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Summary

The role of the financial mathematician is to find solutions to problems in

finance through the application of mathematical theory. The motivation

for this work is specification of models to accurately describe the price

evolution of a risky asset, a risky asset is for example a security traded

on a financial market such as a stock, currency or benchmark index. This

thesis makes contributions in two classes of models, namely activity time

models and integer valued models, by the discovery of new real valued and

integer valued stochastic processes. In both model frameworks applications

to option pricing are considered.

Chapter one defines activity time models and lists well known properties of

asymmetry, leptokurtic and dependent distributions. An equivalent starting

point for such models in the form of a stochastic integral and differential

equation is discussed, stating the conditions needed for stochastic calculus to

be used. An empirical investigation also illustrates the reasons why activity

time models may be a more suitable description for the price evolution of a

risky asset.

The main contributions appear in chapter two when construction of the

ix



activity time processes are specified, with three types being given. Firstly

via superpositions of positive tempered stable Ornstein-Uhlenbeck type

processes, producing either a short or long range dependent process.

Secondly a new approach is developed in terms of a fractional tempered

stable motion with exact tempered stable distributions and asymptotic long

range dependence. Thirdly the inverse stable subordinator is used for a

slightly modified activity time model which has links to integer valued

models in the final chapter.

In the third chapter, the pricing of European call options is explored. Fitting

the model is discussed and statistical parameters are computed using method

of moments estimators. An option pricing formula is derived, derivatives

computed and risk neutral parameters are calibrated by matching formula

prices to market prices, which achieves a closer fit than the classical model.

The improved performance is minor but for large institutional trades a small

price discrepancy directly creates undesirable profit or loss while hedging a

written contract.

The fourth chapter concerns high frequency financial data and proposes new

integer valued models. Here the motivation comes from inter arrival times

between trades for which the exponential distribution may not always be

suitable. Instead the Mittag-Leffler law is proposed for the waiting times

and the associated fractional Skellam models are constructed. The term

fractional relates to the probability mass function being the solution to

fractional differential equations. An empirical investigation confirms the

benefits of this framework. For high frequency algorithmic traders, even a

small misjudgment of a few nanoseconds may prove costly, which underlines

the practical relevance of our work.
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Chapter 1. Activity time models

Chapter 1

Activity time models

1.1 Introduction

It has become popular for researchers in financial mathematics to propose

models that describe the price evolution through time of a risky asset.

A risky asset is an exchange traded security such as a stock, currency,

commodity or benchmark index. Such models include an array of

exponential Lévy models, stochastic volatility models, diffusion or pure

jumps models. The classical model of geometric Brownian motion

introduced by Samuelson (1965a) is of diffusion type and was used by Black

and Scholes (1973) in their celebrated option pricing formula. Exponential

Lévy models may be diffusion plus jump or just pure jump models and

were introduced as far back as Mandelbrot (1963), Merton (1976) and Clark

(1973) for example. Stochastic volatility models describe a process where

the volatility (variance) is random through time, these type of models were

first proposed by Heston (1993).
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1.1. Introduction

These model classes have been introduced to better fit the empirical realities

of risky assets, for which the classical diffusion model fails to capture. Indeed

there are hundreds of proposed models available and it could be argued that

at most only one must be correct and it may be that all are incorrect. It

is unlikely that at least in the foreseeable future a full understanding of

the underlying process that drives asset prices will be discovered. This is

because market participants who trade such assets rarely make available

their information that led them to buy or sell the asset, which leaves

the true factors affecting price movement unobservable. This does not

mean we should give up all hope of modeling such assets but rather take

the approach to accurately describe their evolution in terms of statistical

properties observed from empirical data. This approach differs from that

of an economist, who looks to model the factors that effect price. Whereas

a mathematician takes the view all available information is reflected in the

current market value and looks to model the price.

At present there is a large literature on models that incorporate suitable

distributions to match what is empirically found and stochastic volatility

models have also been extensively explored. One feature observed

statistically that has received considerable less attention by researchers is

the dependence structure of risky assets. It has been observed, see Granger

(1966), Granger (2005) and references therein, that transformations of daily

price returns, such as absolute daily returns exhibit memory through time.

To this end this thesis looks to investigate models that describe well the

distributional and dependence properties that are clearly observable in real

data. We do not suggest that our models are superior to all others but

rather the models described in this thesis should be viewed as advisors and

2



Chapter 1. Activity time models

it is left to the practitioner which advisor (model) to implement and make

inferences from.

To incorporate dependence (memory) whilst retaining distributions, the

class of activity time models was proposed by Heyde (1999) and was

subsequently developed by Heyde and Leonenko (2005), Leonenko et al.

(2011) and Finlay and Seneta (2006) for example. The activity time models

under review in this thesis are closely related to the stochastic volatility

model proposed in Barndorff-Nielsen and Shephard (2001). However,

although addressing the issue of dependence in financial time series, they

where not able to give exact distributions. Here, in this work we are able to

compute exact distributions for the logarithm of the price and logarithm of

price returns. We feel this feature allows significant tractability in terms of

applications.

The rest of the chapter is organized as follows. Section 1.2 gives notation

on stochastic processes that will be used throughout before defining the well

known Brownian motion in section 1.3. We give a brief historical overview of

the classical model for risky assets in section 1.4. An empirical investigation

for a cross section of exchange traded securities is presented in section 1.5.

We describe some statistical features of risky assets, the so-called stylized

facts, which are in fact true for a wide range of assets. This leads us

to formally define in section 1.6, activity time models with their distinct

property of dependence, we list some well known properties of the model

and give an alternative starting point in terms of a stochastic differential

equation in section 1.7.
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1.2. Stochastic processes: basic definitions and notation

1.2 Stochastic processes: basic definitions and notation

Before introducing even the classical model of geometric Brownian motion

we will require some notation. This section provides basic terminology and

definitions for stochastic modeling that will be used throughout this work,

we follow commonly used notation found in the literature.

Denote by Ω the sample space of all possible events ω, denote by F a sigma

algebra on Ω. A random variable Y is a measurable function from Ω onto

R, the set of real numbers. That is for each event ω ∈ Ω, Y (ω) is some real

number. By measurable we mean, for some set of events A in F the inverse

Y −1(A) is also in F ,

Y −1(A) := {Y ∈ A} ∈ F , (1.2.1)

with the notation

{Y ∈ A} = {ω ∈ Ω : Y (ω) ∈ A} (1.2.2)

and we say Y is F -measurable. Every random variable induces a probability

measure, denoted by P. The probability of the event or set of events A

occurring is denoted by P(Y ∈ A) or in shorthand notation P(A) and is a

number in the closed interval [0, 1], for the entire sample space P(Ω) = 1.

If an event A ∈ F satisfies P(Y ∈ A) = 1, we say that A occurs almost

surely. We call the triple (Ω,F ,P) a probability space for which our random

variable Y is defined upon. The probability measure is often given in terms

of the distribution function F , namely the probability that Y is less than or

equal to some real number y,

F (y) = P(Y (ω) ≤ y). (1.2.3)

4



Chapter 1. Activity time models

We refer to this function as the cumulative distribution function which is an

increasing, right continuous function. For a continuous random variable Y ,

there is a function f : R→ [0,∞], such that

P(a ≤ Y (ω) ≤ b) =
∫ b

a
f(y)dy, (1.2.4)

which if it exists is called the probability density function of Y , with the

relationship

F (y) =
∫ y

−∞
f(u)du. (1.2.5)

In summary, we say a random variable Y has density f and distribution F .

The expectation of g(Y ), where g is a Borel measurable function from R onto

R, is computed as the Lebesgue integral

E[g(Y )] :=
∫

Ω
g(Y (ω))dP(ω)

or the Lebesgue-Stieltjes integral

E[g(Y )] :=
∫
R
g(y)dF (y)

provided the integral exists. In the case when the random variable has a

density function, E[g(Y )] :=
∫
R g(y)f(y)dy.

The variance is defined by

Var[Y ] = E[(Y − E[Y ])2]. (1.2.6)

A measure of statistical dependence between two random variables X and

Y is the covariance,

Cov[X, Y ] = E[XY ]− E[X]E[Y ],

which, when normalized is called the correlation,

Corr[X, Y ] = Cov[X, Y ]√
Var[X]Var[Y ]

.

5



1.2. Stochastic processes: basic definitions and notation

A stochastic process is a time parametrized collection of real valued random

variables,

{Y (t, ω), t ≥ 0}, Y (t, ω) : [0,∞]× Ω→ R. (1.2.7)

We will often drop the argument ω and simply write {Y (t), t ≥ 0} to indicate

a stochastic process. For a fixed t ≥ 0 we have a random variable Y (t, ω),

and we write f(y, t) = P(Y (t) ≤ y) to denote the marginal probability

density of this random variable. Conversely for a fixed ω we have a function

of time with map t 7→ Y (t, ω). The stochastic process is called Ft-adapted

if for any fixed t > 0, the random variable is Ft-measurable,

Y −1(B) := {(t, ω) ∈ Ω : Y (t, ω) ∈ B} ∈ Ft. (1.2.8)

The increasing family of σ-algebras {Ft}t≥0 is referred to as the filtration

generated by the stochastic process {Y (t), t ≥ 0}. We say the filtration is

complete when F0 contains all the P-null sets of F and Ft := ⋂
u>tFu, for

all t ∈ [0,∞), that is, a right continuous filtration. We call the quadruplet(
Ω,F , {Ft},P

)
(1.2.9)

a stochastic basis and throughout this thesis we assume a complete stochastic

basis to be given for which we define stochastic processes upon.

A stochastic process is said to be cádlág if it is right-continuous with left

limits, that is, for each t > 0 the limits

Y (t−) = lim
s→t,s<t

Y (s) Y (t+) = lim
s→t,s>t

Y (s)

exists and Y (t) := Y (t+). A cáglád function is defined intuitively as a

left-continuous function with right limits.

By the finite dimensional distributions of the stochastic process {Y (t), t ≥ 0}

6



Chapter 1. Activity time models

we mean

P
(
ω ∈ Ω|(Y (t1), . . . , Y (tk)) ∈ A

)
, (1.2.10)

the joint distribution of {Y (t), t ≥ 0} at times t1, . . . , tk. A stochastic process

{Y (t), t ≥ 0} is said to be stationary if for all k, for all h and for all t1, . . . , tk

P
(
(Y (t1 + h), . . . , Y (tk + h)) ∈ A

)
= P

(
(Y (t1), . . . , Y (tk)) ∈ A

)
(1.2.11)

so h does not effect F (· · · ), i.e. F is not a function of time.

A process is said to be stationary in the wide sense (or second-order

stationary) if E[Y (t)2] < ∞ and if the expectation m(t) = E[Y (t)] and

covariance Cov[Y (t), Y (s)] are invariant with respect to group shifts in

R. In this case E[X(t)] = m = constant and the covariance function

Cov[Y (t), Y (s)] = R(t− s) is a function of the difference t− s.

We say that a Borel measurable function R : [A,∞)→ (0,∞), for some

A > 0 varies regularly with index `, if

lim
x→∞

R(λx)
R(x) = λ`, for all λ 6= 0. (1.2.12)

If ` = 0 we say that R(x) is slowly varying.

A stationary stochastic process {Y (t), t ≥ 0} is long range dependent if its

autocorrelation function

ρ(u) := Corr[Y (t), Y (t+ u)] (1.2.13)

:= Cov[Y (t), Y (t+ u)]√
Var[(Y (t)]Var[Y (t+ u)]

decays as a power of lag u

ρ(u) =
u→∞

R(u)
u1−2H , H ∈ (0, 1

2) (1.2.14)

7



1.3. Brownian motion

where R(u) is a slowly varying function at infinity.

We call a real valued adapted stochastic process a martingale with respect

to its filtration, if almost surely E[|Y (t)|] <∞ and if for s < t we have

E[Y (t)|Fs] = Y (s). (1.2.15)

1.3 Brownian motion

Arguably the most important stochastic process is the so-called standard

Brownian motion {B(t, ω), t ≥ 0} (or simply {B(t), t ≥ 0} as we will

commonly omit the argument ω) which by definition has the properties:

i. B(0, ω) = 0 for all ω ∈ Ω, (with probability 1).

ii. The map t 7→ B(t, ω) is a continuous function of t for all ω.

iii. For every t, u ≥ 0, B(u + t)− B(u) has a Gaussian distribution with

mean 0 and variance t and is independent of {B(u), 0 ≤ u ≤ t}.

For a Brownian motion the marginal probability density function and

moments of even orders for k = 1, 2, . . . can be computed by

f(x, t) = 1√
2πt

e−
x2
2t , E[B(t)2k] = (2k)!

k!2k t
k

and we denote such a random variable B(t) ∼ N(0, t), to indicate that B(t)

has a normal distribution with zero mean and variance t.

1.4 Geometric Brownian motion as a risky asset model

This section gives a brief historical overview of the origins of financial

mathematics in terms of stochastic modeling of risky assets. For a detailed

8



Chapter 1. Activity time models

report see Jarrow and Protter (2004).

The historical roots of risky asset modeling lie in the early twentieth

century with the publication of The Theory of Speculation by the French

mathematician Louis Bachelier, see Bachelier (1900). The motivation came

from the Paris stock exchange, where traded assets appeared to move

in a random fashion. Bachelier deployed the central limit theorem and

assumed independence in returns. His work proposed what is now known as

arithmetic Brownian motion,

P (t) = P (0) + µt+ σB(t) (1.4.1)

as a reasonable model for a risky asset. Where P (t) is a random variable

representing the price of the risky asset at time t, the constants µ ∈ R and

σ > 0 are drift and diffusion parameters and B(t) is a standard Brownian

motion. However this was not the start of a flow of academic literature in

financial mathematics, in fact no further work seems to have taken place in

the proceeding decades. Although Bachelier was referenced by Kolmogorov

and Doob, it was not untill the 1950’s when Jimmie Savage suggested to

Paul Samuelson to look at Bachelier’s thesis, that further investigations into

financial mathematics was to start.

Samuelson gave economic reasoning why stock prices move in a random

fashion, see Samuelson (1965b). Working alongside Eugen Fama they formed

the basis of what has come to be known as the efficient market hypothesis,

see Fama (1965). This idea postulates that the information in the past has

no influence on future price movements, discounted futures prices follow a

martingale and so do arbitrary functions of the spot price.

For risky asset modeling arithmetic Brownian motion has the inherent flaw

9



1.4. Geometric Brownian motion as a risky asset model

that it can take negative values, whereas stock prices must remain positive

or they will cease trading on the exchange. Samuelson noticing this, went

on to show that a good model for stock price movements is what we call

today geometric Brownian motion,

P (t) = P (0) exp
{
µt+ σB(t)

}
. (1.4.2)

Samuelson also gave option valuation formulas which were nearly the same

as those of Black and Scholes, but derived from the point of view that the

discounted option payoff is a martingale (see Samuelson (1965a) p. 19).

The pricing formula for the valuation of options, a contingent payoff claim on

an underlying security is attributed to Fischer Black and Myron Scholes in

their 1973 paper titled “The Pricing of Options and Corporate Liabilities”,

published in the Journal of Political Economy. At the time they worked

closely with Robert C. Merton, who expanded their ideas and together

with Scholes received the 1997 Nobel Prize in Economics for their work.

Essentially they were the first to explicitly solve the problem of valuation of

options which came at a time when the Chicago Board Options Exchange

and other options markets around the world were in their infancy.

With these new pricing tools, practitioners (brokers) were able to give

realistic prices to their clients, even if the option contract was not heavily

traded and a market price had not been quoted. On the other hand it also

allowed buyers of options the tools to check that the prices on offer were

reasonable to trade at. This led to the growth of options exchange markets

which today are equal in volume to stock exchanges and in some cases larger.

10



Chapter 1. Activity time models

1.5 Empirical realities of risky assets

This section details known properties that hold true to a certain extent for

all risky assets, these features have been referred to as the stylized facts.

Before proceeding further, let us fix some notation. Related to the price

process is the log return process {X(t), t ≥ 0} representing the sequence of

unit increments of width ∆t > 0 of the logarithm of the price, namely

X(t) := log
(
P (t)

)
− log

(
P (t−∆t)

)
(1.5.1)

In many econometric studies, ∆t is set implicitly equal to one in appropriate

units. We will not conserve the variable ∆t, instead we will use ∆t = 1 day,

i.e. we are measuring daily log returns. For the short investigations in this

section we have collected a cross section of empirical samples of risky assets

for indexes, currencies, stocks and commodities, see table 1.1. All samples

were obtained from Thompson Reuters datastream terminal and reflect daily

market price on close for each asset. The RI series was downloaded when

applicable which readjusts for dividend days, index recomposition days, etc.

We use the notation p(1), p(2), . . . , p(n) to represent the observed sequence

of prices from a sample of size n, from which the sample log return sequence,

denoted by x(1), x(2), . . . , x(n− 1), can be obtained.

