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Nonlinear effects on the receptivity of crossflow in the swept Hiemenz boundary layer
are investigated. Numerical simulations are generated using a vorticity form of the Navier-
Stokes equations. Steady perturbations are established using surface suction and blowing
distributed along the spanwise direction as either a periodic strip or a band of small holes.
The method of excitation, size and the location of the prescribed forcing are shown to
have a significant influence on the receptivity of the boundary layer. Blowing holes are
found to excite perturbations with considerably larger magnitudes than those generated
using a periodic suction/blowing strip. A semi-log law relationship is derived that relates
the initial amplitude of the linear only disturbances with the location that the absolute
magnitude of the chordwise primary Fourier harmonic attains a stationary point or a
size of approximately one tenth of the freestream spanwise velocity. Furthermore, the
size of the physical chordwise velocity perturbation about this position can be estimated
directly from the linear only solutions. This would suggest that for sufficiently small initial
amplitudes the onset of some nonlinear flow development properties can be predicted
directly from a linear receptivity analysis.

1. Introduction

Crossflow instability is a primary mechanism for the breakdown of the laminar flow and
onset of transition in three-dimensional swept wing boundary layers. The disturbance is
inflectional and is therefore susceptible to the inviscid instabilities examined by Gregory,
Stuart & Walker (1955). Taking the form of stationary co-rotating vortices (and traveling
disturbances) crossflow has been observed on rotating disks and cones by Malik (1986)
and Kohama (1984) amongst many others.
Many experimental and theoretical investigations have been undertaken concerning the

various stages of the crossflow vortex development on swept wings. Using a swept wing
model with an imposed pressure gradient Müller & Bippes (1988) observed both sta-
tionary crossflow vortices and traveling wave disturbances prior to the onset of nonlinear
saturation. Kohama, Saric & Hoos (1991) identified a high-frequency secondary insta-
bility before the onset of transition. The linear and nonlinear theoretical investigations
of three-dimensional boundary-layers were carried out by Meyer & Kleiser (1988) using
direct numerical simulations of the Navier-Stokes equations, while Fischer & Dallmann
(1991) applied a secondary instability analysis. Malik, Li & Chang (1994) conducted an
investigation of the linear, nonlinear and secondary instability stages of the crossflow evo-
lution and the laminar-turbulent transition mechanisms in the swept Hiemenz flow. Their
analysis was based on a system of nonlinear parabolized stability equations (NPSE). Both
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2 C. Thomas, P. Hall & C. Davies

the stationary and traveling crossflow disturbances were examined. Detailed descriptions
of the vortex development, inflectional velocity profiles and the generation of the so-
called half-mushroom structures were discussed. A high-frequency secondary instability
was observed prior to the onset of transition, agreeing with the earlier experiments on
a swept cylinder by Poll (1985) and swept wing by Kohama et al. (1991). Similarly, in
the rotating-disk boundary-layer, theoretical and experimental observations of a high-
frequency secondary instability have been identified by the respective investigators Bal-
achandar, Streett & Malik (1992) and Kohama (1984). Further investigations concerning
the development and control of secondary instabilities have been undertaken by Koch
(2000), Janke & Balakumar (2000), Wassermann & Kloker (2003), Bonfigli & Kloker
(2007), Friederich & Kloker (2012) and Obrist, Henniger & Kleiser (2012).
Transition prediction in swept wing configurations are generally based on the eN meth-

ods that relate the onset of transition with the logarithmic amplitude ratio N of the
most unstable linear disturbance. Although this approach has many benefits and is im-
plemented by both the academic and industrial communities it is only based on linear
stability analysis and does not take into account the nonlinear effects, secondary instabil-
ity or the initial amplitude of the disturbance within the boundary layer. Experimental
measurements by Reibert, Saric, Carillo & Chapman (1996) demonstrate that in order
to accurately predict transition it is both necessary to consider the initial flow properties
of the boundary layer disturbance and include the nonlinear development of the primary
instability. Using NPSE methods, Malik, Li, Choudhari & Chang (1999) generated a
velocity profile for secondary instability analysis and found that the development of the
stationary vortex agreed with the earlier experimental studies. The growth and frequency
of the secondary instability prior to transition was consistent with the respective find-
ings of Kohama, Onodera & Egami (1996) and Kohama et al. (1991). Malik et al. (1999)
describe an N factor transition prediction method based on the secondary instability
analysis that may be more efficient than a scheme that is reliant on the linear analysis
Environmental factors can filter into the boundary layer near a solid surface, seeding

steady and unsteady fluctuations of the basic state. This process is known as boundary
layer receptivity (Morkovin 1969) and characterises the initial stages of the breakdown of
the laminar flow. External causes for receptivity can be attributed to the flow interacting
with freestream acoustics, turbulence, vortices and wall deformations, including surface
curvature, discontinuities and roughness (Saric, Reed & Kerschen 2002). Receptivity of
the boundary layer establishes the initial conditions for the amplitude, frequency and the
phase of the disturbance within the flow.
If the initial amplitude of the perturbation remains relatively weak, the path to tran-

sition is driven by the excitation and development of a primary modal instability; TS
waves on a flat plate geometry and crossflow on swept surfaces. Modal growth of the
initially small amplitude disturbance can be computed using linear stability theory, but
as the magnitude of the TS wave or crossflow instability grows, nonlinear processes are
amplified through modal interaction with the higher order harmonics. This in turn can
lead to the generation of secondary instabilities and transition (Herbert 1988; Saric, Reed
& White 2003).
For the current investigation our interest concerns the receptivity of crossflow distur-

bances within the swept Hiemenz boundary layer that develop through both the linear
and nonlinear stages of the laminar-turbulent transition process. Crossflow disturbances
are excited using two wall forcing schemes; a periodic suction/blowing strip and a band of
periodic holes with constant suction or blowing. The form of crossflow generated by the
wall forcing is then characterized by several initial flow properties, including the Reynolds
number, spanwise periodicity and time-frequency. Further, the shape, location and the
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Nonlinear effects on the receptivity of crossflow in the swept Hiemenz flow 3

size of the forcing influences the amplitude of the disturbance and can significantly affect
the onset of transition. When the initial amplitude of the disturbance is relatively weak,
linear stability theory is implemented to compute receptivity. Given this assumption it
is sufficient to decompose perturbations in the form

q(x, t) = Acq̃(x, t),

where q̃ specifies the linear growth and the spatial-temporal evolution of the instability,
while Ac is a constant defined as the initial or receptivity amplitude of the disturbance.
When wall roughness is responsible for the excitation of perturbations, the size of Ac has
been shown by Streett (1998) and Mughal (2012) to vary significantly with the shape,
height and localized distribution of the surface imperfection. If the initial size of the
perturbation is relatively small, the linear stages of the disturbance development can
continue far downstream of the prescribed wall forcing. However, as the magnitude of
the initial forcing and amplitude Ac increases, the appearance of nonlinear effects and
transition are promoted.

