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Abstract

We investigate the relative roles of monetary policy and shocks in causing the

Great Moderation, using indirect inference where a DSGE model is tested for its

ability to mimic a VAR describing the data. A New Keynesian model with a Taylor

Rule and one with the Optimal Timeless Rule are both tested. The latter easily

dominates, whether calibrated or estimated, implying that the Fed�s policy in the

1970s was neither inadequate nor a cause of indeterminacy; it was both optimal and

essentially unchanged during the 1980s. By implication it was largely the reduced

shocks that caused the Great Moderation�among them monetary policy shocks

the Fed injected into in�ation.
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JEL Classi�cation: E42, E52, E58

1 Introduction

John Taylor suggested in Taylor (1993) that an interest rate rule for well-conducted

monetary policy �tted the Fed�s behaviour since 1987 rather well in a single equation

regression. Since then a variety of similar studies have con�rmed his �nding�most of

these have focused on a data sample beginning in the early-to-mid 1980s. For the period

from the late 1960s to the early 1980s the results have been more mixed. Thus Clarida,

Gali and Gertler (2000) reported that the Taylor Rule �tted but with a coe¢cient on

in�ation of less than unity; in a full NewKeynesian model this fails under the usual criteria

to create determinacy in in�ation and they argue that this could be the reason for high

in�ation and output volatility in this earlier post-war period. They concluded that the

reduction in macro volatility between these two periods (the �Great Moderation�) was

due to the improvement in monetary policy as captured by this change in the operative

Taylor Rule.

This view of the Great Moderation has been widely challenged in econometric studies

of the time series. These have attempted to decompose the reduction in macro variance

into the e¤ect of parameter changes and the e¤ect of shock variances. Virtually all have

found that the shock variances have dominated the change and that the monetary policy

rule operating therefore did not change very much.

A further questioning of the Taylor Rule account of the post-war monetary policy

has come from Cochrane (2011) and others (Minford, Perugini and Srinivasan, 2002)

who argue that the Taylor Rule is not identi�ed as a single equation because a DSGE

model with a di¤erent monetary policy rule (such as a money supply rule) could equally

well generate an equation of the Taylor Rule form. Therefore much of the work that

estimates the Taylor Rule could be spurious. However, identi�cation can be achieved
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when the Taylor Rule is embedded in a full DSGE model because of the over-identifying

restrictions implied by rational expectations. There then remains the question of whether

such a model is as good a representation as one that is in general the same but has an

alternative monetary policy rule1.

This points the way to a possible way forward for testing models of monetary policy.

One may specify a complete DSGE model with alternative monetary rules and use the

over-identifying restrictions to determine their di¤ering behaviours. One may then test

which of these is more acceptable from the data�s viewpoint and hence comes closest to

the true model. This is the approach taken here.

We look at a particular rival to the Taylor Rule, the Optimal Timeless Rule. This

is of interest because in it the Fed is playing a more precisely optimising role than it

does in the Taylor Rule which is a simple rule that can be operated with limited current

information, namely for output and in�ation. The Optimal Timeless Rule assumes that

the Fed can solve the DSGE model for all the shocks and so choose in a discriminating

way its reaction to each shock. Other than this Optimal Timeless Rule we also look at

variants of the Taylor Rule, including one that closely mimics the Optimal Timeless Rule.

To make our testing bounded and tractable we use the monetary rule in conjunc-

tion with the most widely-accepted parsimonious DSGE model representation�where

the model is reduced to two equations, a forward-looking �IS� curve and a New Keynesian

Phillips curve, plus the monetary rule. We allow each rule/model combination to be cal-

ibrated with the best chance of matching the data and then test on that best calibration,

using the method of Indirect Inference under which the model�s simulated behaviour is

1Rules of the Taylor type are generally found to �t the data well, either as a stand-alone equation
in regression analysis, or as part of a full model in DSGE analysis. Giannoni and Woodford (2005) is
a recent example of the former, whereas Smets and Wouters (2007) and Ireland (2007) are examples of
the latter. However, besides the usual di¢culties encountered in applied work (e.g., Castelnuovo, 2003
and Carare and Tchaidze, 2005), these estimates face an identi�cation problem pointed out by Minford,
Perugini and Srinivasan (2002) and Cochrane (2011).
Lack of identi�cation occurs when an equation could be confused with a linear combination of other

equations in the model. In the case of the Taylor Rule, DSGE models give rise to the same correlations
between interest rate and in�ation as the Taylor Rule, even if the Fed is doing something quite di¤erent,
such as targeting the money supply. For example, Minford (2008) shows this in a DSGE model with
Fischer wage contracts. For details see Minford and Ou (2013).
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formally tested for congruence with the behaviour of the data. Our e¤orts here join others

that have brought DSGE models to bear on this issue�notably, Ireland (2007), Smets

and Wouters (2007) and the related Le et al. (2011) and Fernandez-Villaverde, Guerron-

Quintana and Rubio-Ramirez (2009, 2010). These authors have all used much larger

DSGE models, in some cases data that was non-stationary, and in most cases Bayesian

estimation methods. Their work is largely complementary to ours and we discuss their

�ndings in relation to ours below. Bayesian estimation is a method for improving on

calibrated parameters but our method of indirect inference takes matters further and

asks if the �nally estimated model is consistent overall with the data behaviour; if not it

searches for some set permissible within the theory that is consistent, getting as close to

consistency as possible given the model and the data. This method is the major innova-

tion we introduce for the treatment of the topic here; it is a method based on classical

statistical inference which we explain and defend carefully below.

In using indirect inference to test the models we deviate from the popular use of

Bayesian methods to evaluate models. This is because Bayesian evaluation of a model (by

likelihood and odds ratio tests) does not test the model as a whole against the data; indeed

Bayesians dismiss the idea of �testing models�. Bayesian estimates depend on the choice

of prior distributions which are designed to restrict the estimates. By testing a model

as a whole, we mean testing jointly both the e¤ect of imposing the priors and the usual

structural restrictions on the model. In contrast, Bayesian evaluation examines which

of two speci�cations of a structural model is more probable given the priors assumed;

any ranking of the two models is thus dependent on the priors chosen2. Thus Bayesian

methods cannot be used to test models against the data in the sense in which we wish to

test (and rank) a model.

It may, of course, still be argued that it is wrong to test models as a whole against the

2With the use of a �at prior Bayesian ranking is equivalent to assessing the likelihood ratio of two
models. This ranking is similar to the ranking we obtain under indirect inference except that the
criterion is the likelihood of the data rather than the likelihood of the data representation. However we
must emphasise that our �rst concern is testing against the data for rejection; only for models that are
not rejected are we concerned with rank.
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data and that one should only check improvements conditional on prior assumptions that

should not be challenged. It is, however, hard to argue that any set of prior assumptions

can be taken for granted as true and beyond challenge as can be seen from the number of

�schools of thought� still in existence in macroeconomics. This wide divergence of beliefs

has, if anything, been exacerbated by the �nancial crisis of the late 2000s. Whether

one likes it or not, as a macroeconomist, one must recognise that to establish a model

scienti�cally to the satisfaction of other economists and policymakers, it needs to be shown

that a model being proposed for a policy use is consistent with the data in a manner that

enables it to be used for that purpose. We show below that indirect inference ful�ls that

need.

Direct inference, as in the Likelihood Ratio test, is an alternative to indirect inference

for testing models against the data. However, as we elaborate below, Likelihood Ratio

tests appear to have considerably less power in small samples than the indirect inference

test we use here. By implication, indirect inference will therefore provide a more powerful

discrimination between the models.

In section 2 we review the work on the Great Moderation. In section 3 we set out the

model and the rules to be tested, and in section 4 our test procedure, together with a

discussion of the alternatives. Section 5 shows the results, while section 6 draws out the

implications for the Great Moderation and section 7 concludes.

