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Abstract

Many populations of migratory songbirds are declining or shifting in distribution. This is likely due to environmental
changes that alter factors such as food availability that may have an impact on survival and/or breeding success. We tested
the impact of experimentally supplemented food on the breeding success over three years of northern wheatears
(Oenanthe oenanthe), a species in decline over much of Europe. The number of offspring fledged over the season was higher
for food-supplemented birds than for control birds. The mechanisms for this effect were that food supplementation
advanced breeding date, which, together with increased resources, allowed further breeding attempts. While food
supplementation did not increase the clutch size, hatching success or number of chicks fledged per breeding attempt, it did
increase chick size in one year of the study. The increased breeding success was greater for males than females; males could
attempt to rear simultaneous broods with multiple females as well as attempting second broods, whereas females could
only increase their breeding effort via second broods. Multiple brooding is rare in the study population, but this study
demonstrates the potential for changes in food availability to affect wheatear breeding productivity, primarily via
phenotypic flexibility in the number of breeding attempts. Our results have implications for our understanding of how
wheatears may respond to natural changes in food availability due to climate changes or changes in habitat management.
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Introduction

Many animal populations are limited by food availability [1],

which can itself be influenced by variation in climate, habitat

quality and competition. For example, temperature and rainfall

have strong effects on migrant bird populations by changing the

abundance and phenology of their invertebrate food supply [2–

5]. The availability of invertebrates to birds may also be affected

by temperature and rainfall via changes in activity of inverte-

brates and birds or in foraging efficiency of birds [6]. This may

affect the ability of insectivorous birds to obtain sufficient energy

reserves for reproduction or to provide adequate food for their

young [2]. Food availability may constrain the reproductive

output of migrant birds by limiting the number or quality of

offspring fledged in individual nesting attempts, or by limiting the

number of nesting attempts during each breeding season [7,8].

Many long distance migratory birds travel to temperate zones to

take advantage of seasonal peaks in food availability for breeding.

Many Palaearctic songbird populations are declining [9]; this may

be due to changes in breeding productivity and/or survival rates.

The underlying causes are unknown but possibilities include

environmental changes in the breeding and/or wintering areas

that affect the abundance of food. Successful breeding and

migration both demand large quantities of food and so these stages

of the annual cycle may be particularly food-limited. Food

supplementation of resident and short-distance migratory songbird

species usually advances laying date [10,11]. The impacts of food

supplementation on clutch size and fledgling production have been

more varied, with some studies reporting increases [12–14], others

showing no effect [15–17] and at least one even finding reductions

in productivity [18]. Very few studies have addressed experimen-

tally the impacts of changes in food availability on breeding

productivity of long-distance migrant songbirds [19,20] and these

have focused on Nearctic-Neotropical migrants.

Here, we examine the impact of an experimental manipulation

of food availability on the breeding productivity of an Old World

long-distance migrant songbird, the northern wheatear (Oenanthe
oenanthe, henceforth ‘‘wheatear’’). This species is in decline over

much of Europe, including the UK [21], largely attributed to

changes in habitat management that alters food availability [22].

We test the impact of changing food availability on reproductive

success and identify the mechanisms by determining which aspects

of reproductive performance and timing are most sensitive to

changes in food availability. This has implications for the potential

impacts of natural changes in food supply, for example due to

climate or habitat changes, on wheatear populations. Our

experimental design was not intended to mirror directly the
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changes in food availability expected under any particular climate

change scenario or land-use change. Rather, by supplementing

food across whole breeding seasons, we aimed to identify which

aspects of the bird’s breeding performance are currently limited by

food availability and thus are phenotypically flexible to climate-

and habitat-linked alterations in food supply.

There is evidence that wheatear breeding success may be

constrained by habitat characteristics linked to food availability.

For example, wheatear territory quality (largely determined by

vegetation height, which affects wheatear foraging success) appears

to be more important than individual quality in determining

reproductive success [23–25]. Wheatears holding territories with

experimentally-shortened vegetation rear young much more

successfully than those in which the vegetation grows taller [25].

Adult survival rates are also higher in wheatears breeding in

territories with short field layers [26]. Food supplementation of

wheatears in a breeding area led to increased survival rates of both

adults and fledged juveniles [27], indicating that determinants of

fitness are food-limited. Examining the impact of food-supple-

mentation on breeding performance will test whether the food

availability also limits the investment of adult wheatears in egg

laying and brood provisioning.

The key aim of this study was to use a food supplementation

experiment to test the hypothesis that food availability impacts on

breeding success in wheatears. Furthermore, we explored the

mechanisms for this effect by examining which of the following key

aspects of the breeding cycle were most limited by food

availability: timing of breeding, clutch size, egg size, hatching

success, chick size, number of fledglings per nesting attempt and

rates of multiple brooding.