Theoretical investigations concerning the receptivity of three-dimensional boundary
layers to wall roughness have been undertaken by Federov (1988), Choudhari (1993),
Choudhari (1994), Crouch (1993) and Ng & Crouch (1999). Receptivity to wall rough-
ness on a curved aerofoil in a compressible flow were investigated by Collis & Lele (1999)
by solving the linearized Navier-Stokes equations. Wassermann & Kloker (2002) devel-
oped a vorticity formulation to examine the effects of nonlinearity in the incompressible
flow over a swept flat plate. Studies by Schrader, Brandt & Henningson (2009) and
Schrader, Amin & Brandt (2010) considered the receptivity of the flow over a swept
flat plate to free stream turbulence and wall roughness. Spalart (1990) generated cross-
flow vortex structures using disturbance inputs at the attachment-line that characterized
random noise, waves and wavepackets. Further studies concerning receptivity have been
undertaken by Hunt & Saric (2011), Tempelmann, Hanifi & Henningson (2012a), Tem-
pelmann, Schrader, Hanifi, Brandt & Henningson (2012b), Hosseini, Tempelmann, Hanifi
& Henningson (2013) and Lovig, Downs & White (2014).

A vorticity formulation developed by Davies & Carpenter (2001) is utilized and is ex-
tended to include the effects of nonlinearity on crossflow receptivity in the swept Hiemenz
flow. Using the results of both the linear and nonlinear receptivity studies, relationships
are sought that characterize the following flow properties:

i. The effect of nonlinearity on the size of the disturbance. Both locally about the
centre of forcing and during the modal development of the crossflow instability.
ii. The onset of nonlinear saturation, where the linear and nonlinear disturbance
computations are significantly different.
iii. The location where the primary Fourier harmonic of the chordwise velocity
disturbance first attains a stationary point or maximum.
iv. The size of the physical disturbance about this location.

Details of the nonlinear extensions to the vorticity system of equations are included in the
following section along with a description of the basic state. The numerical methods and
computational parameter settings used to accurately and successfully generate crossflow
are defined in §3. Definitions for the amplitude of the crossflow disturbance, the onset
of nonlinear saturation and the chord location that the primary Fourier harmonic of
the chordwise velocity attains a stationary point or maximum are given in §4. In §5
the receptivity of crossflow to various initial forcing distributions are discussed and final
remarks are given in §6.
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Figure 1. Illustration of the swept Hiemenz flow, depicting the streamlines in the chordwise
x-direction and sweep velocity long the spanwise y-direction.

2. Formulation

2.1. Swept Hiemenz Flow

Consider an incompressible viscous fluid in a Cartesian coordinate system x∗ = {x∗, y∗, z∗}
relative to a swept plate, where x∗ and y∗ respectively denote the chordwise and spanwise
flow directions. The z∗-axis specifies the direction normal to the wall. Uniform flow fields
U∞(x) = mx∗ and V∞ are directed along the chordwise and spanwise axis, engineering
the swept Hiemenz flow that impinges on an inclined plate. (Refer to figure 1 for an illus-
tration of the described flow). The flow is symmetric about the attachment-line x∗ = 0
and for given conditions is susceptible to the disturbances investigated by Hall, Malik &
Poll (1984) and Spalart (1988). Further along the chord the flow is unstable to crossflow
vortices that have been studied for their linear and nonlinear stability characteristics by
Malik et al. (1994) amongst others.
Units of length are scaled on the typical thickness parameter δ =

√
ν/m for ν the

kinematic viscosity of the fluid. The corresponding velocity components are dimension-
alized using the spanwise flow field V∞. Hence, the non-dimensional coordinate system
and the undisturbed velocity are defined as

x = x∗/δ and UB = U∗/V∞.

Given the stream function

ϕ = x∗√mνf(z),

and the boundary conditions

U∗ = 0 on z∗ = 0 and

U∗ → U∞, V ∗ → V∞ as z∗ → ∞,

solutions to the Navier-Stokes equations are given by the undisturbed velocity profiles

UB =
x

R
f ′(z), VB = g(z), WB = − 1

R
f(z). (2.1)

The wall-normal functions f and g are computed by solving the system of ordinary
differential equations

f ′′′ + ff ′′ + (1− f ′2) = 0, g′′ + fg′ = 0,
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Nonlinear effects on the receptivity of crossflow in the swept Hiemenz flow 5

where prime denotes differentiation with respect to z. The Reynolds number of the flow
system is defined as

R =
V∞δ

ν
, (2.2)

where the streamline angle θ is given by the expression

tan θ =
V∞

U∞(x)
≡ R

x
. (2.3)

2.2. Governing Disturbance Equations

The nonlinear disturbance development and receptivity of the crossflow instability are
investigated using a vorticity form of the Navier-Stokes equations. Total velocity and
vorticity fields are decomposed as the sum of their undisturbed state (2.1) and perturbed
parts:

U = UB + u, and Ω = ΩB + ω,

where the perturbation fields are denoted as

u = {u, v, w}, and ω = {ωx, ωy, ωz}.

The system of governing equations for the swept Hiemenz flow are composed of the
vorticity transport equation and the Poisson relationship:

∂ω

∂t
+∇∧N =

1

R
∇2ω, (2.4a)

∇2u+∇∧ ω = 0, (2.4b)

for N = ΩB ∧ u + ω ∧ UB + ω ∧ u. Perturbations are then divided into two subsets:
principle {ωx, ωy, w} and secondary variables {u, v, ωz}. The three principle variables are
given as solutions of the x and y forms of (2.4a) coupled with the z component of (2.4b).
The remaining secondary variables are defined explicitly in terms of the principle fields
by rearranging the definitions for vorticity and the solenoidal condition:

ω = ∇∧ u and ∇ · ω = 0. (2.5)

Disturbances are assumed to be periodic along the spanwise y-direction. Hence, per-
turbation fields are represented using a Fourier series as

q(x, t) =

∞∑
k=−∞

qk(x, z, t)e
ikβy, (2.6)

where β is the spanwise wavenumber of the perturbation. Here k corresponds to the kth
harmonic of the spanwise Fourier series. To simplify the problem and ease computational
time restraints, it is sufficient to truncate the order of the Fourier series to only a finite
number of modes

q(x, t) =

Ny−1∑
k=−Ny

qk(x, z, t)e
ikβy, (2.7)

where Ny is an integer representing half the number of modes in the series.

2.3. Excitation of the Undisturbed Flow

Steady perturbations are established by forcing the undisturbed flow using suction or
blowing imposed at the plate surface:

u = v = 0 and w = ww(x, y, t) on z = 0. (2.8a,b,c)
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Figure 2. Physical spanwise shape of wall forcing at x = xf . Method I represented as solid
(YN = 4) and dashed lines (8), while chain (4) and dotted (8) correspond to method II with
blowing c positive.

