen and carbon monoxide, 

derived from the gasification of a carbonaceous material, including:  

 Biomass, which is classed as a renewable energy source. Its greatest potential 

is in distributed power generation, most likely in CHP systems utilising a boiler 

or internal combustion engine, with a fuel source located close to the plant. 

 Coal, which will be important in the future to supply base load power. 

Gasification prior to the combustion process makes coal more environmentally 

acceptable, and the Syngas is of far higher calorific value than that of biomass. 

This allows it to be used successfully in centralised power stations with and 

IGCC configuration, where a significantly higher electrical efficiency can be 

achieved. 

One issue relating to fuels derived from gasification are variations in composition, 

which define combustion properties. A successful burner design is capable of 

producing a stable manageable flame despite fuel variability; this may be achieved 

using burner geometry or a flow control system. Normally a burner is designed for use 

with a specific fuel, if another fuel is used the Wobbe Index is used to assess the 

interchange ability. The Wobbe Index is calculated by dividing the Gross Calorific Value 

(GCV) of the gas by the square root of its specific gravity, the higher the Wobbe Index 

the greater the calorific value of the quantity of gas that will flow through a hole of a 
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given size in a given amount of time (American Gas Association, 1946). Producer gas 

has a naturally variable composition, as gasifier operation and feedstock vary (Yan et 

al., 2010, Lewis et al., 2012), so even though the fuel source is seemingly constant the 

same considerations of the Wobbe index must be applied.  

2.2 Swirl Flow Characteristics 

Swirling flows are defined as a flow that simultaneously experiences axial and 

tangential vortex motions (Syred et al., 2012). These motions and inherent 

momentum on the flow may are caused by burner geometry and the introduction of 

flow in some cases, and are affected by the combustion process. The primary 

definition of a swirling flow  and the most predominantly used parameter for 

characterisation is swirl number (Abdulsada et al., 2011). 

2.2.1     Swirl Number 

Swirl number (S) is a similarity criterion that specifies the intensity of swirl that is 

imparted on the flow (Syred and Beér, 1974), and is defined by the ratio of axial flux of 

the tangential momentum to the product of axial momentum flux and characteristic 

radius (Beér and Chigier, 1972), as shown below in Equations 2.1, 2.2 and 2.3: 

 

       
  

     
    Eq (2.1) 

 

Given that: 

                     
    

       
 

 
  Eq (2.2) 

 

 

            
      

                
 

 
 Eq (2.3) 

 

 

Where: Gθ  = axial flux of tangential momentum (kg∙m/s) 

Gx  = axial momentum flux (kg/m∙s) 
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Ua  = axial velocity (m/s) 

  ua’ = fluctuating axial velocity (m/s) 

  Ut = tangential velocity (m/s) 

  ut’ = fluctuating tangential velocity (m/s) 

  ρ = density (kg/m3) 

  r = radius (m) 

  re = characteristic radius (m) 

 

Combustor geometry and the profile of the flow strongly influence the expression of 

swirl number (Huang and Yang, 2009). Although the geometry is fixed, during 

combustion the flow pattern is subject to the influence of changing temperatures 

within the combustion zone, and the existence of coherent structures which can have 

significant effects upon the flow field (Valera-Medina, 2009). Due to these potential 

changes, the estimation of the preceding integrals is exceptionally complex, as is 

specifying a single swirl number without the use of velocity measurements. 

A more practical and easily obtained characterisation of swirl imparted on the flow is 

obtained by calculating the Geometric Swirl number, (Sg). It is calculated using only 

inlet conditions and combustor geometry, allowing variations in flow pressure to be 

neglected (Syred and Beér, 1974). It is defined below for isothermal conditions, where 

density is constant, in radial type burner: 

 

       
     

     
  

   

   
 
 

    Eq (2.4) 

 

 

Where: Ae = Area of Burner Nozzle Exit (m2) 

  rt = Effective Radius of Tangential Inlet (m) 

  At = Area of Tangential Inlet (m2) 

  re = Radius of Burner Nozzle Exit (m) 

  Qta = Tangential Flow Rate (m3/s) 

  Qto = Total Flow Rate (m3/s) 
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To simplify for situations where all flow is fed either tangentially or diffusively, the 

geometric swirl number can be broken down to its Geometric Coefficient (Cg) and 

Flow Coefficient (Cf), so: 

 

                                                          
     

     
    Eq (2.5) 

                                                           
   

   
     Eq (2.6) 

                                                               
     Eq (2.7) 

 

The temperature of the gases leaving a combustor nozzle is increased by the 

combustion process. Due to the nature of the geometry of a swirl combustor this 

occurs after tangential momentum has been applied to the flow, as such the increase 

in temperature and subsequent expansion of product gases increases the axial 

momentum of the flow with respect to tangential momentum, reducing the level of 

swirl. To account for combustion Sg may expressed thus: 

 

                                                           
   

  

  
    Eq (2.8) 

 

Where: Tr = Temperature of reactant gases (K) 

  Tp = Temperature of product gases (K) 

 

Geometric swirl number is not an estimation of swirl number, which is a property of 

the flow exiting the nozzle, but of the burner geometry and the flow entering.  

 

2.2.2     Types of Swirl Burners 

The majority of swirl burners, especially those commissioned for industrial 

applications can be split in to two categories, axial swirlers and radial swirlers. 

Radial swirlers use inlets that are perpendicular to the central axis of the burner to 

generate the swirling flow, as depicted in Figure 11, as such the geometric swirl 
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number of these types of burners can be de easily defined. They are easily adapted to 

operate over a range of geometric swirl numbers and have been the focus of a large 

amount of research studies into swirl combustion (Syred et al., 2004, Syred et al., 

2012, Valera-Medina, 2009, Valera-Medina et al., 2009, Valera-Medina et al., 2011b, 

Abdulsada et al., 2011, Bagdananvicius et al., 2010, Claypole and Syred, 1983, Claypole 

and Syred, 1985, Fick, 1998, Fick et al., 1998, Froud, 1995, Froud et al., 1995, Froud. D, 

1996, Lewis et al., 2012, O’Doherty et al., 1999). 

 

Figure 11: Schematic of a radial swirler 

The schematic shown in Figure 11 is of a simple radial swirler in which air enters 

through tangential inlets which do not intersect with the burner axis, resulting in a 

flow that circulates around an axial injector. Fuel can either be injected axially or 

premixed with the combustion air. Many variations on this design have been 

developed over the years, two of which are shown in Figure 12, however the principle 

remains the same. The burner in Figure 12 (a) has two sets of air inlets; those 

combined with a honeycomb and mesh assembly near the base providing air with axial 

momentum, and those providing air with tangential (and some axial) momentum. Fuel 

is injected at the centre of a large, annular bluff body, which aids in the formation of a 

recirculation zone. The burner in Figure 12 (b) also has tangential and axial inlets, in 

this case air with tangential momentum mixes with air and gas with axial momentum 

in the swirl pipe. Axial swirlers generate swirl using an array of vanes to redirect the 

flow and apply a tangential momentum, and as such are not applicable to the 

geometric swirl number, a schematic of a simple axial swirler is shown in Figure 13. 
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Gas turbine combustors utilise axial swirlers, however they often utilise two 

concentric sets of vanes. 

 

(a)      (b) 
Figure 12: Examples of radial swirl burners of varying design (a) developed by the Sydney university group (Guo B, 

2003, Masri AR, 2004, Al-Abdeli YM, 2003, Al-Abedi YM, 2003) (b) as documented by Syred and Beer (1974) 

 

 

Figure 13: Schematic of an axial swirler 

2.2.3     Vortex Breakdown 

Vortex breakdown is a recognised phenomenon that is essential to swirl combustion 

as it results in the formation of a centralised recirculation zone, which will be 

discussed in detail later. Below the critical swirl number, believed to be around S = 0.6 

(Luca-Negro and O’Doherty, 2001). The flow forms a structure resembling those 

observed naturally in tornadoes or typhoons, and like these structures there is a low 

velocity region that is encircled by a high velocity region. If the critical swirl number is 
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exceeded then vortex breakdown or vortex bursting occurs. Faler and Leibovich (1978) 

used a liquid dye tracer in swirling water flows to identify seven modes of vortex 

breakdown, the three most distinct of which were also identified as being double 

helix, spiral and axis symmetric (Sarpkaya, 1971a, Sarpkaya, 1971b). Similar structures 

have been identified under conditions of swirl combustion (Syred, 2006), a double 

Precessing Vortex Core (PVC), a single PVC and a Central Recirculation Zone (CRZ) 

respectively. However, in swirl combustion it is established that a PVC cannot be 

formed without a CRZ; therefore an axis symmetric breakdown is the type of most 

significance. The schematic in Figure 14 (Gupta et al., 1984)  demonstrates the process 

leading to an axis symmetric vortex breakdown, where P represents pressure, Ut 

represents tangential velocity and Ua represents axial velocity.  

 

Figure 14: Schematic of the process leading to vortex breakdown, adapted from Gupta et. al. (1984) 

It can be seen that there is no tangential velocity along the axis of the burner. As axial 

distance from the nozzle increases, the flow expands in the tangential and radial 

directions. This results in a reduction in velocity and an area of low or negative 

pressure along the central axis of the burner. When swirl number reaches its critical 

value the low or negative pressure exerts a force sufficient to suck fluid back toward 

the nozzle, creating a recirculation zone, the CRZ. 

2.2.4     Flow Structures 

Once vortex breakdown has occurred coherent flow structures are formed 

downstream of swirler, these structures have significant effect on the stability of the 
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burner in both positive and negative ways. There has been significant work into the 

characterisation of structures that occur within swirling flows (Gupta et al., 1984, 

Valera-Medina, 2009, Syred and Beér, 1974, Syred et al., 1997, Lee et al., 2000, Froud 

et al., 1995). These structures have been shown to stabilise the flame, in the form of a 

Central Recirculation Zone (Syred et al., 1971), or be a cause of instabilities, in the 

form of Precessing Vortex Core. 

2.2.4.1     Central Recirculation Zone  

The CRZ is so named because it re-circulates both thermal energy and active chemical 

species in a low pressure, low velocity zone that occurs at the burner exit, also 

allowing turbulent flame speed to match the flow velocity. This re-circulation allows a 

flame to be established and stabilised (Syred and Beér, 1974, Gupta et al., 1984). 

Figure 15 (Beér and Chigier, 1972) shows lines of constant stream functions in a typical 

swirling flame, on a plane that intersects the central axis of the burner.  

 

Figure 15: Stream function distribution showing a typical recirculation zone of a swirl burner, adapted from Beér and 
Chigier (1972) 

As the swirling flow exits the burner it expands due to its tangential velocity, and in 

this case, together with the fuel injector, creates an area of low pressure into which 

low velocity swirling air is drawn, this air is then re-circulated around the central axis 

of the burner. It is possible to introduce fuel on the central axis of the burner in 

diffusion mode, or to premix the fuel into the swirling flow, where the fuel is 

introduced has a marked effect on the strength of the CRZ and the shape of the flame, 

as is shown in Figure 16. 
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Figure 16 (a), where all fuel is premixed into the swirling airflow, shows that upon 

leaving the burner exit the flame is of the same diameter. As the fuel is evenly mixed 

with the swirling air a relatively low percentage is entrained into the CRZ, so it does 

not have a strong structure, which is in complete contrast to the flame in Figure 16 (b). 

The axially introduced fuel does not effectively mix and produce a combustible 

mixture with and the swirling airflow until noticeably downstream of the burner exit, 

with the majority of it initially retained in the strong recirculation zone, which reaches 

down to the burner exit. This gives the flame the distinctive tulip shape seen in Figure 

16 (b).  

 

       (a)                                                        (b)    
Figure 16: The effect of fuel introduction on the shape of a flame with S = 1.8, 5% excess air with fuel 

(a) fully premixed and (b) injected on central axis (Syred and Beér, 1974) 

2.2.4.2     Precessing Vortex Core 

The PVC is a three dimensional, time dependant, rotating hydrodynamic instability 

that occurs as soon as a swirl generated CRZ is formed (O’Doherty et al., 1999), 

developing when the CRZ starts to precess around the central axis of the burner at a 

well defined frequency (Huang and Yang, 2009). The presence of a PVC distorts the 

shape of the CRZ so that its profile becomes that of a crescent, rather than annular. 

The two structures then rotate around the burner exits central axis in the direction of 

the prominent swirl, as shown in Figure 17. The axial loss of tangential momentum 

and velocity causes the structure of the PVC to become helical about the central axis 

of the exit nozzle, this helical structure is shown in Figure 18 (a). When compared with 

an image of a PVC in a premixed flame in Figure 18 (b) its helical nature is visible, but 

is not as prominent as the exaggerated visualisation in (a). 
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Figure 17: Flow patterns of a PVC and CRZ pairing, adapted from Syred (2006) 

The mechanisms that result in the manifestation of the PVC are not known 

conclusively, however theories do exits. Yang and Lieuwen (2005) believed it to be a 

series of small eddies that are generated by the CRZ, similarly Paschereit and Gutmark 

(2006) claimed that Kelvin-Helmholtz vortices, produced by inequalities in momentum 

and density, found a common path energized by the CRZ. Aleseenko (1999) gave ideas 

it was a manifestation of the compressing-expanding mechanism in the inner part of 

the structure. Despite the mechanism of its manifestation being unclear, as is its 

influence on the combustion system as a whole, it is known to provide a route of rapid 

transport of fluid through the flame’s recirculation zone (Valera-Medina, 2009) and 

has a fundamental role in flame stability (Syred, 2006). 

              

(a)     (b) 
 Figure 18: Visualisations of the PVC (a) its helical nature (b) with axial injection into a premixed flame adapted 

from Fick (1998) 
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With regards to the current studies, the effect the PVC has on pressure fluctuations 

inside the burner is very important as they can have a significant effect on burner 

stability as they couple with other oscillations within the system. The frequency of the 

PVC can be characterised by Strouhal and swirl numbers (Gupta et al., 1984, Syred and 

Beér, 1974, O’Doherty T, 1994, Syred N, 1994, Sprruyt, 1972, Chanaud, 1962), the 

Strouhal number being a weak function of Reynolds number. Fick (1998) showed, 

using a pressure transducer mounted in the burner nozzle, that the PVC would create 

pressure fluctuations at the same frequency that it rotates around it. 

The PVC may be severely dampened under combustion conditions, having a significant 

effect on the resulting pressure fluctuations. Work using a radial swirl burner 

(Claypole, 1980b, Claypole, 1980a, Claypole and Syred, 1980) showed how fuel 

injection played a crucial role in defining the strength of a PVC by comparing the 

resulting pressure fluctuations under isothermal and combustion conditions. Figure 19 

(a) shows that when fuel is injected axially the amplitude of pressure fluctuations of 

the PVC are reduced significantly, by up to a factor of 15. However, premixing the fuel 

is shown to have a minimal effect on its strength, Figure 19 (b) showing under most 

conditions actually increasing it. 

The frequency recorded may also be affected by the presence of a second precessing 

vortex as was also investigated by Claypole and Syred (1980). A double PVC is the 

result of a type of vortex breakdown similar to that identified as double helix 

breakdown, but does not necessarily occur at the initial breakdown phase (Sarpkaya, 

1971a, Sarpkaya, 1971b, Faler and Leibovich, 1978). 

 

(a)      (b) 
Figure 19: Effect of combustion on the PVC (a) diffusive fuel (b) premixed fuel (Claypole, 1980b, Claypole, 1980a, 

Claypole and Syred, 1980) 
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Figure 20 (a) shows that vortex breakdown and the presence of a PVC only occurs 

above the critical geometric swirl number of 0.3 and critical flow rate of 0.6 m3/min, 

which is equivalent to a Reynolds number of 40,000. When Sg is in the range 0.8 to 1.8, 

and when flow rate is sufficient, a second PVC is developed of equal intensity. Images 

of a double PVC formation were captured using a high speed camera. A reflective 

surface allowed axial and radial views to be taken simultaneously; they are shown in 

Figure 20 (b). They show the symmetrical nature of the formation which results in a 

second harmonic in the acoustic response. 

  

                                      (a)                                                                                   (b) 
Figure 20: The presence of a double PVC as identified by Claypole (Claypole and Syred, 1980, Claypole, 1980b, 

Claypole, 1980a) (a) occurrence for a range of swirl numbers and flow rates (b) image pairs simultaneously taken 
axially and radially  

2.2.4.3     Edge Recirculation Zone 

An Edge Recirculation Zone (ERZ), sometimes referred to as the corner recirculation 

zone, is former by the sudden expansion of flow when the burner nozzle terminates in 

a combustion chamber of greater diameter. Like the central recirculation zone it is 

formed by areas of low pressure causing the direction of the flow to change, it is also 

annular; the flow patterns for both recirculation zones are shown on the left hand side 

of Figure 21. 

Although it is not crucial for stability like the CRZ, the ERZ also re-circulates hot 

unburned gases into the reactant mixture (Coghe et al., 2004). The presence of an ERZ 

can be eliminated via combustor design, as shown on the right hand side of Figure 21, 

where the lack of a corner prevents a low-pressure zone forming. 
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Figure 21: Indication of flow patterns of Central and Edge Recirculation Zones 

2.2.4.4     Mixing and Shear Layers 

The mixing layer in a flame defines where the un-ignited mixture meets the flame 

front and the ignited mixture, a velocity gradient exists across it which is related to the 

stability of the flame (Dhanuka et al., 2009). The position of the mixing layer is shown 

in Figure 22 (b). 

Strong shear layers develop where the high velocity swirling flow meets the relatively 

stagnant fluid in the combustion chamber. This shear layer produces regions of low 

velocity flow, and can allow the flame to propagate back to the combustor nozzle. The 

further downstream, the greater the fluid velocity is reduced, increasing the thickness 

of the shear layer; evidence of this is shown in Figure 22 (a), its position shown more 

clearly in Figure 22 (b). The diameter of the low velocity region in the centre of the 

flow also increases as the distance from the combustor nozzle increases, this can been 

seen in Particle Image Velocimetry (PIV) data taken from a gas turbine combustor in 

Figure 23. The radial magnitude, which is indicative of overall magnitude, is highest in 

Figure 23 (a), at a distance from the burner exit which is equal to 0.045 of its diameter. 

The scalar plots indicated radial velocities reaching 65 m/s, the shear layer where the 

swirling flow mixes with the air and products in the combustion chamber is very thin. 

Progressing downstream in (b) and (c) the peak velocities reduces and the shear layer 

thickness increases. At 0.45 diameters downstream, shown in (d), the peak radial 

velocity has reduced to 56 m/s. 
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The result being that the annulus where overall flow velocity is too great for the flame 

to propagate into reduces in thickness the further downstream the fluid is. For the 

flame in Figure 22 (a) the conditions are such that the low velocity flammable regions 

of the flames main body and shear layer meet up allowing the flame to propagate. 

     

(a)                                                                 (b)                 
Figure 22: Shear layer propagation in a swirling flame as seen by Syred et.al. (2012). (a) shows the full flame and (b) 

shows an indication of the mixing and shear layers 

Once propagation through the shear layer has been established, flashback can occur 

via the further propagation through the outer wall boundary layer of the combustor 

nozzle, being controlled by critical velocity gradient (Bagdananvicius et al., 2010) as 

defined by Lewis and von Elbe (1987).  

The mixing layer that exists between the pilot flame and the main fuel mixture 

(Dhanuka et al., 2009) ensures that equivalence ratio in the shear layers is not affected 

by that of the pilot. 

 

 

                      (a)     (b)                 (c)              (d) 
Figure 23: Radial magnitude plots of combustor at (a) 0.045D (b) 0.09D (c) 0.23D (d) 0.45D from nozzle exit (Morris, 

2012) 

Where these layers occur so does the Kelvin-Helmholtz instability, which results in 

eddies appearing in the flow. These instabilities are the result of either a velocity shear 

in a single continuous fluid or when two fluids of different velocities pass over each 

Velocity (m/s) 

Mixing 
Layer 

Shear 
Layer 
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other. The result is a wave like formation caused by friction and fluid tension; both 

examples are seen frequently in nature. Velocity shear in a single fluid is shown in 

Figure 24 , where shearing winds result in this particular type of turbulence, with cloud 

entrainment acting as an indicator. 

  

(a) 
Figure 24: Kelvin-Helmholtz instabilities occurring in nature caused by shearing winds (customhouse, 2012) 

These instabilities can lead to structures forming in the flow, as previously mentioned. 

Paschereit and Gutmark (2006) believe that they are the fundamental source of the 

PVC. These development and breakdown of these structures may lead to periodic heat 

release capable of driving pressure fluctuations (Schadow and Gutmark, 1992). The 

shear driven instability and the modulations in the mixture result in distinct modes 

over a wide frequency range (Fritsche, 2005). 

2.2.5     Combustion Induced Vortex Breakdown 

Combustion Induced Vortex Breakdown (CIVB) is a phenomena that can be, but should 

not be, confused with Vortex Breakdown. Whereas, as it was earlier established, 

vortex breakdown is the fundamental cause for the induction of a central recirculation 

zone, CIVB is the cause of its destruction. Some researchers (Valera-Medina, 2009, 

Valera-Medina et al., 2009, Valera-Medina et al., 2011a, Valera-Medina et al., 2011b, 

Valera-Medina et al., 2012, Stöhr et al., 2012) have observed that the CRZ has a close 

connection to the stability of the system, with its shape, strength and curvature being 

of high importance to its resistance to flashback and blowoff (Valera-Medina et al., 

2012, Kedia and Ghoniem, 2012). Therefore it stands to reason that in the interest of 

flame stability CIVB should be avoided. Indeed CIVB has been identified, in a series of 

papers (Lieuwen et al., 2008, Fritz et al., 2004, Kroner, 2002, Kroner et al., 2003) as 

being one of the four causes of flashback, namely (i) boundary layer flame 

propagation, (ii) turbulent flame propagation in the core flow, (iii) thermo acoustics 
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and (iv) upstream flame propagation of coherent vortical structures via CIVB. Although 

it could be argued that CIVB also plays its part in boundary layer and turbulent flame 

propagation by augmenting the position of the flame in a way that makes them 

happen more readily (Lewis et al., 2014). 

 

Dam et al. (2011a) demonstrated combustion induced breakdown of vortices as a 

result of the high velocity zones of a flame squeezing the recirculation zone, causing 

the CRZ to propagate upstream and vortex breakdown to continue until the flame 

becomes attached to swirl injector. This squeezing of the recirculation zone is shown 

in Figure 25, where equivalence ratio in the images increased left to right, then top to 

bottom. The flame was initially stabilised downstream of the tip of the burner’s centre 

body, two high velocity flame zones are visible, there are also visible vortices, V1, V2, 

W1 and W2, propagating through the recirculation zones. As the equivalence ratio 

increased, the recirculation zone visibly increased in size. Once the equivalence 

reached a critical level the recirculation zone became squeezed and ultimately broke 

down, inducing a flashback. 

 

 

Figure 25: Sequence of a CIVB flashback for a fuel mixture of 10% H2 and 90% CO with S = 0.97; areas enclosed by 
solid black, dotted white, and solid white lines represent the approximate location of flames, recirculation zones, and 

vortices, respectively (Dam et al., 2011a) 

2.3 Thermo-acoustic Instabilities 

There is a significant challenge posed by the large variety of thermo-acoustic 

responses that may appear in a combustion system, resulting from equally varied 

dynamic properties, even in static systems. Inside the scope of this project thermo-
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acoustic instabilities are unwanted effects of a combustion process that can lead to 

the extinction of flames and damage to combustion systems, the mechanisms of 

initiation and the detrimental effects of which will be discussed. However, there are 

several applications where these sustained instabilities are utilised to achieve a 

greater level of performance, including pulse combustors, ramjets and scramjets 

(Hathout, 2012, Lieuwen and McManus, 2003) 

When compared with steady combustion, pulse combustors have the potential to 

deliver higher efficiency and combustion intensity whilst keeping pollutant emissions 

very low (Dec et al., 1990). There are three fundamental pulse combustor types, each 

being applicable to a certain fuel type. Schmidt combustors and Rijke tubes are used 

with liquid and solid fuels respectively, whilst Helmholtz resonators are used where 

the fuel is gaseous. As the name suggests the combustion process is intermittent, 

resulting in a pulsing pressure and heat release, utilising the thermo-acoustic coupling 

that can be so destructive in a swirl combustion system. Thermo-acoustic instabilities 

refer to large amplitude oscillations of pressure, heat release, velocity and other 

variables inside the combustion chamber, which often occur at discrete frequencies 

associated with the natural acoustic modes of the combustor (Lieuwen, 2012a). They 

represent a major challenge with regard to the design of combustion systems as their 

occurrence is incredibly difficult, or even impossible to predict as they are the result of 

a spontaneous excitation of a feedback mechanism that exists between unsteady heat 

release and a natural acoustic mode of the system itself (Mohammad et al., 2012, 

Lieuwen, 2012a). 

The high pressure fluctuations that can result are capable of causing flame extinction, 

through either flashback or blowoff, or, for gas turbines in particular, oscillatory 

mechanical loads that lead to high cycle fatigue in system components and an uneven 

thermal distribution in the exhaust gases. Impending flame extinction events, as well 

as potentially being caused by fluctuations in pressure, are also the result of changes 

in the equivalence ratio of the reactant mixture, whether it is caused by a change in 

fuel composition or air-to-fuel ratio. The consequential effect on flame speed is 

another one of many factors that have the potential to induce thermo-acoustic 

instabilities (Lieuwen et al., 2008). Other factors are vibration phenomena, wall thermal 

stresses and reduced combustion efficiency. All contribute to compromise the structural 
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integrity and performance of the combustor (Fichera et al. 2001). Regardless of 

combustion conditions, be they stable or not, in any practical combustion system, 

oscillations will always exist, a theory prescribed to by Putnam as far back as 1971 

(Putman, 1971). The type of oscillations can be grouped into three rough categories: 

 Stable combustion produces small amplitude pressure oscillations; they are 

typically less 5% of the chamber pressure. 

 Rough combustion produces large amplitude pressure fluctuations with no 

distinct pattern. 

 Unstable combustion produces large amplitude pressure oscillations with a 

well defined frequency. 

2.3.1     Mechanisms and Saturation 

The onset of thermo-acoustic instabilities was first theorised by Lord Rayleigh, who 

defined a criterion for positive coupling based on a phenomenological, heuristic 

description of said instabilities (Hathout, 2012, Fritsche, 2005). It is established that 

there are always unsteady combustion process’ present in a combustion system with 

turbulent flows, the mechanism of coupling between these heat release oscillations 

and perturbations in the flow and mixture is what leads to acoustic oscillations in the 

combustion process, as shown in Figure 26. 

 

Figure 26: Heat release and flow perturbations causing acoustic oscillations, adapted from Lieuwen (2012a) 

As was previously discussed, acoustic oscillations do exist under stable combustion 

conditions; as such, their presence does not necessarily indicate a present or 

impending instability. In order for an instability to develop a feedback mechanism 

must exist, depicted in Figure 27. This consists of a generic sequence of events 

(Lieuwen, 1999, Lieuwen, 2012a). 
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 Fluctuations in some flow or thermodynamic variable e.g. velocity, pressure, 

Air-to Fuel Ratio (AFR) etc. excites a fluctuation in heat release. 

 The unsteady heat release triggers acoustic oscillations that propagate away 

from the combustion region. 

 The acoustic oscillations generate the flow and thermodynamic disturbances. 

The effect of coupling is amplified by the Rayleigh criterion (Syred, 2006, Lefebvre and 

Ballal, 2010), which emphasises the importance of phase relation in driving the 

oscillations to the point of instability and describes the mechanism responsible for 

limit-cycle heat driven oscillations in addition to the relationship between the pressure 

wave and heat release (Lord Rayleigh, 1896).  

The phase relationship between the heat release oscillations and the acoustic 

oscillations is fundamental to the feedback process resulting in an instability (Fritsche, 

2005). The energy added to the acoustic pressure wave by the heat release must be in 

phase, so the instantaneous peak in acoustic pressure in the combustion zone must 

coincide with the instantaneous peak in heat release, regardless of frequency. Actually 

the instantaneous peaks do not need to be perfectly aligned, with feedback 

mechanism occurring if the magnitude of the phase between the unsteady acoustic 

oscillations and the unsteady heat release oscillations is less than 90 degrees (Farhat 

and Mohamed, 2010, Lieuwen, 1999).  

 

Figure 27: Feedback mechanism for thermo-acoustic instabilities, adapted from Lieuwen (2012a) 
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Conversely, energy is removed from the acoustic pressure oscillations when the heat 

release oscillations in the combustion zone are in the range of 90 to 180 degrees out 

of phase. Without an acceptable phase relation, the interactions between 

perturbations in the flow and mixture, and oscillations of heat release or acoustics will 

destructively interfere with each other, as a result thermo-acoustic instability will not 

occur (Lieuwen, 1999). 

When the amplitude of the acoustic pressure oscillations reach their maximum value 

the instability is said to be saturated, at this point the time average of energy addition 

is equal to the time average of energy dissipation by the process of damping. When 

understanding thermo-acoustic instabilities knowledge of the saturation mechanism is 

just as important as that of the initiation and  amplification (Fritsche, 2005), the time 

evolution of the acoustic oscillations is shown in Figure 28. 

When the oscillations reach their peak amplitude they are termed limit cycle 

oscillations (Lieuwen, 2012a), the characterisation of which are influenced heavily by 

the non-linear processes that saturate the unstable amplitude (Fichera et al., 2001). 

 

Figure 28: Initiation, amplification and saturation of unstable mode over time, adapted from Lieuwen (2012a) 

2.3.2     Control 

Sustained instabilities are the result of a maintained presence of the feedback 

mechanism outlined in Figure 27. During the design and development of a burner the 

onset and effect of these instabilities is exceptionally hard to predict, the potential 

problems posed by these instabilities has warranted the advancement of solutions to 

try and suppress these oscillations (Noiray and Schuermans, 2012). The suppression of 
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the oscillations, and effective elimination of the thermo-acoustic instabilities, involves 

interrupting the feedback loop between the interaction of the heat release and 

acoustic oscillations (Huang and Yang, 2009). Two approaches have been adopted in 

developing systems to prevent this feedback occurring; passive methods and active 

control systems (Lefebvre and Ballal, 2010, Farhat and Mohamed, 2010, Stone and 

Menon, 2002). 

2.3.2.1     Passive Techniques 

Passive techniques are those which work to prevent the formation of instabilities 

independently of time, their form is fixed, and as such they do not offer a dynamic 

response to changes that may occur during the combustion process (Farhat and 

Mohamed, 2010). Passive techniques have been widely adopted in industrial burners 

for decades, as well as other fields, to increase a systems acoustic dampening by 

modifying hardware components, effectively reducing the amplitude of pressure 

oscillations (Lefebvre and Ballal, 2010). This reduces the rate at which energy is 

transferred to unsteady motions, preventing the acoustic oscillations contributing to 

the feedback mechanism and opening the feedback loop, preventing instabilities 

developing. 

Acoustic dampers are widely used, in various forms. Helmholtz resonators are used in 

many architectural type systems, like internal combustion engines in the exhaust and 

induction system. They are the acoustic equivalent of a mass damper system, tuned to 

a specific frequency, as such they can effectively target a narrow band of noise, 

working most effectively at their particular tuned frequency, and as such act a band 

reject filter. 

