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Abstract

We consider a small random perturbation of the energy functional

[u]2Hs(Λ,Rd) +

∫

Λ

W (u(x))dx

for s ∈ (0, 1), where the non local part [u]2Hs(Λ,Rd) denotes the total contribution

from Λ ⊂ R
d in the Hs(Rd) Gagliardo semi-norm of u and W is a double well

potential. We show that there exists, as Λ invades Rd, for almost all realizations
of the random term a minimizer under compact perturbations, which is unique
when d = 2, s ∈ (12 , 1) and when d = 1, s ∈ [ 14 , 1). This uniqueness is a
consequence of the randomness. When the random term is absent, there are
two minimizers which are invariant under translations in space, u = ±1.

Keywords: Random functionals, Phase segregation in disordered materials,
Fractional Laplacian
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1. Introduction

Non local functionals, related to fractional Levy partial differential equa-
tions, appear frequently in many different areas of mathematics and find many
applications in engineering, finance [15], physics [13], chemistry [3] and biol-
ogy [20]. We consider non local functionals representing the free energy of a
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material with two (or several) phases, see [5], on a a scale, the so-called meso-
scopic scale, which is much larger than the atomistic scale so that the adequate
description of the state of the material is by a continuous scalar order param-
eter m : Λ ⊆ R

d → R. The minimizers of these functionals are functions m∗

representing the states or phases of the materials.
The natural question that we pose is the following: What happens to these

minimizers when an external, even very weak, random potential is added to the
deterministic functional? Does the number of minimizers remain the same, i.e
will the material always have the same number of states (or phases)? Is there
some significant difference in the qualitative properties of the material when the
randomness is added? These are standard questions in a calculus of variations
framework.

Partial answers to these type of questions were recently given in two papers
by the authors in the context of the Ginzburg Landau functional, i.e in the case
where the interaction energy is local and it is modelled by 〈m, (−∆)m〉 there
〈·, ·〉 stands for the L2 scalar product and m is taken in a function space which
makes the scalar product finite, see [6] and [7]. Here we consider a functional in
which the interaction energy is non local, i.e. the state of the material at site
x ∈ Λ depends on the state of the material in all Rd. We model this non local
interaction energy using the fractional Laplacian.

This nonlocality of the interaction needs a very different approach compared
to [6] and [7] because of the suitable interpretation of ”boundary condition”
in the case of a long-range interaction. In particular, an extensive part of the
analytical work in the present paper is devoted to so-called minimizers under
compact perturbations, see Definition 2.4.

The interaction energy is given by 〈m, (−∆)sm〉 for 0 < s < 1, the scalar
product and the function space form need to be suitable defined. In the extreme
case s = 1 one gets the Ginzburg Landau interaction energy and when s = 0
one gets (−∆)s = I where I is the identity operator, so m at site x interacts
only with itself.

We add to this non local interaction energy which penalizes spatial changes
in m a double-well potential W (m), i.e. a nonconvex function which has exactly
two minimizers, for simplicity +1 and −1, modelling a two-phase material.

Finally, we add a term which couples m to a random field θg(·, ω) with
mean zero, variance θ2 and unit correlation length; i.e a term which prefers
at each point in space one of the two minimizers of W (·) and thus breaks the
translational invariance, but is ”neutral” in the mean.

A functional with the aforementioned properties is the following functional

Gm0

1 (m,ω,Λ) = [m]2Hs(Λ,Rd) +

∫

Λ

W (m(x))dx − θ

∫

Λ

g1(x, ω)m(x)dx, (1)

where

[m]2Hs(Λ,Rd) =

∫

Λ

dx

∫

Λ

dy
|m(x)−m(y)|2
|x− y|d+2s

+ 2

∫

Λ

dx

∫

Rd\Λ

dy
|m(x)−m0(y)|2

|x− y|d+2s

(2)
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denotes the total contribution from Λ to the Hs(Rd) Gagliardo semi-norm of
m, if we set m = m0 in R

d \ Λ in (2). The Gagliardo semi-norm is given by

∫

Rd

dx

∫

Rd

dy
|m(x)−m(y)|2
|x− y|d+2s

= [m]2Hs(Λ,Rd) +

∫

Rd\Λ

dx

∫

Rd\Λ

dy
|m0(x)−m0(y)|2

|x− y|d+2s
.

(3)

For the minimization problem the term depending only on the value of m0

in the Gagliardo semi-norm is irrelevant, since this term is kept fixed trough
the minimization procedure. For dimensional reason the right hand side of (2)
should be multiplied by cd,s, a normalizing constant which degenerates when
s → 1 or s → 0. In the following the constant cd,s does not play any role, so we
replace it by 1.

We are interested in determining the macroscopic minimizers of (1), i.e
minimizers of (1) over sequences of regions Λn so that Λn ր R

d as n → ∞.
Namely for any given Λ and fixed boundary value m0 the minimizers of (1)
over any reasonable set of functions will depend on the boundary value m0.
Physically one is interested in taking Λ large enough and to characterize the
minimizers in a region deep inside Λ and detect if, even so deeply inside, the
boundary condition is felt. In other word Λ needs to be large to invade Rd and we
are interested in characterizing the macroscopic minimizer which we construct
by a limit procedure using minimization on a sequence of finite subsets of Rd.

When θ = 0, i.e without random term, the constant functions equal to ±1
are the two macroscopic minimizers: One can obtain the +1 (−1) minimizer
as the limit of the minimizers of (1) when θ = 0 with strictly positive (strictly
negative) boundary values by making use of the fact that the cost of a ”boundary
layer” near the boundary of large balls is of smaller order than the volume as the
balls invade Rd, a point to which we will come back below, see (4). Alternatively
one can use the energy estimates in [17].

When the random field is added, the constant functions equal to ±1 are not
minimizers anymore, due to the presence of the random fields. The question is
to show whether there are still two macroscopic minimizers, each one close in
some topology to the constant minimizers 1 and −1.

We are able to show in d = 2 for s ∈ (12 , 1) and in d = 1 for s ∈ [ 14 , 1)
that for almost all the realizations of the randomness, there exists one macro-
scopic minimizer which is unique under compact perturbations. In this regime
the boundary conditions is not felt by the minimizer. This is an example of
uniqueness induced by random terms. The uniqueness holds only in the limit
Λ ր R

d and is sensitive to the type of randomness added. We will come back
to this point in subsection 2.1. For values of d and s different from the ones
for which we state the uniqueness result we expect, for almost all the realiza-
tions of the randomness, the existence of at least two macroscopic minimizers,
one ”close” to the constant minimizer 1, the other ”close” to the constant min-
imizer −1. But this issue is still open. The strategy of our proof is based
on the following steps. We prove first that for almost all the realizations of
the random field there exist two macroscopic extrema minimizers v±(·, ω) so

3



that any other macroscopic minimizer under compact perturbations u∗ satisfies
v−(·, ω) ≤ u∗(·, ω) ≤ v+(·, ω). This construction requires two limit procedures.
First, for any bounded, sufficiently regular subset of Rd, Λ, and for any K > 0
we determine the minimizers of G1 in Λ with boundary condition v0 = K. Since
the functional is not convex there might be many minimizers. Because the set
of minimizers in a bounded domain Λ is ordered and compact, we can single out
one specific minimizer which we call the maximal K− minimizer. Similarly we
single out one specific minimizer G1 in Λ with v0 = −K boundary condition,
which we call the minimal K− minimizer. The maximal K− minimizer and the
minimal K− minimizer of G1 in Λ have the property that any other minimizer
of G1 in Λ with boundary condition v0, ‖v0‖∞ ≤ K is pointwise smaller than
the maximal K− minimizer and larger than the minimal K− minimizer of G1

in Λ. Then we let Λ to invade Rd obtaining two infinite volume functions u±,K ,
and we show that they are infinite volume minimizers under compact pertur-
bations of G1. At last, we define v±(·, ω) as the pointwise limit as K → ∞ of
u±,K , proving again that v±(·, ω) are extrema infinite volume minimizers under
compact perturbations. Then we show that for any s ∈ (0, 1) there exists a
positive constant C, so that for any bounded, sufficiently regular Λ ⊂ R

d , for
almost all the realizations of the random field,
∣∣∣Gv+

1 (v+, ω,Λ)−Gv−

1 (v−, ω,Λ)
∣∣∣ ≤ C|Λ| d−1

d 1I{s∈( 1
2
,1)} + C|Λ| d−2s

d 1I{s∈(0, 1
2
)}

+C1I{s= 1
2
}|Λ|

d−1
d log |Λ|.

(4)

The minimizers v±(·, ω) depend in a highly non trivial way on the random fields

{g(x, ω)}{x∈Zd}. Therefore also the difference Gv+

1 (v+, ω,Λ) − Gv−

1 (v−, ω,Λ)

depends on the random fields in all of Zd. We take a sequence Λn ⊂ Λn+1 and
we show that, conditioning on the random fields in Λn (i.e taking the expectation
over only the random fields outside Λn)

Fn(ω) := E
[{
G1(v

+(ω), ω,Λn)−G1(v
−(ω), ω,Λn)

}
|BΛn

]

has significant fluctuations, with variance of the order of the volume. Here BΛn

is the σ algebra generated by the random field in Λn. Namely we show that

E [Fn(·)] = 0,

and for t ∈ R

lim inf
n→∞

E

[
e
t Fn√

Λn

]
≥ e

t2D2

2 , (5)

where D2 is given in (97). This holds in all dimensions and for all s ∈ (0, 1). In
d = 1 and for s ∈ [ 14 , 1), in d = 2 and for s ∈ (12 , 1) the bound (5) generates a
contradiction with the bound (4), unless D2 = 0. When D2 = 0 we show that
M = E[

∫
Q(0)

v+] − E[
∫
Q(0)

v−] = 0. Further, we show that pointwise v+ ≥ v−,

therefore E[
∫
Q(0)

v+] = E[
∫
Q(0)

v−] = 0 and v+(·, ω) = v−(·, ω), for almost all

realizations of the random field. The probabilistic argument has been already
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applied by Aizenman and Wehr, [1], in the context of Ising spin systems with
random external field, see also the monograph by Bovier, [2], for a survey on
this subject.

It is instructive to understand what one can say about the functional (1)
when θ = 0. Denote Jm0(m,Λ) the functional (1) when θ = 0. In this case
the constants m(x) = τ for x ∈ R

d and τ = ±1 are the only bounded global
macroscopic minimizers under compact perturbations. To pass to a so-called
macroscopic scale, which is coarser than the mesoscopic scale, we rescale space
with a small parameter ǫ. If D = ǫΛ and u(z) = m(ǫ−1z) and u0(z) = m0(ǫ

−1z)
we obtain

J̃u0

ǫ (u,D) = ǫ2s−d[u]2Hs(D,Rd) + ǫ−d

∫

D

W (u(z))dz. (6)

Functionals with a finite energy on this scale must be Lebesgue almost every-
where close to one of the two minimizers. The second step is to determine the
cost of forming an interface between the spatial regions occupied by these two
different minimizers.

As in the case of the corresponding local functional one needs to normalize
J̃u0
ǫ (u,D) by a power of ǫ related to the dimension of the interface, which is not

necessarily an integer in this case, see also Lemma 3.2. Computations similar
to the ones done to obtain (4) give for θ = 0 a factor of ǫ−d+1 when s ∈ (12 , 1),
ǫ−d+2s when s ∈ (0, 1

2 ), and by ǫ−d+1 log 1
ǫ when s = 1

2 . Therefore we obtain

Ju0

ǫ (u,D) =





ǫ2s−1[u]2Hs(D,Rd) + ǫ−1

∫

D

W (u(z))dz, s ∈ (
1

2
, 1)

[u]2Hs(D,Rd) + ǫ−2s

∫

D

W (u(z))dz, s ∈ (0,
1

2
)

ǫ2s

ǫ log ǫ
[u]2Hs(D,Rd) +

1

ǫ log ǫ

∫

D

W (u(z))dz, s =
1

2
.

(7)

The Γ-convergence for the functional (7) has been studied by Savin and Valdinoci,
[16]. They show that the functional Ju0

ǫ (u,D) Γ− converges to the classical min-
imal surface functional when s ∈ [ 12 , 1) while, when s ∈ (0, 12 ) the functional Γ−
converges to the non local minimal surface functional. There are in the litera-
ture other results dealing with Γ− convergence of non local functionals, see e.g.
[8], [9], [10] and references therein, but they are different from the deterministic
part of the functional that we are considering, either for the explicit form or
because they do not consider the full interaction of Λ with all of Rd. Physically
this implies that the particles in the domain Λ interact with all the particles in
R

d and not only with those ones in Λ, i.e. a sort of non local Dirichlet boundary
condition.