The function ww is chosen to be both periodic along the spanwise direction and in time,
so as to excite the desired stationary or traveling crossflow disturbance

ww =

Ny−1∑
k=−Ny

ww,kh(x)e
i(kβy−ft), (2.9a)

where f is the temporal frequency, ww,k specifies the magnitude of the kth Fourier mode
and the chord distribution h = h(x) is defined as a normalized Gaussian function

h(x) =
1√
2π

e−(x−xf )
2/2. (2.9b)

Here xf is the chord centre of the wall forcing.
Suction and blowing are generated using two simple forcing models that are illustrated

in figure 2 and characterized by the Fourier amplitudes:

I. ww,1 = c and ww,k = 0 ∀ k ̸= 1 and

II. ww,k = c ∀ k.

Scheme I (solid and dashed lines respectively correspond to Ny = 4 and 8 in figure
2) represents a periodic suction/blowing strip, where the sign of c has no effect on the
response of the crossflow disturbance. Only the primary mode is initially excited, but
through the processes of nonlinear interaction the growth of the higher order harmonics
are stimulated. All modes are forced equally by method II (chain and dotted lines denote
cases Ny = 4 and 8 in figure 2), which in the physical plane approximately represents a
band of small point-like periodic holes prescribed with either wall suction (negative c) or
blowing only (positive c). As the value of Ny → ∞ the physical shape of the wall forcing
will tend towards a Dirac-delta type function along the spanwise direction. Obviously for
finite Ny there will then be some inconsistencies between the disturbance amplitudes of
solutions for different Ny (which we will investigate further in subsequent sections). The
size of the amplitude c then imposes conditions on the receptivity analysis. For relatively
small forcing amplitudes the disturbance will remain linear for the early stages of the flow
development. However, as the magnitude of c increases, the effects of nonlinearity will
become significant and affect both the initial size of the disturbance and the downstream
development of the flow system.
Although the two wall schemes are crude representations of wall suction/blowing and

possibly physically unrealistic, they provide a simple means of testing the vorticity for-
mulation and analysing the receptivity and development of crossflow disturbances to
varying forms of forcing. Implementation of more complex and physically realistic suc-
tion holes can then be modeled (on Spalart 1990, 1993) by modifying the relative sizes
of the Fourier harmonics ww,k.
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Nonlinear effects on the receptivity of crossflow in the swept Hiemenz flow 7

The no-slip condition (2.8) is included in the vorticity formulation by deriving two
integral constraints for the principle vorticity variables {ωx, ωy}. This is achieved by
rearranging the secondary variable definitions (2.5) for u(≡ 0) and v(≡ 0) as∫ ∞

0

ωxdz =

∫ ∞

0

∂w

∂x
dz and (2.10a)

∫ ∞

0

ωydz =

∫ ∞

0

∂w

∂y
dz. (2.10b)

These two integral constraints replace the no-slip conditions (2.8a, b) along the x and
y directions. When coupled with the wall-normal z condition (2.8c), they provide the
necessary set of boundary wall constraints on the above system of governing equations.
Null conditions are imposed on perturbations at the upstream boundary, whilst at the
opposite end of the spatial domain a wave-like condition is implemented that allows
disturbances to propagate through the computational box without causing spurious re-
flection effects. Boundary conditions in the far-field limit are imposed on disturbance
fields by ensuring that the three principle perturbation fields {ωx, ωy, w} tend to zero as
z → ∞. (Further details are included within Davies & Carpenter 2001).

3. Numerical Methods

3.1. Discretization

The numerical methods adopted for the discretization of the vorticity formulation are
described as follows. Chordwise derivatives are represented using a fourth-order centred,
compact finite difference approximation, while a Fourier expansion (outlined above in
§2.2) is implemented along the spanwise direction. Along the normal to wall axis a change
in variable is implemented

ξ =
L

L+ z
, (3.1)

to map points from the semi-infinite physical plane z ∈ [0,∞) onto a finite computational
box ξ ∈ (0, 1]. The mapping parameter L = 4 prescribes the distribution of points
along the wall-normal direction and was carefully chosen to ensure the resolution of the
disturbance structures (crossflow and possible secondary instabilities) within and about
the edge of the boundary-layer are accurately resolved. Disturbances are then expanded
in terms of Chebyshev polynomials

qk(x, z, t) =

Nz∑
j=1

qk,j(x, t)Tj(ξ), (3.2)

where Tj is the jth Chebyshev polynomial. Here Nz is the order of the series truncation
and j is an odd and even integer for the respective principle and secondary variables.
(Subscript k refers to the value of the harmonic in the Fourier series). The system of
governing equations (2.4) are then integrated twice with respect to the mapped variable
ξ, generating a simple set of banded matrix representations for the wall-normal variation.
Finally, the time-marching is treated using a combination of a predictor-corrector scheme
and semi-implicit methods.

3.2. Computational Parameter Settings

Steady periodic crossflow instability was generated by carefully selecting the following
discretization parameters:
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8 C. Thomas, P. Hall & C. Davies

i. Number of wall-normal Chebyshevs Nz;
ii. Time step ∆t;
iii. Chord grid step ∆x;
iv. Chord domain size Nx;
v. Number of spanwise Fourier modes Ny.

As our investigation concerns the initial response of disturbances to periodic forcing, the
above parameters were not constrained by the need to fully capture small-scale structures
that could evolve following the development of nonlinear flow characteristics. Thus, well
resolved and numerically stable results (up to the chord location that small-scale effects
first appear) were successfully obtained by prescribing step sizes ∆t = 0.01 and ∆x = 0.5.
Further it was deemed sufficient to set the number of Chebyshev polynomials Nz = 48.
Figure 3(a) illustrates the effectiveness of this parameter selection by comparing contours
of the chordwise primary Fourier harmonic u1 in the (x, z)-plane, which were established
using the forcing method I. The suction/blowing forcing was prescribed a zero frequency
(ω = 0), so that stationary crossflow instabilities could develop, while the spanwise
wavenumber β = 0.4 and the Reynolds number R = 500. The Gaussian distribution along
the chord direction was centred about the position xf = 186 with an amplitude c = 0.01.
The disturbance evolution is depicted over a short chordwise region, upstream of the onset
of full nonlinear flow development. Solid lines display contours of the solution generated
using the above parameter settings, while the dashed and dotted lines respectively denote
solutions for the settings {∆x,Nz} = {0.25, 48} and {0.5, 64}. All three sets of contour
lines are indistinguishable up to the chordwise location x = 400, which as we will observe
in the subsequent discussion on receptivity is downstream of the region of interest for
this particular problem.
The length of the chordwise domain was varied inversely proportional with the initial