Materials and Methods

Ethics statement
All of the field experiments and animal protocols were

conducted with the permission of the Fair Isle Bird Observatory

Trustees and the National Trust for Scotland. Bird ringing was

licensed by the British Trust for Ornithology. This study did not

involve protected species and the birds were not collected. The

sampling methods were non-invasive and are described fully in the

Methods section. No individuals were sacrificed or harmed in any

way. The vertebrate work involved provision of supplementary

food to wild birds in their natural habitat. The birds’ natural food

supply was available to all birds throughout the study. The study

was thus was non-invasive and indeed the food supplementation

experiment was expected to be beneficial to those individuals (and

their offspring) that received the supplementary food. We therefore

did not seek approval from an Institutional Animal Care and Use

Committee.

Study location and species
The study was conducted on Fair Isle (59u329N, 1u399W), a

ca. 1,000 ha island lying north-east of the Scottish mainland,

UK. Breeding wheatears arrive on Fair Isle between the

beginning of April and mid-May. Nests are located in holes in

the ground, under rocks or in dry stone walls. First clutch egg-

laying begins in early May and continues into June. Clutch size

ranges from 4 to 8 eggs; incubation, by the female, lasts about

13 days (range 10–18 days [28]). Both parents provision the

chicks. Chicks fledge after approximately 15 days. The parents

continue to feed fledglings until they become independent, about

two weeks after fledging.

Adult wheatears were captured with spring traps (www.moudry.

cz, model SB30). Plumage features were used to sex and age
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captured birds as fledged in the previous year (young), before the

previous year (old) or fledged before the current year (unknown if

young or old) [29]. All males, but only a minority of females, could

be aged as young or old. All captured birds were measured

(maximum wing chord to 1 mm), weighed to 0.1 g, and fitted with

a numbered metal ring and a unique combination of plastic colour

rings to enable individual identification in the field. Nestlings were

ringed when approximately 7 days old.

Feeding experiment
Prey availability for wheatears was increased by providing

mealworms in plastic bowls placed on the ground. During 2008–

2010, feeders were available from territory establishment in late

April/early May, and filled with at least 30 g of mealworms

(mean 6 SD = 37.862.7 g, n = 20 mealworm samples). Feeders

were refilled on at least five days in each week, until autumn

departure of all breeding birds and their offspring (August/early

September). Mean (6 SD) first egg laying date of fed pairs was

17.165.1 days after each feeder was set up (N = 24 fed territories

with this information available Sample sizes of supplementary fed

(treatment) and unfed (control) wheatear pairs were: 2008 – 15

fed, 14 control; 2009 – 23 fed, 22 control; 2010 – 27 fed, 27

control.

As there are age-related differences in arrival date and breeding

success of wheatears [23,30], a daily standard study site route was

walked from mid-April until the end of May, and newly

established breeding pairs were selected alternately as fed and

control (i.e. unfed) pairs. A pair was selected if behavioural signs of

pair establishment were observed. In this way, fed and control

pairs were stratified both spatially and with respect to arrival date.

This procedure also meant that supplementary feeding only began

after territory establishment, thus avoiding the potentially

confounding situation of the highest quality individuals establish-

ing territories around feeders, to the exclusion of lower quality

individuals.

One feeder was located in the estimated centre of each food-

supplemented territory. Direct observation and footage from

small video cameras (Sony Handycam, model DCR-SR32)

confirmed the identities of the wheatears using the feeders. At

least three recording sessions of at least 1 hour each – made on

different days and at different times during daylight – were

viewed per feeder, but viewing sessions were extended to 4 hours

if neither or only one of a pair had attended the feeder during

the initial period. During this video monitoring, none of the adult

wheatears from control pairs were ever recorded taking

mealworms from any of the feeders in any year. Wheatears

from supplementary fed pairs were sometimes recorded taking

mealworms from other feeders outside their own territory. 88.3%

of feeding visits in a random sample of 20 recording sessions

were made by the target pair. The remaining visits were by

European starlings (Sturnus vulgaris).

Table 2. Description of the fixed effects and model types used to analyse each reproductive parameter.

Breeding parameter Fixed effects
Random
effects Model type Notes

Chicks fledged nesting attempt21 trt, HD, yr, trt 6
HD, trt 6 yr

Female ID Poisson GLMM First clutches only. Excluded: failures due to
predation or rabbit (Oryctolagus cuniculus)
disturbance, re-laid clutches. For polygynous
males, only earliest clutch included.

Chicks fledged male21 season21 trt, HD, yr, trt 6
HD, trt 6 yr

Male ID Poisson GLMM Only marked individuals included.