Acknowledgments: We would like to thank the anonymous referee for
valuable suggestions and comments.
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2. Notations and Results

We denote by Λ ⊂ R
d a generic open, bounded subset of Rd, by ∂Λ the

boundary of Λ and by Λc = R
d \ Λ. We denote by |x| the euclidean norm of

x ∈ R
d, by |Λ| the volume of Λ, by diam(Λ) = sup{|x − y|, x and y ∈ Λ}

and by d∂Λ(x) the euclidean distance from x to ∂Λ. A ⋐ R
d means that the

closure of A is compact. We will consider domain Λ with Lipschitz boundary
regularity, i.e the boundary can be thought of as locally being the graph of a
Lipschitz continuous function, see for example [4]. It is useful to introduce
the following definition. We say that a set with Lipschitz boundary Λ ⊂ R

d

is cube-like if Hd−1(∂Λ) ≤ C|Λ| d−1

d and diam(Λ) ≤ C|Λ| 1d , where Hd−1 is the
d − 1-dimensional Hausdorff measure and C > 0 is a constant depending only
on the dimension d.

For t and s in R we denote s ∧ t = min{s, t} and s ∨ t = max{s, t}. For
Λ ⊂ R

d, we denote by Ck,α(Λ), k ≥ 0 an integer, α ∈ (0, 1] the set of functions
continuous and having continuous derivatives up to order k, such that the k-th
partial derivatives are Hölder continuous with exponent α.

2.1. The disorder

The disorder or random field is constructed with the help of a family of inde-
pendent, identically distributed random variables with mean zero and variance
equal to 1. We assume that each random variable has distribution absolutely
continuous with respect to the Lebesgue measure and that the Lebesgue density
is a symmetric, compactly supported function on R. The corresponding infinite

product measure on R
Z
d

will be denoted by P and by E[·] the mean with respect
to P. We denote this family of random variables by {g(z, ω)}z∈Zd, ω ∈ Ω where

we identify Ω with R
Z
d

. These assumptions imply that there exists A > 0 so
that

E[g(z)] = 0, E[g2(z)] = 1 ∀z ∈ Z
d, and ‖g‖∞ = sup

z
|g(z, ω)| = A, P - a.s.

(8)
The boundedness assumption is not essential. Different choices of g could be
handled by minor modifications provided g is still a random field with finite
correlation length, invariant under (integer) translations and such that g(z, ·)
has a symmetric distribution, absolutely continuous w.r.t the Lebesgue measure
and E[g(z)2+η] < ∞, z ∈ Z

d for η > 0. The method does not apply when g
has atoms, i.e. its distribution is not absolutely continuous with respect to the
Lebesgue measure, see Remark 4.15. It is not clear to us if this requirement is
purely technical or if the discrete distribution of the random field may cause a
degeneracy of the ground state like in the Ising spin systems [1].

The symmetry of the measure P is essential for obtaining the result. Namely
if P does not have a symmetric distribution, it would be no longer natural to
compare the qualitative properties of the functional (1) for θ 6= 0 with the
functional (1) with θ = 0. Therefore in the following we always assume that P
is symmetric.

6



In this paragraph Λ ⊂ R
d is not necessarily bounded. We denote by B the

product σ−algebra and by BΛ, Λ ⊂ R
d, the σ− algebra generated by {g(z, ω) :

z ∈ Λ}. In the following we often identify the random field {g(z, ·) : z ∈ Z
d} with

the coordinate maps {g(z, ω) = ω(z) : z ∈ Z
d}. To use ergodicity properties of

the random field it is convenient to equip the probability space (Ω,B,P) with
some extra structure. First, we define the action T of the translation group Z

d on
Ω. We will assume that P is invariant under this action and that the dynamical
system (Ω,B,P, T ) is stationary and ergodic. In our model the action of T is
for y ∈ Z

d

(g(z1, [Tyω]), ..., g(zn, [Tyω])) = (g(z1 + y, ω), ..., g(zn + y, ω)). (9)

The disorder or random field in the functional will be obtained setting for x ∈ Λ

g1(x, ω) :=
∑

z∈Zd

g(z, ω)1I(z+[− 1
2
, 1
2
]d)∩Λ(x), (10)

where for any Borel-measurable set A

1IA(x) :=

{
1, if x ∈ A

0 if x 6∈ A.

2.2. The double well potential

Next we define the “double-well potential” W :

Assumption (H1) W ∈ C2(R), W ≥ 0, W (t) = 0 iff t ∈ {−1, 1}, W (t) =
W (−t) and W (t) is strictly decreasing in [0, 1]. Moreover there exists δ0 and
C0 > 0 so that

W (t) =
1

2C0
(t− 1)2 ∀t ∈ (1 − δ0,∞). (11)

Note that W is slightly different from the standard choice W (u) = (1 − u2)2.
Our choice simplifies some proofs because it makes the Euler-Lagrange equation
linear provided solutions stay in one “well.” To obtain our uniqueness result we
could replace the equality in (11) by a lower bound on W (t) of the same form.

2.3. The functional

We start introducing the functional spaces in which we define the non local
interaction term.

Definition 2.1. Fractional Sobolev spaces Let D ⊂ R
d be an open domain

and s ∈ (0, 1). We define the fractional Sobolev space Hs(D) as the set of
functions f ∈ L2(D) so that

∫

D×D

(f(x) − f(y))2

|x− y|d+2s
dxdy < ∞.

7



This space, endowed with the norm

‖f‖Hs(D) = ‖f‖L2(D) +

(∫

D×D

(f(x)− f(y))2

|x− y|d+2s
dxdy

) 1
2

is an Hilbert space. We will say that f ∈ Hs
loc(R

d), s ∈ (0, 1), if f ∈ Hs(BR)
for any ball of radius R in R

d.

For v ∈ Hs
loc(R

d), Λ ⋐ R
d denote

K1(v, ω,Λ) =

∫

Λ

dx

∫

Λ

dy
|v(x) − v(y)|2
|x− y|d+2s

+

∫

Λ

W (v(x))dx − θ

∫

Λ

g1(x, ω)v(x)dx.

(12)
Now we introduce some definitions needed to specify “boundary conditions” in
a sense appropriate for non local functionals.
For any Λ ⋐ R

d and Λ1 ⊂ R
d, Λ1 ∩ Λ = ∅, for v and u in Hs

loc(R
d) denote

W((v,Λ), (u,Λ1)) = 2

∫

Λ

dx

∫

Λ1

dy
|v(x)− u(y)|2
|x− y|d+2s

(13)

the interaction between the function v in Λ and the function u in Λ1. Note
that if Λ1 is not a bounded set, the term in (13) might not be finite. We will
show in Lemma 3.2 that when v ∈ Hs

loc(R
d) ∩ L∞(Rd) then W((v,Λ), (v,Λ1))

is bounded, the bound depends on |Λ|. When Λ1 = Λc and u = v we simply
write

W(v,Λ) = 2

∫

Λ

dx

∫

Λc

dy
|v(x) − v(y)|2
|x− y|d+2s

. (14)

Definition 2.2. The Functional For any Λ ⊂ R
d, v ∈ Hs

loc(R
d) ∩ L∞(Rd)

we define
G1(v, ω,Λ) = K1(v, ω,Λ) +W(v,Λ). (15)

Whenever we need to stress the dependence of G1 on the value of v outside Λ,
i.e. v(y) = v0(y), y ∈ Λc, we will write

Gv0
1 (v, ω,Λ) = K1(v, ω,Λ) +W((v,Λ)(v0,Λ

c)). (16)

We list some useful properties of the functionals G1 and K1 that follow imme-
diately from the definitions.

Lemma 2.3.

• K1 is superadditive, i.e. if A and B are disjoint bounded sets then

K1(v, ω,A ∪B) ≥ K1(v, ω,A) +K1(v, ω,B),

• G1 is subadditive, i.e. if A and B are disjoint bounded sets then

G1(v, ω,A ∪B) ≤ G1(v, ω,A) +G1(v, ω,B). (17)

8



Definition 2.4. The minimizers

1. We say that u ∈ Hs
loc(R

d) ∩ L∞(Rd) is a minimizer under compact per-
turbations for G1 in Λ ⊂ R

d if for any compact subdomain U ⊂ Λ we
have

G1(u, ω, U) < ∞, P a.s.

and
G1(u, ω, U) ≤ G1(v, ω, U) P a.s.

for any v which coincides with u in R
d \ U .

2. Let v0 ∈ L∞(Rd) be independent of ω ∈ Ω. We say that u ∈ Hs
loc(R

d) ∩
L∞(Rd) is a v0- minimizer for G1 in Λ ⊂ R

d if for any compact subdo-
main U ⊂ Λ we have

Gv0
1 (u, ω, U) < ∞, P a.s.

and
Gv0

1 (u, ω, U) ≤ G1(v, ω, U) P a.s.

for any v which coincides with v0 in R
d \ U .

3. We say u is a free minimizer on Λ if it minimizes K1(·, ω,Λ) in Hs(Λ).

Note that v0 will usually be a constant function.

Remark 2.5 (Existence). Existence of v0-minimizers (for sufficiently regular
v0) and free minimizers in a bounded Lipschitz set Λ ⊂ R

d follows from the
compact embedding of Hs(Λ) in L2(Λ) and the lower semicontinuity of the Hs-
norm. We prove the existence of a v0-minimizer in Lemma 6.1 and Lemma
6.2 in the Appendix. The existence of exactly one minimizer under compact
perturbations is a consequence of the main theorem.

Definition 2.6. Translational covariant states We say that the function
v : Rd × Ω → R is translational covariant if

v(x+ y, ω) = v(x, [T−yω]) ∀y ∈ Z
d, x ∈ R

d. (18)

Our main result is the following.

Theorem 2.7. Take d = 2 and s ∈ (12 , 1) or d = 1 and s ∈ [ 14 , 1), θ strictly
positive. Let n ∈ N, Λn = (−n

2 ,
n
2 )

d 3 , v0 ∈ L∞(Rd) and u∗
n be a v0-minimizer

of G1 in Λn according to Definition 2.4. Then P a.s. there exists a unique
u∗(·, ω), independent of the choice of v0, defined as

lim
n→∞

u∗
n(x, ω) = u∗(x, ω) (uniformly on compacts in x) (19)

so that

3One could take any increasing, cube-like, sequences of sets {Λn}n, Λn ⊂ Rd invading Rd.
The proof goes in the same way.
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• u∗(·, ω) is translation covariant, see (18).

• ‖u∗(·, ω)‖∞ ≤ 1 + C0θ‖g‖∞ where C0 is the constant in (11).

• u∗(·, ω) ∈ C0,α
loc(Rd) for any α < 2s when 2s ≤ 1, u∗ ∈ C1,α

loc (R
d) for any

α < 2s− 1, when 2s > 1.

•
E[u∗(x, ·)] = 0, ∀x ∈ R

d.

Remark 2.8. Since for any bounded set Λ ⊂ R
d, C0,α(Λ) ⊂ C0,β(Λ) for β < α

and the inclusion is compact, the convergence in (19) holds in C0,β, β < 2s
when s ∈ (0, 1

2 ], because we can find α with β < α < 2s. Similarly one obtains
convergence of (19) in C1,β, β < 2s− 1 when s ∈ (12 , 1).

Remark 2.9. When θ = 0 in (12), i.e the random field is absent, the minimum
value of K1(·, ·,Λ) is zero for any bounded Λ and there are exactly two transla-
tion covariant minimizers under compact perturbations, the constant functions
identically equal to 1 or to −1.

3. Finite volume Minimizers

In this section we state properties for minimizers of the functional G1 in any
bounded set Λ ⊂ R

d. These properties hold in all dimensions d, for all bounded
Λ with Lipschitz boundary and for every ω ∈ Ω. The ω plays the role of a
parameter. We start showing that to determine the minimizers of K1 in Λ it is
sufficient to consider functions v satisfying a uniform L∞-bound.

For any t > 0 denote by vt = t ∧ v ∨ (−t).

Lemma 3.1. Let the double well potential W satisfy Assumption (H1).

1. For all ω ∈ Ω, for all v ∈ Hs(Λ) and all t ≥ 1 + C0θ‖g‖∞

K1(v, ω,Λ)−K1(v
t, ω,Λ) ≥

∫

Λt

(
C−1

0 (t− 1)− θ‖g‖∞
)
(|v(y)| − t), (20)

where C0 is the constant in (11) and Λt = {y ∈ Λ : |v(y)| > t}.
2. Take v0 ∈ Hs

loc(R
d) ∩ L∞(Rd) and t ≥ max{‖v0‖∞, 1 + C0θ‖g‖∞}. The

result stated in (20) holds for Gv0
1 (v, ω,Λ). This implies in particular that

minimizers of Gv0
1 are bounded uniformly by max{‖v0‖∞, 1 + C0θ‖g‖∞}.

Proof. We have that for x and y and any function v and w

[v(x) − w(y)]2 ≥ [vt(x)− wt(y)]2.

We immediately obtain

K1(v, ω,Λ)−K1(v
t, ω,Λ) ≥

∫

Λt

dy [W (v(y)) −W (t)]

−θ

∫

Λt

dyg1(y, ω)[v(y)− sign(v(y))t],

10



and from Assumption (H1) and the L∞-bound on g we derive (20). The proof
of (2) is a consequence of (1) by choosing t ≥ max{‖v0‖∞, 1 + C0θ‖g‖∞}.

