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Abstract. This paper consists of a review of results for the exact enumeration of alter-

nating sign matrices of fixed size with prescribed values of some or all of the following six

statistics: the numbers of generalized inversions and −1’s, and the positions of the 1’s in the

first and last rows and columns. Many of these results are expressed in terms of generating

functions.
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1. Preliminaries

1.1. Introduction. This paper provides a summary of certain results for the exact enumer-

ation of alternating sign matrices (ASMs) of arbitrary fixed size with prescribed values of

some or all of six specific statistics. These statistics are the numbers of generalized inversions

and −1’s in an ASM, and the positions of the 1’s in the first and last rows and columns

of an ASM. Many of the results are expressed in terms of polynomial generating functions,

whose variables are associated with these statistics, so that the actual numbers of ASMs

with prescribed values of the statistics appear as the coefficients in these polynomials.

This is entirely a review paper, with all of the results which are presented having already

appeared elsewhere. Almost none of the details of the proofs of these results are given in

this paper, but full references to proofs in the literature are provided. For other reviews of

aspects of ASMs, see, for example, Bressoud [6, 7], Bressoud and Propp [8], Di Francesco [16,

Sec. 4], [17], Hone [23], Zeilberger [40], or Zinn-Justin [41].

Much of the content of this paper is based on the author’s recent paper [2], although [2]

includes more material and detail, and uses a different order of presentation. The paper is

also based on a talk given by the author at the workshop Algebraic Combinatorics Related

to Young Diagrams and Statistical Physics, held at the International Institute for Advanced

Study, Japan, from 6 to 12 August, 2012, and supported by the Research Institute for

Mathematical Sciences (RIMS) at Kyoto University. The author is very grateful to the

workshop’s organizers, Masao Ishikawa and Soichi Okada, and to RIMS.

1.2. Definitions. An ASM, as first defined by Mills, Robbins and Rumsey [29, 30], is a

square matrix in which each entry is 0, 1 or −1, and along each row and column the nonzero

entries alternate in sign and have a sum of 1.

It follows that any permutation matrix is an ASM, and that, for any ASM A, each partial

row sum
∑j

j′=1Aij′ and each partial column sum
∑i

i′=1Ai′j is 0 or 1. Also, in any ASM,

the first and last rows and columns each contain a single 1, which will be referred to as a

boundary 1, with all of their other entries being 0’s.

For each positive integer n, the set of all n × n ASMs will be denoted as ASM(n). For

example, for n = 1, 2, 3, these sets are

ASM(1) = {(1)},

ASM(2) =

{(
1 0
0 1

)
,

(
0 1
1 0

)}
,

ASM(3) =

{(
1 0 0
0 1 0
0 0 1

)
,

(
0 1 0
1 0 0
0 0 1

)
,

(
1 0 0
0 0 1
0 1 0

)
,

(
0 1 0
0 0 1
1 0 0

)
,

(
0 0 1
1 0 0
0 1 0

)
,

(
0 0 1
0 1 0
1 0 0

)
,

(
0 1 0
1 −1 1
0 1 0

)}
. (1)

The six statistics on ASM(n) which will be considered in this paper will now be introduced.

For any A ∈ ASM(n), statistics which depend on the bulk structure of A are defined as
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ν(A) =
∑

1≤i<i′≤n
1≤j′≤j≤n

Aij Ai′j′, µ(A) = number of −1’s in A, (2)

and statistics which describe the configuration of A at its top, right, bottom and left bound-

aries are defined as, respectively,

ρT(A) = number of 0’s to the left of the 1 in the top row of A,

ρR(A) = number of 0’s below the 1 in the right-most column of A,

ρB(A) = number of 0’s to the right of the 1 in the bottom row of A,

ρL(A) = number of 0’s above the 1 in the left-most column of A. (3)

The statistics of (3) can be depicted diagrammatically as




0 0 0 0 1 0 0 0 0
0 0
0 0
1 0
0 A 1
0 0
0 0
0 0
0 0 1 0 0 0 0 0 0




ρT(A)

ρB(A)

ρL(A)

ρR(A)

. (4)

The statistic ν(A) in (2) is a nonnegative integer for any A ∈ ASM(n), since it can be

written as ν(A) =
∑n

i,j=1(
∑i−1

i′=1Ai′j)(
∑j

j′=1Aij′), where each factor in the summand (being

a partial row or column sum of an ASM) is 0 or 1. This statistic can also be written as

ν(A) =
∑

1≤i≤i′≤n; 1≤j′<j≤nAij Ai′j′ =
∑n

i,j=1(
∑i

i′=1Ai′j)(
∑j−1

j′=1Aij′).

If A is a permutation matrix, then it can be seen from (2) that ν(A) is the number of

inversions in the permutation π given by δπi,j = Aij . Accordingly, for any ASM A, ν(A) is

referred to as the number of generalized inversions in A. This statistic was first defined and

used by Robbins and Rumsey [34, Eq. (18)], who referred to it as the number of positive

inversions in an ASM [34, p. 182]. A closely-related statistic,
∑

1≤i<i′≤n; 1≤j′<j≤nAij Ai′j′ =

ν(A) + µ(A) for each A ∈ ASM(n), was previously defined and used by Mills, Robbins and

Rumsey [30, p. 344], and is sometimes also referred to in the literature as the number of

generalized inversions in A.

It can be seen that transposition or 90◦ rotation of an ASM give another ASM with the

same number of −1’s, and with the positions of the boundary 1’s simply reflected or rotated.

It can also be checked straightforwardly that the number of generalized inversions is invariant

under transposition of an ASM, and that if A and A′ are n×n ASMs related by 90◦ rotation,

then ν(A) + ν(A′) = n(n−1)
2

−m, where m is the number of −1’s in A or A′.
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It follows from these properties of transposition and rotation of ASMs that, with regards

to the boundaries involved, there are essentially only six different types of ASM enumeration,

as listed in Table 1, where T, R, B and L denote the top (first) row, right-most (last) column,

bottom (last) row and left-most (first) column, respectively. The sections of the paper in

which these types of enumeration are considered are also listed in Table 1.

Type of enumeration Boundaries involved Sec.

Unrefined none 2

Singly-refined T, R, B or L 3

Opposite-boundary doubly-refined T & B; or L & R 4

Adjacent-boundary doubly-refined L & T; T & R; R & B; or B & L 5

Triply-refined B, L & T; L, T & R; T, R & B; or R, B & L 6

Quadruply-refined T, R, B & L 7

Table 1. Categorization of ASM enumeration according to the boundaries involved.