Chicks fledged female21 season21 trt, HD, yr, trt 6
HD, trt 6 yr

Female ID Poisson GLMM Only marked individuals included.

Clutch size trt, HD, yr, trt 6
HD, trt 6 yr

- Poisson GLM 2009 and 2010 only. Random effect not needed
because there was no pseudoreplication.

Egg volume trt, HD, trt 6HD Female ID LME Only measured in 2010. Ln transformed to
achieve normality for analysis.

Hatching date trt, maleage, yr,
trt 6maleage,
trt 6 yr

Male ID LME Earliest clutch for each male only.

Hatching success
(probability of each
egg hatching)

trt, HD, yr, trt 6
HD, trt 6 yr

Female ID Binomial GLMM First broods only. For clutches with total
hatching failure, HD calculated from first egg
laying date, assuming 1 egg laid per day and
average incubation for study population (12.46).

Chick maximum
wing chord

trt, chicks, HD, yr,
chickage, trt 6
HD, trt 6 yr

Female ID LME Only measured in 2009 and 2010. First broods
only. 7- and 8-day-old chicks. Chick age included
in all candidate models except null model.

Nest survival trt, found, yr, trt 6
found, trt 6 yr

- Binomial GLM For each nest, modelled daily probability of nest
failure based on days active and days failed
(Mayfield [36]). One datum sampled per
individual female.

Breeding attempts
male21 season21

trt, HD, trt 6
HD, trt 6 yr

- Binomial GLM Re-lays not included as additional attempts.
Marked individuals only.

Fixed effects (in order of appearance in table). trt = treatment (fed or control), HD = standardized hatching date of earliest brood for that individual or pair, yr = year,
maleage = male age (young (yearling) or old (2+)), chicks = number of nestlings alive at time of measurement, chickage = age of chicks (7 or 8 days old), found =
standardized date nest found. Male ID/Female ID = individual identity of male/female. GLMM = Generalized linear mixed model fit by maximum likelihood, GLM =
General linear model, LME = Linear mixed model fit by maximum likelihood.
doi:10.1371/journal.pone.0111180.t002
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Wire mesh cages permitted wheatears but not European

starlings to access feeding bowls through a small hole cut at the

bottom or via a hinged weighted walkway that swung shut when

the heavier starlings attempted to enter, swinging back open again

when the starling stepped off the platform. Fed pairs started using

feeders within a few days of them being set up. To let wheatears

get used to attending feeders, one month generally passed between

positioning feeders and deploying cages. In each year, however,

some wheatear pairs (n = 5, 6 and 2 in 2008, 2009 and 2010,

respectively) that had initially attended feeders stopped using them

once the cages were positioned. Such pairs were excluded from

some analyses, as explained below. The feeders that were used by

the target wheatears became depleted of mealworms between top-

ups and as approximately 88% of visits were by the target pair, we

estimate that, on average, at least 23.5 g of mealworms –

approximately 88% of the minimum of 27.0 g available (37.8 g

per feed 65 days (minimum)/7 days = 27.0 g) – were taken by

each target pair per day.

Reproductive parameters
Nests were found by observing the parents going to and from

nest holes. On finding each nest, its status was recorded as (i) being

built, containing (ii) eggs or (iii) chicks. Nest contents were

subsequently checked every other day and the number of any dead

chicks or un-hatched eggs recorded. Laying date, clutch size, egg

volume, hatching date, hatching success, chick wing length and

number of fledglings were recorded (Table S1). Egg volume was

recorded because of the possibility that supplementary feeding

may influence female investment in egg production, with potential

carry-over effects on chick size [31].

Data analysis
It is important to measure the degree of correlation between

pairs of reproductive parameters; strong correlation between a

pair of reproductive parameters suggests that an extraneous factor

impacting the earliest-occurring variable of the pair will affect the

later-occurring variable indirectly. A correlation matrix revealed

only weak levels of co-variation between most pairs of reproduc-

tive parameters (Table 1). The analysis focuses on the effects of

food supplementation on each of the reproductive success

parameters outlined in Table 2. Year, adult age, and other

individual characteristics may also affect reproductive success.

Furthermore, aspects of breeding parameters early on in a

breeding attempt (e.g. breeding date, clutch size) may influence

later measures of breeding success (e.g. chick size, number of

juveniles). To investigate these effects, a series of models were fitted

for each response variable using the statistical package R, version

3.0.3 [32]. Where appropriate (see below and Table 2), we used

general linear models, linear mixed models (fitted by maximum

likelihood) and generalised linear mixed models (fitted by

maximum likelihood). Mixed models were fitted using the lme4

package [33] within R. Intercept-only models (null models) were

included within each set of candidate models. Treatment (fed or

control), year and the interaction of treatment and year were

included amongst the candidate models of each response variable

unless the response was measured in only a single year. Hatching

dates were used as the measure of breeding timing because more

Table 3. Models fitted to different reproductive parameters.