Quarter wave tubes are also narrow band reject filters, working most effectively at 

their tuned frequency. They are used in induction and exhaust systems as well as 

being used in pump pulsation abatement and other applications. The tubes are 

cylindrical, with one end open to the acoustic environment, the length of which is one 

quarter the length of the wavelength of noise that is being damped. In travelling the 

length of the tube twice the waves experience a 180 degree phase shift, abating the 

target noise. 
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Perforated acoustic liners are used in industrial mufflers and in the nacelle of aircraft 

engines. They consist of a solid backing separated from a perforated lining, as such 

they act like a large number of Helmholtz resonators, covering and providing acoustic 

damping over a large area. Perforated liners are well suited to high temperature 

applications as cooling flows can be passed between the perforated sheet and the 

solid backing. 

Acoustic damping methods such as Helmholtz dampers have been researched by 

Noiray and Schuermans (2012), whilst Tran et. al. (2008) have investigated perforated 

sheets and Gysling et. al. (2000) Helmholtz resonators. However, the majority of 

researchers now prefer to avoid passive techniques, as they cannot adapt to dynamic 

system changes, and are effective over a narrow frequency band, preferring to focus 

on active control (Stone and Menon, 2002). 

2.3.2.2     Active Techniques 

All active control systems dynamically detect and correct for insipient instabilities. 

However the techniques employed to do this vary in regard to the their theoretical 

basis and the hardware employed (Lefebvre and Ballal, 2010). The goal of the systems 

is to reduce the instantaneous error between desired and actual behaviour of the 

system. A sensor detects present or impending instabilities in the combustion process, 

the closed loop control system then modifies one or more of the input parameters to 

introduce external excitations, such as acoustic forcing or fuel/air flow modulations. 

The aim is to interrupt the coupling between acoustic pressure oscillations and 

unsteady heat release and prevent the instability occurring (Huang and Yang, 2009). 

Varying success has been achieved using active control mechanisms. Candel (2002) 

reported that research has focused on sensors, actuators, and control algorithms, with 

limited success being achieved in scaling from laboratory experiments to practical 

devices. Laboratory scale studies have shown that it is possible to reduce the 

amplitude of thermo-acoustic instabilities via active control, with application to full-

scale gas turbines resulting in an increased stability margin. 

Active control is applied using a closed loop control system, as shown in Figure 29. A 

sensor, whether it is a remote pressure transducer or external microphone, detects 

oscillations in the combustion zone. A control unit then uses an actuator to influence 
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the input parameters to the system in order to reduce the amplitude of the 

perturbations and oscillations in the system. 

 

Figure 29: Schematic of thermo-acoustic feedback mechanism with active control loop, adapted from Candel (2002) 

The strategies, sensors and actuators used can have a great deal of variety, Tachibana 

et.al (2007) used secondary fuel injection in order suppress combustion oscillations in 

a model lean premixed combustor. Similarly Yi and Gutmark (2008) found that 

sinusoidal or steady air forcing of the swirling air shear layer or fuel line could reduce 

the pressure oscillations. Paschereit et al. (1998) employed a closed loop method of 

altering acoustic boundary conditions which dampened pressure oscillations and 

reduced NOX  emissions in an experimental low-emission swirl-stabilised combustor. 

2.3.3     Gas Turbine Thermo-acoustics 

Gas turbine combustors, operating with a lean premixed flame, are highly susceptible 

to thermo-acoustic oscillations, significantly more so than systems that use a diffusion 

flames, due to several characteristic features (Lieuwen and McManus, 2003, Kelsall 

and Troger, 2003, Delaat and Paxson, 2008). Three significant characteristics are 

equivalence ratio, system damping and combustor length: 

 In order to reduce the combustion temperature, and thus NOX emissions, the 

combustors operate close to the flames lean blowoff limit (Bender, 2012, Nair 

et al., 2002), so small perturbations in heat release are capable of causing large 

pressure oscillations. 

 There is also the absence of dilution air and cooling liners, which suppress 

resonant amplifications (Huang and Yang, 2009) and act as efficient acoustic 

dampers. This results in a reduction of system damping (Delaat and Paxson, 

2008). The lack of an inherent damping mechanism makes the flame more 



 

                                 PAGE |49 
  

prone to both static and dynamic instabilities and allows small perturbations to 

escalate to large pressure oscillations. The flames are also more sensitive to 

acoustic excitations from sound waves, with flame response dependant on the 

nature of the acoustic waves, as well as its frequency, amplitude and phase 

(Syred, 2006). 

 The length of lean pre-mixed combustors is relatively short, reducing the 

likelihood of blowoff, this results in a flame that is short when compared to the 

longitudinal acoustic wavelength of the chamber (Huang and Yang, 2009), 

helping interaction between the motion of the flow and the heat release of the 

flame. 

Injector design is also a potential cause of increased thermo-acoustics. In gas turbines 

they promote intense turbulence levels and a uniform temperature distribution, the 

result of which is an acoustically homogenous system (Delaat and Paxson, 2008). 

Two coupled processes have been identified as being responsible for the  propensity 

of combustors to thermo acoustic instabilities (Culick  and Yang, 1995, Lieuwen and 

McManus, 2003). The fundamental reasoning being the coupled process is the same 

as that previously described, the flames are very sensitive to acoustic perturbations 

due to their proximity to the lean blowoff limit, and as such only a small fraction of the 

energy released by the combustion process is required to drive unsteady motions in 

the flame. The combustion chambers are also acoustically closed, so any sounds 

generated inside the chamber are reflected rather than dispersed. The resulting 

fluctuations in pressure disturb the flame and its rate of heat release by introducing 

oscillations. These waves generate acoustic waves, which are reflected and re-impinge 

in the flame, which, given an adequate phase alignment will result in an increase in 

the amplitude of the oscillations, in other words the system is inherently lacking in 

damping. 

The initial cause of the instabilities, which could derive from either pressure or heat 

release oscillations according to Huang and Yang (2009), can come from various 

sources. Some are caused by fluctuations in the air supply to the combustion system. 

Some by aerodynamic disturbances that are formed inside the combustion chamber 

itself, the rest are due to poor fuel distribution throughout the combustion chamber 

which results in local extinction and re-ignition in the flame zone (Lefebvre and Ballal, 
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2010). Variations in these causes identified by Candel (2002), Fritsche (2005) and 

Lieuwen (1999) include a non-uniform flame front area, caused by fuel-air oscillations, 

acoustic coupling between the combustion zone and the fuel line, varying turbulence 

intensity, mixing rate fluctuations and a periodic change in fuel composition. 

2.3.3.1     Predicting Instabilities 

According to Lieuwen (2005) it would be highly desirable for a gas turbine operator to 

have a quantitative description of stability margins of a system, or a how it would 

react to variable operating conditions, without having to operate in an unstable mode. 

Similarly, a major obstacle preventing the implementation of advanced flame 

optimisation strategies is the risk that unstable operation or blow out may occur 

(Ballester and Garcia-Armingol, 2010). 

There has been a great deal of research aimed at investigating instabilities at various 

operating conditions and parameters. The prevalence of high amplitude and low 

frequency oscillations is repeatedly identified, as is the fact that predicting their onset 

is still a great challenge (Lieuwen, 2012a, Abbott et al., 2012, Bender, 2012, Candel, 

2002, Farhat and Mohamed, 2010, Fichera et al., 2001, Fritsche et al., 2007, Gysling et 

al., 2000, Hathout, 2012, Huang, 2003, Huang and Yang, 2009, Lieuwen, 2012b, 

Lieuwen and McManus, 2003). 

There are many complexities that prevent this prediction, including; interactions 

between the flame, present acoustics and vortices or structures, all of which may 

affect the mixing of the air and the fuel and chemical kinetics (Yi and Gutmark, 2008). 

This being the case, there is a lack of reliable flame models capable of predicting 

relevant combustion parameters whilst accounting for operating conditions, burner 

settings or the transient response to other variables (Ballester and Garcia-Armingol, 

2010). Various approaches have been applied to predict and control instabilities, 

Lieuwen (2005) proposed an original approach in which processing the 

autocorrelation of the signal from pressure waves could be used to assess the 

damping coefficient of a system. When the damping coefficient is positive then the 

system is stable, as it approaches zero the system approaches its stability limit, and if 

negative, it is unstable. Yi and Gutmark (2008) calculated damping ratios in the 

frequency domain using the excited acoustic modes and a weighted least square 
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algorithm. Nair et al. (2002) used spectral, statistical and wavelet data analysis 

techniques to predict blow out in a piloted premixed flame by detecting its precursors. 

2.3.3.2     Classification 

One classification of combustion instabilities relates to the primary driving factor 

behind the instability, system, chamber and intrinsic instabilities (Valera-Medina, 

2009, Huang, 2003); 

 System instabilities are when system effects interact with combustion 

dynamics. 

 Chamber instabilities are triggered by hydrodynamic instabilities, shock 

dynamics, or acoustic disturbances, and relate to the acoustic character of 

the combustion chamber which is a function of its geometry. 

 Intrinsic instabilities are wholly dependent on combustion kinetics. They can 

be triggered without external influence and exist irrespective of confinement 

(Candel, 1992). 

With regard to gas turbine combustion thermo-acoustic instabilities can be classified 

by the frequency of their oscillations, and this is the prevailing general approach. 

Frequency bands exist to categorise them as low frequency, intermediate frequency 

and high frequency (Huang, 2003, Huang and Yang, 2009). 

The precise ranges of these bands is open to debate and will have a certain degree of 

variance depending on the combustion system. As a general rule, low frequency 

instabilities are those which occur below 30 Hz. They are likely to be related to the 

blowoff phenomena when equivalence ratio is low. The low frequency heat release 

fluctuations that are the result of extinction and re-ignition that occurs and tend to be 

of high amplitude. 

The frequency range of intermediate instabilities is 100 to 1000 Hz; they are caused by 

a coupling of the air-to-fuel ratio and acoustic oscillations, corresponding to the 

combustors longitudinal acoustic modes. Any instabilities above 1000 Hz are termed 

high frequency and are the result of the flame’s evolution and acoustic disturbances. 

They are related to the tangential acoustic modes of the combustor, and with the 

potential to cause swift engine hardware failure are of a great concern. 
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2.4 Fuel Compositions 

2.4.1     Natural Gas 

When first extracted, natural gas contains oil and water, both of which require 

removal. After this, the composition of the dry natural gas is highly variable, as shown 

in Table 3. Post drying the gas goes through the processes of acid gas removal, 

dehydration, mercury removal and nitrogen rejection. A turbo-expander and de-

methaniser are employed prior to the gas being sent to the sales gas pipeline in order 

to keep the percentage of methane in the gas as high as possible. This potential for 

differing compositions, along with differing operations in the gas processing facilities 

gives potential for composition changes in the composition of gas in the supply 

pipelines. 

This being the case, countries have produced regulations to specify the requirements 

of the natural gas supply by providing upper and lower limits for Wobbe Index (WI). 

The WI considers the energy density of the fuel under normalised pressure and 

temperature conditions (Ranga Dinesh et al., 2014), and is calculated as stated in 

Equation 2.9, where relative density equals the density of the fuel divided by the 

density of air: 

 

                                                               
  

   
     Eq. (2.9) 

 

Where: CV = Calorific Value (MJ/m3) 

  ρr = relative density (-)  

 

The upper and lower Wobbe Index limits of eight European Union member countries 

are shown in Figure 30. It shows that the range of composition allowed is greater than 

typically observed variations (Abbott et al., 2012), and due to the sources of natural 

gas utilised by different countries has resulted in the large variance in the regulatory 

limits, with the Dutch upper limit only slightly exceeding the Danish lower limit. There 

is now a large amount of international trade in natural gas, in the UK North Sea gas 

production is in decline, whilst the import of LNG from Russia has increased 
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significantly, and will continue to do so (National Grid, 2011). This being the case there 

has been an effort made to standardise regulations for natural gas supply within 

Europe by the European Commission. 

Table 3: Typical composition of unrefined natural gas (naturalgas.org, 2010) 

Methane CH4 
70-
90% 

Ethane C2H6 
0-

20% 
Propane C3H8 

Butane C4H10 

Carbon 
Dioxide 

CO2 0-8% 

Oxygen O2 
0-

0.2% 

Nitrogen N2 0-5% 

Hydrogen 
sulphide 

H2S 0-5% 

Rare gases 
A, He, 
Ne, Xe 

trace 

 

The European Association for Streamlining of Energy Exchange (EASEE) established a 

sub-group, EASEE-Gas, to “develop and promote the simplification and streamlining of 

both the physical transfer and the trading of gas across Europe” (EASEE-Gas, 2005). 

The limits set out by EASEE-Gas, shown in Figure 30, are still very wide, with the 

potential for 15% variance in Wobbe Index, this is sufficient to cause significant 

problems for gas turbine operators and manufacturers. 

 

Figure 30: European regulations for Wobbe Index limits, at 15°C, 1atm (Groenendijk. W, 2006, EASEE-Gas, 2005) 
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Gas turbines in general can be run on a great variety of fuels, with markedly different 

specifications; however a specific turbine has a very limited acceptable range for fuels. 

Before the regulation of emissions gas turbines used to use diffusive injectors, which is 

a very stable method of combustion, capable of supporting large changes in fuel 

composition. However, regions of particularly intense heat cause high a high emission 

of nitrous oxides, to avoid this, modern gas turbines utilise lean pre-mixed 

combustion. Premixed combustion is susceptible to flashback and blowoff, and both 

of these more likely to occur when high levels of combustion dynamics or thermo-

acoustic instabilities occur. Because of this combustors tend to be tuned to quite a 

specific operating range. Manufacturers also specify limits in terms of heating value 

and other bulk fuel properties, and typically specify an operating range that is in 

excess of ± 10% of mid range values. In order to achieve such a broad range the gas 

turbine may require re-tuning, including some hardware changes. A typical, tuned, 

installation range would be ± 5%, and some may be as low as ± 2% of the specified fuel 

properties  (Abbott et al., 2012). 

Data published by Abbott et. al. (2012), taken directly from an E.ON UK gas turbine 

site, demonstrates not only how natural gas supply composition in the U.K. varies, but 

also how the changes in composition effect operation of gas turbines. This data is 

taken from a gas turbine that was tuned with a relatively high WI fuel in mind. During 

periods when the WI of the fuel was low, shown in Figure 31, the alarm system 

detected increased combustion dynamics. The explanation given for this was the 

reduction in power of the pilot fuel, which allowed flame lifting and quasi-stabilisation 

deeper in the combustion chamber and an increase in airflow due to lower chamber 

pressures. This agrees with work that will be presented later in this thesis where 

flames approaching lean blowoff limits resulted in significant heat release and 

pressure fluctuations. 

The change in WI observed in Figure 31, between approximately 51 and 48, was 

significant enough to cause operational problems; however, this is well within the 

regulatory limits of the UK and the EASEE, 51.5 – 47 and 54 – 47 respectively. An 

increase from 51 – 54 is likely to cause similar problems with respect to rich limits and 

combustor dynamics, so regulation of gas composition in this manner is not sufficient 

to prevent it effecting the operability of gas turbines. 
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Figure 31: The influence of fuel composition on combustor dynamics alarms at an E.ON UK site (Abbott et al., 2012) 

2.4.2     Biomass 

Producer gas is the result of the gasification of biomass. Composition changes in 

producer gas are likely to have a significant effect on its combustion properties, 

including its stoichiometric air to fuel ratio and its flame speed. The producer gas 

composition will be directly affected by the type of biomass, and any variations in its 

own composition. 

The properties of different sources of biomass can vary quite considerably, as shown 

by the proximate analysis of several types in Table 4 (García et al., 2013). M represents 

moisture content of the biomass source. A, VM and FC represent ash content, volatile 

matter and fixed carbon respectively, once moisture content has been removed. The 

lower heating value of the biomasses have also been estimated using an empirical 

equation derived by Erol (2010). These properties will affect both the operation of the 

gasifier and the overall composition of the fuel, increased moisture content will 

reduce the operating temperature of the gasifier, which has been shown to have a 

significant effect on hydrogen content of the producer gas (Lewis et al., 2012, Bal´aˇs 

et al., 2012). 

The chemical composition of the biomass feedstock, with a number shown on a dry 

basis in Table 5 (Demirbaş, 1997, Demirbaş, 1998) also shows a significant variance, 

which again will directly affect the composition of the producer gas leaving the 

gasifier. 
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Table 4: Proximate analyses of different biomass sources (García et al., 2013) 

Source % M 
% A 
(dry) 

% VM 
(dry) 

% FC 
(dry) 

LHV (kJ/kg) 

Apple tree leaves 9.3 12.0 71.9 16.1 14.9 

Beetroot pellets 12.5 9.0 76.0 15.0 15.7 

Chestnut tree leaves 8.2 4.9 72.4 22.7 18.6 

Hazelnut shell 8.7 2.2 77.0 20.8 20.9 

Miscanthus 7.5 9.6 79.0 11.4 14.8 

Nectarine stone 8.2 1.1 76.0 22.9 21.6 

Peach stone 8.6 0.5 75.6 23.9 21.4 

Pine leaf pellets 8.3 3.2 74.5 22.3 20.0 

Pistachio shell 8.8 1.3 82.5 16.2 21.2 

Soya grain 10.4 4.8 77.0 18.2 18.6 

Wheat grain 10.3 2.8 80.0 17.2 20.2 

Wood pellets 1 8.0 1.3 82.0 16.7 21.3 

Wood pellets 2 7.5 0.7 84.0 15.3 21.2 

 

The examples shown in Table 4 and Table 5 represent a uniform sample of the 

particular variety of biomass. In reality, the properties and composition of the biomass 

will vary due to a variety of reasons. These reasons include location of growth, 

seasonality, which can in turn vary year upon year, and method of harvesting. 

Different sources display a differing level of variance. The dynamic nature of the 

biomass composition results in a non-steady operation with a non-steady feedstock, 

causing the composition of the producer gas to vary. 

Table 5: Ultimate analyses of different biomass sources (Demirbaş, 1997, Demirbaş, 1998) 

Source C H N S Cl O(diff.) 

Red oak wood 50 6 0.3 - - 42.4 
Wheat straw 41.8 5.5 0.7 - 1.5 35.5 

Olive husk 49.9 6.2 1.6 0.05 0.2 42 
Beech wood 49.5 6.2 0.4 - - 41.2 
Spruce wood 51.9 6.1 0.3 - - 40.9 

Corncob 49 5.4 0.5 0.2 - 44.5 
Tea waste 48 5.5 0.5 0.06 0.1 44 

Walnut shell 53.5 6.6 1.5 0.1 0.1 45.4 
Almond shell 47.8 6 1.1 0.06 0.1 41.5 

Sunflower shell 47.4 5.8 1.4 0.05 0.1 41.3 

2.4.3     Coal and Coal Derived Syngas 

Coal is formed through the application of pressure and heat to dead biotic material 

over time. The precursor to coal is Peat; this has been widely used as a conditioner for 

soil, but in places where it is found in abundance, such as Ireland and Finland it is also 
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used as a fuel source. Peat is transformed into lignite, or brown coal, which is the 

lowest rank of coal and is used almost exclusively for power generation. After lignite, 

the coal is transformed into sub-bituminous, used primarily as a fuel for steam 

generation but also in the chemical synthesis industries. The next stage is bituminous 

coal, a dense sedimentary rock used for power generation and the production of coke 

for the steel industry. The final rank of coal used for power generation is anthracite, 

although it is primarily used for residential and commercial space heating. The highest 

rank of coal is graphite, which is very difficult to ignite, due largely to its low 

percentage of volatiles. It is instead used in production industries or as a lubricant 

when powdered. The classification of coal according to American regulations (ASTM, 

1998) is shown in Figure 32. It demonstrates that once transformation has caused the 

formation of what is classed as coal, continued exposure to high temperature and high 

pressure increases the percentage of fixed carbon and reduces the gross calorific value 

of the fuel until it reaches the rank of low-volatile bituminous. After that, continued 

transformation causes both fixed carbon percentage to and gross calorific value to 

increase.  

 

Figure 32: Classifications of coal by rank in the US (U.S. Department of the Interior and Survey, 2013) 
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The classification of coal according to German regulations is show in Table 6, where 

the ranks from flame to non-baking coal represent the transition from sub-bituminous 

to bituminous coal. There is a large variability between, and within, different ranks of 

coal.  

Although there are not large variations in the coal from a single source, small 

variations do exists, and will have an effect on the composition of the Syngas 

produced; however the main cause of any composition changes will be the design and 

operating conditions of the gasifier.  

Table 6: Classification of coal according to German regulations (Hoinkins and Lindner) 

Designation Volatiles % Carbon % Hydrogen % Oxygen % Sulphur % 
LHV 

(kJ/kg) 

Lignite 45–65 60–75 6.0–5.8 34-17 0.5-3 <28,470 

Flame coal 40-45 75-82 6.0-5.8 >9.8 ~1 <32,870 

Gas flame 
coal 

35-40 82-85 5.8-5.6 9.8-7.3 ~1 <33,910 

Gas coal 28-35 85-87.5 5.6-5.0 7.3-4.5 ~1 <34,960 

Fat coal 19-28 87.5-89.5 5.0-4.5 4.5-3.2 ~1 <35,380 

Forge coal 14-19 89.5-90.5 4.5-4.0 3.2-2.8 ~1 <35,380 

Non-baking 
coal 

10-14 90.5-91.5 4.0-3.75 2.8-3.5 ~1 35,380 

Anthracite 7-12 >91.5 <3.75 <2.5 ~1 <35,300 

 

The composition of Syngas’ produced and utilised in five major IGCC plants worldwide 

are shown in Table 7 (Ansaldo Energia, 2010, Kehlhofer et al., 1999).  

Table 7: Composition of Syngas produced in current generation IGCC gasifiers (Ansaldo Energia, 2010, Kehlhofer et 
al., 1999) 
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Hydrogen 12.3 10.7 34.4 10.5 38.0 34.0 
Carbon 

Monoxide 
24.8 29.2 45.3 30.5 44.0 48.3 

Water/Steam 19.1 4.2 - - - - 
Nitrogen 42.0 53.1 1.9 55.5 2.4 3.1 

Argon 0.6 0.6 0.6 - 0.9 1 
Carbon 
Dioxide 

0.8 1.9 15.8 2.8 14.7 13.6 

Methane 0 0.1 1.9 0.1 - - 
Oxygen 0.4 0.3 - - - - 
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There are significant differences between there make-up, noticeably that Tampa Polk, 

in Florida, has a hydrogen content of almost 400% of Puertollano, in southern Spain, 

or Nakoso in Japan. The plant in Tampa is capable of using different coal sources, and 

data taken from the plant operating on both bituminous and sub-bituminous coal 

shows how the feedstock effects the Syngas compositions. The behaviour of these 

fuels in a combustor will be very different, which highlights the difficulty in specifying 

gas turbine combustor designs. 

2.5 Chapter Summary 

This chapter has reviewed previous studies relating to swirl combustion, thermo-

acoustics, and variation in the composition in natural and shale gas, biomass and coal. 

To summarise the following conclusions are drawn: 

 Swirl combustion is a technique which involves applying tangential momentum 

to reactants prior to combustion. 

 The level of tangential and axial momentum in flow can be compared by the 

application of the Swirl number (S) to the flow leaving the combustor. 

Alternatively, in a radial burner, it may be compared via the application of 

geometric swirl number (Sg) to the flow entering the combustion zone. 

 Upon leaving the combustor exit, expansion of the swirling flow creates a region 

of low pressure. This acts to stabilise the flame via the recirculation of hot 

combustion products. 

 The formation of a recirculation zone also results in the development of 

additional flow structures. Together with thermo-acoustic effects these may act 

to destabilise the flame. 

 After the initiation of pressure oscillations, a feedback mechanism exists, that 

with sufficient phase relation will develop into thermo-acoustic instabilities. 

 Perforated combustion chambers aside, passive control techniques have largely 

been disregarded due to the narrow frequency band at which they can be 

targeted. Active control, where insipient instabilities are detected and corrected 

for, is a preferred technique. 
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 Natural gas composition is prone to variations, which has been shown to effect 

gas turbine operation. Regulations actually allow for a significant range of 

Wobbe Index, which is a standard measurement of the fuels energy density. 

 With regard to gaseous fuels derived from the gasification of carbonaceous 

material, biomass and coal both come in varying forms, and as such have a 

variety of compositions and energy density. These will directly affect the 

composition and properties of fuels derived from them. 
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Chapter 3: Experimental Rigs and Methodology 
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3.1 Introduction 

Experimentation in this research was performed with several experimental rigs, and 

using a variety of diagnostic techniques. At the metaphorical centre of each of rigs 

used was a swirl burner; each with a different exit diameter. The thermal power range 

that this collection of burners is capable of achieving is very large, ranging from 30 kW 

at ambient conditions in a generic swirl burner up to a full 500 kW in a development 

gas turbine combustor, each with a particular feature that made it the most suitable 

for use in the particular trial. 

Initial experimentation was performed using an industrial biomass gasification plant, 

where fuel variability was investigated, and its potential effects on flame stability were 

assessed. The response of a cyclone swirl burner, with both reacting and non-reacting 

flows, was then investigated to try and determine acoustic indicators of a flame 

approaching its stability limits. Dynamic pressure indicators were further investigated 

using a development gas turbine combustor. A radial swirl burner, with a generic 

design was then used to investigate how flow structures could be augmented using 

the diffusive injection of different gases. The potential benefits of diffusive injection 

on emissions were also investigated using the gas turbine combustor. 

Detailed information on all the swirl burners and diagnostic techniques used in to 

complete this thesis is provided in proceeding chapter. 

3.2 Diagnostic Techniques 

Several different diagnostic techniques were used to assess changes in combustion 

conditions and flame structures. The techniques varied from the monitoring of 

exhaust gas temperatures with thermocouples, to more advanced techniques such as 

stereo Particle Image Velocimetry (PIV) and dynamic monitoring of pressure 

oscillations. 

3.2.1     High Speed Photography 

High Speed Photography (HSP) may refer to either of two things; capturing a series of 

images at a high sampling frequency, or, recording an image with an exceptionally 

short exposure time, which acts to reduce motion blur and appears to freeze the 
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motion. In this case it refers to the former, where the photography is deemed to be 

high speed when frame rate exceeds 128 frames per second (fps) and a minimum of 3 

frames are captured.   

The applications of high speed photography have change considerably since its 

inception. Its first practical application was to investigate whether all of a horse’s 

hooves were simultaneously off the ground when galloping or running. A 1,000 fps 

camera developed by Eastman Kodak in the 1930’s was used by Bell Telephone 

Laboratories (BTL) to study relay bounce. The camera was further developed by BTL to 

achieve 5,000 fps, and after the design was sold to the Wollensak Optical Company via 

Western Electric it was improved to the extent that 10,000 fps could be captured. 

In 1940 a patent was filed for the rotating mirror camera, which was theoretically 

capable of capturing 1,000,000 frames per second. The first known rotating mirror 

camera was built by Berlin Brixner for use during the Manhattan Project to 

photograph early prototypes of the first nuclear bomb. 

Film based photography has now been replaced for almost all applications, by digital 

photography, using Charge Coupled Devices (CCD) or Complementary Metal-Oxide 

Semiconductor (CMOS) sensors. Whereas film based HSP depended on a mechanical 

device quickly moving film through the camera, or in the case of a rotating mirror 

camera altering the exposure point. Digital HSP is dependent on the fast capture and 

storage of information on CCD’s. 

A typical CCD HSP resolution would be in the single Mega Pixel (MP) range, whereas 

even CMOS sensors in mobile phones now have a resolution that exceeds 40 MP, 

despite this, the use of CCD’s allows a higher resolution than film based techniques. It 

also results in a high quantity of data being produced. When digitilisation perceives a 

fairly limited 256 colours or tones (8-bit), recording an image stream at 3000 frames 

per second with a resolution of 1.3 MP, the data rate is in excess of 6 gigabytes per 

second. Requiring high speed data transfer equipment and devices with a large 

storage capacity. 

3.2.2     Particle Image Velocimetry 

Particle Image Velocimetry (PIV) is a method of flow visualisation based on the 

tracking of particles in successive images to analyse velocities in a flowing fluid. Its 
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great benefit is that it is almost entirely unobtrusive and does not cause any changes 

to the flow being analysed. Although the flow may be altered by particles that are 

added to the flow, choosing the correct seed results in the alterations being negligible. 

3.2.2.1 Fluid Seeding 

In air the flow is typically seeded with smoke, water droplets or metal oxides, with the 

choice of particles playing a critical role in the accuracy of the overall results. It must 

be assumed that the movement of particles exactly matches that of the fluid in which 

they are entrained. In actuality the degree to which the particles follow the flow 

dynamic is not perfect, and is defined by the Stokes number (Stk), a dimensionless 

number corresponding to the behaviour of particles suspended in a fluid flow, as 

defined by Equation 3.1 (Brennan, 2005): 

 

          
   

  
         Eq (3.1)            

    

Where: dc = the characteristic dimension of an obstacle (m) 

  U  = velocity (m/s) 

And:  τ = particle relaxation time (s), which is calculated thus: 

 

                                                               
     

 

     
     Eq (3.2) 

 

Where: ρd = particle density (kg/m3) 

  dd  = diameter of the particle (m) 

  μf = dynamic viscosity of the fluid (m2/s) 

 

The smaller the Stokes number the better the accuracy of the trace. When Stk is 

greater than 1 the particles will detach from the flow, particularly under heavy 

acceleration, whereas when Stk is less than 1 the particles will follow streamlines very 

closely. An Stk of less than 0.1 corresponds to a tracing accuracy of greater than 99% 

(Tropea and Yarin, 2007). 
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In order for the particles to be clearly visible they must be illuminated in some way. In 

the vast majority of systems this is achieved by a laser pulse, often Neodymium-doped 

Yttrium Aluminium Garnet (Nd:YAG), which is converted into sheet form by optics. 

Using a sheet means that only particles on a particular plane are illuminated, this is 

important to attain legible results. A laser pulse is emitted, and a camera aligned 

perpendicular to the laser sheet captures an image, as a second laser pulse is emitted 

a second image is captured by the camera. A schematic of a typical PIV setup is shown 

Figure 33. 

 

Figure 33: Single camera PIV technique 

Powerful lasers are also required for high quality results, and the use of solid state, 

double cavity Nd:Yag lasers is standard procedure in air. Q-switches are also used to 

increase the power of the emitted laser sheets. Q-switches quickly open the exit of the 

laser cavity, allowing a build up of lasing energy before the high powered, short 

duration beam is produced, lighting up the seeding particles almost instantaneously. 

In order to produce the two laser sheets required for PIV, Double-Q-Switches are 

utilised, these allow a single laser lamp to be used to produce both sheets. The 

measurement area should also be kept as close as possible to the laser, as the power 

to distance relationship follows the inverse square law. This means that doubling the 

distance between the laser and the measurement area reduces the laser power to a 

quarter (DANTEC, 2013). 

3.2.2.2     Optics and Interference Filters 

In order to improve quality of the images recorded, which are directly related to the 

quality of the results, various optics and interference filters are used. Optical lenses 
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are used to select the volume of the study, whilst insuring that the particles are clearly 

visible and that the PIV software is able to differentiate between them. When 

selecting optics the focal length, focal ratio and depth of field must be considered. The 

focal length is a parameter defined by lens shape and describes how strongly light is 

forced to converge or diverge, and is the distance between the focal point and then 

centre of the lens. In a PIV system, where light is directed onto a digital sensor, it is 

converged, and the correct focal length is critical to achieving sharp images. A lens 

with variable focus is preferred as it allows easy adjustment to ensure that the 

particles illuminated by the laser sheet are at optimal focus. The focus ratio, or F-

number is the ratio between the focal length and the aperture diameter. It is a 

measure of lens speed, and as well as affecting the image intensity by restricting the 

amount of light that sensor is exposed to, is fundamental to defining the depth of 

field. 

