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THE EXTENDED SPECTRAL ELEMENT METHOD FOR THE

APPROXIMATION OF DISCONTINUOUS FUNCTIONS

T. N. PHILLIPS∗ AND C. F. ROWLATT†

Abstract. High-order polynomial approximations of discontinuous functions give rise to oscil-
lations in the vicinity of the discontinuity known as Gibbs phenomenon. Enrichment of the basis
using discontinuous functions is shown to remove these oscillations and to recover the convergence
properties generally associated with the spectral approximation of smooth functions. The conver-
gence properties of the enriched method, known as the extended spectral element method (XSEM)
are studied and optimal error estimates are derived. The extension of these ideas to the immersed
boundary method (IBM) is considered. The IBM is typically used for problems with an interface
or discontinuity that is unfitted to the underlying computational mesh. An extended basis is used
to approximate the pressure and the implication of this for the inf-sup for the Stokes problem is
investigated.
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1. Introduction. Spectral methods are used extensively in many fields of sci-
entific computing (such as computational fluid dynamics) due to their high-order
accuracy and computational efficiency. If a function is sufficiently smooth, then a
spectral approximation yields so-called spectral accuracy where the approximation
convergences faster than algebraically. Traditional spectral methods are limited to
problems defined in simple geometries. Patera [18] introduced the spectral element
method (SEM) which combines the geometric flexibility of a finite element method
(FEM) with the accuracy of a spectral method. In principle, SEM is similar to hp
- FEM. SEM can obtain superior orders of convergence at a smaller computational
time provided the solution is sufficiently smooth and the accepted error level is suf-
ficiently stringent [18]. However, the convergence properties of both FEM and SEM
deteriorate significantly when approximating a function which is discontinuous.

When approximating a discontinuous function using either finite elements or spec-
tral elements, oscillations (known as Gibbs phenomenon) are present local to the dis-
continuity. The maximum amplitude of the oscillation (or overshoot) closest to the
discontinuity tends to a finite limit and the location of the overshoot tends to the
discontinuity. However, as N → ∞ the amplitude of the overshoot can diverge to
+∞, where N is the degree of the polynomial used in the approximation. These
oscillations are undesirable as they influence the approximation not only in a neigh-
bourhood around the discontinuity but also over the entire domain. The spectral
accuracy which can be obtained by spectral methods is lost when approximating a
discontinuous function. The order of convergence for the h-version of FEM is also
impaired when approximating a discontinuous function [21]. Hence, it is desirable to
try to remove or at least control the oscillations present when approximating a dis-
continuous function. It is natural to attempt a smoothing (or filtering) process. In a
smoothing process, the basis functions are multiplied by a so-called smoothing factor,
e.g. Cesaro sums, which dampen the oscillations local to the discontinuity. However,
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too strong a smoothing could result in a smeared solution. For a more complete dis-
cussion on Gibbs phenomenon and its removal using smoothing processes, the reader
is referred to the monograph of Canuto et al. [8, p. 56–68].

An alternative approach, common in FEM (and by natural extension to SEM), is
to fit the computational mesh to the interface (and hence discontinuity) between two
or more regions. This allows each region to be considered separately and thus the dis-
continuity can be treated in a natural way (e.g. using a discontinuous approximation).
Further, any essential boundary conditions can be enforced strongly on the interface.
However, due to the large computational times associated with remeshing, methods
that attempt to do away with the mesh became popular (see e.g. Belytschko et al.
[3]). These so-called meshless methods adopted the partition of unity method (PUM)
[1] to enforce continuity of the approximation. An alternative to meshless methods
are so-called unfitted methods. As the name suggests, in this approach any interface,
discontinuity or singularity is unfitted to a background computational mesh or grid.
This alleviates the need for remeshing but introduces additional complexities such as
Gibbs phenomenon (briefly discussed above). The generalised finite element method
(GFEM) [23] is an unfitted method which is defined as a combination of the classical
FEM and the PUM. In GFEM, the classical FEM approximation is augmented (or
enriched) by the addition of special functions. These special functions are defined
using known information about the singularity or discontinuity.

The extended finite element method (XFEM) proposed by Moës et al. [17] can
be considered as a specific formulation of GFEM. In XFEM, the classical FEM ap-
proximation space is augmented by the span (over a particular subset of nodes) of
the standard FEM basis functions multiplied by a so-called enrichment function. The
particular choice of enrichment function depends on the kind of enrichment that is
required. The XFEM has been applied successfully to a wide range of problems in-
cluding crack propagation problems [17] and two-phase flows [21, 13]. In 2006, Legay
et al. [14] applied so-called spectral finite elements to the XFEM formulation. This
was the first article, as far as we are aware, to consider a higher-order approximation
within the XFEM framework. Chebyshev polynomials with a maximum degree of
N = 4 were considered and convergence was studied with respect to mesh width.
Optimal order of convergence was found for strong discontinuities and nearly optimal
convergence was found for straight weak discontinuities. However, for curved weak
discontinuities, suboptimal convergence was obtained. Legay et al. [14] attributed
this suboptimal rate of convergence to errors in the quadrature scheme. Cheng and
Fries [10] also considered higher-order XFEM applied to curved weak discontinuities
in which they proposed an alternative quadrature scheme to the one considered by
Legay et al. [14]. The modifications to the quadrature scheme are fairly complex
and did not produce optimal rates of convergence for curved weak discontinuities.
However, Cheng and Fries [10] introduced a modified XFEM which produced opti-
mal rates of convergence for curved weak discontinuities. Both Legay et al. [14] and
Cheng and Fries [10] approached the problem from the perspective of higher-order
FEM and in both cases, the maximum polynomial degree considered was N = 4 and
all convergence studies were carried out with respect to mesh width; so-called h-type
convergence. This is contrary to standard spectral (and hence spectral element) stud-
ies where convergence is studied with respect to polynomial degree; so-called p-type
convergence.

In this article, we consider spectral elements within the XFEM framework and
hence name the method: the extended spectral element method (XSEM). This article
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is not concerned with implementation issues such as blending problems. Instead, it
is concerned solely with the theory of XSEM. In particular, we present convergence
results for the approximation of a function in a broken Sobolev space by an extended
spectral element representation. We also consider the approximation of the Stokes
problem using an enriched basis for the pressure and investigate the implication of this
for the inf-sup condition. The motivation for the interest in enriched methods such
as XSEM stems from applications in computational fluid dynamics, such as multi-
phase flow and fluid-structure interaction, in which fields are not necessarily smooth.
Therefore, the use of an enriched method - which changes the approximation space -
could impact any compatibility conditions present. A future article will be dedicated
to the implementation and application of the method.