2 Causes of the Great Moderation

The Great Moderation refers to the period during which the volatility of the main eco-

nomic variables was relatively modest. This began in the US around the early 1980s

although there is no consensus on the exact date. Figure 1 below shows the time paths

of three main US macro variables from 1972 to 2007: the nominal Fed interest rate,

output gap and CPI in�ation. It shows the massive �uctuation of the 1970s ceased after

the early 1980s, indicating the economy�s transition from the Great Acceleration to the
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Great Moderation.

Figure 1: Time Paths of Main Macro Variables of the US Economy
(Quarterly data, 1972-2007)

Nominal Fed rate Output gap CPI In�ation

Data source: the Federal Reserve Bank of St. Louis (http://research.stlouisfed.org/fred2/, accessed Nov. 2009).

Fed rate and in�ation un�ltered; the output gap is the log deviation of real GDP from its HP trend.

Changes in the monetary policy regime could have produced the Great Moderation.

This is typically illustrated with the three-equation New Keynesian framework, consist-

ing of the IS curve derived from the household�s optimization problem, the Phillips curve

derived from the �rm�s optimal price-setting behaviour, and a Taylor Rule approximat-

ing the Fed�s monetary policy. Using simulated behaviour from models of this sort, a

number of authors suggest that the US economy�s improved stability was largely due to

stronger monetary policy responses to in�ation (Clarida, Gali and Gertler, 2000; Lubik

and Schorfheide, 2004; Boivin and Giannoni, 2006 and Benati and Surico, 2009). The

contrast is between the �passive� monetary policy of the 1970s, with low Taylor Rule

responses, and the �active� policy of the later period in which the conditions for a unique

stable equilibrium (the �Taylor Principle�) are met, these normally being that the in�a-

tion response in the Taylor Rule be greater than unity. Thus it was argued that the

indeterminacy caused by the passive 1970s policy generated sunspots and so the Great

Acceleration; with the Fed�s switch this was eliminated, hence the Great Moderation.

By contrast other authors, mainly using structural VAR analysis, have suggested that

the Great Moderation was caused not by policy regime change but by a reduction in the

variance of shocks. Thus Stock andWatson (2002) claimed that over 70% of the reduction

in GDP volatility was due to lower shocks to productivity, commodity prices and forecast

errors. Primiceri (2005) argued that the stag�ation in the 1970s was mostly due to
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non-policy shocks. A similar conclusion was drawn by Gambetti, Pappa and Canova

(2008), while Sims and Zha (2006) found in much the same vein that an empirical model

with variation only in the variance of the structural errors �tted the data best and that

alteration in the monetary regime�even if assumed to occur�would not much in�uence

the observed in�ation dynamics.

The logic underlying the structural VAR approach is that, when actual data are

modelled with a structural VAR, their dynamics will be determined both by the VAR

coe¢cient matrix that represents the propagation mechanism (including the monetary

regime) and by the variance-covariance matrix of prediction errors which takes into ac-

count the impact of exogenous disturbances. Hence by analysing the variation of these

two matrices across di¤erent subsamples it is possible to work out whether it is the change

in the propagation mechanism or in the error variability that has caused the change in

the data variability. It is the second that these studies have identi�ed as the dominant

cause. Hence almost all structural VAR analyses have suggested �good shocks� (or �good

luck�) as the main cause of the Great Moderation, with the change of policy regime in a

negligible role.

Nevertheless, since this structural VAR approach relies critically on supposed model

restrictions to decompose the variations in the VAR between its coe¢cient matrix and

the variance-covariance matrix of its prediction errors, there is a pervasive identi�cation

problem. As Benati and Surico (2009) have pointed out, the problem that �lies at the

very heart� is the di¢culty in connecting the structure of a DSGE model to the structure

of a VAR. In other words one cannot retrieve from the parameters of an SVAR the

underlying structural parameters of the DSGE model generating it, unless one is willing

to specify the DSGE model in detail. None of these authors have done this. Hence

one cannot know from their studies whether in fact the DSGE model that produced the

SVAR for the Great Acceleration period di¤ered or did not di¤er from the DSGE model

producing the SVAR for the Great Moderation period. It is not enough to say that

the SVAR parameters �changed little� since we do not know what changes would have
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been produced by the relevant changes in the structural DSGE models. Di¤erent DSGE

models with similar shock distributions could have produced these SVARs with similar

coe¢cients and di¤erent shock distributions.

Essentially it is this problem that we attempt to solve in the work we present below.

We estimate a VAR for each period and we then ask what candidate DSGE models could

have generated each VAR. Having established which model comes closest to doing so, we

then examine how the di¤erence between them accounts for the Great Moderation. Since

these models embrace the ones put forward by the authors who argue that policy regime

change accounts for it, we are also able to evaluate these authors� claims statistically.

Thus we bring evaluative statistics to bear on the authors who claim policy regime change,

while we bring identi�cation to bear on the authors who use SVARs.

3 A Simple New Keynesian Model for Interest Rate,

Output Gap and In�ation Determination

We follow a common practice among New Keynesian authors of setting up a full DSGE

model with representative agents and reducing it to a three-equation framework consisting

of an IS curve, a Phillips curve and a monetary policy rule.

Under rational expectations the IS curve derived from the household�s problem and

the Phillips curve derived from the �rm�s problem under Calvo (1983) contracts can be

shown to be:

xt = Etxt+1 � (
1

�
)(~{t � Et�t+1) + vt (1)

�t = �Et�t+1 + xt + �u
w
t (2)

where xt is the output gap, ~{t is the deviation of interest rate from its steady-state

value, �t is the price in�ation, and vt and u
w
t are the �demand shock� and �supply shock�,

respectively3.

3Our Supporting Annex shows the full derivation.
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We consider three monetary regime versions widely suggested for the US economy.

These are the Optimal Timeless Rule when the Fed commits itself to minimizing a typical

quadratic social welfare loss function; the original Taylor Rule; and an interest-rate-

smoothed Taylor Rule.

In particular, the Optimal Timeless Rule is derived following Woodford (1999)�s idea

of ignoring the initial conditions confronting the Fed at the regime�s inception. It implies

that, if the Fed was a strict, consistent optimizer, it would have kept in�ation always

equal to a �xed fraction of the �rst di¤erence of the output gap, ensuring

�t = �
�


(xt � xt�1) (3)

where � is the relative weight it puts on the loss from output variations against in�ation

variations and  is the Phillips curve constraint (regarding stickiness) it faces4.

Unlike Taylor Rules that specify a systematic policy instrument response to economic

changes, this Timeless Rule sets an optimal trade-o¤ between economic outcomes�here,

it punishes excess in�ation with a fall in the output growth rate. It then chooses the

policy instrument setting to achieve these outcomes; thus the policy response is implicit.

Svensson and Woodford (2004) categorized such a rule as �high-level monetary policy�;

they argued that by connecting the central bank�s monetary actions to its ultimate policy

objectives this rule has the advantage of being more transparent and robust5.

Thus, in order to implement the Optimal Timeless Rule the Fed must fully understand

the model (including the shocks hitting the economy) and set its policy instrument (here

the Fed rate) to whatever supports the Rule. Nevertheless, the Fed may make errors of

implementation that cause the rule not to be met exactly��trembling hand� errors, �t.

Here, since (3) is a strict optimality condition, we think of such policy mistakes as due

4See also Clarida, Gali and Gertler (1999) and McCallum and Nelson (2004). This is based on
de�ning social welfare loss as �the loss in units of consumption as a percentage of steady-state output�
as in Rotemberg and Woodford (1998)�also Nistico (2007); it is conditional on assuming a particular
utility function and zero-in�ation steady state�more details can be found in our Annex.

5Svensson and Woodford (2004) also comment that such a rule may produce indeterminacy; however
this does not occur in the model here.
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either to an imperfect understanding of the model or to an inability to identify and react

to the demand and supply shocks correctly. This di¤ers from the error in typical Taylor

Rules, which consist of the Fed�s discretionary departures from the rule .

Thus the three model economies with di¤ering monetary policy settings are readily

comparable. These are summarised in table 16.