amplitude c of the suction and/or blowing forcing. This ensured that disturbances of
varying initial magnitude had sufficient chord length to develop. For the largest values
of c (∼ 0.05) considered, the size of Nx was limited to approximately 400δ chord units
beyond the forcing location xf , which was increased to 800δ chord units for the smallest
values of c.
The final parameter necessary to generate successful and reliable nonlinear simulation

results was the number of spanwise Fourier modes Ny. Figure 3 compares the maxi-
mum amplitudes of the Fourier uk-velocity perturbations for Ny = 4 (solid lines) and
8 (dashed) modes. Linear only results are included and plotted using dotted lines for
purposes of comparing with the solutions of the nonlinear investigation. The flow spec-
ifications are as given above {ω, β,R} = {0, 0.4, 500} for {xf , c} = {186, 0.01}. Steady
disturbance amplitudes generated by method I are depicted in figure 3(b), while figure
3(c) illustrates results driven by forcing scheme II. Disturbances excited by I for Nz = 4
and 8 exhibit very minor variations that are barely noticeable on the given plot resolu-
tion. The two primary Fourier velocity components, |u1|max, are identical over the chord
length considered and deviations from the linear result only emerge for x > 300.
Results generated using the second forcing method do not display such consistent be-

haviour as there are relatively large differences between the two nonlinear and linear only
simulation results that appear almost immediately about the origin of forcing. There are
also small discrepancies between the magnitudes of the two nonlinear calculations. Al-
though these differences are marginal, they may be augmented as the amplitude c of the
initial forcing is increased to larger values. This behaviour is to be expected for method
II as it is clearly illustrated in figure 2 that the physical representation of the point
like forcing can vary quite significantly for variable Ny. Further nonlinear simulations
were generated for larger Ny Fourier modes, with results (discussed in subsequent sec-
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Figure 3. (a): Contours of the primary u1-velocity Fourier harmonic for {∆x,Nz} = {0.5, 48}
(solid) {0.25, 48} (dashed) and {0.5, 64} (dotted). (b, c): Maximum amplitudes of the Ny Fourier
uk-velocity fields for forcing methods I (a) and II (b) and amplitude of forcing c = 0.01. The
Reynolds number R = 500, spanwise wavenumber β = 0.4 and centre of forcing xf = 186. Solid
lines indicate results generated using Ny = 4 and dashed correspond to Ny = 8 modes. (Dotted
lines illustrate the linear only results.)

tions regarding receptivity and nonlinear flow development) suggesting that additional
harmonics has a relatively small effect on the size and evolution of the disturbance.

For the greater part of this investigation it was decided that Ny = 4 Fourier modes
would be sufficient to study the general effects of nonlinearity on the receptivity and
development of crossflow. The primary reason behind the choice of Ny was to save on
both computational resources and time expenditure. Further it was suggested by Malik
et al. (1994) that the nonlinear characteristics of the crossflow vortex could be mod-
eled successfully using only the primary Fourier mode and its zeroth and second order
harmonics. Although computations generated by method II would inevitably vary for
additional Fourier harmonics, (as the physical representations of the wall forcing are dif-
ferent for variable Ny), differences in disturbance amplitude and flow characteristics were
relatively minimal, even for relatively large initial forcing sizes c. Further discussion of
the effect of increasing Ny is included below with results documented in tables 1 and 2.
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4. Disturbance Definitions

In parabolized stability equation analysis, linear crossflow disturbances are assumed
to take the form

q(x, t) = Acq̃(x, z)e
∫ x
x0

α(x′)dx′+i{βy−ωt}
, (4.1)

where α is the chord wavenumber of the perturbation and x0 corresponds to the location
for neutral stability. Here q̃ is a shape function that varies slowly along the chord direction
and is normalized about x0. The magnitude of the disturbance is represented by the real
constant Ac, which is described herein as the receptivity amplitude, for subscript c the
size of the initial forcing. For a linear only analysis the magnitude of Ac is directly
proportional to the size of c as

Ac = cA1,

where A1 is the amplitude of a crossflow disturbance associated with c = 1. For the
current investigation it is convenient to assume that linear disturbances are also of the
form (4.1), as it provides an effective means of extracting the wavenumber, growth rate
and disturbance amplitude from the vorticity formulation computations.

4.1. Receptivity Amplitude

By neglecting the slow chordwise variation of the shape function, setting q̃(x, z) ≈ q̃(z),
the definition for linear crossflow can be simplified to the form

q(x, t) = Acq̃(z)e
∫ x
x0

α(x′)dx′+i{βy−ωt}
, (4.2)

where we assume |q̃| = 1. Further, introducing a normalisation factor, equation (2.3),
and replacing the function q with the primary Fourier chordwise perturbation field u1,
we set

M(x) = max
z

|u1(x, z)|
R

x
. (4.3)

A definition for the absolute value of the receptivity amplitude is then given as

Ac =
M(x) x

R

|e
∫ x
x0

α(x)dx|
. (4.4)

For a prescribed set of initial flow conditions, {ω, β,R}, the exponential denominator
is a fixed x-dependent function that is not related to the choice of wall forcing. Thus,
once the field u1 is generated the receptivity amplitude Ac of the disturbance can be
calculated. Though this expression is only applicable to linear crossflow disturbances, we
will also apply it to solutions of the nonlinear investigation, as it provides a means of
comparing the two sets of results.

4.2. Saturation

The location that the growth rate of the nonlinear disturbance first differs significantly
from that given by the linear calculation is known as saturation; the interaction of the
primary mode with the higher order harmonics has become sufficiently large to impact
on the disturbance evolution and the growth of the system. In an attempt to quantify
nonlinear saturation we define

K∗(x) =
Mx

M
, (4.5a)

where the subscript x refers to the chordwise derivative, while the subscript for K is
either L for linear analysis or NL for the corresponding nonlinear theory computations.
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The appearance of nonlinear saturation is then defined here as satisfying the expression

F (x) ≡
∣∣∣∣KNL −KL

KL

∣∣∣∣× 100% > 1%, (4.5b)

which was decided upon (following the analysis given in subsequent sections) as being
a sufficiently large percentage difference to delineate between the linear and nonlinear
results. Further, it was assumed that the linear disturbance function KL is non-zero and
at the very least represents a convectively growing disturbance.

4.3. Stationary Point

Finally, we introduce a definition that characterises the chordwise location that the ab-
solute value of M first attains a stationary point or peak value:

Mx = KNL = 0 and F (x) = 100%, (4.6)

which coincides with M typically having a magnitude of approximately one tenth of
the spanwise freestream velocity V∞. Further, this location approximately coincides with
the appearance of small-scale structures that arise with the emergence of nonlinear flow
development.