For the Dow Jones Industrial average the empirical trajectory (sample path)

is displayed in figure 1.1 and the corresponding log return sequence in figure

1.2. Notice that although the sample paths of geometric Brownian motion

look similar to the empirical path observed for the Dow Jones in figure 1.1,

on closer inspection the corresponding log return process shows that they

are in fact quite different. The empirical log returns show higher variability

11



1.5. Empirical realities of risky assets

Risky asset Mean Variance Skewness Kurtosis

FTSE 100 0.00035 0.00013 -0.47 12.1

FTSE ALL SHARE 0.00036 0.00011 -0.59 13.0

ASX 200 0.00034 0.00009 -0.45 9.1

DOW JONES 0.00035 0.00012 -1.78 46.3

SP 500 COMPOSITE 0.00035 0.00013 -0.29 12.0

NASDAQ 100 0.00032 0.00020 -0.11 10.4

HANG SENG 0.00049 0.00027 0.00 12.7

USD:EUR -0.00002 0.00004 0.07 6.8

GBP:EUR 0.00002 0.00002 0.37 8.6

YEN:EUR -0.00004 0.00006 -0.29 7.5

USD:GBP -0.00004 0.00003 -0.06 7.3

GOLDBLN 0.00018 0.00011 -0.22 11.7

CRUDOIL 0.00018 0.00064 -0.77 18.3

SLVCASH 0.00026 0.00055 0.14 37.1

GLAXOSMITHKLINE 0.00027 0.00005 0.34 11.8

HSBC 0.00023 0.00006 -0.19 11.7

WAL MART STORES 0.00030 0.00007 0.03 8.3

GENERAL ELECTRIC 0.00016 0.00005 -0.10 11.5

PFIZER 0.00019 0.00006 -0.19 7.3

Table 1.1: Log returns statistics

than would be expected for geometric Brownian motion, see figure 1.2.

When returns with similar magnitude cluster through time, we say the asset

exhibits volatility clustering. In other words, the assets time series displays

a sequence of consecutive trading days or even weeks with high variance,

12



Chapter 1. Activity time models

followed by periods of low variance. It is evident from figure 1.2 that the

Dow Jones index displays empirical volatility clustering.
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Figure 1.1: Empirical price path for Dow Jones Industrial index
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Figure 1.2: Dow Jones empirical log return sequence

It is widely accepted that risky asset log returns do not follow the normal

distribution when measured at a daily frequency, this has been noted as far
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1.5. Empirical realities of risky assets

back as Mandelbrot (1963). A simple way to quantify the distribution of log

returns is by computation of the kurtosis κ,

κ = E[(X − E[X])4]
E[(X − E[X])2]2 , (1.5.2)

using its empirical counterpart

κ̂ =
1
n

∑n
t=1(x(t)− x̄)4(

1
n

∑n
t=1(x(t)− x̄)2

)2 , (1.5.3)

where x̄ is the empirical sample mean. The kurtosis is defined as κ = 3

for a Gaussian distribution, a positive value of κ > 3 indicating a heavy

or semi-heavy tail, that is the log density forms a hyperbola whereas the

log density of the normal distribution is a parabola. For our data sets the

kurtosis is far from its Gaussian value: typical values for daily log returns

are (see table 1.1): κ = 12.1 for the FTSE 100, κ = 6.8 for the USD:EUR

exchange rate and κ = 11.7 for the GOLDBLN. When a distribution has

excess kurtosis we say it has heavy tails and high peaks.
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Figure 1.3: Dow Jones empirical probability density

A high peaked distribution describes log returns more likely to have a

relatively small change than the normal distribution would specify, see

14



Chapter 1. Activity time models
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Figure 1.4: Dow Jones empirical log probability density

figures 1.3 and 1.4. Moreover the heavy tails indicate a greater chance of a

large market swing in either direction, again this would be underestimated

using a normal distribution. These features are not sufficient to identify

the distribution of returns and leave a considerable margin for the choice of

distribution.

It has been noted (see for example Cont (2001)) that location, scale,

skewness and tail parameters are needed to fit risky asset log returns.

Such four parameter distributions include but are not limited to: normal

inverse Gaussian, generalized hyperbolic and exponentially truncated stable

distributions. The correct choice is an open question and may simply be

decided upon as a matter of analytical and numerical tractability as well as

the quest for mathematical exploration.

A further property inherent in traded securities is independence of returns

but dependence in transformations of returns. Recall that a stochastic

process is long range dependent if its autocorrelation function ρ(u) decays

as a power of lag u, see equation (1.2.14) for details. To investigate the
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1.5. Empirical realities of risky assets

dependence structure we compute and plot the empirical autocovariance

function ρ̂, given a set of observations x(1), . . . , x(n),

ρ̂(u) = 1
n

n−u∑
t=1

(x(t)− x̄)(x(t+ u)− x̄).

where n is the number of observations in the sample, an x̄ is the empirical

expectation. It can be seen empirically that the log returns themselves,

namely the sequence {x(t), t = 1, 2, . . . }, do not exhibit any significant

autocorrelation, see figure 1.5 where the dashed lines are Gaussian white

noise bands. This is a well known fact for risky asset returns and has been

used in support of the efficient market hypothesis.
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Figure 1.5: Empirical autocorrelation function using log return sequence for Dow Jones

Industrial index

If the log returns are independent then the absence of any significant

autocorrelations should also hold true for transformations of log returns.

It has been reported in the literature that this is in fact not the case.

For evidence of dependence in risky assets see Granger (2005). Figure 1.6
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Figure 1.6: Empirical autocorrelation function using absolute log return sequence for Dow

Jones Industrial index

confirms for the Dow Jones Industrial index, autocorrelation empirically for

absolute returns decreases slower than independent returns which would be

expected to lie inside the two dashed lines.

It is an ongoing debate whether long range dependence is present in log

returns and it is not a trivial question how statistical methods could answer

such a question. The question this thesis aims to answer is not the problem

of proving LRD in the empirical sense but instead tackling the challenging

problem of providing a mathematically rigorous model for the presence of

the long-range dependence phenomenon in stock returns.

A suitable modeling framework able to capture dependence is the class of

activity time models for which the next section will introduce and for which

chapter 2 of this thesis will make contributions too.
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1.6. Fractal activity time models

1.6 Fractal activity time models

This section introduces fractal activity time geometric Brownian motion

with its distinct property of dependence. Fractal activity time geometric

Brownian motion (FATGBM) models for risky assets are due to Heyde

(1999), see also Heyde and Liu (2001). The model describes the price P (t)

of a risky asset at time t.

Definition 1. A fractal activity time geometric Brownian motion process

{P (t), t ≥ 0} is defined by

P (t) = P (0) exp
{
µt+ θT (t) + σB(T (t))

}
. (1.6.1)

where B(t) is a Ft-adapted standard Brownian motion and T (t) is the fractal

activity time, a Ft-adapted, right continuous, positive, increasing random

process with long range dependence and T (0) = 0. With constants µ ∈ R,

θ ∈ R and σ > 0 referred to as the location, skew and scale parameters.

The model allows considerable flexibility since the activity time process is

not defined in complete detail, the following question then naturally arises.

Q. Can we construct an activity process {T (t), t ≥ 0} with long range

dependence and suitable distributions?

The answer is yes and has for example been constructed under FATGBM

processes for reciprocal gamma, gamma, inverse Gaussian and generalized

inverse Gaussian laws in the works of Heyde and Leonenko (2005), Leonenko

et al. (2011), Leonenko et al. (2012), Finlay and Seneta (2006), and Finlay

and Seneta (2012). Our work differs in one respect that we will be

constructing fractal activity times with tempered stable laws. Tempered
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Chapter 1. Activity time models

stable law have been considered in risky asset models by Cont and Tankov

(2003), see also references therein. Furthermore we will be adding a new

construction of the time change in the form of an integral representation in

chapter 2.

Some known properties of the FATGBM process given by equation (1.6.1)

are now listed.

Properties 1. A fractal activity time model described in definition 1 above,

has the following properties:

1. Conditional distribution. The log returns X(t) have equality in

law

X(t) d=µ+ θτ(t) + σ
√
τ(t)ξ(t), t = 1, 2, . . . , (1.6.2)

where d= denotes equality in distribution, and ξ(t) is a sequence

of independent standard normal random variables independent of

τ(t) := T (t)− T (t− 1).

2. Moments. The log returns have mean

E[X(t)] = µ+ θE[τ(t)], (1.6.3)

and variance

Var[X(t)] = σ2E[τ(t)] + θ2E[(τt − Eτ(t))2]. (1.6.4)

Even when θ = 0 the variance is time dependent, that is the model is

hetroskedastic.

3. Asymmetry. The distribution of X(t) has skewness

ϑ3 = 3θσ2κ2 + θ3κ3

(σ2E[τ(t)] + θ2κ2)3/2 . (1.6.5)
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1.6. Fractal activity time models

where κi := E[(τ(t) − Eτt)i]. Symmetric log returns corresponds to

θ = 0.

4. Leptokurtic. The kurtosis is

ϑ4 = 3σ4(κ2 + E[τ(t)]2) + 6θ2σ2(E[τ(t)]κ2 + κ3) + θ4κ4

(σ2E[τ(t)] + θ2κ2)2 . (1.6.6)

In the symmetric case θ = 0, the kurtosis

ϑ4 = 3Var[τ(t)]
E[τ(t)]2 ≥ 3, (1.6.7)

still allows for heavy tail returns over that of the Gaussian law.

5. Dependence. The covariance of returns is

Cov[X(t), X(t+ k)] = θ2Cov[τ(t), τ(t+ k)]. (1.6.8)

For µ = θ = 0 we also have

Cov[|X(t)|, |X(t+ k)|] = 2
π
σ2Cov[

√
τ(t),

√
τ(t+ k)]. (1.6.9)

The squared returns have covariance

Cov[X2(t), X2(t+ k)] = σ4Cov[τ(t), τ(t+ k)]. (1.6.10)

6. Skew correcting martingale. Under the parameter restrictions µ =

r and θ = −1
2σ

2 where r ≥ 0, the process {e−rtP (t), t ≥ 0} is a

martingale with respect to the filtration FT (t).

The result of Heyde (1999) allowed independence (when θ = 0) in log returns

but dependence in absolute or squared returns (see equations (1.6.8), (1.6.9)

and (1.6.10)) as empirically observed for risky assets, see figures 1.5 and 1.6.

The dependence property sets the model apart from other exponential Lévy

models in the literature, indeed with dependence the model will no long be

a Lévy process.
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Chapter 1. Activity time models

1.7 Governing stochastic differential and integral
equations

Let us now introduce one further property in the form of Lemma 1, which is

a particular case of Proposition 4.4 in Kobayashi (2011). Firstly we require

the following assumption.

Assumption 1. The activity time process {T (t), t ≥ 0} has continuous

sample paths, i.e. the map t 7→ T (t, ω) is a continuous function of t for all

paths ω.

Lemma 1. Let B(t) be a Ft-adapted standard Brownian motion and T (t)

a Ft-adapted, right continuous, positive, increasing random process with

T (0) = 0. Let µ ∈ R, θ ∈ R and σ > 0 be constants. Assume

that assumption 1 holds, then the unique strong solution to the stochastic

differential equation

dP (t) = µP (t)dt+
(
θ + 1

2σ
2
)
P (t)dT (t) + σP (t)dB(T (t)) (1.7.1)

with initial condition P (0) = p(0) is given by

P (t) = P (0) exp
{
µt+ θT (t) + σB(T (t))

}
. (1.7.2)

Proof: The homogeneous linear stochastic differential equation (1.7.1) can

be represented by the stochastic integral equation

P (t) = P (0) +
∫ t

0
µP (s)ds+

∫ t

0
(θ + 1

2σ
2)P (s)dT (s) (1.7.3)

+
∫ t

0
σP (s)dB(T (s)).

Since T (t) is continuous, then B stays constant for all s ∈ [T (t−), T (t)]

and B is said to be in synchronization with T . From Kobayashi (2011),

B(T (t)) is a semimartingale adapted to the filtration FT (t). Moreover
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1.7. Governing stochastic differential and integral equations

T (t) is a semimartingale since T (t) is a Ft-adapted, cádlág, increasing

process with paths of finite variation on compacts sets. Then P (t) is also

a semimartingale. From Bender and Marquardt (2009), {P (t), t ≥ 0} has

continuous trajectories with no jump discontinuities in its sample paths.

The Ito formula tells us that for the twice differentiable continuous function

f(x) = log(x), x > 0 we have

f(P (t))− f(P (0)) =
∫ t

0

1
P (s)dP (s) + 1

2

∫ t

0

1
P 2(s)d[P, P ](s). (1.7.4)

By the associativity of stochastic integrals, plugging the stochastic

differential equation (1.7.1) into equation (1.7.4) yields

log P (t)
P (0) =

∫ t

0
µds+

∫ t

0
(θ + 1

2σ
2)dT (s) +

∫ t

0
σdB(T (s))

+ 1
2

∫ t

0

1
P 2(s)d[P, P ](s). (1.7.5)

Where the quadratic variation [P, P ](t) process is defined by definition as

[P, P ](t) := P 2(t)− 2
∫ t

0
P (s)dP (s), (1.7.6)

can be computed with the calculus rules (see equation 4.11, p.13 in

Kobayashi (2011))

[B ◦ T,B ◦ T ](t) = [B,B](T (t)) = T (t) (1.7.7)

[m,B ◦ T ] = [m,m] = [m,T ] = [T,B ◦ T ] = [T, T ] = 0 (1.7.8)

where m is the identity map and B ◦ T := B(T (·)). It is easy to show the

quadratic variation differential is

d[P, P ](t) = σ2P 2(t)dT (t). (1.7.9)

Then the stochastic integral equation (1.7.5) can be written as

log P (t)
P (0) =

∫ t

0
µds+

∫ t

0
θdT (s) +

∫ t

0
σdB(T (s)). (1.7.10)
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Using the following change of variables formula∫ t

0
dB(T (s)) =

∫ T (t)

0
dB(s), (1.7.11)

due to Kobayashi (2011) theorem 3.1, (which can also be found in

Barndorff-Nielsen and Shiryaev (2010) corollary 1.1) the equation (1.7.10)

can finally be rewritten as

P (t) = P (0) exp
{ ∫ t

0
µds+

∫ T (t)

0
θds+

∫ T (t)

0
σdB(s)

}
= P (0) exp{µt+ θT (t) + σB(T (t))} (1.7.12)

since B(0) = T (0) = 0. Uniqueness and existence follows from Lemma 4.1

Kobayashi (2011). This completes the proof.

1.8 Concluding remarks

We have seen empirically the realities of risky asset log returns in terms

of non Gaussian distributions and dependence in transformations. The

classical model of geometric Brownian motion is clearly unsuitable, so the

refined fractal activity time model was defined with properties which could

incorporate the empirical observations. The key point for activity time

models is that the activity time process should exhibit dependence, which is

then inherited by the log returns. Our work now continues in chapter two in

terms of a rigorous construction of the activity time process that will exhibit

dependence and retain approximate or exact distributions.
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Chapter 2

Activity time construction

2.1 Introduction

The goal of this chapter is construction of fractal activity time processes

{T (t), t ≥ 0} with dependence and tempered stable distributions and their

corresponding activity time models. We provide details for the fractal

activity time in three different ways, referred to as types I, II and III.

The first construction, type I is via superpositions of positive non-Gaussian

Ornstein-Uhlenbeck processes, type II uses a convoluted subordinator

while the third construction, type III, is by definition the inverse stable

subordinator.

Both the first and second constructions involve choosing the law for a driving

Lévy process in order to obtain desirable laws for the fractal activity time

and both are more delicate than the third construction, although appearing

more simple, is however the limit of related models in chapter 4.
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2.2. Lévy processes

The rest of this chapter is organized as follows. In section 2.2 Lévy processes

are introduced and further notation is set. The stable and tempered

stable Lévy processes are detailed in section 2.3 and 2.4. respectively. In

section 2.5 Ornstein-Uhlenbeck processes are introduced and a discussion of

existence and stationarity of the solution is presented. The specific case of

tempered stable Ornstein-Uhlenbeck processes are detailed in section 2.6,

a key building block for the type I fractal activity time. Superpositions

of Ornstein-Uhlenbeck processes are introduced in section 2.7, a technique

to build processes with a rich dependence structure. Processes with long

range dependence are constructed in section 2.8, via superpositions of

Ornstein-Uhlenbeck processes. The type I fractal activity time is then

defined in section 2.9 and the corresponding specification of the activity

time model in section 2.10. Convoluted subordinators and quantile clocks

are introduced in sections 2.11 and 2.12 respectively, which will be used to

define our second construction. The type II fractal activity time process

is then detailed in section 2.13 along with the corresponding activity time

model. Inverse stable subordinators are introduced in section 2.14 and type

III fractal activity time is defined in section 2.15, again along with the

resulting activity time model.

2.2 Lévy processes

This section introduces some known results for Lévy processes, see for

example Sato (1999).

A cádlág stochastic process {L(t), t ≥ 0} on (Ω,F , {Ft},P) with values in

R such that L(0) = 0 is called a Lévy process if
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i. Independent increments; for every increasing sequence, the random

variables L(t0), L(t1)− L(t2), . . . , L(tn)− L(tn−1) are independent.

ii. Stationary increments; the law of L(t+ h)− L(t) depends only on h.

iii. Stochastic continuity; for all ε > 0, limh→0 P(|L(t+h)−L(t)| > ε) = 0.

The last condition does not mean sample paths are continuous, it mearly

serves to exclude processes with jumps at fixed times. That is, the

probability of seeing a jump at time t is zero, discontinuities occur at random

times.

