organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(2-Hydroxyphenyl)-4-methylbenzenesulfonamide

Shaaban K. Mohamed,^{a,b} Mehmet Akkurt,^c Benson M. Kariuki,^d Ali M. Ali^e and Mustafa R. Albayati^{f*}

^aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^dSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Wales, ^eDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and ^fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq Correspondence e-mail: shaabankamel@yahoo.com

Received 9 December 2013; accepted 9 December 2013

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.082; data-to-parameter ratio = 13.8.

In the title compound, $C_{13}H_{13}NO_3S$, the dihedral angle between the benzene rings is 64.15 (7)° and the C–S–N– C torsion angle is $-57.18 (12)^\circ$. An intramolecular N-H···O hydrogen bond closes an S(5) ring. In the crystal, $O-H \cdots O$ hydrogen bonds link the molecules into C(8) chains propagating in [100]. Weak $C-H \cdots \pi$ interactions are also observed.

Related literature

For background to the biological activity of sulfonamide compounds, see: Ozbek et al. (2007); El-Sayed et al. (2011). For related structures, see: Gowda *et al.* (2008a,b,c).

Experimental

Crystal data

C13H13NO3S $M_r = 263.31$ Monoclinic, $P2_1/c$ a = 7.6780(1) Å b = 15.4747 (3) Å c = 10.7250 (2) Å $\beta = 104.333 \ (2)^{\circ}$

$V = 1234.62 (4) \text{ Å}^3$
Z = 4
Cu Ka radiation
$\mu = 2.34 \text{ mm}^{-1}$
T = 120 K
$0.35 \times 0.16 \times 0.13$ mm

of

Diffraction, 2013)