5. Results

5.1. Disturbance Development and Growth

A steady stationary crossflow disturbance was generated for approximately the strongest
growing spanwise wavenumber β = 0.4, while the Reynolds number of the flow R =
500 is chosen as it is smaller than the critical value for the attachment-line instability
(R ∼ 583) and allows easier comparison with solutions of earlier investigations (Malik
et al. 1994). Forcing scheme I was centred about the chordwise location xf = 186 with
amplitude c = 0.01. The periodic suction/blowing strip was then switched on at time
t = 0, triggering the excitation of disturbances within the boundary layer. Downstream
of the forcing a crossflow instability evolves downstream along the chordwise direction.
Figure 4 depicts cross-sectional cuts of the total U -velocity in the (y, z)-plane, plotted

using labeled line contours at four successive positions along the chordwise direction;
x = 200, 300, 400 and 450. The flow dynamics are plotted over two spanwise wavelengths
where the z-axis is stretched for visualisation purposes. Contours are plotted from a
value of zero at the wall through to a maximum magnitude of approximately 0.9 in the
far-field. Crossflow vortices are observed to evolve into the shapes described by Malik
et al. (1994) as half-mushroom structures. About x = 200 the boundary layer thickness
remains relatively constant along the length of the spanwise direction, as there are only
small variations in the total velocity. However, at larger chord positions, the nonlinear
effects emerge and the disturbance rolls into vortices, creating regions of low and high
velocity. This in turn results in significant variations in the boundary-layer thickness
along the span. The evolution of the crossflow vortex is comparable with that described
by Malik et al. (1994), even though only four spanwise Fourier modes are used herein to
generate the disturbance.
Figure 5(a) displays the growth rates of several linear and nonlinear disturbances

calculated using the formula

α =
1

u1

∂u1

∂x
, (5.1)
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Figure 4. Total chordwise velocity in the (y, z)-plane at x = 200, 300, 400 and 450, for β = 0.4
and R = 500.

where u1 is the primary Fourier velocity component in the chordwise direction. The dot-
ted line depicts the growth rate of the linear only simulation, while the solid, dashed
and chain lines represent the growth rates of the nonlinear primary mode, where the
initial forcing c = 0.03, 0.01 and 0.001, respectively. In all four cases the periodic suc-
tion/blowing strip is centred about xf = 186. In the chord region immediately down-
stream of the wall forcing, a short transient stage is observed, which is attributed to
several perturbations initially competing to influence the response of the flow. However,
the stationary crossflow disturbance is eventually observed and the growth rates follow
a set path. The linear growth rate behaves in a manner consistent with the observations
of earlier studies on non-parallel linear effects; the growth rate attains a maximum value
of approximately 0.25 near x = 350 and slowly decreases thereafter. The development
of the three nonlinear growth rates also follow a similar evolutionary path. However, as
c increases, the growth rate is found to saturate and deviate from the linear solution at
varying chord locations. This is observed about the chord positions x = 250 and 370
for the respective forcing amplitudes c = 0.01 (dashed) and 0.001 (chain). These chord
locations are also consistent with the calculations of the function F , equation (4.5b), dis-
played here in figure 5(b). Line types match those given for the above nonlinear solutions,
while the horizontal dotted line now represents the suggested F = 1% difference for the
onset of nonlinear saturation. For the largest forcing amplitude, c = 0.03, significant dif-
ferences between the linear and nonlinear growth rates appear directly about the centre
of excitation with a minimum value for F ≈ 3%. This would suggest that this represents
a rather large magnitude suction/blowing wall forcing. Thus, for greater initial forcing
amplitudes the linear stages of the disturbance development may be bypassed altogether.

5.2. Absolute Perturbation Velocity

Figure 6 displays the maximum amplitude of the primary Fourier component of the ū-
velocity against the chordwise x-direction, where equation (4.3) forM has been utilised to
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Figure 5. (a): Disturbance growth rate for β = 0.4 and R = 500. Nonlinear primary mode with
c = 0.03 (solid line), 0.01 (dashed) and 0.001 (chain). The dotted curve corresponds to a linear
only disturbance. (b): Saturation prediction for the disturbances given in (a), with the formula
based on that defined in (4.5b).

simplify notation and illustrate solutions. The first plot shows results over an extended
chord range, from upstream of the periodic forcing through to the location that the
disturbance first attains a stationary or peak point (as outlined in §4.3). The second
illustration presents results centred about the location of the periodic wall forcing. A
semi-log law scaling has been applied along the vertical axis to assist visualization and
interpretation.

The solid line depicts the disturbance solution established by forcing method I for
c = 0.01, where only the primary disturbance is excited. However, through nonlinear the
nonlinear processes the higher order harmonics are generated and forced to grow pro-
portionally with the primary mode. The nonlinear solution exhibits very small variations
to the response of the linear computation (drawn using a dotted line). Comparing the
perturbation development over an elongated chordwise frame (figure 6(a)) would suggest
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Figure 6. Maximum amplitudes M for forcing schemes Ic=0.01 (solid), IIc=0.01 (dashed) and
IIc=−0.01 (chain). The Reynolds number of the flow R = 500, the spanwise wavenumber β = 0.4
and centre of forcing xf = 186. The dotted line represents the linear only solution. (a): Extended
chord range. (b): Localized about the centre of forcing.

that significant variations in magnitude only appear for x > 300. Indeed, the localized
view of the perturbation in figure 6(b) indicates that the amplitude change about the
wall forcing is relatively insignificant. This suggests that, in this instance, the nonlin-
ear effects have very little impact on the receptivity of the disturbance and only appear
through the modal interaction of the downstream development of the crossflow vortex.

Dashed and chain lines depict simulation results driven by scheme II where c = 0.01
(blowing only) and c = −0.01 (suction), respectively. In these particular cases all Fourier
modes are now excited equally, but the higher order harmonics are quickly forced to grow
relative to the primary perturbation. Amplitudes of the primary velocity components
seeded using the wall forcing method II show a considerable variation from the linear
only simulation; both locally about the origin of the forcing and the effective size of
the disturbance that evolves downstream. Blowing increases the size of the disturbance,
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Ny max |M |x=xf E1%

Linear 0.039355 0.0
4 0.044841 12.2
6 0.044926 12.4
8 0.045049 12.6
10 0.045285 13.1
12 0.045552 13.6

Table 1. Comparing maximum amplitudes of the primary Fourier harmonic u1 at the origin
of forcing xf for disturbances with mode numbers Ny = 4, 6, ..., 12. Disturbances are generated
using forcing scheme II and c = 0.01. The parameter E1 specifies the relative differences between
the linear and nonlinear solutions.

whilst suction shows a comparable reduction in the perturbation magnitude. Hence, the
effects of nonlinearity are now very relevant to the receptivity process, as well as in the
crossflow evolution. These observations agree with the original findings of Choudhari &
Duck (1996), who first noticed that the onset of nonlinearity could initially emerge in the
receptivity stages of the flow development, very much before the subsequent appearance
of nonlinear processes in the crossflow disturbance.