Next we show that the functional (15) is finite when v ∈ Hs
loc(R

d) ∩ L∞(Rd).
To this aim it is sufficient to show that W(v,Λ), defined in (14), is finite.

Lemma 3.2. Let v ∈ Hs
loc(R

d) ∩ L∞(Rd), Λ ⋐ R
d and C = C(‖v‖∞, d, s) be a

generic constant which might change from one occurrence to the other. Suppose
that Λ is cube-like.4 Then we have

W(v,Λ) ≤ C|Λ| d−2s
d , s ∈ (0,

1

2
). (21)

When s ∈ [ 12 , 1) denote by B1(∂Λ) = {x ∈ R
d : d∂Λ(x) ≤ 1} we have

W(v,Λ) ≤ ‖v‖Hs(B1(∂Λ)) +

{
C|Λ| d−1

d , s ∈ (12 , 1),

C|Λ| d−1
d log(|Λ|), s = 1

2 .
(22)

When s ∈ [ 12 , 1) and v ∈ C0,α(B1(∂Λ)) for α > s− 1
2

W(v,Λ) ≤
{

C|Λ| d−1
d , s ∈ (12 , 1),

C|Λ| d−1

d log(|Λ|), s = 1
2 .

(23)

Proof. For any s ∈ (0, 12 ) we have

∫

Λ

dx

∫

Λc

dy
|v(x) − v(y)|2
|x− y|d+2s

≤ C

∫

Λ

dx

∫

Λc

dy
1

|x− y|d+2s
≤ C

∫

Λ

dx

∫

{y∈Rd: |x−y|≥d∂Λ(x)}

1

|x− y|d+2s
dy

≤ C

∫

Λ

|d∂Λ(x)|−2sdx ≤ C(diam(Λ))1−2sHd−1(∂Λ) ≤ C|Λ| d−2s
d .

(24)

For cubes diam(Λ) ≤ C|Λ|1/d, where the constant C depends only on the di-
mension.

When d ≥ 1 and s ∈ [ 12 , 1), d∂Λ(x)
−2s is not integrable anymore over Λ. So

we split the integral as follows:
∫

Λ

dx

∫

Λc

dy
|v(x) − v(y)|2
|x− y|d+2s

=

∫

{x∈Λ:d∂Λ(x)≤1}

dx

∫

y∈Λc

dy
|v(x)− v(y)|2
|x− y|d+2s

+

∫

{x∈Λ:d∂Λ(x)>1}

dx

∫

y∈Λc

dy
|v(x)− v(y)|2
|x− y|d+2s

.

(25)

4Any bounded Lipschitz domain Λ is cube-like, with C depending on the Lipschitz constant
and on the dimension.
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For the last integral, since |x− y| ≥ 1, we obtain proceeding as in (24)
∫

{x∈Λ:d∂Λ(x)>1}

dx

∫

y∈Λc

dy
|v(x)− v(y)|2
|x− y|d+2s

≤ C

∫

{x∈Λ:d∂Λ(x)>1}

d∂Λ(x)
−2sdx ≤





C|Λ| d−1

d s ∈ (
1

2
, 1)

C|Λ| d−1

d log |Λ|, s =
1

2
.

(26)

We split the first integral of (25) as
∫

{x∈Λ:d∂Λ(x)≤1}

dx

∫

y∈Λc

dy
|v(x) − v(y)|2
|x− y|d+2s

=

∫

{x∈Λ:d∂Λ(x)≤1}

dx

∫

{y∈Λc:d∂Λ(y)≤1}

dy
|v(x)− v(y)|2
|x− y|d+2s

+

∫

{x∈Λ:d∂Λ(x)≤1}

dx

∫

{y∈Λc:d∂Λ(y)>1}

dy
|v(x)− v(y)|2
|x− y|d+2s

.

(27)

For the last term of (27), since |x− y| ≥ 1, we get

∫

{x∈Λ:d∂Λ(x)≤1}

dx

∫

{y∈Λc:d∂Λ(y)>1}

dy
|v(x)− v(y)|2
|x− y|d+2s

≤ C

∫

{x∈Λ:d∂Λ(x)≤1}

dx

∫ ∞

1

r−1−2sdr ≤ C|Λ| d−1

d s ∈ [
1

2
, 1).

The first term of the right hand side of (27) is obviously bounded when v ∈
Hs

loc(R
d)

∫

{x∈Λ:d∂Λ(x)≤1}

dx

∫

{y∈Λc:d∂Λ(y)≤1}

|v(x) − v(y)|2
|x− y|d+2s

dy ≤ ‖v‖Hs(B1(∂Λ)).

When v ∈ C0,α(B1(∂Λ)) for α > s− 1
2 then again arguing as in (24)

∫

{x∈Λ:d∂Λ(x)≤1}

dx

∫

{y∈Λc:d∂Λ(y)≤1}

dy
|v(x)− v(y)|2
|x− y|d+2s

≤ C|Λ| d−1

d , s ∈ [
1

2
, 1).

(28)

Next we prove an energy decreasing rearrangement which allows to show
a strong maximum principle, see Lemma 3.4: Minimizers of G1(·, ω,Λ) corre-
sponding to ordered boundary conditions on Λc are ordered as well, i.e they do
not intersect. In particular if there exists more than one minimizer correspond-
ing to the same boundary condition they do not intersect.

Lemma 3.3. Let u and v be in Hs
loc(R

d) ∩ L∞(Rd). Then for all ω ∈ Ω and
Λ ⊂ R

d

G1(u ∨ v, ω,Λ) +G1(u ∧ v, ω,Λ) ≤ G1(u, ω,Λ) +G1(v, ω,Λ). (29)
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When u = v on Λc, the equality holds in (29) if and only if

u(x) ≤ v(x) or v(x) ≤ u(x), a.s. x ∈ Λ. (30)

When u ≤ v on Λc and u < v for some open set in Λc the equality holds in (29)
if and only if

u(x) ≤ v(x) a.s. x ∈ Λ. (31)

Proof. Since u and v are in Hs
loc(R

d) ∩ L∞(Rd), G1 is finite. Let M(x) =
max{u(x), v(x)} and m(x) = min{u(x), v(x)}. It is immediate to verify that
the local part of the functional G1 satisfies (29) with the equality. For the
interaction term, for x and y in R

d, we have that

[m(x) −m(y)]2 + [M(x)−M(y)]2 ≤ [u(x)− u(y)]2 + [v(x) − v(y)]2. (32)

Namely if both the minimum values in x and y are reached by the same function
either u or v then the equality holds in (32). If m(x) = u(x) < v(x) and
m(y) = v(y) < u(y) then the left hand side of (32) is equal to

[u(x)− u(y)]2 + [v(x)− v(y)]2 + [u(x)− v(x)][u(y)− v(y)]

with [u(x) − v(x)][u(y) − v(y)] < 0. The same holds when m(x) = v(x) and
m(y) = u(y). In these last case we will have a strict inequality in (32), and
therefore in (29).

Next we prove (30). If u(x) ≤ v(x) or u(x) ≥ v(x) for all x ∈ R
d then the

equality holds in (29). When u = v on Λc we have also the reverse implication
for x ∈ Λ. Namely it is immediate to verify that in such case (no matter which
value of u or v correspond to M or m)

W(M,Λ) +W(m,Λ) = W(u,Λ) +W(v,Λ). (33)

The equality in (29) implies the equality in (32), then (30) holds. Next we prove
(31). It is immediate to verify that if (33) holds we must have M(x) = v(x)
and m(x) = u(x) for x ∈ Λ.

Lemma 3.4. Let u and v in Hs
loc(R

d) ∩ L∞(Rd) be minimizers of G1 in Λ, so
that u ≤ v on Λc. Then, for all ω ∈ Ω, u = v or |u(x) − v(x)| > 0 for all
x ∈ int(Λ). If u < v in an open set in Λc, then u < v everywhere in int(Λ).

Proof. Since the result holds for any realization of the random field and Λ is
fixed we avoid to explicitly write in G1 the dependence on ω and Λ. By Lemma
3.3

G1(u ∨ v) +G1(u ∧ v) ≤ G1(u) +G1(v). (34)

The conditions on u and v in Λc yield u ∨ v = v, u ∧ v = u on Λc, and by the
minimization properties of u and v we get G1(u ∨ v) ≥ G1(v), G1(u ∧ v) ≥
G1(u). This implies that G1(u ∨ v) +G1(u ∧ v) = G1(u) +G1(v), actually that
G1(u∨ v) = G1(v) and G1(u∧ v) = G1(u). Therefore u∨ v is a minimizer with
condition v on Λc, and u ∧ v is a minimizer with condition u on Λc. Obviously
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the function w := u−u∧v ≥ 0 in Λ and in particular w = 0 on Λc. Further since
u by assumption is a minimizer and u ∧ v is also a minimizer, they are both
solutions of problem (115) and the regularity results of Proposition 6.3 hold.
Therefore by construction w ∈ C0,α(Λ), α < 2s, when 2s ≤ 1 and w ∈ C1,α(Λ)
, α < 2s− 1, when 2s > 1. On the other hand, w solves

(−∆)sw = V (x) in Λ,

w = 0 on Λc (35)

where

V (x) =
1

2
[W ′(u(x)) −W ′(u(x) ∧ v(x))].

Since W ∈ C2(R), see Assumption (H1), by the regularity of u and u∧v we have
that V ∈ C0,α(Λ), 0 < α < 2s, when 2s ≤ 1 and V ∈ C1,α(Λ) , 0 < α < 2s− 1,
when 2s > 1. By [19, Proposition 2.8] w, being solution of (35), is in C0,α+2s

when α+2s ≤ 1 and in C1,α+2s−1 when α+2s > 1. In both cases the following
argument holds. Suppose there exists x0 ∈ Λ with u(x0) = u(x0) ∧ v(x0), i.e
w(x0) = 0. By the regularity of w we have that

((−∆)sw)(x0) =

∫

Λ

dy
[w(x0)− w(y)]

|x0 − y|d+2s
= −

∫

Λ

dy
w(y)

|x0 − y|d+2s
< 0,

which is equal to zero only when w(x) = 0 for almost all x ∈ R
d. Notice that

the integral is well defined for any s ∈ (0, 1) since w is is in C0,α+2s when
α+2s ≤ 1 and in C1,α+2s−1 when α+2s > 1. Since V (x0) = 0 by construction,
if (−∆)sw(x0) < 0 we have a contradiction with (35). Hence, in the interior of
Λ either u = u∧v (in which case u ≤ v) or u > u∧v, i.e. v < u. By assumption
u ≤ v in Λc and by Lemma 3.3 v < u in the interior of Λ is only possible if
u = v on Λc. Next we show that when u = u ∧ v, then either u = v in Λ (and
this is possible only when u = v on Λc) or u(x) < v(x) for x in the interior of
Λ. Denote by w = u− v ≥ 0. As before, we have that w is a solution of

(−∆)sw = V (x) in Λ,

w = w0 ≥ 0 on Λc,
(36)

where we set w0 = v−u, the difference of the boundary data, which by assump-
tion is positive. Arguing as before, assume that there exists x0 in the interior
of Λ so that w(x0) = 0. By the regularity of w we have that

(−∆)sw(x0) =

∫

Λ

dy
[w(x0)− w(y)]

|x0 − y|d+2s
+

∫

Λc

dy
[w(x0)− w0(y)]

|x0 − y|d+2s

= −
∫

Λ

dy
w(y)

|x0 − y|d+2s
−
∫

Λc

dy
w0(y)

|x0 − y|d+2s
< 0.

(37)

Since V (x0) = 0 by construction, if (−∆)sw(x0) < 0 we have a contradiction
with (36). Therefore if w0 = 0 in Λc, in the interior of Λ either w = 0 (in which
case u = v) or v > u. If w0 > 0 in some subset of Λc the only possibility is
v > u in the interior of Λ.
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Note that there may be a priori several minimizers with the same boundary
conditions, as our functional is not convex.

Next, given v0 ∈ Hs
loc(R

d) ∩ L∞(Rd), we single out two special minimizers
of G1 in Λ, one is the largest minimizer of G1 in Λ with v0 boundary conditions
(defined a pointwise supremum), the other is the smallest minimizer of G1 in
Λ with −v0 boundary conditions. We call them the v0− maximal and the v0−
minimal minimizer of G1 in Λ.

Lemma 3.5. Existence of maximal/minimal minimizers.
Let Λ ⋐ R

d be a Lipschitz bounded open set and v0 ∈ Hs
loc(R

d) ∩ L∞(Rd).

1. The set of minimizer of Gv0
1 on Λ is compact, i.e. any sequence of minimiz-

ers has a limit in C0,α(Λ), α < 2s for s ∈ (0, 1/2] or C1,α(Λ), α < 2s− 1
for s ∈ (1/2, 1), which is still a minimizer.