The depth of field describes the portion of the image that is in focus; as only a specific 

distance from the lens can be in perfect focus, the depth of field (δ) describes the 

gradual decrease in sharpness either side of this distance, and for a PIV system is 

calculated thus (Valera-Medina, 2009): 

 

            
 

  
           Eq (3.3) 

 

Where: Mf = magnification of the lens (-) 

  F = focal ratio (-) 

   λ = frequency of the laser (Hz) 

 

Interference filters are used to prevent unwanted light sources causing noise in the 

image by only allowing the camera to detect the light at the frequency of the laser, 

which has been scattered by the seed particles. The filters are made of multiple layers 

of dielectric material, each of which has a different refractive index. If two semi-

reflective coatings are applied to either side of a transparent spacer, and the width of 

the spacer is half that of the desired wavelength, reflections and interference will 

result in only light in of a specific wavelength being emitted. Other wavelengths will be 
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attenuated by destructive interference. The desired wavelength is that of the laser, so 

the vast majority of light that reaches the camera sensor is that scattered by the 

particles in the laser sheet (Bass, 1995). 

3.2.2.3     Image Processing 

The basic theory behind PIV is that if a particle is identifiable on two images, and if it’s 

relative position on the two images and the time between the two images is known, 

then its displacement and velocity can be calculated. In order to translate changes in 

image position to actual velocity then the system must be calibrated in order for the 

system to calculate scale factor between pixel position and actual position. 

A method for calculating this scale factor is to calibrate dimensions against a known 

quantity in the measurement plane, which can be achieved using a calibration target. 

Images of a calibration target positioned above the burner exit taken with two 

cameras in a stereo PIV set up are shown in Figure 34; user input defines the position 

of the origin, which is the large central white dot. Two further positions and the 

distance between them are also user defined, the software then recognises the 

position of the grid and determines the scale factor.  

Early systems attempted to analyse flow in the whole frame. Modern systems 

however divide the frames into smaller, more easily manageable areas, called 

interrogation regions. In each region the pixular, and in turn the actual displacement 

of the detected particles is calculated to obtain the velocity vectors. This is repeated 

for all regions, until the entire field of view has been built up. It is highly probable that 

particles make the transition from one interrogation region to the neighbouring one in 

the time between laser pulses, in order to maximise the amount of data available it is 

commonplace to overlap interrogation areas (DANTEC, 2013). 

The in order to calculate displacement, a process called cross correlation is applied to 

the two frames that are captured in quick succession. A mathematical algorithm based 

on a Fourier Transform is applied to corresponding interrogation regions on both 

frames, this makes the seeded particles appear as bright spots in a dark, grey scale 

background. A number of peaks are identified in both the frames, and the relative 

displacement is then calculated and a velocity vector is displayed. 
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The number of vectors produced is important to produce a coherent picture, and the 

number produced is dependent on the number of pixels in the camera array and the 

size of the interrogation region (DANTEC, 2013). 

 

Figure 34: Images taken calibration target positioned at burner exit, from two cameras, during stereo PIV setup 

The resolution of the PIV image, which refers to the smallest velocity structure which 

can be captured within the flow field, is dependant not just on the resolution of the 

camera, but the amount of time between laser pulse, which is particularly important 

as short times between pulses allows an ‘instantaneous’ velocity to be calculated 

rather than and average. The maximum distance (dmax) that can be measured with a 

particular PIV system can be calculated thus (DANTEC, 2006): 

 

                                                               Eq (3.4) 

 

Where:  dmax = maximum distance between particles (m) 

  Mf = magnification of the lens (-) 

  vmax = maximum velocity (m/s) 

  t = time (s) 

  Nint = number of pixels (-) 

  dpixel = diameter of pixels (m) 

3.2.2.4     Stereo PIV 

Single camera PIV is limited to producing results in a single plane, i.e. with two 

components of velocity. The use of two cameras, viewing the measurement area from 
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different angles, allows a third component of velocity to be derived from the particle 

movement. Figure 35 demonstrates, in an exaggerated fashion how results from two 

cameras cause the velocity of a single particle to be calculated completely differently, 

neither of which providing a particularly accurate interpretation of its actual 

displacement. Neighbourhood validation and other processing techniques are used to 

reduce the likelihood and magnitude of these errors. However, combining two velocity 

maps, along with calibration data, allows the true displacement to be calculated. In an 

actual PIV system this means that displacement can be resolved in three dimensions, 

so total particle velocity can be calculated. 

 
Figure 35: Principles of stereo PIV  

3.2.3     Dynamic Frequency Response 

The combustion systems in gas turbines have evolved to operate within exceptionally 

stringent emissions targets using lean pre-mixed combustion (LPM). The emission of 

NOx is of particular importance. In order to reduce NOx emissions combustion 

temperature is kept relatively low by using as a high level of excess air as possible. This 

however requires the combustion system to be operated on the verge of flame 

stability, which induces a high level of combustion pressure dynamics. If these are able 

to couple with the natural characteristic of the rig, damage and flame extinction can 

occur. Under atmospheric conditions and when there are no moving parts and 

background noise is low it is possible to detect acoustic instabilities and large 
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oscillations in pressure with a microphone positioned near the rig, this is not the case 

where gas turbines are concerned. In order to monitor these pressure dynamics inside 

the combustor section of a gas turbine one would ideally place a pressure transducer 

inside the combustion lining, however due to the extreme temperatures this is not a 

reasonable solution. A commonly used approach to achieve dynamic pressure 

measurements under these conditions is to mount a pressure transducer, 

perpendicularly, on a length of tubing (Stuttaford et al., 2003, Ferrara et al., 2005, 

England and Richards, 1984). This method is often referred to as the semi-infinite line 

pressure transducer technique. A relatively short length of tube connects an orifice in 

the combustion chamber to a T-section, perpendicularly housing the pressure 

transducer; it is then connected to very long length of tube of the same diameter.  

The theory behind this is that the pressure transducer will experience fluctuations 

equal to the those at the opening to the combustion chamber, and that pressure 

waves will dissipate along the length of the tube and will not affect results by being 

reflected back, i.e. as if the line length was infinite. In reality the visco-thermal effects 

on the sound attenuation are capable of causing errors between the actual and the 

recorded dynamic pressure measurements. 

One method used to account for these errors, considered to be the best method by 

others (Van Ommen et al., 1999, Samuelson, 1967), is to use the segmented line 

equation model of Bergh and Tijdeman (1965), which is an extension of the work 

originally performed by Iberall (1950). The segmented line model defines the pressure 

experienced by the transducer (Pt) compared to the actual combustion chamber 

pressure (Pc) as defined below: 

 

                  
  

  
     

 

                                                  
 Eq (3.5) 

 

This equation incorporates the lengths of the tubing, as well as the reflection 

coefficient (X), and the propagation constant (y). These in turn incorporate the shear 

number (E), and wave number (W), all of which are defined below: 
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    Eq (3.6) 

 

                                                                        Eq (3.7) 

 

                                                     
 

 
 
  

            

       
 

       

       
  

 

 

 

    Eq (3.8) 

 

                                         
  

  
 

 

   
            

       
   

       

       
   

 

 

 

    Eq (3.9) 

 

 

Where: Pc  = Combustion chamber pressure (bar) 

Pt  = Pressure at transducer (bar) 

A  = Cross sectional area of tube (m2) 

c  = Speed of sound (m/s) 

J0(E)  = 0th order Bessel function with argument E, BesselJ(0,E) 

J1(E)   = 1st order Bessel function with argument E, BesselJ(1,E) 

J0(W) = 0th order Bessel function with argument W, BesselJ(0,W) 

J1(W) = 1st order Bessel function with argument W, BesselJ(1,W) 

Lct  = Length of tube between chamber and transducer (m) 

Lte  = Length of tube between transducer and end (m) 

r  = Radius of tube (m) 

V = Volume of pressure transducer cavity (m3) 

Pr  = Prandtl number (-) 

γ  = Ratio of specific heats (-) 

ν  = Kinematic viscosity (m2/s) 

ω  = Angular frequency (rad/s) 
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Certain assumptions are made, for example that the cross section of the tube is 

identical both before and after the insertion of the transducer and is homogenous 

along its entire length. 

Using the values of Pt/Pc over the desired range of frequencies it is possible to 

evaluate the pressure gain (G), and phase shift (θ), between the two transducer and 

the chamber using Equations 3.10 and 3.11: 

 

                                                  
  

  
 
 
    

  

  
 
 

   Eq (3.10) 

 

                                                          
   

  
  

 

   
  
  

 
     Eq (3.11) 

 

Examples of the pressure gain and phase change expected, for a typical semi-infinite 

line transducer system, are shown in Figure 36. The potential for errors in the 

magnitude of the pressure waves recorded is clearly demonstrated in Figure 36 (a), at 

800 Hz this corresponds to a 6.5% error. 

 

(a)       (b) 
Figure 36: The (a) pressure gain and (b) phase shift expected using a semi-infinite line under normalised conditions 

with: v = 10
-7
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3.3 Swirl Burners 

As discussed in Chapter 2, swirl combustion has been used extensively in a large range 

of applications. Swirl burners vary markedly in design and size, depending on the 

application for which they are intended. The experimentation performed in the 

completion of this thesis used several different burners, some of which were 

restricted to atmospheric combustion in stand-alone systems, and some which 

required installation in the High Pressure Combustor Rig (HPCR), all are summarised in 

Table 8. 

Small atmospheric rigs were best suited to experimentation where frequent extinction 

events occurred due to the short start up times. They also provide a level of access 

that simply cannot be achieved with systems capable of operating under conditions of 

elevated pressure. The elevated pressure capable burner was installed in the HPCR, 

which can deliver input air at elevated and temperature pressure conditions that are 

representative of those in a power derivative gas turbine engine. As well as using a 

variety of burners, a range of fuels were used in different tests. The majority of the 

experimentation was performed with conventional fuels; pure methane and mains 

supplied natural gas.  

Tests with these fuels were directed toward fundamental effects on and affects of the 

flame, such as assessing how the characteristics of flame could be purposefully altered 

in order to improve the combustion process, determining how both planned and 

unplanned changes in inlet conditions would augment the flame, and how such 

augmentation could be detected and, if necessary, avoided. 

Table 8: Summary of burners used 

Name Abbreviation 
Type 

Exit 
Diameter 

Nominal 
Rated 

Power^ 
Swirler System 

Cyclone Burner CB Radial Standalone 80 mm 100 kW 

Development IGCC 
Combustor 

IGCCC Co-
Axial 

HPCR 
Integrated 

110 mm 500 kW 

Atmospheric Generic 
Swirl Burner 

AGSB Radial Standalone 28 mm 30 kW 

^ with methane as fuel, under atmospheric conditions 
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3.3.1     High Pressure Combustor Rig 

The compressor and heater systems are capable of delivering 5 kg/s of air at 900K and 

16 barA, thus allowing combustors to be operated at inlet conditions applicable to use 

in a power generation derivative gas turbine engine. At the core of the high pressure 

optical rig is the High Pressure Optical Casing (HPOC); this is a stainless steel casing 

capable of withstanding the high heat and pressure developed within, whilst offering 

optical access to the combustion zone via two large quartz windows. Downstream of 

the HPOC the exhaust ducts are water-cooled, in order to withstand the temperature 

of the combustion products, another quartz window is located at the back of the 

exhaust section, allowing optical access down the central axis of the burner. The high 

pressure optical rig is shown in Figure 37, with the visible quartz windows highlighted 

in blue. In order to get a sense of scale, the length of the assembly shown is 2660 mm. 

In the configuration demonstrated the air is delivered via twelve hoses to a plenum 

chamber inside the rig, as this best represents the installation of a gas turbine 

combustor. It can however, if required, be altered so fuel is delivered straight to the 

installed burner. 

 

Figure 37: View of high pressure combustor rig assembly 

3.3.2     Cyclone Burner 

The laboratory-scale rig comprised of a 100 kW rated burner that could be fed by both 

air and fuel through a single axial inlet, as well as two tangential inlets. The burner is a 

geometrically scaled version of a 1.5 MW industrial scale burner that was designed for 

the combustion of low calorific value fuels (Fick et al., 1998). The burner consists of a 
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combustion chamber and a cylindrical furnace section with a conicular constriction. An 

external view and the dimensions of the burner are shown in Figure 38 (a) and (c) 

respectively. The ignition of the burner was controlled by a Satronic DKG 972 

atmospheric burner control box, which also maintained a pilot light, detected by an 

ionisation probe, above the burner to ensure no unburned fuel is released.  

Circular tangential air inlets, denoted by (a) in Figure 38 (b), which have fuel inlets 

extending across the horizontal traverse (b), 300mm upstream of the swirl chamber, 

are used to ensure air and fuel are fully mixed when entering the swirl chamber (c). Air 

or fuel can also be injected through the diffusive injector on the burner’s central axis 

(d). The air-fuel then passes through the swirl chamber exit nozzle and into the 

combustion chamber before exiting via the constriction orifice (e). Natural gas is 

supplied at a mains pressure of approximately 37 mbarG, air from a centrifugal fan 

producing approximately 20 mbarG. Fuel can be delivered up to a maximum of about 

120 litres per minute, and is measured via rotameters. The fan is capable of delivering 

3500 litres per minute of air, which is also measured by rotameters.  

 

(a )    (b)    (c) 
Figure 38: (a) External view, (b) sectioned view and (c) wireframe of the laboratory-scale 100 kW burner 

There are two conical confinements that can be attached to the burner, as shown in 

Figure 38 (c), one of which height (H) is 120 mm and diameter (D) is 80 mm, this is 

confinement A, confinement B has dimensions H = 230 mm and D = 50 mm. The 

different confinement configurations alter the backpressure in the system, the result 

of which is a change in stability limits. The geometric coefficient of geometric swirl 

number can be altered using a variety of inserts, which alter the area and effective 

radius of the tangential inlets. By blocking the air inlets with inserts with widths that 
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correspond to 10, 25, 50 and 75 percent of the inlet diameter, as indicated in Figure 

39, it is possible to alter the geometric coefficient, and consequentially the Sg, of the 

burner from 0.74 to 4.46. A combination of inserts can be used to produce 

intermediate values of Cg, however previous work that this creates an imbalance 

which can result in two recirculation zones (Valera-Medina, 2009). 

 

Figure 39: Visualisation of the inserts used to vary geometric coefficient in the cyclone burner 

3.3.2.1     Experimental Methodology 

Oscillations were monitored using a PCB Piezotronics 378B02 condenser microphone, 

positioned outside of the combustion chamber. The data acquisition system used 

LabView to record and process the raw data, with the sensors connected via signal 

conditioning unit and a National Instruments cDAQ-9178 PCI card. The free-field 

microphone and fitted preamplifier have a flat frequency response up to 1000HZ. 

At each test point under isothermal conditions the desired flow rate of air was set, 

4000 samples were then taken at a rate of 2000 Hz using the data acquisition system. 

Three data sets were taken per test point. The second and third data sets were used 

to verify the first data set. Verification involved ensuring that for any frequency where 

amplitude exceeded 10% of the dominant frequency in the first data set, amplitude 

was with 5% of that in the second and third data sets. 

Prior to combustion testing the burner was fired under approximately 100 kW 

stoichiometric conditions for 5 minutes to overcome it’s the thermal inertia. At each 

test point under combustion conditions a lean, low powered, main flame was lit using 

the pilot flame as an ignition source. Air and fuel flow rates were then adjusted to the 
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desired power conditions and, as per isothermal test points, three data sets of 4000 

samples were taken at a rate of 2000 Hz. 

3.3.2.2     Measurement Error 

The accuracy of rotameter readings are dependent on the accuracy of pressure, 

temperature and flow control during calibration and operation (Cole-Parmer, 2006). 

As such, a deviation of ambient conditions from calibration conditions will result in an 

inaccuracy of measurement. The flow rates were measured by air and natural gas 

rotameters, with a degree of accuracy of ±5%. This means that the calculated 

equivalence ratios have a potential accuracy of ±10 %. Equivalence ratios may also be 

affected by small changes in gas composition, although this is unlikely in the 

experimental time frame. 

The positioning of a microphone outside of the combustion chamber is a method of 

analysing thermo-acoustic emissions reported by Farhat and Mohamed (2010). 

However, this method means that pressure fluctuations inside the chamber are not 

directly monitored. As such amplitude comparisons can only be made with other 

results taken in this set-up. The external position of the microphone also means that it 

is susceptible to sensing noise from other sources, for example the fan in the 

extraction system. A band stop filter was applied to the data between 24 and 25 Hz 

which successfully removed noise from the extraction fan, unfortunately this means 

that any oscillations within the combustion chamber in this frequency range would be 

filtered out. The same is true between 34.5 and 35.5 Hz, which was the frequency of 

noise produced by the centrifugal fan. 

3.3.3     Development IGCC Combustor  

The development combustor is fundamentally different to the other burners as it uses 

angled vanes rather than radial passages to impart tangential momentum of the flow. 

As this is the preferred type of swirler used practical combustion systems, it provides a 

way to assess the fundamental flow characteristics observed in the radial burners in a 

practical situation. The combustor, which was designed for use as part of an IGCC 

turbine configuration, was installed in the high pressure optical rig. An outer view of 

the pressure casing assembly and a sectioned view are shown in Figure 40. Air enters 
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the rig at (a) and passes into the burner assembly, represented by (b), via the rig 

plenum (c). Fuel enters the burner assembly at (d) and combustion occurs inside a 

quartz confinement (e), with the combustion zone visible from (f) and (g). Exhaust 

gases leave via a tee in the cooled exhaust duct (h). 

 

(a)                                                                                                                     (b) 
Figure 40:  (a) External and (b) sectioned views of the HPOC assembly with development burner 

The volumetric flow rate and temperature of the air passing through the combustor 

are defined by its designated compressor, and the majority of testing was performed 

at these conditions as they have the greatest practical relevance. There are two 

available flow paths for combustion air and fuel, the first path is through the 

combustor pilot and the second through the main axial swirler. The pilot injector, 

which is also an axial swirler, is positioned on the central axis of the combustor, 

through which pilot fuel, and approximately ten percent of the combustion air are fed. 

The main, annular, axial, swirler, which surrounds the pilot swirler, is fed by the main 

fuel supply and the remaining combustion air.  

3.3.3.1     Experimental Methodology 

The Development Integrated Gasification Combined Cycle Combustor (DIGCCC) was 

operated in a continuous fashion, with data recorded as stream. All three diagnostic 

techniques described in section 3.2 were performed on this rig. During operation of 

the HPCR, fuel and air flow rates, as well as multiple rig parameters, including exhaust 

gas and burner tip temperatures, are recorded at a rate of 1 Hz. Data sets containing 

4000 samples, taken at a rate of 2000 Hz from the pressure transducers are recorded 
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at a rate of 0.5 Hz. The raw data and a graph of power spectral density are recorded 

for each transducer. The frequency and amplitude of the dominant oscillations for 

each transducer are also logged, in a separate file, at a rate of 0.5 Hz. 

The HPOC rig was fitted with three PCB Piezotronics 102M206 pressure transducers. 

The transducers permissible operating conditions fall well below those in the rig, for 

that reason they are located on semi-infinite lines, a technique detailed in section 

3.2.3. The inlets to these lines are located at different points in the combustion 

system, namely the air inlet plenum, the combustor face, and the exhaust, as shown in 

Figure 41. This allows the effect of oscillations on different sections, and the position 

of their source to be analysed.  

Similar to the atmospheric burner, the data acquisition system utilises LabView to 

record and process the raw data, with the sensors connected via a signal conditioning 

unit and a National Instruments PCI-6013 DAQ card.  

 

Figure 41: Schematic of the HPCR rig with proprietary gas turbine combustor 

The calibration factors determined for the three measurement points are dependent 

on the response of the pressure transducers, where a certain change in pressure will 

result in a specified change in voltage output, and the semi-finite line assemblies. The 

minutiae of the three semi-infinite lines and pressure transducer responses are 

detailed in Table 9.  

Table 9: Semi-Infinite line assembly details 

 Inlet Plenum Combustor Face Exhaust 

Response 
(mV/psi) 

98.27 95.40 98.35 

r (m) 0.0015875 0.0015875 0.0015875 

Lct (m) 0.15 0.40 0.25 

Lte (m) 9 9 8.4 

V (m
3
) 5.143 x 10

-8 
5.143 x 10

-8
 5.935 x 10

-8
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Using Equations 3.5 to 3.11 combined calibration factors and scaling factors, which are 

dependent on frequency of response, were calculated for each of the three pressure 

transducers. The calibration factors are shown in Figure 42 over the range of 0 to 1000 

Hz and turn the voltage output of the transducers into millibars of pressure.  

 

Figure 42: Calibration factors for the three pressure transducer and semi-infinite line assemblies 

3.3.3.2 PIV Set-up 

The Dantec PIV system used on the DIGCCC consisted of a dual cavity Nd:YAG Litron 

Laser of 532 nm capable of operating at 15 Hz. A Dantec Dynamics laser sheet optics 

(9080X0651) was used to convert the laser beam into a 1 mm thick sheet. Two sheet 

orientations were used to capture velocity data on a radial plane, as shown in Figure 

43 (a), and on an axial plane, as shown in Figure 43 (b). The laser was installed on a 

traverse, so radial planes could be captured at varying distances downstream of the 

burner exit nozzle. To record the images a Hi Sense MkII Camera model C8484-52-

05CP was used, with 1.3 megapixel resolution at 8 bits. The inlet air was seeded with 

aluminium oxide (Al2O3) by a perforated ring positioned behind the main axial swirler 

of the DIGCCC. 

After acquisition of the PIV data, a frame-to-frame adaptive correlation technique was 

then carried out with a minimum interrogation area of 32x32 pixels and a maximum of 

64x64, with an adaptivity to particle density and velocity gradients. 500 pairs of 

frames per plane were used to create an average phase locked velocity. In order to 

reduce the parallax error, the line of view of the camera was positioned exactly in the 

middle of the nozzle using a calibration grid provided by the system manufacturer. The 

grid was used to correct, via software, any positioning issue. The field of view was 
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calibrated with the central line of the burner in the centre of the grid, thus ensuring 

that the position of the system would not affect the results. 

 

  

(a )       (b) 
Figure 43: PIV system orientation during analysis of the development IGCC combustor, (a) on a radial plane and (b) 

on an axial plane 

3.3.3.3     Gas Analysis 

The gas analysis line, the position of which is indicated in Figure 41, is constructed of 

stainless steel and is maintained at a temperature of 463K ±10K which is used to 

convey the gas sample to a suite of Signal brand, gas analysers. Analysers are included 

for the detection of CO2, CO, NO, NO2, UHC and O2, as is a high pressure back purge 

which is used to stop fuel entering the sample line during ignition and also to clear the 

probe if necessary (Wedlock et al., 2008). 

The sample line splits to form two channels. One sample line leads to the smoke 

analysis equipment, both filter stain and an optical measuring technique being 

applied. The second line leads to a filter oven to remove any particulate matter before 

passing to the analysis suite (Wedlock et al., 2008). 

The gas analysis suite is described in detail by Brundish K. D et al. (2002) and similar 

analysers and methods were used for this study. One significant difference was that 

the NO/NOX analyser used was no longer a dual channel system and therefore 

sequential measurements had to be made.  

The analysis of the NO/NOx and total hydrocarbons was performed using a wet 

sample, while for the other measurements the sample is dried. In order to calculate 

the concentration of the ambient water in the inlet air the dew point is measured. The 
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dew point of the dried sample is also measured to allow volume corrections to be 

applied (Wedlock et al., 2008). The raw data is processed to ARP 1533 (Aerospace 

Recommended Practice, 1996). This accounts for the required corrections for inlet air 

humidity, cross interference effects and dried sample correction. 

3.3.3.4     Measurement Error 

The flow rates of fuel and air into the rig are monitored by coriolis meters with 

accuracies between  ± 0.1 % and ± 0.2 % of total flow rate (Emerson Process 

Management, 2014). Temperatures are monitored by k-type thermocouples, which 

have an accuracy which is equal to ± 0.75 % at the temperatures in question (Reotemp 

Instruments, 2011).  

The main source of potential errors is the semi-infinite lines which connect the 

pressure transducers. As discussed in section 3.2.3 the lines can be the source of 

pressure gains and phase shift, by amounts which vary depending on the frequency of 

oscillations. A method for predicting the pressure gains and phase shift, as defined 

and described by other researchers (Iberall, 1950, England and Richards, 1984, 

Rohrssen, 2007, Straub and Ferguson, 2007), was used to derive correction factors in 

the range of 0-1000 Hz for each semi-infinite line assembly. These correction factors 

were applied to the raw data to achieve the highest accuracy of results possible. The 

accuracy of the pressure transducers is with ± 1.0 % (PCB Piezotronics, 2003).  

Due to electrical interference band stop filters were used in the ranges 49.5-50.5 Hz 

and 149.5-150.5 Hz. This means that any oscillations within the combustion chamber 

in this frequency range would be filtered out. 

3.3.4     Atmospheric Generic Swirl Burner 

The generic swirl burner, constructed from stainless steel, was used to examine the 

flame structure at atmospheric conditions (1bar, 293K). External, sectioned and 

wireframe images of the generic burner are presented in Figure 44.  

A single tangential inlet, denoted by (a) in Figure 44 (b), feeds the premixed air and 

fuel to an outer plenum chamber (b) which uniformly distributes the gas to the slot 

type radial tangential inlets (c). Swirling premixed air and fuel then passes into the 

swirl chamber (d), then into the exit nozzle (e). The central diffusion fuel injector (f) 
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extends centrally through the combustor body to the exhaust. This burner has been 

used extensively, and as such is well represented in published literature (Abdulsada et 

al., 2011, Abdulsada et al., 2013, Syred et al., 2012, Syred et al., 2013b). The burner 

can be fitted with a number of swirl heads and exhaust, with varying geometry, in 

order to change its characteristics.  

 

(a )    (b)    (c) 
Figure 44: (a) External view, (b) sectioned view and (c) wireframe of the generic burner 

3.3.4.1     Experimental Methodology 

Prior to combustion testing the burner was fired under approximately 10 kW 

stoichiometric conditions for 2 minutes to overcome it’s the thermal inertia. At each 

test point under combustion conditions a lean, low powered, main flame was lit using 

the pilot flame as an ignition source. Air and fuel flow rates were then adjusted to the 

desired power conditions and PIV data was taken. 

3.3.4.2     PIV Set-up 

AGSB PIV data taken was on an axial-radial plane that intersected the central axis of 

the burner exit, with both stereo and single camera PIV analysis being performed. 

The Dantec PIV system used consisted of a dual cavity Nd:YAG Litron Laser of 532 nm 

capable of operating at 15 Hz, a Dantec Dynamics laser sheet optics (9080X0651) was 

used to convert the laser beam into a 1 mm thick sheet. The sheet, and therefore, the 

measurement plane, intersected the central axis of the burner exit nozzle. To record 

the images a Hi Sense MkII Camera model C8484-52-05CP was used, with 1.3 

megapixel resolution at 8 bits. For stereo PIV two Hi Sense cameras were used. 60mm 
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Nikon lenses were used for resolution purposes, which allowed a field of view of 

approximately 75x75 mm, with a resolution of 5.35 pixels per mm and a depth of view 

of 1.5 mm. The inlet air was seeded with aluminium oxide (Al2O3) by an accumulator 

positioned 2.0m upstream of the burner inlets. The accumulator is fed by the main 

compressed air. 

After acquisition of the PIV data, a frame-to-frame adaptive correlation technique was 

then carried out with a minimum interrogation area of 32x32 pixels and a maximum of 

64x64, with an adaptivity to particle density and velocity gradients. 150 (150 pairs for 

stereo PIV) frames per plane were used to create an average phase locked velocity 

map after tests showed 150 pair of frames produced results almost identical to those 

obtained using 500 frames. Adaptivity in the analysis allowed very coherent images, 

with just a mask refinement of ~15-20% of the entire field of view.  In order to reduce 

the parallax error, the line of view of the camera was positioned exactly in the middle 

of the nozzle using a calibration grid provided by the system manufacturer. The grid 

was used to correct, via software, any positioning issue. The field of view was 

calibrated with the central line of the burner in the centre of the grid, thus ensuring 

that the position of the system would not affect the results. 

3.3.4.3     Measurement Error 

The system was fed using compressed air through flexible hoses and methane from 

cylinders was used as main fuel. The flow rates of fuel and air into the rig are 

monitored by coriolis meters with accuracies between ± 0.1 % and ± 0.2 % of total 

flow rate (Emerson Process Management, 2014). 

There will also be an element of error in the PIV data as the result of the image 

masking and neighbourhood validation employed during the image processing. 

Masking is used to remove noise, which can cause anomalous results, from the 

captured and unprocessed images. As a result, areas where a mask is applied will have 

no velocity. When the flow fields are calculated neighbourhood validation is employed 

in order to produce coherent results. This causes an element of averaging between 

neighbouring measurement points.  

This means that where masked areas are next to high velocity regions, for example at 

the burner exit, the velocity of the flow will be underestimated. The level of 
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underestimation will vary based on the size of the neighbourhood used for validation. 

The percentage error of the measurement point adjacent to the masked area will 

equal approximately the width of the neighbourhood (in terms of measurement 

points) divided by the width of the neighbourhood minus one. So with neighbourhood 

validation of 3x3 and 5x5, the reported velocity at measurement point adjacent to the 

masked area would be approximately 66% and 80% of the actual velocity. 

3.4 Industrial Gasification Plant Composition Analysis 

Data relating to the composition was taken at a proprietary gasification plant. The 

plant consists of a top fed, downdraft gasifier, an extensive gas cooling and cleaning 

system and a flare stack. With Grade-A wood chip (The Wood Recyclers Association, 

2009) as a feedstock and operating at a typical, but not maximum 0.7 MW, it develops 

producer gas with an approximate calorific value of 6 MJ/Nm3 at a rate of 420 Nm3/h. 

During the trials, the composition of the producer gas was analysed at regular 

intervals using a Gas Chromatograph (GC). Other conditions in the plant, including 

gasification throat temperature, were monitored and recorded using the plants 

control and logging system. 

The producer gas was sampled during trials to assess the feasibility for its combustion 

in situ. The producer gas sampling point was directly before it entered the burner. It 

was treated using two impinger bottles, one of which contained a solution of 

isopropanol, the other silica gel, in order to protect the GC from any organic 

compounds or moisture that may have remained in the stream (Marsh et al., 2010). 

The gas analysis GC system was a Varian CP-4900 micro gas GC, operating two 

channels enabling the simultaneous measurement of oxygen, nitrogen, light 

hydrocarbons, carbon monoxide, carbon dioxide and hydrogen. Channel 1 was a 

Thermal Conductivity Detector (TCD) column, running at 105°C for retention times up 

to 2 minutes with a balance gas of argon; this channel was used to detect hydrogen, 

oxygen and nitrogen. Channel 2 was a Pora Plot Q (PPQ) column, running at 105°C for 

retention times up to 2 minutes with a balance gas of helium; this channel was used to 

detect light hydrocarbons, carbon monoxide and carbon dioxide. To calibrate the 

system in situ a calibration standard was prepared with the concentration as shown in 

Table 10. 
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Table 10: Calibration Gas Composition 

Volume (%) 

N2 CO CO2 CH4 C2H6 C3H8 C4H10 H2 

45 15 15 5 2 2 1 15 

 

Additional composition gas analysis was performed using an HAL 201 RC Residual Gas 

Analyser (RGA). The measurement point used for the RGA was the same as used for 

the gas chromatograph. The RGA was set-up to detect the percentage volume of 

nitrogen, carbon monoxide, carbon dioxide, hydrogen, oxygen and methane.  

