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Structured Abstract: 

Purpose – The paper is a feasibility study on the use of alternative parameters for representing Acoustic 

Emission and Acousto Ultrasonic signals, using a wavelet based approach and the computation of Chebyshev 

moments.  

Design/methodology/approach – Two tests were performed, one on Acoustic Emission artificial signals 

generated on a CFRP plate and one on an Acousto Ultrasonic setup used for actively detecting impact 

damage. The waveforms were represented using a data reduction technique based on the Daubechies wavelet 

and an image processing technique using Chebyshev moments approximation, to get 32 descriptors for each 

waveform. 

Findings – The use of such descriptors allowed in the Acoustic Emission case to verify that the moments are 

similar when the waveforms are similar; in the Acousto Ultrasonic setup the correlation coefficient of the 

descriptors with respect to a reference dataset was found to be linked to the delimitation size. 

Practical implications – Such a data reduction while retaining all the useful information will be positive for 

wireless sensor networks, where power consumption during data transmission is key. With having to send 

only a reliable set of descriptors and not an entire waveform, the power consumption is believed to be 

reduced. 

Originality/value – This paper is a preliminary study that fulfills a need for a more reliable data reduction 

for ultrasonic transient signals, such as those used in Acoustic Emission and Acousto Ultrasonics. 
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1. Introduction 

Many techniques based on passive and active ultrasonic waves are being increasingly studied for their use as 

a structural health monitoring (SHM) system for large structures, such as bridges or aircrafts, where the need 

to monitor the structure’s status in real time is vital (Kapoor et al. 2009). 



Among these techniques, Acoustic Emission (AE) and Acousto-Ultrasonics (AU) are the most attractive at 

the moment. The former is based on the passive recording of ultrasonic transient waveforms emitted by 

materials undergoing damage (Finleyson 2003) by means of piezoelectric sensors; it is well established that 

different damage types or sources cause different waveforms to be emitted by the material. The latter is 

based on the comparison between ultrasonic signals emitted by a source (actuator) and the same signal 

recorded at a certain distance (sensor); the difference between the recorded signal on an undamaged material 

and on a damaged material reflects itself in a shape change in the recorded waveform (Schulz et al. 2000). 

It is clear that both techniques require a certain degree of advanced signal processing, especially for 

comparing different waveforms, but also require a certain level of data reduction. In fact, having to deal with 

the ultrasonic range, it is not uncommon to reach sampling rates of around 10 MHz, which results in a very 

large amount of data that has to be transmitted from the sensor to the data processing unit. For this purpose, 

AE traditionally uses parameters that are based on the waveform shape and characteristics (and are easy to 

compute in reasonably cheap programmable microprocessors), such as peak amplitude, duration, number of 

signal threshold-crossings, and others (Stone & Dingwall 1977). As some authors (Eaton 2009) have pointed 

out though, these parameters are far from being ideal: they are not fully independent (as some are  distinctly 

related to others) and heavily depend on the acquisition system setup. There is some effort being made in this 

direction to employ additional frequency based parameters, which has led to some results when supported by 

machine learning algorithms (Crivelli et al. 2014) or more traditional feature-space based reduction methods, 

as Principal Component Analysis (PCA) (Eaton et al. 2011). 

Wavelet decomposition, or Discrete Wavelet Transform (DWT) is useful to provide information on time-

frequency content of transient waveforms (Downs et al. 2003) and to separate noise and signal contributions; 

in the AE field many have used different types of wavelet transform mainly to identify different propagation 

modes and their behaviour. However, to the knowledge of the authors, no application so far has used their 

full potential to identify different waveforms in an efficient way (e. g. not relying on visual or manual 

sorting). 

The field of image processing provides interesting examples of techniques to assess the similarity between 

two images. In particular, the use of Chebyshev [1] polynomials decomposition moments has been 

successfully used in image comparison, compression and detection (Mukundan et al. 2001); it has also been 

used in autofocus algorithms (Yap & Raveendran 2004). In the mechanical engineering field, the 

computation of Chebyshev moments has been used by (Sebastian et al. 2011) to successfully and 

quantitatively compare results from two different deformation fields retrieved from Digital Image 

Correlation (DIC) on a real world experiment, and a deformation field from a Finite Element analysis (FEA) 

of the same test. 