Table 1: Competing Rival Models

Baseline framework

IS curve xt= Etxt+1�(
1

�
)(~{t�Et�t+1) + vt

Phillips curve �t= �Et�t+1+xt+�u
w
t

Monetary policy versions

Optimal Timeless Rule
(model one)

�t= �
�

(xt�xt�1) + �t

original Taylor Rule
(model two)

iAt = �
A
t +0:5xt+0:5(�

A
t �0:02) + 0:02 + �t

& transformed equation ~{t= 1:5�t+0:125xt+�
0
t

�IRS� Taylor Rule
(model three)

iAt = (1� �)[� + �(� � �
�) + xxt] + �i

A
t�1+�t

& transformed equation ~{t= (1� �)[��t+
0
xxt] + �~{t�1+�

0
t

Since these models di¤er only in the monetary policies being implemented, by com-

paring their capacity to �t the data one should be able to tell which rule, when included

in a simple New Keynesian model, provides the best explanation of the facts and therefore

the most appropriate description of the underlying policy. We go on to investigate this

in what follows.

6Note all equation errors are allowed to follow an AR(1) process when the models are tested against
the data so omitted variables are allowed for. We also transform the Taylor Rules to quarterly versions so
the frequency of interest rate and in�ation is consistent with other variables in the model. All constant
terms are dropped as demeaned, detrended data will be used- see section �Data and Results� below.
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4 Model estimation and evaluation by indirect infer-

ence

Indirect inference has been widely used in the estimation of structural models (e.g.,

Smith, 1993, Gregory and Smith, 1991, 1993, Gourieroux, Monfort and Renault, 1993,

Gourieroux and Monfort, 1996 and Canova, 2005). Here we make a further use of indirect

inference to evaluate an already estimated or calibrated (DSGE) macroeconomic model

using classical statistical inference. This is related to, but is di¤erent from, estimating a

macroeconomic model by indirect inference. The common feature is the use of an auxiliary

model in addition to the structural macroeconomic model. For a full description of the

method of indirect inference see also Le et al. (2011). In addition to testing a particular

prior numerical speci�cation of the DSGE model, we examine how we might compare and

test alternative numerical speci�cations of the model. Next we set out the main features

of indirect inference.

4.1 Estimation

Estimation by indirect inference chooses the parameters of the macroeconomic model so

that when this model is simulated it generates estimates of the auxiliary model similar

to those obtained from the observed data. The optimal choice of parameters for the

macroeconomic model are those that minimize the distance between a given function of

the two sets of estimated coe¢cients of the auxiliary model. Common choices of this

function are (i) the actual coe¢cients, (ii) the scores, and (iii) the impulse response

functions. In e¤ect, estimation by indirect inference provides an optimal calibration.

Suppose that yt is an m � 1 vector of observed data, t = 1; :::; T; xt(�) is an m � 1

vector of simulated time series generated from the structural macroeconomic model, �

is a k � 1 vector of the parameters of the macroeconomic model and xt(�) and yt are

assumed to be stationary and ergodic. The auxiliary model is f [yt; �]. We assume that
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there exists a particular value of � given by �0 such that fxt(�0)g
S
s=1 and fytg

T
t=1 share

the same distribution, i.e.

f [xt(�0); a] = f [yt; �]

where � is the vector of parameters of the auxiliary model, and the existence of a binding

function relating � to �.

The likelihood function for the auxiliary model de�ned for the observed data fytg
T
t=1

is

LT (yt;�) = �
T
t=1 log f [yt; �]

The maximum likelihood estimator of � is then

aT = argmax
�

LT (yt;�)

The corresponding likelihood function based on the simulated data fxt(�)g
S
s=1 is

LS[xt(�);�] = �
S
t=1 log f [xt(�); �]

with

aS(�) = argmax
a

LS[xt(�);�]

The simulated quasi maximum likelihood estimator (SQMLE) of � is

�T;S = argmax
�

LT [yt;�S(�)]

This value of � corresponds to the value of � that maximises the likelihood function using

the observed data. Further, as xt(�) and yt are assumed to be stationary and ergodic,

from Canova (2005),

plim aT = plim aS(�) = �:
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it can then be shown that

T 1=2(aS(�)� �) ! N [0;
(�)]


(�) = E[�
@2L[�(�)]

@�2
]�1E[

@L[�(�)]

@�

@L[�(�)]

@�

0

]E[�
@2L[�(�)]

@�2
]�1

The covariance matrix can be obtained either analytically or by bootstrapping the sim-

ulations.

The method of simulated moments estimator (EMSME) may be extended to estimat-

ing a function g(�) of �. Let g(aT ) and g(�S(�)) denote a continuous p � 1 vector of

functions which could, for example, be moments or scores, and let the mean functions

be GT (aT ) =
1

T
�Tt=1g(aT ) and GS(�S(�)) =

1

S
�Ss=1g(�S(�)). We require that aT ! �S in

probability and that GT (aT )! GS(�S(�)) in probability for each �. The EMSME is

�T;S = argmin
�

[GT (aT )�GS(�S(�))]
0W (�)[G(aT )�GS(�S(�))]

whereW (�0) is the inverse of the variance-covariance matrix of the distribution ofGS(aS)�

G[aS(�0)]: The estimator is consistent and asymptotically normal- Smith (1993), Gourier-

oux et al (1993) and Canova (2005).

4.2 Model evaluation

In model evaluation indirect inference is used in a di¤erent way. The aim here is to com-

pare the performance of an auxiliary model based on observed data with its performance

based on data simulated from a calibrated or previously estimated macroeconomic model.

We choose the auxiliary model to be a VAR and base our test on a function of the VAR

coe¢cients. The test statistic is formed from the minimand of the EMSME evaluated

using estimates of � derived from observed data and data simulated from the given nu-

merically speci�ed DSGE model. The distribution of this Wald-type of test statistic is

obtained numerically through bootstrapping.
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Non-rejection of the null hypothesis is taken to indicate that dynamic behaviour of the

macroeconomic model is not signi�cantly di¤erent from that of the observed data. Rejec-

tion is taken to imply that the macroeconomic model is incorrectly speci�ed. Comparison

of the impulse response functions of the observed and simulated data should reveal in

what respects the macroeconomic model fails to capture the auxiliary model.

A formal statement of the inferential problem is as follows. Using the same notation

as before, we de�ne yt anm�1 vector of observed data (t = 1; :::; T ); xt(�) anm�1 vector

of simulated time series of S observations generated from the structural macroeconomic

model, � a k � 1 vector of the parameters of the macroeconomic model. xt(�) and yt are

assumed to be stationary and ergodic. We set S = T since we require that the actual

data sample be regarded as a potential replication from the population of bootstrapped

samples. The auxiliary model is f [yt; �]; an example is the V AR(p) yt = �
p
i=1Aiyt�i + �t

where � is a vector comprising elements of theAi and of the covariance matrix of yt. Under

the null hypothesis H0: � = �0, the stated values of � whether obtained by calibration

or estimation; the auxiliary model is then f [xt(�0); �(�0)] = f [yt; �]. We wish to test the

null hypothesis through the q�1 vector of continuous functions g(�): Such a formulation

includes impulse response functions. Under H0 : g(�) = g[�(�0)].

If aT denotes the estimator of � using actual data and aS(�0) is the estimator of �

based on simulated data for �0, we may obtain g(aT ) and g[aS(�0)]. Using N independent

sets of simulated data obtained using the bootstrap we can also de�ne the bootstrap

mean of the g[aS(�)]; g[aS(�0)] =
1

N
�Nk=1gk[aS(�0)]. The Wald test statistic is based on

the distribution of g(aT )� g[aS(�0)] where we assume that g(aT ) � g[aS(�0)]
p
! 0. The

resulting Wald statistic (WS) may be written as

WS = (g(aT )� g[aS(�0)])
0W (�0)(g(aT )� g[aS(�0)])

whereW (�0) is the inverse of the variance-covariance matrix of the distribution of g(aT )�

g[aS(�0)]. W (�0)
�1 can be obtained from the asymptotic distribution of g(aT )� g[aS(�0)]
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and the asymptotic distribution of the Wald statistic would then be chi-squared. The

empirical distribution of the Wald statistic is derived using bootstrap methods as follows.