2. The set of minimizers has a maximal and minimal element with respect to
pointwise ordering of functions

Proof. A sequence of minimizers of Gv0
1 on Λ is a sequence of functions with

energies converging to the infimum, so the same techniques as in the proof of
the existence of minimizers apply.

For the second part, let us define a function ū : Λ → R by ū(x) := sup{v(x) :
v minimizer}. We have to show that ū is a minimizer, in particular that it has
sufficient regularity. Fix a point x0 in the interior of Λ. We can find a sequence
of minimizers {vn}n∈N (which for the moment may still depend on x0) such that
vn(x0) → ū(x0) and such that the sequence vn(x0) is increasing. By Lemma 3.4,
vn(x) ≤ vm(x) for all m ≥ n and all x ∈ Λ. Define now v̄(x) := limn→∞ vn(x).
We know from the first part of the Lemma that the sequence of minimizers
{vn}n∈N has a convergent subsequence which converges to a minimizer. So the
pointwise limit v̄ must be minimizer, moreover v̄ ≤ ū.
If there exists x1 ∈ Λ such that v̄(x1) < ū(x1), then there must be a minimizer w
such that w(x1) > v̄(x1). But v̄(x0) = ū(x0) ≥ w(x0), contradicting Lemma 3.4.
So v̄ = ū, which is therefore the maximal minimizer and pointwise maximum
over the set of minimizers. The proof for the minimal element is done in the
same way.

This allows us to define the following object:

Definition 3.6. Given v0 ∈ Hs
loc(R

d) ∩ L∞(Rd), we say that u+ ( u−) is the
v0− maximal ( v0− minimal) minimizer of G1 in Λ if

• u+(x) = v0(x), (u
−(x) = −v0(x)) for x ∈ Λc,

• u+, (u−) is a miminizer of G1 in Λ according to (2) of Definition 2.4,

• if ũ is any other minimizer (if more than one) of G1 in Λ so that ũ(x) =
v0(x), (ũ(x) = −v0(x)) for x ∈ Λc, then ũ(x) < u+(x) (ũ(x) > u−(x)) for
x ∈ Λ.
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4. Infinite volume covariant states

In this section we construct two functions v±(·, ω) on R
d which we denote

macroscopic extrema minimizers or infinite-volume states. They are obtained,
as explained in the introduction, through a two limits procedure. We first show
that for any K ≥ 1 + C0θ‖g‖∞, where C0 is the constant in (11), the K−
maximal and minimal minimizers of GK

1 in Λn as n → ∞ converge in a suitable
way to u±,K . Then we define the v±(·, ω) as the pointwise limit, when K → ∞
of u±,K . We show that the v±(·, ω), constructed in such a way, are minimizers
under compact perturbations and they do not depend on the boundary values.

Theorem 4.1. [infinite-volume states] For almost all ω ∈ Ω, there exist two
functions v+(x, ω), v−(x, ω), x ∈ R

d, having the following properties.

• If 2s ≤ 1, then v±(·, ω) ∈ Cα
loc(R

d) for all α < 2s. If s ∈ (12 , 1), then

v±(·, ω) ∈ C1,α
loc (R

d) for all α < 2s− 1.

• v±(·, ω) are translation covariant.

•
v+(x, ω) = −v−(x,−ω) x ∈ R

d. (38)

• v± are minimizers under compact perturbations in the sense of Def. 2.4,
(1).

•
‖v±(ω)‖∞ ≤ 1 + C0θ‖g‖∞, (39)

where C0 is the constant in (11).

• Let Λn = (−n
2 ,

n
2 )

d, n ∈ N, we have

limn−d

∫

Λn

v±(x, ω)dx = m±, (40)

where m± = E

[∫
[− 1

2
, 1
2
]d
v±(x, ·)dx

]
, and m+ = −m− ≥ 0.

• Given v0 ∈ L∞(Rd), let w̄n(·, ω) be a minimizer of Gv0
1 (v, ω,Λn) according

to Definition 2.4, then uniformly on v0

v−(x, ω) ≤ lim inf
n→∞

w̄n(x, ω) ≤ lim sup
n→∞

w̄n(x, ω) ≤ v+(x, ω), (41)

where the convergence in x is uniformly on compacts.

These v±(·, ω) infinite volume minimizers will be obtained as limits of the so-
called K-maximal/minimal minimizers.

16



Proposition 4.2. Let K ∈ R, K ≥ 1 + C0θ‖g‖∞ and u±,K
n ∈ Hs

loc(R
d) ∩

L∞(Rd) be respectively the K−maximal and the K−minimal minimizers of G1

in Λn = (−n
2 ,

n
2 )

d. We have that P−a.s.

lim
n→∞

u±,K
n (x, ω) = u±,K(x, ω) pointwise and uniformly on compacts in x.

(42)
Further

• If 2s ≤ 1, then u±,K(·, ω) ∈ Cα
loc(R

d) for all α < 2s. If s ∈ (12 , 1), then

u±,K(·, ω) ∈ C1,α
loc (R

d) for all α < 2s− 1.

• u±,K(·, ω) are translation covariant.

•
u+,K(·, ω) = −u−,K(·,−ω), P− a.s. (43)

.

Remark 4.3. As in Remark 2.8 the convergence in (42) holds in C0,β, β <
α < 2s when s ∈ (0, 12 ] and in C1,β, β < α, α < 2s− 1 when s ∈ (12 , 1).

Proof. We start proving the existence of u±,K . For z ∈ Z
d, denote by

uz,+,K
n := uz,+,K

n (·, ω) the maximal minimizer of G1 in the domain z + Λn,
so that uz,+,K

n (·, ω) = K in R
d \ (z+Λn) and respectively uz,−,K

n := uz,−,K
n (·, ω)

the minimal minimizer of G1 in the domain z +Λn , so that uz,−,K
n (·, ω) = −K

in R
d \ (z +Λn). If z = 0 we write u±,K

n . Without loss of generality we assume
for the next paragraph z = 0.

By Lemma 3.1, (2), ‖u±,K
n ‖∞ ≤ K for any n. Therefore u+,K

m ≤ K on
Λm \ Λn for m > n. Lemma 3.4 implies that for any x and ω (and n > n0(x)
) the sequence {u+,K

n (x, ω)}n is decreasing. Moreover it is bounded from below
by −K. Hence, reasoning in a similar manner for u−,K

n ,

u±,K(x, ω) := lim
n

u±,K
n (x, ω)

exist and are measurable as function of ω. We start analyzing the case 2s ≤ 1.
As the u±,K

n are bounded and minimizers, they are on each fixed cube Q Hölder
continuous of order α < 2s for any 2s ≤ 1, uniformly in n, provided Q ⊆ Λn, see
Proposition 6.3. This implies that subsequences converge locally uniformly to a
Hölder function of order α < 2s. As the entire sequence converges pointwise, the
limit of any subsequence must coincide with u±,K , which is therefore a locally
Hölder continuous function of order α < 2s. The same argument for general
z yields monotone limits uz,±,K . When s ∈ (12 , 1) the argument goes in the
same way, the only difference is that by Proposition 6.3 the minimizers u±,K

n

are uniformly bounded and uniformly with respect to n in C1,α with α < 2s− 1
on each fixed cube Q which does not depend on n.

To show that u±,K are translational covariant, notice that, by (9)

u0,+,K
n (0, ω) = uz,+,K

n (z, T−zω).
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Take m large enough so that Λn + z ⊆ Λm. We have that uz,+,K
n (z, T−zω) =

u0,+,K
n (0, ω) ≥ u0,+,K

m (0, ω), since m > n. Then letting first n → ∞ and then
m → ∞ we get uz,+,K(z, T−zω) ≥ u0,+,K(0, ω). The opposite equality follows
in the same way by taking Λm ⊆ Λn + z. Note that we used in the proof
that the boundary condition is translation invariant. Next we prove (43). It is
immediate to verify that

GK
1 (v, ω,Λn) = G−K

1 (−v,−ω,Λn) = G−K
1 (w,−ω,Λn), (44)

(see notation (16)), if we set −v = w. Therefore if u+,K
n (·, ω) is the maximal

minimizer of GK
1 (v, ω,Λn) we have that wn(·,−ω) = −u+,K

n (·, ω) is the minimal
minimizer of G−K

1 (w,−ω,Λn) in Λn, i.e wn(·,−ω) = u−,K
n (·,−ω). Then letting

n → ∞ we get (43).

Next we show that the states u±,K are indeed minimizers under compact
perturbations. In the proof we will only use that the boundary condition is
bounded by K and has the regularity of a minimizer, but not that it is actually
a constant.

Proposition 4.4. Let K ∈ R, K ≥ 1 + C0θ‖g‖∞ and u±,K(·, ω) be the func-
tions constructed in Proposition 4.2. Then, for any Λ ⋐ R

d, we have that

Gu+,K

1 (u+,K , ω,Λ) ≤ Gu+,K

1 (u, ω,Λ),

for any measurable function u which coincides with u+,K(·, ω) in Λc. The same
holds for u−,K.

Proof. Denote shortly u+,K = u∗. We argue by contradiction. Assume that
there exists a bounded set Λ and a measurable function u so that Gu∗

1 (u, ω,Λ) <
Gu∗

1 (u∗, ω,Λ). Let Λn be so large that Λ ⊂ Λn and let u+,K
n be the K−maximal

minimizer of G1 in Λn, see Definition 3.6.
For simplicity we drop the dependence on ω and denote

E1 := Gu∗

1 (u∗,Λ), E2 := Gu∗

1 (u,Λ), En := GK
1 (u+,K

n ,Λn).

By assumption there exists a δ > 0 such that E2 + δ < E1. The aim is to
construct a function ũn such that if E2 + δ < E1 then GK

1 (ũn,Λn) < En for
some n large enough, which gives a contradiction.

Step 1 : By (15)

E1 = K1(u
∗,Λ) +W((u∗,Λ), (u∗,Λc)) (45)

E2 = K1(u,Λ) +W((u,Λ), (u∗,Λc)) (46)

En = K1(u
+,K
n ,Λ) +W((u+,K

n ,Λ), (u+,K
n ,Λn \ Λ)) +K1(u

+,K
n ,Λn \ Λ)

+ W((u+,K
n ,Λn \ Λ), (K,Λc

n)). (47)
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Step 2: Next we show that for any ǫ > 0 there exists nǫ s.t. for n ≥ nǫ

|K1(u
+,K
n ,Λ)−K1(u

∗,Λ)| < ǫ, (48)

A ≡ |W((u∗,Λ), (u∗,Λn \ Λ))−W((u+,K
n ,Λ), (u+,K

n ,Λn \ Λ))| < ǫ. (49)

The bound (48) follows immediately from Proposition 5.2 with D = Λ, the
regularity properties of the minimizers and Remark 4.3. To show (49), fix
R > 0 so that Λ ⊂ BR/2(0) and require n so large that BR(0) ⊂ Λn. Note that
we can choose such R to be bounded uniformly in n. We upper bound A in (49)
as following:

A ≤ |I1|+ |I2|,

I1 =

∫

Λ

∫

BR(0)\Λ

|u∗(z)− u∗(z′)|2 − |u+,K
n (z)− u+,K

n (z′)|2
|z − z′|d+2s

dzdz′,

I2 =

∫

Λ

∫

Λn\BR(0)

|u∗(z)− u∗(z′)|2 − |u+,K
n (z)− u+,K

n (z′)|2
|z − z′|d+2s

dzdz′.

I1 is estimated (in a very rough way) by Proposition 5.2 with D = BR. For I2,
since |u∗| ≤ K, |u+,K

n | ≤ K we have

|I2| ≤
∫

Λ

∫

Rd\BR(0)

8K

|z − z′|d+2s
dzdz′ ≤ 8KC(d)|Λ|

∫ ∞

R/2

r−2s−1 ≤ K|Λ|C′(d)R−2s.

Here we used the integrability of the kernel at infinity. In conclusion, by choosing
first R sufficiently large, depending on ǫ, and then nǫ large depending on R we
obtain (48) and (49) for all n ≥ nǫ.