In this paper, a novel way to describe waveforms is suggested, which is meant to improve the existing 

classification algorithms and to provide a reasonable data reduction for transient wave analysis. The 



technique is evaluated against two datasets, the first involving AE calibration signals, and the second using 

Acousto-Ultrasonic data used to detect and quantify impact damage. 

2. Materials and methods 

2.1. Chebyshev Descriptors extraction 

The application proposed for transient waveforms analysis can be summarized as follows: 

1. Capture a discrete time waveform sampled at di points (Figure 1a); 

2. Compute a wavelet transform of the original waveform with an appropriate number of detail 

levels. In this case the Daubechies10 (Daubechies 1988) wavelet is used, up to detail 11 (Figure 

1b); 

3. Rectify the signal or the wavelet transform; 

4. Remove the unwanted levels which may represent low and high frequency noise; 

5. Create a M×N matrix of wi,n points (where i is the wavelet sample, and n is the wavelet detail 

level) (Figure 1c); 

6. The Chebyshev moments of the M×N matrix are computed as described in (Bateman et al. 

1955), up to an appropriate level D (in this case 36 is used, but the actual minimum required 

level might be lower) Table 1. 

   

(a) (b) (c) 

Figure 1: signal processing from the waveform to the rectified wavelet transform 

 

At this point, a set of D descriptors that describe the waveform is obtained. By computing the Chebychev 

Descriptors (CDs) for two similar waveforms and plotting them in a scatter plot (using the X axis for the first 

waveform and the Y axis for the second waveform CDs), an immediate picture of the waveform similarity is 

highlighted: as the points get closer to the x=y line, the highest degree of similarity between the two 

waveforms is found. 



Table 1: Chebyshev moments values 

1.09E+00 7.64E-01 -1.63E+00 -2.58E-06 3.31E-06 -4.04E-06 

1.70E+00 1.42E+00 -2.21E+00 3.58E-07 -4.59E-07 5.61E-07 

2.87E-01 6.77E-01 2.48E-01 4.45E-07 -5.72E-07 6.99E-07 

-5.54E-03 6.44E-04 1.07E-02 6.69E-07 -8.59E-07 1.05E-06 

3.32E-03 -3.86E-04 -6.42E-03 -4.01E-07 5.15E-07 -6.30E-07 

-1.29E-03 1.50E-04 2.50E-03 1.56E-07 -2.00E-07 2.45E-07 

 

2.2. Propagation study dataset 

A preliminary dataset, extracted from pencil-lead break signals (HSU 1976) recorded with Acoustic 

Emission sensors on a carbon fiber panel at different locations and angles from the sensor was used to assess 

the general correctness of this approach. 

The sensor used in this setup was a conical broadband sensor, held down with a weight and connected to a 

Physical Acoustics Corporation (PAC) pre-amplifier, connected to a Physical Acoustic Limited (PAL) PCI2 

acquisition unit. Waveforms were sampled at 10MHz sampling rate. The sensor was placed in the centre of a 

1m×1m carbon fibre laminate panel (Figure 2). Signals were generated with the pencil-lead break method 

(HSU 1976) at various positions on the panel. 

 

Figure 2: panel and sensor setup 

 



2.3. Acousto-ultrasonic dataset 

The original experiment was published in (Pearson et al. 2011); briefly, it consists of acarbon fibre panel, 

500mm × 500mm, from 8 plies of woven CFRP. Two M2807-P2 MFC transducers were attached to the 

panel using cyanoacrycate; this configuration can be seen in Figure 3. 

 

Figure 3: acousto-ultrasonics panel set-up 

The panel was clamped in an impact testing machine and a set of 3 4J impacts were performed between the 

two sensors. Before the first impact and after each subsequent impact one of the transducers was used to 

pulse a 100kHz square wave, while the other recorded the waveform at distance. Figure 4 shows the cross-

correlation between the baseline received signals and the impact signals; the delamination area was 

quantified using a C-scanner. 

 

Figure 4: comparison between delamination area and waveform cross-correlation coefficient (Pearson et 

al. 2011) 



 

3. Results 

3.1. Pencil lead breaks 

Three waveforms, two from good pencil-lead breaks (plb1 and plb2) and one from a bad pencil lead break 

(double break) were acquired (Figure 5). It was found that the R2 measure of the goodness of fit of the CDs is 

an appropriate measure of the similarity between the two waveforms. 