Various ASM generating functions involving the statistics of (2) and (3) will now be intro-

duced. Each of these generating functions will be labelled by a particular type of boundary

refinement, as described in Table 1. In addition to being associated with certain boundary

statistics from (3), corresponding to the boundary refinement label, each generating function

will also be associated with the two bulk statistics of (2).

For each positive integer n, a quadruply-refined ASM generating function, which involves

all six statistics of (2) and (3), and associated indeterminates x, y, z1, z2, z3 and z4, is defined

as

Zquad
n (x, y; z1, z2, z3, z4) =

∑

A∈ASM(n)

xν(A) yµ(A) z
ρT(A)
1 z

ρR(A)
2 z

ρB(A)
3 z

ρL(A)
4 . (5)

Therefore, Zquad
n (x, y; z1, z2, z3, z4) is a polynomial in x, y, z1, z2, z3 and z4, in which, for

any nonnegative integers p, m, k1, k2, k3 and k4, the coefficient of xpymzk11 zk22 zk33 zk44 is the

number of n × n ASMs A with ν(A) = p, µ(A) = m, ρT(A) = k1, ρR(A) = k2, ρB(A) = k3
and ρL(A) = k4. It also follows that x and y can be regarded as bulk parameters or weights,

that z1, z2, z3 and z4 can be regarded as boundary parameters or weights, and (see Behrend [2,

Eq. (5)]) that Zquad
n (x, y; z1, z2, z3, z4) has degree

n(n−1)
2

in x, degree
⌊ (n−1)2

4

⌋
in y, and degree

n− 1 in each of z1, z2, z3 and z4.

Examples of the quadruply-refined ASM generating function (5), for n = 1, 2, 3, are

Z
quad
1 (x, y; z1, z2, z3, z4) = 1,

Z
quad
2 (x, y; z1, z2, z3, z4) = 1 + x z1 z2 z3 z4,

Z
quad
3 (x, y; z1, z2, z3, z4) = 1 + x z1 z4 + x z2 z3 + x2 z1 z2 z

2
3 z

2
4 + x2 z21 z

2
2 z3 z4 +

x3 z21 z
2
2 z

2
3 z

2
4 + x y z1 z2 z3 z4, (6)
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where the terms are written in orders which correspond to those used in (1).

Triply-refined, adjacent-boundary doubly-refined, opposite-boundary doubly-refined, sing-

ly-refined and unrefined ASM generating functions can now be defined as, respectively,

Ztri
n (x, y; z1, z2, z3) = Zquad

n (x, y; z1, 1, z2, z3) =
∑

A∈ASM(n) x
ν(A) yµ(A) z

ρT(A)
1 z

ρB(A)
2 z

ρL(A)
3 ,

Zadj
n (x, y; z1, z2) = Zquad

n (x, y; z1, 1, 1, z2) =
∑

A∈ASM(n) x
ν(A) yµ(A) z

ρT(A)
1 z

ρL(A)
2 ,

Zopp
n (x, y; z1, z2) = Zquad

n (x, y; z1, 1, z2, 1) =
∑

A∈ASM(n) x
ν(A) yµ(A) z

ρT(A)
1 z

ρB(A)
2 ,

Zn(x, y; z) = Zquad
n (x, y; z, 1, 1, 1) =

∑
A∈ASM(n) x

ν(A) yµ(A) zρT(A),

Zn(x, y) = Zquad
n (x, y; 1, 1, 1, 1) =

∑
A∈ASM(n) x

ν(A) yµ(A), (7)

where z is a further indeterminate.

Finally, alternative quadruply-refined and alternative adjacent-boundary doubly-refined

ASM generating functions are defined as, respectively,

Z̃quad
n (x, y; z1, z2, z3, z4) = (z2z4)

n−1 Zquad
n (x, y; z1,

1
z2
, z3,

1
z4
)

=
∑

A∈ASM(n) x
ν(A) yµ(A) z

ρT(A)
1 z

n−ρR(A)−1
2 z

ρB(A)
3 z

n−ρL(A)−1
4 ,

Z̃adj
n (x, y; z1, z2) = Zquad

n (x, y; z1, z2, 1, 1) =
∑

A∈ASM(n) x
ν(A) yµ(A) z

ρT(A)
1 z

ρR(A)
2 . (8)

Note that Z̃quad
n (x, y; z1, z2, z3, z4) is a generating function in which the positions of the 1’s

in the first and last columns of an ASM are measured relative to the opposite ends of the

columns to those used in (3) and (4), i.e., in this generating function, the statistics associated

with z2 and z4 are, respectively, the numbers of 0’s above the 1 in the right-most column, and

below the 1 in the left-most column of an ASM. Due to certain differences in the symmetry

properties of the quadruply-refined and alternative quadruply-refined ASM generating func-

tions Zquad
n (x, y; z1, z2, z3, z4) and Z̃quad

n (x, y; z1, z2, z3, z4) (see Behrend [2, Eq. (12), first 4

lines]), it will be more convenient to use the former function for the case in which x and y

are arbitrary, and the latter function for the case x = y = 1.

It follows from the properties of 90◦ rotation of ASMs that the adjacent-boundary doubly-

refined and alternative adjacent-boundary doubly-refined ASM generating functions are re-

lated by

Zadj
n (x, y; z1, z2) = xn(n−1)/2 (z1z2)

n−1 Z̃adj
n

(
1
x
, y
x
; 1
z1
, 1
z2

)
. (9)

It will sometimes be convenient to refer to the boundary parameter coefficients in the

singly-refined ASM generating function. These will be denoted as

Zn(x, y)k = coefficient of zk in Zn(x, y; z). (10)

It follows that Zn(x, y)k =
∑

A∈ASM(n)
A1,k+1=1

xν(A) yµ(A) for 0 ≤ k ≤ n− 1, and that

Zn(x, y) =
∑n−1

k=0 Zn(x, y)k. (11)

When considering ASM enumeration with x = y = 1, it will be useful to refer to certain

numbers of ASMs, in addition to the ASM generating functions. In particular, adjacent-

boundary doubly-refined, opposite-boundary doubly-refined, singly-refined and unrefined
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ASM numbers are defined as, respectively,

Aadj
n,k1,k2

= |{A ∈ ASM(n) | A1,k1+1 = Ak2+1,1 = 1}|,

Aopp
n,k1,k2

= |{A ∈ ASM(n) | A1,k1+1 = An,n−k2 = 1}|,

An,k = |{A ∈ ASM(n) | A1,k+1 = 1}|,

An = |ASM(n)|, (12)

for 0 ≤ k, k1, k2 ≤ n− 1, with the numbers being 0 for k, k1 or k2 outside this range. These

numbers are therefore related to functions of (7)–(10) by

Zadj
n (1, 1; z1, z2) =

∑n−1
k1,k2=0 Aadj

n,k1,k2
zk11 zk22 ,

Z̃adj
n (1, 1; z1, z2) =

∑n−1
k1,k2=0 Aadj

n,n−1−k1,n−1−k2
zk11 zk22 ,

Zopp
n (1, 1; z1, z2) =

∑n−1
k1,k2=0 Aopp

n,k1,k2
zk11 zk22 ,

Zn(1, 1; z) =
∑n−1

k=0 An,k z
k, Zn(1, 1)k = An,k, Zn(1, 1) = An. (13)

Various simple identities satisfied by the functions (5)–(10) and the numbers (12) can be

obtained from their definitions, and by considering the properties of transposition or rotation

of ASMs, the properties of ASMs with a 1 as a corner entry, or the properties of ASMs in

which a boundary 1 is separated from a corner by a single zero. Summaries of such identities,

and their derivations, are given by Behrend [2, Secs. 2.2 & 3.3].