A key concept related to Lévy processes is the idea of infinite divisibility. A

probability distribution F on R is infinitely divisible if for any positive n,

there is a another probability distribution, say Fn on R such that F = (Fn)n.

Or in other words, the nth root of an infinity divisible distribution F exists.

For every infinitely divisible distribution F on R there exists a Lévy process

{L(t), t ≥ 0} such that L(1) d=F . The characteristic function ψ for the

distribution of L(1) is defined by

ψL(1)(ζ) :=
∫
R
eiζxdF (x), ζ ∈ R (2.2.1)

where dF (x) = f(x)dx and f(x), if it exists, is the probability density

or mass function of the distribution F . The characteristic function of

the corresponding Lévy process {L(t), t ≥ 0} has the Lévy-Khinchin

representation:

ψL(t)(ζ) := E[eiζL(t)] = exp{tφL(1)(ζ)} (2.2.2)

where φL(1) := φL is the characteristic exponent of L given by

φL(ζ) = ibζ − 1
2A

2ζ2 +
∫
R
(eiζx − 1− iζxI|x|≤1)ν(dx) (2.2.3)
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2.2. Lévy processes

where ν(dx) is the Lévy measure, A the Gaussian part, and b is the drift.

The triple (b, A, ν) uniquely determines the characteristic function and hence

the law of L(t).

When {L(t), t ≥ 0} is a homogeneous positive increasing Lévy process it is

called a Lévy subordinator. For a subordinator ν((−∞, 0)) = 0, A = 0 and

the Laplace transform is given by

E[e−ζL(t)] = e−tΨL(1)(ζ), ζ ≥ 0, (2.2.4)

where the Laplace exponent ΨL(1)(ζ) = ΨL with triple (b∗, 0, ν) is given by

ΨL(ζ) = b∗ζ −
∫

(0,∞)
(e−ζx − 1)ν(dx), (2.2.5)

and b∗ = b −
∫ 1

0 xν(dx) ≥ 0 is the drift and the Lévy measure ν on (0,∞)

satisfies
∫∞

0 (1 ∧ x)ν(dx) <∞.

For any Lévy process we have the following general result from

Papapantoleon (2008), proposition 10.1.

Lemma 2. Let {L(t), t ≥ 0} be a Lévy process with Lévy triplet (b, A, ν)

and assume that E[|L(t)|] <∞. L is a martingale if and only if b = 0.

An infinitely divisible distribution F with characteristic function ψL(ζ) is self

decomposable (s.d) if for every c ∈ (0, 1), there exists another distribution,

say Fc with characteristic function ψL(c)(ζ), such that

ψL(ζ) = ψL(cζ)ψL(c)(ζ), ζ ∈ R. (2.2.6)

The class of self decomposable distributions is a subclass of the class of

infinity divisible distributions, i.e. if F is self decomposable it is also infinity

divisible.
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2.3 Stable Lévy processes

The early theory for the class of stable probability laws was predominately

developed by Paul Lévy and Aleksandr Khinchin in the 1920s and 1930s.

For a rigorous modern study of stable laws and processes consult Stable

Non-Gaussian Random Processes by Samorodnitsky and Taqqu (1994). A

stable random variable D is completely defined through its characteristic

exponent

φD(ζ) = −$α|ζ|α
(

1− iβ(sign(ζ)) tan πα
2

)
+ iηζ (2.3.1)

where

sign(ζ) =

 1, if ζ > 0
0, if ζ = 0
−1, if ζ < 0

with index of stability α ∈ (0, 1) ∪ (1, 2], scale $ > 0, skewness β ∈ [−1, 1]

and location η ∈ R parameters. For simplicity in the above definition we

have excluded the case when α = 1. The use of the symbols $ and η for

the scale and location parameters is not standard notation in the literature,

in most works, σ and µ are used, we refrain from using these symbols since

they are used in this present work for activity time models.

To indicate that D follows the four parameter α-stable distribution we write

in notation

D ∼ S(x;α,$, β, η).

The stable law is infinity divisible and we say that the stable random variable

D := D(1), generates a stable Lévy process {D(t), t ≥ 0}. We are looking to

construct activity times which are positive, since a time process that can take
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negative values is not desirable. To this end we provide a parametrization

of the stable distribution that is only defined for the positive side of the real

axis. In the literature this is known as a positively skewed stable law and is

achieved by setting the skewness parameter to β = 1. The parameterization

we will be concerned with in the proceeding section is

D ∼ S(x;α, (δ2α cos(πα/2))1/α, 1, 0), (2.3.2)

which has Lévy measure ν(dx) given by

ν(dx) = δ2α α

Γ(1− α)x
−1−αdx. (2.3.3)

This positively skewed stable random variable generates a positive increasing

stable Lévy process, i.e. a subordinator.

2.4 Tempered stable Lévy processes

As previously mentioned we differentiate our work to a certain extent, from

existing constructions in the literature, by constructing fractal activity times

with tempered stable laws. This section introduces and defines tempered

stable distributions which will be used throughout the thesis.

The family of distributions referred to as tempered stable was first

introduced by Tweedie (1984). Tempered stable distributions arise by

exponentially tilting a stable random variable, by a tempering function

h(x) = e−%x, with exponent % > 0 and re-normalizing. There are of course

many tempering functions that could be used to tilt a stable law and in

fact many parameterizations of the stable law that could be tilted. For an

extensive study on tempering stable distributions, consult Rosinski (2007).
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Our concern is with the tempered stable law proposed by Barndorff-Nielsen

and Shephard (2002), introduced as follows.

Definition 2. A tempered stable random variable LTS is completely defined

through its characteristic exponent

φLTS(ζ) = δ(γ1/α − 2iζ)α − δγ, (2.4.1)

with index of stability α ∈ (0, 1), scale δ > 0 and tempering γ > 0

parameters.

To indicate that the random variable LTS follows the three parameter

tempered stable distribution we shall write,

LTS ∼ TS(α, δ, γ). (2.4.2)

Clearly the tempered stable law is infinity divisible and the random

variable LTS generates the tempered stable Lévy subordinator {LTS(t), t ≥

0}. The tempered stable distribution arises by tilting a stable

S(x;α, (δ2α cos(πα/2))1/α, 1, 0) random variable with a tempering exponent

% = 1
2γ

1/α where γ > 0.

The probability density fTS(x) of LTS, see figure 2.1, can be expressed in

terms of the stable density fS(x) as follows

fTS(x) = eδγfSx;α,δ(x)e− 1
2γ

1/αx x > 0, α ∈ (0, 1), δ > 0, γ > 0,

from which the Laplace exponent Ψ can be computed

ΨLTS(ζ) = δγ − δ(2ζ + γ1/α)α. (2.4.3)

The mean and variance are given by

E[LTS] = 2δαγ
α−1
α and Var[LTS] = 4δα(1− α)γ

α−2
α . (2.4.4)
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2.4. Tempered stable Lévy processes

The Lévy measure ν(x) of a TS(α, δ, γ) random variable is given by

ν(dx) =
δ2α α2

Γ(1−α)

xα+1 exp{−1
2γ

1/αx}Ix>0dx. (2.4.5)

Thus it can be seen that exponentially tempering the density of a stable

distribution is equivalent to exponential tempering of the Lévy measure,

that is, tilt equation (2.3.3) to obtain (2.4.5).
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0

0.5

1

1.5

2

x

f 
( 

x 
)

 

 

α = 0.4

α = 0.5

α = 0.6

Figure 2.1: Tempered stable density1

Random variables distributed as S(α, δ) can be simulated (see Kawaii and

Masuda (2012)) through the equality in law

D
d=
(
δΓ(1− α)
α cos(U)

)1/α

sin(α(U+π/2))
(

cos(U − α(U + π/2)
V

) 1−α
α

(2.4.6)

where U is a uniform random variable on (−π/2, π/2) and V is a standard

exponential random variable, V ∼ exp(1). From Baeumer and Meerschaert

(2009) we have the following algorithm to simulate a TS(α, δ, γ) random

variable.
1The Matlab program for the stable distribution is available for download from J.

Nolan’s website at academic2.american.edu/jpnolan.
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Chapter 2. Activity time construction

i. Generate U as uniform on [0, 1].

ii. Generate W as stable S(α, (δ2α cos(πα/2))1/α).

iii. If U ≤ exp(−1
2γ

1/αW ) return W otherwise return to step 1.

Note that for α = 1
2 , ψTS = ψIG where ψIG is the characteristic function of an

inverse Gaussian random variable, IG(δ, γ). Also when δ = δ1
α

, γ = (2γ1)α

and α→ 0, ψTS converges point-wise to ψΓ, the characteristic function of a

gamma random variable, Γ(δ1, γ1). In this sense the tempered stable law is

a justifiable choice for fractal activity times, since both the inverse Gaussian

and gamma are commonly used probability laws for activity times.

2.5 Ornstein-Uhlenbeck type processes

This section gives known results and definitions on Ornstein-Uhlenbeck

processes, for complete details see Sato (1999), Barndorff-Nielsen, Jensen,

and Sorensen (1998) and references therein.

Ornstein-Uhlenbeck processes will be used to construct a fractal activity time

process in later sections. Here we follow the approach of Barndorff-Nielsen

et al. (1998) in discussion of the requirements for stationarity of such

processes and provide the autocorrelation function, a key feature that

enables processes with richer dependence structures to be built via

superpositions.

Named after Leonard Ornstein and George Eugene Uhlenbeck, a

non-Gaussian Ornstein-Uhlenbeck (OU) process {Y (t), t ≥ 0} taking values

in R satisfies the stochastic differential equation

dY (t) = −λY (t)dt+ dZ(λt), Y (0) = y(0), (2.5.1)
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2.5. Ornstein-Uhlenbeck type processes

where {Z(t), t ≥ 0} is a Lévy process with Lévy triplet (b, 0, ν) and is referred

to as the background driving Lévy process (BDLP). In this thesis we will be

concerned with positive OU processes, taking values in R+, in such a case

the driving Lévy process will be a subordinator.

The timing λt is chosen for the BDLP such that the marginal distributions

of Y (t) do not depend on the parameter λ, often referred to as the mean

reversion parameter. Moreover λ effects the memory of the process, with

the autocorrelation function decaying slower as λ decreases, see figure 2.3 in

section 2.6.

The SDE (2.5.1) can be interpreted in the sense of the integral equation

Y (t) = Y (0) + Z(λt)− λ
∫ t

0
Y (s)ds, (2.5.2)

for which the solution is given by

Y (t) = e−λtY (0) +
∫ t

0
e−λ(t−s)dZ(λs). (2.5.3)

This can be seen as follows since starting with equation (2.5.3) as the

solution, implies

λ
∫ t

0
Y (s)ds = λ

∫ t

0
e−λsY (0)ds+ λ

∫ t

0

∫ s

0
e−λ(s−u)dZ(λu)ds

= Y (0)− e−λtY (0) +
∫ t

0
dZ(λu)−

∫ t

0
e−λ(t−u)dZ(λu)

and rearranging

e−λtY (0) +
∫ t

0
e−λ(t−u)dZ(λu) = Y (0)− λ

∫ t

0
Y (s)ds+

∫ t

0
dZ(λu)

which is exactly the expression of equation (2.5.2). This solution is in fact

the unique strong solution, see Sato (1999) page 104.

To investigate stationarity of this process we wish to compare the

distributions of Y (t) and Y (t + u) where u, t > 0. First notice that for
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Chapter 2. Activity time construction

the latter we have,

Y (t+ u) = e−λ(t+u)Y (0) + e−λ(t+u)
∫ t+u

0
eλsdZ(λs),

which has equality in distribution

Y (t+ u) d= e−λ(t+u)Y (0) + e−λ(t+u)
∫ t

0
eλsdZ(λs) + e−λu

∫ u

0
eλsdZ(λs)

= e−λuY (t) +
∫ u

0
e−λ(u−s)dZ(λs). (2.5.4)

In light of the second expression on the right hand side of (2.5.4), it will be

useful to define a new random variable, denoted by Y (c)(t) with characteristic

function

ψY (c)(t)(ζ) := E
[
eiζ
∫ u

0 e−λ(u−s)dZ(λs)
]

= exp
{ ∫ u

0
φZ(1)(ζe−λ(u−s))ds

}
,

(2.5.5)

where the last equality holds since {Z(t), t ≥ 0} has independent increments

and e−λ(t−s) is continuous on [0, t], see Lukacs (1969).

Returning to our investigation of stationarity, the stochastic process

{Y (t), t ≥ 0} is stationary if we have equality in distribution for the

characteristic functions

ψY (t)(ζ) d=ψY (u+t)(ζ). (2.5.6)

Since Y and Z are independent, by use of equation (2.5.4) the condition

(2.5.6) can be restated in terms of our new random variable Y (c)(t) as

ψY (t)(ζ) d=ψY (t)(ζe−λu)ψY (c)(t)(ζ). (2.5.7)

Then notice that by the definition of self decomposability, if Y (t) is

stationary it will also be self decomposable. To be precise, take c ∈ (0, 1) as

c = eλu for all eλu ∈ (0, 1) in equation (2.5.7) to satisfy the definition of self

decomposability given by equation (2.2.6).
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2.5. Ornstein-Uhlenbeck type processes

We follow the discussion in Barndorff-Nielsen et al. (1998) to investigate

when the equality in distribution holds for equation (2.5.7). Using the

characteristic function of Y (c)(t) given in (2.5.5) we require

ψY (t)(ζ) d=ψY (t)(ζe−λu) exp
{ ∫ u

0
φZ(1)(ζe−λ(u−s))ds

}
.

Take w = ζe−λ(u−s) so
ψY (t)(ζ)

ψY (t)(ζe−λu)
= exp{

∫ ζ

ζe−λu
φZ(1)(w)w−1dw}. (2.5.8)

then as u→∞

ψY (t)(ζ) = exp{
∫ ζ

0
φZ(1)(w)w−1dw}. (2.5.9)

Thus Y (t) can be stationary if∫ ζ

0
φZ(1)(w)w−1dw <∞ (2.5.10)

According to Wolfe (1982) this is equivalent to the condition

E[1 + log |Z(1)|] <∞. (2.5.11)

Furthermore from Theorem 3.6.6. in Jurek and Mason (1993) equation

(2.5.11) is also equivalent to the condition stated in Sato (1999), namely∫
|x|>2

log |x|ν(dx) <∞ (2.5.12)

where ν is the Lévy measure of the BDLP {Z(t), t ≥ 0}.

An important property of OU processes is their dependence structure, it is

easy to show that the autocorrelation function of an OU process is given by

ρ(u) = exp{−λ|u|}, (2.5.13)

and the process exhibits short range dependence.
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Chapter 2. Activity time construction

2.6 Tempered stable OU processes

Our goal is to construct an activity time model with a fractal activity time

whose incremental process is tempered stable in law. In this section we

specialize OU processes to have given marginals of tempered stable type.

Let {Y (t), t ≥ 0} be an OU process with driving Lévy process {Z(t), t ≥ 0}

and assume

E[1 + log |Z(1)|] <∞,

so {Y (t), t ≥ 0} can be a stationary process. We would like the OU process

to have given marginals of tempered stable law, i.e. Y (t) d=Y ∼ TS(α, δ, γ).

It turns out that there is a unique choice for the BDLP {Z(t), t ≥ 0} such

that Y ∼ TS, as introduced in Barndorff-Nielsen and Shephard (2002).

To see this, since Y and Z are independent the characteristic function of

Y (t) is

ψY(t)(ζ) = E[ei(ζe−λt)Y (0)]E[eiζ
∫ t

0 e
−λ(t−s)dZ(λs)]

= E[ei(ζe−λt)Y (0)] exp
{
λ
∫ t

0
φZ(1)(ζe−λ(t−s))ds

}
(2.6.1)

where φZ(1)(ζ) is the characteristic exponent of Z(1). By substitution of

w = ζe−λ(t−s) equation (2.6.1) can be written as

ψY(t)(ζ) = ψY(0)(ζe−λt) exp
{ ∫ ζ

ζe−λt
φZ(1)(w)w−1dw

}
. (2.6.2)

The last equation tells us how to choose φZ(1) to achieve given marginal

distributions for {Y (t), t ≥ 0}. Take for example the random variable LTS

with tempered stable law, say we choose

φZ(1)(ζ) = ζ
d

dζ
φLTS(ζ) (2.6.3)
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Figure 2.2: Simulated TS-OU process
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Figure 2.3: Autocorrelation plots for simulated data

then

ψY (t)(ζ) = ψY (0)(ζe−λt) exp
{ ∫ ζ

ζe−λt

d

dw
φLTS(w)dw

}
= ψY(0)(ζe−λt) exp

{
φLTS(ζ)− φLTS(ζe−λt)

}
Then by stationarity of {Y (t), t ≥ 0} we have

ψY(ζ)
ψY(ζe−λt) = ψLTS(ζ)

ψLTS(ζe−λt)
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Chapter 2. Activity time construction

So necessarily we must have Y ∼ LTS, i.e. Y (t) ∼ TS(α, δ, γ).