   

(a) plb1 (b) plb2 (c) bad break 

Figure 5: pencil lead break waveforms used for the Acoustic Emission dataset 

 

The comparisons between the signals are shown in Figure 6. The correlation coefficients for each pair 

comparison were computed; their values are reported in Table 2. 

Table 2 : correlation coefficients for the 3 pairs comparisons 

 Plb1 vs plb2 Plb1 vs bad break Plb2 vs bad break 

Corr. coef 0.9605 0.8550 0.8225 

 

 



 

(a) 

 

(b)  



  

 (c)  

Figure 6: comparison of different waveforms Chebyshev moments: similar (a) and dissimilar (b and c) 

 

3.2. Acousto-ultrasonic dataset 

Waveforms amongst the same set proved to have a high degree of similarity, while small but measurable 

differences were found across sets. Figure 7 shows a baseline waveform superimposed to a waveform 

received after the 3rd impact. 

 

Figure 7: comparison between a baseline and a impact waveform 

 



The CDs were calculated from a baseline waveform (no damage) and compared with a waveform from the 

first, second and third impact (increasing impact energy and increasing damage extension). A sample 

comparison is reported in Figure 8. The correlation coefficients values as a function of the impact order is 

shown in Figure 9. 

 

Figure 8: CDs comparison between a baseline waveform and a post-impact waveform 

 



 

Figure 9: Correlation coefficient of the CDs at various impact levels 

 

The variation of CDs throughout the test was also investigated. In Figure 10 all 36 normalized CDs, for the 

100 received waveforms and for test stage going from 1 (baseline) to 4 (3rd impact) are shown. 



 

Figure 10: CDs, normalized, for all the 100 waveforms considered in the test 

 

4. Discussion 

The Acoustic Emission test showed that similar sources (i.e. the good pencil lead break signals) are 

identified with a high correlation coefficient of their respective CDs, in this case higher than 95%. A bad 

signal, represented by a double pencil lead break (which is considered invalid during calibration), has 

significantly lower correlation coefficients of CDs when compared to two different good calibration signals; 

in this case the values were around 85%. It has to be remarked that a visual inspection of the waveforms 

doesn’t allow an immediate identification of the bad break signal. 

In the Acousto-Ultrasonics test, the correlation coefficient of the CDs resemble strongly the cross-correlation 

decay observed in (Pearson et al. 2011); the same information is, in this case, carried by just 36 parameters 

instead of having to compare the entire waveforms (consisting of more than 4000 data points each). 

Upon inspection of the CDs of the entire dataset, some coefficients are observed to vary significantly at 

different impact levels, while some appear change randomly. This is mainly because not all wavelet 

decomposition levels (which are related to frequency bands in the signal) are expected to be influenced by 

the presence of damage; also, the detail level of 36 in this study appears to be over representing the signals: a 

lower number of CDs may be enough, depending on the application. 



The data reduction achievable with minimum information loss would be a great benefit for wireless SHM 

systems, where the power consumption for data transmission might be significantly reduced. The power 

required for on-board signal processing increases; however, Field Programmable Gate Array (FPGA) 

processors or dedicated Integrated Circuits (ICs) may be more power efficient than a much longer data 

transmission over wireless protocols. 

5. Conclusions 

A method for comparing transient waveforms based on the Discrete Wavelet Transform and on the 

computation of Chebyshev moments has been developed. The method was successful in identifying the 

difference between regular and failed Acoustic Emission calibration tests, and in comparing waveforms in an 

Acousto-Ultrasonics setup. 

A relationship between the correlation coefficient of the CDs reference pencil lead break versus another good 

calibration or a bad calibration is apparent from the data shown in this work. 

In the Acousto-Ultrasonics test, a relationship between the CDs of a baseline signal (undamaged sample) and 

subsequent impacts is clear. 

The representation of waveforms with a small set of descriptors, in this case the Chebyshev Descriptors, 

allows a more compact representation of waveforms, and allows comparisons reducing the influence of small 

time shifts or different triggering of the acquisition. The use of these parameters, instead of the traditional 

parameters set, will be an advance for remote SHM systems, where data compression is key. Further studies 

will investigate the effects of various waveform disturbances on the CDs, to verify their robustness to 

different operating conditions. 

Notes 

[1] Alternative graphies found in the literature include: Tchebichef, Tchebycheff, Chebychev, Chebychef. 
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