Step 3: In the same way as I2 above we use the integrability of the kernel at
infinity to get

|W((u∗,Λ), (u∗,Λn \ Λ))−W1((u
∗,Λ), (u∗,Rd \ Λ))|

≤ 4KC(d)|Λ|
∫ ∞

R/2

r−2s−1 ≤ K|Λ|C′(d)R−2s < ǫ

for R and n sufficiently large. So

En >E1 − 3ǫ+K1(u
+,K
n ,Λn \ Λ) +W((u+,K

n ,Λn \ Λ), (K,Λc
n))

>E2 +K1(u
+,K
n ,Λn \ Λ) +W1((u

+,K
n ,Λn \ Λ), (K,Λc

n)) + δ − 3ǫ.
(50)

Step 4 Now we construct a function on Λn such that its energy in this cube
with K b.c. approximates the first three terms in the last line of (50), which
will lead to a contradiction. Define a function ũn which is equal to u in Λ and
equal to u+,K

n outside a boundary layer of width 1 of Λ:

ũn(x) :=





u(x), if x ∈ Λ,
u+,K
n (x) if x ∈ R

d : dist(x,Λ) > 1,
u∗(x) + Ψ(x)(u+,K

n (x) − u∗(x)) else
(51)
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where Ψ : Rd → [0, 1] is a smooth cut-off function nondecreasing in dist(x,Λ)
with Ψ(x) = 0 if dist(x,Λ) < 1/2 and Ψ(x) = 1 if dist(x,Λ) > 1. Notice that
ũn−u∗ → 0 in C0,α(Λn \Λ) for α < 2s. By the equality u∗(x)+Ψ(x)(u+,K

n (x)−
u∗(x)) = u+,K

n (x)+[1−Ψ(x)](u∗(x)−u+,K
n (x)) which we will use in the following

we get also that ũn − u+,K
n → 0 in C0,α(Λn \ Λ) for α < 2s. Set

I3 = |W((u,Λ), (u∗,Λc))−W((u,Λ), (ũn,Λ
c))|

=

∣∣∣∣
∫

Λ

dz

∫

Λc

dz′
|u(z)− u∗(z′)|2 − |u(z)− ũn(z

′)|2
|z − z′|d+2s

∣∣∣∣

=

∣∣∣∣
∫

Λ

dz

∫

Λc

dz′
2u(z)[ũn(z

′)− u∗(z′)] + [(ũn(z
′))2 − (u∗(z′))2]

|z − z′|d+2s

∣∣∣∣ .

As ũn(x) = u∗(x) for x ∈ Λc and dist(x,Λ) < 1/2, the integrand vanishes
unless |z − z′| > 1/2. For R as in Step 2 we estimate I3 by splitting Λc =
(Λc ∩BR(0)) ∪ (Λc \BR(0))

I3 ≤ C(d)|Λ|Rd‖u∗ − u+,K
n ‖L∞(BR) + |Λ|C(d)R−2sK.

Choosing first R large and then n0 depending on R and ǫ, we obtain that for
n ≥ n0, |I3| < ǫ and hence, see (46),

E2 ≥ K1(u,Λ) +W((u,Λ), (ũn,Λ
c))− ǫ. (52)

By definition of ũn

W((u,Λ), (ũn,Λ
c)) = W((u,Λ), (ũn,Λn \ Λ)) +W1(u,Λ), (K,Λc

n),

we therefore obtain

E2 ≥ K1(u,Λ) +W1((u,Λ), (ũn,Λn \ Λ)) +W((u,Λ), (K,Λc
n))− ǫ. (53)

Step 5 By (51) and (53)

GK
1 (ũn,Λn) = K1(u,Λ) +W((u,Λ), (ũn,Λn \ Λ)) +W((u,Λ), (K,Λc

n))

+K1(ũn,Λn \ Λ) +W((ũn,Λn \ Λ), (K,Λc
n))

≤ E2 + ǫ+K1(ũn,Λn \ Λ) +W((ũn,Λn \ Λ), (K,Λc
n)).

Therefore

E2 ≥ GK
1 (ũn,Λn)− ǫ−K1(ũn,Λn \ Λ)−W((ũn,Λn \ Λ), (K,Λc

n)). (54)

By (50) if we show that

∣∣K1(ũn,Λn \ Λ)−K1(u
+,K
n ,Λn \ Λ)

∣∣ < ǫ (55)
∣∣W((ũn,Λn \ Λ), (K,Λc

n))−W((u+,K
n ,Λn \ Λ), (K,Λc

n))
∣∣ < ǫ, (56)

then
En > −6ǫ+ δ +GK

1 (ũn,Λn)
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for n sufficiently large. As ǫ was arbitrary and En is minimal value with K-
boundary conditions, this means δ = 0 and hence u∗ is a minimizer under
compact perturbations. Next we prove (55) and (56). Estimate (55) follows by
applying Proposition 5.2 since ũn − u+,K

n → 0 in C0,α(Λn \Λ) for α < 2s. Note
that the difference is equal to zero for dist(x,Λ) > 1. Estimate (56) follows by

∫

(Λn\Λ)×Λc
n

dzdz′
∣∣|ũn(z)−K|2 − |u+,K

n (z)−K|2
∣∣

|z − z′|d+2s

≤ 4K

∫

{dist(x,Λ)≤1}∩(Λn\Λ)×BR(0)c

dzdz′
|ũn(z)− u+,K

n (z)|
|z − z′|d+2s

≤ |2Λ|4K‖u+,K
n − u∗‖L∞(2Λ)C(d)

∫ ∞

R

r−2s−1dr ≤ |2Λ|4K‖u+,K
n − u∗‖L∞(2Λ)C

′(d)R−2s

where we used that ũn = u+,K
n for dist(x,Λ) > 1 and R is chosen as large as

possible with BR(0) ⊆ Λn.

Next we show that ‖u+,K‖∞ is bounded uniformly on K.

Lemma 4.5. Let u±,K(x, ω) the functions constructed in Proposition 4.2, see
(42). Then uniformly in K

‖u±,K(ω)‖∞ ≤ 1 + C0θ‖g‖∞ P− a.s., (57)

where C0 is the constant in (11).

Proof. Take Λ0 = [− 1
2 ,

1
2 ]

d and Λn = (−n
2 ,

n
2 )

d, i.e. |Λn| = nd|Λ0|. Define for
z ∈ Z

d and for any C+ ≥ 1 + C0θ‖g‖∞

Λz := Λ0 + z, Bn(ω) = |{x ∈ Λn : |u+,K(x, ω)| > C+}|
=

∑

z∈Λn∩Zd

|{x ∈ Λz : |u+,K(x, ω)| > C+}|.

Since u+,K is translation covariant

|{x ∈ Λz : |u+,K(x, ω)| > C+}| = |{x ∈ Λ0 : |u+,K(x, Tzω)| > C+}|.

Hence we obtain

Bn(ω) =
∑

z∈Λn∩Zd

|{x ∈ Λ0 : |u+,K(x, Tzω)| > C+}|.

If |{x ∈ Λ0 : |u+,K(x, ω)| > C+}| = 0, P− almost surely then Bn(ω) = 0, P− a.
s. for all n, and we obtain the claim. Suppose that the claim is false. Assume
that for some η > 0

E
{
|{x ∈ Λ0 : |u+,K(x, ω)|

}
= |Λ0|η.
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Therefore by the ergodic theorem Bn(ω)
nd → η almost surely. Fix an ω in the set

of full measure where this holds, and treat it from now on as parameter. There
exists n0 (depending on ω), such that for n ≥ n0, B

n(ω) > ndη/2 > 0.
Now define a function

v(x) :=





C+ ∧ u+,K ∨ (−C+), if {x : dist(x,Λc
n) > 2},

u+,K if x ∈ R
d : {x : dist(x,Λc

n) ≤ 1} ∪ Λc
n

Φ(x) else,
(58)

where Φ(x) is a smooth interpolation between u+,K and C+ ∧ u+,K ∨ (−C+).
By Lemma 3.1 there exists a constant c > 0 which depends on K, θ, C0 and
‖g‖∞ such that

K1(u
+,K ,Λn) ≥ K1(v,Λn) + c|Bn| > K1(v,Λn) + c

η

2
nd. (59)

Note that u+,K is a minimizer and has therefore higher regularity. The cutting
and interpolation procedure retains Hölder regularity. (For the cutting, note
that it is the application of a Lipschitz function. For the interpolation, note that
the cut-off can be chosen smooth, with a uniform bound on the first derivative.)
So we have sufficient regularity to apply Proposition 5.1 for Λn, and we know
that for any given ǫ there exists nǫ sufficiently large so that for n ≥ nǫ

W((u+,K ,Λn), (u
+,K ,Λc

n))−W((v,Λn), (u
+,K ,Λc

n)) ≥ −2ǫ|Λn|. (60)

From (59) adding and subtracting W((u+,K ,Λn), (u
+,K ,Λc

n)) we get

Gu+,K

1 (u+,K ,Λn) ≥ K1(v,Λn) +W((u+,K ,Λn), (u
+,K ,Λc

n)) + cη/2(2n)d.

Taking into account (60) we obtain

Gu+,K

1 (u+,K ,Λn) ≥ Gu+,K

1 (v,Λn)− 2ǫ|Λn|+ cη/2(2n)d.

Choosing n sufficiently large we get Gu+,K

1 (v,Λn) < Gu+,K

1 (u+,K ,Λn), which
contradicts the fact that u+,K is a minimizer under compact perturbations.
Note that the proof works for all C+ ≥ 1 + C0θ‖g‖∞, which proves (57).

Definition 4.6. Infinite volume states Let K ∈ R, K ≥ 1 + C0θ‖g‖∞ and
u±,K(·, ω) the functions constructed in Proposition 4.2. We define the infinite
volume states v±(·, ω) be the following pointwise limit:

lim
K→∞

u±,K = v±, P− a.s. (61)

The limit is well defined since ‖u±,K(·, ω)‖∞ ≤ 1 + C0θ‖g‖∞ and the sequence
{u+,K(·, ω)}K is increasing ({u−,K(·, ω)}K decreasing) in K.

In the next lemma we show that the v± inherit the regularity of u±,K and that
convergence in (61) holds in a stronger norm.
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Lemma 4.7. Let K ∈ R, K ≥ 1 + C0θ‖g‖∞ and u±,K(·, ω) the functions
constructed in Proposition 4.2. Then v±(·, ω) defined in (61) are in C0,α

loc (R
d)

for any α < 2s for 2s ≤ 1, and C1,α
loc (R

d) for any α < 2s− 1 for 2s > 1. Further
for any Λ ⋐ R

d the convergence in (61) holds in C0,β(Λ), β < α < 2s when
s ∈ (0, 1

2 ], and in C1,β(Λ), β < α < 2s− 1 when s ∈ (12 , 1).

Proof. By Proposition 4.2 {u±,K(·, ω)}K is bounded and in C0,α
loc for any α <

2s for 2s ≤ 1, and C1,α
loc for any α < 2s − 1 for 2s > 1. This implies that

subsequences converge locally uniformly to an Hölder function of order α < 2s
when 2s ≤ 1 and when 2s > 1 to a function in C1,α

loc for α < 2s−1. As the entire
sequence converges pointwise, the limit of any subsequence must coincide with
v± , which is therefore a locally Hölder continuous function of order α < 2s
when 2s ≤ 1 or when 2s > 1 a function in C1,α

loc with α < 2s− 1. From this and
the compact embedding of Hölder spaces, see Remark 2.8, we deduce that u±,K

converge to v± on any compact set Λ in C0,β(Λ), β < α < 2s when 2s ≤ 1 and
on C1,β(Λ), β < α when α < 2s− 1.

The following lemma states that pointwise limits of minimizers under com-
pact perturbations are minimizers under compact perturbations. As we could
not find an appropriate result in the literature, we prove it here in the form
needed for this paper.

Lemma 4.8. Let Ψk : R
d → R be a family of uniformly bounded (in L∞)

minimizers under compact perturbations of G1, see Definition (2.4). Assume
that {Ψk} converges pointwise to a function Ψ : Rd → R. Then Ψ is a minimizer
of G1 under compact perturbations.

Proof. In the following ω is a parameter, so we avoid to write it explicitly.
We show the lemma by contradiction. Assume that Ψ is not a minimizer under
compact perturbation. Then there exist a compact set (which we may assume
to be a cube) Λ and a measurable function u so that GΨ

1 (u, ω,Λ) < GΨ
1 (Ψ, ω,Λ).

Denote Λ1 = Λ ∪ {x ∈ R
d : dist(x,Λ) ≤ 2}

E1 := GΨ
1 (Ψ, ω,Λ), E2 := GΨ

1 (u, ω,Λ), Ek := GΨk

1 (Ψk, ω,Λ1).

By assumption there exists a δ > 0 such that E2 + δ < E1. The aim is to

construct a function Ψ̃k, for some k large enough, such that if E2 + δ < E1

then GΨk

1 (Ψ̃k,Λ1) < Ek, which gives a contradiction, since Ψk is by assumption
a minimizer under compact perturbations. The proof is similar to the one in
Proposition 4.4.
Step 1 : By (15)

E1 = K1(Ψ,Λ) +W((Ψ,Λ), (Ψ,Λc)) (62)

E2 = K1(u,Λ) +W((u,Λ), (Ψ,Λc)) (63)

Ek = K1(Ψ
k,Λ1) +W((Ψk,Λ1), (Ψ

k,Λc
1)) (64)
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We write Ek as

Ek = K1(Ψ
k,Λ) +W((Ψk,Λ), (Ψk,Λc)) +Bk,

where
Bk = K1(Ψ

k,Λ1 \ Λ) +W((Ψk,Λ1 \ Λ), (Ψk,Λc
1)).