This article is structured as follows: in Section 2 we provide the mathematical
statement of the problem under consideration. In Section 3 we introduce the spectral
element discretisation followed by the extended spectral element discretisation in Sec-
tion 4. Section 5 discusses the approximation results and finally Section 6 proposes a
value for the discrete inf-sup parameter for the Stokes problem.

2. Mathematical Statement of the Problem. Consider the approximation
of a function u : Ω → R, where Ω ⊂ R

d (1 ≤ d ≤ 2), which is discontinuous across an
interface Γ separating subdomains Ω1 and Ω2 with Ω̄ = Ω̄1 ∪ Ω̄2 and Ω1 ∩ Ω2 = ∅.
Let ui = u|Ωi

, i = 1, 2, denote the restriction of u to Ωi. Therefore, we can write:

u :=

{

u1 in Ω1

u2 in Ω2

(2.1)

Furthermore, we assume that ui ∈ Hm(Ωi), where i = 1, 2 and m ≥ 1. Therefore,
we can define the function u ∈ V = Hm(Ω1 ∪ Ω2) where Hm(Ω1 ∪ Ω2) is a broken
Sobolev space defined by:

Hm(Ω1 ∪ Ω2) =
{

u ∈ L2(Ω): u|Ωi
∈ Hm(Ωi), i = 1, 2

}

(2.2)

and equipped with the norm

∥u∥2H1(Ω1∪Ω2)
=

2
∑

i=1

∥u∥2H1(Ωi)
(2.3)

In the following sections, we discuss the standard spectral element approximation,
illustrate the motivation for choosing an enriched method and present the eXtended
Spectral Element Method (XSEM) before finally discussing the spectral equivalent of
the approximation result derived by Reusken [21] and the inf-sup condition for the
velocity-pressure formulation for Stokes flow.

3. Spectral Element Method. The spectral element method (SEM) was first
proposed by Patera [18] to extend the application of spectral methods to problems
defined in complex geometries. It is well known that SEM should perform better
than traditional finite elements both in terms of accuracy and efficiency provided
the solution is sufficiently regular and that the accepted error level is taken to be
sufficiently small. However, if the regularity of the solution is low then the spectral
element method will only perform as well as finite elements [18].
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The spectral element approximation is chosen to be in a conforming discrete sub-
space, VN ⊂ V. The domain Ω is divided into K uniform, non-overlapping, quadri-
lateral spectral elements Ωe, e = 1, . . . ,K, such that

Ω̄ =

K
∪

e=1

Ω̄e(3.1)

Let PN (Ωe) denote the space of all polynomials on Ωe of degree less than or equal to
N and define:

PN (Ω) :=
{

φ : φ|Ωe
∈ PN (Ωe)

}

(3.2)

Thus the approximation space may then be defined as:

VN := V ∩ [PN (Ω)]d(3.3)

where we assume 1 ≤ d ≤ 2. Note that we have assumed a uniform discretisation of
our domain Ω and therefore, the interface Γ is completely unfitted.

To illustrate the spectral element approximation consider the case d = 1. Each
spectral element Ωe, e = 1, . . . ,K, is mapped to the parent or reference interval
D = [−1, 1] using the transfinite mapping, F , of Schneidesch and Deville [22], where
for each point ξ ∈ D there exists a point x = F (ξ) ∈ Ωe. The approximation of a
function u on the element Ωe is then given by:

ue
N (ξ) =

N
∑

i=0

ûe
ihi(ξ)(3.4)

where ûi = u(F (ξi)) denotes the value of the function u at the node x = F (ξi)
(i = 0, . . . , N), hi(ξ) (i = 0, . . . , N) are the Lagrange interpolants defined on the
parent interval ξ ∈ [−1, 1] by:

hi(ξ) = − (1− ξ2)L′
N (ξ)

N(N + 1)LN (ξi)(ξ − ξi)
(3.5)

and the points ξi, i = 0, . . . , N , are the collocation points on the Gauss-Lobatto
Legendre grid.

The spectral element method described above is a high-order method based on
polynomial interpolation using Legendre polynomials. Therefore, within an element
Ωe, the approximation of a function u is continuous (in fact, the approximation is
continuous everywhere). As we have assumed u is discontinuous across an interface
Γ (which is unfitted to the underlying mesh), we expect that spurious oscillations
will be produced local to the discontinuity. This phenomenon is well known and
is called the Gibbs phenomenon. Gibbs phenomenon can be classified, formally, as
the inability to approximate a discontinuity using continuous functions. To illustrate
this phenomenon we consider the spectral interpolation of a function f on a grid of
uniformly spaced points. For simplicity, we assume that Ω ⊂ R (i.e. d = 1) and that
we have a single spectral element. Define Ω = [−1, 1] and consider the interpolation
of the piecewise constant function:

f(x) =

{

0 ∀x ∈ [−1, 10−4)

1 ∀x ∈ [10−4, 1]
(3.6)
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Note that the point of discontinuity is chosen to be x = 10−4 since x = 0 is a member
of the Gauss-Lobatto Legendre grid. We evaluate the spectral element interpolant of
this function on a uniform grid

Du = {xj ∈ Ω: xj = −1 + j∆x, j = 0, . . . ,M}

where ∆x = 2/M is the constant mesh width, x0 = −1 and xM = 1. The interpolant
is then:

fN (xk) =
N
∑

i=0

fihi(xk) ∀xk ∈ Du(3.7)

Fig. 1 shows the spurious oscillations present around the discontinuity when the
number of uniformly spaced points M = 1000 and the polynomial degree is N = 10
and N = 100. It is evident that the Gibbs phenomenon becomes more local as N
increases.

(a) N = 10 (b) N = 100

Fig. 1: Spectral interpolation of a discontinuous function with (a) N = 10, (b) N =
100.

Although this is a very simple problem, it illustrates the problems which occur
when spectral methods are used to approximate a discontinuous function. The same
phenomenon is seen in finite elements although it is not as severe due to the lower-order
polynomial interpolation. One could argue that one should fit the discontinuity to the
mesh. However, this would greatly increase the computational time, particularly if
the discontinuity was allowed to move freely within the computational domain. This
motivates the use of an enriched or extended method which we discuss in the next
section.