1.3. Structure of the paper. The structure of the remaining sections of this paper will

now be outlined.

The primary currently-known results for unrefined, singly-refined, opposite-boundary dou-

bly-refined, adjacent-boundary doubly-refined, triply-refined and quadruply-refined exact

enumeration of ASMs of arbitrary fixed size are reviewed in Sections 2, 3, . . . , 7, respectively,

as also indicated in Table 1. Hence, these sections are structured according to which of the

boundary statistics of (3) are included in the enumeration.

Each of the main sections is then divided into two subsections, with Sections 2.1, 3.1,

. . . , 7.1 concerned with enumeration which involves both of the bulk statistics of (2), i.e.,

in which the bulk parameters x and y are both arbitrary, and Sections 2.2, 3.2, . . . , 7.2

concerned with enumeration which does not involve either of the bulk statistics of (2), i.e.,

in which the bulk parameters x and y are both 1.

Some currently-known results which do not fall into this scheme are mentioned briefly in

the final Section 8.

It might seem that any result in Sections 2–6 could be obtained from a result in Section 7 by

setting appropriate boundary parameters to 1, and that any result in Sections 2.2, 3.2,. . . , 7.2

could be obtained from a result in Sections 2.1, 3.1,. . . , 7.1, respectively, by setting the bulk

parameters x and y to 1. However, only some derivations of this type are currently known.

For example, derivations of (21), (22), (28), (34), (35), (42) and (43) in which boundary

parameters are set to 1 in (46) are given by Behrend [2, Sec. 4.2]. On the other hand, for

many of the results in Sections 2.2, 3.2, . . . , 7.2, derivations which involve setting x and y
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to 1 in results of Sections 2.1, 3.1, . . . , 7.1 are not currently known. For all of the results

in this paper, references to the currently-published proofs are given, so by following these,

the derivations in which parameters in a more general result are set to 1 could be identified.

Some derivations of this type are also identified explicitly in the subsequent sections.

Finally, note that, in the subsequent sections, many of the identities will be valid only

for all n ≥ 2, or for all n ≥ 3, where n denotes the size of the associated ASMs. This will

usually be due to their containing terms (such as Zn−1(x, y) or Zn−2(x, y)) which are not

defined if n is taken to be 1 or 2.

2. Unrefined enumeration

2.1. Arbitrary bulk parameters. It was shown by Behrend, Di Francesco and Zinn-

Justin [3, Eq. (29) & Props. 1–3] that the unrefined ASM generating function is given by

the determinant formula

Zn(x, y) = det
0≤i,j≤n−1

(
Kn(x, y)ij

)
, (14)

where

Kn(x, y)ij = −δi,j+1 +
∑min(i,j+1)

k=0

(
i−1
i−k

)(
j+1
k

)
xkyi−k. (15)

For alternative versions of (14), involving transformations of the matrix Kn(x, y), and

related to formulae of Colomo and Pronko [10, Eqs. (23) & (24)], [11, Eqs. (4.3)–(4.7)],

Lalonde [28, Thm. 3.1] and Mills, Robbins and Rumsey [30, p. 346], see Behrend, Di

Francesco and Zinn-Justin [3, Eqs. (28), (65) & (66)].

An alternative method for obtaining Zn(x, y), involving a recursive approach, will be

described in Section 3.1.

2.2. Bulk parameters x = y = 1. An explicit formula for the number of n× n ASMs is

An =

n−1∏

i=0

(3i+ 1)!

(n+ i)!
. (16)

These numbers, for n = 1, . . . , 8, are given in Table 2.

n 1 2 3 4 5 6 7 8

An 1 2 7 42 429 7436 218348 10850216

Table 2. An, for n = 1, . . . , 8.

The product formula (16) was conjectured by Mills, Robbins and Rumsey [29, 30, Conj. 1],

and first proved by Zeilberger [38] and, shortly thereafter, using a different method, by

Kuperberg [27].

Setting x = y = 1 in (14) gives the determinant formula

An = det
0≤i,j≤n−1

(
−δi,j+1 +

(
i+j
i

))
, (17)
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as also obtained by Gessel and Xin [22, Rem. 5.2]. Alternative determinantal formulae

for An can be obtained by setting x = y = 1 in the alternative versions of (14) mentioned

in Section 2.1.

It was shown by Okada [31, Thm. 1.2 (A1)] that

An = 3−n(n−1)/2 ×
(
number of semistandard Young tableaux of shape

(n− 1, n− 1, . . . , 2, 2, 1, 1) with entries from {1, . . . , 2n}
)
. (18)

The equality between the RHS of (16) and the RHS of (18) can be obtained directly using

the hook-content formula for semistandard Young tableaux.

3. Singly-refined enumeration

3.1. Arbitrary bulk parameters. It was shown by Behrend, Di Francesco and Zinn-

Justin [3, Eq. (74), Props. 4–6 & Eqs. (97) & (98)] that the singly-refined ASM generating

function is given by the determinant formula

Zn(x, y; z) = det
0≤i,j≤n−1

(
Kn(x, y; z)ij

)
, (19)

where

Kn(x, y; z)ij = −δi,j+1 +

{∑min(i,j+1)
k=0

(
i−1
i−k

)(
j+1
k

)
xkyi−k, j ≤ n− 2,

∑i
k=0

∑k
l=0

(
i−1
i−k

)(
n−l−1
k−l

)
xkyi−kzl, j = n− 1.

(20)

For alternative versions of (19), involving transformations of the matrix Kn(x, y; z), and

related to formulae of Lalonde [28, Thm. 3.1] and Mills, Robbins and Rumsey [30, p. 346],

see Behrend, Di Francesco and Zinn-Justin [3, Eqs. (73), (87) & (88)].