 

The detection of hydrogen, which is of particular interest in this study, using thermal 

conducivity instruments is problematic due to cross-interference from other gas 

species. This can lead to errors in quantitive analysis. The use of a gas chromatograph, 

allows seperation of gas species, allowing the elimination of cross-interference, and 

improving the accuracy of results (Sluder. C et al., 2004). This work is concerned with 

how composition alters temporaly, this can be assessed despite any errors, as long as 

they are consistent.  

3.5 Chapter Summary 

This chapter provides details of the diagnostic techniques used during 

experimentation, and the swirl burners on which experimentation is performed. It also 

provides background on a proprietary gasification plant, where testing of producer gas 

composition took place, and the gas sampling system employed to do so. To 

summarise the following points are highlighted: 

 High speed photography is used to visualise temporal flame evolution detect 

light emissions from flame under steady conditions. 

 Particle image velocimetry is used to assess the velocity profiles of flame flow 

structures. 

 A free field microphone and semi-infinite line, dynamic response pressure 

transducer assemblies are used to determine remote and external frequency 

response of swirling flows. 

 A cyclone burner, of radial swirl type, is used to perform acoustic analysis of 

flows under isothermal and combusting conditions. 
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 A gas turbine combustor, of axial swirl type, is used to perform acoustic, 

chemical and light emission analysis using methane and syngas. Isothermal flow 

field analysis is also performed. 

 A generic swirl burner, of radial swirl type is used to perform flow field analysis 

of atmospheric, unconfined flames. 

 During trials at a proprietary gasification plant as a gas chromatograph and 

residual gas analyser were used to asses changes in producer gas composition. 
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Chapter 4: Variable Composition and Combustion 

Characteristics of Producer and Natural Gas 
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4.1 Introduction 

As discussed previously, producer gas can be highly variable in composition. This is 

caused by variations in both gasifier operation and feedstock. Hydrogen content in 

particular has been shown to have a significant influence on flame stability (Syred et 

al., 2012, Mohon Roy et al., 2009), due to its high burning rates and extinction strain 

rates (Jackson et al., 2003).  

Different feedstocks will result in different producer gas compositions. However, 

changes in the conditions of gasification and non-uniformity of feedstock also have 

the potential to cause composition fluctuations. The non-uniformity of feedstock is 

dependent on the nature of its source and how it is processed prior to gasification.  

 

The work in this chapter aims to assess how changes in fuel composition affect the 

combustion properties of the fuel, with Wobbe Index and laminar flame speed of 

particular focus. Trials, as detailed in section 3.4, were performed in a proprietary, 

combined heat and power, gasification plant. Grade-A woodchip (The Wood Recyclers 

Association, 2009), which is expected to be comparatively homogeneous, was used as 

a fuel source, and gas chromatography was used to determine producer gas 

composition. The effect of the variable composition of producer gas focused on how 

flame speed was affected. The relationship between laminar flame speed and Wobbe 

Index is also assessed for a number of fuel sources.  

 

The preferred practice of gas turbine manufacturers is to a qualify fuel suitability and 

interchange ability in terms of Wobbe Index (WI) (Abbott et al., 2012, Coyle et al., 

2007), which is easily calculable using online gas chromatography. Wobbe Index will 

accurately determine the thermal energy of the fuel, but is not necessarily linked to 

flame stability. Consideration of flame speed, a characteristic often overlooked where 

fuel interchange ability is concerned (Loubar et al., 2007, Zachariah-Wolff et al., 2007), 

may be required when fuel variations are assessed. 
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4.2 The Effect of Variable Producer Gas Composition 

4.2.1     Variation in Composition 

On a commercially viable scale, fluctuations cannot be predicted to a high degree of 

accuracy. Figure 45, which displays the throat temperature of the gasifier as recorded 

by the proprietary plant’s control system, and the hydrogen content of the producer 

gas from gas chromatograph results, shows a relationship exists between the throat 

temperature of the gasifier and the hydrogen content of the producer gas. Peaks and 

troughs in throat temperature have corresponding peaks and troughs in Hydrogen 

content, which is offset by two minutes to account for the transit time of the producer 

gas from the gasifier to the sampling point. The first 20 minutes after the gasification 

has been initiated sees both hydrogen content and throat temperature increase, with 

peaks of 15.8% and 711°C observed respectively. The temperature then steadily 

declines as does hydrogen content, toward optimum operating temperature defined 

by the manufacturer, which is between 500 and 550°C. Sudden increases in throat 

temperature occur at 40 and 50 minutes which are matched by increases in hydrogen 

content. Similar relationships between temperature and hydrogen content have been 

reported by other researchers with regard to biomass gasification, experimentally 

(Bal´aˇs et al., 2012) and using models (Mhilu, 2012). It has also been reported for the 

gasification of coal (Haji-Sulaiman et al., 1986) and municipal solid waste (He et al., 

2009).  

 

Figure 45: Gasifier Throat Temperature vs. Hydrogen Content (Lewis et al., 2012) 
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Monitoring the gas composition of the output of a plant under continuous operation is 

less than ideal due to the high expense of the equipment required. However 

monitoring certain operating conditions, such as throat temperature is straight 

forward. Therefore, derivation of a relationship between gas composition and gasifier 

throat temperature allows optimisation of combustion conditions, such as air-to-fuel 

ratio, to be effectively estimated. This information can then be used as the input in an 

open loop burner control system to improve flame stability and combustion efficiency 

by maintaining optimum conditions (Snyder et al., 2010). For the fuel used in these 

trials, a strong relationship was determined and was applied to a gasifier trial to 

determine how the properties of the producer gas were affected. 

4.2.2     Calorific Value and Stoichiometric Air-to-Fuel Ratio 

Based on gas samples from the proprietary pilot plant an empirical model was 

developed to predict composition based on certain criteria of the gasifiers 

performance, and for a given fuel, in this case Grade-A wood chip. The model was 

developed by defining a relationship between the percentage volume of seven gases 

present in the producer gas and gasifier throat temperature. The relationship was 

derived from the plants operating logs and composition data taken over a series of 

trials, all using the same batch of gasifier feedstock. The relationships, which are the 

best fit between the throat temperature and recorded concentration, are listed in 

Table 11. 

Table 11: Composition and Temperature Relationships 

Carbon Monoxide 0.2138 x T
0.6844

 

Carbon Dioxide 0.0789 x T
0.7976

 

Oxygen 16.731 x e
(-0.006 x T)

 

Methane 0.0029 x T
1.013

 

Ethane T x 0.0046 + 0.0484 

Propane T x 0.0035+0.0625 

Nitrogen difference 

 

Using throat temperature measurements from the gasifier, the model was used to 

predict the composition of the producer gas. The predicted constitutional volumes 

were then compared against the recorded composition over time, as shown in Figure 
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46 (a). Three constituents of the producer gas, nitrogen, hydrogen and oxygen are 

shown, and the model appears to predict their respective volumetric concentrations 

accurately. There is a large change in general composition during the first 1000 

seconds of the run, as gasification is initiated and the gasifier reaches its operating 

temperature. The changes in hydrogen and nitrogen volume over this period are well 

predicted by the model, although there is a significant underestimation in terms of the 

oxygen concentration. This is because the feedstock is not yet being gasified, so the 

output is essentially air. After 1000 seconds there is good accuracy in the prediction of 

all three gases, with mean errors equalling 10.9%, 4.3% and 7.1% of predicted values 

for hydrogen, nitrogen and oxygen respectively. To further assess the accuracy of the 

model, recorded and predicted compositions were plotted against each other and the 

coefficient of determination was found. The recorded and predicted results for 

nitrogen, hydrogen and oxygen are plotted in Figure 46 (b). The coefficients of 

determination are 0.88, 0.93 and 0.82 respectively indicating good accuracy. The 

results for carbon monoxide, carbon dioxide and methane are not shown, but the 

calculated coefficients of determination were found to be 0.69, 0.92 and 0.65 

respectively. The model was then used to predict the composition over a separate 5-

hour trial, the predicted composition was then compared to results recorded using the 

GC as means of validation. 

  

                                                  (a)                   (b) 
Figure 46: Verification of the empirical model (a) predicted and actual results over time and (b) actual results against 

predicted results to find coefficient of determination 
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Figure 47 shows four properties of the producer gas over a gasification run, based on 

the empirically derived model and the recorded performance of the gasifier. It 

includes the percentage volume of hydrogen and hydrocarbons in the producer gas, as 

they have the greatest effect on two of its most important properties, Lower Heating 

Value (LHV), and stoichiometric air-to-fuel ratio. After approximately twenty minutes, 

the performance of the gasifier begins to stabilise, however post stabilisation 

significant fluctuations in the percentage volume of hydrogen remain; there are also 

fluctuations in the level of hydrocarbons, although they are not as obvious. Despite 

these fluctuations, the LHV remains steady, as does the stoichiometric AFR.  

This is very important from a combustion point of view, as although the composition 

of the gas may vary over a run, the requirements of combustion air stay very stable, as 

should the thermal output of the burner. Hydrogen content has a marked effect on 

the stability limits of the combustion equipment, caused by the significant way it 

affects flame speed (Monteiro et al., 2010). In swirl burners it has also been shown 

that regardless of hydrogen content, reduction in mass flow rate (Syred et al., 2012) 

increases the stable operating range of equivalence ratios.  

With producer gas as the fuel there is greater potential for blowoff occurring, where 

the flame detaches from the burner, rather than flashback, where the flame retreats 

inside the burner. This is due to its low laminar flame speed, if the flame starts to 

detach reduction in mass flow rate and fluid velocity may allow the flame to stabilise 

near the burner exit. 

  

Figure 47: Producer Gas Properties based on model (Lewis et al., 2012) 
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4.2.3     Laminar Flame Speed 

As stated, the hydrogen content of the fuel has a significant effect on the flame speed 

of a fuel, and thus a significant effect on its stability (Abdulsada, 2012, Syred et al., 

2012). Both Figure 45 and Figure 47 demonstrate that hydrogen content can 

significantly vary, even during steady gasifier operation, with percentage of hydrogen 

varying from 11 to 17% without a noticeable change in the CV of the gas. The laminar 

flame speed (SL) of a producer gas with varying levels of hydrogen was simulated using 

CHEMKIN, which previous studies have shown to provide a good approximation 

(Pareja et al., 2011). The gas compositions simulated had a hydrogen content varying 

from 5 - 15%, with the remaining volume made up as shown in  

Table 12. The composition of the make-up gas is defined by the average composition 

of the producer gas, sans hydrogen.  

In contrast to air blown producer gas there is a plethora of experimental data available 

into the flame speeds of Blast Furnace Gas (BFG). As a by-product the quality of the 

gas is of secondary concern to the iron-making process, resulting in a variable 

composition much like producer gas. The main constituents of dry BFG are; H2 in the 

range of 0-7%, 20-30% CO and 16-25% CO2, with N2 (and possibly small quantities of 

H20) making up the balance (Chu et al., 2004, Lampert et al., 2010, Ziebik et al., 2008, 

Lui et al., 2009). Where lower hydrogen levels are present, the Li et al. (2007) 

mechanism provides a very good estimation of the flame speed (Pugh et al., 2012), 

particularly at higher equivalence ratios, hence its use when flame speed was 

simulated over a variety of hydrogen compositions and equivalence ratios. 

Atmospheric pressure and ambient temperature initial conditions were used, with a 

mixture pressure of 1 bar and temperature of 20°C, the simulated flame speeds are 

displayed over a range of equivalence ratios in Figure 48.  

Between the range of equivalence ratios simulated, for a given hydrogen content the 

lowest laminar flame speed occurred when equivalence ratio (Ø) was 2.0. As Ø 

decreases, SL increases until a peak value is reached. 

Regardless of hydrogen content, peak flame speed occurred when Ø was 1.2; with an 

increase in hydrogen content from 5% to 15% caused the peak flame speed to 

increase by 225%. Flame speed then decreases as Ø continues to decrease. Increasing 
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the percentage volume of hydrogen from 11 – 17%, as was observed in Figure 47, 

would increase the peak flame speed from 17.8 cm/s to 27.1 cm/s.  

 

Figure 48: Effect of Hydrogen on Flame Speed modelled using the Li et al. (2007) mechanism  
 

Table 12: Composition of Make-Up Gas 

 

 

 

This would have a significant effect on the stability limits of a burner, which, ignoring 

other factors would see the flashback and blowoff limits in terms of volumetric flow 

rate increase by a ratio of 1.52 as hydrogen content increases from 11% to 17%. The 

results were verified by comparison with the third iteration of the Gas Research 

Institute chemical mechanism (GRI Mech 3.0)(Bowman et al., 1999), as shown in 

Figure 49. Although there is a significant disagreement between the two mechanisms, 

especially in richer mixtures, both demonstrate the effect of hydrogen content on 

flame speed.  

There is little published experimental data on the flame speeds of producer gas. 

However, a previous study into the flame speeds of oxygen blown producer gas by Vu 

et al. (2011) compared experimental data against a prediction using GRI Mech 3.0. In 

Vu’s study GRI Mech 3.0 estimated flame speeds when equivalence ratio (Ø) equals 

0.6 very closely, but as equivalence ratio increased so did its underestimation. As 

oxygen rather than air is used as the oxidant there is very little nitrogen diluting the 

gas, unlike the composition in  
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Table 12, resulting in a gas with a far higher LHV, as can be seen in Table 13. 

 

Figure 49: Comparison between Li et al. (2007) and GRI Mech 3.0 (Bowman et al., 1999) mechanisms  

Comparison of Vu’s experimental data with that predicted by the GRI Mech 3.0 

(Bowman et al., 1999) and Li et al. (2007) mechanisms, as detailed in Figure 50, shows 

that both mechanisms underestimate the recorded flame speeds. Both make similar 

predictions, with the GRI Mech 3.0 seeming closer to the experimental data over in 

the entire range of equivalence ratios. The Li et al. Mechanism is however more 

accurate under lean conditions, which are preferred. 

Table 13: Composition of Gas used by Vu (2011) 

LHV (MJ/kg) % Volume 

9.2 
N2 CO CO2 CH4 H2 
2.3 35.5 27 6.5 28.7 

 

 

Figure 50: Comparing Experimental Data of Vu (2011), with Li et al. (2007) and GRI Mech 3.0 (Bowman et al., 1999)  
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Using the Li et al. mechanism and Equation 2.9, the laminar flame speed, and the 

Wobbe Index (WI), of the producer gas can be estimated. For the producer gas 

estimations in Figure 47, progressive changes in SL and WI were plotted against time in 

Figure 51. Wobbe index is fairly constant, as was observed with LHV. Only significant 

increases or decreases in volumetric hydrogen content, caused sudden alterations in 

WI. The effect of these increases or decreases in hydrogen content is considerably 

greater in laminar flame speed. In Figure 47 a large decrease in hydrogen content 

occurs at around 180 minutes after gasifier start. 

 

Figure 51: Fluctuations in Wobbe index and laminar flame speed based on the composition from Figure 47 

This results in WI dropping from 5.45 MJ/m3 to 5.11 MJ/m3, a 6.7% decrease. The 

reduction in flame speed is larger, with SL dropping from 26.97 cm/s to 18.92 cm/s, a 

42.5% decrease. The disparity in these reductions is of concern to burner or engine 

manufacturers, who often define acceptable fuels based upon their Wobbe index. 

4.2.4     The Effect of Initial Combustion Temperature 

In all combustion design, knowledge of flame temperatures is exceptionally important 

to specify materials capable of withstanding the conditions immediately downstream 

of the flame, whilst avoiding over specification to minimise costs. When burning a fuel 

that is derived from waste sources it is especially important that flame temperatures 

can be predicted as regulations specify minimum flame temperatures and residence 

times. In the European Union the incineration of waste is regulated by Directive 

2000/76/EC (The European Parliment, 2000). When calculating the adiabatic flame 

0

1

2

3

4

5

6

2

7

12

17

22

27

32

0 60 120 180 240 300

W
I (

M
J/

m
3
)

S L
(c

m
/s

)

Time from gasifier start (min)

Peak Laminar Flame Speed

Wobbe Index



 

                                 PAGE |98 
  

temperature of a given fuel, one must start by considering the energy balance across 

the entire combustion system, which is simplified in Equation 4.1, where; CV is the 

calorific value of the reactants, HR is the sensible heat in the reactants, HP is the 

sensible heat in the products, and QL is the heat loss to the burner. 

                                                                      Eq (4.1) 

Since adiabatic conditions are of concern, no heat transfer occurs across the systems 

boundary, heat losses to surroundings are not considered, and therefore the heat in 

the products can be calculated as described in Equation 4.2: 

                                                                         Eq (4.2) 

To calculate the energy present on either side a mass must be know, using one 

kilogram simplifies matters as the most common way to express the calorific value of a 

gas is in J/kg, kJ/kg or MJ/kg. Calculation of sensible heat requires knowing the 

composition of the gas, and the specific heat of each component, at temperature T, 

where m is mass and CP is specific heat. Sensible heat is calculated as shown in 

Equation 4.3: 

                                                                     
    Eq (4.3) 

Therefore, calculating flame temperature, Tf, where the temperature of the reactants 

is, Tr, is possible using the Equation 4.4: 

                                                    
                   

  Eq (4.4) 

After finding the energy value of the right hand side, iteration will be required to 

calculate the flame temperature. The mass and components of the products would 

not be the same as the reactants. When producer gas leaves a gasifier it is at high 

temperatures, upwards of 500°C when biomass is the feedstock (Brammer and 

Bridgwater, 2002). Heat is naturally lost when the gas is treated, but when the gas is 

fed into internal combustion engines significant gas cooling is also required 

(Makartchouk, 2002), wasting thermal energy. Therefore it would be more energy 

efficient to use the gas in way that allows this thermal energy to be retained. In gas 

turbine combustion, where air and fuel are preheated, increasing the heat of the 
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combustion products by a degree Kelvin increases the adiabatic flame temperature by 

approximately half a degree Kelvin (Lefebvre, 1999). However, there is not a perfect 

linear relationship between reactant temperature and flame temperature, caused, 

fundamentally, by a non-linear relationship between temperature and specific heat 

capacity.  

Figure 52 shows the adiabatic flame temperature of three air and fuel mixtures, with 

adiabatic flame temperatures normalised against those under normalised conditions 

of temperature and pressure. The blue line shows a stoichiometric mixture of 

methane and air, with both fuel and combustion air preheated; there is a significant 

increase in flame temperature as preheat temperature increases, and thus the 

extraction of more thermal energy is possible. When, in a stoichiometric mixture, only 

the methane is preheated, as indicated by the red line, there is only a minor increase 

in flame temperature, the high stoichiometric air-to-fuel ratio meaning the initial 

temperature of the mixture as a whole is only raised slightly. 

For the producer gas observed from then proprietary plant, which has a typical 

stoichiometric AFR of 1.2, as opposed to approximately 17.2 for methane, the effects 

of preheated fuel are far more obvious. The green line in Figure 52 shows the 

adiabatic flame temperature of a stoichiometric mixture of producer gas and air. By 

increasing the preheat temperature to 400°C, the adiabatic flame temperature, and 

approximately the thermal energy in the product gas, has increased by 7%. 

 

Figure 52: Adiabatic flame temperatures with varying preheat, AFR is calculated by mass 

This shows that for gasification to thermal energy applications it would be beneficial 

to retain the heat in the producer gas, however there are other factors to consider, 
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such as particulates that may exist in gas stream at this temperature and whether 

auxiliary equipment, such as valves or flame arrestors, remain operable.  

4.2.5     Simulation with Natural Gas 

The potential to use diluted methane as a simulated producer gas was investigated, 

initially with the calorific value of the overall mixture defining an equivalent 

composition. However, as previously discussed the relationship between laminar 

flame speed and local velocity of mixture is of great importance to flame stability. 

CHEMKIN was again used to simulate the flame speeds of mixtures of producer gas 

(with the Li mechanism) and natural gas with air as the oxidant (with the preferred GRI 

Mech 3.0 mechanism), which are shown in Figure 53. 

There is a difference between the flame speeds of producer and natural gas mixtures 

with the same overall CV. Flame speeds are equal at a CV of 2.6 MJ/Nm3. At this point, 

the equivalence ratios of producer gas and air diluted natural gas are 1.21 and 0.68 

respectively.  

 

Figure 53: Producer and Natural Gas Flame Speeds (Lewis et al., 2012) 

At an equivalence ratio of 1, the flame speed of producer gas is 21.6 cm/s, at an 

equivalent mixture CV the flame speed of natural gas is 13.2 cm/s. This means that 

simulating combustion of a stoichiometric AFR Producer gas mixture with natural gas 

would underestimate blowoff limits and overestimate flashback limits (in terms of 

mass flow rate). Indeed, this would be the case for producer gas equivalence ratios 

below 1.21, above which the opposite becomes true. Although there are differences 
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between flame speeds, they are not so considerable that potential laboratory 

experimentation with diluted natural gas should be disregarded, especially when the 

majority of the fuel is introduced tangentially or experimentation is not focussed on 

stability limits. 

A better simulation may be achieved by diluting natural gas with nitrogen, which could 

reduce the overall mixture CV without the addition of an oxidant. As Figure 53 

indicates, this results in a equivalence ratio that is much closer to that of producer gas 

across the range of CV’s, as such the flame speed profile across the range is a very 

similar shape, with both having a peak flame speed when the CV of the mixture is 

between 2.3-2.4 MJ/Nm3. However, in producer gas equivalence ratios in the range 

0.79 to 1.41, within which combustion equipment would be expected to operate, the 

flame speed of air diluted natural gas is closer to that of producer gas than nitrogen 

diluted natural gas. When stability is being investigated, it is preferable to equate 

flame speeds. This can be achieved by using a lean mixture of natural gas and air. 

Figure 54 shows the natural gas equivalence ratio required to reproduce the same 

flame speed as producer gas mixtures over the equivalence ratio range of 0.5 to 1.7. 

For example, producer gas with an equivalence ratio of 1.00 will have the same 

laminar flame speed as a natural gas mixture with an equivalence ratio of 0.68. The 

methane equivalence ratios required to simulate the mixture CV of producer gas are 

also shown in Figure 54. Only when producer gas Ø and natural gas Ø are 1.16 and 

0.66 respectively, do flame speed and mixture CV equate. 

 

Figure 54: Producer and Natural Gas Mixtures with the same Flame Speed and/or Mixture CV 
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Diluted methane combustion could be used to assess the how changes in composition 

effect a combustion system. The laminar flame speed and WI ranges of the producer 

gas from the proprietary plant can be matched with natural gas and air mixtures. 

Varying the AFR of air and methane mixtures could replicate the changes in SL or WI 

seen in Figure 51 (Lewis et al., 2012). 

4.3 Wobbe Index and Flame Speed 

Laminar flame speed (SL) itself is not of direct relevance in gas turbine combustors, 

where the flow of the combustible mixture will be, in almost all cases, highly 

turbulent. There is a direct relationship between laminar and turbulent flame speeds. 

With increased turbulence, the fluctuating velocity in the flow increases (Cheng et al., 

2009), which promotes flame propagation. With turbulent flame speed (ST) equalling 

the laminar flame speed plus the product of a gas dependant constant and root mean 

square of fluctuating velocity (Syred et al., 2014), . 

CHEMKIN, in conjunction with the GRI Mech 3.0 chemical mechanism (Bowman et al., 

1999), was used to assess how the a change in gasl composition may affect the 

relationship between Wobbe Index and laminar flame speed. Propane has a 

significantly higher WI than methane, 69.1 MJ/m3 compared to 45.4 MJ/m3 at 1 barA 

and 293 K, and a higher laminar flame speed. Figure 55 (a) shows the addition of 

propane, representing higher hydrocarbons, to methane changes the WI of the fuel 

and SL of mixture, at conditions representative of a gas turbine combustor. The most 

notable observation is the strong, but not perfect linear relationship that exists 

between WI and SL that exists across all equivalence ratios.  

What must also be considered is that as WI changes, so does the Stoichiometric Air-to-

Fuel Ratio (SAFR). The way a gas turbine operates results in a constant mass flow of 

air, so changes in SAFR cause similar changes in equivalence ratio, further altering the 

laminar flame speed. Figure 55 (b) takes this further change into account, comparing 

the calculated average (Ф =0.5..1.0) and stoichiometric laminar flame speeds with 

those corrected for the changes in equivalence ratio. An air mass flow rate for the 

maximum WI is assumed, and it can be seen that the relationship between WI and SL 

remains linear and that discrepancy in flame speeds is very small, the maximum being 

0.83%. This linear relationship is retained, largely due to the two gases involved being 
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flammable and having similar stoichiometric air-to-fuel ratios. When there is a 

variation in the balance between flammable and non-flammable there is a deviation 

from this linearity.  

   

                                                       (a)                                  (b) 
Figure 55: A comparison between Wobbe Index and laminar flame speed for (a) different equivalence ratios and (b) 

correcting for change in equivalence ratio with Wobbe Index 

Figure 56 (a) shows the relationship between WI and SL for the producer gas variations 

detailed previously. Looking at how the relationship changes for a stoichiometric 

mixture this deviation is apparent, but what is more apparent is the combined effect 

of the change in WI and equivalence ratio on the flame speed, with small changes in 

composition having a significantly more pronounced effect on flame speed. 

  

                                                     (a)                                                   (b) 
Figure 56: A comparison between Wobbe Index and laminar flame speed for (a) producer gas with variable hydrogen 

and (b) hydrogen nitrogen mixtures 
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The same is true of pure hydrogen-nitrogen blends, which are shown in Figure 56 (b).  

The work by Abbott et. al. (2012) demonstrated that WI has significant impact upon 

gas turbine operation in a practical application. The work suggested that WI alone is 

not a sufficient method of fuel characterisation, and the results in Figure 56 are in 

agreement with that. Fuel blends containing inert gases, including natural gas in 

practical situations, display non-linear relationships between WI and SL, with small 

changes in WI having significant implications on laminar flame speed. Perhaps more 

significantly where interchangeability of fuels is concerned significant variations were 

observed in the SL of methane/propane and hydrogen/nitrogen blends of equal WI. 

When WI was 46 MJ/m3 and equivalence ratio was 1, the laminar flame speeds of the 

methane/propane and hydrogen/nitrogen blends were 94.8 cm/s and 837.6 cm/s.  

As previously stated laminar flame speed is not directly relevant in gas turbine 

combustion due the high turbulence present. Therefore it is unlikely to be the second 

parameter of fuel characterisation that Abbott et. al. Suggest is required, however it 

does indicate how fundamental flame characteristics may vary within prescribed WI 

limits. Parameters directly related to turbulent combustion, such as turbulent flame 

speed, Markstein number or critical stretch are likely to be more appropriate. 

4.4 Chapter Summary 

The consistency of producer gas composition from a proprietary gasification plant was 

investigated using gas analysis. The gasifier used grade-A woodchip (The Wood 

Recyclers Association, 2009), which is a fairly homogenous biomass source. 

A relationship between throat temperature and hydrogen content was established, 

where hydrogen content increased as gasification temperature increased (Lewis et al., 

2012), an effect that has been reported by other researchers (Bal´aˇs et al., 2012). The 

stoichiometric equivalence ratio of the fuel remained very steady, this was due to the 

opposing effect of temperature on hydrocarbon content of the producer gas, which 

reduced as gasification temperature increased. This reduction was observed in 

methane by Bal´aˇs et al. (2012), and is in agreement with modelled results for 

biomass over the same temperature range produced by Mhilu (2012). Temperature 

dependent composition, with hydrogen content increasing relative to hydrocarbon 

content as temperature rises, has also been reported with regard to the gasification of 
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coal by Haji-Sulaiman et al. (1986), and the gasification of municipal solid waste by He 

et al. (2009). 

An empirical model was derived for this particular gasifier and feedstock combination 

to predict producer gas composition based on gasifier throat temperature. 

Comparison over a short gasification run showed good agreement between predicted 

and recorded results. The model was applied to a longer gasification run and the 

variation in stoichiometric air to fuel ratio and lower heating value of the producer gas 

were assessed over time. As gasifier temperature is the main factor in defining 

composition (Bal´aˇs et al., 2012), and it has a competing effect on the main 

combustible constituents of the gasifier, the SAFR and LHV remain very steady despite 

large fluctuations in composition. The most significant fluctuations predicted were in 

hydrogen content, which can have a major effect on flame stability (Dam et al., 2011b, 

Mohon Roy et al., 2009, Syred et al., 2012, Thornton et al., 2007) due to its impact 

upon flame speed (Monteiro et al., 2010). 

CHEMKIN was used to simulate how the flame speed of the producer gas would be 

affected by the fluctuations in hydrogen content. The Li (2007) chemical mechanism 

was used after Pugh (2012) determined its suitability for simulating blast furnace gas 

flame speeds, which has a similar composition and hydrogen content to the producer 

gas in question. The accuracy of the Li mechanism was assessed against both 

experimental data (Vu et al., 2011) and another CHEMKIN integrated chemical 

mechanism (Bowman et al., 1999). Simulations, at ambient temperature and 

atmospheric pressure, showed the marked effect that hydrogen content has on 

laminar flame speed. At a typical lean premix equivalence ratio of 0.91, equal to 10% 

excess air, as hydrogen content increases from 5% to 15%, laminar flame speed 

increases from 8.0 cm/s to 17.7 cm/s (Lewis et al., 2012).  

The predicted range of hydrogen volume in the producer gas, (once the gasifier 

operation was stable), was 11–17%. Although this had little impact upon SAFR or LHV 

this would cause peak flame speed to vary between 17.8 cm/s and 27.1 cm/s. A 

sudden drop from 17 to 12 % in hydrogen content was predicted. This is a significant 

difference, and would result in a sudden drop from 17.0 cm/s to 8.0 cm/s at an 

equivalence ratio of 0.91. A drop in SL of that degree is likely to cause flame 
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detachment, whereas a sudden increase of that nature is likely to cause to flashback 

(Syred et al., 2012).  

Producer gas leaves the gasifier at high temperature (Brammer and Bridgwater, 2002), 

for use in an internal combustion engine the gas must be extensively cooled, in order 

to achieve reasonable levels of efficiency (Makartchouk, 2002). When the gas is to be 

utilised in a continuous combustion system, like a boiler or gas turbine, maintaining 

the thermal energy in the gas is beneficial. The efficiency of energy production is 

improved, as increasing reactant temperature by a degree equates to approximately 

half a degree gained in flame temperature (Lefebvre, 1999). The effect of fuel 

temperature on the adiabatic flame temperatures of a stoichiometric producer gas 

and air mixture was assessed. By purely retaining temperature, maintaining a gas 

stream temperature of 400°C rather than 40°C increased adiabatic flame temperature 

and energy output by 7%. 

The potential to use diluted natural gas as a simulated producer gas was investigated, 

with air and nitrogen as the diluents. Although diluted natural gas has the potential to 

yield flame speeds exceeding the range of a producer gas and air mixtures, at 

equitable flame speeds the calorific value of the mixtures were appreciably different 

(Lewis et al., 2012). Therefore, depending on what conditions are being assessed, 

simulation with natural gas would require a choice between thermal or velocimetric 

equilibrium.  

Manufacturers prefer to specify fuels in terms of their energy density, with this 

parameter defined by Wobbe Index (WI) (Abbott et al., 2012). WI, is also used to 

assess interchange ability between fuels (Coyle et al., 2007). Changes in WI and 

laminar flame speed (SL) were compared for methane and propane variations. An 

almost linear response was seen, which suggested that WI is a reasonable method of 

assessment for fuel sources without inert components. This suggests that the range of 

acceptable WI of 48.96 to 56.62 MJ/Nm3 proposed by EASEE-gas (2005) is too large for 

lean combustions. With a linear response this equates to a 15.6% range of flame 

speeds, significant enough to cause instability. This is supported by Slim (2011) who 

reported stability issues with low NOx industrial burners over this range of WI. 