Lemma 3. Let Y (t) be an OU process with BDLP {Z(t), t ≥ 0} triplet

(b, 0, ν) where

ν(dx) = 2αδ α

Γ(1− α)

(
α

x
+ γ1/α

2

)
x−αe−

xγ1/α
2 dx. (2.6.4)

Then {Y (t), t ≥ 0} is a stationary OU process with tempered stable

marginals, Y (t) ∼ TS(α, δ, γ).

Proof: From equation (2.6.3) the explicit choice for the characteristic

exponent of the BDLP {Z(t), t ≥ 0} is computed as

φZ(1)(ζ) = ζ
d

dζ
φY(t)(ζ) = ζ

d

dζ

(
δ(γ1/α − 2iζ)α − δγ

)
= 2iζαδ(γ1/α − 2iζ)α−1.

This is equivalent to specification of the background driving Lévy process

{Z(t), t ≥ 0} with Lévy measure ν of Z(1) given by equation 2.6.4.

This choice for the BDLP {Z(t), t ≥ 0} is valid since the TS laws are self

decomposable and the condition

E[1 + log |Z(1)|] <∞, (2.6.5)

is satisfied and as such the tempered stable Ornstein-Uhlenbeck (TS-OU)

process {Y (t), t ≥ 0} is stationary.

Simulation of tempered stable Ornstein-Uhlenbeck processes has been

studied in Kawaii and Masuda (2011). Using the algorithms presented in

the aforementioned paper, we simulate a TS-OU processes for λ = 1 and

various α, we choose δ and γ for of each α such that the marginals have

unit mean and variance, see figure 2.2. It can be seen from the plots that

as α increases the tails of the distribution become heavier. Furthermore we
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2.7. Superpositions of TS-OU processes

simulated data for λ = 0.01, 0.1, 1 with α = 0.6 fixed and the computed

the sample autocorrelation (acf) function alongside the model acf given by

equation (2.5.13), see figure 2.3.

2.7 Superpositions of TS-OU processes

This section introduces superpositions of Ornstein-Uhlenbeck (Sup-OU)

processes as proposed in Barndorff-Nielsen (2001), see also Barndorff-Nielson

and Leonenko (2005). A Sup-OU process is a weighted sum of independent

OU process {Yj(t), t ≥ 1}, with the number of summations j = 1, 2, . . . either

finite or infinite. Note that these OU processes although independent, do

not necessarily have to be identically distributed.

Definition 3. A finite superposition of Ornstein-Uhlenbeck processes (finite

sup-OU process) is a stochastic process {Y (m)(t), t ≥ 0} defined by

Y (m)(t) =
m∑
j=1

wjYj(t) (2.7.1)

where for each j, Yj is an OU process, for i 6= j we assume Yj is independent

of Yi and wj are weights that sum to one, ∑m
j=1wj = 1.

Definition 4. A infinite superposition of Ornstein-Uhlenbeck processes

(infinite sup-OU process) is a stochastic process {Y (∞)(t), t ≥ 0} defined

by

Y (∞)(t) =
∞∑
j=1

wjYj(t) (2.7.2)

where for each j, Yj is an OU process, for i 6= j we assume Yj is independent

of Yi and wj are weights that sum to one, ∑∞j=1wj = 1.

Superpositions of OU processes creates a new process with a richer
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Chapter 2. Activity time construction

dependence structure since the correlation function of a sup-OU process

will be

Corr[Y (m)(t), Y (m)(t+ u)] = w1e
−λ1|u| + · · ·+ wme

−λm|u|. (2.7.3)

By letting m → ∞ and choosing appropriate weights wj and memory

parameters λj it is possible to obtain a process with long range dependence,

as we will see in the next section.

The use of superpositions to construct the process {Y (m)(t), t ≥ 0} with

given tempered stable marginals and tractable dependence structure is

possible since the tempered stable distribution has the additivity property in

one of the parameters. If independent random variables Y (1) and Y (2) have

TS(α, δ1, γ) and TS(α, δ2, γ) distributions respectively, then Y (1) + Y (2)

has TS(α, δ1 + δ2, γ) distribution. Moreover we will use the parameter δ

to represent the weights in the proof of Theorem 1 for the infinite sup-OU

case. Further, the variance of a tempered stable distribution is proportional

to the parameter in which the additivity property holds. The construction

of superpositions in the absence of these two properties is possible (see

Bibby et al. (2013)), however the explicit distributions of the terms in the

superpositions may be lost.

2.8 Long range dependent sup-TS-OU processes

Let us know introduce some new results building on the theory of the

previous sections. For our activity time models of chapter 1, we required a

process {T (t), t ≥ 0} whose sequence of unit increments exhibit dependence.

In this section we construct the incremental process τ(t) = T (t)− T (t− 1)
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2.8. Long range dependent sup-TS-OU processes

through the following theorem.

Theorem 1. Letm be an integer, and λ(1), . . . , λ(k) > 0. There exists a finite

sup-OU stationary process as in definition 3 denoted here by {τm(t), t ≥

0}, with marginal TS(α, δ, γ) distribution and short range dependence with

covariance function

Cov[τm(s), τm(t+ s)] =
m∑
k=1

4α(1− α)δkγ
α−2
α e−λ

(k)t.

There exists a infinite sup-OU stationary process as in definition 4 denoted

here by {τ∞(t), t ≥ 0}, with marginal TS(α, δ, γ) distribution and long range

dependence with correlation function

Corr[τ∞(t), τ∞(t+ h)] = R(h)
h2(1−H) ,

where R is a slowly varying at infinity function and H ∈ (0, 1).

Proof: From Lemma 3 we know that there exists a stationary OU process

with tempered stable marginals with the BDLP {Z(t), t ≥ 0} having Lévy

measure given by equation (2.6.4). Next we use a discrete version of

superposition as described in the previous section. Let {τ (k)(t), k ≥ 1}

be the sequence of independent processes such that each τ (k)(t) is a solution

of the equation

dτ (k)(t) = −λ(k)τ (k)(t)dt+ dZ(k)(λ(k)t), t ≥ 0, (2.8.1)

in which the Lévy processes {Z(k)(t), t ≥ 0} are independent and are such

that the distribution of τ (k) is TS(α, δk, γ). In other words, the processes

τ (k)(t) are of OU type with given marginals. For a fixed integer m, define

the process {τm(t), t ≥ 0} using a finite superposition of OU processes

τm(t) =
m∑
k=1

τ (k)(t), τm(0) = 0.
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Chapter 2. Activity time construction

The marginal distribution of τm(t) is TS(α,
m∑
k=1

δk, γ), and to obtain the

specified TS(α, δ, γ) marginal distribution for the finite superposition, we

choose δ =
m∑
k=1

δk.

The correlation function of the process {τ (k)(t), t ≥ 0} that solves the SDE

(2.8.1) is

Corr[τ (k)(t), τ (k)(t+ u)] = e−λ
(k)|u|, u ≥ 0. (2.8.2)

For a finite superposition, the covariance function is

Cov[τm(t), τm(t+ u)] =
m∑
k=1

4α(1− α)δkγ
α−2
α e−λ

(k)|u|.

and correlation function

Corr[τm(t), τm(t+ u)] =
m∑
k=1

e−λ
(k)|u|. (2.8.3)

To prove the existence of the process with long range dependence, consider

the same setup with an infinite superposition

τ∞t =
∞∑
k=1

τ (k)(t).

The construction with infinite superposition is well-defined in the sense of

mean-square or almost-sure convergence provided that ∑∞k=1 δk <∞.

Choose and λ(k) = 1/k, and

δk = δ

k1+2(1−H)ζ(1 + 2(1−H)) ,

where H ∈ (0, 1) and

ζ(j) =
∞∑
n=1

1
nj

is the Riemann zeta-function. Then the marginal distribution of τ∞(t) is
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2.9. Fractal activity time - type I

TS(α, δ, γ), and the covariance function

Cov[τ∞(t), τ∞(t+ h)] = 4δα(1− α)γ(α−2)/α

ζ(1 + 2(1−H))

∞∑
k=1

1
k1+2(1−H) e

−h/k,

(2.8.4)

thus the correlation function can be written as

Corr[τ∞(t), τ∞(t+ h)] = R(h)
h2(1−H) ,

where R is a slowly varying at infinity function (see Leonenko et al. (2012)

for proof).

2.9 Fractal activity time - type I

This section introduces a new fractal activity time process with dependent

tempered stable increments and continuous sample paths. We construct

such a process by definition using superpositions of tempered stable

Ornstein-Uhlenbeck process as described in the previous section.

Definition 5. A fractal activity time process of type I {T (t), t ≥ 0} is

defined by

T (t) =
[t]∑
i=1

τm(i) + (t− [t])τm([t] + 1), T (0) = 0. (2.9.1)

where τm(t) is either a finite (m <∞) or infinite (m =∞) superposition of

TS-OU processes as constructed in Theorem 1.

We now show that the activity time process T (t) constructed using our

approach is asymptotically self-similar in the case of finite superposition.

This property provides a way to obtain an approximation for the marginal

distribution of T (t). We will use the notation that C[0, 1] is the space of

continuous functions with supremum norm.
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Figure 2.4: Simulated path of fractal activity time type I

Theorem 2. 2 For a fixed m <∞ (finite superposition)
1

cmN1/2

(
T ([Nt])− E[T ([Nt])]

)
⇒ B(t), t ∈ [0, 1],

as N →∞ in the sense of weak convergence in C[0, 1]. The process B(t) is

Brownian motion, and the norming constant cm is given by

cm =
(

m∑
k=1

Var[τ (k)(m)]1− e
−λ(k)

1 + e−λ(k)

)1/2

,

where Var[τ (k)(m)] = 4α(1− α)δkγ
α−2
α .

Proof. We have
1

cmN1/2

(
T ([Nt])− E[T ([Nt])]

)

= 1
cmN1/2

( [Nt]∑
i=1

(τm(i)− E[τm(i)])
)

2The proof of this theorem was provided in collaboration with A. Sikorskii, Michigan

State University and is not the sole work of the author of this thesis.
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2.9. Fractal activity time - type I

+ Nt− [Nt]
cmN1/2

(
τ([Nt] + 1)− E[τ([Nt] + 1)]

)
.

Since Nt − [Nt] < 1, the last term converges to zero in the mean square,

and the weak limit is determined by the first term. The proof of the weak

convergence of the first term to Brownian motion is the same as in Leonenko

et al. (2011b).

The stochastic sequence of unit increments {τ(t), t = 1, 2 . . .} of fractal

activity time type I, will have TS(α, δ, γ) marginal distributions by Theorem

1. This feature will be used in the next section to construct activity time

models with normal tempered stable log returns. However it will be of use to

compute, at least approximately, the marginal distributions of {T (t), t ≥ 0}.

Below we provide two approaches for obtaining fT (t)(x) := P(T (t) ≤ x),

firstly based on the exact distribution of T (t) and secondly based on the

asymptotic distribution.

For the first approach, we assume that t is an integer (e.g., number of days).

The density of T (t) can then be computed as a convolution of densities of∑t
i=1 τ

(k)(i). Each τ (k) is a time-homogeneous Markov process, therefore

the distribution function of ∑t
i=1 τ

(k)(i) is determined by the initial density

f (k), which is TS(α, δk, γ), and the transition probability P(k)(t)(x,B) of the

process τ (k) from point x at time 0 to a set B at time t. Namely,

P
(

t∑
i=1

τ (k)(i) ≤ x

)

=
∫
x1+x2+...+xt≤x

f (k)(x1; k)dx1 (2.9.2)

× P(k)(1, dx2;x1)P(k)(1, dx3;x2) . . .P(k)(1, dxt;xt−1).

The transition probability P(k)(t)(x,B) has been derived in Zhang and Zhang
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(2009), where it has been shown that the conditional distribution of τ (k)(t)

given τ (k)(0) = x coincides with the distribution of the sum of a constant, a

TS random variable, and a compound Poisson random variable, that is,

τ
(k)
t |τ (k)(0)=x

d= e−λ
(k)tx+W t

k(0) +
Nt(k)∑
i=1

W t
k(i), (2.9.3)

where W t
k(0) is distributed TS(α, δk(1−e−αλ

(k)t), γ), the random variable N t
k

has a Poisson distribution of intensity δkγ(1− e−αλ(k)t), and W t
k(1),W

t
k(2), ...

are independent random variables having a common specified density

function

fW t
k
(w) = 2ααγ−1

Γ(1− α)(eαλ(k)t − 1)w−α−1 (2.9.4)(
exp

{
−1

2γ
1/αw

}
− exp

{
−1

2γ
1/αweλt

})
1{w>0}.

Furthermore, for each k, {W t
k(0)}, {W t

k(1),W
t
k(2), ...}, and {N t

k} are

independent. In Zhang and Zhang (2009), the exact simulation method for

the computation of the transition probability is discussed. It is also shown

that the computation of the transition density can be implemented via exact

simulation method using the acceptance-rejection sampling technique.

The second approach to computing prices is based on the asymptotic

self-similarity of T (t) as suggested in Heyde and Leonenko (2005). Based

on Theorem 2, the density fT (t) can be taken as approximately the density

of tE[τ(1)] +
√
t(T (1) − E[τ(1)]), where E[τ(1)] = 2α∑m

k=1 δkγ
(α−1)/α. The

distribution of T (1) is TS(α,∑m
k=1 δk, γ). Therefore an approximation to

fT (t)(u), one can use t−1/2fTS((u+E[τ(1)](
√
t−t))/

√
t) with the appropriate

parameters.
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2.10. Normal tempered stable activity time model

2.10 Normal tempered stable activity time model

This section builds an activity time model described by definition 1 in

chapter 1, by using fractal activity time type I as described in the previous

section.

Theorem 3. Let B(t) be a Ft-adapted standard Brownian motion and T (t)

a Ft-adapted, fractal activity time of type I. Let µ ∈ R, θ ∈ R and σ > 0 be

constants. Let {P (t), t ≥ 0} satisfy the SDE

dP (t) = µP (t)dt+ (θ + 1
2σ

2)P (t)dT (t) + σP (t)dB(T (t)), (2.10.1)

then the log returns {X(t), t = 1, 2, . . .} form a stationary sequence with the

exact normal tempered stable marginal distribution with moment generating

function

E[eζX(t)] = exp
{
µζ + δγ − δ

(
γ1/α + θ2

σ2 − σ
2(ζ + θ

σ2 )2
)α}

. (2.10.2)
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Figure 2.5: Empirical and model probability density for Yen to Euro
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Figure 2.6: Empirical and model log probability density for Yen to Euro

Proof: Clearly from equation (2.9.1) the activity time process {T (t), t ≥ 0}

is a continuous process, i.e. the map t 7→ T (t, ω) is a continuous function of

t for all paths ω, then the unique strong solution to the SDE (2.10.1) is due

to Lemma 1, in chapter 1 and is given by

P (t) = P (0) exp
{
µt+ θT (t) + σB(T (t))

}
. (2.10.3)

Consider the log return sequence representing the increments of the

logarithm of the price process. From Theorem 1, {τ(t), t = 1, 2, . . .} is

stationary with distribution TS(α, δ, γ). By properties 1 in chapter 1, the

log returns have equality in law

X(t) = logP (t)
logP (t− 1)

d=µ+ θτ(t) + σ
√
τ(t)ξ(t) (2.10.4)

for constants µ, θ ∈ R, σ > 0 and where ξ(t) is a sequence of standard

normal random variables independent of τ(t). Since τ(t) has tempered stable

marginals the moment generating function is

E[eζτ(t)] = exp
{
− δγ + δ(2ζ + γ1/α)α

}
. (2.10.5)
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2.10. Normal tempered stable activity time model

Then conditioning on τ yields

E[eζX(t)] = eζµE
[
E[eζ(θτ(t)+σ

√
τ(t)ξ(t))|τ(t)]

]
. (2.10.6)

In other words, the conditional distribution of θτ(t) +σ
√
τ(t)ξ(t) when τ(t)

is fixed is normal with mean θτ(t) and variance σ2τ(t). Since ξ(t) and τ(t)

are independent,

E[eζX(t)] = eζµE[eζθτ(t)+ ζ2
2 σ

2τ(t)] = eζµE
[

exp{τ(t)(ζθ + ζ2

2 σ
2)}
]
.

(2.10.7)

We rewrite

z = ζθ + ζ2

2 σ
2 = 1

2σ
2
[
ζ2 + 2ζ θ

σ2 + ( θ
σ2 )2 −

(
θ

σ2

)2]
= 1

2σ
2
[
ζ + θ

σ2

]2
− 1

2σ
2
(
θ

σ2

)2
. (2.10.8)

By (2.10.4)

eζµE
[

exp
{
τ(t)(ζθ + ζ2

2 σ
2)
}]

= eζµE
[

exp{zτ(t)}] (2.10.9)

and so

E[eζX(t)] = eζµ exp
{
δγ − δ

(
γ1/α + θ2

σ2 − σ
2
(
ζ + θ

σ2

)2
)α}

. (2.10.10)

We say that the log returns have marginal law of normal tempered stable

distribution, in notation to indicate this we write

X(t) ∼ NTS(α, δ, γ, µ, θ, σ).