Step 2: Next we show that for any ǫ > 0 there exists kǫ s.t. for k ≥ kǫ

|K1(Ψ
k,Λ)−K1(Ψ,Λ)| < ǫ, (65)

A ≡ |W((Ψ,Λ), (Ψ,Λc))−W((Ψk,Λ), (Ψk,Λc))| < ǫ. (66)

The (65) follows immediately from Proposition 5.2 with D = Λ, the regularity
property of the minimizers, see Lemma 4.7. For (66), fix R > 0 so that Λ ⊂
BR/2(0). We upper bound A in (66) as following:

A ≤ |I1|+ |I2|,

I1 =

∫

Λ

∫

BR(0)\Λ

|Ψ(z)−Ψ(z′)|2 − |Ψk(z)−Ψk(z′)|2
|z − z′|d+2s

dzdz′,

I2 =

∫

Λ

∫

Λc\BR(0)

|Ψ(z)−Ψ(z′)|2 − |Ψk(z)−Ψk(z′)|2
|z − z′|d+2s

dzdz′.

I1 is estimated (in a very rough way) by Proposition 5.2 with D = BR. For I2,
since |Ψ| ≤ C+, |Ψk| ≤ C+ we have

|I2| ≤
∫

Λ

∫

Rd\BR(0)

8C+

|z − z′|d+2s
dzdz′ ≤ 8C+C(d)|Λ|

∫ ∞

R/2

r−2s−1 ≤ C+|Λ|C′(d)R−2s.

Here we used the integrability of the kernel at infinity. In conclusion, by choosing
first R sufficiently large, depending on ǫ, and then kǫ large depending on R we
obtain (65) and (66) for all k ≥ kǫ.

Step 3: By (65) and (66) for k sufficiently large

Ek > E1 − 2ǫ+Bk > E2 + δ − 2ǫ+Bk. (67)

Step 4 Define a function Ψ̃k which is equal to u in Λ and equal to Ψk outside
a boundary layer of width 1 of Λ.

Ψ̃k(x) :=





u(x), if x ∈ Λ,
Ψk(x) if x ∈ R

d : dist(x,Λ) > 1
Ψ(x) + Φ(x)(Ψk(x)−Ψ(x)) else

(68)

where Φ : Rd → [0, 1] is a smooth cut-off function nondecreasing in dist(x,Λ)
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with Φ(x) = 0 if dist(x,Λ) < 1/2 and Φ(x) = 1 if dist(x,Λ) > 1. Then

I3 := |W((u,Λ), (Ψ,Λc))−W((u,Λ), (Ψ̃k,Λc))|

=

∣∣∣∣∣

∫

Λ

dz

∫

Λc

dz′
|u(z)−Ψ(z′)|2 − |u(z)− Ψ̃k(z′)|2

|z − z′|d+2s

∣∣∣∣∣

=

∣∣∣∣∣

∫

Λ

dz

∫

Λc

dz′
2u(z)[Ψ̃k(z′)−Ψ(z′)] + [Ψ̃k(z′)−Ψ(z′)][Ψ̃k(z′) + Ψ(z′)]

|z − z′|d+2s

∣∣∣∣∣

=

∣∣∣∣∣

∫

Λ

dz

∫

Λc

dz′1I|z−z′|>1/2|
2u(z)[Ψ̃k(z′)−Ψ(z′)] + [Ψ̃k(z′)−Ψ(z′)][Ψ̃k(z′) + Ψ(z′)]

|z − z′|d+2s

∣∣∣∣∣ .

The last equality holds since Ψ̃k(x) = Ψ(x) for x ∈ Λc and dist(x,Λ) < 1/2,
therefore the integrand vanishes unless |z − z′| > 1/2. Take R so large that
Λ ⊂ BR

2
(0) and split Λc = (Λc ∩BR(0)) ∪ (Λc \BR(0)). We obtain

I3 ≤ C(d)|Λ|Rd‖Ψ−Ψk‖L∞(BR) + |Λ|C(d, θ, C0, ‖g‖∞)R−2s.

For any ǫ take R0(ǫ) so that for R ≥ R0(ǫ), |Λ|C(d, θ, C0, ‖g‖∞)R−2s ≤ ǫ
2 , then

take K0 depending on ǫ, so that that for K ≥ K0, |I3| < ǫ and hence

E2 = K1(u,Λ)+W((u,Λ), (Ψ,Λc)) ≥ K1(u,Λ)+W((u,Λ), (Ψ̃k,Λc))− ǫ. (69)

By definition of Ψ̃k

W((u,Λ), (Ψ̃k,Λc)) = W((u,Λ), (Ψ̃k,Λ1 \ Λ)) +W1((u,Λ), (Ψ
k,Λc

1)).

We therefore obtain

E2 ≥ K1(u,Λ) +W((u,Λ), (Ψ̃k,Λ1 \ Λ)) +W1((u,Λ), (Ψ
k,Λc

1))− ǫ. (70)

Step 5 By (68) and (70)

GΨk

1 (Ψ̃k,Λ1) = K1(u,Λ) +W((u,Λ), (Ψ̃k,Λ1 \ Λ)) +W((u,Λ), (Ψk,Λc
1))

+K1(Ψ̃k,Λ1 \ Λ) +W((Ψ̃k,Λ1 \ Λ), (Ψk,Λc
1))

≤ E2 + ǫ+ K1(Ψ̃k,Λ1 \ Λ) +W((Ψ̃k,Λ1 \ Λ), (Ψk,Λc
1)).

(71)

Next we show that for any ǫ > 0 there exists kǫ so that for k ≥ kǫ
∣∣∣K1(Ψ̃k,Λ1 \ Λ)−K1(Ψ

k,Λ1 \ Λ)
∣∣∣ < ǫ (72)

∣∣∣W((Ψ̃k,Λ1 \ Λ), (Ψk,Λc
1))−W((Ψk,Λ1 \ Λ), (Ψk,Λc

1))
∣∣∣ < ǫ. (73)

Assuming that (72) and (73) hold, we obtain from (67) and (71) that

Ek > E2 + δ − 2ǫ+Bk ≥ −4ǫ+ δ +GΨk

1 (Ψ̃k,Λ1)
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for k sufficiently large. As ǫ was arbitrary and Ek is minimal value with Ψk-
boundary conditions, δ = 0 and hence Ψ is a minimizer under compact pertur-
bations.

To prove (72), we notice that Ψ̃k(x) = Ψ(x) + Φ(x)(Ψk(x) − Ψ(x)) =

Ψk(x)+ (1−Φ(x))(Ψ(x)−Ψk(x)) and Φ(x) = 1 when dist(x,Λ) ≥ 1 and ‖Ψ̃k−
Ψk‖C0,β(Λ1\Λ) → 0 for β < α < 2s when s ∈ (0, 1

2 ] and ‖Ψ̃k−Ψk‖C1,β(Λ1\Λ) → 0

for β < α when s ∈ (12 , 1). Therefore by Proposition 5.2 for k large enough
∣∣∣K1(Ψ̃k,Λ1 \ Λ)−K1(Ψ

k,Λ1 \ Λ)
∣∣∣ ≤ ǫ

Note that the difference is equal to zero for dist(x,Λ) > 1. Next we prove (73).
We have

∫

(Λ1\Λ)×Λc
1

∣∣|Ψ̃k(z)−Ψk(z′)|2 − |Ψk(z)−Ψk(z′)|2
∣∣

|z − z′|d+2s

=

∫

(Λ1\Λ)×Λc
1

1I{dist(z,Λ)≤1}

∣∣|Ψ̃k(z)−Ψk(z′)|2 − |Ψk(z)−Ψk(z′)|2
∣∣

|z − z′|d+2s

≤ C

∫

(Λ1\Λ)×Λc
1

1I{dist(z,Λ)≤1}
|Ψ(z)−Ψk(z)|
|z − z′|d+2s

≤ C|Λ| d−1

d ‖Ψ−Ψk‖L∞(Λ1)

∫ ∞

1

r−2s−1dr ≤ C|Λ| d−1

d ‖Ψ−Ψk‖L∞(Λ1) ≤ ǫ

if k ≥ kǫ.

Now we can prove the main theorem:
Proof of Theorem 4.1 Let v± be the infinite volume states defined in (61).

The existence and the first three properties of v± are established in Proposition
4.2 for u±,K and they are inherited by the limit. Lemma 4.5 establishes the L∞

bound for u±,K which is inherited by the limit as well. The proof that v± are
minimizers under compact perturbation is done in Lemma 4.8. Next we prove
(40). We have

∫

Λn

v±(x, ω)dx =
∑

z∈Λn∩Zd

∫

{z+[− 1
2
, 1
2
]d}

v±(x, ω)dx

=
∑

z∈Λn∩Zd

∫

[− 1
2
, 1
2
]d
v±(Tzx, ω)dx =

∑

z∈Λn∩Zd

∫

[− 1
2
, 1
2
]d
v±(x, T−zω)dx.

(74)

Since |v±(x, ω)| ≤ (1 + C0θ‖g‖∞), by the Birkhoff’s ergodic theorem, see for
example [12], we have P− a.s

lim
1

nd

∫

Λn

v±(x, ω)dx = lim
1

nd

∑

z∈Λn∩Zd

∫

[− 1
2
, 1
2
]d
v±(x, T−zω)dx

= E

[∫

[− 1
2
, 1
2
]d
v±(x, ·)dx

]
= m±.

(75)
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It remains to show (41). Let w̄n be as in the statement of the theorem
and fix x ∈ Λn. Denote K = max{‖v̄0‖∞, (1 + C0θ‖g‖∞)}. Let u±,K

n the K−
maximal and the K− minimal minimizer of G1 in Λn, see Definition 3.6. By
Lemma 3.4 we get that u−,K

n (x, ω) ≤ w̄n(x, ω) ≤ u+,K
n (x, ω) for x ∈ R

d. Then,
by (42), uniformly for any compact set of Rd containing x we have

v−(x, ω) ≤ u−,K(x, ω) ≤ lim inf
n

w̄n(x, ω) ≤ lim sup
n

w̄n(x, ω) ≤ u+,K(x, ω) ≤ v+(x, ω).

The first and last inequality hold since {u+,K}K is increasing ({u−,K}K de-
creasing) in K. The (41) follows. �

In the next Lemma we bound uniformly in ω the difference between the
energy of the two extrema macroscopic minimizers v±.

Lemma 4.9. Let Λ ⋐ R
d, cube-like, v± be the infinite volume states constructed

in Theorem 4.1. There exists a positive constant C depending on θ, d, s, C0

and ‖g‖∞, so that P− a.s.

∣∣G1(v
+, ω,Λ)−G1(v

−, ω,Λ)
∣∣ ≤





C|Λ| d−2s
d , s ∈ (0,

1

2
),

C|Λ| d−1

d , s ∈ (
1

2
, 1),

C|Λ| d−1
d log |Λ|, s =

1

2
.

(76)

Proof. Let the cut-off function Ψ : R
d → R be a smooth nondecreasing

function in dist(x,Λc) with Ψ(x) = 1 if dist(x,Λc) ≥ 1 and Ψ(x) = 0 if
dist(x,Λc) = 0. Set

ũ := Ψv+ + (1−Ψ ) v−. (77)

The function ũ is equal to v− when x ∈ Λc and equal to v+ when x ∈ Λ,
dist(x,Λc) > 1 and interpolates in a smooth way between these values. Since
v− is the minimal − minimizer in Λ we have

G1(v
−, ω,Λ) ≤ Gv−

1 (ũ, ω,Λ). (78)

We will show that

Gv−

1 (ũ, ω,Λ) ≤ G1(v
+, ω,Λ) +M(s) (79)

where we denote shortly by M(s) the right hand side of (76). Therefore from
(78)

G1(v
−, ω,Λ)−G1(v

+, ω,Λ) ≤ M(s). (80)

In a similar way we can show that

G1(v
+, ω,Λ)−G1(v

−, ω,Λ) ≤ M(s). (81)

Then, from (80) and (81) we get (76). Next we show (79). By definition

Gv−

1 (ũ, ω,Λ) = K1(ũ, ω,Λ) +W((ũ,Λ)(v−,Λc)). (82)
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Denote by
∂Λ = {x ∈ Λ : dist(x,Λc) ≤ 1}.

By definition of ũ, see (77), we have

K1(ũ, ω,Λ) = K1(v
+, ω,Λ \ ∂Λ) +K1(ũ, ω, ∂Λ) +W((v+,Λ \ ∂Λ), (ũ, ∂Λ)). (83)

By adding and subtracting K1(v
+, ω, ∂Λ) and the interaction term W((v+,Λ \

∂Λ), (v
+, ∂Λ)) we get

K1(ũ, ω,Λ) = K1(v
+, ω,Λ) +

[
K1(ũ, ω, ∂Λ)−K1(v

+, ω, ∂Λ)
]

+
[
W((v+,Λ \ ∂Λ), (ũ, ∂Λ))−W((v+,Λ \ ∂Λ), (v+, ∂Λ))

]
.