4. eXtended Spectral Element Method. As for the standard spectral ele-
ment approximation defined in §3, we choose a conforming discrete subspace for our
approximation, VΓ

N ⊂ V. Note that the superscript Γ denotes the enriched approxi-
mation space. As before, the domain is decomposed into K uniform, non-overlapping,
quadrilateral spectral elements Ωe, e = 1, . . . ,K, which are not fitted to Γ, such that
(3.1) is satisfied. Additionally, following Groß and Reusken [13], we introduce the set
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of elements containing the discontinuity Γ:

ΩΓ := {Ωe : Ωe ∩ Γ ̸= ∅, e = 1, . . . ,K}(4.1)

In §3, the approximation space VN was defined by the intersection of V with the
polynomial space (3.2). Unfortunately, the approximation space VN is not suitable
for the enriched approximation since the enrichment is discontinuous inside an element
Ωe ∈ ΩΓ. If the approximation space VN is used, in the case of finite elements, we
cannot expect a better bound than [21]:

inf
uh∈VΓ

h

∥u− uh∥L2(Ω) ≤ C
√
h ∥u∥H1(Ω1∪Ω2)

(4.2)

We expect a similar bound for spectral elements since they will not necessarily perform
any better than finite elements when the regularity of the solution decreases. However,
we are unaware of any such bound for spectral elements. Therefore, we need to define
a suitable approximation space, VΓ

N .
Let {Ψi, i ∈ I} denote the global basis functions of VN , with the nodal index set

I = {1, . . . , NV } where NV denotes the dimension of VN . Define the space

P(ΩΓ) := span
{

ΨiΦi, i ∈ IΓ
}

(4.3)

where IΓ ⊂ I is a subset of nodal points which require enrichment and Φi are
global enrichment functions, which for the moment, are undefined. The enriched
approximation space is then defined as:

VΓ
N := VN ⊕ P(ΩΓ)(4.4)

Therefore, the global XSEM approximation uΓ
N ∈ VΓ

N of a function u ∈ V is

uΓ
N (x) = uN (x) + uX

N (x)

=
∑

i∈I

ûiΨi(x) +
∑

j∈IΓ

αjΨj(x)Φj(x)(4.5)

where uN is the continuous (or standard) part, uX
N is termed the discontinuous (or

extended) part of the enriched approximation uΓ
N , ûi (i ∈ I) is the value of the

function u at node i and αj (j ∈ IΓ) are additional degrees of freedom at the nodal
points which have been enriched. The global XSEM approximation is very similar to
its XFEM counterpart [13].

Again, to illustrate the approximation, we let d = 1. Just as was done with the
standard spectral element approximation, each spectral element Ωe is mapped on to
the parent domain D = [−1, 1] via the transfinite map. Note that over an element
Ωe /∈ ΩΓ, the local enriched approximation must satisfy uΓ

N (ξ) = uN (ξ), where uN (ξ)
is defined as in (3.4), so that in elements without a discontinuity the method reduces
to standard SEM. If we restrict (4.5) to an element Ωe ∈ ΩΓ, then the local enriched
approximation is:

uΓ
N (ξ) = uN (ξ) + uX

N (ξ)

=
N
∑

i=0

ûihi(ξ) +
N
∑

k=0

αkhk(ξ)φk(ξ)(4.6)
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The function φk (k = 0, . . . , N) is a local version of the enrichment function Φj

(j ∈ IΓ) present in the discontinuous part of the global enriched approximation (4.5).

The choice of enrichment function depends on the type of discontinuity, or sin-
gularity, being enriched. For example, if the function under consideration has a
strong discontinuity (e.g. the function f defined by (3.6)) then a common choice
for the enrichment function is based on the Heaviside function. In this article, we
choose the same global enrichment function as defined by Groß and Reusken [13], i.e.
Φi(x) = H(x)−H(xi) (i ∈ IΓ), where H(x) is the Heaviside function defined by:

H(x) =

{

0 x ∈ Ω1

1 x ∈ Ω2

(4.7)

Therefore, through the transfinite map, it makes sense for us to define our the version
φk by φk(ξ) = H(ξ)−H(ξk) where the Heaviside function is now defined as:

H(ξ) =

{

0 x = F (ξ) ∈ Ω1

1 x = F (ξ) ∈ Ω2

(4.8)

Alternatively, if the function under consideration has a weak (or gradient) dis-
continuity then a common choice is the so-called abs-enrichment. An example of a
global abs-enrichment function is given by Legay et al. [14]: Φi(x) = |g(x)− g(xi)|
(i ∈ IΓ) where g is a function which gives the location of the interface Γ - such as
a level set function. If polynomials of degree N are used for the continuous part of
the enriched approximation, then Legay et al. [14] found that polynomials of de-
gree N − 1 are required for the discontinuous part uX

N in order to achieve optimal
convergence. Additional considerations are required when enriching a gradient dis-
continuity. The elements adjacent to the enriched elements ΩΓ have some nodes which
have been enriched and others which have not; these elements are known as blending
elements. Legay et al. [14] stated that higher-order terms appear in the blending
elements which must be cancelled by the continuous field. They found that for linear
spectral elements (N = 1) the assumed strain method [11] is required to obtain good
convergence. However, for higher-order spectral elements (N ≥ 2) Legay et al. [14]
found good convergence, without the assumed strain method when polynomials of
one degree less are used for the discontinuous part of the enriched approximation. In
this article, we do not consider weak discontinuities or blending problems. Instead we
focus on some theoretical questions when strong discontinuities are considered.

5. An Approximation Result for XSEM. The analysis of enriched methods
of the type discussed in this article can be difficult. In fact, the only error estimates
for the extended finite element method (XFEM) that we are aware of can be found
in Reusken [21]. Some of the difficulty in analysing the method is due to the depen-
dence of the approximation on the enrichment function Φ. Depending on the kind
of enrichment which is required, this function can vary quite dramatically. Even in
the case of strong and weak discontinuities at an interface, the enrichment function is
completely different. Therefore, it is difficult to analyse the method in a unified man-
ner independent of the enrichment function considered. The framework introduced by
Reusken [21] provides a unified treatment of the XFEM approximation, for functions
with strong discontinuities, by removing reference to the enrichment function. Before
we state the results, we briefly summarize the Reusken framework [21].