Step 1: Determine the errors of the economic model conditional on the observed data

and b�.

Solve the DSGE macroeconomic model for the structural the errors "t given b� and the

observed data7. The number of independent structural errors is taken to be less than or

equal to the number of endogenous variables. The errors are not assumed to be normal.

Step 2: Construct the empirical distribution of the structural errors

On the null hypothesis the f"tg
T
t=1 errors are omitted variables. Their empirical dis-

tribution is assumed to be given by these structural errors. The simulated disturbances

are drawn from these errors. In some DSGE models the structural errors are assumed

to be generated by autoregressive processes. This is the case with the New Keynesian

model here; we discuss below the precise assumptions made.

As our test is based on a comparison of the VAR coe¢cient vector itself rather than

a multi-valued function of it such as the IRFs

g(aT )� g(�S(�)) = aT � �S(�)

and

GT (aT )�GS(�S(b�)) = aT � �S(b�)

The distribution of aT � �S(b�) and its covariance matrix W (b�)
�1 are estimated by boot-

strapping �S(b�). We draw N bootstrap samples of the structural model and estimate the

auxiliary VAR on each8. N is generally set to 1000. From these samples we compute the

sample mean and covariance matrix. We also obtain the bootstrap distribution of the

7Some equations may involve calculation of expectations. The method we use here is the robust
instrumental variables estimation suggested by McCallum (1976) and Wickens (1982): we set the lagged
endogenous data as instruments and calculate the �tted values from a VAR(1)�this also being the
auxiliary model chosen in what follows.

8The bootstraps in our tests are all drawn as time vectors so contemporaneous correlations between
the innovations are preserved.
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Wald statistic [aT � �S(b�)]
0W (b�)[aT � �S(b�)] and a con�dence interval. Such a distrib-

ution is generally more accurate for small samples than the asymptotic distribution. It

is also shown by Le et al. (2011) to be consistent as the Wald statistic is asymptotically

pivotal, and to have good accuracy in small sample Monte Carlo experiments9.

4.3 An extension

A potential problem is that the given numerical values of � that are being tested are

not the �true� values of �. We therefore extend our test procedure by searching for

alternative values of � that might perform better in the test. This involves calculating

a minimum-value Wald statistic for each period using a powerful algorithm based on

Simulated Annealing (SA) in which search takes place in wide neighbourhood of the

initial values of � where the optimising search is accompanied by random jumps around

the parameter space10. The merit of this extended procedure is that we are then testing

the best possible numerical speci�cations of each model against actual data.

Several outcomes are possible.

a) One model is rejected, but the other is not. In this case only one model is compatible

with actual data and the other can therefore be disregarded.

b) Both models are rejected, but the Wald statistic of one is lower than that of the

other.

9Speci�cally, they found that the bias due to bootstrapping was just over 2% at the 95% con�dence
level and 0.6% at the 99% level. They suggested possible further re�nements in the bootstrapping
procedure which could increase the accuracy further; however, we do not feel it necessary to pursue these
here.
10We use a Simulated Annealing algorithm due to Ingber (1996). This mimics the behaviour of the

steel cooling process in which steel is cooled, with a degree of reheating at randomly chosen moments
in the cooling process�this ensuring that the defects are minimised globally. Similarly the algorithm
searches in the chosen range and as points that improve the objective are found it also accepts points
that do not improve the objective. This helps to stop the algorithm being caught in local minima. We
�nd this algorithm improves substantially here on a standard optimisation algorithm- Chib et al (2010)
report that in their experience the SA algorithm deals well with distributions that may be highly irregular
in shape, and much better than the Newton-Raphson method.
Our method used our standard testing method: we take a set of model parameters (excluding error

processes), extract the resulting residuals from the data using the LIML method, �nd their implied
autoregressive coe¢cients (AR(1) here) and then bootstrap the implied innovations with this full set of
parameters to �nd the implied Wald value. This is then minimised by the SA algorithm.
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c) Neither model is rejected, but the Wald statistic for one is lower than for the other.

The p-value of the Wald statistic can loosely be described as the probability of the

model being true given the data: it is the percent of the distribution to the right of the

data Wald value, or (100 minus the Wald percentile)/100. Hence, ranking the models by

their p-value, suggests in case b) that this ranking is merely information about possible

misspeci�cations. In case c) it suggests that one can regard the model with the higher

p-value as the better approximation to the �true� model.

4.4 Comment

We explained earlier that we have chosen to use indirect inference to test a model, whether

or not it has been estimated by Bayesian methods, rather than standard Bayesian eval-

uation methods because we wish to test the whole model against the data, including the

assumptions embodied in the priors in the case of Bayesian estimates. Even a major

model like the Smets-Wouters (2007) model of the U.S., that has been carefully esti-

mated by Bayesian methods, is rejected by our indirect inference test, see Le et al (2011).

We also claimed that indirect inference has greater power than another direct test, the

Likelihood Ratio (LR) test. This claim is based on Le et al. (2012) who �nd that LR is

much less powerful in small samples as a test of speci�cation than a Wald test based on

indirect inference. Presumably this result is related to the nature of the two tests. The

LR test is based on a model�s in-sample current forecasting ability, whereas the Wald is

an in-sample test based on the model�s ability to replicate data behaviour as represented

by the VAR coe¢cients and the data variances which re�ect the causal processes at work

in the data. Models that are somewhat mis-speci�ed may still be able to forecast well

in sample as the error processes will capture some of the e¤ects of mis-speci�cation, but

mis-speci�ed models imply a reduced form that di¤ers materially from the true one. Sim-

ilarly, a VAR approximation to a mis-speci�ed reduced form will deviate from the VAR

associated with the true model.
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Table 2 reproduces the �ndings by Le et al. (2012) comparing the two tests (on the

Smets-Wouters model, for a 3-variable VAR(1)).

Table 2: Rejection rates for Wald and Likelihood Ratio for 3-Variable VAR(1)

Model falseness Rejection rate

(%) Wald LR

0 5 5

1 19.8 6.3

3 52.1 8.8

5 87.3 13.1

7 99.4 21.6

10 100 53.4

15 100 99.3

20 100 99.7

Source: Let et al. (2012)

In sum, we could use LR instead of indirect inference as a test of our competing models.

But it would be a much weaker test and hence we would get much less discrimination

between the models. As will be seen below, the indirect inference Wald test discriminates

powerfully between these models.

5 Data and Results

We evaluate the models against the US experience since the breakdown of the Bretton

Woods system using quarterly data published by the Federal Reserve Bank of St. Louis

from 1972 to 200711. This covers both the Great Acceleration and the Great Moderation

episodes of the US history.

The time series involved for the given baseline model include ~{t, measured as the

deviation of the current Fed rates from its steady-state value, the output gap xt, approx-

imated by the percentage deviation of real GDP from its HP trend, and the quarterly

rate of in�ation �t, de�ned as the quarterly log di¤erence of the CPI
12.

11http://research.stlouisfed.org/fred2/.
12Note by de�ning the output gap as the HP-�ltered log output we have e¤ectively assumed that the

HP trend approximates the �exible-price output in line with the bulk of other empirical work. To estimate
the �exible-price output from the full DSGE model that underlies our three-equation representation, we
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We should �nd a break in the VAR process re�ecting the start of the Great Moder-

ation. Accordingly we split the time series into two subsamples and estimate the VAR

representation before and after the break; the baseline model is then evaluated against

the VAR of each subsample separately. We set the break at 1982Q3. Most discussions of

the Fed�s behaviour (especially those based on Taylor Rules) are concerned with periods

that begin sometime around the mid-1980s but we chose 1982 as the break point here be-

cause many (including Bernanke and Mihov, 1998, and Clarida, Gali and Gertler, 2000)

have argued that it was around then that the Fed switched from using non-borrowed re-

serves to setting the Fed Funds rate as the instrument of monetary policy. Such a choice

is consistent with the Qu and Perron (2007) test which gives a 95% con�dence interval

between 1980Q1 and 1984Q413.