Reproductive parameter Model ID Fixed effects Random effects K DAICci wAICci

Chicks fledged nesting attempt21 1 yr Female ID 4 0.000 0.285

2 none Female ID 2 0.309 0.244

Chicks fledged male21 season21 3 trt 6HD, yr Male ID 8 0.000 0.594

Chicks fledged female21 season21 4 none Female ID 2 0.000 0.326

5 trt Female ID 3 1.003 0.197

6 yr Female ID 4 1.999 0.120

Clutch size 7 none - 1 0.000 0.462

8 yr - 2 1.631 0.204

Log egg volume 9 none Female ID 3 0.000 0.379

10 HD Female ID 4 0.336 0.321

Hatching date 11 trt, yr Male ID 6 0.000 0.358

12 trt, yr, maleage Male ID 7 0.761 0.244

Hatching success 13 HD Female ID 3 0.000 0.335

14 none Female ID 2 1.079 0.195

Chick maximum wing chord 15 trt 6 yr, chickage Female ID 7 0.000 0.288

Nest survival 16 none - 2 0.000 0.327

17 trt - 2 1.323 0.169

18 found - 2 1.889 0.127

Breeding attempts male21 season21 19 trt, HD - 3 0.000 0.392

20 trt 6HD - 4 0.920 0.247

AICc is the corrected Akaike’s Information Criterion, DAICci is the difference in AICc between model i and the best model and wAICci is the Akaike weight. Plausible
models (DAICci #2) are presented; see Tables S2–S14 for the full sets of candidate models. Interactions are indicated by 6and include all lower order additive terms as
well.
Fixed effects (in order of appearance in table). yr = year, none = intercept-only model, trt = treatment (fed or control), HD = standardized hatching date, maleage =
male age (young (yearling) or old (2+)), chickage = age of chicks, found = standardized date nest found.
doi:10.1371/journal.pone.0111180.t003
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data was available for hatching than for laying dates and the two

variables were highly correlated (R = 0.91, P,0.001, N = 22). As

well as analysing hatching date as a breeding parameter itself, it

was included as a fixed effect (and the interaction of treatment and

hatching date) in all other analyses except for nest survival. For

nest survival, the date on which the nest was found (and the

interaction of treatment and date found) was used instead. Values

of hatching date or date nest found were standardized by

subtracting the mean and dividing by the standard deviation.

Male age (young (yearling) or old (2+ years old)) was included, as

well as the interaction of treatment and male age, amongst

candidate models of hatching date to account for the possible

impact of male age on arrival times and therefore breeding date

and territory quality. For other analyses, hatching date was used

instead because territory quality has been shown to be more

important for reproductive success than individual characteristics

[23–25]. For chick size, chick age (7 days-old or 8 days old) was

included in all models (except for a null model) as a controlling

factor and number of chicks was considered in some of the

candidate models. All subsets of the full models in each case have

been considered (except for chick size, where chick age was kept in

all models as a necessary control). The full lists of candidate models

are provided in Tables S2–S11. The strength of support for

competing candidate models was assessed using AIC corrected for

small sample size (AICc [34]) and AICc weights (wAICc). The

plausible models were defined as those with DAICi #2. For each

reproductive parameter, we carried out multi-model inference to

derive model-averaged parameter estimates and confidence

intervals of fixed effects included in plausible models, based on

wAICc of each model i [34]. Model averaging of main effects

excluded models in which those main effects were also included in

interaction terms. Model ranking by AICc and model averaging of

parameter estimates was carried out with the R package

AICcmodavg [35].

Female identity (ID) was included where appropriate as a

random effect in mixed models to account for multiple broods of

individuals between and across years. Male ID was used as the

random effect for the analyses of young fledged per male per

breeding season and number of breeding attempts per male per

breeding season. Male ID was also used as the random effect for

the analysis of hatching date because male age was included as a

factor (we had less data on female age). Male and female ID were

never included together, female ID being nested within male ID.

Several candidate models of nest survival failed to converge when

fitted with random effects. For the analysis of this parameter,

pseudoreplication was avoided by randomly selecting one datum

per individual by the sample procedure in R (dataset reduced from

110 nests to 99 nests) and the models were fitted with general

linear models instead. For the analysis of multiple brooding by

males, initial modelling for random effects did not allow for year

effects because of the lack of contrasts in multiple brooding

available between all of the factors treatment, hatching date and

Table 4. Model-averaged parameter estimates (estimates of fixed effects included in models with DAICci #2 with contributions to
average weighted by wAICci of model), unconditional standard errors and 95% confidence intervals.