8 C. F. ROWLATT AND T. N. PHILLIPS

Let the space of functions V be a broken Sobolev space of order m ≥ 1 defined in
(2.2). When m = 0, we define:

H0(Ω1 ∪ Ω2) = L2(Ω1 ∪ Ω2) =
{

u ∈ L2(Ω): u ∈ L2(Ωi), i = 1, 2
}

= L2(Ω)(5.1)

The construction of the approximation space in the Reusken framework [21] is slightly
different to that considered earlier in this article §4. Once again, let NV denote the
dimension of VN and let {Ψi, i ∈ I}, where I = {1, . . . , NV }, denote the global basis
functions spanning VN , where VN is defined in (3.3). Additionally, let X = {xk, k ∈ I}
be the set of all nodal points. The enriched approximation space is defined as the
restriction of the original approximation space to each side of the interface Γ. The
restriction operator, Ri : L

2(Ω) → L2(Ω), i = 1, 2, is defined as:

Riu =

{

u|Ωi
in Ωi

0 otherwise
(5.2)

Hence the enriched approximation space is defined as: VΓ
N = R1VN ⊕ R2VN . In

Theorem 2 of [21], Reusken showed that

VΓ
N = R1VN ⊕R2VN = VN ⊕ VΓ, 1

N ⊕ VΓ, 2
N

where

VΓ, i
N = span

{

RiΨj : j ∈ IΓ
i

}

i = 1, 2

and

IΓ
1 = {j ∈ I : xj ∈ Ω2 and supp(Ψj) ∩ Γ ̸= ∅}(5.3)

IΓ
2 = {j ∈ I : xj ∈ Ω1 and supp(Ψj) ∩ Γ ̸= ∅}(5.4)

Additionally, it was shown that one may write the approximation uΓ
N ∈ VΓ

N in the
form

uΓ
N = uN +

∑

k∈IΓ

1

β
(1)
k R1Ψk +

∑

k∈IΓ

2

β
(2)
k R2Ψk(5.5)

where uN ∈ VN is the standard continuous approximation and β
(i)
k , i = 1, 2, are addi-

tional degrees of freedom. We are now in a position to present the XSEM equivalent
of the approximation results derived by Reusken [21] for the case of a single spectral
element.

Corollary 5.1. Let Ω = [−1, 1]d with 1 ≤ d ≤ 2. Define Em
i : Hm(Ωi) →

Hm(Ω) to be an extension operator such that

(Em
i v)|Ωi

= v and ∥Em
i v∥Hm(Ω) ≤ c ∥v∥Hm(Ωi)

∀v ∈ Hm(Ωi)

Let πm
N : Hm(Ω) → VN := Hm(Ω) ∩ PN (Ω) be a projection operator satisfying

∥w − πm
Nw∥L2(Ω) ≤ C1N

−m ∥w∥Hm(Ω) (m ≥ 0)(5.6)

|w − πm
Nw|H1(Ω) ≤ C2N

1−m ∥w∥Hm(Ω) (m ≥ 2)(5.7)
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∀w ∈ Hm(Ω), [8, p. 314]. Then

inf
uΓ

N
∈VΓ

N

∥

∥u− uΓ
N

∥

∥

L2(Ω1∪Ω2)
≤ CN−m ∥u∥Hm(Ω1∪Ω2)

(m ≥ 0)(5.8)

inf
uΓ

N
∈VΓ

N

∥

∥u− uΓ
N

∥

∥

H1(Ω1∪Ω2)
≤ CN1−m ∥u∥Hm(Ω1∪Ω2)

(m ≥ 2)(5.9)

∀u ∈ Hm(Ω1 ∪ Ω2).
Proof. The steps required in proving the above approximation result are identical

to the steps used by Reusken [21] and therefore the details are omitted. The only
difference between the proofs is the use of the projection operator πm

N and the use of
theH1-semi-norm. Note that either a projection operator or an interpolation operator
can be used in the analysis since the asymptotic behaviour of the interpolation and
projection errors is the same [8] on a Gauss-Lobatto-Legendre grid.

5.1. Approximation of a discontinuous function. We compare the accu-
racy of the standard spectral element method against the extended spectral element
method when approximating a discontinuous, one dimensional function. We choose a
non-polynomial, smooth function f : Ω → R and add a discontinuity at a particular
point. Let Ω = [−1, 1] contain two subdomains Ω1 = [−1,−1/3) and Ω2 = [−1/3, 1]
with interface

Γ = ∂Ω1 ∩ ∂Ω2 = −1

3

Consider the function f defined by

f(x) =

{

sinx in Ω1

sinx+ 3.3 in Ω2

(5.10)

The spectral element and extended spectral element approximations, denoted fN and
fΓ
N respectively, on the domain Ω are given by:

fN (x) =

N
∑

i=0

fihi(x)(5.11)

fΓ
N (x) =

N
∑

i=0

fihi(x) +

N
∑

j=0

αjhj(x)φj(x)(5.12)

where fi = f(xi), i = 0, . . . , N , αj are the additional degrees of freedom as a result of
the enrichment and φj is the enrichment function defined by: φj(x) = H(x)−H(xj),
where H(x) is the Heaviside step-function defined in (4.7). Note that for simplicity,
we consider a single spectral element.

The coefficients αj are additional degrees of freedom that need to be determined.
In order to calculate them, we assume that fΓ

N (xk) ≡ f(xk), ∀xk ∈ DGLL, where
DGLL is the Gauss-Lobatto Legendre grid of order NQ, where NQ ≫ N . The coeffi-
cients αj are then found from the residual of the standard SEM approximation:

N
∑

j=0

Mk,jαj = f(xk)−
N
∑

i=0

fihi(xk) ∀xk ∈ DGLL(5.13)

where Mk,j = hj(xk)φj(xk). Note that as NQ ≫ N , the matrix M is not square.
Therefore it is inverted by multiplying by its transpose to produce a square matrix
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MTM , which is then inverted by means of a Choleski factorisation. Fig. 2 com-
pares the SEM and XSEM approximations of the discontinuous function. We can see
clearly the standard SEM approximation is characterised by oscillations around the
discontinuity (when N = 8). However, there are no oscillations present in the XSEM
approximation and the discontinuity is captured exactly.

(a) N = 1 (b) N = 2

(c) N = 4 (d) N = 8

Fig. 2: Comparison of the SEM and XSEM approximations of the discontinuous
function f with the analytical solution for (a) N = 1, (B) N = 2, (c) N = 4, (d)
N = 8.