The empirical probability density for the Japanese Yen traded against the

Euro and a calibrated normal tempered stable probability density plot is

displayed in figure 2.5 and 2.6. It is clear that the normal tempered stable

distribution allows for a more realistic fit to the observed data. See table 3.1
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Geometric Brownian motion: µ = 0.00035, σ = 0.012

Fractal activity time geometric Brownian motion: µ = 0.00035, θ = 0, σ = 0.012, α = 0.78, δ = 0.30, γ = 0.07

Dow Jones Industrial average

Figure 2.7: Simulated log return sequence of fractal activity time model, geometric

Brownian motion and empirical Dow Jones

of the next chapter for the parameter estimates. The log return sequence for

a simulated activity time model with parameters set to that of the Dow Jones

industrial index (see table 3.1 in the next chapter) alongside a simulation

of the classic geometric Brownian motion model can be compared visually

with the empirically observed log return sequence, see figure 2.7. It can

be seen that the model does allow for sudden shocks to the market when

high magnitude log returns occur. However it can be seen that the idea

of volatility clustering, when large shocks cluster together, as the market

suggests, is not as well represented in the model. This is a drawback that

could be addressed in further research not undertaken in this current work.

Remark 1. The correlation function of X(t) is given by

Corr[X(t), X(t+ k)] = θ2Corr[τ(t), τ(t+ k)], (2.10.11)

and if θ 6= 0, the short or long range range dependence in log returns is
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Figure 2.8: Empirical and model autocorrelation function for Yen to Euro

present when short or long range dependence is present in the process τ . If

θ = 0, then the log returns are uncorrelated, but the correlation persists in

squared log returns:

Corr[X2(t), X2(t+ k)] = σ4Corr[τ(t), τ(t+ k)]. (2.10.12)

To make use of equation (2.10.12) above, the correlation function of the unit

increments of the fractal activity time Corr[τ(t), τ(t+ k)] given by equation

(2.8.3) in the case of finite superpositions and equation (2.8.4) for the case

of infinite superpositions can be used. For an graphical illustration of the

model fit in terms of dependence structure for the infinite superpositions see

figure 2.8. In this present work we do not investigate techniques to estimate

the memory parameter H, which appears in equation (2.8.4), this will be left

for future research. For the purpose of illustration we have chosen H = 0.7

in figure 2.8 for the computed model correlation structure.
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2.11 Convoluted subordinators

We now move on to define our second construction of fractal activity time,

for which we shall refer to as type II. Before doing so in this section and

the next we will introduce some known theory which will be needed. This

section details some known results on convoluted subordinators as introduced

by Bender and Marquardt (2009).

A convoluted subordinator {T (t), t ≥ 0} is defined by

T (t) =
∫ t

0
k(t, s)L(ds) (2.11.1)

where {L(t), t ≥ 0} is a strictly increasing Lévy process (subordinator) and

k(s, t) with t, s > 0, a deterministic function k(s, t) : R+ × R+ → R+ with

properties

1. k(s, t) = 0 when s > t.

2. The mapping t 7→ k(s, t) is continuous and strictly increasing.

3. The mapping s 7→ k(s, t) is integrable for a fixed t.

The choice of the driving Lévy process provides flexibility to incorporate

distributional properties such as heavy tails. More generally, the second

order structure (and hence the memory) of a convoluted subordinator is

encoded in the choice of the kernel.

For a fixed trajectory (sample path), the process {T (t), t ≥ 0} is continuous

and strictly increasing a.s. (see Bender and Marquardt (2009) Proposition

1).

53



2.12. Quantile clocks

In this general setup a convoluted subordinator T (t) has mean given by

E[T (t)] = E[L(1)]
∫ t

0
k(t, s) ds, (2.11.2)

variance

Var[T (t)] = Var[L(1)]
∫ t

0
k(t, s)2 ds (2.11.3)

and covariance

Cov[T (t), T (u)] = Var[L(1)]
∫ t∧u

0
k(t, s)k(u, s) ds. (2.11.4)

Note that the last two equations correct an error present in Bender and

Marquardt (2009), corollary 1, part (ii). The pre-factor before the integral

has to be the variance of L(1) and not the second moment.

In general given some kernel k(s, t) and some driving Lévy subordinator

{L(t), t ≥ 0}, computation of the resulting distribution for the convoluted

subordinator will be non-trivial. However certain choices for the kernel and

driving subordinator do exists such that exact marginal distributions can be

obtained. One such possible choice already investigated is

k(s, t) = e−λ(t−s) (2.11.5)

and the convoluted subordinator is then a positive OU process. Another

possible route that allows computation of marginal distributions is by

quantile kernels.

2.12 Quantile clocks

This section details some known results on quantile clocks as introduced by

James and Zhang (2011).
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A quantile clock is a stochastic process {T (t), t ≥ 0} that has a convoluted

subordinator representation given by

T (t) =
∫ t

0
QR

((
1− s

t

)
+

)
dL(s) (2.12.1)

where {L(t), t ≥ 0} is a Lévy subordinator. Here the kernel k(s, t)

is expressed via a quantile function QR(·), defined as the inverse of a

strictly increasing cumulative distribution function FR of some non negative

continuous random variable R, namely

QR(u) = inf{t : FR(t) ≥ u}. (2.12.2)

The Laplace transform of T (t) will be given by

E[e−ζT (t)] := E
[
e
−ζ
∫ t

0 QR

((
1− s

t

)
+

)
dL(s)

]
= exp

{
−
∫ t

0
ΨL(1)

(
ζQR

((
1− s

t

)
+

))
ds
}
,

for which exact laws of T (t) may be computed if the random variable R has

the equality in distribution

RY
d=U1/b.

Where Y is some other random variable, U is a uniform random variable on

[0, 1] and b > 0. Then computation of marginals of T (t) is possible with an

appropriate choice of driving Lévy subordinator.

To see this consider the simplest case when Y is degenerate, say Y = 1, then

R
d=U1/b. Since FU(x) = P(U ≤ x) = x is the cdf of U then the cdf of the

random variable R is

FU1/b(x) = P(U1/b ≤ x) = P(U ≤ xb)

= FU(xb) = xb = FR(x)
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and the probability density function fR of R is

fR(x) := dFR(x)
dx

= bxb−1.

The expectation of R is

E[R] =
∫ 1

0
xdFR(x) =

∫ 1

0
xfR(x)dx

=
∫ 1

0
bxbdx = b

b+ 1 .

For the quantile function QR there is a closed form given by

QR(u) = inf{x : FR(x) ≥ u} = inf{x : xb ≥ u}

= inf{x : x ≥ u1/b} = u1/b.

By noticing the integral∫ 1

0
QR(u)du =

∫ 1

0
u1/bdu = b

1 + b
, (2.12.3)

we conclude the well known result that∫ 1

0
QR(u)du = E[R]. (2.12.4)

The Laplace transform of T (t) of a quantile clock can then be expressed as

E[e−ζT (t)] = exp
{
−
∫ t

0
ΨL(1)

(
ζQR

((
1− s

t

)
+

))
ds
}

= exp
{
t
∫ 1

0
ΨL(1)

(
ζQR(u)

)
du
}

= exp
{
tE[ΨL(1)(ζR)]

}
. (2.12.5)

Then since R d=U1/b we have

E[e−ζT (t)] = exp
{
tE[ΨL(1)(ζU1/b)]

}
= exp

{
t
∫ 1

0
ΨL(1)(ζx1/b)fU(x)dx

}
= exp

{
t
∫ 1

0
ΨL(1)(ζx1/b)dx

}
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= exp
{
tζ−b

∫ ζ

0
ΨL(1)(w)bwb−1dw

}
. (2.12.6)

The last expression tells us how we can choose ΨL(1)(ζ) so that the integral

can be solved. This can be seen as follows, with the choice

ΨL(1)(ζ) = ΨLTS(ζ) + ζbΨ′LTS(ζ) (2.12.7)

then

E[e−ζT (t)] = exp
{
tζ−b

∫ ζ

0

(
ΨLTS(w) + w

b
Ψ′LTS(w)

)
bwb−1dw

}
= exp

{
tζ−b

( ∫ ζ

0
bwb−1ΨLTS(w)dw +

∫ ζ

0
wbΨ′LTS(w)dw

}
= exp

{
tζ−b

[
wbΨLTS(w)

]ζ
0

}
= exp

{
tΨLTS(ζ)

}
. (2.12.8)

Then with the choice for ΨL(1)(ζ) given by (2.12.7) we necessarily have

T (1) d=LTS or T (t) ∼ TS(α, tδ, γ). (2.12.9)

That is we can compute the exact marginal distributions of the convoluted

subordinator {T (t), t ≥ 0}. This will be used in the following section to

construct an activity time process T (t) with long range dependence.

2.13 Fractal activity time - type II

This section builds a activity time process {T (t), t ≥ 0} which has the

representation of a Holmgren-Leuville fractional integral, this construction

is essentially new to the literature on activity time models.

Definition 6. A fractal activity time of type II is a stochastic process

{T (t), t ≥ 0} defined by

T (t) =
∫ t

0
(1− s/t)H−1/2L(ds), (2.13.1)
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for 1/2 < H < 1 with {L(t), t ≥ 0} a Lévy process given by the sum of

independent components:

L(t) = υ(t) + (H − 1/2)Z(t), (2.13.2)

where {υ(t), t ≥ 0} is a tempered stable Lévy process and {Z(t), t ≥ 0} the

BDLP of a TS-OU process.

Theorem 4. A fractal activity time of type II has exact tempered stable

TS(α, tδ, γ) marginal distributions.

Proof: First, we choose the process L, a Lévy subordinator, so that T (t) has

tempered stable marginal distribution. We follow the approach from James

and Zhang (2011), where the kernel

k(t, s) = (1− s/t)H−1/2
+ = QR(1− s/t)+ (2.13.3)

is expressed using the function QR, which is a quantile function of Beta

(a, 1) distribution with a = 1/(H − 1/2). Here x+ = max(x, 0). Using this

notation

T (t) = TR(t) =
∫ t

0
QR

(
(1− s/t)+

)
L(ds). (2.13.4)

From equation (2.12.7), the Laplace exponent of L is given by

ΨL(ζ) = Ψυ(ζ) + 1
a
ζΨ′υ(ζ), (2.13.5)

holds for all ζ = u + iv with v ∈ R, u ≤ 0. Consider a Lévy process Z(t),

which is BDLP for the stationary TS-OU process υ̃:

dυ̃(t) = −λυ̃(t)dt+ dZ(λt). (2.13.6)

Here a stationary TS-OU type process υ̃ has the same marginal distribution

as the distribution of υ(1), TS(α, δ, γ). Then the Laplace exponent of Z is
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related to the Laplace exponent of υ̃ (see equation 2.6.3) according to

ΨZ(ζ) = ζΨ′υ̃(ζ), (2.13.7)

which (up to a factor of 1/a) is the second term in (2.13.5). This means that

process L can be represented as the sum of two independent components:

a TS Lévy process υ, and a Lévy process (H − 1/2)Z(t). The explicit

expression for the Laplace exponent of process L is

ΨL(ζ) = δγ − δ(γ1/α + 2ζ)α − 2(H − 1/2)ζδα(γ1/α + 2ζ)α−1. (2.13.8)

This completes the proof for our second construction of the activity time.

We could have also proved the preceding Theorem directly by computation

by using the Laplace exponent of process L given by equation (2.13.8). To

see this

ΨT (t)(ζ) =
∫ t

0
ΨL(ζk(t, s))ds =

∫ t

0
ΨL

(
ζ
(

1− s

t

)H−1/2

+

)
ds

and after a substitution to v = ζ(1− s/t)H−1/2 we obtain

t
∫ ζ

0
ζ−1/(H−1/2)(H − 1

2)−1v(3/2−H)(H−1/2)−1ΨL(v)dv

= tζ−1/(H− 1
2 )
[∫ ζ

0
(H − 1

2)−1v

3
2 −H

H− 1
2 (δγ − δ(γ1/α + 2v)α)dv

+
∫ ζ

0
v

3
2 −H

H− 1
2
(
−2vδα(γ1/α + 2v)α−1

)
dv
]

= tζ−1/(H−1/2)

v 3
2 −H

H− 1
2 (δγ − δ(γ1/α + 2v)α)

ζ
0

= tδγ − tδ(γ1/α + 2ζ)α.

Let us now look at the first and second order properties of fractal activity

time type II. Firstly note that the distribution of T (t) is infinity divisible
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and from Bender and Marquardt (2009) Theorem 1, we have

E[eζT (t)] = exp{Ψ(ζ)} (2.13.9)

where

Ψ(ζ) = ζb∗
∫ t

0
(1− s/t)H−1/2ds

+
∫ t

0

∫ ∞
0

(eζ(1−s/t)H−1/2x − 1)ν(dx)ds. (2.13.10)

Corollary 4. A fractal activity time of type II has expectation

E[T (t)] = 2δαγ(α−1)/αt, (2.13.11)

variance

Var[T (t)] = 4δα(1− α)γ(α−2)/αt, (2.13.12)

and covariance

Cov[T (t), T (u)] = 8Hδα(1− α)γ(α−2)/α (2.13.13)

×
∫ t∧u

0
(1− s/t)H−1/2

+ (1− s/u)H−1/2
+ ds.

Proof: Follows directly from equations (2.11.2), (2.11.3) and (2.11.4).

The next corollary gives the asymptotic behavior of the correlations between

T (t) and T (t + u) for t, u > 0 when t/u → ∞ and when t/u → 0, the

directions considered in Marinucci and Robinson (1999). We use notation

f ∼ g for limt→∞ f(t)/g(t) = 1.

Corollary 5. 3 For u > 0, t > 0, t/u→ 0

Cov[T (t), T (t+ u)] ∼ Var[L(1)]t/(H + 1/2)

3The proof of this theorem was provided by A. Sikorskii, in Michigan State University

and is not the sole work of the author of this thesis.
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and

Corr[T (t), T (t+ u)] ∼ 2H
H + 1/2

√
t

t+ u
.

When t/u→∞

Cov[T (t), T (t+ u)] ∼ Var[L(1)] t

2H ,

and

Corr[T (t), T (t+ u)] ∼
√

t

t+ u
.

The mean and the variance of the increments of the process T are

asymptotically homogeneous,

E[(T (t+ u)− T (t)] = E[L(1)] u

H + 1/2 ,

and when t/u→∞ or when t/u→ 0

Var[T (t+ u)− T (t)] ∼ Var[L(1)] u2H .

For the unit increment process τ(t) = T (t) − T (t − 1), when k → ∞ and

t/k → 0

Corr[τ(t), τ(t+ k)] ∼ H(2H − 1)B(H + 1/2, 2)2t− 1
k2 ,

where B is the Beta-function.

Proof: From Corollary 4

Cov[T (t), T (t+ u)]

= Var[L(1)]
∫ t

0
(1− s/t)H−1/2

+ (1− s/(t+ u))H−1/2
+ ds

= Var[L(1)]t
∫ 1

0
(1− τ)H−1/2

(
1− t

t+ u
τ
)H−1/2

dτ,

and the asymptotic behavior follows. As for the increments of the activity
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time, we have

Var[T (t+ u)− T (t)] = Var[L(1)]
(
t+ u

2H + t

2H
− 2

∫ t

0
(1− s/t)H−1/2

+ (1− s/(t+ u))H−1/2
+ ds

)
,

and the asymptotic behavior follows from that of the covariance.

The covariance function for the process τ(t) = T (t)− T (t− 1) is

Cov[τ(t), τ(t+ k)] = 1
2[E(T (t)− T (t− 1))2

+ E(T (t+ k)− T (t+ k − 1))2

− E(T (t)− T (t− 1)− T (t+ k) + T (t+ k − 1))2]

− E(T (t)− T (t− 1))E(T (t+ k)− T (t+ k − 1)).

Substitute the expressions obtained for the second moments of the

increments to complete the calculation:

Cov[τ(t), τ(t+ k)]

= Var[L(1)]
∫ t

0

(
1− s

t

)H−1/2((
1− s

t+ k

)H−1/2

−
(

1− s

t+ k − 1

)H−1/2)
ds

− Var[L(1)]
∫ t−1

0

(
1− s

t− 1

)H−1/2((
1− s

t+ k

)H−1/2

−
(

1− s

t+ k − 1

)H−1/2)
ds.

From the last equation, we derive the asymptotic behavior of the covariances.

Change the variables s/t = u in the first integral, and s/(t − 1) = u in the

second integral to get

Cov[τ(t), τ(t+ k)]

= Var[L(1)]t
∫ 1

0
(1− u)H−1/2

((
1− t

t+ k
u
)H−1/2
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−
(

1− t

t+ k − 1u
)H−1/2)

du

− Var[L(1)](t− 1)
∫ 1

0
(1− u)H−1/2

((
1− t− 1

t+ k
u
)H−1/2

−
(

1− t− 1
t+ k − 1u

)H−1/2)
du.

When t/k → 0, use Taylor formula to evaluate the difference terms in each

integral:

Cov[τ(t), τ(t+ k)] ∼ Var[L(1)](H − 1/2)(2t− 1)
(t+ k − 1)(t+ k)

×
∫ 1

0
(1− u)H−1/2u du.

Therefore when k →∞ and t/k → 0

Corr[τ(t), τ(t+ k)] ∼ H(2H − 1)B(H + 1/2, 2)2t− 1
k2 ,

where B is the Beta-function.

Let us now make some remarks on activity time models described by

definition 1 in chapter 1, using a fractal activity time of type II.