Reproductive parameter Fixed effect Estimate SE 95% CI

Lower Upper

Chicks fledged nesting attempt21 2009 vs. 2008 0.214 0.177 20.134 0.562

2010 vs. 2008 0.330 0.165 0.007 0.654

Chicks fledged male21 season21 Fed vs. Control 6Hatching date 20.275 0.102 20.475 20.076

2009 vs. 2008 20.118 0.179 20.469 0.233

2010 vs. 2008 0.171 0.171 20.164 0.505

Chicks fledged female21 season21 Fed vs. Control 0.099 0.097 20.091 0.289

2009 vs. 2008 20.118 0.179 20.469 0.233

2010 vs. 2008 0.958 0.845 20.698 2.615

Clutch size 2010 vs. 2009 0.089 0.123 20.152 0.330

Log egg volume Hatching date 20.016 0.012 20.040 0.007

Hatching date Fed vs. Control 22.953 1.107 25.124 20.783

Young vs. Old male 1.452 1.175 20.850 3.755

2009 vs. 2008 22.159 1.875 25.834 1.516

2010 vs. 2009 1.459 1.890 22.245 5.163

Hatching success Hatching date 20.796 0.449 21.677 0.084

Chick maximum wing chord 8 days old vs. 7 days old 5.604 1.309 3.038 8.170

Fed vs. Control 6 2010 vs. 2009 27.463 2.834 213.018 21.908

Nest survival Fed vs. Control 0.826 0.806 20.754 2.407

Date found 20.129 0.358 20.831 0.573

Breeding attempts male21 season21 Fed vs. Control 2.574 1.146 0.327 4.820

Hatching date 21.083 0.487 22.036 20.129

Fed vs. Control 6Hatching date 21.173 1.099 23.326 0.980

Interactions are indicated by x.
Hatching date (1 = 1st May) and date found (date nest discovered; 1 = 1st May) were standardized before being input in models as fixed factors.
doi:10.1371/journal.pone.0111180.t004
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year. Modelling with random effects without year provided a

standard deviation of 0 for the random effect of male ID,

indicating that multiple brooding did not depend on individual

identity. To allow for year effects to be included in the candidate

models without discarding data, models of multiple brooding were

conducted with general linear models. Unringed individuals were

included within some analyses. The number of unringed

individuals was relatively high in 2008 (10 males/7 females of 22

pairs), but fewer in 2009 and 2010 (5 males/7 females of 40 pairs

in 2009; 5 males/5 females of 48 pairs in 2010). Thus there may

have been some pseudoreplication of unringed breeders between

years, although only about 50% of unringed adult birds are

expected to return the following year [17]. Fed pairs that stopped

using feeders when cages were deployed were included in analyses

of clutch size and egg volume, as they were still being fed during

those stages of the breeding cycle. For all other analyses, these

pairs were excluded from the dataset.

The total number of chicks fledged across the whole breeding

season was obtained for individual parents instead of pairs (new

pairs could form after failed nesting attempts and males could have

simultaneous broods with multiple females). Individuals with failed

broods were included in the analysis because feeding treatment

may influence decisions about re-laying following nest failure. As

there were no cases of multiple broods within the control group of

females, we did not use linear modelling to test for an effect of food

supplementation on multiple brooding by females. Instead, we

used a Fisher Exact Test to test the significance of the treatment

effect. Details of the models run for each breeding parameter are

listed in Table 2.

Results

144 wheatear nests were found during 2008–2010. 129 of these

were first clutches, three were re-lays after first clutch failure, eight

were simultaneous clutches and four were second clutches. Of

these nests, the identity of both parents was known for 102, the

identity of the male only was known for 15, the identity of the

female only was known for 19 and the identity of neither parent

was known for 8 pairs. The most direct measure of reproductive

success is the number of fledglings produced. These results are

described first. Other reproductive parameters are then examined

to investigate the mechanisms by which the food availability

increase may influence reproductive output.

Fledging success
Chicks fledged per nesting attempt. There was no effect of

food supplementation on the number of chicks fledged per nesting

attempt amongst first broods (mean 6 SE = 5.2660.23 for fed

broods, 5.0460.22 for control broods, Table S2). The best fitting

model included only year as a factor, while the null model was the

Figure 1. The relationship between standardized first brood
hatching date and number of juveniles fledged across the
season by food-supplemented and control male (a) and female
(b) wheatears. Lines of best fit produced by linear models are shown
to aid interpretation.
doi:10.1371/journal.pone.0111180.g001

Figure 2. Distribution of dates of hatching of first clutches in
2009 and 2010 according to treatment. Density estimation curves
shown to aid interpretation (solid = fed, dashed = control).
doi:10.1371/journal.pone.0111180.g002
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only other plausible model (Table 3, Models 1–2). Model-

averaged parameter estimates indicated that the number of chicks

fledged per nest was highest in 2010 and lowest in 2008 (Table 4).