(84)

For the second term of (82) we add and subtract W((v+,Λ), (v+,Λc)) obtaining

W((ũ,Λ)(v−,Λc)) = W((v+,Λ), (v+,Λc))+
[
W((ũ,Λ), (v−,Λc))−W((v+,Λ), (v+,Λc))

]
.

(85)
Taking into account (82), (84) (85) we get that

Gv−

1 (ũ, ω,Λ) = Gv+

1 (v+, ω,Λ) +R1 +R2 +R3 (86)

where

R1 =
[
K1(ũ, ω, ∂Λ)−K1(v

+, ω, ∂Λ)
]
,

R2 =
[
W((v+,Λ \ ∂Λ), (ũ, ∂Λ))−W((v+,Λ \ ∂Λ), (v+, ∂Λ))

]
,

R3 =
[
W((ũ,Λ), (v−,Λc))−W((v+,Λ), (v+,Λc))

]
.

(87)

Since R2 and R3 are difference of positive terms and ũ, v− and v+ are smooth
enough we can apply (23) of Lemma 3.2 to each single term obtaining

|R2| ≤ M(s), |R3| ≤ M(s).

Next we estimate R1. We have

|R1| ≤
∫

∂Λ

dx

∫

∂Λ

dy

∣∣(ũ(x) − ũ(y))2 − (v+(x) − v+(y))2
∣∣

|x− y|d+2s

+

∫

∂Λ

∣∣W (ũ(x))−W (v+(x))
∣∣ dx+ θ

∫

∂Λ

∣∣g1(x, ω)
[
ũ(x) − v+(x)

]∣∣dx

≤
∫

∂Λ

dx

∫

∂Λ

dy

∣∣(ũ(x)− ũ(y))2 − (v+(x) − v+(y))2
∣∣

|x− y|d+2s

+ C(C0, θ, ‖g‖∞)|Λ| d−1

d

(88)

where C(C0, θ, ‖g‖∞) is a constant which depends only on θ, the bound on the
random field, see (8) and the interaction W . We need some care to estimate
the integral term in (88) since the integral might be singular. We exploit the
regularity of the minimizers. Recall that for s ∈ (0, 1

2 ], v
+ ∈ C0,α

loc (R
d) for α < 2s
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and for s ∈ (12 , 1), v
+ ∈ C1,α

loc (R
d) for α < 2s− 1. The same regularity holds by

construction for ũ. Therefore
∫

∂Λ

∫

∂Λ

[
(ũ(x)− ũ(y))2 − (v+(x)− v+(y))2

]

|x− y|d+2s

≤





2C

∫

∂Λ

∫

∂Λ

1

|x− y|d+2s−2α
s ∈ (0,

1

2
]

2C

∫

∂Λ

∫

∂Λ

1

|x− y|d+2s−2
s ∈ (

1

2
, 1).

(89)

We have that when s ∈ (0, 1
2 ], 2s − 2α < 0 and when s ∈ (12 , 1), 2s − 2 < 0.

Therefore both terms on the right hand side of (89) are integrable and bounded

by C|Λ| d−1
d .

The quantity defined next plays a fundamental role.

Definition 4.10.

1. For a cube Λ ⊆ R
n we define BΛ as the σ-algebra generated by the random

field in Λ.

2. Let v±(ω) be the infinite volume states constructed before. We define

Fn(ω) := E
[{
G1(v

+(·), ·,Λn)−G1(v
−(·), ·,Λn)

}
|BΛn

]
. (90)

Remark 4.11. By definition Fn(·) is BΛn
measurable and by the symmetry

assumption on the random field {g(z, ·), z ∈ Z
d}

E [Fn(·)] = 0. (91)

Namely v+(x, ω) = −v−(x,−ω) for x ∈ R
d. This implies that

G1(v
+(ω), ω,Λn) = G1(v

−(−ω),−ω,Λn) (92)

and by the symmetry of the random field we get (91).

Next we want to quantify how v±(ω) changes when the random field is modified
only in one site, for example at the site i. We introduce the following notation:

ω(i) : ω(i)(z) = ω(z) z 6= i, ω = (ω(i), ω(i)) i, z ∈ Z
d.

The v+(·, (ω(0), ω(0))) is then the state v+ when the random field at the origin
is ω(0), and v+(·, (ω(0) − h, ω(0))) the state v+ when the random field at the
origin is ω(0)− h, and the same definition is used for the infinite volume state
v−(·, (·, ω(0))) and for the finite volume minimizers v±n (·, (·, ω(0))).

Now we are able to state the following lemma:
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Lemma 4.12. For Λ ⋐ R
d, 0 ∈ Λ, h > 0 we have

θh

∫

Q(0)

v+(ω(0), ω(0))dx

≥ G1(v
+(ω(0)− h, ω(0)), (ω(0)− h, ω(0)),Λ)−G1(v

+(ω(0), ω(0)), (ω(0), ω(0)),Λ)

≥ θh

∫

Q(0)

v+(ω(0)− h, ω(0))dx

(93)

where Q(0) = [−1/2, 1/2]d. The same inequalities hold for v−.

Proof. Let Λn be a cube centered at the origin so that Λ ⊂ Λn, K ≥ (1 +
C0θ‖g‖∞). Let v+n = v+,K be the K− maximal minimizer of G1 in Λn see
Definition 3.6. Remark that v+n is measurable with respect to the random field
g(z, ω), z ∈ Λn ∩ Z

d. We have

G1(v
+
n (ω(0), ω

(0)), (ω(0), ω(0)),Λ)−G1(v
+
n (ω(0)− h, ω(0)), (ω(0)− h, ω(0)),Λ)

= G1(v
+
n (ω(0), ω

(0)), (ω(0), ω(0)),Λ)−G1(v
+
n (ω(0), ω

(0)), (ω(0)− h, ω(0)),Λ)

+G1(v
+
n (ω(0), ω

(0)), (ω(0)− h, ω(0)),Λ)−G1(v
+
n (ω(0)− h, ω(0)), (ω(0)− h, ω(0)),Λ).

(94)

By explicit computation, see (12), we have that

G1(v
+
n (ω(0), ω

(0)), (ω(0), ω(0)),Λ)−G1(v
+
n (ω(0), ω

(0)), (ω(0)− h, ω(0)),Λ)

= −hθ

∫

Q(0)

v+n (ω(0), ω
(0))dx.

The last line in (94) is nonnegative, because v+n (ω(0) − h, ω(0)) is a minimizer
of G1 in Λn when the random field is (ω(0)− h, ω(0)). Therefore

G1(v
+
n (ω(0)− h, ω(0)), (ω(0)− h, ω(0)),Λ)−G1(v

+
n (ω(0), ω

(0)), (ω(0), ω(0)),Λ)

≤ hθ

∫

Q(0)

v+n (ω(0), ω
(0))dx.

By splitting

G1(v
+
n (ω(0), ω

(0)), (ω(0), ω(0)),Λ)−G1(v
+
n (ω(0)− h, ω(0)), (ω(0)− h, ω(0)),Λ)

= G1(v
+
n (ω(0), ω

(0)), (ω(0), ω(0)),Λ)−G1(v
+
n (ω(0)− h, ω(0)), (ω(0), ω(0)),Λ)

+G1(v
+
n (ω(0)− h, ω(0)), (ω(0), ω(0)),Λ)−G1(v

+
n (ω(0)− h, ω(0)), (ω(0)− h, ω(0)),Λ)

we obtain in a similar way

G1(v
+
n (ω(0)− h, ω(0)), (ω(0)− h, ω(0)),Λ)−G1(v

+
n (ω(0), ω

(0)), (ω(0), ω(0)),Λ)

≥ hθ

∫

Q(0)

v+n (ω(0)− h, ω(0))dx.
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To pass to the limit note that the cube Q(0) remains fixed. Denote by M the
smallest integer such that Λ ⊆ BM (0), where BM (0) is a ball centered at the
origin of radius M .

By the smoothness of the minimizers, see Proposition 6.3, v+n ∈ C0,α(BM (0))
with α < 2s when 2s < 1 and in C1,α(BM (0)), α < 1− 2s when s ∈ [ 12 , 1). Fur-
ther the sequence {v+n }n uniformly converges to v+,K in BM (0) and |v+,K | ≤
1+C0θ‖g‖∞ uniformly in n and K. By Lebesgue’s Theorem on dominated con-
vergence, we may pass to the limit under the integral as n → ∞. By Definition
4.6 {v+,K}K pointwise converges to v+ when K → ∞, then applying again the
Lebesgue’s Theorem on dominated convergence we pass to the limit as K → ∞
and the claim is shown. The corresponding statement for v− is proved in the
same way.

Remark 4.13. From Lemma 4.12 we have that

ω(0) 7→
∫

Q(0)

v+(ω(0), ω(0))dx

is nondecreasing.

Corollary 4.14. Let ω(i) be the random field in the site i which has probability
distribution absolutely continuous w.r.t the Lebesgue measure. We have that
G1(v

+(ω), ω,Λ) is P-a.e. differentiable w.r.t to ω(i) and

∂G1(v
±(ω), ω,Λ)

∂ω(i)
= −θ

∫

Q(i)

v±(x, ω)dx.

Proof. It is sufficient to consider the case i = 0. By applying Lemma 4.12 for
ω(0) and ω̃(0) = ω(0) + h we see that left and right derivatives exist and are
equal if s 7→

∫
Q(0) v

+(s, ω(0))dx is continuous at s = ω(0). By Remark 4.13 this

happens for Lebesgue almost all s, hence by the assumptions on the random
field P-a.e.

Remark 4.15. When the distribution of g is not absolutely continuous with
respect to Lebesgue measure Corollary 4.14 does not hold. We still can show
Lemma 4.12 but we can only estimate from above and below the difference in
the energy which appears when the random field is modified in one site.

Theorem 4.16. Let Fn(·) be defined in (90), we have that 5

lim
n→∞

1√
|Λn|

[Fn(·)] D
= Z, (95)

5limn→∞ Xn

D
= Z denotes convergence in distribution of the random variables Xn to a

random variable Z.
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where Z stands for a Gaussian random variable with mean 0 and variance b2,
defined in (103) with

4θ2(1 + C0θ‖g‖∞)2 ≥ b2 ≥ D2 (96)

where
D2 = E

[
(E [Fn|B(0)])2

]
, (97)

B(0) is the sigma -algebra generated by g(0, ω) and C0 is given in (11).

The proof of this theorem is done invoking the general result presented in the
appendix and proceeding in the same way as in [7]. To facilitate the reader we
recall below the main steps of the proof.

Proof. We decompose Fn as a martingale difference sequence. We order the
points in Λn∩Z

d according to the lexicographic ordering. In the following i ≤ j
refers to the lexicographic ordering. Any other ordering will be fine but it is
convenient to fix one. We introduce the family of increasing σ− algebra Bn,i,
i ∈ Λn ∩ Z

d where Bn,i is the σ− algebra generated by the random variables
{g(z), z ∈ Λn ∩ Z

d, z ≤ i}. We denote by

Bn,0 = (∅,Ω), Bn,i ⊂ Bn,j i ≤ j, i ∈ Λn ∩ Z
d, j ∈ Λn ∩ Z

d.

We split

Fn =
∑

i∈Zd∩Λn

(E[Fn|Bn,i]− E[Fn|Bn,i−1]) :=
∑

i∈Zd∩Λn

Yn,i. (98)

By construction E [Yn,i] = 0 for i ∈ Z
d ∩ Λn, E [Yn,i|Bn,k] = 0, for all 0 ≤ k ≤

i− 1.
Denote

Vn :=
1

|Λn ∩ Zd|
∑

i∈Λn∩Zd

E
[
Y 2
n,i|Bn,i−1

]
. (99)

By Lemma 4.17 stated below we have that Vn → b2 in probability and b2 satisfies
(96). By Lemma 4.18 stated below we have that for any a > 0

Un(a) :=
1

|Λn ∩ Zd|
∑

i∈Λn∩Zd

E[Y 2
n,i1{|Yn,i|≥a

√
|Λn∩Zd|}

|Bn,i−1] (100)

converges to 0 in probability. We can then invoke Theorem 6.4, stated in the
appendix. The correspondence to the notation used in the appendix is the
following. Identify |Λn ∩ Z

d| with n, Fn√
|Λn∩Zd|

↔ Sn,
Yn,i√
|Λn∩Zd|

↔ Xn,i and

Bn,i ↔ Fn,i. Then (95) is obtained.

Before stating Lemma 4.17 it is convenient to introduce a new sigma-algebra
B≤
i generated by the random fields {g(z, ω), z ∈ Z

d, z ≤ i} where ≤ refers to
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the lexicographic ordering. Define for i ∈ Λn

Wi[ω] = E

[
G1(v

+(ω), ω,Λn)−G1(v
−(ω), ω,Λn)|B≤

i

]

− E

[
G1(v

+(ω), ω,Λn)−G1(v
−(ω), ω,Λn)|B≤

i−1

]
.