For smooth functions, spectral methods can obtain exponential order of conver-
gence, see e.g. [8, 9]. Table 1 presents the order of convergence for both SEM and
XSEM approximation of the discontinuous function f defined in (5.10) with respect to
the L2 norm. The L2 norm is approximated using Gauss-Lobatto Legendre quadra-
ture. Firstly we note that the SEM approximation does not converge monotonically to
the asymptotic value, instead it seems to oscillate towards a value of approximately
0.5. These oscillations are most likely due to Gibbs phenomenon. It is clear from
Table 1, that the order of convergence for the XSEM approximation of this discontin-
uous function is exponential. This illustrates the power of an enriched method and
validates the approximation estimate given in §5.
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N ∥f − fN∥L2(Ω) Order
∥

∥f − fΓ
N

∥

∥

L2(Ω)
Order

1 1.57870 - 0.04709 -

2 1.37584 0.19843 0.01407 1.74328

4 0.80355 0.77586 6.0328× 10−5 7.86509

8 1.06387 -0.40487 2.6811× 10−10 17.77967

16 0.62365 0.77051 - -

32 0.32542 0.93845 - -

64 0.43223 -0.40950 - -

128 0.28190 0.61661 - -

256 0.16528 0.77031 - -

Table 1: Order of convergence in the L2 norm with respect to N for both SEM and
XSEM.

6. Discrete Inf-Sup Condition for the Stokes Problem. Our motivation
for considering an enriched method stems from fluid-structure interaction problems
using the immersed boundary method (IBM) [19]. Any weak or strong discontinuities
that occur are unfitted in the IBM and hence, introduce oscillations in the approx-
imation of the fluid variables. One of the common examples used throughout the
immersed boundary literature is that of an incompressible elastic boundary or fibre
immersed in a Newtonian fluid. Such an example is known as a co-dimension one
example because the immersed boundary is one dimension less than the surrounding
fluid. In such an example, the pressure has a strong discontinuity across the fluid-
structure interface and hence its approximation needs to be enriched. However, using
an enriched approximation space for the pressure introduces the question of whether
the approximation spaces are still compatible. Reusken [21] and Groß and Reusken
[13] considered the inf-sup condition for XFEM numerically and found that so-called
regions of small support needed to be removed in order to improve inf-sup stability.

We begin by recalling the continuous inf-sup condition for Stokes flow and stating
some results of Maday et al. [15, 16] for the discrete inf-sup condition for the standard
SEM approximation, before finally discussing the discrete inf-sup condition for the
XSEM approximation. Throughout this section, we assume that Ω = [−1, 1]2 and
consider only a single spectral element. The velocity-pressure formulation of Stokes
flow is given by:

−∇2u+∇p = f in Ω(6.1a)

∇ · u = 0 in Ω(6.1b)

u = uD on ∂Ω(6.1c)

where u is the velocity field, p is the pressure, f is a source term composed of body
forces and uD is the Dirichlet boundary condition.

The spectral element method is based on solving the equations of motion in their
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equivalent weak form and therefore, we define velocity and pressure spaces:

V := [H1
0 (Ω)]

2 =
{

v ∈ [H1(Ω)]2 : v = 0 on ∂Ω
}

⊂ [H1(Ω)]2(6.2a)

Q := L2
0(Ω) =

{

q ∈ L2(Ω):

∫

Ω

q dΩ = 0

}

⊂ L2(Ω)(6.2b)

respectively. The zero mean pressure condition present in the definition of Q is re-
quired in order to remove any indeterminacy in the pressure. The corresponding weak
formulation of Stokes problem is: find (u, p) ∈ V ×Q such that

a(u,v) + b(v, p) = ⟨f ,v⟩ ∀v ∈ V(6.3a)

b(u, q) = 0 ∀q ∈ Q(6.3b)

where ⟨·, ·⟩ denotes a duality pairing between V ′ and V (where V ′ is the dual of V).
The bilinear forms a(·, ·) and b(·, ·) induce continuous linear operators A : V → V ′ and
B : V → Q′, respectively, such that

⟨Au,v⟩V′×V = a(u,v) ∀u ∈ V , ∀v ∈ V(6.4)

⟨Bv, q⟩Q′×Q = ⟨v, B∗q⟩V×V′ = b(u, q) ∀v ∈ V , ∀q ∈ Q(6.5)

where B∗ : Q → V ′ is the transpose, or adjoint, of the operator B. These operators
allow us to write (6.3) in an equivalent dual formulation:

Au+B∗p = f in V ′(6.6a)

Bu = 0 in Q′(6.6b)

The inf-sup condition arises from consideration of the existence and uniqueness of the
solution to (6.3) and is dependent on the properties of the operator B - specifically
its range and kernel, Rg(B) and ker (B), respectively. Thus, we summarize Theorem
1.1 of Brezzi and Fortin [7]:

Theorem 6.1. Let the bilinear forms a(·, ·) and b(·, ·) be continuous on V × V
and V × Q, respectively. Let Rg(B) be closed in Q′; that is, there exists k0 > 0 such
that

sup
v∈V

b(v, q)

∥v∥V
≥ k0 ∥q∥Q/ ker (B∗)(6.7)

Moreover, let the bilinear form a(·, ·) be coercive on ker (B); that is, there exists α0

such that

a(v0,v0) ≥ α0 ∥v0∥2V ∀v0 ∈ ker (B)(6.8)

Then there exists a unique solution (u, p) ∈ V × Q/ ker (B∗) to (6.3) for any f ∈ V ′

provided 0 ∈ Rg(B).
The statement (6.7) is known as the continuous inf-sup condition and mathemat-

ically it describes compatibility between the velocity and pressure spaces.
We now turn to the finite-dimensional setting of the discrete problem. We require

suitable approximation spaces for the velocity and pressure which we denote VN ⊂ V
andQN ⊂ Q, respectively, and for the moment, we leave them undefined. The discrete
problem is then: find (uN , pN ) ∈ VN ×QN such that

a(uN ,vN ) + b(vN , pN ) = ⟨fN ,vN ⟩ ∀vN ∈ VN(6.9a)

b(uN , qN ) = 0 ∀qN ∈ QN(6.9b)
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Once again the bilinear forms a(·, ·) and b(·, ·) induce linear operators AN and BN ,
respectively. The corresponding discrete dual formulation can now be expressed as:

ANuN +B∗
NpN = fN in V ′

N(6.10a)

BNuN = 0 in Q′
N(6.10b)

In Theorem 6.1, the pressure solution is uniquely determined up to an element
of ker (B∗) (a constant), whereas for the discrete problem, the pressure solution
is uniquely determined up to an element of ker (B∗

N ). Therefore we require that
ker (B∗

N ) ⊆ ker (B∗), otherwise spurious pressure modes of the discrete problem may
be generated. We begin by considering the standard spectral method based on Legen-
dre polynomials, with a single spectral element, over the domain Ω = [−1, 1]2 before
considering an extended spectral method.