 $R_{\rm int}=0.011$

4355 measured reflections

2377 independent reflections

2248 reflections with $I > 2\sigma(I)$

 $T_{\min} = 0.494, \ T_{\max} = 0.750$

Data collection

```
Oxford Diffraction SuperNova
  (Dual, Cu at zero, Atlas)
  diffractometer
Absorption correction: multi-scan
  (CrysAlis PRO; Oxford
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture o
$wR(F^2) = 0.082$	independent and constrained
S = 1.06	refinement
2377 reflections	$\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C6 and C8-C13 benzene rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1−H1 <i>N</i> ···O3	0.83 (2)	2.22 (2)	2.6420 (16)	111.6 (17)
$O3-H1O\cdots O2^{i}$	0.86 (2)	1.94 (2)	2.7852 (15)	172 (2)
$C7-H7C\cdots Cg1^{iii}$	0.93	2.85	3.5937 (17)	133

Symmetry codes: (i) x - 1, y, z; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) -x, -y + 1, -z + 1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

We thank Manchester Metropolitan University, Ercives University and Cardiff University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7173).

References

- El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714-3720.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, 01691
- Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, 01825
- Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008c). Acta Cryst. E64, o2190.
- Oxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Ozbek, N., Katircioğlu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15. 5105-5109.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2014). E70, o54 [doi:10.1107/S1600536813033394]

N-(2-Hydroxyphenyl)-4-methylbenzenesulfonamide

Shaaban K. Mohamed, Mehmet Akkurt, Benson M. Kariuki, Ali M. Ali and Mustafa R. Albayati

1. Comment

The biological activities of sulphonamide compounds are well documented, for example as antimicrobial (Ozbek *et al.*, 2007) and anticancer (El-Sayed *et al.*, 2011) agents. Further to our interest in related compounds with potential biactivity, we now report the synthesis and crystal structure of the title compound.

The benzene rings (C1–C6 and C8–C13) of the title compound (I) in Fig. 1 make a dihedral angle of 64.15 (7)° with each other. The bridge C1–S1–N1–C8 torsion angle between the benzene rings is -57.18 (12)°. The O1–S1–O2 and C1–S1–N1 angles are 119.78 (6) and 107.97 (6)°, respectively. The bond lengths and angles are similar to those in related structures (Gowda *et al.*, 2008*a*,*b*,*c*).

The molecular conformation features an N—H···O hydrogen bond which forms an S(5) ring (Fig. 2). In the crystal, molecules are linked by O—H···O hydrogen bonds into C(8) chains along [100] (Figs. 2 and 3). Weak C—H··· π interactions are also observed (Table 1).

2. Experimental

A mixture of 2-aminophenol (109 mg, 1 mmol) and *p*-toluenesulfonyl chloride (190 mg, 1 mmol) in 10 ml dioxane with addition of few drops of triethylamine as a catalyst, was refluxed for 4 h. The reaction mixture was left to cool at ambient temperature where the solid product was deposited, collected by filteration and recrystallized from ethanol in 91% yield. Brown needles were grown from ethanol solution over 3 days at room temperature. *M*.p. 391 K.

3. Refinement

The H atoms of the NH and OH groups were found from difference Fourier maps and refined freely. The C-bound H atoms were positioned geometrically, with C—H = 0.95 and 0.98 Å and refined as riding with $U_{iso}(H) = 1.U_{eq}(C)$ for the methyl H atoms and $U_{iso}(H) = 1.2U_{eq}(C)$ for the other H atoms.

Computing details

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2013); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2013); data reduction: *CrysAlis PRO* (Oxford Diffraction, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

View of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

Figure 2