For simplicity, the data we use are demeaned so that a VAR(1) representation of them

contains no constants but only nine autoregressive parameters in the coe¢cient matrix; a

linear trend is also taken out of the interest rate series for the post-1982 sample to ensure

stationarity14.

The model is calibrated by choosing the parameters commonly accepted for the US

economy in the literature. The error processes these imply for each structural equation

are then backed out and estimated as explained above. As we will go on to re-estimate

would need to specify that model in detail, estimate the structural shocks within it and �t the model to
the un�ltered data, in order to estimate the output that would have resulted from these shocks under
�exible prices. This is a substantial undertaking well beyond the scope of this paper, though something
worth pursuing in future work.
Le et al. (2011) test the Smets and Wouters (2007) US model by the same methods as we use here.

This has a Taylor Rule that responds to �exible-price output. It is also close to the timeless optimum
since, besides in�ation, it responds mainly not to the level of the output gap but to its rate of change
and also has strong persistence so that these responses cumulate strongly. Le et al. �nd that the best
empirical representation of the output gap treats the output trend as a linear or HP trend instead of
the �exible-price output�this Taylor Rule is used in the best-�tting �weighted� models for both the full
sample and the sample from 1984. Thus while in principle the output trend should be the �exible-price
output solution, it may be that in practice these models capture this rather badly so that it performs
less well than the linear or HP trends.
We have also purposely adjusted the annual Fed rates from the Fred R to quarterly rates so the

frequencies of all time series kept consistent on quarterly basis. The quarterly interest rate in stead state
is given by iss =

1

� � 1.
13The Qu-Perron test suggests 1984Q3 as the most likely within the range. We show in the Supporting

Annex that our tests are robust to this later choice of switch date.
14We show the plots and unit root test results of these in the Annex.
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all these parameters in a second stage of evaluation, we comment further on them at

that point. We now go on to review the performance of each model with these calibrated

parameters; since these are widely used in other papers, this allows us to relate our

�ndings more easily to existing work, as well as illustrating the essential elements of our

methods.

5.1 Results with calibrated parameters

The test results for the models considered are presented in what follows; these are based

on the nine autoregressive coe¢cients of a VAR(1) representation and three variances of

the model variables, the chosen descriptors of the dynamics and volatility of the data as

discussed above. Our evaluation is based on the Wald test, and we calculate two kinds

of Wald statistic, namely, a �directed Wald� that accounts either only for dynamics (the

VAR coe¢cients) or only for the volatility (the variances) of the data, and a �full Wald�

where these features are jointly evaluated. In both cases we report the Wald statistic

as a percentile, i.e. the percentage point where the data value comes in the bootstrap

distribution. The models� performance in each subsample follows.

5.1.1 Model performance in the Great Moderation:

We start with the post-1982 period, the Great Moderation subsample, as this has been

the main focus of econometric work to date. Table 3 summarises the performance of the

di¤erent models. The Optimal Timeless Rule model passes the tests by a comfortable

margin, both overall, with a Wald percentile of 77.1 (implying a p-value of 0.229), and

speci�cally on the dynamics alone (a p-value of 0.136) and the volatilities alone (0.104).

The conclusion is that the US facts do not reject the Timeless Rule model as the data-

generating process post-1982.

This is not the case, however, when Taylor Rules of the standard sort are substituted

for it. The Table (3) suggests when the original Taylor Rule or the interest-rate-smoothed
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Taylor Rule is combined with the same IS-Phillips curve framework on these commonly

accepted calibrations, from all perspectives the post-1982 data strongly reject the model

at 99%.

Table 3: Wald Statistics for Calibrated Models in the Great Moderation

Baseline model with

Tests for chosen

data features

Opt. Timeless Rule

(model one)

original Taylor Rule

(model two)

�IRS� Taylor Rule

(model three)

Directed Wald

for dynamics

86.4 100 99.8

Directed Wald

for volatilities

89.6 99.2 99

Full Wald

for dynamics & volatilities

77.1 100 99.7

5.1.2 Model performance in the Great Acceleration:

We now proceed to evaluate how the models behave before 1982, the Great Acceleration

period. Table 4 reveals the performance of the Optimal Timeless Rule model.

We can see that although the model does not behave as well here as it did in the

Moderation subsample in explaining the data dynamics, with a directed Wald of 98.2, the

directed Wald for data volatilities at 89.6 lies within the 90% con�dence bound. Overall,

the full Wald percentile of 97.3 falls between the 95% and the 99% con�dence bounds. So

while the model �ts the facts less well than in the case of the Great Moderation, it just

about �ts those of the turbulent Great Acceleration episode if we are willing to reject at

a higher threshold. As we will see next, it also �ts them better than its rival Taylor Rule

14T-value normalization of the Wald percentiles is calculated based on Wilson and Hilferty (1931)�s
method of transforming chi-squared distribution into the standard normal distribution. The formula

used here is: Z = f[(2Msqu)1=2� (2n)1=2]=[(2Msqu95th)1=2� (2n)1=2]g� 1:645, where Msqu is the square

of the Mahalanobis distance calculated from the Wald statistic equation with the real data, Msqu95th

is its corresponding 95% critical value on the simulated (chi-squared) distribution, n is the degrees of
freedom of the variate, and Z is the normalized t value; it can be derived by employing a square root
and assuming n tends to in�nity when the Wilson and Hilferty (1931)�s transformation is performed.
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Table 4: Wald Statistics for Calibrated Models in the Great Acceleration

Wald percentiles for chosen features{

Baseline model Directed Wald Directed Wald Full Wald

with for dynamics for volatilities for dyn. & vol.

Opt. Timeless Rule 98.2 89.6 97.3

�Weak Taylor Rule� variants
(~{t = �~{t�1 + ��t + �t)

� =0; �=1.001 �t~AR(1)
100

(39.81)

78.9

(0.22)

100

(40.24)

� =0.3, �=0.7007 �t~AR(1)
100

(30.26)

92

(1.08)

100

(28.01)

� =0.5, �=0.5005 �t~AR(1)
100

(22.69)

95.9

(1.77)

100

(21.98)

� =0.7, �=0.3003 �t~iid
100

(19.26)

98.2

(2.73)

100

(18.24)

� =0.9, �=0.1001 �t~iid
100

(9.09)

99

(3.56)

100

(9.03)

{ : Normalized t-values in parenthesis15 .

models.

Unfortunately we are unable to test the DSGE model with the generally proposed

pre-1982 Taylor Rules because the solution is indeterminate, the model not satisfying the

Taylor Principle. Such models have a sunspot solution and therefore any outcome is pos-

sible and also consistent formally with the theory. The assertion of those supporting such

models is that the solutions, being sunspots, accounted for the volatility of in�ation. Un-

fortunately there is no way of testing such an assertion. Since a sunspot can be anything,

any solution for in�ation that occurred implies such a sunspot�equally of course it might

not be due to a sunspot, rather it could be due to some other unspeci�ed model. There

is no way of telling. To put the matter technically in terms of indirect inference testing

using the bootstrap, we can solve the model for the sunspots that must have occurred

to generate the outcomes; however, the sunspots that occurred cannot be meaningfully

bootstrapped because by de�nition the sunspot variance is in�nite. Values drawn from an

in�nite-variance distribution cannot give a valid estimate of the distribution, as they will

22



represent it with a �nite-variance distribution. To draw representative random values we

would have to impose an in�nite variance; by implication all possible outcomes would be

embraced by the simulations of the model and hence the model cannot be falsi�ed. Thus

the pre-1982 Taylor Rule DSGE model proposed is not a testable theory of this period16.

However, it is open to us to test the model with a pre-1982 Taylor Rule that gives a

determinate solution; we do this by making the Taylor Rule as unresponsive to in�ation

as is consistent with determinacy, implying a long-run in�ation response of just above

unity. Such a rule shows considerably more monetary �weakness� than the rule typically

used for the post-1982 period, as calibrated here with a long-run response of interest rate

to in�ation of 1.5.