Remark 2. Let P (t) satisfy the SDE

dP (t) = µP (t)dt+ (θ + 1
2σ

2)P (t)dT (t)− σP (t)dB(T (t)) (2.13.14)

where {T (t), t ≥ 0} is fractal activity time of type II. Then the logarithm

of the stock price has a normal tempered stable marginal distribution with

the Laplace exponent

ΨlogP (t)(ζ) = (log p(0) + µt)ζ (2.13.15)

+ t
(
δγ − δ

[
γ1/α + θ2

σ2 − σ
2
(
ζ + θ

σ2

)2])
.

Remark 3. The slow decay of correlations can be interpreted as a long-range

dependence for non-stationary process T (t). Since with this construction of
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the activity time,

Cov[logP (t), logP (u)] = θ2Cov[T (t), T (u)]

this long-range dependence is also present in the logarithm of the price.

2.14 Inverse stable subordinators

Stochastic processes known as inverse subordinators are defined as the first

hitting time of a Lévy subordinator. An example we will rely upon is the so

called inverse stable subordinator, defined as follows. Let {D(t), t ≥ 0} be

a standard stable Lévy subordinator with Laplace exponent ΨD(ζ) = −ζα,

ζ > 0, t ≥ 0 with α ∈ (0, 1). The inverse stable subordinator E(t) is defined

as the inverse of the stable subordinator D(t), that is

E(t) = inf{u ≥ 0 : D(u) > t}, t ≥ 0,

see, for example, Bingham (1971) or Meerschaert and Sikorskii (2012). Note

the stochastic process {E(t), t ≥ 0} is non-Markovian with non-stationary

and non-independent increments. Both processes {D(t), t ≥ 0} and {E(t),

t ≥ 0} are self-similar
D(at)
a1/α

d=D(t), E(at)
aα

d=E(t), a > 0. (2.14.1)

From Bondesson et al. (1996), the moments are

E[Ek(t)] = tαkk!
Γ(αk + 1) . (2.14.2)

The Laplace transform of the inverse stable subordinator is

E[e−ζE(t)] = Eα(−ζtα), ζ > 0, t ≥ 0, α ∈ (0, 1) (2.14.3)
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where

Eα(z) =
∞∑
j=0

zj

Γ(αj + 1) z ∈ C, α ∈ (0, 1) (2.14.4)

is the one-parameter Mittag-Leffler function, see for example Mainardi and

Gorenflo (2000) and Haubold, Mathai, and Saxena (2011).

The covariance function of this process is computed in Veillette and Taqqu

(2010):

Cov[E(t), E(s)] =
1

Γ(1 + α)Γ(α)

∫ min(t,s)

0

(
(t− τ)α + (s− τ)α

)
τα−1dτ − (st)α

Γ(1 + α) ,

t, s ≥ 0. (2.14.5)

From Leonenko, Meerschaert, Sikorskii, and Schilling equations (10) and

(11) it follows that the correlation function is approximately

Corr[E(t), E(s)] ≈
(
s

t

)α [
2− Γ(2α + 1)

Γ(1 + α)2

]−1

as t→∞. (2.14.6)

This power law decay of the correlation function can be viewed as a

long range dependence for the inverse stable subordinator E(t), since the

correlation function is not integrable at infinity.

2.15 Fractal activity time - type III

The third construction is by definition an inverse stable subordinator.

Although this appears more simple than fractal activity time of type I and

II, it does however produce an activity time model which in terms of the

limit when appropriately normed is related to models in chapter 4.

Definition 7. A fractal activity time of type III is a stochastic process
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2.15. Fractal activity time - type III

{T (t), t ≥ 0} defined by the inverse of stable subordinator D(t), that is

T (t) = inf{u ≥ 0 : D(u) > t}.

To construct activity time models with fractal activity time of type III we

define P (t) to satisfy the SDE

dP (t) = (θ + 1
2σ

2)P (t)dT (t) + σP (t)dB(T (t)) (2.15.1)

where {T (t), t ≥ 0} is an inverse stable subordinator. The solution to the

SDE by Lemma 1 is given as

P (t) = P (0) exp
{
θT (t) + σB(T (t)

}
. (2.15.2)

Due to the self-similarity of the fractal activity time, see equation 2.14.1, we

have

T (t) d= tαT (1) and T (t− 1) d= (t− 1)αT (1).

The log return sequence X(t) = logP (t) − logP (t − 1) will have Laplace

transform

E
[
e−ζX(t)

]
= E

[
e−ζ(θ(T (t)−T (t−1))+σ

√
T (t)−T (t−1)B(1))

]
= E

[
E[e−ζ(θu+σ

√
uB(1))]

∣∣∣T (t)− T (t− 1) = u
]

= E
[
e−(ζθ+ 1

2 ζ
2σ2)(T (t)−T (t−1))

]
= E

[
e−(ζθ+ 1

2 ζ
2σ2)(tα−(t−1)α)T (1)

]
= Eα

(
−
(
ζθ + 1

2ζ
2σ2

)(
tα − (t− 1)α

))
.

We say the log returns are normal inverse stable and to indicate this we shall

write in notation,

X ∼ NIS(θ, σ, α).
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Chapter 2. Activity time construction

Activity time process given by equation (2.15.1) with inverse stable

activity times have been studied in Hahn, Kobayshi, and Sabir (2011)

and Kobayashi (2011) where the governing fractional differential equations

for the probability density function are given. Furthermore martingale

properties are given by Theorem 2 in Magdziarz (2009).

2.16 Concluding remarks

It has been shown that starting with a Lévy process as a driving noise, more

complex activity time processes exhibiting dependence can be built. This

was accomplished by convolution of a memory kernel and a Lévy process. In

the OU case the kernel induced SRD and we used superpositions to create

LRD, whereas in the second type the kernel directly induced LRD onto

the time process. A key point has been that in either case we are able

to compute approximate or exact probabilities, useful for option pricing in

the next chapter. The activity times were then used as the time change

for the risky asset model inducing memory and distributional qualities onto

the price process, as desired. If no memory was induced we would be left

with the model of Clark (1973) suggesting an exponential Lévy process for

the log returns. Our activity times had memory thus our processes were

not Lévy and we remained in the class of FATGBM models. Chapter

one defined such models whilst this chapter constructed the time process

that drives the model, the next chapter will assume the model is given and

develop applications in finance, namely a pricing formula for the valuation

of European option.
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Chapter 3

Option pricing

3.1 Introduction

This chapter details and investigates an application in finance for activity

time models, namely the valuation of options. An option is a contract

entered into between two parties which gives the holder the right but not the

obligation to buy or sell (to exercise) a set amount of the asset at or before a

future point in time (the maturity date) at a price (the strike) agreed upon

today. In this chapter we will be using the fractal activity time model for a

risky asset presented in section 2.10, namely the TS-OU type activity time

model.

Firstly we show how to fit the model to real world data, in the form

of observed risky asset prices, which we call the statistical fit. This is

accomplished by estimating the parameters of the model using method

of moments to historical records of log returns. Thus we say this is the

statistical fit in the sense that the probability distribution matches what has
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3.2. Statistical parameter estimation

been observed over the lifespan of the asset. Option valuation techniques

are then described for so called European options, which have the feature

that they may only be exercised at the maturity date and not before.

We then move on to discuss risk neutral fit where the parameters are

obtained by calibrating the option pricing formula to market option prices.

The model then values options at the same price that the market does (at

the time of calibration). Surprisingly these are not the same parameters one

obtains under a statistical fit. We conclude the chapter with some remarks

on the performance of the pricing of options under activity time models in

comparison to the more classical Black-Scholes formula.

3.2 Statistical parameter estimation

Two common approaches to estimate the parameters of a distribution are

maximum likelihood (ML) and method of moments (MOM). The first

method ML assumes independence and since we have built models with

either short or long range dependence, we reject ML as a viable approach.

For the method of moments approach we look to see if the moment

equations can be solved, to simplify things we consider the cumulants of

the distribution. From the normal tempered stable characteristic exponent

given by equation (2.10.2) the cumulants of all orders may be obtained by

Cj(X) = dj

dζj
ΦX(ζ)

∣∣∣∣
ζ=0

. (3.2.1)

The first cumulant equals the mean and is given by

C1(X) = E[X] = µ+ 2δαθ
(
γ

1
α

)α−1
. (3.2.2)

70



Chapter 3. Option pricing

The second cumulant of X equals the variance,

C2(X) = Var[X] = 2δασ2
(
γ

1
α

)α−1
− 4δαθ2(α− 1)

(
γ

1
α

)α−2
. (3.2.3)

The third cumulant is

C3(X) = 8δαθ3(α− 1)(α− 2)
(
γ

1
α

)α−3
− 12δαθσ2(α− 1)

(
γ

1
α

)α−2

(3.2.4)

and the forth

C4(X) = −16δαθ4(α− 1)(α− 2)(α− 3)
(
γ

1
α

)α−4

+ 48δαθ2σ2(α− 1)(α− 2)
(
γ

1
α

)α−3
(3.2.5)

− 12δασ4(α− 1)
(
γ

1
α

)α−2
.

Furthermore the 5th and 6th cumulants of the random variable X can be

computed as

C5(X) = 32δαθ5(α− 1)(α− 2)(α− 3)(α− 4)
(
γ

1
α

)α−5

− 160δαθ3σ2(α− 1)(α− 2)(α− 3)
(
γ

1
α

)α−4

+ 120δαθσ4(α− 1)(α− 2)
(
γ

1
α

)α−3
(3.2.6)

and

C6(X) = 480δαθ4σ2(α− 1)(α− 2)(α− 3)(α− 4)
(
γ

1
α

)α−5

− 64δαθ6(α− 1)(α− 2)(α− 3)(α− 4)(α− 5)
(
γ

1
α

)α−6

− 720δαθ2σ4(α− 1)(α− 2)(α− 3)
(
γ

1
α

)α−4

+ 120δασ6(α− 1)(α− 2)
(
γ

1
α

)α−3
. (3.2.7)
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It does not seem possible to explicitly solve the above system of equations.

However for the symmetric case, when θ = 0 with the additional assumption

E[τ ] = 1, (3.2.8)

the cumulant equations can be solved and yields the following MOM

parameter estimates. This assumption is justifiable in the sense that it

leads to an unbiased reflection of calendar time, since for the increments

of the activity time process {T (t), t ≥ 0} given by τ(t) = T (t) − T (t − 1),

we have E[τ(t)] = t, time over the long run moves only as fast as calender

time. To achieve this we restrict the δ parameter of the unit increments of

the fractal activity time τ(t) ∼ TS(α, δ, γ) to be given by equation (3.2.13)

below. We proceed with giving method of moment estimators as follows.

Lemma 5. Let X ∼ NTS(µ, 0, σ, α, δ, γ) be a normal tempered stable

random variable, then the method of moment estimators are given by

µ̂ = Ĉ1 (3.2.9)

α̂ = 10Ĉ2
4 − 3Ĉ6Ĉ2

5Ĉ2
4 − 3Ĉ6Ĉ2

(3.2.10)

γ̂ =
(6Ĉ2

2(1− α)
Ĉ4

)α̂
(3.2.11)

σ̂ =

√√√√ Ĉ4γ̂1/α̂

6Ĉ2(1− α̂)
(3.2.12)

δ̂ = 1
2α̂γ̂(α̂−1))/α̂ (3.2.13)

where Ĉj is the j empirical cumulant.

For an observed sample x(1), x(2), . . . , x(n) of size n define the empirical
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mean as

m̂1 =
n∑
q=1

x(q)
n

(3.2.14)

and the j-th empirical central moment as

m̂j =
n∑
q=1

(x(q)− m̂1)j
n

(3.2.15)

then the empirical estimators for the first six cumulants Ĉj(X), j = 1, . . . , 6

can be computed by

Ĉ1 = m̂1

Ĉ2 = m̂2

Ĉ3 = m̂3

Ĉ4 = m̂4 − 3m̂2
1

Ĉ5 = m̂5 − 10m̂3m̂2

Ĉ6 = m̂6 − 15m̂4m̂2− 10m̂2
3 + 30m̂3

2

(3.2.16)

We compute parameters using the method of moment estimators for a cross

section of empirical samples of risky assets for indexes, currencies, stocks

and commodities, see table 3.1. Empirical and model probability density

functions are displayed in figures 3.1 and 3.2.

When θ 6= 0 it does not seem possible to solve the system of equations,

however a generalized method of moment (GMM) approach can be taken

(see Carrasco and Florens (2002)). The GMM estimator Θ̂ for the parameter

set Θ = (µ, θ, σ, α, δ, γ), satisfies

arg min
Θ

∫
R
w(u)(ψn(u)− ψΘ(u))du (3.2.17)

where ψΘ(u) is the model characteristic function and ψn(u) its empirical
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Figure 3.1: Australian Share Index

74



Chapter 3. Option pricing

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

50

100

150

200

250

300

x

f(
x

)

EMPIRICAL 
GAUSSIAN 
NTS

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

10
0

10
1

10
2

f (
 x

 )

EMPIRICAL 
GAUSSIAN 
NTS

Figure 3.2: Standard and Poor Share Index
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Risky asset µ̂ θ̂ σ̂ α̂ δ̂ γ̂

FTSE 100 0.0003517 0 0.01125 0.60487 0.485752 0.44314

ASX 200 0.0003452 0 0.00962 0.50128 0.694365 0.69485

DOW JONES 0.0003468 0 0.01161 0.77829 0.296764 0.06645

NASDAQ 100 0.0003250 0 0.01429 0.43155 0.744702 0.71494

HANG SENG 0.0004858 0 0.01631 0.50235 0.554435 0.55397

USD:EUR -1.9526e-05 0 0.00510 0.34640 1.483233 1.01453

GBP:EUR 2.3843e-05 0 0.00457 0.57119 0.624828 0.63819

YEN:EUR -4.1393e-05 0 0.00795 0.65824 0.578738 0.59228

USD:GBP -4.3365e-05 0 0.00591 0.40301 1.116129 0.93108

GOLDBLN 0.0001755 0 0.01051 0.49320 0.595843 0.59618

CRUDOIL 1.8357e-04 0 0.02525 0.81247 0.377379 0.12018

SLVCASH 0.0002591 0 0.02342 0.44164 0.309902 0.35888

GLAXOSMITHKLINE 0.0002714 0 0.00714 0.70249 0.443341 0.32600

HSBC 0.0002302 0 0.00805 0.64590 0.470256 0.40285

WAL MART STORES 0.0003029 0 0.00844 0.47020 0.808938 0.78449

GENERAL ELECTRIC 0.0001625 0 0.00741 0.60510 0.499415 0.46229

SP 500 COMPOSITE 0.0003532 0 0.01137 0.37828 0.763830 0.71630

PFIZER 0.0001877 0 0.00769 0.78170 0.494130 0.39685

FTSE ALL SHARE 0.0003593 0 0.01049 0.57308 0.488157 0.45863

Table 3.1: MOM parameter estimates

counterpart, defined by

ψΘ(ζ) :=
∫
R
eiζxdFΘ(x) and ψn(ζ) = 1

n

n∑
j=1

eiζx(j). (3.2.18)

A simple approximation can be made by taking a discrete version of the
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integral in (3.2.17) but two choices must be made, first the truncation

of the real line from (−∞,∞) to some interval [−u, u] and secondly the

mesh size that partitions this interval. There is also the choice of the

weighting function w(u) to be decided upon. Finally, starting values for

the minimization are required and since we do not know the true parameter

values the choice of starting values may influence the estimated parameter

values. We suggest the following choices

i. Truncation of the integral at [−9, 9].

ii. A mesh size of one (a smaller mesh size may result in a singular

covariance matrix, see Carrasco and Florens (2002), Carrasco and

Florens (2000)).

iii. For the weight function use the probability density of a standard

normal random variable (following Carrasco and Florens (2002) in

regards to this choice).

iv. For the starting values the symmetric parameters (θ = 0) for which

the moments equations can be solved explicitly (see Lemma 5) could

be used.

We do not go on to estimate parameters in a non symmetric normal tempered

stable distribution since the above choices may not be optimal and the topic

of accurately fitting all six parameters is a question for further research not

undertaken in this thesis.
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3.3 Option pricing

Pricing formula for related models was obtained in Heyde and Leonenko

(2005); Nicolato and Venardos (2003); Barndorff-Nielsen et al. (2002). The

approaches to deriving pricing formula varied depending upon the models

considered and specific assumptions such as independence of increments, see

Carr et al. (1998); Finlay and Seneta (2008b); Carr and Madan (1999); Lee

(2004). In our model, the log returns are not independent, therefore we

consider approaches to deriving pricing formula that are not based on the

assumption of independence.

Activity time models are part of the wider class of incomplete market models.

Incomplete markets are those in which perfect risk transfer is not possible,

by this we mean that there is more than one risk neutral measure that can

be used to price options, whereas in the classical Black-Scholes model the

market is complete. This is because calibration of the Black-Scholes model

to option data requires finding the value of the parameter σ such that the

model prices match the market prices and there can only be one such value

of σ that make this true. Whereas in activity time models the additional

parameters whilst being able to provide a better fit to option data over

different strikes, results in an array of parameter values that calibrate well

to market data and the model is said to be incomplete.