Chicks fledged per breeding season. More young were

fledged per breeding season by fed males (mean 6 SE =

6.3260.48 fledglings male21, N = 37) than by control males

(5.1460.29 fledglings male21, N = 43). Only one plausible model

was identified, including the treatment 6 standardized hatching

date interaction and year (Table 3, Model 3; see Table S3 for the

AICc model fits of all candidate models). Fed males fledged more

young over the course of a season the earlier they started breeding,

while there was no such relationship amongst control males

(Figure 1a; Table 4).

More young were fledged per breeding season by fed females

(5.3760.26 fledglings female21, N = 41) than by control females

(4.8460.25 fledglings female21, N = 44). The best model was,

however, the null model (Table 3, Model 4). The other two

plausible models included treatment alone and year alone

(Table 3, Models 5 and 6; see Table S4 for the AICc model fits

of all candidate models). Model-averaged parameter estimates

showed that the effect of treatment and year on young fledged per

season by females were only weak (Figure 1b, Table 4).

Clutch size
Mean clutch size was 6.2660.10 eggs (range 4–8, N = 57). Two

plausible models were identified: the null model and a model

including year (Table 3, Models 7 and 8; see Table S5 for the

AICc model fits of all candidate models). Model averaged

parameter estimates indicated that there was only weak annual

variation in clutch size (Table 4).

Egg volume
Mean egg volume was 2761614.42 mm3 (N = 258). Two

plausible models were identified: the null model and a model

including standardized hatching date (Table 3, Models 9 and 10;

see Table S6 for the AICc model fits of all candidate models).

Model averaged parameter estimates indicated that egg volume

decreased weakly with standardized hatching date (Table 4).

Hatching date
Hatching dates of first clutches ranged from 31st May to 22nd

June in 2008 (N = 9), 20th May to 22nd June in 2009 (N = 33) and

from 28th May to 15th June in 2010 (N = 46). Hatching dates in

2009 and 2010 only were included in the analysis because of the

sparseness of data for 2008. Two plausible models of hatching date

were identified, both of which included treatment and year and

one included male age (Table 3, Models 11 and 12; see Table S7

for the AICc model fits of all candidate models). Model averaged

parameter estimates indicated that fed males hatched their first

clutches 2.95 days earlier than control males (Table 4, Figure 2).

There were weak trends for clutches of yearling males to hatch

later than clutches of 2+ year old males (Table 4). There was also

weak annual variation in hatching dates (Table 4).

Hatching success
Of 60 first nesting attempts with known clutch size, four

completely failed to hatch and 18 had partial hatching failure (at

least one egg did not hatch). Two plausible models of hatching

success were identified: one with standardized hatching date alone

and the other was the null model (Table 3, Models 13 and 14; see

Table S8 for the AICc model fits of all candidate models). Model

averaged parameter estimates indicated that there was a weak

inverse relationship between standardized hatching date and

hatching success (Table 4).

Chick size
Mean maximum wing chord (the measure of chick size) was

28.9560.34 mm for 7-day-old chicks (range 13 to 41, N = 266)

and 34.6960.63 mm for 8-day-old chicks (range 16 to 48, N = 70).

The interaction of treatment and year was included in the only

plausible model of chick size (Table 3, Model 15; see Table S9 for

the AICc model fits of all candidate models). Model averaged

parameter estimates indicated that treatment had a greater effect

on chick maximum wing chord in 2009 than in 2010 (Table 4). In

fact, a plot of maximum wing chord by year shows that fed chicks

were larger than control chicks in 2009 but that there was no

difference between them in 2010 (Figure 3).

Nest survival
Out of 36 nests of fed parents, 34 were successful ($1 chick

fledged) and 54 of 63 nests of control parents were successful.

Mean Mayfield daily nest survival rates [36] were 99.560.4% for

nests of fed parents and 97.261.2% for nests of control parents.

There were three plausible models of nest survival: the null model,

one with treatment alone and one with standardized nest finding

date alone (Table 3, Models 16 to 18; see Table S10 for the AICc

model fits of all candidate models). The confidence intervals for

the effects of treatment and standardized nest finding date

indicated little statistical support for either factor (Table 4).