The first step in analysing an inf-sup condition, is to guarantee that there does
not exist any spurious modes. Let VN and QN be defined as:

VN := V ∩ [PN (Ω)]2 QN := Q ∩ PN−2(Ω) ,(6.11)

respectively, where PN is as defined in (3.2) and the subscript N denotes polynomials
of degree N . Also let MN = Q∩PN (Ω) and DN be the range of VN by the divergence
operator. Denote by ZN the set of all polynomials of PN (Ω) that are orthogonal to
DN with respect to the L2(Ω) inner product. Then according to Lemma 3.3 of Maday
et al. [16], and Proposition 4.1 of Bernardi and Maday [5, p. 126], the set ZN is given
by:

ZN = span
{

1, LN (x), LN (y), LN (x)LN (y), L′
N+1(x)L

′
N+1(y),

L′
N (x)L′

N+1(y), L
′
N+1(x)L

′
N (y), L′

N (x)L′
N (y)

}

(6.12)

If we let pN ∈ MN , then ZN is the set of spurious modes because the addition of any
element of ZN , or linear combination thereof, to the pressure approximation will not
affect the velocity solution. The approximation space QN is then chosen such that
MN = QN ⊕ ZN , in other words the pressure is approximated using polynomials of
degree N − 2.

Remark 1. Actually, it is not necessary for the pressure to be approximated
using polynomials of degree N − 2. It was shown by Bernardi and Maday [6] that the
pressure can be a polynomial of degree m where

• m = N − λ for a fixed λ ≥ 2,
• m = N − λNα for two real numbers λ > 0 and 0 < α < 1,
• m = λ

√
N for a positive and small enough real number λ,

• m = λN for 0 < λ < 1.
It was shown in [6] that when m = λN the discrete inf-sup parameter is independent
of N .

This is the so-called PN × PN−2 method of Maday et al. [16] and guarantees
that ker (B∗

N ) ⊆ ker (B∗). From this we can deduce that the velocity and pressure
approximation spaces are indeed compatible. According to Remark 2.10 of Brezzi
and Fortin [7], if ker (B∗

N ) ⊆ ker (B∗) and the continuous inf-sup condition (6.7) holds
then we can guarantee that the discrete inf-sup condition holds; that is there exists a
kN > 0, in general dependent on N , such that:

sup
vN∈VN

b(vN , qN )

∥vN∥V
≥ kN ∥qN∥QN/ ker (B∗

N
)(6.13)
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The above inequality is the mathematical statement that the velocity and pressure
approximation spaces are compatible. This, together with the assumption that the
bilinear forms a(·, ·) and b(·, ·) are continuous on V × V and V ×Q, respectively, and
that a(·, ·) is coercive on ker (BN ) is sufficient to prove that the problem (6.9) is well-
posed and has a unique solution (uN , pN ) ∈ VN ×QN/ ker (B∗

N ) (Proposition 2.1 of
Brezzi and Fortin [7]). The next step is to attempt to obtain an expression for the
parameter kN as it is crucial in determining a-priori error estimates. The method
used in determining kN is very technical and can be found in Bernardi and Maday
[5] for 2D and Maday et al. [16] for 3D and is omitted here. The discrete inf-sup
condition takes the form

sup
vN∈VN

b(vN , qN )

∥vN∥V
≥ cN

1−d

2 ∥qN∥QN/ ker (B∗

N
)(6.14)

where d = 2, 3. The fact that kN is dependent on N is a consequence of the pressure

being approximated by polynomials of degree N − 2. The factor N
1−d

2 impairs the
order of convergence for the pressure approximation.

We now move to discuss the inf-sup analysis for XSEM, where the aim is to
determine the parameter kN . Let Ω contain two subdomains Ω1 and Ω2, respectively,
such that Ω̄ = Ω̄1∪Ω̄2 with the interface Γ = Ω̄1∩Ω̄2. Note that again we assume that
we have a single spectral element and hence, Γ is unfitted the computational mesh.
Let QΓ

N be the approximation space for the enriched pressure. In XSEM, additional
basis functions are added to the original approximation; typically we would have for
pΓN ∈ QΓ

N :

pΓN (x, y) =
N
∑

i=0

N
∑

j=0

p̂i,jLi(x)Lj(y) +
N
∑

i=0

N
∑

j=0

α̂i,jLi(x)Lj(y)Φ(x, y)(6.15)

where Li, i = 0, . . . , N , are the Legendre polynomials up to degree N , the tensor
product of which form a basis for PN (Ω), and Φ(x, y) is an enrichment function
which we leave undefined for the moment. Therefore we wish to consider:

b(uN , qΓN ) =

∫

Ω

(∇ · uN )Lk(x)Ll(y) dΩ +

∫

Ω

(∇ · uN )Lk(x)Ll(y)Φ(x, y) dΩ(6.16)

where k, l = 0, . . . , N . Proceeding as before, we let DN be the range of VN by the
divergence operator and denote by ZΓ

N the set of all polynomials of QΓ
N = PN (Ω) ⊕

P(ΩΓ) that are orthogonal to DN with respect to the L2 inner product, where

P(ΩΓ) = span {Li(x)Lj(y)Φ(x, y) : i, j = 0, . . . , N}

It is clear that the set ZΓ
N is dependent on the enrichment function. As we are

interested in strong discontinuities here, we define Φ(x, y) = H(x, y). Substituting
this into the form (6.16) gives:

b(uN , qΓN ) =

∫

Ω

(∇ · uN )Lk(x)Ll(y) dΩ +

∫

Ω

(∇ · uN )Lk(x)Ll(y)H(x, y) dΩ

=

∫

Ω

(∇ · uN )Lk(x)Ll(y) dΩ +

∫

Ω2

(∇ · uN )Lk(x)Ll(y) dΩ(6.17)

where k, l = 0, . . . , N . We can see that if k, l are chosen such that Lk(x)Ll(y) ∈ ZN ,
(where ZN is as defined in (6.12)), then the first integral is zero. Thus the original set
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ZN is still a set of spurious modes for the XSEM approximation. However, we cannot
guarantee that it is the only set and, in general, we can only guarantee ZN ⊂ ZΓ

N .