We begin with the real world model and assume that a risk-neutral model

has the same form, namely

dP (t) = µP (t)dt+ (θ + 1
2σ

2)P (t)dT (t) + σP (t)dB(T (t)), (3.3.1)

but with different parameter values. To price options, we impose the
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parameter restrictions to ensure that the discount stock price process

e−rtP (t) is a martingale with respect to the filtration Ft = σ({B(u), u ≤

T (t)}, {T (u), u ≤ t}). Here r is the interest rate. We follow the approach

to obtaining a skew correcting martingale proposed in Heyde and Leonenko

(2005) and used in Finlay and Seneta (2006). With this approach, parameter

restrictions µ = r and θ = −1
2σ

2 are imposed in the identity

E(e−rtP (t)|Fs) = e−rsP (s)e(µ−r)(t−s)E(e(θ+ 1
2σ

2)(T (t)−T (s))|Fs),

so that E(e−rtP (t)|Fs) = e−rsP (s). Since parameter θ controls the skewness

of the distribution of the returns, this approach to obtaining a risk neutral

measure is called a skew correcting martingale approach. First note that

ae−
1
2 c

2+cZ > b⇐⇒ Z >
1
2c−

1
c

log a
b

a, b, c > 0.

We now go on to derive the valuation formula for a European option which

mature at time Y and have be written on a strike K, under a skew correcting

martingale measure Q with µ = r and θ = −1
2σ

2

C(Y,K) = e−rYE
[
(P (Y )−K)+

]
= E

[
(P (0)e− 1

2σ
2T (Y )+σBT (Y ) −Ke−rY )+

]
= E

[
E
[
(P (0)e− 1

2σ
2T (Y )+σ

√
T (Y )Z −Ke−rY )IZ>−d̃2

] ∣∣∣∣ T (Y )
]

= E
[
P (0)E

[
IZ>−d̃1

∣∣∣ T (Y )
]
−Ke−rYE

[
IZ>−d̃2

∣∣∣ T (Y )
]]

= E
[
P (0)E

[
IZ<d̃1

∣∣∣ T (Y )
]
−Ke−rYE

[
IZ<d̃2

∣∣∣ T (Y )
]]

= E
[
P (0)φ(d̃1)−Ke−rY φ(d̃2)

]
where φ(·) is the cdf of N(0, 1), with notation (z)+ = max(0, z) and

d̃1 =
log P (0)

K
+ rY + 1

2σ
2T (Y )

σ
√
T (Y )

, d̃2 =
log P (0)

K
+ rY − 1

2σ
2T (Y )

σ
√
T (Y )

.
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Above we used the fact for E[F (Z)] <∞

E[F (Z + c)] =
∫ ∞
−∞

F (Z + c)φ(Z)dZ

=
∫ ∞
−∞

F (y)φ(y − c)dy

=
∫ ∞
−∞

e−
1
2 c

2+cyF (y)φ(y)dy

= E
[
e−

1
2 c

2+cZF (Z)
]

in our case

F (Z) = IZ>−d̃2

and

E[F (Z)] =
∫ ∞
−∞

F (−Z)φ(Z)dZ.

By specifying a distribution for T (Y ) with pdf FT (Y )(t), then the call price

becomes

C(Y,K) =
∫ ∞

0

(
P (0)φ

(
d̃1(t)

)
−Ke−rY φ

(
d̃2(t)

))
fT (Y )(t)dt. (3.3.2)

In Heyde and Leonenko (2005), this pricing formula was used for a different

fractal activity time, however this formula is valid for any construction of

the activity time in the FATGBM model. Also, if T (Y ) = t, then (3.3.2)

reduces to the Black-Scholes formula.

Note that using the relationship

d̃2 = d̃1 − σ
√
T (Y ),

it can easily be shown that

d̃1 = ed̃1σ
√
T (Y )−rY− 1

2σ
2T (Y ) = P (0)

K
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and

Ke−rYN ′(d̃2) = P (0)N ′(d̃1).

We now derive some derivatives or the so called sensitivities of the pricing

formula, first reported by Roger Gay in the working paper Fractals and

Contingent Claims which seems to be no longer be available. The rate of

change of the pricing formula with respect to the price of the risky asset can

be computed as
∂C(Y,K)
∂P (0) = E

[
∂

∂P (0)P (0)N(d̃1)− ∂

∂P (0)Ke
−rYN(d̃2)

]

= E
[
N(d̃1) + P (0)N ′(d̃1) ∂d̃1

∂P (0) −Ke
−rYN ′(d̃2) ∂d̃2

∂P (0)

]

= E
[
N(d̃1)

]
.

The fractal activity time T (t) is self-similar, that is

Tct − ct
d= cH(T (t)− t)

from which we can see that if we let t = 1 and c = Y we can show,

T (1) d=Y −H(T (Y )− Y ) + 1.

Using this fact we can see that

∂(σ
√
T (Y ))
∂Y

=
∂(σ

√
Y H(T (1)− 1) + Y )

∂Y

= 1
2σ

HY H−1(Y −H(T (Y )− Y ) + 1)−HY H−1 + 1√
T (Y )

= 1
2σ

T (Y )HY −1 −H + 1√
T (Y )

.

Another useful quantity is known as the theta,

− ∂C(Y,K)
∂Y

=
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− E
[
P (0)∂N(d̃1)

∂d̃1

∂d̃1

∂Y
+ rKe−rYN(d̃2)−Ke−rY ∂N(d̃2)

∂d̃2

∂d̃2

∂Y

]

= −E
[
P (0)N ′(d̃1)

(
∂d̃1

∂Y
− ∂d̃2

∂Y

)
+ rKe−rYN(d̃2)

]

= −E
P (0)N ′(d̃1)

∂d̃1

∂Y
−
∂(d̃1 − σ

√
T (Y ))

∂Y

+ rKe−rYN(d̃2)


= −E
1

2P (0)N ′(d̃1)σT (Y )HY −1 −H + 1√
T (Y )

+ rKe−rYN(d̃2)
 .

Similar computation yield the Gamma

∂2C(Y,K)
∂P (0)2 = E

N ′(d̃1) 1
σP (0)

√
T (Y )

 ,
Vega

∂C(Y,K)
∂σ

= E
[
P (0)N ′(d̃1)

√
T (Y )

]
and Rho

∂C(Y,K)
∂r

= E
[
KY e−rYN(d̃2)

]
.

3.4 Risk neutral parameter estimation

This empirical section will look at implementation and calibration of the

TS-OU activity time construction leading to normal tempered stable log

returns in the case of finite superpositions as described in chapter two.

The data set contains transaction records for the September 2011 Eurofx

futures and option contracts traded on the Chicago Mercantile Exchange

(CME) over a three month horizon from the 22nd June until expiration

on the 22nd September 2011. These records have been obtained directly

from the CME. The Eurofx is a collection of derivative products where the
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underlying asset for the futures contract is the USD:EUR foreign exchange

(FX) spot rate and for the options the underlying is the futures contract with

the corresponding same expiration date. The spot rate is predominantly

traded inter bank via electronic systems. The spot rate has been obtained

from Thompson Datastream as previously mentioned in the empirical study

in chapter one. For the risk free rate r we have obtained the US LIBOR

rates also from Thompson Datastream.

Options are priced using formulae (3.3.2) under an equivalent martingale

measure (EMM), termed the risk neutral measure Q with risk neutral

parameters ΘQ = (µ, δ, γ, α, θ, σ) for the NTS case and when T (Y ) = t in

equation (3.3.2), with parameters ΘQ = (µ, σ) referred to as the geometric

Brownian motion (GBM) case. Here r is the risk free rate. For the skew

correcting martingale approach described earlier, µ = r and θ = −1
2σ

2

under Q for the NTS case and µ = r and θ = 0 for the GBM case. The

risk neutral parameters that do not have martingale restrictions imposed on

them, i.e. (δ, γ, α, σ) for the NTS case and σ for the GBM case, could be

set to their statistical estimates. In general though, the valuation of options

based on these statistical parameters will not result in prices that match

market prices. Instead the model is calibrated to options data and implied

risk neutral parameters are returned (see for example Carr et al. (1998);

Bates (1991)).

In the NTS case the stability and scale parameters δ and α should not

change (see Carr et al. (2002); Kassberger and Liebmann (2011)) under

EMM, and under the risk neutral measure they should be fixed to their

statistical counterparts. However it may turn out that changing one or
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Figure 3.3: Comparison of option pricing models on 3.15am, August 12th

more of the parameters, allowing them to float during calibration to option

values produces a better fit. Therefore as reasoned in Carr et al. (2002),

during calibration allowing δ and α to change under the EMM, may suggest

that the statistical parameters are not reliable as estimators when moving

to the risk neutral measure.

To aid computation the expectation of the activity time is set equal to one,

this ensures stability through time for the distribution of the activity time,

thus δ = 1/(2αγ(α−1)/α) and furthermore α is fixed at 0.3460 (see table

3.1) in all computations. Risk neutral implied parameter estimates are then

computed, γ and σ for the NTS case and σ for the GBM case by matching

the models to fit market data in the mean square sense, i.e. compute in both

cases

arg min
ΘQ

√√√√ 1
N

N∑
i=1

(Ci(Y,K)− ˜Ci(Y,K))2

where Ci is the market price for the option and C̃i is the model implied

price. As can be seen in Figure 3.3, the additional parameter γ allows a

closer calibration to the observed market prices for the NTS model with a

MSE of 1.5628e-9 against the GBM model with MSE 5.9595e-7.
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3.5 Model performance

In order to compare option pricing models we follow the regression

approach described in Carr et al. (1998) and in references therein. This

approach assumes time variable parameters, so fitting in-sample and testing

out-of-sample may not be that useful. Instead the errors of the in-sample

model fit are investigated in terms of how predictable they are. This follows

the notion that estimating risk neutral parameters in one period and using

them in a subsequent period will perform poorly. Indeed Bakshi et al. (1997)

results suggest as the GBM case has only one parameter to calibrate, it is

more stable through time compared to a model with more parameters, where

a better fit may be obtained in sample but parameters have little stability

out of sample.

To investigate model performance, as in Carr et al. (1998), the options data

set is searched for fixed points in time when the futures and a series of option

strikes trade in synchronization. Each time the futures trade, we look to see

whether the first four out of the money (OTM) call strikes have traded in

a proceeding five second period. This leaves cross sectional data at fixed

points in time for option prices, the corresponding futures price, the time

until expiration and the risk free rate on that day. On average this resulted

in 28 cross sectional data sets for each trading day at irregular spaced time

intervals often grouped together in relatively short periods. As the option

pricing formulae involves numerical integration as does evaluation of fT (Y )(t)

which is computationally expensive, we reduce the data set further. This

is achieved by extracting each day the first cross sectional set during the

periods 3am-5am and 8am-10am. This relates to the open of European
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and US markets when the most transactions are recorded. The result of

these filters is a set of 89 cross sections from 22nd of June until 11th of

September, giving a total of 356 option trade prices. At each time a cross

section of market observed option prices is used and the calibration aims to

find parameters that fit across all strikes in a mean squared sense.

GBM NTS

in-sample in-sample

constant η0 0.144 0.001

t-stat (2.4087) (0.365)

moneyness η1 -0.143 -0.001

t-stat (-40.7) (-1.823)

R2 0.824 0.0088

F − statistic 831.6 1.72

OBS 356 356

Table 3.2: Comparison of option pricing

The regression approach reasons that the option pricing errors should not

exhibit any predictable patterns, and as such we carry out the regression,

PEi = η0+η1Mi+εi where Mi, is the moneyness of the ith option respectively

and ε a random noise term. The moneyness is the ratio of the option

strike price and the current price of the underlying asset. The estimated

coefficients η0 and η1, their corresponding t-values and the R2 and F statistic

are reported in table 3.2.

The results from the regression analysis show by a large t-statistic for the

GBM case that moneyness can be used to explain the pricing errors, and with
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a R2 of 82% as a measure of the percentage reduction in mean-squared-error

that the regression model achieves through the explanatory moneyness

variable. In contrast, for the NTS model the t-statistic indicates that

moneyness is of no help in the predictability of the pricing errors, with

an R2 of only 0.1% very little reduction in MSE is obtained. These results

are similar to those found in Carr et al. (1998).

3.6 Concluding remarks

An option valuation equation has been developed which can be interpreted

as a weighted Black-Scholes formula, moreover the requirement for pricing

is knowledge of the probability density for the activity time. Thus our

models are tractable since we can compute activity time probabilities (see

sections 2.9 and 2.13 in the previous chapter). We have seen that the

statistical parameters obtained from the history of the assets price are not

the parameter estimates that produce a realistic option valuation and risk

neutral parameters were discussed to price options according to current

market valuation. Furthermore it is clear that the additional structure of

a process with more parameters can provide a better fit to options data in

the sense of mean squared error of model prices to market prices. Although

comparative MSE is small it would have significant impact when trading

large volumes of option contracts where a small price discrepancy would

translate into a substantial profit or loss for the option trader.

The next chapter is not a continuation, in the sense that we now take a few

steps back and look at asset returns not over days but over short periods of

a few seconds. Models are constructed, empirical properties are investigated

and results on option pricing given.
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Chapter 4

Integer valued models

4.1 Introduction

We now turn our attention to risky assets measured at high frequency. The

advent of high frequency financial data has spurred some new modeling

techniques to describe characteristics of trade by trade data. Recent

literature on the subject includes Barndorff-Nielsen, Shephard, and Pollard

(2011), Carr (2011), Bacry, Delattre, Hoffmann, and Muzy (2013b) and

Bacry et al. (2013) where models based on the difference of two point

processes are proposed. The difference of Poisson processes is considered

in Barndorff-Nielsen et al. (2011) and Carr (2011), known as the Skellam

process. The difference of two Hawkes processes are discussed in Bacry et al.

(2013b) and Bacry et al. (2013).

A drawback of the existing models, which may be at odds with empirical

facts, is exponential inter-arrival time, or time between trades. Mainardi,

Gorenflo, and Scalas (2004) studied the fractional Poisson process, where
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the exponential waiting time distribution is replaced by a Mittag-Leffler

distribution, see also Beghin and Orsingher (2009), Laskin (2003), Repin

and Saichev (2000) and Uchaikin et al. (2008). The goal of this chapter is

to extend the Skellam models of Barndorff-Nielsen et al. (2011) with their

exponential inter-arrival times to the fractional setting and the more flexible

Mittag-Leffler inter-arrival times.

Throughout this chapter we will be modeling the so called futures price

F (t), which is directly linked to a risky assets spot price P (t). The forward

price depends on a forward contract upon which it is written. A forward

contract between two parties is an agreement to buy or sell a risky asset at

a specified future time T , at a price agreed upon today. The price of the

forward contract is the so called futures price denoted by F (t), t ∈ [0, T ].

With r the interest rate applicable to the underlying risky asset, the futures

price is related by no arbitrage arguments, to the spot price through the

formula,

F (t) = P (t)ert. (4.1.1)

When looked at over very small time horizons, risky assets such as futures,

no longer trade in a diffusive manner. This is an inherit property from

the exchanges for which these assets trade upon. The exchange allows

participant to trade such assets but only at discrete evenly spaced values,

which are multiples of the tick value. See as an example, figure 4.1 for an

empirical path of the Eurofx futures price over the short interval of 600

seconds.

To capture this phenomenon, Barndorff-Nielsen et al. (2011) proposed the
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Figure 4.1: Eurofx empirical price path

following arithmetic model for the forward price,

F (t) = F (0) + aS(t) (4.1.2)

with F (0) > 0, a some positive constant and {S(t), t ≥ 0} an integer valued

stochastic process. The forward price has jumps up or down by a magnitude

of size a, mimicking reality when trade by trade prices jump up in scaler

values of the tick size, indeed a is the tick size. The above model also appears

in Carr (2011) and is extended so that the process remains positive, to the

geometric case

F (t) = F (0) exp{gS(t)}, (4.1.3)

again with initial value F (0) > 0 and g some positive constant. In this

case the up jumps have size F (t−)(eg − 1) and the down jumps have size

F (t−)(e−g − 1).

The rest of this chapter is organized as follows. Section 4.2 details integer
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4.2. Integer valued Lévy processes

valued Lévy process before defining the Poisson process in section 4.3.

In section 4.4 Skellam Lévy processes are defined, along with associated

differential equations and distributional properties. Section 4.5 gives

martingale properties for Skellam processes and the timed changed Skellam

inverse Gaussian process is introduced in section 4.6. Section 4.7 contains

known option valuation techniques for integer valued models. We then

proceed to generalize to a wider fractional setting in the sense that our

processes have associated fractional differential equations. First in section

4.8 the fractional Poisson process is defined. We then define and give details

for fractional Skellam processes of type I and type II in sections 4.9 and 4.10

respectively. These processes generalize the Skellam process to where the

inter arrival times have Mittag-Leffler distribution. Martingale properties of

fractional Skellam processes of type II are then discussed in section 4.11. An

empirical investigation in section 4.12 shows a more realistic fit to observed

waiting times between trades at a high frequency scale. section 4.13 gives

known details on continuous time random walks and section 4.14 gives the

CTRW representation of the fractional Skellam process type II and discusses

the convergence to the third type of activity model in chapter 2, section 4.15

introduces fractional Skellam tempered stable processes and section 4.16

introduces delta fractional negative binomial processes, both of which are

further generalizations.