Probability of multiple brooding per breeding season
Males. Nine of 37 fed and one of 43 control males had

multiple broods. Two plausible models of probability of multiple

brooding were identified: one including treatment and standard-

ized hatching date and the other including the interaction of

treatment and standardized hatching date (Table 3, Models 19

and 20; see Table S11 for the AICc model fits of all candidate

models). Model averaged parameter estimates indicated that fed

males were more likely to have multiple broods than were control

males and that standardized hatching date had a significant

inverse effect on the probability of multiple brooding (Table 4).

The interaction of treatment and standardized hatching date was

Figure 3. The effect of food supplementation on chick wing
length. Variation in wing length (mean 695% confidence limits) in
relation to age for fed and control chicks in 2009 and 2010.
doi:10.1371/journal.pone.0111180.g003
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not well supported by the data, having confidence intervals that

overlapped zero by a wide margin (Table 4).

Females. Four of 37 fed females had second broods (these

were all consecutive broods with the same male). None of the 41

unfed females had second broods. Fed females were significantly

more likely to have multiple broods than control females (Fisher’s

Exact Test P = 0.046).

Discussion

This study tested the impact of experimentally manipulated

food availability on the reproductive performance of the northern

wheatear, a long-distance migratory insectivorous bird, with

implications for the potential effects of climate- and land-use-

driven changes in food in the breeding areas. The experimental

increase in food availability increased the annual reproductive

output of the wheatears breeding on Fair Isle by increasing the

frequency of pairs raising second broods and males raising broods

with more than one female (polygyny). The experimental increase

in food availability had no detectable effect on clutch size or the

number of fledglings produced from first broods.

As well as leading to an increase in the production of fledglings

produced over the breeding season, food supplementation also

advanced hatching date of first broods and increased chick quality

(as measured by body size). Specifically, increased food availability

led to an advance in hatching date of first broods by approximately

3 days, an increase in the wing length of chicks measured at 7 and

8 days of age in 2009 (but not in 2010) (which could either

represent a larger fledging size or more rapid growth towards an

unaltered fledging size).

The advance in hatching dates of first broods of food-

supplemented wheatears relative to controls indicates that the

timing of breeding was constrained by natural food availability on

Fair Isle. Food supplementation within a territory was initiated

only once a pair was seen to have formed by their behaviour. This

was necessary to avoid a situation where birds arriving on Fair Isle

in the spring chose those territories with supplementary food,

which could have led to the feeding treatment being distributed

unevenly with respect to individual quality and arrival dates and

confounded the experiment. Clutches of fed pairs were initiated

approximately 17 days after feeders within their territories were

deployed. The result of designing the experiment in this way

means that food supplementation likely occurred over only part of

the adult female developmental phase of reproduction, which

occurs before egg laying [37]. Despite this, we observed a 3-day

advance in hatching dates (highly correlated with laying dates) of

fed wheatears relative to unsupplemented controls. Advances in

breeding date from food supplementation at the breeding site are

also widely reported in resident and short-distance migratory

songbirds [10,11]. The extent of advance in breeding date in

response to increased food was similar to our study for some of

these species (e.g. 2 days for jackdaws Corvus monedula and

5 days for great tits Parus major) [14,38] but much greater in

others, such as 18 days in song sparrows (Melospiza melodi) [15].

The timing of initiation of supplemental feeding relative to laying

dates may influence the extent of advance in laying dates, but the

link is not clear; in the three examples above, experimental

provisioning began much earlier in the jackdaw study than in the

great tit or song sparrow studies.

The earlier date of first clutches induced by food supplemen-

tation may have contributed to an increased reproductive output

by increasing the time available for females to lay a second clutch

following fledging of their first. Additional breeding attempts were

very rare by control pairs, however, even by those that began

breeding early, suggesting that the increase in the number of

breeding attempts was likely to depend on food availability in

combination with early breeding, and not just on early breeding

per se. Wheatears that initiated their first brood earlier and had

access to supplemental food were more likely to have second

broods (and, in the case of males, have simultaneous broods). A

higher proportion of pairs that initiated a first brood subsequently

initiated second broods in 2009 (6.5%) than in 2010 (1.9%), which

is consistent with the earlier start to breeding in 2009 (hatch date

in 2009 was 8 days earlier than in 2010). The proportion of males

initiating simultaneous broods was, however, higher in 2010

(9.6%) than in 2009 (4.3%), but simultaneous brooding will be less

time-limited than second brooding. Consistent with our findings,

experimental and natural changes in food availability led to

changes in numbers of breeding attempts in black-throated blue

warblers (Dendroica caerulescens) [8,39] and song sparrows [15].