We implement this weak Taylor Rule across a spectrum of combinations of smoothing

coe¢cient and short-run response to in�ation, with in all cases the long-run coe¢cient

equalling 1.001. The Wald test results are shown in table 4. What we see here is that with

a low smoothing coe¢cient the model encompasses the variance of the data well, in other

words picking up the Great Acceleration. However, when it does so, the data dynamics

reject the model very strongly. If one increases the smoothing coe¢cient, the model is

rejected less strongly by the data dynamics and also overall but it is then increasingly

at odds with the data variance. In all cases the model is rejected strongly overall by

the data, though least badly with the highest smoothing coe¢cient. Thus the testable

model that gets nearest to the position that the shift in US post-war behaviour was due

to the shift in monetary regime (re�ected in Taylor Rule coe¢cients) is rejected most

conclusively.

16We could use the approach suggested in Minford and Srinivasan (2011) in which the monetary
authority embraces a terminal condition designed to eliminate imploding (as well as exploding) sunspots.
In this case the model is forced to a determinate solution even when the Taylor Principle does not hold.
However in our sample here we �nd that the model only fails to be rejected with in�ation response
parameters well in excess of unity�see below�while as we see from table 4 being consistently rejected
for parameters that get close to unity. So parameter values below unity, where the Taylor Principle does
not apply, seem unlikely to �t the facts and we have not therefore pursued them here using this terminal
condition approach.
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5.2 Simulated Annealing and model tests with �nal parameter

selection

The above results based on calibration thus suggest that the Optimal Timeless Rule,

when embedded in our IS-Phillips curves model, outperforms testable Taylor Rules of the

standard sort in representing the Fed�s monetary behaviour since 1972. In both the Great

Acceleration and the Great Moderation the only model version that fails to be strongly

rejected is the one in which the optimal timeless policy was e¤ectively operating17.

However, �xing model parameters in such a way is an excessively strong assumption

in terms of testing and comparing DSGE models. This is because the numerical values of

a model�s parameters could in principle be calibrated anywhere within a range permitted

by the model�s theoretical structure, so that a model rejected with one set of assumed

parameters may not be rejected with another. Going back to what we have just tested,

this could mean that the Taylor Rule models were rejected not because the policy speci�ed

was incorrect but because the calibrated IS and Phillips curves had failed to re�ect the

true structure of the economy. Thus, to compare the Timeless Rule model and Taylor

Rule models thoroughly one cannot assume the models� parameters are �xed always at

17In a recent paper Ireland (2007) estimates a model in which there is a non-standard �Taylor Rule�
that is held constant across both post-war episodes. His policy rule always satis�es the Taylor Principle
because unusually it is the change in the interest rate that is set in response to in�ation and the output
gap so that the long-run response to in�ation is in�nite. He distinguishes the policy actions of the Fed
between the two subperiods not by any change in the rule�s coe¢cients but by a time-varying in�ation
target which he treats under the assumptions of �opportunism� largely as a function of the shocks to the
economy. Ireland�s model implies that the cause of the Great Moderation is the fall in shock variances.
However, since these also cause a fall in the variance of the in�ation target, which in turn lowers the
variance of in�ation, part of this fall in shock variance can be attributed to monetary policy.
It turns out that Ireland�s model is hardly distinguishable from our Optimal Timeless Rule model.

His rule changes the interest rate until the Optimal Timeless Rule is satis�ed, in e¤ect forcing it on the
economy. Since the Ireland rule is so similar to the Optimal Timeless Rule, it is not surprising that its
empirical performance is also similar- thus the Wald percentiles for it are virtually the same.
Ireland�s rule can in principle be distinguished from the Optimal Timeless Rule via his restriction on

the rule�s error. However we cannot apply this restriction within our framework here so that Ireland�s rule
in its unrestricted form here only di¤ers materially from the Optimal Timeless Rule in the interpretation
of the error. However from a welfare viewpoint it makes little di¤erence whether the cause of the policy
error is excessive target variation or excessively variable mistakes in policy setting; the former can be
seen as a type of policy mistake. Thus both versions of the rule imply that what changed in it between
the two subperiods was the policy error. In e¤ect, we can treat Ireland�s rule as essentially the same in
our model context as the Optimal Timeless Rule, and while he calls it a Taylor Rule, it is quite distinct
from such rules as de�ned here.
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particular values; rather one is compelled to search over the full range of potential values

the models can take and test if these models, with the best set of parameters from their

viewpoints, can be accepted by the data.

Accordingly we now allow the model parameters to be altered to achieve for each

model the lowest Wald possible, subject to the theoretical ranges permitted by the model

theory18. This estimation method is that of Indirect Inference; we use the Simulated

Annealing (SA) algorithm for the parameter search, as discussed above in section 4. In

this process we allow each model to be estimated with di¤erent parameters for each

episode. Thus we are permitting changes between the episodes in both structural para-

meters and the parameters of monetary policy; in so doing we are investigating whether

either structural or policy rule changes were occurring and so contributing to the Great

Moderation19.

5.2.1 The estimated Optimal Timeless Rule model:

The SA estimates of the Timeless Rule model in both the post-war subperiods are re-

ported in table 5 - for the main parameters and table 6 - for the shocks persistence.

We can see that this estimated model is not very di¤erent from its calibrated version in

the Great Moderation. However for the Great Acceleration period the estimation now

suggests substantially lower elasticities of intertemporal consumption (the inverse of �)

and labour supply (the inverse of �), and a much higher Calvo contract non-adjusting

probability (!); with lower  the latter implies a much �atter Phillips curve. The esti-

mation also suggests the Fed had a low relative weight on output variations (�) pre-1982

but that high nominal rigidity forced it to reduce in�ation more strongly in response to

18We �x the time discount factor � and the steady-state consumption-output ratio C
Y as calibrated;

other parameters are allowed to vary within �50% of the calibrated values�which are set as initial
values here�unless stated otherwise.
19It could be argued that deep parameters such as the elasticity of intertemporal substitution and

Calvo price-change probabilities should remain �xed across the two periods. However, with such radically
di¤erent environments these parameters could have di¤ered; for example Le et al (2011) �nd evidence
that the degree of nominal rigidity varied across periods and interpret this as a response to changing
variability. Here therefore we allow the data to determine the extent of change.
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output growth (due to higher �=). The shocks� persistence is not much altered in either

period from that in the calibrated model.

Table 5: SA Estimates of the Competing Models

Opt. Timeless Rule model Taylor Rule model

Main model Calibrated SA estimates SA estimates

parameters values pre-{ post- pre- post-

� 0.99 �xed �xed �xed �xed

� 2 1.01 1.46 1.15 1.16

� 3 2.04 3.23 2.66 3.85

! 0.53 0.79 0.54 0.79 0.61
G
Y

0.23 �xed �xed �xed �xed
Y
C

1

0:77
�xed �xed �xed �xed

� 0.42 0.06 0.40 0.06 0.25

 2.36 0.19 2.06 0.23 1.33

� 0.39 0.20 0.58 n.a n.a
�

�1

�
1

6

1

0:95
1

3:6
n.a n.a

� 6 0.95 3.6 n.a n.a

� 1.44 n.a n.a 2.03 2.06


0

x 0.14 n.a n.a .001 0.06

� 0.76 n.a n.a 0.42 0.89

{: break point at 1982.

Table 6: SA Estimates of Shock Persistence
Opt. Timeless Rule model Taylor Rule model

Persistence Calibrated val. SA estimates Calibrated val. SA estimates

of shocks pre-{ post- pre- post- pre- post- pre- post-

�v 0.88 0.93 0.92 0.94 n.a 0.93 0.91 0.95

�uw 0.91 0.80 0.86 0.79 n.a 0.80 0.87 0.77

�� 0.59 0.38 0.14 0.42 n.a 0.39 0.58 0.40

{: break point at 1982.