It was shown by Behrend [2, Cor. 8] that the boundary parameter coefficients in the

singly-refined ASM generating function, as defined in (10), satisfy

Zn(x, y)k = Zn−1(x, y) δk,0 + Zn−1(x, y)
k−1∑

i=0

(
yi+1

(
k−1

i

)(
n−1

i+1

)
+

yi
k−i−1∑

j1=0

n−i−2∑

j2=0

Zn−i−1(x, y)j1 Zn−i−1(x, y)j2
Zn−i−1(x, y)Zn−i−2(x, y)

(
x

(
k−j1−2

i−1

)(
n−j2−2

i

)
−

y

(
k−j1−1

i

)(
n−j2−1

i+1

)))
, (21)

where Z0(x, y), if it appears, is taken to be 1.
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Summing (21) over k, using (11), and again taking Z0(x, y) to be 1, gives

Zn(x, y) = Zn−1(x, y)

(
1 +

n−2∑

i=0

(
yi+1

(
n−1

i+1

)2

+

xyi
(∑n−i−2

j=0

(
n−j−2

i

)
Zn−i−1(x, y)j

)2
− yi+1

(∑n−i−2
j=0

(
n−j−1
i+1

)
Zn−i−1(x, y)j

)2

Zn−i−1(x, y)Zn−i−2(x, y)

))
, (22)

as obtained by Behrend [2, Cor. 9].

It can be seen that (21) and (22) give Zn(x, y)k and Zn(x, y) in terms of Zi(x, y)j and

Zi(x, y) for i = 1, . . . , n−1, thereby enabling the singly-refined and unrefined ASM generating

functions to be computed recursively, and providing an alternative method to that of using

the determinantal formulae (14) and (19).

3.2. Bulk parameters x = y = 1. An explicit formula for the singly-refined ASM numbers

is

An,k =

{
(n+k−1)! (2n−k−2)!
k! (n−k−1)! (2n−2)!

∏n−2
i=0

(3i+1)!
(n+i−1)!

, 0 ≤ k ≤ n− 1,

0, otherwise.
(23)

Examples of these numbers, for n = 1, . . . , 5, are given in Table 3.

An,k k=0 1 2 3 4

n=1 1

2 1 1

3 2 3 2

4 7 14 14 7

5 42 105 135 105 42

Table 3. An,k, for n = 1, . . . , 5 and k = 0, . . . , n− 1

The formula (23) was first proved by Zeilberger [39], and confirms the validity of conjec-

tures of Mills, Robbins and Rumsey [29, 30, Conj. 2]. Alternative proofs of (23) have been

given by Colomo and Pronko [14, Sec. 5.3], [15, Sec. 4.2], Fischer [19], and Stroganov [36,

Sec. 4]. See also Razumov and Stroganov [32, Sec. 2], [33, Sec. 2] for additional details

related to the third of these proofs.

The singly-refined ASM generating function at x = y = 1 can be written explicitly us-

ing (23) and the fourth equation of (13). Alternatively, it was observed by Colomo and

Pronko [12, Eq. (2.16)], [14, Eq. (5.43)], [15, Eq. (4.19)] that it can be expressed in terms

of the Gaussian hypergeometric function as

Zn(1, 1; z) = An−1 2F1

[
1−n, n
2−2n

; z

]
. (24)
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Various further expressions for Zn(1, 1; z) can be obtained by setting all but one boundary

parameter to 1 in certain subsequent formulae, such as (33), for ASM generating functions

at x = y = 1.

4. Opposite boundary doubly-refined enumeration

4.1. Arbitrary bulk parameters. It was shown by Behrend, Di Francesco and Zinn-

Justin [4, Eqs. (21) & (22)] that the opposite-boundary doubly-refined ASM generating

function is given by the determinant formula

Zopp
n (x, y; z1, z2) = det

0≤i,j≤n−1

(
Kn(x, y; z1, z2)ij

)
, (25)

where

Kn(x, y; z1, z2)ij =

− δi,j+1 +





∑min(i,j+1)
k=0

(
i−1
i−k

)(
j+1
k

)
xkyi−k, j ≤ n− 3,

∑i
k=0

∑k
l=0

(
i−1
i−k

)(
n−l−2
k−l

)
xkyi−kzl+1

2 , j = n− 2,
∑i

k=0

∑k
l=0

∑l
m=0

(
i−1
i−k

)(
n−l−2
k−l

)
xkyi−kzm1 zl−m

2 , j = n− 1.

(26)

Note that Kn(x, y; z, 1) = Kn(x, y; z) and Kn(x, y; 1, 1) = Kn(x, y) (with Kn(x, y; z) and

Kn(x, y) defined in (20) and (15), respectively), and that setting z2 = 1 or z1 = z2 = 1

in (25) gives (19) or (14), respectively.

For an alternative version of (25), involving a transformation of the matrix Kn(x, y; z1, z2),

see Behrend, Di Francesco and Zinn-Justin [4, Eqs. (65) & (66)].

The opposite-boundary doubly-refined ASM generating function satisfies

(z1−z2) (z3−z4)Z
opp
n (x, y; z1, z2)Z

opp
n (x, y; z3, z4) −

(z1−z3) (z2−z4)Z
opp
n (x, y; z1, z3)Z

opp
n (x, y; z2, z4) +

(z1−z4) (z2−z3)Z
opp
n (x, y; z1, z4)Z

opp
n (x, y; z2, z3) = 0, (27)

and it can be expressed in terms of singly-refined and unrefined ASM generating functions

as

(z1−z2)Z
opp
n (x, y; z1, z2)Zn−1(x, y) = (z1−1) z2 Zn(x, y; z1)Zn−1(x, y; z2) −

z1 (z2−1)Zn−1(x, y; z1)Zn(x, y; z2). (28)

The identities (27) and (28) are essentially equivalent, as discussed by Behrend, Di Francesco

and Zinn-Justin [4, p. 415] or Behrend [2, pp. 459–460].

A result which is equivalent to (28) with x = y = 1 was obtained by Stroganov [36,

Eq. (34)], and a result which is equivalent to (28) with arbitrary x and y was obtained by

Colomo and Pronko [13, Eq. (5.32)], [15, Eq. (3.32)]. Alternative proofs of (27) and (28) have

been given by Behrend, Di Francesco and Zinn-Justin [4, Sec. 5], and Behrend [2, Cor. 5, or

Eqs. (72) & (73) with m = 2, k1 = 1, k2 = n].
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4.2. Bulk parameters x = y = 1. It was shown by Stroganov [36, Eq. (34)] that the

opposite-boundary doubly-refined, singly-refined and unrefined ASM numbers satisfy

(Aopp
n,k1−1,k2

−Aopp
n,k1,k2−1)An−1 = An,k1−1An−1,k2−1 −An,k1 An−1,k2−1 −

An−1,k1−1An,k2−1 +An−1,k1−1An,k2. (29)

Examples of opposite-boundary doubly-refined ASM numbers, for n = 3, 4, 5, are given in

Table 4.