In support of our finding that earlier breeding alone does not

increase rates of multiple brooding, food-supplementation of

resident breeding birds during pre-laying and laying stages only

resulted in advanced laying dates but no impact on number of

clutches initiated [40,41]. In an observational study of wheatears

[42], earlier breeding was associated with greater fledging success

of first broods and with a higher probability of second brooding,

but in the absence of food manipulation it is not certain whether

food availability (as breeding timing is likely related to territory

quality) underpinned these results. In a long-term Swedish study,

older male wheatears had higher reproductive success than

yearling males, probably because older birds arrive on breeding

grounds earlier, allowing them to commence breeding sooner as

well as potentially gain the best territories [24,25]. In our

experimental study, high quality early-arriving males with

supplementary food may be able to expend more energy on

defending larger territories and attracting additional mates

compared to lower quality late-arriving males that may be more

constrained in their territory choice.

The low rates of total nest failure in this study are in stark

contrast with other studies of wheatears. Only about 8% of first

clutches in the current study failed to produce any fledglings, while

total failure rates of about 41%, 30% and 21% were recorded in

East Anglia [42] and two studies in Sweden [22,28], respectively.

It is therefore possible that increases in food availability have a

greater effect on the reproductive parameters measured on Fair

Isle than among wheatears living in areas where predation risk is a

greater determinant of breeding success. This would be an

interesting avenue of future research.

The supplemented food in our study also resulted in increased

chick (and therefore probably fledgling) quality, as measured by

chick size at age 7–8 days. These results are consistent with those

of natural and experimental food reduction, which led to

decreased nestling growth rates of black-throated blue warblers

[39]. The magnitude of the effect in our study did, however, vary

between years, suggesting that food availability is not always

equally limiting to chick growth.

Although food supplementation had measurable effects on

hatching date, the number of breeding attempts and chick growth,

other reproductive parameters appeared to be unaffected. There

was no difference in clutch size or hatching success of first broods,

which explains why food-supplementation also did not increase the

number of chicks fledged from first broods. It is possible that our

sample size was not large enough to detect an effect. In support of our

results, however, food supplementation had no effect on the number

of fledglings from first broods in black-throated blue warblers [8],

while clutch size was higher in food-supplemented pairs in only five
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of 14 species (comprising non-migratory and short-distance migrant

species) reviewed by Arcese and Smith [15].

The present study provides evidence that the number of

breeding attempts that can be fitted into each breeding season is

currently limited both by food availability, and by the date of

initiation of the first brood. Our food supplementation was

uniformly high across the whole breeding season, yet high altitude

and high latitude moorland habitats typically have short growing/

breeding seasons, with highly peaked food availability [43].

Phenological changes associated with climate change are, indeed,

already resulting in earlier spring arrivals of migratory songbirds.

The timing of autumn departures are also advancing, however,

leading to a shift in the breeding season with no increase in its

duration [44–46]. The variation between years in the frequency of

second broods in our study suggests that other factors (e.g. weather

and availability of key prey taxa), as well as overall food

availability, may affect multiple brooding. As well as environmen-

tal conditions at the breeding grounds, breeding date of migratory

birds depends on spring arrival date and arrival body condition,

both of which are affected by environmental factors at the

wintering grounds and migration routes [5,47,48]. Breeding close

to the wintering grounds, resident and short-distance migrants

may be less time-constrained in their response to environmental

change than long-distance migrants [49]. Temperature changes

may also have direct impacts on bird reproduction that may have

consequences for duration of the breeding season. For example,

great tits kept at higher temperatures began laying at the same

time as controls but terminated laying, regressed their testes and

started post-breeding moult earlier, despite food being provided ad

libitum [50]. To understand the implications of our finding that

food availability may affect fledgling production in wheatears via

changes in breeding attempts, it is important to understand how

climate change will affect the timing and shape of food peaks, food

abundance and the direct impact on wheatear behaviour and

physiology of factors such as temperature.

This study has shown that food supplementation increased

fitness of northern wheatears by providing resources needed for

second broods. In addition, while no additional chicks were

fledged from first broods, the chicks were larger which may aid

post-fledging survival [27] and increase fitness as an adult. This

has clear implications for the impact of changes in food availability

due to environmental change, although caution is always required

in extrapolating results to other populations, species or even to

other years [43]. There may also be independent, direct effects of

environmental variables such as temperature and rainfall on

breeding parameters [51,52]. Much of the literature on the

impacts of climate change on birds has focussed on the issue of

mismatches between timing of breeding and the timing of peaks in

food availability [53–55]. By increasing food availability uniformly

across the whole breeding season, we have been unable to address

the impact of changes in the timing of peaks in the food supply of

wheatears. Instead, our experiment measured the degree of

phenotypic plasticity in a range of breeding parameters, revealing

the extent to which individual birds can respond instantly to

changes in environmental conditions. If the range of climate (and

thus food) variability that the birds’ phenotypic plasticity

encompasses is exceeded, then there will be selective pressure for

evolutionary change.
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