Table 7 shows that estimation brings the model substantially closer to the data. This

is particularly so for the pre-1982 period where the calibrated model was rejected at 95%

con�dence; here the necessary parameter changes were substantial to get the model to

�t, as we have just seen. The Full Wald percentile in both episodes is now around 70%,

so that the model easily fails to be rejected at 95%.
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Table 7: Performance of the Timeless Rule Model under Calibration and Estimation

Tests for Pre-1982 under Post-1982 under

chosen features calibration estimation calibration estimation

Directed Wald
for dynamics

98.2 81.9 86.4 77.7

Directed Wald
for volatilities

89.6 32.5 89.6 90.3

Full Wald
for dynamics & volatilities

97.3 71.7 77.1 68.6

5.2.2 Taylor Rule model under estimation:

In estimating the Taylor Rule model alternative we substitute the smoothed version

(table 1) for the Optimal Timeless Rule in the identical IS-Phillips curves framework.

This speci�cation covers all Taylor Rule versions we considered in the earlier evaluation,

as when � is zero it reduces to the original Taylor Rule while when � is just above unity

it turns to be a weak Taylor Rule variant.

As with the Optimal Timeless Rule model the estimation process achieves a substan-

tial improvement in the closeness of the Taylor Rule model to the data in both episodes.

Pre-1982 the best weak Taylor Rule version was strongly rejected; after estimation it is

still rejected at the 95% level but not at the 99% level. Most importantly, the estimates

include a much stronger Taylor Rule response to in�ation than the calibrated version for

this early episode; hence the evidence supports the view that the Taylor Rule principle

was easily satis�ed in this period. The response is essentially the same as that found in

the later period by this estimation process: the weaker the response, the further the model

is from �tting the data. Tables 5 and 6 show the details. The elasticity of intertemporal

consumption and that of labour are found to be fairly similar to those estimated with

the Optimal Timeless Rule, as is the Calvo rigidity parameter which is again higher in

the �rst episode. For the model to get close to the data there needs to be interest rate

smoothing in both episodes.
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The resulting Wald statistics in table 8 thus show that the Taylor Rule model is now

close to passing at 95% pre-1982 and passes comfortably post-1982. However relative

to the Timeless Rule it is substantially further from the data, as summarized in table 9

where the p-values are also reported. This suggests that, although it is possible to �t the

post-1982 period with a Taylor Rule model, policy is better understood in terms of the

Timeless Rule model.

Table 8: Performance of Taylor Rule Model under Calibration and Estimation

Tests for Pre-1982 under Post-1982 under

chosen features calibration20 estimation calibration estimation

Directed Wald
for dynamics

100 98 99.8 89.6

Directed Wald
for volatilities

99 40.6 99 94.9

Full Wald
for dynamics & volatilities

100 96.1 99.7 87.6

Table 9: Summary of Model Performance with Estimated Parameters

Tests for Pre-1982 with Post-1982 with

chosen features Timeless Rule Taylor Rule Timeless Rule Taylor Rule

Directed Wald for dynamics
(and p-value)

81.9

(0.181)

98

(0.020)

77.7

(0.223)

89.6

(0.104)

Directed Wald for volatilities
(and p-value)

32.5

(0.675)

40.6

(0.604)

90.3

(0.097)

94.9

(0.051)

Full Wald for dyn. & vol.
(and p-value)

71.7

(0.283)

96.1

(0.039)

68.6

(0.314)

87.6

(0.124)

19The results for the best testable weak Taylor Rule version as in table 4.
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5.2.3 The identi�cation problem revisited in the light of our results

Having established that the Optimal Timeless Rule model gives the best representation

of the key features of the US post-war data, we can now ask whether this model can also

account for the single-equation �ndings for the Taylor Rule.

The above suggests that the widespread success reported in single-equation Taylor

Rule regressions on US data could simply represent some sort of statistical relation emerg-

ing from the model with the Optimal Timeless Rule. To examine this possibility, we treat

the Optimal Timeless Rule model as the true model and ask whether the existence of

empirical Taylor Rules would be consistent with that. Technically this is again a process

of model evaluation basing on indirect inference; but instead of a VAR here Taylor Rule

regression coe¢cients are used as the data descriptors for the model to �t.

Table 10 shows the OLS estimates of several popular Taylor Rule variants when these

are �tted, respectively, to data for both the post-war episodes. To compare the regres-

sion results here with those commonly found in the US Taylor Rule literature where

un�ltered interest rate data is normally used we must emphasize that here for the post-

1982 subsample a linear trend is taken out of the interest rate series so that stationarity is

ensured. These Taylor Rules, when estimated on the stationary data we have used here,

generally fail to satisfy the Taylor Principle, in much the same way as in pre-1982. Thus

econometrically the standard estimates of the long-run Taylor Rule response to in�ation

post-1982 are biased by the non-stationarity of the interest rate. There is little statistical

di¤erence in the estimates across the two periods. The reported Wald percentiles indicate

that these empirical �Taylor Rules� are indeed consistent with what the Timeless Rule

implies: in both panels the Taylor Rule regressions estimated are all within or on the

95% con�dence bounds implied by the estimated Timeless Rule Model.

This illustrates the identi�cation problem with which we began this paper: a Taylor

Rule regression having a good �t to the data may well be generated by a model where

there is no structural Taylor Rule at all. Here we suggest that the Timeless Rule model
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Table 10: �Taylor Rules� in the Data (with OLS): consistency with the estimated Timeless
Rule Model

Panel A: �Taylor Rules� in the Great Acceleration

�Taylor Rule� versions � x � Adj.R2 Wald percentiles

~{t= ��t+xxt+�~{t�1+�t 0.09 0.06 0.90 0.84 31.9

~{t= ��t+xxt+�t
�t= ���t�1+"t

0.30 0.07 0.92 0.85 69.1

~{t= ��t�1+xxt�1+�t 0.60 -0.01 n/a 0.24 36.9

~{t= ��t�1+xxt�1+�~{t�1+�t -0.11 0.06 0.82 0.83 68.5

Panel B: �Taylor Rules� in the Great Moderation

�Taylor Rule� versions � x � Adj.R2 Wald percentiles

~{t= ��t+xxt+�~{t�1+�t 0.08 0.05 0.89 0.92 11.5

~{t= ��t+xxt+�t
�t= ���t�1+"t

0.07 0.06 0.93 0.90 95.6

~{t= ��t�1+xxt�1+�t 0.26 0.13 n/a 0.24 17.1

~{t= ��t�1+xxt�1+�~{t�1+�t 0.03 0.04 0.89 0.91 89.7

we have found gets closest to �tting US data in each episode is also generating these

Taylor Rule single-equation relationships.

5.2.4 The �interest rate smoothing� illusion: a further implication

Another issue on which the above sheds light is the phenomenon of �interest rate smooth-

ing�. Clarida, Gali and Gertler (1999) noted that the Optimal Timeless Rule required

nominal interest rate to be adjusted in a once-and-for-all manner, but that empirical

evidence from Taylor Rule regressions usually displayed clear interest rate smoothing.

This they argued created a �puzzle�: that sluggish interest rate movements could not be

justi�ed as optimal.

While various authors have tried to explain such a discrepancy either from an economic

(e.g., Rotemberg and Woodford, 1997, 1998; Woodford, 1999, 2003a, b) or from an
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econometric (e.g., Sack and Wieland, 2000; Rudebusch, 2002) viewpoint, the Taylor Rule

regressions above show that �smoothing� is a regression result that is generated by the

Optimal Timeless Rule model, in which there is no smoothing present. The source of

inertia in the model is the persistence in the shocks themselves.

6 What Caused the Great Moderation?

We have found that the Optimal Timeless Rule is the best guide to US monetary policy

since the Bretton Woods; we have also obtained estimates of the model under a Taylor

Rule, which though �tting the data considerably less well nevertheless fail to be rejected

in absolute terms by the data. These models enable us �nally to examine the causes of the

Great Moderation. We have made a number of empirical �ndings about changes in the

structural parameters, the parameters of the monetary rule trade-o¤, and the behaviour

of the shocks. We now examine the contribution of each of these changes to the Great

Moderation.