Aopp
3,k1,k2

k1=0 1 2

k2=0 1 1 0

1 1 1 1

2 0 1 1

Aopp
4,k1,k2

k1=0 1 2 3

k2=0 2 3 2 0

1 3 5 4 2

2 2 4 5 3

3 0 2 3 2

Aopp
5,k1,k2

k1=0 1 2 3 4

k2=0 7 14 14 7 0

1 14 30 33 21 7

2 14 33 41 33 14

3 7 21 33 30 14

4 0 7 14 14 7

Table 4. Aopp
n,k1,k2

, for n = 3, 4, 5 and k1, k2 = 0, . . . , n− 1.

It can be seen, using (13), that (29) is equivalent to (28) at x = y = 1, i.e., to

(z1−z2)Z
opp
n (1, 1; z1, z2)An−1 = (z1−1) z2 Zn(1, 1; z1)Zn−1(1, 1; z2) −

z1 (z2−1)Zn−1(1, 1; z1)Zn(1, 1; z2). (30)

The relation (29) can easily be solved for the opposite-boundary doubly-refined ASM

numbers, giving

Aopp
n,k1,k2

= 1
An−1

∑min(k1,n−k2−1)
i=0

(
An,k1−i An−1,k2+i +An−1,k1−i−1An,k2+i −

An,k1−i−1An−1,k2+i −An−1,k1−i−1An,k2+i+1

)
. (31)

See also Ayyer and Romik [1, Eq. 1.3], and Karklinsky and Romik [25, p. 32].

It was shown by Biane, Cantini and Sportiello [5, Thm. 1] that the opposite-boundary

doubly-refined and unrefined ASM numbers also satisfy

det
0≤k1,k2≤n−1

(Aopp
n,k1,k2

) = (−1)n(n+1)/2+1 (An−1)
n−3. (32)

The opposite-boundary doubly-refined ASM generating function Zopp
n (1, 1; z1, z2) can be

computed using (30) or (31), together with (13), (16) and (23).

This function can also be expressed as

Zopp
n (1, 1; z1, z2) = 3−n(n−1)/2

(
q2(z1 + q)(z2 + q)

)n−1
×

s(n−1,n−1,...,2,2,1,1)

(
qz1+1
z1+q

, qz2+1
z2+q

, 1, . . . , 1︸ ︷︷ ︸
2n−2

)∣∣
q=e±2πi/3, (33)
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where s(n−1,n−1,...,2,2,1,1)

(
qz1+1
z1+q

, qz2+1
z2+q

, 1, . . . , 1
)
is the Schur function indexed by the double-

staircase partition (n − 1, n − 1, . . . , 2, 2, 1, 1), evaluated at the 2n parameters qz1+1
z1+q

, qz2+1
z2+q

,

1, . . . , 1. The expression (33) was obtained by Di Francesco and Zinn-Justin [18, Eqs. (2.2)

& (2.4)], using a result of Okada [31, Thm. 2.4(1), second equation].

Finally, it should be noted that certain further expressions for the ASM numbers or

ASM generating functions of Sections 2.2, 3.2 and 4.2, i.e., An, An,k, Zn(1, 1; z), A
opp
n,k1,k2

or Zopp
n (1, 1; z1, z2), follow from results obtained in the context of totally symmetric self-

complementary plane partitions, together with a result of Fonseca and Zinn-Justin [21, Thm.]

that Zopp
n (1, 1; z1, z2) is equal to a certain doubly-refined generating function for such plane

partitions. For example, for An, Zn(1, 1; z) or Zopp
n (1, 1; z1, z2), Pfaffian expressions follow

from results of Ishikawa [24, Thms. 1.2 & 1.4, & Sec. 7] and Stembridge [35, Thm. 8.3],

constant-term expressions follow from results of Ishikawa [24, Sec. 8], Krattenthaler [26,

Thm.] and Zeilberger [37], [38, Sublems. 1.1 & 1.2], and integral expressions (which can

easily be converted to constant-term expressions) follow from results of Fonseca and Zinn-

Justin [21, Eqs. (4.9) & (4.14)] and Zinn-Justin and Di Francesco [42, Eqs. (37) & (39)].

Note that some of these results are expressed in terms of certain triangles of positive integers

(specifically, monotone or Gog triangles for ASMs, and Magog triangles for totally symmet-

ric self-complementary plane partitions), or closely related integer arrays. Also, many such

results are stated in more general forms, which involve certain entries of such arrays being

prescribed to take certain values, or being bounded by certain values.

5. Adjacent boundary doubly-refined enumeration

5.1. Arbitrary bulk parameters. It was shown by Behrend [2, Cor. 3] that the adjacent-

boundary doubly-refined and alternative adjacent-boundary doubly-refined ASM generating

functions satisfy the recursion relations

(z1−1)(z2−1)Zadj
n (x, y; z1, z2)Zn−2(x, y) = yz1z2 Z

adj
n−1(x, y; z1, z2)Zn−1(x, y) +

(
x(z1−1)(z2−1)−y

)
z1z2 Zn−1(x, y; z1)Zn−1(x, y; z2) +

(z1−1)(z2−1)Zn−1(x, y)Zn−2(x, y), (34)

(z1−1)(z2−1) Z̃adj
n (x, y; z1, z2)Zn−2(x, y) = yz1z2 Z̃

adj
n−1(x, y; z1, z2)Zn−1(x, y) +

(
(z1−1)(z2−1)−yz1z2

)
Zn−1(x, y; z1)Zn−1(x, y; z2) +

(z1−1)(z2−1) (xz1z2)
n−1 Zn−1(x, y)Zn−2(x, y). (35)

If Z0(x, y) is taken to be 1, then (34) and (35) hold for all n ≥ 2.
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It was also shown by Behrend [2, Cor. 6] that (34) and (35) can be solved for the adjacent-

boundary doubly-refined ASM generating functions, giving

Zadj
n (x, y; z1, z2) = Zn−1(x, y)

(
1 +

n−1∑

i=1

(
y z1 z2

(z1−1)(z2−1)

)n−i

×

(
1 +

(x(z1−1)(z2−1)−y)Zi(x, y; z1)Zi(x, y; z2)

y Zi−1(x, y)Zi(x, y)

))
, (36)

Z̃adj
n (x, y; z1, z2) = Zn−1(x, y)

(
(xz1z2)

n−1 +

n−1∑

i=1

(
y

(z1−1)(z2−1)

)n−i

×

(
xi−1(z1z2)

n−1 +
(z1z2)

n−i−1((z1−1)(z2−1)−yz1z2)Zi(x, y; z1)Zi(x, y; z2)

y Zi−1(x, y)Zi(x, y)

))
, (37)

where, in the sums over i, Z0(x, y) is taken to be 1.