The effect of nonlinearity on the receptivity at the point of forcing xf is presented
in table 1. The relative amplitudes of the primary mode u1 are compared for varying
Fourier harmonics Ny, where results correspond to those disturbances generated using
the blowing only forcing (method II) for c = 0.01. Nonlinearity increases the relative size
of the perturbation about xf , but the percentage difference between the Ny = 4 and 12
mode cases is very small, suggesting that our earlier assumption that four spanwise modes
may be adequate for investigating crossflow receptivity. Nevertheless, nonlinearity has
affected the local receptivity and size of the disturbance about the centre of wall forcing.
However, in subsequent analysis we will observe that nonlinearity has an even greater
impact on the effective receptivity amplitude of the developing crossflow instability.

The absolute maximums of the three disturbances attain a stationary point or peak
magnitude about a value of 0.1, near the chord locations x = 370, 390, 410 for forcing
schemes II,c=0.01, Ic=0.01 and IIc=−0.01, respectively. Downstream of the stationary point
the maximum value of the primary mode is found to fluctuate about this amplitude. Small
scale structures are then observed to develop, but due to the prescribed discretization
(discussed earlier) are not captured to any degree of certainty. However, as the current
investigation only concerns the effects of nonlinearity on receptivity and the early stages
of disturbance evolution, any resolution errors beyond this stationary point can be safely
ignored.

Additional plots of maximum disturbance amplitudes M are presented in figure 7. The
line types are the same as those given in figure 6. The first illustration (figure 7(a)) depicts
the effect of varying the forcing amplitude c on the receptivity of the disturbance. Two
forcing amplitudes are considered: c = 0.03 in the upper half of the plot and c = 0.001 in
the lower half. There are no discernible differences between the perturbation amplitudes
generated using the smaller forcing (at least for x < 400). However, those disturbances
excited by the larger forcing amplitude are observed to display significant deviations from
the linear only response. This also includes the crossflow disturbance established by wall
forcing method I, which now displays distinct variations in magnitude. Further, the size
of M , for the suction/blowing strip and blowing only forcing, is greater about the centre
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Figure 7. Maximum amplitudes M , where solid lines depict results due to forcing I, dashed
forcing IIb, chain forcing IIs and dotted the linear only solution. The Reynolds number R = 500
and the spanwise wavenumber β = 0.4. (a): Centre of excitation xf = 186 and forcing amplitude
c = 0.03 (upper lines) and c = 0.001 (lower lines). (b): Forcing amplitude c = 0.01 and centre
of excitation xf = 200, 300 and 400.

of wall excitation than the amplitude observed downstream at the stationary point. The
nonlinear effects have greatly influenced both the form of the local wall forcing and
the magnitude of the developing disturbance. These observations agree with the earlier
analysis on the system growth and the onset of saturation for the disturbances generated
with initial amplitude c = 0.03. This would then suggest that these particular cases
represent rather strong and probably physically unrealistic suction/blowing amplitude
distributions.
The chord centre of the periodic forcing is varied in figure 7(b) to illustrate the effect

of the disturbance distribution on the boundary layer receptivity. Again the line types
correspond to those forcing methods described above, where c = ±0.01 and xf = 200,
300 and 400. The general receptivity characteristics at each selected chord location are
again similar to that described above. Method I has a marginal effect on the initial
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Figure 8. (a): Receptivity amplitudes Ac plotted against chord length x. Line types correspond
to that given in figure 8(a). (b): Receptivity amplitudes Ac plotted against forcing magnitude
c ∈ [0.00001 : 0.05]. Again line types match that given in figure 8.

amplitude of the perturbation, whilst blowing and suction driven by forcing scheme II
again significantly augments and reduces the receptivity amplitude of the disturbance.
As the centre of forcing xf passes downstream along the chord direction, the initial
amplitude of the perturbation decreases and the location of the so-called downstream
stationary point increases. This behaviour may be expected as it is well known that the
largest linear receptivity amplitudes are observed about neutrally stable conditions for
crossflow (x0 ∼ 186 for stationary disturbances; Streett 1998; Mughal 2012). Hence in
figure 7(b), the effect of nonlinearity is greatest at xf = 200 and as xf is increased to
larger chord positions the nonlinear effects on the receptivity amplitude diminish and
the gap between the dashed (blowing) and dotted lines (suction) reduces.

5.3. Amplitudes

The formula for the amplitude Ac of the crossflow instability, equation (4.4), is applied
to both the linear and nonlinear perturbations in figure 7(a), which generates the plots
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shown in figure 8(a). Though the assumed PSE form of crossflow is not particularly
relevant or applicable to the nonlinear stages of the evolution process, it does provide
a simple means of comparing the relative sizes of the primary mode of the linear and
nonlinear solutions, especially in the chordwise region immediately downstream of the
forcing. The two dotted lines depict the amplitudes given for the linear only perturba-
tions. Downstream of the periodic forcing the linear receptivity amplitudes are relatively
constant over the chord length considered and their respective values are related through
the size of the initial forcing c; A1 = 0.26, A0.03 = 0.0078 and A0.0001 = 0.00026. The
remaining line types depict the disturbance amplitudes given by the nonlinear solutions.
The perturbations generated using the smaller initial forcing are almost identical over
the chord length shown and only display significant variations to the linear result for
x > 450. Downstream of this location the amplitudes decrease rapidly, which agrees with
the above observations that are discussed and depicted in figure 7(a).
On the other hand, amplitudes given for the larger initial forcing are shown to vary

greatly. For instance, the perturbation established using the wall blowing method II
(dashed line) has a magnitude about x = 250 that is approximately double that given
by the corresponding linear disturbance, while the equivalent result for the suction only
forcing (chain line) is about half the size of the linear solution. As the crossflow insta-
bility evolves and passes into the nonlinear development stages, the magnitude of the
disturbance reduces and eventually all nonlinear amplitudes are smaller than the ob-
served linear solution. This behaviour is due to the nonlinear interaction of the primary
Fourier mode with its higher order harmonics. Results for the larger initial forcing are
cut off at x = 400 as this coincides with the onset of small-scale structures, which are
beyond the resolution of the prescribed discretization.
Repeating the calculations given in figure 8(a) for xf = 186 and c in the range 0.00001

through to 0.05, the four lines or curves in figure 8(b) are generated that depict the
relative sizes of Ac against c for solutions of the different forcing methods. The linear re-
ceptivity amplitudes, which are relatively constant over the chord length shown in figure
8(a), are given by the straight line Ac = 0.26c. The corresponding nonlinear amplitudes
are selected at the chord location x = 250, which is chosen to give a meaningful rep-
resentation of the receptivity and initial size of the disturbance. Results established by
scheme II are found to be reflected about the linear receptivity line, with suction (chain)
having the expected stabilising effect on receptivity amplitudes and blowing (dashed)
destabilising. The third nonlinear curve (method I - solid) also shows a marked drop in
the receptivity amplitude as c increases, though it is not as exaggerated as that given for
the suction only case.