View of the hydrogen bonds along the *a* axis direction of the title compound. H bonds are shown as dashed lines.

Figure 3

View of the molecular packing along the *a* axis of the title compound. H bonds are shown as dashed lines.

N-(2-Hydroxyphenyl)-4-methylbenzenesulfonamide

Crystal data	
$C_{13}H_{13}NO_3S$	F(000) = 552
$M_r = 263.31$	$D_{\rm x} = 1.417 { m Mg m^{-3}}$
Monoclinic, $P2_1/c$	Cu <i>K</i> α radiation, $\lambda = 1.54180$ Å
Hall symbol: -P 2ybc	Cell parameters from 2248 reflections
a = 7.6780 (1) Å	$\theta = 5.1 - 73.2^{\circ}$
b = 15.4747 (3) Å	$\mu=2.34~\mathrm{mm^{-1}}$
c = 10.7250 (2) Å	T = 120 K
$\beta = 104.333 \ (2)^{\circ}$	Needle, brown
V = 1234.62 (4) Å ³	$0.35 \times 0.16 \times 0.13 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction SuperNova (Dual, Cu at zero, Atlas)	$T_{\min} = 0.494, T_{\max} = 0.750$ 4355 measured reflections
diffractometer	2377 independent reflections
Radiation source: SuperNova (Cu) X-ray	2248 reflections with $I > 2\sigma(I)$
Source	$R_{\rm int} = 0.011$
Mirror monochromator	$\theta_{\rm max} = 73.2^\circ, \ \theta_{\rm min} = 5.1^\circ$
ω scans	$h = -8 \rightarrow 9$
Absorption correction: multi-scan	$k = -19 \rightarrow 12$
(CrysAlis PRO; Oxford Diffraction, 2013)	$l = -11 \rightarrow 13$
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.030$	and constrained refinement
$wR(F^2) = 0.082$	$W = 1/[\Sigma^2(FO^2) + (0.0424P)^2 + 0.5981P]$

where $P = (FO^2 + 2FC^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.38 \text{ e} \text{ Å}^{-3}$

Special details

172 parameters 0 restraints

S = 1.062377 reflections

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.51287 (4)	0.65871 (2)	0.83597 (3)	0.0203 (1)	
01	0.57618 (13)	0.61174 (7)	0.95358 (10)	0.0281 (3)	
O2	0.63687 (13)	0.70958 (7)	0.78545 (10)	0.0267 (3)	
03	0.00824 (14)	0.71635 (7)	0.81974 (10)	0.0264 (3)	
N1	0.36177 (15)	0.72621 (8)	0.86360 (11)	0.0208 (3)	
C1	0.40408 (17)	0.58685 (9)	0.71468 (13)	0.0196 (4)	
C2	0.3833 (2)	0.60851 (9)	0.58584 (14)	0.0239 (4)	
C3	0.2974 (2)	0.55124 (10)	0.49170 (14)	0.0268 (4)	
C4	0.23172 (19)	0.47243 (9)	0.52309 (14)	0.0247 (4)	
C5	0.2521 (2)	0.45305 (10)	0.65261 (15)	0.0278 (4)	
C6	0.3373 (2)	0.50922 (10)	0.74888 (14)	0.0253 (4)	
C7	0.1447 (2)	0.40915 (11)	0.42031 (17)	0.0343 (5)	
C8	0.25492 (18)	0.77847 (9)	0.76315 (13)	0.0192 (3)	
C9	0.3290 (2)	0.83739 (9)	0.69307 (15)	0.0243 (4)	
C10	0.2174 (2)	0.89020 (9)	0.60237 (15)	0.0273 (4)	
C11	0.0320 (2)	0.88327 (10)	0.58080 (14)	0.0265 (4)	
C12	-0.04291 (19)	0.82447 (10)	0.65038 (14)	0.0234 (4)	
C13	0.06818 (18)	0.77298 (9)	0.74268 (13)	0.0202 (3)	

H1N	0.301 (3)	0.7023 (13)	0.9076 (19)	0.035 (5)*
H1O	-0.106 (3)	0.7191 (15)	0.807 (2)	0.051 (6)*
H2	0.42760	0.66200	0.56290	0.0290*
H3	0.28280	0.56590	0.40370	0.0320*
Н5	0.20630	0.39990	0.67550	0.0330*
H6	0.35000	0.49500	0.83680	0.0300*
H7A	0.22220	0.35830	0.42470	0.0510*
H7B	0.12710	0.43650	0.33560	0.0510*
H7C	0.02810	0.39140	0.43350	0.0510*
H9	0.45580	0.84160	0.70710	0.0290*
H10	0.26800	0.93100	0.55520	0.0330*
H11	-0.04390	0.91890	0.51810	0.0320*
H12	-0.16980	0.81950	0.63480	0.0280*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0117 (2)	0.0246 (2)	0.0243 (2)	0.0002(1)	0.0036(1)	-0.0013 (1)
01	0.0198 (5)	0.0360 (6)	0.0254 (5)	0.0033 (4)	-0.0005 (4)	0.0019 (4)
O2	0.0140 (5)	0.0298 (5)	0.0380 (6)	-0.0027 (4)	0.0096 (4)	-0.0031 (4)
O3	0.0146 (5)	0.0354 (6)	0.0298 (5)	-0.0019 (4)	0.0068 (4)	0.0060 (4)
N1	0.0150 (5)	0.0253 (6)	0.0229 (6)	-0.0006(5)	0.0065 (5)	-0.0022 (5)
C1	0.0154 (6)	0.0207 (6)	0.0233 (7)	0.0027 (5)	0.0059 (5)	-0.0003 (5)
C2	0.0258 (7)	0.0208 (7)	0.0269 (7)	0.0013 (5)	0.0101 (6)	0.0031 (5)
C3	0.0308 (8)	0.0275 (7)	0.0232 (7)	0.0035 (6)	0.0089 (6)	0.0008 (6)
C4	0.0197 (6)	0.0247 (7)	0.0302 (7)	0.0040 (6)	0.0071 (6)	-0.0042 (6)
C5	0.0280 (8)	0.0210 (7)	0.0359 (8)	-0.0025 (6)	0.0107 (6)	0.0019 (6)