Using (36) and (37), or (34) and (35), it follows that, in addition to being related by (9), the

adjacent-boundary doubly-refined and alternative adjacent-boundary doubly-refined ASM

generating functions are also related by

((z1−1)(z2−1)−yz1z2)Z
adj
n (x, y; z1, z2)− (x(z1−1)(z2−1)−y) z1z2 Z̃

adj
n (x, y; z1, z2)

= (z1−1)(z2−1)
(
1− (xz1z2)

n
)
Zn−1(x, y), (38)

as shown by Behrend [2, Cor. 7].

It follows that the adjacent-boundary doubly-refined ASM generating functions can be

computed using relations from this section, together with the methods given in Sections 2.1

and 3.1 for obtaining the unrefined and singly-refined ASM generating functions.

5.2. Bulk parameters x = y = 1. It was shown by Stroganov [36, p. 61] that the adjacent-

boundary doubly-refined, opposite-boundary doubly-refined and unrefined ASM numbers

satisfy

Aadj
n,k1−1,k2

+Aadj
n,k1,k2−1 −Aadj

n,k1,k2
= Aopp

n,k1−1,n−k2
− (δk1,1 − δk1,0)(δk2,1 − δk2,0)An−1. (39)

This relation is also a special case of a formula obtained by Fischer [20, Thm. 1].

Examples of adjacent-boundary doubly-refined ASM numbers, for n = 3, 4, 5, are given in

Table 5.

It can be seen, using (13), that (39) is equivalent to a relation satisfied by the adjacent-

boundary and opposite-boundary doubly-refined ASM generating functions at x = y = 1

and the unrefined ASM numbers, specifically

(z1+z2−1)Zadj
n (1, 1; z1, z2) = z1 z

n
2 Z

opp
n (1, 1; z1,

1
z2
)− (z1−1)(z2−1)An−1. (40)
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Aadj
3,k1,k2

k1=0 1 2

k2=0 2 0 0

1 0 2 1

2 0 1 1

Aadj
4,k1,k2

k1=0 1 2 3

k2=0 7 0 0 0

1 0 7 5 2

2 0 5 6 3

3 0 2 3 2

Aadj
5,k1,k2

k1=0 1 2 3 4

k2=0 42 0 0 0 0

1 0 42 35 21 7

2 0 35 49 37 14

3 0 21 37 33 14

4 0 7 14 14 7

Table 5. Aadj
n,k1,k2

, for n = 3, 4, 5 and k1, k2 = 0, . . . , n− 1.

The relations (39) or (40) can be solved for the adjacent-boundary doubly-refined ASM

numbers, giving

Aadj
n,k1,k2

=





An−1, k1 = k2 = 0,
(
k1+k2−2
k1−1

)
An−1 −

∑k1
i=1

∑k2
j=1

(
k1+k2−i−j

k1−i

)
Aopp

n,i−1,n−j, 1 ≤ k1, k2 ≤ n− 1,

0, otherwise.

(41)

This formula was obtained by Fischer [20, p. 570]. See also Ayyer and Romik [1, p. 164].

6. Triply-refined enumeration

6.1. Arbitrary bulk parameters. It was shown by Behrend [2, Cors. 2 & 4] that the

triply-refined ASM generating function satisfies

(z2−z1)(z3−1)Ztri
n (x, y; z1, z2, z3)Zn−2(x, y) =
(
(z2−1)(z3−1)−yz2z3

)
z1 Z

adj
n−1(x, y; z1, z3)Zn−1(x, y; z2) −

(
x(z1−1)(z3−1)−y

)
z1z2z3 Z̃

adj
n−1(x, y; z2, z3)Zn−1(x, y; z1) −

(z1−1)(z3−1) z2 Zn−1(x, y; z2)Zn−2(x, y) +

(z2−1)(z3−1) z1 (xz2z3)
n−1Zn−1(x, y; z1)Zn−2(x, y), (42)

and

y(z2−z1)z3 Z
tri
n (x, y; z1, z2, z3)Zn−1(x, y) =

(z1−1)
(
(z2−1)(z3−1)−yz2z3

)
Zadj

n (x, y; z1, z3)Zn−1(x, y; z2) −

(z2−1)
(
x(z1−1)(z3−1)−y

)
z1z3 Z̃

adj
n (x, y; z2, z3)Zn−1(x, y; z1) −

(z1−1)(z2−1)(z3−1)Zn−1(x, y; z2)Zn−1(x, y) +

(z1−1)(z2−1)(z3−1) z1z
n−1
2 (xz3)

n Zn−1(x, y; z1)Zn−1(x, y). (43)

The triply-refined ASM generating function can be computed using either (42) or (43),

together with the methods given in Sections 2.1, 3.1 and 5.1 for obtaining the unrefined,

singly-refined and adjacent-boundary doubly-refined ASM generating functions.
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6.2. Bulk parameters x = y = 1. The triply-refined ASM generating function at x = y = 1

satisfies

(z1z3−z3+1)(z2z3−z2+1)zn−1
3 Ztri

n (1, 1; z1, z2,
1
z3
) =

z1 z3 det1≤i,j≤3

(
z

j−1
i (zi−1)3−j Zn−j+1(1, 1; zi)

)

An−1An−2

∏
1≤i<j≤3(zi − zj)

+

(z2−1)(z3−1)(z1z3−z3+1)z1z
n−1
2 Zn−1(1, 1; z1) +

(z1−1)(z3−1)(z2z3−z2+1)zn−1
3 Zn−1(1, 1; z2), (44)

and

(z1z3−z3+1)(z2z3−z2+1)zn−1
3 Ztri

n (1, 1; z1, z2,
1
z3
) =

z1 z3

An−2 (z1−z2)(z3−1)

(
(z1z3−z1+1)(z1z3−z3+1)z2Zn−1(1, 1; z1)Z

opp
n−1(1, 1; z2, z3) −

(z2z3−z2+1)(z2z3−z3+1)z1Zn−1(1, 1; z2)Z
opp
n−1(1, 1; z1, z3)

)
+

(z2−1)(z3−1)(z1z3−z3+1)z1z
n−1
2 Zn−1(1, 1; z1) +

(z1−1)(z3−1)(z2z3−z2+1)zn−1
3 Zn−1(1, 1; z2). (45)

Note that (44) and (45) differ only in the first terms on each RHS.