The next simplest step, would be to consider Lk(x)Ll(y)Φ(x, y) as a possible
spurious mode. However, the second integral is not necessarily zero because the
integration is over a subset of Ω = [−1, 1]2. Having said that, we note that if the
second integral above is small in comparison to the first integral (or very close to
zero) then one could infer a pseudo-spurious mode. Intuitively, this suggests that the
required amount of enrichment is small. This is quite surprising as it implies that the
enrichment could potentially result in a spurious pressure mode. However, this idea
agrees with the work of Groß and Reusken [13], who (in the case of finite elements)
found improved inf-sup stability if they removed some of the enrichment corresponding
to regions of small support, i.e. when Ω2 is small in the integral above. Hence one
may, possibly, deduce ZΓ

N = ZN ⊕ ZX
N where ZX

N contains any terms involving the
enrichment function. As we have assumed a single spectral element, the region Ω2

is unlikely to be small and therefore, can be considered to be meaningful. In other
words, it becomes reasonable for us to assume that using polynomials of degree N −2
for the pressure will remove the majority of the spurious modes. However, removing
ZX

N is not as simple. This is a subject of future research and requires a much more
in-depth analysis than presented here.

Remark 2. In practice, a large number of elements are used in the decompo-
sition of Ω. As the number of elements increases, the mesh width of each element
correspondingly decreases and therefore, it becomes increasingly likely that pseudo-
spurious modes will be present due to regions of small support. Groß and Reusken
[13] suggested skipping those extended basis functions with small contributions (or
small support). However, as far as we are aware, it is currently not clear how to
choose which extended basis functions to ignore.

We wish to determine the value of the parameter kN . In general, its existence is
not guaranteed currently, as we cannot say with absolute certainty that ker (B∗

N ) ⊆
ker (B∗) due to the potential existence of spurious modes caused by the enrichment
term. However, as we have assumed a single spectral element, it is a reasonable
assumption and therefore, we will proceed on this basis. The XSEM approximation
of the pressure is defined as in (4.5):

pΓN (x, y) = pN (x, y) + pXN (x, y)

=
∑

i∈I

piΨi(x, y) +
∑

j∈IΓ

αjΨj(x, y)Φj(x, y)(6.18)

where I = {1, . . . , NQ}, with NQ being the dimension of QN , {Ψk, k ∈ I} are the
global basis functions spanning QN and IΓ ⊂ I. The enrichment function Φj , j ∈
IΓ, once again presents some added difficulty as far as the analysis is concerned.
Therefore, we look to the framework of Reusken [21] as a means of removing the
dependence on the enrichment function. We postulate the following proposition.

Proposition 1. Let Ω = [−1, 1]2 contain two sub-domains Ω1 and Ω2 with an
interface Γ = ∂Ω1 ∩ ∂Ω2. Let (uN , pN ) ∈ VN × QΓ

N denote the discrete velocity and
pressure solutions to Stokes problem (6.1). Assume that a single spectral element is
used so that Γ is unfitted and assume the regions Ω1 and Ω2 are meaningful (i.e. the
extended basis functions have sufficiently large contributions in those regions). Then,
the discrete inf-sup parameter is given by: kN = 1

2CN−1/2.

Proof. Using the framework of Reusken [21], the enriched pressure approximation
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becomes:

pΓN =
∑

i∈I

piΨi(x, y) +
∑

k∈IΓ

1

β
(1)
k E0

1 [R1Ψk(x, y)] +
∑

k∈IΓ

2

β
(2)
k E0

2 [R2Ψk(x, y)](6.19)

where the sets IΓ
i , i = 1, 2, are given by:

IΓ
1 = {i ∈ I : xi ∈ Ω2 and supp(Ψi(x, y)) ∩ Γ ̸= ∅}(6.20)

IΓ
2 = {i ∈ I : xi ∈ Ω1 and supp(Ψi(x, y)) ∩ Γ ̸= ∅}(6.21)

with I = {1, . . . , NQ}. The expression (6.19) can be written as: qΓN = qN +qXN,1+qXN,2

where qN ∈ QN is the standard SEM approximation and qXN,i ∈ QX
N,i, i = 1, 2, are

the discontinuous parts, where

QX
N,i = span

{

E0
i [RiΨk(x, y)], k ∈ IΓ

i

}

i = 1, 2(6.22)

are defined as the extended spaces. Note that the expression (6.19) above is slightly
different to (5.5) due to the restriction operator, Ri, i = 1, 2, above being defined
slightly differently here compared to (5.2). Let Ri : L

2(Ω) → L2(Ωi), i = 1, 2, be the
restriction operator and let Ei : L

2(Ωi) → L2(Ω) denote an extension operator, which
acts as an inverse so that

Ei[Riu] = u i = 1, 2, ∀u ∈ L2(Ω)(6.23)

Finally, denote by E0
i : L

2(Ωi) → L2(Ω), i = 1, 2, the zero extension operator such
that

E0
i [w] =

{

w(x, y) in Ωi

0 in Ω \ Ωi

i = 1, 2, ∀w ∈ L2(Ωi)(6.24)

Thus the restriction operator defined in (5.2) is equivalent to E0
i [Riu] defined above.

Clearly, we have

∥Riu∥L2(Ωi)
≤ ∥u∥L2(Ω) = ∥Ei[Riu]∥L2(Ω)(6.25)

Additionally, we have
∥

∥E0
i [w]

∥

∥

L2(Ω)
= ∥w∥L2(Ωi)

since ∀w ∈ L2(Ωi)

∥

∥E0
i [w]

∥

∥

2

L2(Ω)
=

∫

Ω

∣

∣E0
i [w]

∣

∣

2
dΩ =

∫

Ωi

∣

∣E0
i [w]

∣

∣

2
dΩ +

∫

Ω\Ωi

∣

∣E0
i [w]

∣

∣

2
dΩ

=

∫

Ωi

|w|2 dΩ = ∥w∥2L2(Ωi)
(6.26)

In particular, we have
∥

∥E0
i [Riu]

∥

∥

L2(Ω)
= ∥Riu∥L2(Ωi)

, i = 1, 2, ∀u ∈ L2(Ω). We wish

to show that there exists a positive constant kN such that

sup
vN∈VN

b(vN , qΓN )

∥vN∥V
≥ kN

∥

∥qΓN
∥

∥

QN/ ker (B∗

N
)

(6.27)

or equivalently,

b(vN , qΓN ) ≥ kN ∥vN∥V
∥

∥qΓN
∥

∥

QN/ ker (B∗

N
)

(6.28)
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Consider the bilinear form b(·, ·):

b(vN , qΓN ) = b(vN , qN ) + b(vN , qXN,1) + b(vN , qXN,2)