Table 11 shows that under our preferred model with the Optimal Timeless Rule the

Great Moderation is almost entirely the result of reduced volatility in the shocks. There

is a small contribution to lowered in�ation variance from the policy parameters; but oth-

erwise the contribution from both structural and policy parameters is slightly to increase

macro variance in the later period. If one then examines which shocks� volatility fell, the

table (12) following shows that it did so for all three of our shocks, with a fall in standard

deviation of 60-70%.

If we look at the Taylor Rule model the story is essentially the same. As we saw above

the in�ation response of the Taylor Rule hardly changes across the two periods. The main

change is a doubling of the smoothing parameter which accordingly contributes about a

third of the reduction in interest rate variance. Otherwise structural and policy parameter

changes contribute negligibly to the variance reduction. Thus again the reduction in shock

variability dominates as the cause of the Great Moderation. Here too all the shocks have
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large falls in standard deviation; the largest at 86% is the monetary shock (tables 13 and

14).

Table 11: Accountability of Factor Variations for Reduced Data Volatility
(Timeless Rule model)

Reduced data volatility
caused by

Interest rate Output gap In�ation

Reduced shocks 115.3% 106.9% 90%

Chg in policy paras -4.3% -2.5% 12.7%

Chg in structural para -11% -4.5% -2.7%

Table 12: Reduced Size of Shocks
(Timeless Rule model)

Standard deviation of Pre-1982 Post-1982 Reduction

Demand shock 0.0625

(0.0050)

0.02

(0.0012)

60%

Supply shock 0.4767
(0.0667)

0.1419
(0.0298)

70%

Policy shock 0.0148
(0.0127)

0.0055
(0.0032)

63%

Note: 1. Values in parentheses are sample estimates of standard deviation of innovations.

2. The standard deviation of the shocks is calculated using sd(err.)=sd(innov)/(1-rho);

rho is the sample estimate of shock persistence reported in table 6.

Thus what we �nd is that the Great Moderation is essentially a story of �good shocks�

as proposed in the time-series studies we cited earlier. Also we have found no evidence of

the weak monetary regime regarded by an earlier DSGEmodel literature as responsible for

the Great Acceleration and in the same vein no evidence of much change in the monetary

regime during the Great Moderation. However, what we do �nd about monetary policy

is that the �trembling hand� trembled enormously more in the earlier period than in the

later; thus monetary error is a large source of the Great Acceleration and its reduction
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Table 13: Accountability of Factor Variations for Reduced Data Volatility (II)
(Taylor Rule model)

Reduced data volatility
caused by

Interest rate Output gap In�ation

Reduced shocks 66.7% 99% 99.9%

Chg in policy paras 34.2% 1.8% 3.9%

Chg in structural para -0.9% -0.8% -3.8%

Table 14: Reduced Size of Shocks (II)
(Taylor Rule model)

Standard deviation of Pre-1982 Post-1982 Reduction

Demand shock 0.0533

(0.0050)

0.0280
(0.0012)

48%

Supply shock 0.5777
(0.0751)

0.1474
(0.0339)

75%

Policy shock 0.0145
(0.0061)

0.0020
(0.0012)

86%

Note: 1. Values in parentheses are sample estimates of standard deviation of innovations.

2. The standard deviation of the shocks is calculated using sd(err.)=sd(innov)/(1-rho);

rho is the sample estimate of shock persistence reported in table 6.

an important reason for the Moderation. For those that embrace a Taylor Rule model in

spite of its poorer data �t the story is the same�in this case monetary �judgement� was

substantially more erratic in its e¤ect in the earlier period.

6.1 A comparison with other recent DSGE models

As we noted earlier, Ireland (2007), Smets and Wouters (2007), Le et al. (2011) and

Fernandez-Villaverde, Guerron-Quintana and Rubio-Ramirez (2009, 2010) have also es-

timated models of these periods and we can compare their results in a general way with

ours. Other than Ireland, these models follow the model of Christiano, Eichenbaum and
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Evans (2005). Smets and Wouters use this model with some small modi�cations; they

estimate it by Bayesian methods. Le et al. add a competitive sector and reestimate

the model using Indirect Inference, since they found the model was rejected quite badly

overall by the data with the previously estimated ones. When reestimated in this way

they found that the model was accepted, at 99% for the full post-war period and at 95%

for the Great Moderation period, for the key subset of variables, output, in�ation and

interest rate when represented by a VAR(1). Fernandez-Villaverde, Guerron-Quintana

and Rubio-Ramirez add moving volatility in the errors and drift in the parameters of the

Taylor Rule; like Smets and Wouters they estimate the model by Bayesian methods.

What is striking about all these studies is that none of them �nd evidence of much dif-

ference in monetary regime between the two periods�interestingly, Fernandez-Villaverde,

Guerron-Quintana and Rubio-Ramirez �nd variations of �monetary toughness� within

both periods, while not �nding much di¤erence on average across the two. Both Smets

and Wouters and Le et al. in their reworking of them �nd little change in the in�ation

response coe¢cient of the Taylor Rule. In this these models echo Ireland, even though

their Taylor Rule representations di¤er from his. Thus these studies agree with ours in

�nding that it is the shocks that account for the di¤erence in volatility.

Nevertheless, all also agree with us that the scale of the monetary shock has declined

between the two periods. Thus a pattern is visible in ours, Ireland�s and these other

studies: while the monetary regime did not apparently change much, the scale of the

monetary �error� fell between the two periods. Ireland interprets this, based on his con-

nection of it with other shocks, as �opportunism�, where the Fed was allowing the in�ation

target to drift with events, pushing it downwards when events allowed this to be done

with less perceived cost. Other studies, like ours, do not model it other than as a pure

error.

An important implication of the lack of regime change is that there is no evidence

of indeterminacy in the earlier period according to any of these studies including ours.

Thus all these studies that are based on full information system estimates cannot �nd
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the evidence that appears to come out of single-equation studies that the earlier period�s

Taylor Rule responded weakly to in�ation. As we have seen this is consistent with the

lack of identi�cation of the Taylor Rule as a single equation; indeed as we have seen the

models that �t the data overall could easily have �generated� single-equation Taylor Rules

of this �weak� type.

7 Conclusion

In this study we have used the method of indirect inference to estimate and test a three-

equation DSGE model against the data for the Great Acceleration and the Great Mod-

eration. The method has the advantage over alternatives that it tests the model overall

in its ability to �t the data�s behaviour. Nevertheless, in spite of di¤erences in method,

our results echo those of other recent work where DSGE models of greater complexity

than ours have been estimated by a variety of methods. We have found that the mon-

etary regimes being followed in the two periods are rather similar. We have also found

that, while these regimes can be represented by Taylor Rules of the usual sort, they more

closely �t the facts if represented by an Optimal Timeless Rule, essentially the same as

the Taylor Rule form suggested by Ireland, which he also �nds �ts the facts best.

A corollary of this �nding is that there is no evidence of indeterminacy due to the

�weakness� of the monetary regime during the Great Acceleration. Previous �ndings to

this e¤ect seem to have arisen from single-equation estimates that su¤ered from a lack of

identi�cation and are quite consistent with the DSGE models estimated here.

By implication we also �nd, in common with these other studies using full DSGE

models, that the Great Moderation was mainly the result of �good shocks��a fall in

the variance of the errors in the model. This reinforces the results of a large number

of time-series studies using Structural VARs, but it does so through �nding structural

DSGE parameters that can replicate these VARs and so allows them to be interpreted

structurally.
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Nevertheless, the falling variance of shocks includes that of monetary shocks. Within

this fall lies the remedying of a failure of monetary policy. Whether this failure was due

to an �opportunistic� pursuit of varying in�ation targets as in Ireland (2007), to sheer

ine¢ciency, or to some other reason, our work cannot say; this remains a fruitful avenue

for future work. Clearly and perhaps not surprisingly given the size and novelty of the

shocks bombarding the 1970s economy, monetary policy was far from perfect in this early

period. But at least we and other recent DSGE modellers are clear that it was not just

plain stupid.
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