(101)

Note thatWi is a random variable depending on random fields on sites smaller or
equal than i under the lexicographic order. In particular it does not depend on
the choice of the cube Λn provided i ∈ Λn. The proof of this last statement uses
that the random field has a distribution continuous with respect to Lebesgue
measure. In particular the proof relies on Corollary 4.14 and it is done in [7,
Lemma 4.9].

Lemma 4.17. Let Vn be the quantity defined in (99). For all δ > 0

lim
n→∞

P
[
|Vn − b2| ≥ δ

]
= 0, (102)

where W0 is defined in (101)

b2 = E
[
W 2

0

]
. (103)

Further
4θ2(1 + C0θ‖g‖∞)2 ≥ b2 ≥ E

[
(E [Fn|B(0)])2

]
, (104)

where C0 is given in (11).

Lemma 4.18. Let Un(a) defined in (100). For any a > 0 for any δ > 0

lim
n→∞

P [Un(a) ≥ δ] = 0.

For the proof of Lemma 4.17 and Lemma 4.18 see [7].

Lemma 4.19. For Λ ⊂ R
d, 0 ∈ Λ, we have

∂

∂ω(0)
E [Fn|B(0)] = −θE

[∫

Q(0)

v+(x, ω)dx|B(0)
]
+θE

[∫

Q(0)

v−(x, ω)dx|B(0)
]

where Q(0) := [−1/2, 1/2]d. Further

E

[
∂

∂ω(0)
E [Fn|B(0)]

]
= −2θm+,

where m+ is defined in (40).

Proof. The proof follows from Corollary 4.14 after taking conditional expec-
tations. Further, by Theorem 4.1, we have

E

[
∂

∂ω(0)
E [Fn|B(0)]

]
= −θE

[
E

[∫

Q(0)

v+(x, ω)dx|B(0)
]]

+ θE

[
E

[∫

Q(0)

v−(x, ω)dx|B(0)
]]

= θ[−m+ +m−] = −2θm+.

(105)
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Lemma 4.20. If

E

[
(E [Fn|B(0)])2

]
= 0 (106)

then m+ = m− = 0, see for the definition (40).

Proof. Denote f(ω(0)) := E [−Fn|B(0)]. Set s = ω(0), (106) can be written as∫
f2(s)P(ds) = 0. This implies that f(s) = 0 for P almost all point of continuity

of the distribution g(0). By Lemma 4.19 and by bound (39) in Theorem 4.1 we
have that (1 + C0‖g‖∞θ)θ ≥ f ′(s) ≥ 0 almost everywhere. If f(s) = 0 for P

almost all point of continuity of the distribution g, then f ′(s) = 0 for P almost
all point of continuity of the distribution of ω(0). But if f ′(s) = 0 then from
Lemma 4.19 we get m+ = m− = 0.

Proof of Theorem 2.7 Applying Theorem 4.16 we get the following lower
bound on the Laplace transform of Fn(ω) defined in Definition 4.10:

lim inf
n→∞

E

[
e
t Fn√

Λn

]
≥ e

t2D2

2 (107)

where D2 is defined in (97). It is immediate to realize that (107) and the results
stated in Lemma 4.9 contradict each other in d = 2 for all s ∈ (12 , 1) and in
d = 1 for s ∈ [ 14 , 1) unless D2 = 0. On the other hand when D2 = 0, Lemma
4.20 implies

m+ = −m− = E

[∫

[− 1
2
, 1
2
]d
v±(x, ·)dx

]
= 0. (108)

Now (41) implies that P-a.s. v+(x, ω) ≥ v−(x, ω) for all x ∈ Rd. This and (108)
imply that v+(x, ω) = v−(x, ω) a.s. By (41) P− a.s. and uniformly for any
compact of Rd containing x we have that

v−(x, ω) ≤ lim inf
n→∞

u∗
n(x, ω) ≤ lim sup

n→∞
u∗
n(x, ω) ≤ v+(x, ω).

Since v− = v+, P− a.s, we obtain that

lim inf
n→∞

u∗
n(x, ω) = lim sup

n→∞
u∗
n(x, ω) = u∗(x, ω) = v±(x, ω)

uniformly on compact of x. The properties of the minimizer stated in Theorem
2.7 therefore follow from the corresponding properties of v±, see Theorem 4.1.
Further we have

E[v+(x, ·)] =symm −E[v−(x, ·)] =unique −E[v+(x, ·)], x ∈ R
d.

This implies for any x ∈ R
d, E[v±(x, ·)] = E[u∗(x, ·)] = 0. �
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5. Technical Lemmas

Proposition 5.1. For any ǫ > 0, for all v ∈ C0,α
loc ∩L∞(Rd), α > s− 1

2 , for all
cubes ∆ large enough

W(v,∆) ≤ ǫ|∆|. (109)

The proof is an application of Lemma 3.2, see (21) and (23).

Proposition 5.2. Take D ⋐ R
d and assume that un → u in C0,α(D) for

s < α < 2s, then

In :=

∣∣∣∣
∫

D×D

|u(z)− u(z′)|2 − |un(z)− un(z
′)|2

|z − z′|d+2s
dzdz′

∣∣∣∣ ≤ C′(d)K|D|(diam(D))d‖u−un‖C0,α ,

which tends to 0.

Proof. Note that

∣∣|u(z)− u(z′)|2 − |un(z)− un(z
′)|2

∣∣
= |[u(z)− u(z′) + un(z)− un(z

′)][u(z)− u(z′)− (un(z)− un(z
′))]|

≤ (|u(z)− u(z′)|+ |un(z)− un(z
′)|) (|(u(z)− un(z))− (u(z′)− un(z

′))|)
≤ (‖u‖C0,α + ‖un‖C0,α)|z − z′|α · ‖u− un‖C0,α |z − z′|α.

As a convergent sequence is bounded, there is a K > 0 such that (‖u‖C0,α +
‖un‖C0,α) < K. So

In ≤
∫

D×D

∣∣|u(z)− u(z′)|2 − |un(z)− un(z
′)|2

∣∣
|z − z′|d+2s

dzdz′

≤ K‖u− un‖C0,α

∫

D×D

|z − z′|2(α−s)−d

≤ C(d)K|D|‖u− un‖C0,α

∫ 2

0

rδ−1dr

≤ C′(d)K|D|(diam(D))d‖u− un‖C0,α → 0

where δ = 2(α− s) > 0. Note that we need only α > s.

6. Appendix

We collect in this section general results about fractional laplacian scattered
in the literature and recall the main probabilistic result used to prove Theorem
4.16.
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6.1. Minimizers of the functional (16) on open bounded Lipschitz sets.

We recall here some basic results assuring that the minimization of the func-
tional (16) in an open, bounded Lipschitz set has solution. In the following ω
plays the role of a parameter. It is kept fixed and the results hold for all ω ∈ Ω.

Proposition 6.1. Let Λ ⋐ R
d be a Lipschitz bounded open set and u0 : Rd → R

be a measurable function. Suppose that there exists a measurable function ũ
which coincides with u0 in Λc and such that G1(ũ, ω,Λ) < ∞. Then there exists
a measurable function u∗ such that

Gu0

1 (u∗, ω,Λ) ≤ Gu0

1 (v, ω,Λ)

for any measurable function v which coincides with u0 in Λc.

Proof. Take a minimizing sequence, that is, let uk = u0 in Λc so that

G1(uk, ω,Λ) ≤ G1(ũ, ω,Λ)

and
lim
k→∞

G1(uk, ω,Λ) = inf
v
G1(v, ω,Λ)

for any v which coincides with u0 in in Λc. Then by the following compactness
result, see Proposition 6.2, up to subsequence, uk converges almost everywhere
to some u∗. By Fatou’s Lemma we conclude.

Proposition 6.2. Let Λ ⋐ R
d be a Lipschitz open set and F be a bounded

subset of L2(Λ). Suppose that

sup
f∈F

∫

Λ

dx

∫

Λ

dy
|f(x)− f(y)|2
|x− y|d+2s

< ∞.

Then F is precompact in L2(Λ).

For the proof of Proposition 6.2 see [14, Lemma 6.11]. The proof is based
on the classical Riesz-Frechet-Kolmogorov Theorem. Some modifications are
needed due to the non locality of the fractional norm. If Λ is not Lipschitz then
Proposition 6.2 does not hold. One can find counterexample, see for example
[4, Example 9.2].

Next we show that minimizers of the functional (16) solve the Euler -
Lagrange equation (115) and prove some regularity results.

In the following, Λ, v0 and ω are kept fixed, therefore we write Gv0
1 (v, ω,Λ) =

G1(v). To derive the Euler Lagrange equation for the minimizers of G1(v) we
compute the Frechet derivative of G1(v). For w ∈ C∞

0 (Λ) we have that

G1(v + tw) = G1(v) + 2t

∫

Λ

dx

∫

Λ

dy
[v(x)− v(y)] · [w(x)− w(y)]

|x− y|d+2s

+ t

∫

Λ

dx[W′(v) + θg1]w + 4t

∫

Λ

dx

∫

Λc

dy
[v(x)− v0(y)] · w(x)

|x− y|d+2s
+O(t2),

(110)
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where W ′(·) is the derivative of W (·) with respect to its argument. Then the
Frechet derivative computed in v is the following linear operator defined for
w ∈ C∞

0 (Λ) as the following

DvG1(w) = 2

∫

Λ

dx

∫

Λ

dy
[v(x)− v(y)] · [w(x) − w(y)]

|x− y|d+2s

+

∫

Λ

dx[W ′(v) + θg1]w + 4

∫

Λ

dx

∫

Λc

dy
[v(x) − v0(y)]w(x)

|x− y|d+2s
.

(111)

At this point one is tempted to split the first integral in (111) in two terms and
exchange x with y in one of the terms to obtain

2

∫

Λ

dxw(x)

∫

Λ

dy
[v(x) − v(y)]

|x− y|d+2s
. (112)

However we cannot always do that. The inner integral in the first integral in
(111) might not be absolutely convergent. So in general it can be defined only
as a principal value. In such a case
∫

Λ

dx

∫

Λ

dy
[v(x) − v(y)] · [w(x) − w(y)]

|x− y|d+2s
=

∫

Λ

dxw(x) lim
r→0

∫

Λ\Br(x)

dy
[v(x) − v(y)]

|x− y|d+2s
,

(113)
where Br(x) is a ball of radius r > 0 centered in x.

From (111) and (113) we deduce that a minimizer ofGv0
1 (v, ω,Λ) is a function

v ∈ Hs
loc ∩ L∞ which solves

2

∫

Λ

dxw(x)((−∆)sv)(x)

+

∫

Λ

dx[W ′(v) + θg1]w + 4

∫

Λ

dx

∫

Λc

dy
[v(x) − v0(y)]w(x)

|x− y|d+2s
= 0.

(114)

We identify the problem stated in (114) to the following Dirichlet boundary
value problem for the corresponding Euler-Lagrange equation:

(−∆)sv = −1

2
[W ′(v) + θg1] in Λ, ω ∈ Ω

v = v0 in Λc.
(115)

We recall the following regularity result proven in [19, Proposition 2.9].

Proposition 6.3. Let w = (−∆)su in R
d so that ‖u‖∞ and ‖w‖∞ are finite.

If 2s ≤ 1 then u ∈ C0,α for any α < 2s, and

‖u‖C0,α ≤ C[‖u‖∞ + ‖w‖∞]

for a constant C = C(d, s, α).
If 2s > 1 then u ∈ C1,α for any α < 2s− 1, and

‖u‖C1,α ≤ C[‖u‖∞ + ‖w‖∞],

for a constant C = C(d, s, α).
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We remark that the above results are valid for solution in the viscosity sense of
(115) in bounded domains. The minimizers solve the Euler-Lagrange equation in
the distributional sense (in H−s), but both notions of solution are equivalent by
Servadei and Valdinoci, [18], leading to a local regularity theory for minimizers.

The main tool to prove Theorem 4.16 is the following general result which
we reported from [11], see [11, Theorem 3.2 and Corollary 3.1].

Theorem 6.4. Let Sn,i, i = 1, . . . kn be a double array of zero mean martingales
with respect to the filtration Fn,i, Fn,i ⊂ Fn+1,i i = 1, . . . kn with Sn,kn

= Sn,
so that Sn,i = E[Sn|Fn,i]. We assume that kn ↑ ∞ as n ↑ ∞. Denote

Xn,i := Sn,i − Sn,i−1,

Vn =

kn∑

i=1

E[X2
n,i|Fn,i−1],

Un,a =

kn∑

i=1

E[X2
n,i1I{|[X2

n,i
|>a}|Fn,i−1].

Suppose that

• for some constant b2 and for all δ > 0, limn→∞ P[|Vn − b2| ≥ δ] = 0,

• for any a > 0 and for any δ > 0

lim
n→∞

P [Un(a) ≥ δ] = 0, (Lindeberg condition)

then in distribution
lim
n→∞

Sn
D
= Z,

where Z is a Gaussian random variable with mean equal to zero and variance
equal to b2.
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