Potential changes in flame speed are often disregarded when natural gas composition 

variations are assessed (Loubar et al., 2007), or hydrogen addition is suggested as a 
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method of fuel doping (Zachariah-Wolff et al., 2007). These results show that where 

interchange ability between fuel sources is concerned, flame speed must be 

considered, with Wobbe Index alone not sufficient. There should also be a regard for 

the temperature of the fuel supply (Abbott et al., 2012), as increasing temperature will 

increase flame speed (Zhao et al., 2004) but reduce WI. 
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Chapter 5: Mechanisms of Isothermal Acoustic 

Response 
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5.1 Introduction 

With an ultimate aim of identifying how acoustic response changes with fuel-air 

mixtures, which will occur if fuel composition varies, the initial aim of this chapter is to 

gain understanding into the acoustic response of a combustion system with non-

reacting flows. This will determine the aerodynamic effects on acoustic response.  

Uncontrolled or unmonitored acoustic resonances have the potential to cause severe 

damage to the combustion systems in which they prevail. There are many sources of 

pressure oscillations in a combustion system and the potential of these to cause large 

amplitude, destructive, instabilities, depends on a complete feedback mechanism 

being present. Acoustic oscillations can be the result of heat release oscillations, or 

perturbations in the flow or mixture air-to-fuel ratio (Lieuwen, 1999, Lieuwen, 2012a). 

If the resulting acoustic oscillations are sufficiently in phase with the preceding 

oscillations or perturbations, then the feedback mechanism promotes amplification of 

the resulting oscillations (Farhat and Mohamed, 2010). 

Whenever there is a steady flow of gas passing through a combustion system some 

oscillations will be present. This is true whether there is a combustion process 

occurring or not. This being the case, it stands to reason that the presence of acoustic 

oscillations does not necessarily indicate that a system is unstable.   

As such, combustion free, system acoustic responses are analysed, to identify the 

acoustic oscillations that exist independently of the combustion process; thus making 

them identifiable as the source of oscillations when combustion is introduced. A series 

of isothermal experiments were performed in order to characterise the acoustic 

signature of burners under different flow conditions in order to determine natural 

resonance within the system, whilst detecting coherent structures and establish their 

temporal evolution. Thus allowing the isothermal effect of swirl and flow rate on cold 

flow structures to be compared to the effect under combustion conditions. 

Isothermal experimentation was performed using the cyclone burner and 

methodology described in section 3.3.2. Oscillations from two sources were present 

during testing; those which resulted from natural resonance of the rig, excited by the 

flow of fluid through the system, and those that were the direct result of the fluid 

flow.   
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5.2 Predicting Resonance  

The natural frequency of the system is defined largely by the geometry of the 

combustion and swirl chambers, which act similarly to Helmholtz resonators. The 

natural frequency of the various system components can be estimated using equation 

5.1, and the method described by Putman (1971): 

 

       
 

  
  

   

     
    Eq (5.1) 

 

Where:  Ath  = Throat Area (m2) 

  Vc  = Volume of Cavity (m3) 

  Lt = Throat Effective Length (m) 

And  c = Speed of sound (m/s), defined for an ideal gas thus: 

 

                   Eq (5.2) 

 

Where:  γ  = Ratio of Specific Heats (-) 

  R = Universal Gas Constant (J/K·kg) 

  T = Absolute Temperature (K) 

 

The flow of gas through the cavities means that they do not behave exactly like a 

Helmholtz resonator, therefore the speed of sound in the Eq. (5.1) is adjusted thus: 

 

               
 

  
    Eq (5.3) 

 

Where:  Q = Volumetric Flow rate (m3/s) 

 

For the cyclone burner the predicted Helmholtz frequencies for an ambient air 

temperature of 295 K, and with no flow, were 218 Hz, 117 Hz and 162 Hz for the 

combustion chamber with confinement A fitted, the combustion chamber with 

confinement B fitted, and the swirl chamber respectively. The temperature of gas in 
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the respective throats is affected by combustion. This will change natural frequency by 

a factor equal to the square root of the ratio of absolute actual temperature and 

absolute ambient temperature. This assumes that the speed of sound of the gaseous 

products of the combustion process is the same as that of air. In actuality the ratio of 

specific heats for the product gases of a stoichiometric mixture is 1.375, approaching 

1.4 as equivalence ratio increases. When predicting natural frequency, this would 

contribute a maximum percentage error of 1.33%. 

5.3 Cold Coherent Structures 

There are several factors that contribute to combustion driven instabilities, heat 

release oscillations have been well documented (Lieuwen, 1999, Lieuwen, 2012a, 

Putman, 1971, Huang and Yang, 2009). Large-scale coherent structures have also been 

shown to be a source of thermo acoustic instabilities (Yazdabadi, 1995, Fick, 1998, 

Froud et al., 1995, O’Doherty et al., 1999, Syred, 2006). These structures include 

Central Recirculation Zone (CRZ) (Coghe et al., 2004), a Precessing Vortex Core (PVC) 

that occurs when a CRZ is formed (O’Doherty et al., 1999, Syred, 2006), and vortex 

shedding mechanisms. Previous work performed on this burner documented the 

presence of pressure fluctuations caused by the presence of a PVC (Valera-Medina, 

2009). Vortical structures distort the shape of the flame, leaving it asymmetric, 

therefore, the surface oscillates and causes heat release oscillations (Schadow and 

Gutmark, 1992). The pressure fluctuations caused by structures in the flow are 

difficult to detect using an external microphone; to prevent combustion noise 

distorting the potential influence of coherent structures on the acoustic behaviour of a 

burner isothermal experimentation was used. 

The PVC is seen as major driver for combustion instabilities (Moeck et al., 2012), and 

the oscillations it induces are particularly likely to cause damage to a combustion 

system if they couple with the combustions chamber’s natural frequency, which will 

result in higher amplitude fluctuations in pressure. Experiments determined the 

dominant frequency over a range of flow rates, with four burner inlet configurations, 

as demonstrated in Figure 39, used to deliver geometric swirl numbers of 0.74, 1.08, 

2.02 and 4.46, for both confined and unconfined conditions.  
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5.3.1     Structure Strength 

The Fast Fourier Transform (FFT) analysis and autocorrelation plot of the acoustic 

response for three instances are shown in Figure 57 (a). The instances are isothermal 

flows with geometric swirl numbers of 0.74, 1.08 and 2.02, with an exit nozzle 

Reynolds number of 48200; the combustion chamber was fitted with confinement A, 

as shown in Figure 38. The power spectrum produced from the FFT analysis of Sg = 

2.02 shows a very strong frequency response at 98 Hz, with significantly reduced 

responses at 154 and 208 Hz. The weak responses around 154 and 208 Hz are also 

visible in the power spectrum from Sg = 0.74 and 1.08. The weak, yet consistent, 

responses are caused by the flow of air exciting the natural frequencies of the 

combustion chamber fitted with confinement A and the swirl chamber, which were 

estimated to be 212 and 158 Hz respectively. Sg = 1.08 also shows a strong response at 

75 Hz. The strong peaks at 98 and 75 Hz indicate a defined oscillation occurring at 

these frequencies, consistent with a coherent structure. The autocorrelation plots in 

Figure 57 (b) show the presence of a periodic repetitive signal, which increases 

dramatically in amplitude and correlation time as swirl number increased.  

 

                                                (a)                                                                                                               (b)                                                 
Figure 57: (a) FFT analysis and (b) Autocorrelation of an isothermal flow with Sg= 2.02,1.08 and 0.74, with 

confinement A (Exit Nozzle Re = 48200, Tangential Inlet Re = 68700, 39500 and 34400 respectively) 

As the only variation is in swirl number, it is concluded that vortex breakdown, which 

is dependent on swirl strength and Reynolds number (Luca-Negro and O’Doherty, 

2001) has occurred when Sg = 1.08 and 2.02. As a result structures have formed in the 

flow, and that strength and rotational frequency of the structures increases with the 
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level of swirl. Previous work using this particular burner has confirmed the existence 

of an isothermal CRZ-PVC pairing under these conditions (Froud, 1995, Valera-Medina, 

2009), although only its presence and appearance was investigated. 

There is no definite peak in the spectrum of the case where Sg = 0.74, this is caused by 

one of two reasons. That the level of swirl is not great enough to have induced vortex 

breakdown, or as suggested by the results shown later in Figure 58, where a peak is 

detected for Sg = 0.74 and Re = 48200, the strength of the structures are not great 

enough to cause a detectable resonance of the burner. 

The results in Figure 57 demonstrate that for a given burner configuration and flow 

rate, the presence, strength, and frequency of the flow structures are dependent on 

the level of swirl imparted on the flow, agreeing with very early work on the subject of 

swirling flows (Syred and Beér, 1974). 

5.3.2     The Effect of Flow Rate on Structures 

Syred (2006) stated that frequency of a PVC would increase quasi-linearly with flow 

rate, and this is true of all structures in the flame, or flow region. This is demonstrated 

in Figure 58 (a), where the measured dominant frequency is plotted against a range of 

swirl chamber exit nozzle Reynolds numbers for the four geometric swirl numbers, 

with burner unconfined. Observed was a very strong linear relationship, with 

coefficients of determination ranging from 0.9986 to 0.9996. Dominant frequency is 

also plotted against the tangential inlet Reynolds number. Tangential inlet velocity is 

calculated by dividing the total volumetric flow rate by the total area of the tangential 

inlets to the swirl chamber. These inlets are restricted to varying amounts in order to 

alter the swirl number, as such for a given flow rate each swirl number will have a 

different inlet velocity. In Figure 58 (b) it can be seen that for a given turbulence level, 

the variance in dominant frequency is less for tangential inlet Re compared to exit 

nozzle Re. For a given tangential inlet Re the range of dominant frequencies recorded 

is 20% less than for a given nozzle velocity. Recent work has shown, when combustion 

is introduced, a high level of correlation exist between the flashback and blowoff limits 

of swirling flows and tangential inlet velocity (Syred et al., 2013b, Syred et al., 2013a, 

Syred et al., 2014). 
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                                                (a)                                                                                                           (b) 
  Figure 58: Dominant frequency against (a) combustor chamber exit nozzle Re and (b) tangential inlet Re for 

unconfined burner 

For the unconfined case, a relationship between Re and dominant frequency extended 

over the full range of flow rates. This was not the case when the combustion chamber 

was used, fitted with either confinement A or B, which are detailed in section 3.3.2. 

Figure 59 and Figure 60 show the results for confinements A and B respectively.  

In both cases, when the flow has a geometric swirl number of 0.74, a proportional 

relationship between flow rate and dominant frequency does not exist. Instead, 

frequencies around 160 Hz were recorded across the entire range, corresponding to 

the natural resonance of the swirl chamber. Additional, far weaker, responses visible 

in the power spectrums around 208 Hz for confinement A and 115 Hz for confinement 

B. Rather than being caused by structures in the flow; these responses correspond to 

the natural frequencies of the fitted confinements. When confinement B was fitted an 

acoustic response was also recorded at around 208-210 Hz, although it is significantly 

weaker than when confinement A was fitted. This suggests that a permanent feature 

in the rig is also causing a response at this frequency. 

For either confinement, and with all four swirl levels, no structures were detected at 

the lowest recorded flow rate of 1000 L/min (exit nozzle Re = 16070). As flow rate 

increased a transition point between coherent structures and a resonant frequency 

being the source of the dominant frequency was reached, the flow rate of this 

transition depended on the level of swirl and type of confinement. Based on the exit 

nozzle Re results in Figure 59 (a) and Figure 60 (a) there is no obvious relationship 
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between swirl number and transition point, other than the higher the swirl number 

the lower the flow rate required for the structures to become apparent. 

 

   (a)                                                                                                   (b) 
Figure 59: Dominant frequency against (a) combustor chamber exit nozzle Re and (b) tangential inlet Re for the 

burner with confinement A 

 

                                                   (a)                                                                                                            (b) 
Figure 60: Dominant frequency against (a) combustor chamber exit nozzle Re and (b) tangential inlet Re for the 

burner with confinement B 
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response at the estimated natural frequency of the fitted confinement. The same was 

true for Sg = 0.74 when the narrow confinement B was fitted, conversely, when 

geometric swirl number was 1.08, 2.02 or 4.46 the dominant frequency prior to the 

transition point was dictated by the geometry of the combustion chamber and 

confinement, with a weaker response present at around 160 Hz, the natural frequency 

of the swirl chamber. 

Re was plotted against dominant frequency in Figure 61, this time the swirl number 

was fixed, with each data series corresponded to a different confinement. The 

transition point of the dominant frequency is very obvious for the confined cases. 

 
                                                     (a)                                                          (b) 

  
                                                    (c)                                                             (d) 

Figure 61: Dominant frequency against exit nozzle Re for (a) Sg = 0.74 (b) Sg = 1.08 (c) Sg = 2.02 (d) Sg = 4.46 
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Although there are not sufficient scenarios to confirm it, the data suggests that 

regardless of the confinement, a given swirl number has a critical nozzle exit Re for 

coherent structures to dominate the acoustic response. Figure 61 also shows clearly 

that the dominant frequencies recorded prior to the transition point decrease as flow 

rate increases, as suggested when Eq. (5.3) is substituted into Eq (5.1), further 

suggesting that they are caused by a resonance in a cavity. 

5.3.3     Dimensionless Interpretation 

It is preferable to interpret results in a dimensionless format, this allows better 

comparison between different burners, flow rate and level of swirl imparted on the 

flow are already been interpretted in terms of the dimensionless Reynolds and 

geometric swirl numbers. The frequency of oscillating flows can be expressed using 

the Strouhal and Roshko numbers. 

The Strouhal Number (St) characterises the shedding of vortices, representing a 

measure of the ratio of inertial forces due to the unsteadiness of the flow or 

acceleration, to the inertial forces due to changes in velocity from one point to 

another in the flow field. However, the Strouhal number can be used to characterise 

the frequency of oscillations in swirling flows (Syred, 2006), in which case it is 

calculated as in Eq. (5.4): 

 

        
   

 
     Eq (5.4) 

 

Where:   f  = Frequency of oscillations (Hz) 

   L  = Characteristic length of exit (m) 

   U = Fluid velocity (m/s) 

 

The results from Figure 58 (a), Figure 59 (a) and Figure 60 (a) have been 

reinterpretted, in Figure 62 (a-c) respectively, to display how the relationship between 

Strouhal number and Reynolds number is effected by confinement. The unconfined 

case, where dominant frequency is always defined by the oscillation of flow 

structures, shows that a constant geometric swirl number produces a constant St 
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across the complete range of Re. As swirl number increases, and the frequency of 

oscillations increase, so does the Strouhal number.  

 

                             (a)                                                                           (b)                                                                         (c) 
Figure 62: Strouhal number against Reynolds number for burner (a) unconfined and fitted with (b) confinement A 

and (c) confinement B 
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the response, again a constant St occurs, increasing as Sg increases. However, the 

value of the Strouhal number is reduced with regard to a specific geometric swirl 

number, and the variance is also reduced. All instances of dominant resonance fall on 

on one line, where St can be expressed as an inverse power of Re.  

A similar pattern is observed for confinement B in Figure 62 (c). The values of constant 

St are increased on the unconfined case, with a small variance similar to when 

confinement A. The instances where resonance in the swirl chamber dominates the 

acoustic response fall on the same line as Figure 62 (b), the instances where the 

resonance in the confinement dominate the spectrum fall on another line where St 

can be expressed as an inverse power of Re. 

In the same way that a Strouhal number can be used to non-dimensionally 
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represents the product of the Strouhal and Reynolds numbers, can be used to 

characterise oscillations resulting from resonance within the burner. It is calculated 

below: 

 

        
    

 
         Eq (5.5) 

      

Where:   f  = Frequency of oscillations (Hz) 

   L  = Characteristic length of exit (m) 

   ν = Fluid kinematic viscosity (m2/s) 

 

The results from Figure 58 (a), Figure 59 (a) and Figure 60 (a) have been 

reinterpretted, in Figure 63 (a), (b) and (c) respectively, with Roshko number plotted 

against Reynolds number.  

   

      (a)                                                                   (b)                                                                   (c) 
Figure 63: Roshko number against Reynolds number for burner (a) unconfined and fitted with (b) confinement A and 

(c) confinement B 
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constant, non-dimensional range of values in which resonance can be characterised, 

demonstrated by the semi-tranparent bands in Figure 63 (b) and Figure 63 (c). 

 5.3.4     The Transition Points 

It is concluded that there are two transition points in the dominant source of the 

acoustic response. The primary transition point is the result of Vortex Breakdown, and 

the second a result of flow structures becoming more prominent than Helmholtz 

resonance. The acoustic response over the full range of Reynolds numbers, when Sg = 

1.08 and confinement B is fitted is analysed, with power spectrums recorded at 

intervals over the range shown in Figure 64. 

Vortex breakdown manifests itself as an abrupt change in flow structure; it is one of 

the most important phenomena involved in swirl combustion and results in the 

formation of a CRZ. Its occurrence is a primarily a function of swirl and Reynolds 

numbers (Luca-Negro and O’Doherty, 2001). However, there is further reliance on 

other factors, including burner configuration, degree of confinement and flow rate 

(Valera-Medina et al., 2011b). 

For the swirl number and confinement used to obtain the results detailed in Figure 64 

the frequency of structures were represented by a Strouhal number of 1.426, the 

point at which the dotted line crosses each axis denotes the frequency that equates to 

the fixed St. The first response observed at St = 1.426 is when Re = 28942, although it 

is incredibly subtle and difficult to distinguish in Figure 64, it is concluded that vortex 

breakdown occurs when Re at the exit nozzle is between 25710 and 28942. Post 

breakdown, as Re increases, so does the amplitude of the response at St = 1.426. The 

secondary transition point defines where the amplitude of acoustic emissions caused 

by the structures within the flow exceeds those caused by resonance within the 

burner system. For the confinement used to obtain the results detailed in Figure 64 

the primary natural resonance is defined by the combustion chamber, predicted to be 

117 Hz. The range of Roshko numbers at which this resonance is detected is 

highlighted in Figure 64 by the semi-transparent band. Initially, as Re increases so does 

the amplitude of the resonance, with the highest amplitude observed when Re = 

25710.  
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Figure 64: Power spectrums across the full range of exit nozzle Reynolds numbers for Sg = 1.08, with confinement B 
fitted 
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When Re equals 28924 the amplitude has decreased, a trend which continues when 

Re = 32138 until stabilising for higher values of Re, where resonance ceases but 

fluctuations continue to occur at a similar level to elsewhere in the spectrum. Figure 

65 (a) shows an interpretation of how the two transition points affect the acoustic 

response of the burner under isothermal conditions. The primary transition point does 

not directly affect the dominant frequency recorded as it occurs when the Helmholtz 

resonance dominates the acoustic response of the burner, however the process of 

vortex breakdown interferes with resonance within the rig, which causes the 

amplitude of the resonance to decrease post breakdown, as observed in Figure 64. 

The secondary transition point occurs when the amplitude of the flow structures 

exceed those caused by resonance, as such the cause dominant frequency in the 

acoustic response changes. 

  

                                              (a)                                                         (b) 
Figure 65: (a) Interpretation of the transition point between the causes of dominant frequency in the spectrum 

analysis and (b) results taken from Sg = 1.08 with confinement B fitted 
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as opposed to the power spectrums shown in Figure 64, from which the results in 

Figure 65 are calculated. 

5.4 Chapter Summary 

This chapter presents the results of isothermal experimentation on a radial swirl 

burner. The effects of flow rate, the level of swirl imparted on the flow and 

confinement are analysed.  

Two mechanisms were found to define acoustic response under isothermal 

conditions, Helmholtz resonance and the precession of structures. The frequency and 

amplitude of oscillations caused by structure precession increased with geometric 

swirl number and air flow rate, whereas Helmholtz resonance demonstrated a 

tendency to reduce with flow rate. The frequency of structure rotation and Helmholtz 

resonance for a particular burner configuration can be characterised via the use of the 

dimensionless Strouhal and Roshko numbers respectively. With regard to the 

precession of structures, two transition points occur as Reynolds number increases. 

Firstly when vortex breakdown occurs, and secondly when the amplitude of 

oscillations caused by precessing structures exceeds those caused by resonance. 

The characterisation of frequency and structure rotation and resonance will aid in the 

identification of mechanisms of acoustic response with reacting flows in the 

proceeding chapter.   
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Chapter 6: Thermo-Acoustic Response as a 

Performance Indicator 
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6.1 Introduction 

The aim of this chapter is to assess the potential to utilise thermo-acoustic oscillations 

to infer flame conditions. The ultimate aim is to integrate this knowledge of flame 

condition into a control system, capable of making alterations to fuel and/or air flow 

rates. This would potentially prevent the thermo-acoustic oscillations developing into 

instabilities, and maintain circumstances of optimum flame stability. This could be 

used to counteract the effects of variable fuel composition observed in chapter 4. The 

isothermal characterisation performed in the previous chapter will aid in identifying 

mechanisms of acoustic response as flame conditions alter. 

Putnam (1971) theorised that it would be almost impossible that combustion systems 

could exist without oscillations. A theory supported by the isothermal work in the 

previous chapter, which showed that pressure oscillations inside combustion 

chambers occur when a fluid passes through, regardless of combustion. 

Several mechanisms may contribute to the manifestation of combustion driven 

oscillations. These thermo-acoustic oscillations are fundamentally caused by 

oscillations in pressure, varying rates of flow and heat release, as well being strongly 

influenced by the geometry of the combustor. There is a basic feedback mechanism 

which sees flow and mixture perturbations induce heat release oscillations, causing 

acoustic oscillations which in turn affect flow and mixture perturbations, closing the 

loop and creating a potentially self-excited maintainable mechanism (Lieuwen, 1999). 

However, there are many other factors that influence oscillations in the combustion 

system, including combustor pressure drop, variations in fuel composition and the 

formation of structures within the flame.  

There is potential to control these instabilities in both a passive and active manner. To 

do so passively requires system design modification, but inherently, this cannot 

respond to changes in the acoustics in a dynamic way (Farhat and Mohamed, 2010). A 

common method of passive control involves making modifications to combustor’s 

geometry, i.e. the fuel injector, which can eliminate variations in heat transfer or 

increase a systems acoustic damping (Lefebvre and Ballal, 2010). There is now, 

however, more focus being directed toward active techniques (Stone and Menon, 

2002) from the point of view of adaptive flexibility (Tachibana et al., 2007), where 
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incipient instability is dynamically detected and corrected. The general approach to 

active control is to minimise the difference between the instantaneous actual and 

desired behaviour of a system. A sensor is used to detect instabilities, a closed loop 

control system then modifies one of the burners input parameters in order to 

interrupt the coupling of acoustic pressure waves and unsteady heat release (Huang 

and Yang, 2009). Consideration of acoustics perturbations is important where the 

working life of gas turbine components are concerned (Lieuwen, 2012a). To extend 

the life of these components a control system can be employed to reduce the 

amplitude of pressure fluctuations, and thus the stresses experienced by their 

components.  

6.2 Mechanisms of Acoustic Response 

Just as isothermal resonance within the rig and the precession of structures were 

attributed to causing oscillations over a range of frequencies, thermo-acoustic 

oscillations may occur over a range of frequencies as a result of multiple mechanisms. 

Combustion was introduced to the cyclone burner described in section 3.2.2, and 

monitored with a condenser microphone as described in section 3.2.2.1. 

Figure 66 shows how the power spectra change over the stability range of flames with 

differing powers, the lowest Reynolds numbers corresponding to flames on the verge 

of flashback. As the flow rate of air, and consequentially the exit nozzle Re increase, 

equivalence ratio decreases, this results in the flame speed of the mixture decreasing 

as the flame tends towards blowoff.  

Three mechanisms of acoustic response are present over the stability range of the 

flame. With regards to the flame in Figure 66 (a), it is at its most stable at an 

equivalence ratio of 0.65. The flame is burning at the end of the swirl chamber exit 

nozzle and in the combustion chamber, as depicted in Figure 67 (d). With the flame 

positioned in the swirl chamber exit nozzle the Helmholtz frequency of the swirl 

chamber is excited, and is dominant in the power spectrum, with some sub 100 Hz 

frequencies caused by heat release fluctuations in the combustion chamber. As the 

flame becomes leaner, it lifts from the exit nozzle and moves slightly deeper into the 

combustion chamber, depicted in Figure 67 (e); the Helmholtz frequency of the swirl 

chamber becomes less apparent. Figure 67 (f) shows how, as the flame becomes 
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leaner still, it continues to lift, with main reaction zone deep into the combustion 

chamber. As the flame approaches its lean blowoff limit its stability decreases, heat is 

released in an increasingly unsteady fashion as a process of local extinction and re-

ignition is initiated, resulting in low frequency pressure fluctuations. As equivalence 

ratio reduces the effect of the Helmholtz, resonance diminishes significantly whilst 

amplitude and frequency of the pressure fluctuations caused by heat release in the 

furnace increase and decrease respectively. 

As the flame becomes richer, the process of combustion induced vortex breakdown is 

initiated, resulting in an increase in amplitude of the pressure fluctuations at the 

frequency of the flame structures. The isothermal results for this swirl number and 

inlet geometry produce a Strouhal number of 0.578. Using this number, and by 

rearranging Equation 5.4, the frequency of any structures occurring in the range of 

exit nozzle Reynolds numbers from 26000 to 27600 can be predicted to occur 

between 41.6 and 44.2 Hz. Figure 66 (a) shows a significant increase in the amplitude 

of oscillations in this range as CIVB has been initiated and flashback approaches.  

 

                                   (a)            (b) 
Figure 66: Power spectra of acoustic response from flashback to blowoff for (a) 75.4 kW flame with Sg= 1.08 fitted 

with confinement A (b) 62.6 kW flame with Sg= 2.02 fitted with confinement B, in terms of mixture equivalence ratio 
and corresponding tangential inlet speed 
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After the initiation of CIVB the flame will propagate upstream through the swirl 

chamber exit nozzle, as shown in Figure 67 (c).  Eventually it will reach the boundary 

between the exit nozzle and the swirl chamber itself, as depicted in Figure 67 (b). 

Inside the swirl chamber the global fluid velocity is significantly lower than in its 

exhaust nozzle, allowing the flame to propagate rapidly to the premix fuel injector in 

the air inlet pipe. This evolution of the flame means that a response at the Helmholtz 

frequency of the combustion chamber remains in the power spectrum up until the 

point of flashback. An additional response at around 215 Hz, first observed in Figure 

57 (a) and attributed to resonance in an unconfirmed location within the rig, is also 

seen in the results in Figure 66. 

 

          (a)                              (b)        (c)       (d)                       (e)                       (f) 
Figure 67: Flame position within the burner: (a) flashed back, (b) on the verge of flashback, (c) approaching rich limit, 

(d) optimum position, (e) approaching lean limit (f) on the verge of blowoff 

Figure 66 demonstrates how the acoustic response of the burner changes with its 

configuration at a variety of equivalence ratios. The position of the flame as it makes 

the transition from rich to lean blowoff limits follows the same pattern; therefore, the 

FFT analysis of its acoustic response follows the same pattern. The amplitude of the 

different modes does however change, as do the transition points. Figure 66 (b) shows 

power spectra from flashback to blowoff for a 62.6 kW flame with a geometric swirl 

number of 2.02 and confinement B fitted; it should be noted that the y-axis is on a 

different scale to Figure 66 (a).  

When the flame has an equivalence ratio of 0.75 and is on the verge of flashback, the 

amplitude of the oscillations around the Helmholtz frequency of the combustion 

chamber are very similar to those at the same point in Figure 66 (a). Yet the amplitude 

of the oscillations caused by the structures is noticeably less. When on the verge of 

blowoff, the amplitude of the oscillations caused by heat release in Figure 66 (b) are 

significantly greater than those in Figure 66 (a) when compared to other peak 
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amplitudes over the stability range of the flame. The driving factor behind this was the 

reduced exit diameter of the constriction, this increased pressure drop across the 

burner and inside the combustion chamber, which caused the flame to sit further 

upstream. 

Although it is possible to infer the condition of the flame based on the appearance of 

the FFT analysis, in the form shown in Figure 66, visual interpretation is required. In 

order to integrate knowledge of the flame condition into either a control, or warning 

system, a quantifiable method of interpreting the flame is preferred. As such, the 

mean amplitude (ā) and correlation coefficient (cc) of the acoustics signal were 

calculated, as described in the Equations 6.1 and 6.2. Mean amplitude represents the 

acoustic power of the signal and correlation coefficient its uniformity. 

 

       
         

   
    

 
    Eq (6.1) 

 

               
             

                
    Eq (6.2) 

 

For:  j  = 0, 1,…,(n-2), (n-1) 

 

Where: n  = number of samples 

  yj  =  xj-10 

 

6.2.1     Changes in Amplitude 

Figure 68 (a) shows a schematic of how the mean amplitude of the acoustic response 

alters with relation to the flame positions defined in Figure 67. The x-axis represents 

tangential inlet velocity, which, for a given inlet geometry configuration, is related 

linearly to exit nozzle Reynolds number. An increase in amplitude is observed when a 

particular mode, or multiple modes, of excitation dominate the acoustic response. 

Namely flame structures and Helmholtz resonance near flashback, Helmholtz 

resonance when the flame is in optimal condition, and unsteady heat release near 
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blowoff, represented by Figure 67 (b), (d) and (f) respectively. Mean amplitude and 

tangential velocity were plotted for flames of three power levels under the same 

conditions in Figure 68 (b), with the burner configured to provide a geometric swirl 

number of 2.02 and with confinement B fitted. The trend lines fitted to the results are 

fourth order polynomial, to account for the three turning points shown in Figure 68 

(a), and accurately represent the data points, with coefficients of determination 

between 0.87 and 0.95. The behaviour is the same over all power levels; however, 

amplitude is shown to increase with power. 

     
         (a) 

 

                                                 (b)                         (c) 
Figure 68: Mean amplitude against tangential inlet velocity for three power levels (a) comparison with Figure 67 (b) 

Sg = 2.02 with confinement B fitted (c) Sg = 1.08 with confinement A fitted 

Extinction events, both blowoff and flashback, happen very abruptly in this 

configuration, with significant changes in flame condition caused by relatively minor 

alterations in airflow. The large increment between readings on the air rotameters, 3% 
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of total flow with ±5% accuracy, meant that these significant changes often occurred 

between test points; as such they are not fully represented in the results in Figure 66, 

Figure 68 and Figure 69.  

The same behavioural trend is observed regardless of burner configuration and power 

level, as seen in Figure 68 (b), when the inlet geometry provided a geometric swirl 

number of 1.08 and confinement A was fitted. The fourth order polynomial trend lines 

represent the data with coefficients of determination between 0.94 and 0.99. The 

results for the 75.4 kW flame capture the high amplitude of the oscillations that occur 

immediately prior to flashback. However, the larger confinement exit means that the 

burner is more susceptible to blowoff, with the extinction event happening rapidly in 

relation to changes in air flow. Combined with the reduced pressure drop across the 

burner with confinement A fitted, this results in a reduction in the amplitude of 

unsteady heat release oscillations immediately prior to blowoff. Further investigation 

with a greater level of accuracy in the air flow meters would give results with greater 

definition around extinction events. 

6.2.2     Changes in Coherence 

The coherence in the acoustic response also follow the same pattern for flames of 

different powers and different burner configurations, with a schematic relating the 

behaviour to the flame positions detailed in Figure 67 shown in Figure 69 (a). Figure 69 

(b) shows how coherence changes for the flames shown in Figure 68 (b). The trend 

lines fitted to the results are third order polynomial, to account for the two turning 

points shown in Figure 69 (a). The coefficient of determination is poor for the 56.4 kW 

case, however, the shape of the curve is given credibility due to the similarity between 

it, and those of higher powered flames, which have high coefficients of determination. 