C6	0.0264 (7)	0.0254 (7)	0.0247 (7)	0.0003 (6)	0.0074 (6)	0.0047 (6)
C7	0.0288 (8)	0.0334 (8)	0.0404 (9)	-0.0004 (7)	0.0081 (7)	-0.0130 (7)
C8	0.0171 (6)	0.0196 (6)	0.0211 (6)	-0.0004(5)	0.0052 (5)	-0.0056 (5)
C9	0.0206 (7)	0.0230 (7)	0.0319 (7)	-0.0026 (5)	0.0112 (6)	-0.0047 (6)
C10	0.0317 (8)	0.0223 (7)	0.0313 (8)	-0.0011 (6)	0.0144 (6)	0.0009 (6)
C11	0.0292 (8)	0.0243 (7)	0.0260 (7)	0.0048 (6)	0.0069 (6)	0.0001 (6)
C12	0.0178 (6)	0.0268 (7)	0.0255 (7)	0.0018 (5)	0.0051 (5)	-0.0041 (6)
C13	0.0186 (6)	0.0213 (6)	0.0220 (6)	-0.0023 (5)	0.0076 (5)	-0.0050(5)

Geometric parameters (Å, °)

<u>\$1—01</u>	1.4325 (11)	С8—С9	1.390 (2)	
S1—O2	1.4405 (11)	C9—C10	1.391 (2)	
S1—N1	1.6417 (12)	C10—C11	1.389 (2)	
S1—C1	1.7574 (14)	C11—C12	1.389 (2)	
O3—C13	1.3606 (18)	C12—C13	1.387 (2)	
O3—H1O	0.86 (2)	C2—H2	0.9500	
N1—C8	1.4318 (18)	С3—Н3	0.9500	
N1—H1N	0.83 (2)	С5—Н5	0.9500	
C1—C6	1.391 (2)	С6—Н6	0.9500	
C1—C2	1.392 (2)	С7—Н7А	0.9800	
C2—C3	1.382 (2)	C7—H7B	0.9800	
C3—C4	1.393 (2)	С7—Н7С	0.9800	

C4—C7	1.502 (2)	С9—Н9	0.9500
C4—C5	1.392 (2)	C10—H10	0.9500
C5—C6	1.384 (2)	C11—H11	0.9500
C8—C13	1.398 (2)	C12—H12	0.9500
01 - 51 - 02	119 78 (6)	$C_{11} - C_{12} - C_{13}$	119 77 (14)
01 - S1 - N1	105 36 (6)	03-C13-C8	115.77(14) 115.57(12)
O1 S1 C1	109.04 (6)	$O_3 C_{13} C_{12}$	113.37(12) 124.25(13)
$O_2 S_1 N_1$	106.42 (6)	C_{13}^{8} C_{13}^{12} C_{12}^{12}	124.23(13) 120.17(13)
02 - 51 - 01	100.42(0) 107.74(6)	$C_{0} = C_{1} = C_{1} = C_{1}$	120.17 (13)
02 - 31 - C1	107.74(0) 107.07(6)	$C_1 = C_2 = H_2$	120.00
	107.97(0)	$C_3 = C_2 = H_2$	120.00
C13-03-HI0	111.0 (15)	C2-C3-H3	119.00
SI-NI-C8	121.50 (9)	C4—C3—H3	119.00
C8—NI—HIN	112.5 (15)	C4—C5—H5	119.00
S1—N1—H1N	110.0 (15)	C6—C5—H5	119.00
S1—C1—C6	119.35 (11)	C1—C6—H6	121.00
S1—C1—C2	119.94 (11)	С5—С6—Н6	121.00
C2—C1—C6	120.71 (13)	С4—С7—Н7А	109.00
C1—C2—C3	119.17 (13)	C4—C7—H7B	109.00
C2—C3—C4	121.39 (14)	C4—C7—H7C	109.00
C5—C4—C7	120.78 (13)	H7A—C7—H7B	109.00
C3—C4—C5	118.17 (13)	H7A—C7—H7C	109.00
C3—C4—C7	121.03 (13)	H7B—C7—H7C	109.00
C4—C5—C6	121.67 (14)	С8—С9—Н9	120.00
C1—C6—C5	118.87 (13)	С10—С9—Н9	120.00
N1—C8—C9	122.85 (13)	С9—С10—Н10	120.00
N1—C8—C13	117.26 (12)	C11—C10—H10	120.00
C9—C8—C13	119.73 (13)	C10—C11—H11	120.00
C8—C9—C10	119.99 (14)	C12—C11—H11	120.00
C9-C10-C11	119.98 (14)	C11—C12—H12	120.00
C10-C11-C12	120.33(14)	C_{13} C_{12} H_{12}	120.00
010-011-012	120.33 (14)		120.00
01 S1 N1 C8	-17350(11)	C^2 C^3 C^4 C^7	-177.60(15)
$O_1 = S_1 = N_1 = C_0$	1/3.39 (11) 59 25 (12)	$C_2 = C_3 = C_4 = C_7$	177.09(13)
02 - 51 - N1 - C8	57.19 (12)	$C_2 = C_3 = C_4 = C_3$	1.0(2)
CI = SI = NI = C8	-5/.18(12)	C_{3} C_{4} C_{5} C_{6}	-1.0(2)
01 - S1 - C1 - C2	-158.83(12)	C/-C4-C5-C6	1//./9(15)
	-2/.38(14)	C4—C5—C6—C1	-0.1 (2)
N1—S1—C1—C2	87.19 (13)	N1—C8—C9—C10	-175.85 (13)
O1—S1—C1—C6	22.08 (14)	C13—C8—C9—C10	-0.4 (2)
O2—S1—C1—C6	153.53 (12)	N1—C8—C13—O3	-1.43 (18)
N1—S1—C1—C6	-91.91 (13)	N1—C8—C13—C12	177.40 (13)
S1—N1—C8—C9	-59.30 (17)	C9—C8—C13—O3	-177.10 (13)
S1—N1—C8—C13	125.18 (12)	C9—C8—C13—C12	1.7 (2)
S1—C1—C6—C5	-179.91 (12)	C8—C9—C10—C11	-0.8 (2)
\$1—C1—C2—C3	-180.00 (12)	C9—C10—C11—C12	0.7 (2)
C6—C1—C2—C3	-0.9 (2)	C10-C11-C12-C13	0.6 (2)
C2—C1—C6—C5	1.0 (2)	C11—C12—C13—O3	176.92 (13)
C1—C2—C3—C4	-0.1(2)	C11—C12—C13—C8	-1.8(2)

Hydrogen-bond geometry (Å, °)

Cal and Cal are the	contraids of the C1	Chand CQ C12 hone	zono ringo rospostivoly
Cg1 and Cg2 are the	centrolus of the C1-	CO and $CO-CIS$ Den	Lene migs, respectively.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1 <i>N</i> ···O3	0.83 (2)	2.22 (2)	2.6420 (16)	111.6 (17)
O3—H1 <i>O</i> ···O2 ⁱ	0.86 (2)	1.94 (2)	2.7852 (15)	172 (2)
С9—Н9…О2	0.95	2.50	3.0531 (18)	117
C3—H3… <i>Cg</i> 2 ⁱⁱ	0.95	2.92	3.8022 (16)	155
C7—H7 <i>C</i> ··· <i>Cg</i> 1 ⁱⁱⁱ	0.98	2.85	3.5937 (17)	134

Symmetry codes: (i) x-1, y, z; (ii) x, -y+3/2, z-1/2; (iii) -x, -y+1, -z+1.