≥ CN− 1

2 ∥vN∥H1(Ω)2 ∥qN∥L2(Ω) + b(vN , qXN,1) + b(vN , qXN,2)(6.29)

where we have applied the discrete inf-sup condition (6.14) derived by Maday et al.
[16, 5] with d = 2 to the first term on the right hand side. Using the restriction and
extension operators (6.23) and (6.24) defined above and letting qN ∈ PN−2(Ω) denote
any polynomial of degree less than or equal to N − 2, then we know, for i = 1, 2, that
Ei[RiqN ] = qN ∈ QN and therefore, in particular, Ei[RiqN ], i = 1, 2, satisfies the
discrete inf-sup condition, i.e.:

b(vN , Ei[RiqN ]) ≥ CN− 1

2 ∥vN∥H1(Ω)2 ∥Ei[RiqN ]∥L2(Ω)

≥ CN− 1

2 ∥vN∥H1(Ω)2 ∥RiqN∥L2(Ωi)
i = 1, 2(6.30)

where we have used (6.25). To finish, we make use of the fact that:

b(vN , E0
1 [R1qN ]) = b(vN , E2[R2qN ])− b(vN , E0

2 [R2qN ])(6.31)

b(vN , E0
2 [R2qN ]) = b(vN , E1[R1qN ])− b(vN , E0

1 [R1qN ])(6.32)

and that b(vN , qXN,i) = b(vN , E0
i [RiqN ]). We write:

b(vN , E0
1 [R1qN ]) + b(vN , E0

2 [R2qN ]) =
1

2
(b(vN , E1[R1qN ]) + b(vN , E2[R2qN ]))

(6.33)

≥ 1

2
CN− 1

2 ∥vN∥H1(Ω)2

(

∥R1qN∥L2(Ω1)
+ ∥R2qN∥L2(Ω2)

)

(6.34)

Thus we have

b(vN , qΓN ) = b(vN , qN ) + b(vN , qXN,1) + b(vN , qXN,2)

(6.35)

≥ CN− 1

2 ∥vN∥H1(Ω)2 ∥qN∥L2(Ω)

+
1

2
CN− 1

2 ∥vN∥H1(Ω)2

(

∥R1qN∥L2(Ω1)
+ ∥R2qN∥L2(Ω2)

)

(6.36)

≥ 1

2
CN− 1

2 ∥vN∥H1(Ω)2

(

∥qN∥L2(Ω) + ∥R1qN∥L2(Ω1)
+ ∥R2qN∥L2(Ω2)

)

(6.37)

Since
∥

∥E0
i [RiqN ]

∥

∥

L2(Ω)
= ∥RiqN∥L2(Ωi)

, i = 1, 2, due to (6.26) we have

b(vN , qΓN ) ≥ 1

2
CN− 1

2 ∥vN∥H1(Ω)2

(

∥qN∥L2(Ω) +
∥

∥E0
1 [R1qN ]

∥

∥

L2(Ω)
+
∥

∥E0
2 [R2qN ]

∥

∥

L2(Ω)

)

(6.38)

Then using Minkowski’s inequality, we obtain:

b(vN , qΓN ) ≥ 1

2
CN− 1

2 ∥vN∥H1(Ω)2

(

∥

∥qN + E0
1 [R1qN ] + E0

2 [R2qN ]
∥

∥

L2(Ω)

)

(6.39)

=
1

2
CN− 1

2 ∥vN∥H1(Ω)2

(

∥

∥qN + qXN,1 + qXN,2

∥

∥

L2(Ω)

)

(6.40)

=
1

2
CN− 1

2 ∥vN∥H1(Ω)2

∥

∥qΓN
∥

∥

L2(Ω)
(6.41)
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This result is slightly disappointing (although not surprising since we assumed
qN ∈ PN−2(Ω)), because the inf-sup parameter, kN , can be seen to be dependent on
N . In fact, its dependence on N is identical to the inf-sup condition for the standard
SEM approximation (6.14). However, we do not believe that the bound given above
is the sharpest bound. As far as we are aware, for standard XFEM, the only authors
to have considered the inf-sup condition are Groß and Reusken [13] and Reusken [21].
Both articles were concerned with the numerical inf-sup condition and no analysis
was given. Therefore the inf-sup condition for XFEM, and hence XSEM, remains
an open problem. For Nitsche’s XFEM Burman et al. [2] found that a stabilisation
term, known as the ghost penalty term, was required for the inf-sup condition to be
satisfied.

Computationally, the XSEM is implemented by separating the extended part of
the approximation in the incompressibility constraint, i.e., numerically we enforce:

b(uN , qN ) = 0 and b(uN , qXN ) = 0(6.42)

One could argue that this redefines the problem to be a doubly-constrained minimisa-
tion problem. A doubly-constrained minimisation was considered by Gerritsma and
Phillips [12] for the inf-sup condition of the velocity-pressure-stress formulation of
Stokes flow. It is possible that a similar approach can be considered for XSEM.

7. Conclusions and Future Work. The extended spectral element method
(XSEM) considered in this article is a high-order enriched method based on the ex-
tended finite element method (XFEM) [17, 4]. As far as we are aware, the only a-priori
error estimates available for XFEM were proposed by Reusken [21]. In this article,
the equivalent error estimates for the XSEM have been presented. Additionally, it
was shown that when XSEM is used to approximate a piecewise smooth function,
exponential order of convergence is obtained.

One motivation for considering an enriched approximation stems from an interest
in solving fluid-structure interaction problems using the immersed boundary method
[20]. Any weak or strong discontinuities that occur are unfitted in the IBM and
hence, oscillations in the approximation of the fluid variables are introduced. However,
changing the approximation space by enriching the basis for either velocity or pressure
prompts the question concerning the compatibility of the approximation spaces. In
this article, we assumed that XSEM was applied to the pressure and discussed the
inf-sup condition. We indicated that in certain cases, the enrichment could result
in so-called pseudo-spurious pressure modes. This is in agreement with the work of
Reusken [21] and Groß and Reusken [13] who found numerically that so-called regions
of small support needed to be removed in order to improve the inf-sup stability.
However, removing all the spurious pressure modes analytically, does not seem to
be straightforward and is a subject for future research. If one assumes that these
so-called regions of small support are not present (e.g. when only a single element is
considered) then polynomials of degreeN−2 may be used to approximate the pressure.
In such a scenario, we showed that for 2D problems the inf-sup parameter (kN ) of an
enriched pressure approximation is the same as for the standard approximation, i.e.
kN = N−1/2.

In future articles, we will apply XSEM to some benchmark problems in compu-
tational fluid dynamics and fluid-structure interaction problems using the immersed
boundary method.
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