The relation (44) was obtained by Ayyer and Romik [1, Thms. 1 & 3], with its form

incorporating a suggestion of Colomo [9]. An alternative proof of (44) has been given by

Behrend [2, Eqs. (49)–(50) & Sec. 5.10]. The relation (45) was obtained by Behrend [2,

Cor. 11].

It was shown by Behrend [2, Eqs. (70) & (75)] that the first term on the RHS of either (44)

or (45) can also be expressed as

3−n(n−1)/2 z1z3
(
−(z1+q)(z2+q)(z3+q)

)n−1
×

s(n−1,n−1,...,2,2,1,1)

(
qz1+1
z1+q

, qz2+1
z2+q

, qz3+1
z3+q

, 1, . . . , 1︸ ︷︷ ︸
2n−3

)∣∣
q=e±2πi/3 ,

where this uses the same notation as (33).

The triply-refined ASM generating function at x = y = 1 can be computed using ei-

ther (44) or (45), together with (16) and the methods given in Sections 3.2 and 4.2 for ob-

taining the singly-refined and opposite-boundary doubly-refined ASM generating functions

at x = y = 1.

It can be seen that the identities (30) and (40), satisfied by the doubly-refined ASM

generating functions at x = y = 1, are special cases of (44). More specifically, setting z3 = 1

in (44) gives (30), while setting z2 = 1 in (44), and using (30), gives (40).
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7. Quadruply-refined enumeration

7.1. Arbitrary bulk parameters. It was shown by Behrend [2, Thm. 1] that the quad-

ruply-refined ASM generating function satisfies

y(z4−z2)(z1−z3)Z
quad
n (x, y; z1, z2, z3, z4)Zn−2(x, y) =

(
(z1−1)(z2−1)−yz1z2

)(
(z3−1)(z4−1)−yz3z4

)
Z

adj
n−1(x, y; z4, z1)Z

adj
n−1(x, y; z2, z3) −

(
x(z4−1)(z1−1)−y

)(
x(z2−1)(z3−1)−y

)
z1z2z3z4 Z̃

adj
n−1(x, y; z1, z2) Z̃

adj
n−1(x, y; z3, z4) −

(z2−1)(z3−1)
(
(z4−1)(z1−1)−yz4z1

)
Z

adj
n−1(x, y; z4, z1)Zn−2(x, y) +

(z3−1)(z4−1)
(
x(z1−1)(z2−1)−y

)
z1z2 (xz3z4)

n−1 Z̃
adj
n−1(x, y; z1, z2)Zn−2(x, y) −

(z4−1)(z1−1)
(
(z2−1)(z3−1)−yz2z3

)
Z

adj
n−1(x, y; z2, z3)Zn−2(x, y) +

(z1−1)(z2−1)
(
x(z3−1)(z4−1)−y

)
z3z4 (xz1z2)

n−1 Z̃
adj
n−1(x, y; z3, z4)Zn−2(x, y) +

(z1−1)(z2−1)(z3−1)(z4−1)
(
1− (x2z1z2z3z4)

n−1
)
Zn−2(x, y)

2. (46)

If Z0(x, y) is taken to be 1, then (46) holds for all n ≥ 2.

It can be seen that (46) enables the quadruply-refined ASM generating function to be

obtained recursively. More specifically, Zquad
n (x, y; z1, z2, z3, z4) can be computed using the

initial conditions (from (6)) Z
quad
1 (x, y; z1, z2, z3, z4) = 1 and Z

quad
2 (x, y; z1, z2, z3, z4) = 1 +

xz1z2z3z4, together with the definitions (from (7)–(8)) Zadj
n (x, y; z1, z2) = Zquad

n (x, y; z1, 1,

1, z2), Z̃
adj
n (x, y; z1, z2) = Zquad

n (x, y; z1, z2, 1, 1) and Zn(x, y) = Zquad
n (x, y; 1, 1, 1, 1).

Accordingly, for each n ≥ 3, Zquad
n (x, y; z1, z2, z3, z4) and all of the ASM generating func-

tions of (7) and (8) which are defined in terms of Zquad
n (x, y; z1, z2, z3, z4) are determined

by (46).

Note, however, that if the generating functions are obtained recursively in this way, then,

for each successive n, Zquad
n (x, y; z1, z2, z3, z4) should first be computed for arbitrary z1, z2, z3,

and z4, with the factor (z1−z3)(z4−z2) being explicitly cancelled from both sides of (46), so

that division by zero is avoided when boundary parameters need to be set to 1 in subsequent

computations.

Alternatively, the quadruply-refined ASM generating function can be computed using (46),

together with the methods given in Sections 2.1 and 5.1 for obtaining the unrefined and

adjacent-boundary doubly-refined ASM generating functions.

7.2. Bulk parameters x = y = 1. The alternative quadruply-refined ASM generating

function at x = y = 1 satisfies

(z4z1−z4+1)(z1z2−z1+1)(z2z3−z2+1)(z3z4−z3+1) Z̃quad
n (1, 1; z1, z2, z3, z4) =

z1 z2 z3 z4 det1≤i,j≤4

(
z

j−1
i (zi−1)4−j Zn−j+1(1, 1; zi)

)

An−1An−2An−3

∏
1≤i<j≤4(zi − zj)

+

(z2−1)(z3−1)(z4z1−z4+1)(z1z2−z1+1)(z3z4−z3+1)(z2z4)
n−1Z

adj
n−1(1, 1;

1
z4
, z1) +
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(z3−1)(z4−1)(z1z2−z1+1)(z2z3−z2+1)(z4z1−z4+1)(z1z3)
n−1Z

adj
n−1(1, 1;

1
z1
, z2) +

(z4−1)(z1−1)(z2z3−z2+1)(z3z4−z3+1)(z1z2−z1+1)(z2z4)
n−1Z

adj
n−1(1, 1;

1
z2
, z3) +

(z1−1)(z2−1)(z3z4−z3+1)(z4z1−z4+1)(z2z3−z2+1)(z1z3)
n−1Z

adj
n−1(1, 1;

1
z3
, z4) −

(z1−1)(z2−1)(z3−1)(z4−1)
(
(z1z2−z1+1)(z3z4−z3+1)(z2z4)

n−1 +

(z2z3−z2+1)(z4z1−z4+1)(z1z3)
n−1
)
An−2, (47)

and

(z4z1−z4+1)(z1z2−z1+1)(z2z3−z2+1)(z3z4−z3+1) Z̃quad
n (1, 1; z1, z2, z3, z4) =

z1 z2 z3 z4

An−2 (z1−z3)(z2−z4)
×

(
(z1z2−z1+1)(z1z2−z2+1)(z3z4−z3+1)(z3z4−z4+1)Z

opp
n−1(1, 1; z4, z1)Z

opp
n−1(1, 1; z2, z3) −

(z4z1−z4+1)(z4z1−z1+1)(z2z3−z2+1)(z2z3−z3+1)Zopp
n−1(1, 1; z1, z2)Z

opp
n−1(1, 1; z3, z4)