5.4. Stationary Point and a Semi-Log Law Relationship

Figure 9 depicts the locations xe that the flow parameter M attains a stationary point
against both the size of the initial forcing c and the initial disturbance amplitude Ac given
by the linear only analysis. A semi-log law scaling has been used along the horizontal axis
in both illustrations to aid visualisation. The three nonlinear results are specified using
the symbols: method I,□; II, blowing,⃝; and II, suction, ⋄. Open markers correspond
to disturbances excited about xf = 186, while symbols with a × and + at the centre
are associated with the wall forcing prescribed at xf = 200, 300 and 400, with c =
0.01 and 0.001, respectively. In figure 9(a) the calculations associated with the wall
forcing centred about xf = 186 (open markers) are found to lie along the (c, xe)-diagonal.
This is particularly true for those results computed for c ⩽ 10−2. However, for those
disturbances excited at larger values of xf the stationary points are shifted along the
vertical axis, with the markers furthest from the diagonal representing the cases xf = 400.
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Figure 9. The chord location that the parameter M attains a stationary point xe. Plotted
against (a): the amplitude of forcing c and (b): the receptivity amplitude Ac of the linear
disturbance. Markers represent solutions given by the wall forcing methods I,□; II,blowing,⃝;
and II, suction, ⋄. Open markers correspond to disturbances excited about xf = 186, while
markers with a × and + at the centre are associated with the wall forcing prescribed at xf = 200,
300 and 400, with c = 0.01 and 0.001, respectively. The solid line depicts the location that the
associated linear result attains a size of 0.1.

The relative distances in xe between the results of cases xf = 200 and 300 are smaller
than that found between xf = 300 and 400 because receptivity is strongest about the
critical conditions for crossflow instability (x0 ∼ 186); the primary Fourier mode will
attain the stationary point quicker for wall forcing located near this region. As the origin
xf of the suction/blowing distribution is shifted downstream the initial perturbation
amplitude decreases and the location for the stationary point increases. The illustration
then suggests that additional results for variable xf , c and wall distributions h(x) would
also be scattered throughout the (c, xe)-plane.
All positions xe are plotted against the linear receptivity amplitude Ac in figure 9(b),

where markers are as before. The solid line depicts the location that the normalized
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Figure 10. Ratio of the location that the nonlinear and linear M computations attain a
stationary point or amplitude 0.1. Markers are as given in Figure 9.

Ny c Ac E2% xe c Ac E2% xe c Ac E2% xe

Linear 0.03 0.007823 320 0.002608 370 0.000261 480
4 0.03 0.015947 51.0 296 0.01 0.003840 32.1 378 0.001 0.000271 3.7 492
6 0.03 0.017600 55.6 289 0.01 0.004177 37.6 375 0.001 0.000274 4.9 488
8 0.03 0.018369 57.4 288 0.01 0.004389 40.6 373 0.001 0.000277 5.8 485
10 0.03 0.019265 59.4 287 0.01 0.004558 42.8 372 0.001 0.000279 6.4 484
12 0.03 0.019860 60.6 286 0.01 0.004683 44.3 372 0.001 0.000280 6.7 484

Table 2. Results of the initial receptivity amplitude Ac, relative variation of the nonlinear

amplitude with the matching linear result, E2 =
Ac,NL−Ac,L

Ac,NL
× 100%, and stationary point

position xe, for Ny = 4, 6, ..., 12.

linear calculation attains an amplitude of 0.1, which is consistent with the relative sizes
of the nonlinear results at xe. Interestingly all nonlinear results are located within a
very small bandwidth about the solid line, including those generated using alternative
forcing locations, initial amplitudes and methods. The plot suggests that for a linear
receptivity amplitude Ac < 10−3, the chord position xe is located on the diagonal line
given by the linear solution. As Ac is raised to larger values, the range of xe increases
quite significantly, with chord variations on the order of 100 for Ac = 10−2. However, it
may still be possible to give a crude approximation for the location for xe using a line
of best fit or the linear only calculation. A suitable fit for the linear result and nonlinear
computations with Ac ⩽ 10−3 is of the form

Ac ≡ cA1 = λeγxe ,

where after careful calculation the constants λ and γ are respectively defined as 4.2 and
-0.02. For all problems considered herein the amplitude results with the initial conditions
(ω, β,R) = (0, 0.4, 500) are located about this semi-log law relationship.
Figure 10 depicts the ratio of the stationary points for the nonlinear disturbances,
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xe,NL, and the associated linear result, xe,L. The ratio is plotted against the linear
receptivity amplitude Ac that is again drawn on a log scale axis. Markers are again as
given in figure 9. For disturbances with receptivity amplitudes Ac ⩽ 10−3 the differences
between the calculations of the linear and nonlinear solutions is at most 5%. Thus, if the
linear receptivity analysis indicates that the normalized disturbance magnitude attains
a size of 0.1 about xe,L = 500, then a nonlinear simulation would give xe,NL ∈ [475, 525].
Hence, the simpler linear receptivity model may be used to estimate the location of
disturbance processes in the more complex and time expensive nonlinear analysis. In
reference to the disturbance illustrated in figure 4 above, the position of the stationary
point coincides with the cross-sectional velocity illustration that is depicted in 4(c), which
is marginally upstream of the location that the crossflow instability has fully rolled into a
vortex structure. Similar forms are observed about xe for other solutions, suggesting that
the stationary point appears upstream of the location described by Malik et al. (1994)
and others as corresponding to full saturation.
In previous sections it was decided that Ny = 4 Fourier modes was sufficient to inves-

tigate the receptivity and development of crossflow disturbances in the Swept Hiemenz
boundary-layer. This decision was primarily based on the computational and time cost of
simulating many disturbances based on larger values of Ny. However, as remarked upon
above, disturbances to suction/blowing forcing scheme II could possible vary as Ny is
increased to larger values, causing the physical shape of forcing to asymptote towards a
Dirac delta source. Hence, the results generated by forcing method II may be inaccurate,
particularly for large initial forcing amplitudes c. Table 2 compares linear results with
nonlinear calculations with varying orders of Fourier modes for the blowing only forcing
(positive c). The initial receptivity amplitude of the disturbance, Ac, the relative differ-
ence with the linear solution, E2, and the location that the primary disturbance first
attains a stationary point, xe, are documented. Following on from earlier observations,
the chord location xe for the linear disturbance is given as the position the parameter
M attains a value of 0.1. Firstly we note that the relative differences in the amplitude of
the disturbance or effective receptivity are far greater than those percentage variations
given for the local receptivity in table 1. For the smallest initial forcing, c = 0.001, the
percentage differences E2 for the Ny = 4 and 12 mode cases are relatively similar with
values approximately given as E2 = 3.7% and 6.7%, respectively. Further, the variation
in the location of the stationary point xe is very small, with linear predictions giving a
very good estimate. This is also true of results given at the larger forcing, c = 0.03, with
values for xe again consistent for all Ny cases considered. Although the relative percent-
age variation, E2, is now much greater for all of the nonlinear simulations, the increase
in receptivity amplitude from the Ny = 4 to the 12 mode case is no more than 16%
(based on relative differences between these two particular solutions). Thus, as a first
prediction of the effects of nonlinearity on the receptivity of the crossflow development
Ny = 4 Fourier modes appears to give a reasonable estimate of results even at very large
initial suction/blowing forcing amplitudes.
All of the results described above correspond to stationary only disturbances with the