The trend observed is for the increased coherence when a single mechanism of 

oscillation, namely resonances in the combustion chamber or unsteady heat release, 

dominates the acoustic response. The greatest level of coherence is when the flame is 

in its optimum condition, the position detailed in Figure 67 (d), with the Helmholtz 

frequency of the combustion chamber entirely dominant. Coherence drops as the 

flame makes the transition towards either of its stability limits, when approaching 

flashback it continues to decrease as neither the effect of the flame structures or the 
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Helmholtz frequency are able to dominate the acoustic response. Conversely, when 

approaching its blowoff limit, when the unsteady heat release dominates the acoustic 

response, coherence rises again. 

       

         (a) 

 
                                                               (b)                         (c) 

Figure 69: Coefficient of correlation against tangential inlet velocity for three power levels (a) comparison with 
Figure 67 (b) Sg = 2.02 with confinement B fitted (c) Sg = 1.08 with confinement A fitted  

The same trend is observed in Figure 69 (b), although the profiles of the curves are 

altered due to the intersection of the y-axis, with the coefficients of determination 

high for all three flame powers. 

6.2.3     Isolation of Heat Release 

It was observed that significant unsteady heat release occurs as the equivalence ratio 

decreases and the flame nears blowoff. Results in Figure 66 show that as the 

frequency of these oscillations becomes lower, their amplitudes increase as they 
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cause more pronounced changes of pressure inside the combustion chamber. These 

low frequencies dominate power spectra when blowoff approaches.  

To investigate the low frequency, high amplitude oscillations that precede blowoff and 

their relationship with unsteady heat release, high speed photography was used. The 

unsteady heat release will also result in an unsteady release of light energy, making 

light intensity a viable measure of change in the heat release (Hardalupas and Orain, 

2004). Other works have also considered high fidelity imaging of unstable flames to be 

a good method of assessment (Balachandran et al., 2005, Durox et al., 1997, Durox et 

al., 2002, Santhanam et al., 2002). The development gas turbine combustor installed 

in the HPCR, as detailed in section 3.2.4, was used to investigate the release of light 

energy. The high pressure optical casing permits a radial view of the flame, without 

exposing the high speed camera to the high temperature exhaust gases. 

Figure 70 provides an example of the images taken of the ignition of a diffusively 

injected methane pilot flame from the radial position, at 500 Hz; the flame is swirling 

clockwise, relative to the downstream position of the camera.  

     
                      (a)                                                (b)                                                   (c)                                                  (d)  

    
                      (e)                                                 (f)                                                 (g)                                                 (h)  

Figure 70: High speed imagery of light up of the gas turbine combustor at (a) ignition and (b) 2 ms, (c) 4 ms, (d) 6 ms, 
(e) 8 ms, (f) 10 ms, (g) 12 ms and (h) 14 ms post ignition 

Figure 70 (a), (b), (c), (d) and (e) demonstrate how the intensity of the image changes 

as the flame propagates and increases in size post ignition. The images (e), (f), (g) and 

(h) represent a stable flame, in a fully ignited flow; as such the intensity of the images 
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is very similar. To confirm that these low frequency oscillations are indeed caused by 

heat release, a lifted methane flame, very near its lean blowoff limit, with an 

equivalence ratio of 0.418 was recorded with a high-speed camera.  Images were 

captured, at 1000 frames per second (2048 frames total). Figure 71 shows images 

captured 750 and 1500 ms after filming was initiated. They images are incredibly 

similar, with no obvious differences discernible from visual interpretation. In contrast 

to the flame in Figure 70, the lean premixed flame has a very even distribution, with 

no prominent reaction zones or flame fronts. 

    

                                                                    (a)                   (b) 
Figure 71: Images of the relatively lean premixed flame captured (a) 750 ms and (b) 1500 ms after filming initiated 

Using Maple mathematical software, each pixel in the gray scale images captured 

using the high speed camera was assigned a number between 0 (black) and 1 (white), 

the mean was then calculated to give the average intensity of each frame. A Fast 

Fourier Transform analysis, detailed in Equation 6.3, was applied to the image series in 

order to produce a power spectrum representing the frequency of intensity changes. 

In Figure 72 this spectrum is compared to the power spectrum recorded by the 

pressure transducer located in the exhaust section of the rig. The transducer data was 

also taken over two seconds, at a rate of 2 kHz, and the subject of a Fast Fourier 

Transform analysis. 

                                       
 

  
  Eq (6.3) 

 

Where: x(t) = the time domain signal 

  X(f)  = the FFT 

ft  = the frequency to analyse 
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The spectra have very similar profiles, although the acoustic spectrum has a higher 

resolution due the increased frequency of data capture, and more noise is discernible 

in the intensity spectrum. Both spectrums show a peak in amplitude at 19Hz; relating 

to the low frequency oscillations that occur before blowoff on the HPOC rig. 

 

Figure 72: Power spectra of an oscillating methane flame 

As a source of comparison the same analysis was performed for a relatively rich 

partially premixed flame. 1400 hundred frames were recorded, again at a rate of 1000 

frames per second. Images of the flame taken 500 and 1000 ms after filming was 

initiated, shown in Figure 73, offer little means for visual differentiation. However, 

there is a clear increase in intensity compared to the images of the leaner flame in 

Figure 71. 

    

                                                                      (a)           (b) 
Figure 73: Images of the partially premixed flame captured (a) 500 ms and (b) 1000 ms after filming initiated 

This flame was stable, sitting comfortably within the stability limits for a flame of this 

power. As previously observed stable flames have a tendency to excite the natural 
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resonance of the combustion chamber, in the HPCR the resonant frequency of the 

combustion chamber is defined by the quartz tube which is in place to protect the 

steel in the HPOC from the high combustion temperatures, whilst permitting visual 

access to the flame. The frequency in the acoustic spectra in Figure 74, where a large, 

distinctive peak is observed at 214 Hz, does not correspond to the natural frequency 

of the quartz tube. It is an additional resonance, attributed to another section of the 

combustor, upstream of the nozzle exit; a similar effect was observed with the cyclone 

burner under both combustion and isothermal conditions. 

 

Figure 74: Power spectra of an oscillating methane flame 

Between the frequency range of 0 and 500 Hz the acoustic and intensity spectra 

recorded have a similar profile, aside from the range of frequencies relating to 

resonance. As the oscillations are not a direct result of heat release, the size of the 

peak, relative to the rest of the spectrum is considerably smaller relative to the rest of 

the spectrum. However, there is a small, but noticeable increase in the amplitude of 

fluctuations around these frequencies in the intensity spectrum, indicating that the 

oscillations are causing secondary fluctuations in heat release, as described by 

Lieuwen (1999). 

6.3 Resonance as a Flashback Indicator 

A series of stability tests were performed using the development gas turbine 

combustor and a simulated syngas, containing 50 percent hydrogen and 50 percent 

carbon monoxide by volume. 
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With regard to the cyclone burner, prior to flashback occurring strong pressure 

fluctuations occur at the frequency that the structures rotate within, and at the 

natural frequency of, the combustion chamber section, as shown in Figure 66. As the 

flame approached flashback, the lesser the frequency of its oscillatory response to 

structures became, and the greater its amplitude. The fundamental reason behind this 

was the induction of flashback via the reduction of airflow, which decreases the 

velocity of mixture and increases its burning velocity. As such, frequency reduces 

linearly with flow rate (Syred, 2006). Pressure effects of the structures inside the 

cyclone combustor were not easily analysed as internal combustion chamber pressure 

was not directly monitored, the effect that flow rate has on the frequency and 

amplitude of the structures is more apparent in the results that were taken using the 

development gas turbine combustor.  

The results in Figure 75 demonstrate how augmentation of structures within the HPOC 

rig affects the frequency of the pressure fluctuations for a partially premixed methane 

flame. The dominant frequency of each of the three transducers and the flow of 

premixed fuel are plotted against time. The Helmholtz frequency of the quartz tube, 

calculated as described in section 5.2.2, is also plotted. The other flows into the 

system are the premix air and pilot fuel; these are kept constant (within 0.5%) 

throughout the period shown, so the change in premix fuel flow rate is almost equal 

to the change in total flow rate. 

From zero to thirteen minutes, as power and equivalence ratio is increased in steps, 

there is no coherence between the pressure transducers. The dominant frequencies 

registered by the combustor and inlet transducers are caused by broadband 

combustion noise, whilst the exhaust transducer is reacting to low heat release that is 

indicative of a very lean flame. It is sporadically the cause of the dominant pressure 

fluctuations in the inlet plenum via the previously discussed feedback mechanism 

(Lieuwen, 1999, Lieuwen, 2012a).  

Whilst diffusive fuel injection dampens the pressure fluctuations caused by the 

precessing vortex core compared to isothermal conditions, premixed fuel injection 

actually increases said fluctuations (Claypole, 1980b, Claypole, 1980a, Claypole and 

Syred, 1980). The premix fuel flow rate was increased from 15.5 to 18.1 g/s, and at 
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this point the amplitude of fluctuations at 510 Hz increased to the point that they 

dominate the response of the combustor face transducer. 

 

Figure 75: Structure formation dominating frequency of pressure oscillations in the HPOC rig 

These fluctuations were significant enough that they were registered in the air inlet 

plenum, but not strong enough that they entirely dominated response across all 

transducers. The dominant frequency in the exhaust fluctuates between frequency 

ranges 10-20 Hz and 210-220 Hz, relating to the previously mentioned heat release 

fluctuations and the source of resonance observed in Figure 74. 

The destruction of the CRZ via Combustion Induced Vortex Breakdown has been 

identified as the prevailing flashback mechanism in swirl burners (Choudhuri, 2012) as 

the shape and strength of the CRZ is influential on the stability of the system. The CRZ 

facilitates the formation of structures downstream, this actually increases propensity 

for flashback as the other structures effectively push the flame upstream (Valera-

Medina, 2009). The upstream propagation causes the vortex breakdown region to 

progress into the burner nozzle.  

Work by De and Acharya (2012) into flame propagation, related pressure fluctuations 

of a flame experiencing vortex breakdown to the unsteady motion of the recirculation 

bubble, which disappear as the flame front propagates sufficiently upstream.  

When the flame has retreated into the nozzle, the augmented recirculation zone that 

is the consequence of vortex breakdown gives rise to a component of azimuthal 
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vorticity. Following the Biot-Savart law, this produces a positive or negative induced 

velocity (Kiesewtter et al., 2007, Knole et al., 2008) causing pressure fluctuations in 

the air and fuel mixing zone, and providing a mechanism to produce further 

fluctuations both up and down stream (Lieuwen, 2012a). Consequentially, when the 

premixed fuel flow rate was increased to 19.9 g/s, causing sufficient flame 

propagation, complete syncopation is seen between all pressure transducers, as 

pressure fluctuations at the structure frequency dominated their responses.  

Acoustic oscillations exist under stable conditions; therefore, their presence is not 

necessarily an indicator of an instability. In order for instabilities to develop a feedback 

mechanism must exist, the established feedback mechanism is for fluctuations in flow 

or thermodynamic variables to trigger unsteady heat release, the unsteady heat 

release cause acoustic oscillations that propagate away from the combustion zone, 

which in turn result in flow and thermodynamic disturbances (Lieuwen, 1999, 

Lieuwen, 2012a). In this case the feedback mechanism caused an increase in the 

amplitude of oscillations, resulting in flashback as the acoustic oscillations couple with 

those of the structures at the natural frequency of the quartz tube. The effect of this 

coupling is amplified by the Rayleigh criterion (Syred, 2006, Lefebvre and Ballal, 2010), 

and the phase relationship between the unsteady heat release and the acoustic 

pressure oscillations, which is fundamental to the feedback process (Fritsche, 2005), 

allows the instability to develop to the point of flashback occurring. 

The development burner is an axial type swirler, and in this instance was operated 

with part, rather than complete, premixing, resulting in a particular response prior to 

flashback. However, the formation of structures and the way the position of the flame 

changes prior to flashback occurs in the same fashion. As previously stated, the 

frequency of any structures will increase linearly with flow rate (Syred, 2006), and in 

Figure 66 it was observed that the amplitude of the oscillations at the frequency of the 

flame structures increased with equivalence ratio. 

However, due to the effects of combustion on swirl number, as described in section 

2.2.1, a deviation from a linear relationship is expected in the results shown in Figure 

75. Isothermal experimentation demonstrated how increasing swirl number, or at 

least geometric swirl number, increased the frequency of response. The increased 
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heat of combustion that results from the fuel addition reduces the swirl number of the 

flow, which will affect the frequency of the response in the results in Figure 75. 

Over the range of premix fuel flow rates, where the effects of flame structures were 

observed, mean dominant frequency and the mean, peak amplitude in the inlet 

chamber were calculated and plotted against total flow rate in Figure 76. The peak 

amplitudes are taken from the FFT analysis of the transducers response. The 

relationship between flow rate and frequency occurs in the same way as observed in 

chapter 5; with the expected deviation. The relationship can be represented by the 

Strouhal number, in the case of this configuration of the development burner is 

approximately 2.67. 

 

Figure 76: Relationships between flow rate, frequency, and amplitude of pressure fluctuations 

The change in amplitude across the three transducers prior to flashback gives a good 

indication of flame position. Figure 77 shows how the dominant frequencies, (a), and 

amplitudes, (b), change as a fully premixed simulated Syngas flame, this time 85% 

hydrogen and 15% nitrogen by volume, approaches its rich flashback limit. In this case, 

the amplitude is calculated from the Power Spectral Density (PSD) of the transducers 

response.  

At its 500kW design condition, which corresponded to a fuel flow rate of 12.2 g/s, the 

flame is very stable, with no frequency syncopation between the three transducers 

and low oscillations in pressure. An increase in fuel instantly results in partial 

coherence between the three transducers with a prominent frequency becoming 

apparent at 287 Hz, an increase in amplitude was also observed in the inlet and 

exhaust transducers.  
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(a) 

 

(b) 
Figure 77: Alterations in frequency and amplitude prior to flashback (a) dominant frequency (b) amplitude of 

dominant frequency 

The increased temperature of the flame compared to the previous Syngas blend 

results in a higher axial velocity at the nozzle exit, as such axial momentum is 

increased, and despite consistent burner geometry, swirl number is reduced, this 

results in a lower frequency of oscillations (De and Acharya, 2012). The reduction in 

the frequency of oscillations attributed to the unsteady motion the structures assisted 

feedback with resonance of the quartz tube, and unlike the coherence observed in 

Figure 75, the syncopation at 287 Hz corresponded with the calculated Helmholtz 

frequency. 
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The feedback mechanism discussed previously between the heat release fluctuations 

acoustics oscillations already exists. Subsequently, a sharp increase in the flow rate of 

premixed fuel at 11:30 minutes results in a significant amplification in the inlet plenum 

and exhaust, they appear to become saturated, as detailed by Fritsche (2005), before 

flashback occurs. 

6.4 Chapter Summary 

Using techniques that have also been reported by other researchers, microphones 

(Farhat and Mohamed, 2010) and dynamic pressure transducers in semi-infinite line 

assemblies (Iberall, 1950, Rohrssen, 2007, Straub and Ferguson, 2007) were used to 

monitor the acoustic response of swirl combustors under isothermal and combustion 

conditions.  

In the cyclone burner, under isothermal conditions two mechanisms of acoustic 

response are present, those of cold flow structures, previously identified acoustically 

by Claypole (1980a) and Helmholtz resonance which has been identified by Allison 

(2013). It was confirmed that the frequency of structures have a linear relationship 

with flow rate, as described by Syred (2006), and increase with the level of swirl. A 

minimum flow rate, depending on the level swirl imparted upon it, is required for the 

structures to appear in, and dominate the acoustic response. This is in agreement with 

the previous research which indicates that vortex breakdown, which precludes 

structure formation (Gupta et al., 1984, Syred and Beér, 1974, Syred et al., 1971), is 

dependant on level of swirl and Reynolds number (Faler and Leibovich, 1978, Luca-

Negro and O’Doherty, 2001, Sarpkaya, 1971a, Sarpkaya, 1971b). 

Dominant frequencies and flow rates were interpreted in terms of the Reynolds, 

Strouhal and Roshko numbers, providing a dimensionless method of characterising the 

frequency of flow structures and Helmholtz resonance. 

With combustion, a third mechanism of response is added, unsteady heat release, 

which develops into thermo-acoustic instabilities when a feedback mechanism 

between heat release and natural acoustics is excited (Lieuwen, 2012b, Mohammad et 

al., 2012). In both rigs unsteady heat release is indicative of a flame approaching its 

lean blowoff limit, and is caused by local extinction and re-ignition of the flame. This is 

a result of change in flame speed, one of the many factors that has the potential to 



 

                                 PAGE |143 
  

induce thermo-acoustic instabilities identified by Lieuwen (2008). The presence of 

unsteady heat release of a methane flame near blowoff in the DIGCC was confirmed 

by the comparison with the frequency of light release, similar to techniques reported 

by Balachandran (2005), Durox (1998,2002), Hardalupas and Orain (2004) and 

Santhanam et al. (2002). Matching frequencies in acoustic and light fluctuations were 

observed for an oscillating flame near blowoff. When natural resonance was excited 

light fluctuations of significantly smaller amplitude occurred at the frequency of the 

resonance. These are secondary fluctuations as a result of the previously mention 

feedback mechanism (Lieuwen, 2012b, Mohammad et al., 2012). 

The central recirculation zone is highly influential on flame stability, and its 

destruction during the process of combustion induced vortex breakdown is the 

prevailing mechanism for flashback in swirl combustors (Choudhuri, 2012). De and 

Acharya (2012) related pressure fluctuations of a flame experiencing CIVB to the 

unsteady precession of structures. These fluctuations are exacerbated by the Biot-

Savart Law (Kiesewtter et al., 2007, Knole et al., 2008) providing a mechanism for 

further fluctuations (Lieuwen, 2012a).  In both the CB and DIGCCC heat release at the 

frequency of flame structures was indicative of this process occurring and the flame 

approaching its rich flashback limit. 

The presence of resonance at Helmholtz frequency in the acoustic response provided 

different indications in the CB and DIGCCC. In the cyclone burner, Helmholtz 

resonance, without the presence of structure defined heat release, indicated a stable 

flame. In the DIGCCC, when feedback with structure defined heat release caused 

resonance to dominate the pressure fluctuations it was an indication of approaching 

the rich flashback limit. Resonance prior to flashback occurring has been reported in 

other gas turbine combustors (Allison et al., 2013). 

In the atmospheric rig, amplitude and correlation of the acoustic response were 

investigated as a method of inferring flame condition. The flame displayed high 

amplitude pressure fluctuations when the mechanisms of heat release were 

particularly prevalent. Low frequency heat release indicated an approaching blowoff, 

and heat release relating to the precession of structures indicated an approaching 

flashback limit. A high level of correlation indicated either a stable flame, with 

Helmholtz resonance the dominant mechanism, or a flame on the verge of flashback, 
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when high amplitude heat release with a defined frequency occurred. Calculation of 

the Helmholtz frequency can be used to differentiate these instances of high 

correlation. 

One the objective of this work was to determine whether a control system that 

‘listens’ to the burner could be developed. This would require the combustion systems 

performance to be defined in terms of its acoustic response. Several different 

configurations of the cyclone burner were investigated, with the results suggesting 

that, for a given burner configuration, a relationship exists between acoustic response 

and flame stability that is consistent across differing power levels. Different 

configurations of the burner however only behave similarly. This suggests that 

acoustic feedback could successfully be integrated into active burner control system, 

but said control system would be applicable to a single burner design. 
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Chapter 7: Flow Structure Augmentation of Swirling 

Flames 
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7.1 Introduction 

The previous chapters investigated the how the acoustic responses of flames alter 

depending on their stability; the theory that the monitoring of acoustic response could 

be integrated into a control system capable of compensating for variations in fuel 

composition. This approach is practical in static systems, such as boilers, and with 

fuels with low flame speeds, where blowoff is more likely to occur than flashback. In 

dynamic systems such as gas turbines, and with fuels with a propensity to flashback, 

this could be very difficult to implement. The aim of this chapter is to identify the 

mechanisms of flashback under lean conditions, a phenomena observed in the 

development gas turbine combustor, and  establish the effect of the diffusive injection 

of different gases on the flow structure. The combined aim is to  identify a method of 

extending flashback limits via diffusive injection, particularly for fuels with high 

hydrogen content in gas turbine combustors. 

The design of a new piece of equipment is highly linked to its stability and thermo-

acoustic patterns. These are issues that will directly impact upon the propagation of 

phenomena that can be highly detrimental to the performance and integrity of the 

system (Lieuwen, 2012b). Enhanced understanding of the phenomena that appear 

due to fuel changes in the system is needed to control combustion dynamics. The 

most important instabilities that can appear are produced by flashback, blowoff and 

thermo-acoustic oscillations.  

A crucial feature of new burner technologies using alternative fuels is the formation of 

the central recirculation zone, a provider of heat to fresh reactants, anchoring the 

flame. However, unless its size and shape are properly controlled, problems can arise. 

The CRZ can, for instance, readily extend back into the burner and surround the fuel 

injector, facilitating early flashback (Subramanya and Choudhuri, 2007, Lieuwen et al., 

2008, Thornton et al., 2007). Flashback can be caused by (i) boundary layer flame 

propagation, (ii) turbulent flame propagation in the core flow, (iii) thermo-acoustic 

oscillations/instabilities and (iv) upstream flame propagation of coherent vortical 

structures, known as Combustion Induced Vortex Breakdown (CIVB) (Lieuwen et al., 

2008, Fritz et al., 2004, Kroner, 2002, Kroner et al., 2003). Two of these mechanisms, 

i.e. boundary layer flame propagation and upstream propagation of coherent 
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structures, have been studied by several groups using natural gas, a conventional 

power derivative gas turbine fuel. However, the use of unconventional fuels, such as 

those derived from the gasification or digestion of carbonaceous material, can be 

extremely detrimental to the control of this phenomenon, and very little literature is 

available on this subject. High turbulence levels, one of the very useful features of 

swirling flow because of mixing potential, affects flashback limits detrimentally due to 

effects on turbulent flame speed (St). It has been reported that the current theoretical 

approximations of St do not agree with experimental values (Dam et al., 2011a, Dam 

et al., 2011b). Literature on this topic becomes more complex in terms of numerical 

modelling, but experiments tend to be different from numerical findings especially 

when complex flows are added to the field (Dam et al., 2011b).  For instance, very 

little has been documented in terms of boundary layer propagation using atmospheric 

conditions (Eichler et al., 2012, Eichler and Sattelmayer, 2011, Eichler and Sattelmayer, 

2012), and what documentation there is only shows the evolution of 2D structures 

without swirl and under atmospheric conditions. Thus, the current knowledge on 

these mechanisms cannot adequately describe the flashback propensity of most 

practical combustor designs. Therefore, the recognition of the real pattern of this 

phenomenon is crucial in order to have systems and models capable of utilising new 

alternative fuels.  

Similarly, relatively little literature exists on blow-off when swirling flows and 

unconventional fuels are used. The studies that have been conducted consist of a 

large database on how to improve operability with natural gas, but there is little 

investigation on the fundamental behaviour underlying combustion stability (Tuttle et 

al., 2012). Shanbhogue et al. (2009) explained the different theories regarding 

blowoff, with most of the current theories being derived from a flamelet based 

description upon local extinction via excessive flame stretch (Driscoll, 2008). This 

theory has demonstrated that flame stretching starts blow-off with the initiation of 

holes in the flame, that are healed by the same flame creating stretching in areas that 

otherwise would have been unaffected. However, it is also recognised that this 

mechanism is not the one causing the final blow-off, as it is clear from data that the 

flame can withstand some extinction. Therefore, it is considered that the “critical 

extinction level” must be strongly influenced by the entrainment of reactants into the 
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recirculation zone, the cooling of regions of the recirculation zone and the shrinking in 

size of the CRZ, thus confirming some relation between the phenomenon of blowoff 

and the existence of the CRZ (Tuttle et al., 2012). This is a theory that has not been 

corroborated.   

Indeed, some authors (Valera-Medina, 2009, Valera-Medina et al., 2009, Valera-

Medina et al., 2011a, Valera-Medina et al., 2011b, Valera-Medina et al., 2012, Stöhr et 

al., 2012) have observed that the CRZ has a close connection to the stability of the 

system, with its shape, strength and curvature being of high importance to its 

resistance to flashback and blow-off (Valera-Medina et al., 2012, Kedia and Ghoniem, 

2012). Regular precession occurs in the CRZ, with the appearance of the CRZ 

dependent on the heat transfer regime. The mode of injection is also important, with 

an increase in the interaction of the hot products and fresh reactants when 

confinement is imposed. The recirculation zone behaves as an intermittent structure 

that will propagate downstream in order to release some internal pressure. The 

product of the confinement and intense recirculation at moderate to high swirl 

numbers (Valera-Medina et al., 2012). This, on the other hand, can also be detrimental 

to the phenomenon of flashback as the CRZ will evolve into combustion induced 

vortex breakdown (Kroner et al., 2007), Boundary Layer Propagation (Eichler and 

Sattelmayer, 2012) or the production of turbulent burning along the vortical axis 

(Blesinger et al., 2010), all damaging to the system.  Its interaction with the Precessing 

Vortex Core (PVC) under combustion and isothermal conditions is also recognised in 

some works (Valera-Medina, 2009, Valera-Medina et al., 2009), and its influence in the 

thermo-acoustics of the system is of high impact especially to the wrinkling and 

stability of the flame (Yang and Lieuwen, 2005, Bellows et al., 2007). Hence, the 

understanding of the stability limits and thermo-acoustics represents an important 

topic of discussion with the use of new fuels. 

7.2 Lean Flashback 

It has been established that flashback is caused by either one, or a combination, of 

four factors (Fritz et al., 2004, Kroner, 2002, Kroner et al., 2003, Subramanya and 

Choudhuri, 2007); flame propagation in either the boundary layer or core flow, CIVB 

or via combustion instabilities.  
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Typically flashback occurs when local flame speed exceeds local flow velocity, allowing 

upstream flame propagation occur. Peak flame speeds for the majority of fuel-air 

mixtures occur when equivalence ratio is slightly greater than 1, and since the 

majority of combustion systems operate with a lean mixture; increasing flame speed 

relative to mixture velocity requires an increase in fuel relative to air. As such, the 

occurrence of lean flashback is highly unusual; nevertheless, it was observed when the 

development burner was operated within the HPCR using the two simulated syngas 

blends detailed in chapter 6, one being 50 percent hydrogen, 50 percent carbon 

monoxide (S50/50), and the other 85% hydrogen, 15% nitrogen (S85/15). 

7.2.1     Observation of Lean Flashback 

Two different final flame positions were observed as the result of these flashback 

events. The first position observed was upstream flame propagation in the main fuel 

and air mixture, one instance of its occurrence was during a test using S50/50 as the 

main fuel with a methane pilot. Axial and radial images taken of the flame in a state of 

flashback are shown in Figure 78. In the radial image the pilot swirler is clearly visible, 

indicating that the flame has propagated further upstream than the pilot swirler. A 

blue section of the flame is visible on the central axis of the burner, downstream of 

the pilot swirler, where the hot products ignite the pilot methane. Due to the 

tangential momentum of the flow, it is at its lowest velocity where its surrounds the 

pilot swirler. Prior to boundary layer effects of the burner exit nozzle causing a 

deceleration of the flow, velocity will increase as distance from the central axis of the 

burner increases. This means that the flame surrounds the pilot swirler, which would 

be damaged by prolonged exposure to a flame of this nature. Further indication of the 

final appearance of the flashbacked flame, with a sectioned axial view, is shown in 

Figure 79. 

Prior to flashback, the combustor was operating at its desired power level with a near 

stoichiometric pilot mixture, with an Equivalence Ratio (Ф) of 0.970, and a lean main 

mixture, Ф = 0.329. A reduction in the pilot flow saw the flame begin to propagate 

back to the combustor exit nozzle via the shear boundary layer, as is demonstrated in 

Figure 80 (a). This propagation in the shear layer has been seen in previous work with 

methane (Syred et al., 2012, Abdulsada et al., 2011) immediately prior to complete 
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flashback, as seen in Figure 80 (b). In the previous case, the flashback was caused by 

increasing the equivalence ratio of a fully premixed flame.  

   

                                                                 (a)                                                                      (b) 
Figure 78: Images of the first instance of lean flashback from (a) axial and (b) radial positions (Morris, 2012) 

Strong shear layers develop where the high velocity swirling flow meets the relatively 

stagnant fluid in the combustion chamber. This shear layer produces regions of low 

velocity flow, and can allow the flame to propagate back to the combustor nozzle. The 

further downstream, the greater the fluid velocity is reduced, increasing the thickness 

of the shear layer; evidence of this is shown in both Figure 80 (a) and Figure 80 (b). 

 

                                                              (a)                                                                          (b) 
Figure 79: Indication of the appearance of the ultimate position of the first instance of lean flashback from (a) axial 

and (b) radial perspectives 

The diameter of the low velocity region in the centre of the flow also increases as the 

distance from the combustor nozzle increases, this can been seen in PIV data, from 

the combustor under isothermal flow conditions at the desired bulk exit velocity, in 

Figure 81. The result being that the annular area where overall flow velocity is too 

great for flame propagation reduces in as downstream distance increases. When 

flashback occurs in this way the conditions are such that the low velocity flammable 
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regions of the flames main body and shear layer meet up allowing the flame to 

propagate into the shear layer. 

 

(a)                                                (b) 
Figure 80: Still images of flames taken prior to boundary layer flashback (a) demonstration of flame seen during 

these trials (with S85/15 in the case shown) and (b) as seen by from Syred et.al. (2012) using methane 

Once propagation through the shear layer has been established, it is possible for 

flashback to occur via the further propagation through the outer wall boundary layer 

of the combustor nozzle. This is controlled by critical velocity gradient (Bagdananvicius 

et al., 2010) as defined by Lewis and von Elbe (Lewis and Elbe, 1987).  

The mixing layer that exists between the pilot flame and the main fuel mixture 

(Dhanuka et al., 2009) ensures that equivalence ratio in the shear layers is not affected 

by that of the pilot, this suggests that propagation of the flame is initiated by CIVB 

rather than changes in the mixtures burning velocity. 

 
 

Figure 81: Plots of velocity on radial planes at (a) 0.05 x/D (b) 0.10 x/D (c) 0.25 x/D (d) 0.5 x/D from nozzle exit under 
desired power conditions for the gas turbine combustor (500 image pairs each with approximately 2000 vectors) 

The shape of the CRZ strongly influences the stability of the combustion system, its 

presence causes the formation of other proceeding structures capable of pushing the 
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flame upstream and increasing propensity for flashback (Valera-Medina et al., 2009). 

Previous work by Dam et. al. (2011a) shows when CIVB occurs the High Momentum 

Flow Region (HMFR) of the flame contracts and squeezes the CRZ, resulting in 

upstream flame propagation. The work also demonstrates how the mixing layer 

approaches combustor’s exit nozzle. Valera-Medina (2009) identified a type of 

flashback that occurred when CIVB, identified as the primary cause of flashback in 

swirl burners (Kroner et al., 2007), caused the CRZ to propagate upstream, resulting in 

the flame attaching to an axial fuel injector that protruded into the combustor nozzle, 

resembling the flashback seen with S85/15 main fuel and methane pilot. Axial and 

radial images taken of the flame in a state of flashback are shown in Figure 82.  