)
+

(z2−1)(z3−1)(z4z1−z4+1)(z1z2−z1+1)(z3z4−z3+1)(z2z4)
n−1Z

adj
n−1(1, 1;

1
z4
, z1) +

(z3−1)(z4−1)(z1z2−z1+1)(z2z3−z2+1)(z4z1−z4+1)(z1z3)
n−1Z

adj
n−1(1, 1;

1
z1
, z2) +

(z4−1)(z1−1)(z2z3−z2+1)(z3z4−z3+1)(z1z2−z1+1)(z2z4)
n−1Z

adj
n−1(1, 1;

1
z2
, z3) +

(z1−1)(z2−1)(z3z4−z3+1)(z4z1−z4+1)(z2z3−z2+1)(z1z3)
n−1Z

adj
n−1(1, 1;

1
z3
, z4) −

(z1−1)(z2−1)(z3−1)(z4−1)
(
(z1z2−z1+1)(z3z4−z3+1)(z2z4)

n−1 +

(z2z3−z2+1)(z4z1−z4+1)(z1z3)
n−1
)
An−2. (48)

Note that (47) and (48) differ only in the first terms on each RHS.

Note also that (40) can be used to replace adjacent-boundary doubly-refined ASM generat-

ing functions in (47) or (48) by opposite-boundary doubly-refined ASM generating functions.

For example, applying (40) to the last five terms on the RHS of (47) or (48) gives

(z2−1)(z3−1)(z4z1−z4+1)(z1z2−z1+1)(z3z4−z3+1)(z2z4)
n−1Z

adj
n−1(1, 1;

1
z4
, z1) +

(z3−1)(z4−1)(z1z2−z1+1)(z2z3−z2+1)(z4z1−z4+1)(z1z3)
n−1Z

adj
n−1(1, 1;

1
z1
, z2) +

(z4−1)(z1−1)(z2z3−z2+1)(z3z4−z3+1)(z1z2−z1+1)(z2z4)
n−1Z

adj
n−1(1, 1;

1
z2
, z3) +

(z1−1)(z2−1)(z3z4−z3+1)(z4z1−z4+1)(z2z3−z2+1)(z1z3)
n−1Z

adj
n−1(1, 1;

1
z3
, z4) −

(z1−1)(z2−1)(z3−1)(z4−1)
(
(z1z2−z1+1)(z3z4−z3+1)(z2z4)

n−1 +

(z2z3−z2+1)(z4z1−z4+1)(z1z3)
n−1
)
An−2

= (z2−1)(z3−1)(z1z2−z1+1)(z3z4−z3+1)z4z1z
n−1
2 Z

opp
n−1(1, 1; z4, z1) +

(z3−1)(z4−1)(z2z3−z2+1)(z4z1−z4+1)z1z2z
n−1
3 Z

opp
n−1(1, 1; z1, z2) +

(z4−1)(z1−1)(z3z4−z3+1)(z1z2−z1+1)z2z3z
n−1
4 Z

opp
n−1(1, 1; z2, z3) +

(z1−1)(z2−1)(z4z1−z4+1)(z2z3−z2+1)z3z4z
n−1
1 Z

opp
n−1(1, 1; z3, z4) +



18 R. E. BEHREND

(z1−1)(z2−1)(z3−1)(z4−1)
(
(z1z2−z1+1)(z3z4−z3+1)(z2z4)

n−1 +

(z2z3−z2+1)(z4z1−z4+1)(z1z3)
n−1
)
An−2. (49)

The relation (47) was obtained by Ayyer and Romik [1, Thms. 2 & 3], with its form

incorporating a suggestion of Colomo [9]. An alternative proof of (47) has been given by

Behrend [2, Eq. (50) & Sec. 5.10]. The relation (48) was obtained by Behrend [2, Cor. 10].

It was shown by Behrend [2, Eqs. (70) & (75)] that the first term on the RHS of either (47)

or (48) can also be expressed as

3−n(n−1)/2 q4(n−1) z1z2z3z4
(
(z1+q) . . . (z4+q)

)n−1
×

s(n−1,n−1,...,2,2,1,1)

(
qz1+1
z1+q

, . . . , qz4+1
z4+q

, 1, . . . , 1︸ ︷︷ ︸
2n−4

)∣∣
q=e±2πi/3 ,

where this uses the same notation as (33).

The quadruply-refined ASM generating function at x = y = 1 can be computed using

either (47) or (48), together with (16) and the methods given in Sections 3.2, 4.2 and 5.2 for

obtaining the singly-refined and doubly-refined ASM generating functions at x = y = 1.

8. Further results

Various further results for the exact enumeration of ASMs, and involving some of the

statistics of (2) and (3), are reviewed or obtained by Behrend [2, Sec. 3]. These cases include

the following, where full references to the literature can be obtained using the references

to [2] given here.

• Results which provide explicit expressions for all of the ASM generating functions of (5)

and (7) for the case y = 0. See [2, Sec. 3.1].

• Results which provide explicit expressions for all of the ASM generating functions of (5)

and (7) for the case y = x+ 1. See [2, Sec. 3.2].

• Results for a certain ASM generating function associated with several rows (or several

columns) of an ASM. (This generating function provides a certain generalization of the un-

refined, singly-refined and opposite-boundary doubly-refined ASM generating functions.)

See [2, Sec. 3.5].

• Results for the enumeration of ASMs with several rows or columns closest to two opposite

boundaries prescribed. See [2, Sec. 3.6].

• Results for Zn(1, 3) and Zn(1, 3; z). See [2, Sec. 3.7].

• Results for Zn(1, 1;−1). See [2, Sec. 3.8].

• Results for Zn(x, 1), i.e., for the enumeration of ASMs with a prescribed number of

generalized inversions. See [2, Sec. 3.9].

• Results for Zn(1, y), i.e., for the enumeration of ASMs with a prescribed number of −1’s.

See [2, Sec. 3.10].

• Results associated with descending plane partitions. See [2, Sec. 3.12].
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• Results associated with totally symmetric self-complementary plane partitions. See [2,

Sec. 3.13].

• Results associated with fully packed loop configurations and loop models. See [2, Sec.

3.14].

• Results for the enumeration of ASMs invariant under symmetry operations. See [2,

Sec. 3.15].
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