Reynolds number of the flow R = 500. Extending the above analysis to alternative values
of R, and a traveling crossflow disturbance, for ω = 0.0375 and dimensional frequency
f = 20 × 10−6Hz, we can extract similar flow properties using the methods described
above. The chordwise location for the onset of the crossflow instability shifts upstream
with decreasing Reynolds number and is observed to emerge for stationary disturbances
about x0 = 137, 160 and 186 for R = 300, 400 and 500, respectively. The value of M
at the location that the primary disturbance attains a stationary point, xe, is found to
decrease with Reynolds number, with magnitudes typically about 0.09, 0.095 and 0.1
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Figure 11. Chord location that the primary disturbance attains a stationary point against the
linear receptivity amplitude Ac. Dotted lines correspond to R = 300, dashed R = 400 and solid
R = 500. (a): Stationary disturbances; (b): Travelling wave for ω = 0.0375.

for the three Reynolds numbers considered. Semi-log law plots are again constructed
and depicted in figure 11 by plotting the location for xe against the linear receptivity
amplitude Ac. Clearly the value for xe increases to larger values as the Reynolds number
decreases, meaning that transition will generally set in further downstream. Additionally,
the investigated travelling wave disturbance is more unstable than the stationary mode,
as the position of the stationary point (and onset of small-scale structures) appears
earlier.

5.5. Receptivity of the Physical Perturbation

The analysis in the preceding sections documents the flow dynamics and receptivity
characteristics of the primary Fourier velocity component. Initial receptivity amplitudes
and the chord location that the primary mode attains a stationary state are shown to
be proportional on a linear semi-log law mapping. However, from a physical perspective
it would be preferable to describe the flow properties of the real disturbance and its
relationship (if any) to the receptivity amplitude. Figure 12(a) displays the disturbance
response of the absolute value of three u-velocities as a function of x. Solid, dashed and
chain lines correspond to the nonlinear flow solutions excited by forcing scheme I for the
respective amplitudes c = 0.03, 0.01 and 0.001. The dotted lines depict the corresponding
linear only disturbance computations, while the three cross symbols specify the chord
locations that the associated primary disturbance u1 first attains a stationary point xe.
For these three illustrated cases the position xe is observed when the absolute amplitude
of the physical perturbation |u| = 0.165, 0.17 and 0.23, respectively. (Note that the results
have not been normalised on the factor R/x).
Figure 12(b) displays the computed values of |u| at x = xe for all results shown in

figure 9. The marker specifications are as before and a log scaling is implemented along
the horizontal axis that again represents the linear receptivity amplitude Ac. Behaviour
similar to that depicted in figure 9(b) is again observed; the magnitude of the nonlinear ū-
velocity perturbations are found to lie about the solid curve that represents the size of the
linear u-velocity at the position xe. In particular, for Ac ⩽ 10−3 results may be estimated
by the curve given by the linear analysis that passes through all nonlinear results. Further,
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Figure 12. (a): Absolute amplitude of the u-velocity perturbation against the chord direction
x. Nonlinear disturbances are excited about x = 186 for initial forcing amplitudes c = 0.03
(solid), 0.01 (dashed) and 0.001 (chain). (b): Magnitude of u-velocity component at xe against
the linear receptivity amplitude Ac for all results given in figure 9.

the absolute size of the disturbance |u|, at the chord location xe is observed to attain
a maximum of 30% of the freestream velocity V∞ for a linear receptivity amplitude
Ac ∼ 10−5.

6. Final Remarks

An investigation has been carried out on the effects of nonlinearity on the receptivity
of crossflow in the Swept Hiemenz boundary-layer. A nonlinear vorticity formulation has
been developed, extending the scheme of Davies & Carpenter (2001) that was limited
to linear disturbance development. Periodic forcing is prescribed in time and along the
spanwise direction, using artificial suction/blowing strips or as bands of small holes. The
effect of varying the origin and size of wall forcing are considered, as well as the effect
of flow Reynolds number. Evolution of the crossflow vortex is described and shown to
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exhibit flow characteristics consistent with that depicted in earlier investigations, even
though only four spanwise Fourier modes are used to generate the nonlinear results. The
analysis shows that solutions generated for larger modal numbers has a relatively small
impact on both the local and effective receptivity of the crossflow instability.

Suction and blowing distributed as periodic holes are shown to have a relatively large
effect on the boundary-layer receptivity. Particularly those disturbances generated using
large forcing magnitudes and centred near the chord location for critical crossflow in-
stability. The absolute maximum of the primary chordwise velocity perturbation, when
normalised on R/x ≡ V∞/U∞, is observed to attain a stationary position for an am-
plitude near 0.1 and is shown to be linearly proportional (on a log scaling) with the
initial receptivity amplitude given by the linear analysis. This is especially true of dis-
turbances with values Ac < 10−3 and all wall forcing types considered. (Extensions to
wall roughness may be possible by modifying the no-slip condition and deriving similar
relationships for receptivity and stationary points). This would suggest that some non-
linear flow dynamics of the crossflow vortex development may be estimated directly from
the linear receptivity analysis. In terms of the size of suction/blowing wall forcing, a dis-
turbance with initial amplitude Ac = 10−3 that is generated by a Gaussian shaped wall
distribution about x = 186 corresponds to an initial forcing magnitude of size c = 0.004
or dimensionally 0.004V∞.

The log law relationship relating xe and Ac is similar to the analysis based on the
n-factor method for transition. Assuming that Ac is the initial size of the disturbance,
then the amplitude at xe is given as 0.1xe/R, which gives the following formula for the
n-factor:

n = ln

(
xe

10AcR

)
.

However, as xe is located upstream of the onset of full crossflow saturation, this formula
will slightly underestimate the predicted value of the n-factor at transition.

We thank the referees for many helpful suggestions concerning the presentation and
improvement of our results. This work was carried out with the support of EPSRC
through LFC-UK: Development of Underpinning Technology for Laminar Flow Control.
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