  
 
                                                                      (a)                                                              (b) 

Figure 82: Images of the second instance of lean flashback from (a) axial and (b) radial positions (Morris, 2012) 

In the radial image the pilot swirler is barely visible, which indicates that the flame has 

attached to the pilot swirler, and that combustion is occurring downstream of the 

pilot swirler exit. The colour of the flame indicates that the pilot methane is well 

mixed in the combustion zone. Further indication of the final appearance of the 

flashbacked flame, with a sectioned axial view, is shown in Figure 83. 

Due to the significantly higher hydrogen content in S85/15, its burning velocity is 

greater than S50/50; this results in the flame shape being significantly shorter and 

narrower. The narrow shape of the flame prevents propagation into the shear and 

boundary layers, as observed previously, allowing vortex breakdown to continue. 

Eventually the CRZ contracts upon the body of the pilot injector in the centre of the 

flow, a process that was demonstrated clearly by Dam et. al. (2011a). From standard 

operating conditions two alterations in flow conditions resulted in flashback of this 

type occurring. The first was a reduction in pilot fuel, the result of which was a flame 
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fluctuating between a seemingly stable and flashbacked state before permanently 

attaching on the pilot injector. The second was to increase airflow steadily, global 

equivalence ratio decreased from 0.221 to 0.157 before axial flashback occurred. 

 

                                                              (a)                                                                          (b) 
Figure 83: Indication of the appearance of the ultimate position of the second instance of lean flashback from (a) 

axial and (b) radial perspectives 

7.2.2     Initiation of CIVB 

Work on combustors with co-swirlers provides examples of cases where, under 

isothermal conditions, the flow patterns resemble those of a single swirler (Hadef and 

Lenze, 2007), and where flow patterns differ (Dhanuka et al., 2009). However the 

burner used by Dhanuka et. al. (2009) which resulted in a different pattern had a 

significant area between the outlet of the swirlers which acted as bluff body, creating 

additional recirculation zones. Isothermal PIV of the development IGCC combustor, 

shown in Figure 84, confirmed a CRZ structure resembling that created by a single 

swirler.  

 

Figure 84: (a) Vector and (b) magnitude plots of combustor under typical gas turbine operating conditions (500 
image pairs with approximately 3500 vectors) 
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This structure is largely due to its co-swirl configuration and the dissimilarity between 

flow rates through the pilot and main annular swirlers. The result is a pilot swirler that 

acts in a similar fashion to a bluff body, as seen in the atmospheric generic burner, and 

commonly used to stabilise flames in fast flowing fluids (Gerrard, 1966).  

It is believed that the lean flashback observed is the result of CIVB; and after the 

initiation of CIVB both types of flashback encountered have been adequately 

explained by previous studies (Valera-Medina, 2009, Dam et al., 2011a, Syred et al., 

2012). These studies, however, relate to burners that use a single device to impart 

swirl on the flow, with both axial and radial flashback being caused by an increase in 

equivalence ratio.  

In the previously referenced work of Dam et. al. equivalence ratio was increased by 

increasing the flow of fuel whilst keeping air constant. As such, adiabatic flame 

temperature, the expansion and, as a result, volume of hot gas also increased and the 

intensity in high velocity zones increased.  

It is believed that it is the subsequent increase in the volume of gases, and not directly 

the change in equivalence ratio, that is linked to the change velocity of the HMFR, or 

high velocity zones, that initiates CIVB. This theory is investigated using flow field 

analysis of the atmospheric generic burner and the methodology described in section 

3.3.4. 

7.2.2.1     Flow Field Analysis of Flames with Varying AFR 

Experimentation into the onset of the lean flashback observed involved performing 

stereo PIV analysis of 12.5 kW methane flames with varying equivalence ratio. The aim 

being to assess how flow structures were altered as air to fuel ratio increased.  During 

these tests the methane-air mixture was fully premixed, details of flow rates are in 

Table 14, where Test Points (TP) I to VI are of current interest. 

The scalar plots in Figure 85 represent tangential velocity of TP I to TP VI, on an axial-

radial plane that intersected the central burner axis. Vectors are overlaid to give an 

indication of flow direction, for further reference the individual vector plots are shown 

in Figure A. 1 which can be found with all additional images in Appendix A. The scalar 

plots, which are all displayed on the same scale, demonstrate that the velocity of fluid 

increases as the air flow is increased and the flame becomes leaner. In the results for 
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TP I the highest tangential velocity occurs at x/D = ±0.5 and y/D = 0, when the swirling 

flow, escapes the confinement of the exit nozzle. Tangential velocity is then reduced 

due to two reasons. 

Table 14: Details of AGSB test points I-X 

 
Mass Flow Rate (g/s) 

 

Test 
Point 

CH4 Air CO2 Total Φ AFT (K) 

I 0.25 5.00 0.000 5.25 0.86 2083 
II 0.25 4.78 0.000 5.03 0.90 2134 
III 0.25 4.30 0.000 4.55 1.00 2226 
IV 0.25 3.91 0.000 4.16 1.10 2211 
V 0.25 3.58 0.000 3.83 1.20 2137 

VI 0.25 3.31 0.000 3.56 1.30 2057 

VII 0.25 3.31 0.049 3.61 1.30 2038 
VIII 0.25 3.31 0.103 3.66 1.30 2017 
IX 0.25 3.31 0.116 3.68 1.30 2012 
X 0.25 3.31 0.130 3.69 1.30 2007 

 

As the flow is now able to expand, some of the tangential momentum is transferred 

into radial momentum. And combustion in the main reaction zone of the flame causes 

axial momentum to increase relative to tangential momentum (Syred and Beér, 1974). 

As velocity in the axial-radial plane reduces, due to radial expansion of the flow and 

the completion of hot gas expansion due to combustion, the tangential velocity 

increases again.  

This process of tangential velocity acceleration and deceleration is particularly clear in 

the results of TP III, in the region of positive tangential velocity. The region of highest 

velocity in the axial-radial plane, indicated by the grouping of long, red vectors, is 

sandwiched between the regions of highest tangential velocity, indicated by the 

darkest orange regions of the scalar plot.  

Visual interpretation of the stereo and single camera PIV images, in Figure 85 and 

Figure A. 1 respectively, shows that the size of the central recirculation zone changes, 

as does the size and velocity of the high velocity zones, or High Momentum Flow 

Region (HMFR). In order to provide quantitative results, the size and velocity of 

structures within the flow fields were assessed using the exported numeric data from 

the PIV results. Methods for defining structures and their properties are detailed in 

Appendix B. 
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Figure 85: Stereo PIV of TP I to TP VI in the AGSB with altered premix air flow rate as detailed in Table 14, Scalar 
plots show tangential velocity (Ut)  

The minutiae of the HMFR are taken from the numerical PIV data, with areas where 

total velocity exceeds 3 m/s considered to be of a high momentum, as described in 

Appendix B. The change in the volume of these regions, and the mean velocity of the 

flow within them, are demonstrated in Figure 86 (a) and (b) respectively, with all 

values having been normalised against those of TP VI. 
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Between TP I and TP VI it can be seen that increasing the air flow rate increases the 

HMFR velocity; however, the size of the HMFR is reduced. The result being, that as 

equivalence ratio reduces, the HMFR reduces in size but increases in intensity. Figure 

86 (a) and (b) also show the mean velocity and volume of the CRZ for the same 

conditions, as calculated from the same numerical PIV data. The results show that 

rather than an increasing HMFR volume coinciding with a reduction in CRZ volume, 

they rise together, indicating an increase in the total size of the structures. Increasing 

flow rate through the exit nozzle increased the axial momentum of the flow, which in 

turn elongated the flame structure, and resulted in higher velocities. This indicates 

that an increase in HMFR velocity, rather than size, is linked to the contraction of CRZ. 

 
(a)                                                                                                         (b) 

Figure 86: The effect of air and carbon dioxide flow rates on the (a) velocities and (b) volumes of the HMFR and CRZ 

7.2.3     Initial CO2 Injection 

In terms of unconventional fuels, the primary goal of introducing CO2 into the gas 

turbine combustor is to reduce the emissions of NOx. This is achieved by cooling the 

flame, thus the Zeldovich mechanism can be reduced (Warnatz et al., 1999). Previous 

experimental and numerical studies have investigated the effect of dilution of Syngas 

fuels with various additives, including carbon dioxide, nitrogen and steam (Lee et al., 

2012, Pack et al., 2008, Konnov et al., 2002, Natarajan et al., 2007, Burbano et al., 

2011, Giles et al., 2006). In the main, these studies focus on fundamental 

characteristics of the combustion process. However, the work by Lee et. al. (2012) and 
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Khalil et al (2012) actually investigated the effect of diluting the premix fuel had on the 

emission of NOx and CO from a model gas turbine. 

Lee et al (2012) showed that reduction in ppmv NOx per unit power is logarithmically 

related to the heat capacity of the total diluent added. Since carbon dioxide has a 

higher heat capacity than steam or nitrogen, a smaller mass flow rate is required for a 

comparable reduction in NOx. Moreover, the use of CO2 from carbon capture and 

storage facilities could reduce costs as well as capture equipment further downstream 

the combustion zone.  

The effect of diffusive carbon dioxide injection on flame structure was initially 

investigated using the AGSB, with the flow rates of TP VII through X detailed in Table 

14. Stereo PIV images in Figure 87 show how the injection of differing amounts of 

carbon dioxide through the pilot of the generic burner affected the velocity of the 

flame. In each instance the same pattern of velocity change with increasing y/D seen 

in Figure 85 is observed.  

The scalar, tangential velocity plots in Figure 87 are on the same scale as those in 

Figure 85. Between TP VI and TP X a general reduction in tangential velocity is evident. 

Changes in structure and velocity from TP I to TP VI were largely attributed to changes 

in flow rates, with a 47.5% decrease from TP I to TP VI. However, between TP VI and 

TP X premix flow is constant, with change in total mass flow equal to 3.7%; despite this 

relatively small effect on mass flow rate through the burner exit, the changes in 

structure and velocity are significant, as detailed in Figure 86. Through TP VI to IX the 

introduction of CO2 results in a decrease in HMFR velocity, however the velocity in the 

CRZ increases sharply, most likely due to the entrainment of the diffusive carbon 

dioxide into the recirculation zone.  

The CRZ stabilises the flame by recirculating thermal energy and active chemicals 

whilst allowing turbulent flame speed to match flow velocities (Syred and Beér, 1974, 

Gupta et al., 1984), all are inhibited by the injection of CO2, as such, as its flow rate is 

increased the flame tends towards blowoff. The vector plot of TP X in Figure 88 

represents the flow field of a flame in a quasi-stable state, on the verge of blowoff.  
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Figure 87: Stereo PIV of TP VII to TP X in the AGSB with altered premix air flow rate and pilot CO2 flow rate as 
detailed in Table 14, Scalar plots show tangential velocity (Ut) 

The flame was visibly and audibly unstable, with extinction and re-ignition events 

occurring. At this point the flame shape has changed significantly, as demonstrated by 

the difference between the vector plots of TP X and TP VII to TP XI. There is no major 

difference in the size of the recirculation zone between TP VI and TP. The velocity of 

the gases within the CRZ increases relative to the peak velocity in the HMFR, indicated 

by the colour of the vectors inside becoming greener. Between TP IX and TP X there is 

significant increase in the size of the CRZ. Despite the colour of the vectors, a 

significant deceleration of the gases within it occurs, as detailed in Figure 86, which 

also shows how the injection of carbon dioxide reduces the size and velocity within 

the HMFR 

The results show how the injection of a small flow rate of CO2 can have significant 

effects on flame structure. When premixed conditions are kept constant the injection 

of CO2 causes the size and the velocity of the CRZ to increase, relative to the HMFR. As 
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this action opposes those reported to occur during the onset of CIVB, they can be 

utilised to increase the stability range of a combustor. 

 

Figure 88: Single camera vector plots of TP I to TP IV in the AGSB with altered premix air flow rate and pilot CO2 flow 
rate as detailed in Table 14, vectors indicate velocity and direction. 

 

7.3 Diffusive Injection of Different Gases 

Following on from the initial experimentation of diffusive carbon dioxide injection 

altering the flame structures (Lewis et al., 2014), varying amounts of carbon dioxide, 

air and methane were injected through the diffusive pilot of the AGSB to assess the 

effect on flame structure. The three gases were selected for their differing combustion 

properties: 

 Methane, which is often used as a pilot fuel in gas turbines and will increase 

the global equivalence ratio of the flame.  
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 Carbon dioxide, which does not affect oxidant-to-fuel ratio, but which has been 

shown in previous studies to alter flame conditions (Lee et al., 2012, Pack et 

al., 2008, Konnov et al., 2002, Natarajan et al., 2007, Burbano et al., 2011). 

 Air, which will reduce the flames global equivalence ratio. 

 In order to allow comparison between results, premix flow rates of 0.2 g/s methane 

and 3.44 g/s air were kept constant; these equate to a 10kW, stoichiometric mixture. 

Details of the test points are displayed in Table 15. The flames are un-confined, as 

such ambient air will be entrained, and they will actually be leaner than the defined 

equivalence ratio.  

The experimental method was the same for all three gases: the flame was lit and 150 

images were recorded with the PIV system, the flow rate of diffusion gases was then 

increased in regular intervals, with a further 150 images recorded at each interval, 

until the flame reached a point of quasi-stability. Between results taken using with the 

same diffusive gas the flame was not extinguished; in order accurately maintain 

conditions between test points. 

The PIV results in Figure 89 demonstrate the effect of introducing methane through 

the pilot on the flame structure. The left hand side of the PIV images show the axial 

velocity (Ua) of the flows on scale of -5 to 8 meters per second. Negative velocities 

indicate that the flow downstream, towards the burner exit. On the right hand side of 

images total velocity (Ut) is shown, on a scale of 0 to 8 metres per second. The total 

velocity is a measure of magnitude, regardless of direction, so no negative velocities 

are possible. The vector maps of test points 1 to 8 are shown in Figure A. 2. 

The combination of image masking and the neighbourhood validation causes the data 

shown to underestimate the velocity of the fluid as it leaves the exit nozzle, as 

discussed in section 3.3.4.3. This is why the fluid appears to have exceptionally low 

velocities in the region where 0 < y/D < 0.1. 

The flow in TP 1 has highest velocities at 0.25 y/D and ±0.55 x/D, indicated by the red 

regions in both scalar plots, there is also a sub-region where axial velocity exceeds the 

8 m/s on the scale shown. The unburned, premixed reactants are at their greatest 

velocity near the outside of the exit nozzle, where the tangential-radial momentum 

imparted by the radial swirl passages has forced the flow away from the burner axis 
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but boundary effects are negligible.  The centrifugal force on the fluid also means that 

the reactants are densest at the inner wall of the exit nozzle. Combustion occurs when 

the reactants leave the exit nozzle, a significant increase in axial velocity results from 

hot gas expansion. An increase in radial velocity also occurs. The combined tangential-

radial and axial momentum of the products results in flow spreading in the x and y 

directions on the plane shown. As spreading occurs and the combustion process is 

complete, velocities decrease. Tangential-radial momentum results in predominant 

expansion in the x direction being away from the burner axis. This creates a low 

pressure zone along the vertical burner axis, with a pressure differential that causes 

combustion products to flow towards the central axis and burner exit. The stagnation 

of the flow prior to being recirculated is indicated by the turquoise region in the axial 

velocity profile. 

Table 15: Details of AGSB test points 1-26 

  
Flow Rates (g/s)  

 
   

 
Test 
Point 

Pilot Total Φ 
Total 

Power 
(kW) 

Isothermal 
Sg 

Bulk 
Exit 

Velocity 
(m/s) 

Re 
AFT 
(C) 

M
et

h
an

e
 

1 0.000 3.640 1.00 10.0 1.05 4.88 4361 1953 

2 0.015 3.655 1.07 10.7 1.04 4.90 4379 1928 

3 0.030 3.670 1.15 11.5 1.02 4.92 4397 1875 

4 0.045 3.685 1.22 12.2 1.01 4.94 4415 1816 

5 0.059 3.699 1.30 13.0 0.99 4.96 4433 1760 

6 0.074 3.714 1.37 13.7 0.98 4.98 4451 1702 

7 0.089 3.729 1.45 14.5 0.97 5.00 4468 1645 

8 0.104 3.744 1.52 15.2 0.95 5.02 4486 1589 

A
ir

 

9 0.000 3.640 1.00 10.0 1.05 4.88 4361 1953 

10 0.100 3.740 0.97 10.0 1.00 5.02 4482 1924 

11 0.201 3.841 0.94 10.0 0.95 5.15 4602 1902 

12 0.301 3.941 0.92 10.0 0.90 5.29 4722 1875 

13 0.402 4.042 0.90 10.0 0.86 5.42 4843 1846 

14 0.502 4.142 0.87 10.0 0.82 5.56 4963 1817 

C
ar

b
o

n
 D

io
xi

d
e

 

15 0.000 3.640 1.00 10.0 1.05 4.88 4361 1953 

16 0.025 3.665 1.00 10.0 1.04 4.92 4391 1931 

17 0.050 3.690 1.00 10.0 1.03 4.95 4421 1923 

18 0.074 3.714 1.00 10.0 1.03 4.98 4451 1914 

19 0.099 3.739 1.00 10.0 1.02 5.02 4481 1906 

20 0.124 3.764 1.00 10.0 1.01 5.05 4510 1897 

21 0.149 3.789 1.00 10.0 1.00 5.08 4540 1889 

22 0.174 3.814 1.00 10.0 0.99 5.12 4570 1881 
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Figure 89: Scalar plots of TP 1 to TP 8 in the AGSB as detailed in Table 15, the left half of each image indicates axial 
velocity, and the right half total velocity. 
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TP 1 and has a very narrow, low velocity, CRZ. Within the recirculation zone the 

maximum value of Ut is 2 m/s and the minimum value of Ua is -1 m/s. The axial velocity 

of the recirculated gases become positive at y/D = 0.4. The introduction of methane 

through the pilot results in an increase in size and velocity of the CRZ, which can be 

seen in TP 2. The shape of recirculation zone also changes; with the width increasing 

disproportionally at its base. The negative axial velocity of the recirculated gases at 

the centre of the CRZ increases significantly, exceeding 2 m/s. Due to the increase in 

velocity of the recirculated gases, the region of negative axial velocity extends toward 

the burner exit, as a result the CRZ becomes elongated. The velocity in the HMFR in TP 

2 is significantly lower than that in TP 1, in terms of both axial and total velocity; it 

appears to have become narrower as a result of the CRZ expanding. 

The alteration in shape becomes further exaggerated as the flow rate of pilot methane 

increases through test points 3 to 8. With each increase in the flow rate of diffusive 

methane the width of the reverse flow region increases, as do the negative axial and 

total velocities of the gases within them. The injection of methane reduces the peak 

velocity of the reacting flows in the HMFR, however, the shape and overall velocity 

profiles in these regions remain largely unaffected.  

The diffusive injection of air has a markedly different effect on the flow structure than 

was observed with methane. PIV images in Figure 90 effectively demonstrate how the 

air causes the size and mean velocity of the CRZ to reduce, eventually leading to its 

complete destruction. Test points 9 through 12 are displayed as in Figure 89, the left 

hand side of the images showing axial velocity (Ua), and the right hand side of images 

total velocity (Ut). The full, axial and total velocity profiles of test points 13 and 14 are 

shown due to the high level of asymmetry in the flow structure. For further reference, 

the vector maps of test points 9 to 14 are shown in Figure A. 3. 

The flow structure and velocities of TP 9 are very similar to those observed in TP 1, this 

is to be expected as the premixed flow rates are the same. The structure of TP 10 

however is very different to that of TP 2. Rather than increasing with diffusive flow 

rate, the width of the recirculation zone is unaltered from TP 9. Although total velocity 

is also unaltered, negative axial velocity is actually reduced. 

The total and axial velocities in the HMFR of TP 11 are considerably lower than in TP’s 

9 and 10. The flame is also displaying significant asymmetry, with the low velocity 
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recirculation zone positioned left of the central axis of the burner. The increased 

addition of air continues to reduce the the velocity of the flow within the CRZ and the 

HMFR in TP 12, whilst the asymmetry becomes more exagerated. The diffusive flow 

rate in TP 13 has caused an almost complete reduction of the CRZ, although a region 

exists where axial velocities are just below 0. In TP 14 the CRZ no longer exists, with no 

flow in the negative axial direction. Instead the CRZ is replaced by a central region of 

high positive axial velocity, on the right of the central burner axis as shown. The likely 

cause of the CRZ destruction is combustion inside of the CRZ, causing an expansion of 

gases along the central axis of the burner. This gradually reduces the pressure 

differential that is required in order to induce recirculation. 

Carbon dioxide has a very similar effect of flow structure to methane; as a result the 

progression caused by its diffusive injection between TP 15 to TP 22, which is shown in 

Figure 91, resembles the progression in Figure 89. 

Test points 15 through 22 are displayed as in Figure 89, the left hand side of the 

images showing axial velocity (Ua), and the right hand side of images total velocity (Ut). 

For further reference, the vector maps of test points 15 to 22 are shown in Figure A. 4. 

The flow structure of TP 15 resembles those of TP 1 and TP 9 where a narrow and low 

velocity recirculation zone exists. However, over the measured plane, the velocities of 

the flows in TP 15 are lower than those observed in TP’s 1 and 9. This is likely the 

result of slightly different initial flow rates, which can be caused by changes in ambient 

conditions or compressor pressure. As the proceeding alterations in flow structure are 

of interest, this inconsistency in initial condition is acceptable. 

In TP 16 it can be seen that the CRZ increases in width as carbon dioxide is diffusively 

injected, the total and axial velocities within the CRZ are also increased. With methane 

this increase in velocity coincided with an elongation of the recirculation, with the 

region of reverse flow approaching the burner exit, with carbon dioxide this was not 

observed. A reduction in velocity in the HMFR is evident between TP 15 and TP 16. 

Between TP 16 and TP 22, the increase in diffusive CO2 flow rate results in an increase 

in the size of the CRZ, and axial and total velocities within it also increase, with the 

reverse flow region propagating slightly upstream. A reduction in total velocity is seen 

in the high momentum flow region; this is more evident in the vector plots in Figure A. 

4 than Figure 91. 
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Figure 90: Scalar plots of TP 9 to TP 14 in the AGSB as detailed in Table 15, TP 9 to TP 12 the left half of each image 
indicates axial velocity, and the right half total velocity. TP 13 and TP 14 show full frames of axial and total velocity. 
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Figure 91: Scalar plots of TP 15 to TP 22 in the AGSB as detailed in Table 15, the left half of each image indicates 
axial velocity, and the right half total velocity. 



 

                                 PAGE |168 
  

This reduction is expected as the dilution effect of the CO2 will reduce flame 

temperatures and the expansion of the gas. The observed reduction in axial velocity is 

less pronounced than the reduction in total velocity, which suggests that tangential-

radial velocity is reduced significantly. 

7.3.1     Effect on Turbulence 

When CO2 is diffusively injected, the low velocity boundary that exists between the 

CRZ and the HMFR appears to be wider than when CH4 is injected. This is particularly 

evident when comparing vector plots of TP 5, with methane injection and TP 19, with 

carbon dioxide injection, which are shown in Figure 92. The CRZ is also visibly less 

defined in TP 19 than in TP 5, this is the result of higher levels of turbulence within the 

recirculation zone. 

When all gases entering the burner are introduced tangentially, they are considered to 

be fully mixed prior to entering the combustion zone. With diffusive injection mixing is 

forced to occur in the region of the burner exit, resulting in unequal mixtures within 

the combustion zone. 

 

Figure 92: Vector plots of TP 5 and TP 19 in the AGSB with altered premix air flow rate and pilot CO2 flow rate as 
detailed in Table 15, vectors indicate velocity and direction. 

Simulation with CHEMKIN using the GRIMech 3.0 mechanism (Bowman et al., 1999) 

predicts that under laminar conditions the peak methane burning rate occurs at a rich 

equivalence ratio of approximately 1.1. Previous work has also utilised the 

combination of CHEMKIN and GRIMech 3.0 to show how CO2 dilution reduces laminar 
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burning rates (de Persis et al., 2013). With premixed gaseous fuel, combustion 

normally occurs at the boundary between the CRZ and the HMFR, where fresh 

reactants and hot products combine. The amalgamation of delayed mixing and 

unequal alterations in burning rates affect the ability of the flame to propagate toward 

the CRZ when CO2 and CH4 are injected. 

The increase is in both size and mean velocity caused by CO2 injection are not as 

prominent as with methane, and the CRZ has a less well defined shape as an irregular 

flame front develops at the boundary between it and the HMFR, as is reflected in the 

level of the turbulent intensity. Figure 93 represents the turbulent intensity of the 

flames in Figure 89 (b) and Figure 91 (b) in the axial-radial plane. The method for 

calculating turbulent intensity in the measured plane (I), at each measurement point 

in the PIV frame, is shown in Equation 7.1: 

 

                                                          
   

   
    

 
               Eq (7.1) 

 

Where: ke = Turbulent Kinetic Energy (m2/s2) 

 

                                                               
 

 
    

 
 
   

 
 
                   Eq (7.2) 

 

And: ua’ = root-mean-square of turbulent velocity fluctuations in the axial    

                              direction (m/s) 

ur’ = root-mean-square of turbulent velocity fluctuations in the radial  

               direction (m/s) 

Ua = axial velocity (m/s) 

Ur = radial velocity (m/s) 

 

The flame with diffusive methane injection has a very low turbulent intensity CRZ (Ī = 

1.12 %) and HMFR (Ī = 0.32 %), with the intermediary boundary layer standing out due 

to the increased turbulent intensity (Ī = 3.07 %). The HMFR of the flame with diffusive 

carbon dioxide injection also has a very low turbulence level (Ī = 0.44 %). However the 
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turbulent intensity of the CRZ (Ī = 2.93 %) and the intermediate boundary layer (Ī = 

4.73 %) are significantly higher.  

 

Figure 93: Comparison of turbulent intensity between flames in Figure 89 (b) and Figure 91 (b) 

The velocities in the methane injected flame are greater than those of the carbon 

dioxide injected flame, which has to be considered when comparing turbulent 

intensity, which is dependent on local velocity. When comparing the root-mean-

square of the turbulent velocity fluctuations in the axial-radial plane, the mean 

turbulent kinetic energy levels in the CRZ boundaries of the methane and carbon 

dioxide flames are actually very similar, k  = 48.32 m2/s2 and k  = 44.70 m2/s2 

respec vely, whereas the CRZ of the carbon dioxide injected  ame displays 

signi cantly more turbulence (k  = 15.22 m2/s2) than that of the methane  ame (k  = 

0.93 m2/s2). 

7.3.2     Effect on Momentum 

The axial velocity profiles at y/D = 0.5 for all test points are plotted in Figure 94, a 

moving average of 5 data points is applied to smooth out local fluctuations from the 

global trend, for easier visual interpretation. In Figure 94 (a), the profile of test point 1 

demonstrates the negative axial velocities of the CRZ on the central axis of the burner, 

at x/D = 0. The velocities increase either side of the burner axis, peaking at the centre 

of the HMFR before reducing again as the unconfined flow dissipates. The progressive 

introduction of methane produces incremental increases in the negative velocities in 
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recirculation zone, whilst incrementally reducing the velocity within the high 

momentum flow region. The point at which the lines cross the axis also diverge from 

x/D = 0, indicating that the CRZ is increasing in width whilst the HMFR is getting 

narrower. The profiles in Figure 94 (b) demonstrate how the introduction of air causes 

an asymmetrical distortion, and ultimate destruction of the CRZ. Between test point 9 

and TP 10 the changes in velocity resemble those seen due to the injection of 

methane. Between TP 10 and TP 13 there is a significant reduction in the peak velocity 

in the right hand side of the HMFR. The CRZ in the positive radial direction of the 

burner is also subject to a greater change than in the negative radial direction, with a 

large incremental increase in the axial velocity seen. Between test points 13 and 14 a 

dramatic change occurs, with the entire range of axial velocities becoming positive, 

and the peak velocity occurring at x/D = 0. 

However, the axial velocity profiles of the flames with CO2 injection, test points 15 to 

22 shown in Figure 94 (c), display the same behaviour as observed with the injection 

of CH4. The diffusive injection causes the positive axial velocities in the HMFR to 

decrease, whilst the negative axial velocities in the CRZ increase. There is also 

evidence of the CRZ becoming wider as the value of x/D when axial velocity equals 0 

increases with diffusive flow rate, although the expansion is not as prominent as 

observed with methane injection. 

The amount of stabilisation provided by the CRZ can be assessed by the Reverse Flow 

Momentum of the gases within it. Momentum is a product of velocity and mass, as 

the temperature, and as a result density of the gases within the CRZ and the reverse 

flow momentum are unknown. The volume of a particular measurement point is fixed, 

therefore, if variations in density are ignored, it is possible to compare the flow 

momentum by comparing velocity. As such, changes in Reverse Flow Momentum 

(RFM) at y/D = 0.5 are assessed by determining the areas below the x-axis; which are 

bound by the curves plotted in Figure 94.  

The RFM of each test point is plotted against the isothermal geometric swirl number in 

Figure 95 (a), with the results of TPs 1 to 8 normalised against the fully premixed flame 

of TP 1. Similarly, TPs 9 to 14 are normalised against TP 9, and TPs 15 to 22 are 

normalised against TP 15. 
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                                (a)                                                                 (b)                                                                  (c) 
Figure 94: Axial velocities at y/D = 0.5 for test points detailed in Table 15 with the diffusive injection of (a) methane 

(b) air and (c) carbon dioxide. 

The increased diffusive injection of methane, which reduces Sg in accordance with 

Equation 1, results in an increase in the RFM of the CRZ. Initially there is a very large 

increase, with the RFM of TP 2 2.3 times greater than TP 1, RFM then increases 

linearly with diffusive flow rate. The injection of diffusive CO2 also increases the RFM 

of the CRZ; however the rate of increase is significantly less than observed with CH4. 

Injection of air has an opposing effect, with RFM reducing as the amount of air 

injected increases. The effects on Positive Flow Momentum (PFM), which are 

calculated in a similar fashion to RFM at y/D = 0.5, with the area bound by the curve 

being positive of the x-axis, are shown in Figure 95 (b). The initial injection of both CO2 

and CH4 both result in significant reductions in PFM, 21% and 26% respectively. The 

increase in diffusive flow rate then has very little effect on the PFM, with the range of 

reduction of CH4 being 21-25% and the range of reduction of CO2 being 26-32%.  

The complete alteration in structures caused by the introduction of air means that 

there are two effects on the PFM. The gradual destruction of the CRZ means that the 

main reaction zone expands, and the velocity in the HMFR reduces. Conversely, the 

destruction of the CRZ means that the regions of positive flow increases, the velocity 

in these regions will also increase due to the axial momentum of the injected air. 

-5

0

5

10

-1.2 -0.6 0.0 0.6 1.2

A
xi

al
 V

el
o

ci
ty

 (m
/s

)

x/D (-)

TP 1 TP 2 TP 3
TP 4 TP 5 TP 6
TP 7 TP 8

-5

0

5

10

-1.2 -0.6 0.0 0.6 1.2

A
xi

a
l V

el
o

ci
ty

 (m
/s

)

x/D (-)

TP 9 TP 10
TP 11 TP 12
TP 13 TP 14

-5

0

5

10

-1.2 -0.6 0.0 0.6 1.2

A
xi

a
l V

el
o

ci
ty

 (m
/s

)

x/D (-)

TP 15 TP 16 TP 17
TP 18 TP 19 TP 20
TP 21 TP 22



 

                                 PAGE |173 
  

  

                                            (a)                                                                                                            (b)                      
Figure 95: The (a) reverse and (b) positive flow momentum for all test points at y/D = 0.5 

The radial velocity profiles at y/D = 0.5 for all test points are plotted in Figure 96, again 

a moving average of 5 data points is applied. In Figure 96 (a) the radial velocities of TPs 

1 to 8 are shown. Rotational symmetry about the origin is expected with regard to 

radial velocity, however, due to the slight asymmetry in the burner this is not seen, 

with TP 1 displaying entirely negative radial velocities within the CRZ. The increased 

injection of CH4 causes, in a general, an incremental increase in radial velocity. TP 8 

displays peak positive and negative values that are approximately twice those seen in 

TP 1.  

  

                                            (a)                                                                                                           (b) 
Figure 96: Radial velocities at y/D = 0.5 for test points detailed in Table 15 with the diffusive injection of (a) methane 

(b) carbon dioxide 
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Coupled with the decrease in axial velocities these results suggest that the level of 

swirl has increased, which is why the RFM has increased relative to the PFM. The 

different effect is observed with the diffusive injection of CO2; the radial plots for test 

points 15 to 22 are shown in Figure 96 (b). A slight change in flame structure means 

that velocities within the CRZ are all positive. The injection of CO2 has very little effect 

on the radial velocity inside the recirculation zone, however, the radial velocity in the 

HMFR decreases. 

7.3.3     Effect on the CRZ 

Figure 97 shows the effect on the size and velocity of the central recirculation zone, 

based on the corresponding geometric swirl number. As in Figure 94, the results are 

normalised against the fully premixed case to allow easier comparison. Figure 97 (a) 

shows how both CO2 and CH4 injection cause the size of the CRZ to increase 

dramatically until reaching Sg = 1.03 for CO2, 1.02 for CH4, the size then increases at a 

steady linear rate. The injection of CH4 has a greater effect on the size of the CRZ than 

CO2 does, with the increased velocity of the recirculated flow resulting in the wider 

CRZ base seen in Figure 89 (b) and (c).  

    

                       (a)                                                                        (b)                                                                      (c) 
Figure 97: The normalised effect of the injection of carbon dioxide, methane and air on (a) cross sectional area and 

(b) mean velocity of the entire CRZ and (c) mean velocity of the CRZ centre 

This increased velocity is demonstrated in Figure 97 (b) and (c), where the mean 

velocity in the CRZ in its entirety, and its central region are calculated.  Over the region 

as a whole a steady linear increase, of a similar order, is observed with both CO2 and 

CH4, with all but one point falling on the same line. However, as the position and size 
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of CRZ is calculated based on a component of the velocity, the mean velocity over the 

entire CRZ is influenced by the constraints applied. The central region, which is 

determined geometrically, is a better reflection on changes in velocity; a linear, six 

fold increase is observed with methane, whereas CO2 only causes a threefold, non-

linear, increase. 

7.3.4     Effect on the HMFR 

Another structure in a swirling flame is the high momentum flow region; this is high 

velocity region which contains the main reaction zone of the flame. In this study it is 

defined as being the region where axial velocity exceeds 3 m/s, as described in 

Appendix B.  

The effect of pilot injection on the size and mean velocity in this region are shown in 

Figure 98, it is observed that the effects of CO2 and CH4 injection differ. As increasing 

diffusive flow rates of both CO2 and CH4 cause Sg to approach 1.02, a reduction in cross 

sectional area of the HMFR is observed, below values of Sg = 1.02, CO2 continues to 

cause a reduction in HMFR area, whilst CH4 results in a linear increase. A similar 

pattern is observed with regard to mean velocity, with both gases causing a reduction 

as Sg approaches 1.02, after which CO2 continues to cause a reduction whilst CH4 

displays a trend of increasing velocity. 

 

                                           (a)                                                                                                            (b)                      
Figure 98: The normalised effect of the injection of carbon dioxide and methane on (a) the cross sectional area and 

(b) mean velocity of the HMFR 
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environment with a large excess of oxidant. This facilitated a large increase in the 

volume of the structures when methane was injected, whereas the cooling effect of 

the carbon dioxide actually reduced structure volume.  

There are four mechanisms that may result in flame flashback (Lieuwen et al., 2008, 

Fritz et al., 2004, Kroner, 2002, Kroner et al., 2003); upstream flame propagation of 

coherent structures and boundary layer flame propagation in particular are 

symptomatic of combustion induced vortex breakdown. 

Previous studies have demonstrated that CIVB can be the result of the CRZ being 

‘squeezed’ by the HMFR, which causes the CRZ to be displaced, upstream, ultimately 

surrounding a central body in the combustor (Dam et al., 2011a). An increase in 

equivalence ratio caused this process to occur. However, depending on burner design, 

and critically the level of turbulence of the flow, it may also be caused by a reduction 

in equivalence ratio (Lewis et al., 2014). 

Regardless of equivalence ratio changes, the interaction between the CRZ and HMFR 

flow structures are important factors relating to the initiation of CIVB; and this 

interaction may be altered by the diffusive injection of gases. 

For the results taken in these trials the interaction between the CRZ and HMFR is 

assessed as described in Equation 7.3, where RM refers to the ratio of total RFM in the 

CRZ and total PFM in the HMFR; ACRZ, AHMFR, ŪCRZ, and ŪHMFR refer to the cross 

sectional area and mean axial velocities of the CRZ and HMFR respectively: 

 

                                                               
         

           
                        Eq (7.3) 

 

The full size of the HMFR is cropped by the measurement area. However, local 

changes in the measured area are indicative of global changes. The increasing value of 

RM as more diffusive fuel is added indicates that the RFM of the CRZ is increasing 

compared to the PFM of the HMFR, and as a result reducing the propensity of the 

flame to flashback due to combustion induced vortex breakdown. The normalised 

effects of carbon dioxide and methane on RM are displayed in Figure 99.  
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Figure 99: Normalised effect of the injection of carbon dioxide and methane on the ratio between RFM and PFM 

The differing effects of CO2 and CH4 on the CRZ, and in particular the HMFR, 

compensate for each other to produce a very similar response on the flame structure 

as a whole. The introduction of methane causes a large initial rise in RM as Sg 

approaches 1.02, at which point the rate of change reduces dramatically. When 1.05 < 

Sg < 1.02 there is a strong change in RM as the interaction between the CRZ and HMFR 

is altered, Sg < 1.02  the change in RM becomes less significant as the increased flow 

rate of methane, causes an increase in global flame structure size and velocity. 

Carbon dioxide produces a near linear response over the range of results, with highest 

value of RM being greater than that of methane. 

7.4 NOx Reduction 

The diffusive injection of methane and carbon dioxide augment flow structures in way 

that opposes the changes that are reported to occur during the process of combustion 

induced breakdown (Dam et al., 2011a). The process of CIVB was observed in the 

DIGCCC, and was reported in section 7.2.1.1. To prevent CIVB, the diffusive injection 

of carbon dioxide, as an alternative to methane, was investigated. 

Running gas turbine combustors without the injection of a combustible pilot fuel is 

very beneficial with regard to the reduction of NOx produced during the combustion 

process. It has been established that when operating the DIGCCC with both S50/50 

and S85/15, steadily reducing pilot fuel induces combustion induced vortex 

breakdown, and as a result flashback. Suddenly turning off pilot fuel did not instantly 

cause flashback, however, the process of CIVB and propagation of the CRZ will 

eventually result in flame attachment. The introduction of CO2 through the pilot 
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injector as a method of flame stabilisation was investigated using the gas turbine 

combustor operating using S85/15. The flow rate of pilot methane used to stabilise 

the flame was 2.2 g/s. When volumetric flow rates of CO2 equalling or exceeding that 

of the initial pilot methane were introduced, lean flashback was prevented from 

occurring. This was true whether the methane pilot fuel was turned off instantly or 

phased out, essentially stabilising the flame without the need to use methane. Details 

of the gas turbine combustor test points are listed in Table 16. 

After it had been established that the flame was stable, the flow rate of CO2 was 

steadily increased to 15.3 g/s, not only did the flame remain stable, but the injection 

of CO2 actually reduced the tip temperature of the combustor, as shown in Figure 100 

(a), which was measured at the extreme downstream location of the pilot swirler. This 

reduction further reduces the likelihood of flashback as the initial temperature and 

volume of gas leaving the pilot injector is reduced. As a consequence, the localised 

level of turbulence and burning rate of the mixture are also reduced. It is also 

potentially beneficial for the longevity of the combustor as damage that may result 

from exposure to high temperatures is less likely. 

Despite the significant drop in burner tip temperature, from 399°C to 319°C, the 

temperature of the exhaust was not greatly affected, dropping from 1003°C to 980°C. 

This is important as exhaust temperature equates to the turbine inlet temperature, 

which is a determining factor in the efficiency of a gas turbine (Boyce, 2006).  As the 

mass flow rate of carbon dioxide injected increased from 0 to 15.3 g/s, the burner tip 

temperature dropped 20.8 %, however the exhaust temperature, effectively the 

turbine inlet temperature, only dropped by 2.3 %. 

Over this range of CO2 flow rates, as the specific heat capacity of the CO2 increases 

linearly with its mass flow rate, the temperatures are reduced linearly. The 

coefficients of determination for a linear relationship are 0.9654 and 0.9665 for 

exhaust and tip temperatures respectively. A drop in temperature is expected due to 

the addition of the carbon dioxide’s specific heat, which reduces the flame 

temperature as per Equation 4.4. The exhaust and burner tip temperatures are 

compared to the calculated adiabatic flame temperatures in Figure 100 (b). The 

burner tip temperature drops at a rate of 1.67 degrees per degree adiabatic flame 

temperature, whilst the exhaust drops at a rate of 0.49 degrees per degree adiabatic 
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flame temperature. This shows that an effect greater than dilution is reducing the 

burner tip temperature.  

Table 16: Details of DIGCCC test points 

Mass Flow Rate (g/s) 
 

  Premixed Pilot 
Ø 

AFT 
(°C) 

Re 
S85/15 Air CH4 CO2 

12.2 359.7 2.2 0.0 0.443 1490 62023 

12.3 363.8 0.0 0.0 0.337 1300 62357 

12.2 360.3 0.0 3.0 0.338 1296 62268 

12.1 359.4 0.0 5.2 0.338 1291 62477 

12.1 362.3 0.0 7.2 0.333 1277 63277 

12.1 361.0 0.0 10.5 0.335 1274 63613 

12.0 362.6 0.0 15.3 0.332 1258 64660 

 

According to the extended Zeldovich mechanism (Warnatz et al., 1999), as flame 

temperatures increases so do emissions of NOx, with reaction rates determined 

experimentally with reasonable accuracy (Owen et al., 1977). Introducing CO2 into the 

gas turbine combustor reduces the emissions of NOx by cooling the flame in two ways. 

Firstly, stabilising the flame when no pilot fuel is injected, this has a significant effect 

on the heat of the flame at the pilot injection point, and secondly by absorbing heat 

from the combustion process.  

  

                                           (a)                                                                                                               (b)                      
Figure 100: Effect of CO2 injection on combustor temperatures with regard to (a) CO2 flow rate and (b) adiabatic 

flame temperature 
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When methane pilot fuel was used, the combustion process produced 17.29 ppmv of 

NOX. When the pilot fuel was switched off and not replaced by a similar amount of CO2 

the NOX produced dropped to 10.26 ppmv, a 40.6% decrease. The injection of CO2 saw 

the NOX levels drop further, with 8.12 ppmv recorded when the amount of CO2 

equalled 15.3 g/s, as the results in Figure 101 demonstrate.  

 

Figure 101: Effect of CO2 injection on exhaust gases 

Disregarding the decrease in NOX that resulted from turning off the pilot fuel, the drop 

in NOX caused by CO2 addition was 20.9%. The addition of the CO2 will increase the 

mass of the exhaust gases, so this drop is due partly to the dilution effect. However, 

when compensating for dilution, the reduction of NOX caused by CO2 addition is still 

17.9%. When the effects of replacing the methane pilot with 15.3 g/s of CO2 are 

considered, the total reduction in NOX observed was 51.0%. 

During these trials the mass flow rate of both Syngas and air was kept constant (within 

1.1%), as it would be in a gas turbine, therefore the injection of carbon dioxide does 

not alter the oxidant to fuel ratio of the reactant mixture. As such, the percentage of 

oxygen in the exhaust increases from 12.5% to 14.5% when the pilot fuel is switched 

off, after that it also remains constant within ±1%. The amount of unburned 

hydrocarbons in the exhaust showed a reduction with CO2 injection, but the results do 

not produce a trend strong enough to draw any firm conclusions. 
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7.5 Discussion of Burner Dissimilarity 

It is important to note the differences between the two burners used for this section 

of experimentation, the DIGCCC and the AGSB. Whilst both are swirl combustors with 

similar exit configurations, the generic burner is of a radial type and the gas turbine 

burner is of an axial type, they are also using different fuels.  

The high turbulence generated, along with the large pilot injector in the gas turbine 

burner results in high resistance to blowoff, whereas the low turbulence and exit 

geometry of the generic burner makes it very resistant to flashback. This difference is 

exacerbated by the different fuels, with the Syngas used in the gas turbine combustor 

having a significantly higher burning rate than that of methane, which was used in the 

generic burner. One of the results of these differences is that in terms of equivalence 

ratio, the operating ranges are very different, and the natures of extinction events are 

also very different.  Due to the similarity between the flow structures produced by the 

generic burner and the gas turbine combustor, both of which are typical of those seen 

by swirl combustors, it is assumed that the structure augmentation that occurred in 

the generic burner due to the injection of CO2, and was confirmed with PIV analysis, is 

representative of the effect of CO2 injection in the gas turbine. Without performing an 

analysis of the gas turbine flow patterns under combustion conditions this assumption 

cannot be confirmed.  

7.6 Chapter Summary 

This chapter details experimentation into flame structure augmentation using two 

burners. The burners are of different type, one axial one radial, and operate under 

very different turbulent levels. Despite this, two types of flashback have been 

identified with both burners, and the ability to augment flame structure and stability 

with the diffusive injection of carbon dioxide and methane was observed with both 

burners. 

7.6.1     Combustion Induced Vortex Breakdown 

The DIGCCC, with two different compositions of Syngas, showed a propensity for lean 

flashback. This is unexpected, as flashback normally occurs when increasing 
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equivalence ratio causes local flame speed to exceed local flow velocity. However, the 

central recirculation zone can extend upstream and cause early onset flashback 

(Lieuwen et al., 2008, Subramanya and Choudhuri, 2007, Thornton et al., 2007). The 

high turbulence nature of the DIGCCC, combined with the bluff body like pilot swirler 

(Gerrard, 1966) and the high burning velocity of the air-fuel mixtures inhibited 

blowoff. Despite the presence of the injector, the length of the exit nozzle means that 

the primary flow stabilisation is aerodynamic, which is preferable for CIVB initiation 

(Noble et al., 2006).   

Two final flame positions were seen after flashback; where the flame propagated in 

the main fuel mixture via boundary layer propagation, as previously observed by Syred 

et al. (2012) and Abdulsada et al. (2011), and when the CRZ attached to the central 

injector, as previously observed by Valera-Medina (2009) and Dam et al. (2011a). Both 

were preceded by combustion induced vortex breakdown, images taken by Konle and 

Sattelmayer (2008) showed how CIVB caused the CRZ to extend upstream, toward 

where the central injector would be located, facilitating the flame attachment that 

was observed. The work by Fritz et al. (2001) showed how this propagation resulted in 

the width of the flame increasing at the nozzle exit, which allowed the observed 

propagation through the shear and boundary layers. 

Augmentation of the CRZ and HMFR pairing, caused by changes in premix air flow, was 

demonstrated by performing PIV analysis on the AGSB. It has been reported that 

HMFR intensity is critical to the process of CIVB (Dam et al., 2011a), and in this work it 

was shown to increase relative to the intensity of the CRZ as air flow reduced the 

equivalence ratio of the flame. Initial tests involving the diffusive injection of CO2 

showed an increase in intensity and size of the CRZ relative to the HMFR (Lewis et al., 

2014), opposing the effects seen previously. 

7.6.2     Structure Augmentation 

Experimentation using the AGSB, and a PIV system effectively used to identify flow 

structures in previous research (Abdulsada, 2012, Valera-Medina et al., 2009, Valera-

Medina et al., 2011b), demonstrated how the diffusive injection of different gases into 

a premixed methane flame altered the coherent structures in its flow field. 
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The injection of both methane and carbon dioxide resulted in an increase in cross 

sectional area and velocity of gases within the central recirculation zone. As the flame 

is unconfined it will entrain air and become fuel lean (Delichatsios, 1987), as such the 

diffusive injection of methane will increased the flame speeds (Egolfopoulos et al., 

1989) and temperatures (Van Maaren et al., 1994) within the swirling flows, effecting 

flame propagation and hot gas expansion. Radial momentum increased whilst axial 

momentum decreased, increasing the volume of the recirculated gases when methane 

was injected. This leads to an expansion of the recirculation zone near the burner exit 

and a stable, well defined boundary between the CRZ and high momentum flow 

region. The injection of carbon dioxide reduced the flame speed (Natarajan et al., 

2007) and temperature (Zheng, 2011) of gases within the flame, inhibiting flame 

propagation and reducing the hot gas expansion. Both axial and radial momentums 

were proportionally reduced, resulting in the increased mass flow rate increasing the 

size and velocity of the recirculation zone.  

Methane and carbon dioxide had differing effects on the high momentum flow region 

of the flame. When flow rates of the diffusively injected gases produced isothermal 

geometric swirl numbers above 1.02, the size and velocity of the HMFR decreased, 

due to CH4 increasing the radial momentum relative to the axial momentum, and CO2 

decreasing flame temperatures. When methane flow rates resulted in Sg < 1.02, thus 

the cumulative effect of increasing swirl and flame temperature resulted in an 

increase in HMFR size and velocity. 

Despite differing effects on the level of swirl and flame temperature, the actual effect 

on the reverse flow momentum of the CRZ compared to the positive flow momentum 

of the HMFR was the same. The expansion of the CRZ compared to the HMFR opposes 

the changes in flame structure that result in combustion induced vortex breakdown 

(Dam et al., 2011a), therefore the diffusive injection of either CH4 or CO2 could be 

used to as a measure to mitigate CIVB. 

The diffusive injection of air was also investigated. Its effect on the flow structures 

heavily contrasted those of CO2 and CH4, reducing the size and velocity of the CRZ 

before completely preventing recirculation occurring. Although the overall result 

would almost certainly reduce the likelihood of CIVB occurring, the destruction of the 



 

                                 PAGE |184 
  

CRZ would result in an inherently unstable flame that would be highly susceptible to 

blowoff. 

 

7.6.3    Reducing Temperature and Emissions 

As well as displaying a propensity for lean flashback, the gas turbine combustor 

proved to be consistently unstable without a methane pilot, a problem which has 

been observed by others (Dhanuka, 2008). This is undesirable due to a reliance on 

methane or natural gas, and the increased emission of nitrous oxides caused by the 

increased flame temperature via the Zeldovich mechanism (Warnatz et al., 1999). Lack 

of methane pilot resulted in a temporarily quasi-stable flame; however NOx emissions 

were reduced by 40.6%. The injection of CO2 through the pilot of the gas turbine 

combustor continued to reduce the levels of NOx emitted, as has been reported by 

others, including Lee et al. (2012) and Khalil et al. (2012).  

The maximum amount of CO2 injected, which was dictated to by the choke point in the 

rig delivery line rather than flame stability, equated to 126% the mass flow rate of the 

fuel. With maximum CO2 injection the reduction of NOx was 50.8%. Modifications to 

the CO2 delivery line would allow further reductions. 

The temperature of the burner tip was also reduced significantly, by 20.8%, which is 

beneficial for burner longevity. The exhaust temperature only dropped by 2.3%, as this 

equates to turbine inlet temperature, which defines efficiency (Boyce, 2006), this is 

also advantageous. The CO2 reduces the adiabatic flame temperature, the burner tip 

temperature reduces at a rate 1.67 times greater than adiabatic flame temperature 

whilst exhaust temperature reduced at rate 2.04 times smaller than AFT. 
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Chapter 8: Conclusions and Further Work 
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8.1 Conclusions 

The effect of variations in fuel composition were assessed, and methods of 

stabilisation were investigated to compensate for the changes in fuel property that 

result. The following conclusions are drawn: 

 A close relationship exists between producer gas composition and gasifier 

throat temperature. As a consequence a relationship exists between gasifier 

throat temperature and certain combustion properties of the producer gas. 

 Although noteworthy variations in composition occurred in modelled results, 

up to 50.1% in hydrogen content for example, the lower heating value and 

stoichiometric air-to-fuel ratio of the fuel remain steady, within 7.7% and 6.7% 

respectively. 

 Due to fluctuations in hydrogen content, the laminar flame speed varies 

considerably, by up to 52.2%, which can have a striking effect on stability 

limits.  

 Large fluctuations in hydrogen content also cause changes in Wobbe index, 

although proportionally they are far smaller than flame speed, only up to 

14.0%. 

 At atmospheric pressure and ambient temperature, only when the equivalence 

ratio of the producer gas in question equals 1.16 can both SL and WI be 

simultaneously replicated. Similarly, a singular equivalence ratio will exist 

under different conditions or for other producer gases. 

 For variations in fuels where the main changes in constituents are 

hydrocarbons, and inerts are not present, a near linear relationship exists 

between WI and SL, even when alterations in AFR are considered. This supports 

WI being a good way to specify acceptable fuels. 

 For variations in syngas or natural gas composition, where there are 

percentages of inerts in the fuel, the relationship between WI and SL displays 

less linearity. This is particularly true when alterations in AFR are considered. 

Therefore WI is not be a suitable method of specifying fuel acceptability with 

regard to stability. 
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 For different fuels, equitable WI can have incredibly large variations in SL. 

When WI was equal to 46 MJ/m3 and equivalence ratio was 1, laminar flame 

speeds of the methane/propane and hydrogen/nitrogen blends simulated 

were 94.8 cm/s and 837.6 cm/s respectively, a discrepancy of 883.5%. 

 Under isothermal conditions two mechanisms were found to define the 

acoustic response, Helmholtz resonance, and the precession of structures. 

 The frequency and amplitude at which the structures rotated were shown to 

increase as the level of swirl imparted on the flow, (characterised by geometric 

swirl number), increased. 

 The frequency and amplitude at which the structures rotated were shown to 

increase as the flow rate of air and exit nozzle Reynolds number increased. 

 The frequency of Helmholtz resonance demonstrated a tendency to reduce as 

flow rate increased. 

 The frequency of structure rotation and Helmholtz resonance for a particular 

burner configuration can be characterised via the use of the dimensionless 

Strouhal and Roshko numbers respectively. 

 For a confined burner, the dominant mechanism of acoustic response is 

dependent on flow rate, with two transition points occurring as exit nozzle Re 

increases: 

o The first transition point occurs when vortex breakdown, which is a 

function of Sg and Re occurs, causing oscillations at the frequency of the 

resulting structures. 

o The second transition point occurs when the amplitude of oscillations 

caused by precessing structures exceeds the amplitude of oscillations 

caused by resonance. 

 Under combustion conditions three mechanisms are found to define the 

acoustic response, Helmholtz resonance, the precession of structures and 

unsteady heat release. 

 High amplitude, low frequency oscillations near the lean stability limit were 

found to be the result from repeated extinction/ignition events. As such these 

indicate impending blowoff. 
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 The amplitude of oscillations at the frequency of the precessing structures 

increased when approaching the rich stability limit. As such these indicate 

impending flashback.  

 The amplitude of oscillations due to resonance are strong during both stable 

operation, and approaching the rich stability limit. Oscillations dominated 

acoustic response prior to flashback occurring in the gas turbine combustor. 

 The amplitude and coherence of the acoustic response is greatest when a 

single mechanism is dominant. 

 Flashback of two syngas fuels was observed when a leaning of the combustible 

air and fuel mixture occurred in the development gas turbine combustor.  

 The types of flashback have been indentified in two burners with differing swirl 

type, flow regime and fuel. 

 The flashback was the result of CIVB.  

 After the initiation of the CIVB process, flashback continued in one of two 

ways, via boundary layer propagation, and via the CRZ attaching to the central 

pilot swirler. 

 An increase in HMFR velocity is linked to the contraction of the CRZ, and the 

initiation of CIVB. 

 The diffusive injection of carbon dioxide effects flow structures in a way that 

inhibits CIVB initiation. 

 The diffusive injection of both methane and carbon dioxide causes the reverse 

flow momentum of the CRZ to increase relative to the positive flow 

momentum of the HMFR. 

 The diffusive injection of carbon dioxide has the potential to increase the 

stability limits of flames with high hydrogen content by inhibiting flashback. 

 The diffusive injection of air results in flame propagation along the central axis 

of the burner, preventing the recirculation of product gases. 

 Diffusive carbon dioxide injection reduces burner tip temperature and NOX 

emissions. 
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8.2 Recommendations for Further Work 

This work was performed on a variety of burners at the Gas Turbine Research Centre. 

Performing all the work on a single burner with all diagnostic techniques available at 

all times would have been preferable, but was not possible.  With the commission of a 

new Pressurised Generic Swirl Burner (PGSB), which is detailed in Appendix C, it now 

is. Additional diagnostics equipment is also now available. As an extension of this 

work, the following research is recommended: 

 The acoustic monitoring of flames in order to infer flame condition is a novel 

application of thermo acoustic analysis.  A control system can be deployed as 

part of the HPCR, based on the coherence and amplitude of the thermo-

acoustic signal. The aim being that it would respond to alterations in fuel 

composition to prevent flame extinction, and optimise combustion. Changes in 

fuel composition could be achieved using the diluting of methane, as discussed 

in chapter 4, using a gas mixing facility.  

 The use of different diluents diffusively injected has been shown to improve 

flame stability. With the PGSB it is possible to investigate the effect of further 

diluents on flame stabilisation and emission reduction, such as nitrogen or 

steam, as well as different modes of injection, i.e. diffusive or premixed could 

be investigated. Using the HPCR and newly commissioned PGSB dilution can be 

investigated under pressurised conditions, where there this is a lack of 

literature. The simultaneous use of Particle Laser Velocimetry (PIV) and Planar 

Laser-Induced Fluorescence (PLIF) can be used to ascertain effects on flow 

patterns and flame fronts respectively, radial PIV can be used to determine the 

effect on swirl number (S). Gas analysis to establish the potential 

environmental benefits achieved through reduced emissions would also of 

great benefit. Flame temperature measurements would also be useful in order 

to more accurately determine changes in positive and reverse flow 

momentum. Thermo-acoustic pressure fluctuations under varying conditions 

can also offer an insight into what effect is had on the stability of the flame. 
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Appendix A - Additional Images 

 

Figure A. 1: Single camera vector plots of TP I to TP IV in the ASBG as detailed in Table 14, vectors indicate velocity 
and direction 
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Figure A. 2: Single camera vector plots of TP 1 to TP 8 in the ASBG as detailed in Table 15, vectors indicate velocity 

and direction 
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Figure A. 3: Single camera vector plots of TP 9 to TP 14 in the ASBG as detailed in Table 15, vectors indicate velocity 
and direction  
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Figure A. 4: Single camera vector plots of TP 15 to TP 22 in the ASBG as detailed in Table 15, vectors indicate velocity 

and direction 
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Appendix B - Structure Divisions 

The cross sectional area and velocities (Ux) of the structures within the flame were 

assessed using the exported, numeric PIV data, with different components of the 

flame designated based on the axial velocity component, as indicated in Figure A. 5 

(a).  

           

                                                                  (a)                                                                                                               (b) 
Figure A. 5: (a) Comparison of axial velocity (Ua) and total velocity (U) at each measurement point in TP VI and (b) 

designation of areas within the flame 

The designations were based on the results from TP VI, the total and axial velocities of 

each measurement point of which are plotted in Figure A. 5 (b), for the following 

reasons: 

 The CRZ is the region where axial velocity exceeds 0.3 m/s in the negative axial 

direction. 

This value is simply chosen to remove outlying values that occur in the results. 

 The HMFR is the region where total velocity exceeds 3 m/s.  

Each measurement point considered to be in the HMFR is denoted by a black 

circle in Figure A. 5 (b), with the measurement points considered to be in the 

CRZ denoted by red points. The peak total velocity in the CRZ is slightly greater 

than 3 m/s, the total velocity of all points in the HMFR exceed this. 

 The CRZ boundary is the region where axial velocity is greater than -0.3 m/s 

and total velocity is less than 1 m/s. 

The -0.3 m/s represents the outer CRZ, and 1 m/s is the highest total velocity 

that occurs when axial velocity equals 0. 
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 The CRZ centre is the region bound by the arguments 0.1 > x/D  > -0.1 and 0.6 > 

x/D  > -0.4. 

It is defined geometrically so it is defined independently of velocity. 

 

When each measurement point has been designated to a relevant structure, cross 

sectional area, radius of centroid, volume, and mean velocity are calculated thus: 

 

                                                                                Eq (A4.1) 

 

                                                                       
      

   
    Eq (A4.2) 

 

                                                                              Eq (A4.3) 

 

                                                                        
   

   
    Eq (A4.4) 

 

Where: As  = Cross sectional area of structure (m2) 

  nmp = Number of measurement points in structure (-) 

  Amp = Area represented by each measurement point (m2) 

  Xmp = x-coordinate of measurement point (m) 

  Vs = Volume of structure (m3) 

  rc = Radius of centroid (m) 

  Ū = Mean velocity (m/s) 

ump = Velocity at measurement point (m/s) 
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Appendix C - Pressurised Generic Swirl Burner 

The pressurised generic swirl burner is a design evolution of the AGSB, with the salient 

features being scaled up, and modifications made for installation in the HPCR, as 

shown in Figure A. 6 (a). The principle of operation remains the same as the AGSB, 

with pilot fuel being fed into a diffusion pilot at (a) in Figure A. 6 (b), and the main fuel 

entering the assembly at (b). The premixed air and fuel enter a plenum chamber and 

pass through the swirl vanes, before exiting the burner and entering the combustion 

chamber. The combustion chamber is a quartz confinement, (c), which protects the 

steel casing whilst making the assembly more representative of a gas turbine 

combustor and providing visual access. The combustion zone is visible from (d), (e) 

and (f); with the product gasses exiting the assembly via the water-cooled exhaust 

section. 

 

                                                                             (a)                                                                            (b) 
Figure A. 6: External and sectioned views of the HPCR with LCRI burner installed 

It is possible to alter the geometric swirl number of the burner by changing the various 

parameters of the outlet geometry. It is preferable to change as few parameters as 

possible when trying to achieve different values of Cf. Swirl heads in the PGSB are 

single pieces that contain the radial swirl vanes and the burner exhaust nozzle; the 

geometric coefficient of swirl number is altered by changing the width of the nine 

radial passages. Figure A. 7 demonstrates the different head geometries that are used 

to impart different intensities of swirl on the flow. 
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Figure A. 7: Visualisation of the swirl heads used to vary geometric coefficient in the PGSB 

The geometry of the swirl vanes is listed in Table 17; all dimensions are constant 

except for the width of the swirl chamber inlet channels. By changing the area of the 

channels the tangential velocity of the premixed flow is altered relative to the axial 

velocity of the flow at the exit. 

Table 17: Details of swirl head geometry 

Geometry Coefficient (-) 0.5 0.8 1.04 1.47 2.00 

Exit radius (mm) 20 20 20 20 20 
Injector Radius (mm) 9 9 9 9 9 

Inlet Height (mm) 18 18 18 18 18 
Number of Inlets (-) 9 9 9 9 9 

Inlet Width (mm) 12 7.5 5.8 4.1 3.0 
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