4.2 Integer valued Lévy processes

From hereon in, for our investigations for the most part, we will be working

with integer valued Lévy processes {L(t), t ≥ 0}, i.e. processes that take
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values on the integer set Z = {0,±1,±2, . . .},

L(t) : [0,∞]× Ω→ Z.

We shall use the same notation previously used for Lévy processes see section

2.2 chapter 2, for details. As detailed in Barndorff-Nielsen et al. (2011),

an integer valued Lévy process {L(t), t ≥ 0} can be decomposed into its

positive {L1(t), t ≥ 0} and negative {L2(t), t ≥ 0} parts simply by summing

the positive and negative jumps of L separately, i.e.

L(t) = L1(t)− L2(t).

Thus both {L1(t), t ≥ 0} and {L2(t), t ≥ 0} are discrete Lévy subordinators

with triplets (b1, A1, ν1) and (b2, A2, ν2) respectively. Furthermore since a

subordinator has no Gaussian part A1 = A2 = 0, the Laplace transform is

given by

E[e−ζLi(t)] = e−tΨLi(1)(ζ), ζ ≥ 0, i = 1, 2. (4.2.1)

Where the Laplace exponent ΨLi(1)(ζ) = ΨLi , i = 1, 2 with triple (b∗i , 0, νi)

is given by

ΨLi(ζ) = b∗i ζ −
∫

(0,∞)
(e−ζx − 1)νi(dx) (4.2.2)

here b∗i = bi −
∫ 1

0 xνi(dx) ≥ 0 and the Lévy measures are restrictions of ν to

the positive and negative half axes, i.e.

ν1((−∞, 0)) = 0 ν1((0,∞)) = ν((0,∞))

ν2((−∞, 0)) = 0 ν2((0,∞)) = ν((−∞, 0))

Suppose L is a integer-valued Lévy process, then the Lévy measure ν of L

is concentrated on Z \ 0 and has finite mass, see Barndorff-Nielsen et al.
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(2011), proposition 1. Since A1 = A2 = 0 and ν1(R), ν1(R) < ∞ from Sato

(1999) theorem 12.2, both {L1(t), t ≥ 0} and {L2(t), t ≥ 0} are piecewise

constant a.s. if bi = 0.

4.3 Poisson processes

This short section introduces the well known Poisson process, which is the

simplest case of a positive integer valued Lévy process.

We say an increasing sequence of random variables τ(1), τ(2), . . ., called

arrival times (or sometimes epochs) form an arrival process. The arrival

times represent some repeating event occurring. The arrival process starts

at time zero and multiple arrivals can’t occur simultaneously.

An arrival process can also be viewed as a counting process {N(t), t ≥ 0},

where for each t ≥ 0, the random variable N(t) is the number of arrivals up

to and including time t. For any given integer n > 1 and time t > 0, the nth

arrival time, τ(n), and the counting random variable, N(t), are related by

{τ(n) > t} = {N(t) < n}. (4.3.1)

Definition 8. A renewal process is an arrival process for which the sequence

of inter-arrival times is a sequence of independent and identically distributed

random variables.

Definition 9. A Poisson process {N(t), t ≥ 0} is a renewal process in which

the inter-arrival intervals have an exponential distribution function; i.e. for

some real λ > 0, each τ(i) has the density f(x) = λ exp(−λx) for x > 0.

The process is named after the French mathematician Siméon Denis Poisson.
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For a Poisson process with rate λ the probability mass function p(n, t) =

P(N(t) = n) at time t ≥ 0 has the well known form

p(n, t) = (λt)ne−λt
n! . (4.3.2)

The Poisson process is in fact a counting process, which is a stochastic

process with values that are positive, integer, and increasing. Moreover the

Poisson process is the only counting process with independent and stationary

increments. A Poisson process is a subordinator, i.e. an increasing Lévy

process.

4.4 Skellam Lévy processes

This section introduces the Skellam distribution and the associated Skellam

Lévy process which has been used as the integer valued random process in

the arithmetic and geometric models as described by equations (4.1.2) and

(4.1.3) in the introduction to this chapter. The Skellam distribution has

been introduced in Skellam (1946) and Irwin (1937), and the corresponding

Lévy processes are considered in Barndorff-Nielsen et al. (2011).

Definition 10. A Skellam Lévy process {S(t), t ≥ 0} is defined as

S(t) = N1(t)−N2(t), t ≥ 0,

where {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are two independent homogeneous

Poisson processes with intensities λ1 > 0 and λ2 > 0 respectively.

We write in notation

S ∼ Sk(λ1, λ2)

and for the marginal distributions of the Skellam Lévy process, we write
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S(t) ∼ Sk(tλ1, tλ2). The Lévy triplet (b, A, ν) is given by

b = λ1 + λ2, A = 0, ν(dx) = λ1δ{1}dx+ λ2δ{−1}dx (4.4.1)

where δ{z} is the Dirac delta function with point mass at z. Since A = 0

then {S(t), t ≥ 0} is a pure jump process. The moment generating function

Φ of S(t) is given by

ΦS(t)(ζ) := E[eζS(t)] = exp
{
t
(
λ1(eζ − 1) + λ2(e−ζ − 1)

)}
(4.4.2)

The probability mass function sk(t) for k ∈ Z = {0,±1,±2, . . .}, of the

random variable S(t) is

sk(t) = P(S(t) = k) = e−t(λ1+λ2)
(
λ1

λ2

) k
2

I|k|

(
2t
√
λ1λ2

)
, (4.4.3)

where Ik is the modified Bessel function of the first kind (Sneddon, 1956, p.

114)

Ik(z) =
∞∑
n=0

(z/2)2n+k

n!(n+ k)! .

The mean and the variance are

E[S(t)] = (λ1 − λ2)t, Var[S(t)] = (λ1 + λ2)t, (4.4.4)

and the covariance function

Cov(S(t), S(s)) = (λ1 + λ2) min(t, s), t, s > 0. (4.4.5)

The next result on the Skellam processes is straightforward, but to the best

of our knowledge, it has not appeared in the literature.

Lemma 6. The Skellam process is a stochastic solution of the following

system of differential equations:
d

dt
sk(t) = λ1(sk−1(t)− sk(t))− λ2(sk(t)− sk+1(t)), k ∈ Z (4.4.6)

with the initial conditions s0(0) = 1 and sk(0) = 0 for k 6= 0. The moment
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generating function Φ of the Skellam process solves the differential equation
dΦS(t)(ζ)

dt
= ΦS(t)(ζ)(λ1(eζ − 1) + λ2(e−ζ − 1)) (4.4.7)

with the initial condition ΦS(0)(ζ) = 1.

Proof: Using the properties of modified Bessel function (Sneddon, 1956, p.

115)

Ik(x) = I−k(x) (4.4.8)

for any integer k and all x, and
dIν(z)
dz

= 1
2 (Iν−1(z) + Iν+1(z)) , (4.4.9)

differentiate both sides of equation (4.4.3) to get
d

dt
sk(t) = λ1(sk−1 − sk)− λ2(sk − sk+1), k ∈ Z. (4.4.10)

Thus (4.4.6) holds. Now multiply both sides of (4.4.6) by eζk and sum over

k to get
dΦS(t)(ζ)

dt
= ΦS(t)(ζ)(λ1(eζ − 1) + λ2(e−ζ − 1)) (4.4.11)

with the initial condition ΦS(0)(ζ) = 1, thus equation (4.4.7) holds. This

equation clearly has solution

ΦS(t)(ζ) = e−t(λ1+λ2−λ1eζ−λ2e−ζ), ζ ∈ R (4.4.12)

which agrees with equation (4.4.2) above and completes the proof.

4.5 Martingale properties of Skellam processes

This section investigates martingale properties of Skellam processes,

martingales have considerable interest in finance for the pricing of options

in section 4.7.

97



4.5. Martingale properties of Skellam processes

From Lemma 2 in section 2.2 chapter 2, the Skellam process is not a

martingale since in general the drift b of the Lévy triplet of S(t) is

b = λ1 + λ2 6= 0. However there are some specific cases when a Skellam

process it is a martingale which we refer to as the symmetric, standard and

compensated types.

Definition 11. Let {S(t), t ≥ 0} be a Skellam process, set

λ1 = λ2 := λ > 0

then {S(t), t ≥ 0} is referred to as a symmetric Skellam process and we write

S(t) ∼ Sk(tλ, tλ).

The characteristic exponent of the symmetric Skellam process is

φS(ζ) = λ(eiζ + e−iζ − 2), (4.5.1)

generated from the Lévy triplet (0, 0, ν), with

ν(dx) = λδ{1}dx+ λδ{−1}dx, (4.5.2)

hence by Lemma 2 the symmetric Skellam process is a martingale since

b = 0.

Definition 12. Let {S(t), t ≥ 0} be a Skellam process, set

λ1 = λ2 = 1
2

then {S(t), t ≥ 0} is referred to as a standard Skellam process and we write

S(t) ∼ Sk(t1
2 , t

1
2).

The characteristic function of the standard Skellam process has the

trigonometric form

ψS(t)(ζ) = exp
{
− t(1− cos(ζ))

}
, (4.5.3)
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Clearly the Lévy triplet has drift component b = 0, hence the standard

Skellam process is a martingale.

Definition 13. Let {S(t), t ≥ 0} be a Skellam process. Define

S∗(t) := S(t)− (λ1 + λ2)t, t ≥ 0

then {S∗(t), t ≥ 0} is referred to as a compensated Skellam process and we

write S∗(t) ∼ cSk(tλ1, tλ2).

Again since the Lévy triplet has drift component b = 0 so the compensated

Skellam process is also a martingale.

Remark 4. Both the symmetric and standard Skellam are integer valued

processes, however the compensated Skellam process is not integer valued.

4.6 Skellam inverse Gaussian Lévy processes

Although the Skellam process when used as the random component in

the arithmetic and geometric models as described by equations (4.1.2) and

(4.1.3) is useful, it does however have some drawbacks. Firstly it assumes

inter-arrival times are exponentially distributed which may not be the case,

this will be discussed further and a new process will be proposed in sections

4.9 and 4.10 to counter this. The second inherent flaw is that the Skellam

process can only jump up or down by a magnitude of one. For a heavily

traded product such as the futures series on the Euro to the US dollar this

may not be a problem, since high liquidity means the price will rarely jump

more than a single tick. However for assets that do not have such high

trading volumes, the price may jump by several ticks from one trade to the

next. This section aims to provide a generalization of the Skellam process to
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allow for larger than unit jumps. By subordination of a Skellam process by

a Lévy subordinator, the process then has properties similar to a compound

Poisson process, in fact it can be viewed as a compound Skellam process.

Let us introduce the following Lévy process, which is certainly not an

integer valued process. The inverse Gaussian (IG) distribution is infinitely

divisible and the corresponding inverse Gaussian subordinator {T (t), t ≥ 0}

is distributed as T (t) ∼ IG(tδ, γ). The Laplace exponent is

ΨT (1)(ζ) = δ((γ2 + 2ζ)1/2)− γ), δ, γ > 0,

and the marginal probability density function rx(t) := P(T (t) ≤ x) is given

by

rx(t) = 1√
2π
δteδγtx−3/2e−

1
2 (t2δ2x−1+γ2x)

Definition 14. Let {S(t), t ≥ 0} be a standard Skellam process S(t) ∼

Sk(t1
2 , t

1
2) and {T (t),≥ 0} be a inverse Gaussian subordinator T (t) ∼

IG(tδ, γ). Further assume that S(t) is independent of T (t). The stochastic

process {Y (t), t ≥ 0} defined by

Y (t) = S(T (t)),

is called a Skellam inverse Gaussian process.

Theorem 6. Let {Y (t), t ≥ 0} be a Skellam inverse Gaussian process. The

marginal distribution function yk(t) := P(Y (t) = k), k ∈ Z is given by

yk(t) = 1√
2π
δteδγt

∫ ∞
0

e−
1
2 (t2δ2u−1+(γ2+2)u)I|k|(u)u−3/2du.

The characteristic exponent is

φY (ζ) = δγ − δ
√
γ2 + 2(1− cos(ζ)).
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Chapter 4. Integer valued models

The probability mass function yk(t) solves the differential equation
∂2

∂t2
yk(t)− 2δγ ∂

∂t
yk(t) = yk−1(t) + yk+1(t) + 2yk(t).

Proof: The probability mass function is computed from

yk(t) := y(k, t) =
∫ ∞

0
s(x, u)r(u, t)du (4.6.1)

where s(x, u) is the pmf of the standard Skellam process and r(u, t) the pdf

of the inverse Gaussian subordinator. The characteristic exponent can be

computed as

φY (ζ) =
∫
eiζky(k, t)dk =

∫ ∞
0

(∫
eiζks(k, u)dk

)
r(u, t)du

=
∫ ∞

0
ψS(u)(ζ)r(u, t)du =

∫ ∞
0

e−u(1−cos(ζ))r(u, t)du

and the result follows. To show the differential equation note that ψY (0)(ζ) =

1 and
∂

∂t
ψY (t)(ζ) = −δ

(√
γ2 + 2(1− cos(ζ))− γ

)
ψY (t)(ζ) (4.6.2)

let ψ̄Y (s)(ζ) :=
∫
e−stψY (t)(ζ)dt then taking Laplace transforms of both sides

of equation (4.6.2) we find

sψ̄Y (s)(ζ)− ψY (0)(ζ) = −δ
(√

γ2 + 2(1− cos(ζ))− γ
)
ψ̄Y (s)(ζ)

rearrange to see

ψ̄Y (s)(ζ) = 1
(s− δγ) + δ

√
γ2 + 2(1− cos(ζ))

×
(s− δγ)− δ

√
γ2 + 2(1− cos(ζ))

(s− δγ)− δ
√
γ2 + 2(1− cos(ζ))

which can be written as

s2ψ̄Y (s)(ζ)− sψY (0)(ζ) + δ
(√

γ2 + 2(1− cos(ζ))− γ
)
ψY (0)(ζ)

− 2δγ(sψ̄Y (s)(ζ)− ψY (0)(ζ)) = 2(1− cos(ζ))ψ̄Y (s)(ζ)
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using equation (4.6.2) we have

s
(
sψ̄Y (s)(ζ)− ψY (0)(ζ)

)
+ ∂

∂t
ψY (0)(ζ)− 2δγ

(
sψ̄Y (s)(ζ)− ψY (0)(ζ)

)
= 2(1− cos(ζ))ψ̄Y (s)(ζ).

Computing the Laplace inversion gives
∂2

∂t2
ψY (t)(ζ)− 2δγ ∂

∂t
ψY (t)(ζ) = 2(1− cos(ζ))ψY (t)(ζ)

and since eikyk(ζ) is the Fourier transform of yk−1(t) we have after inverting

again
∂2

∂t2
yk(t)− 2δγ ∂

∂t
yk(t) = yk−1(t) + yk+1(t)− 2yk(t)

as desired.

4.7 Option pricing

This section details some known results on option pricing under integer

valued processes, see Barndorff-Nielsen et al. (2011) and Carr (2011).

Firstly some notation. The no arbitrage price of a standard put and call

options at time t ∈ [0, T ] with strike K are defined by

VPUT (K) = e−rTE[(K − F (T ))+] (4.7.1)

and

VCALL(K) = e−rTE[(F (T )−K)+] (4.7.2)

respectively. In the above the expectation is with respect to some risk neutral

measure that makes the forward price process {F (t), t ∈ [0, T ]} a martingale,

see section 4.5.

Consider the arithmetic model, then we can compute call option prices as
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Chapter 4. Integer valued models

follows.

VCALL(K) = e−rTE[(F (T )−K)+]

= e−rTE
[(
F (T )− F (0)− (K − F (0))

)+]
.

Let K∗ = K−F (0) be the distance between the strike and the forward value

at time zero. Let F ∗(T ) = F (T ) − F (0) denote the shifted forward price

with probability density p(n, t) := P(F ∗(t) = n), then

VCALL(K) = e−rTE[(F ∗(T )−K∗)+]

= e−rT
∞∑
j=1

jp(j +K∗, T ).

Notice that the call price only exists when F (0) is an integer so the delta

∂VCALL/∂F (0) and gamma ∂2VCALL/∂F (0)2 do not exist.

For the symmetric Skellam case we have

VCALL(K) = e−(r+2λ)T
∞∑
j=1

I|j+K−F (0)|(2Tλ) (4.7.3)

where Ik(x) is the modified Bessel function of the third kind.

Next consider the arithmetic model, let Y (u) := F (u)−F (t) and choose the

Skellam process to be either of standard or symmetric type, i.e. a martingale.

Since the distribution of Y (u) is symmetric, therefore we have

VCALL(t, F (t) + c) = e−r(T−t)E[F (T )− (F (t) + c))+]

= e−r(T−t)E[(Y (T )− c))+]

= e−r(T−t)E[(−Y (T )− c))+]

= e−r(T−t)E[(F (t)− c− F (T ))+]

= VPUT (t, F (t)− c)

which is known as the the arithmetic put call symmetry, see Carr (2011).
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4.7. Option pricing

Let us now we proceed as in Carr (2011) and discuss pricing and hedging of

barrier options. A barrier option is an exotic derivative typically an option

on the underlying asset whose price reaching the pre-set barrier level either

springs the option into existence or extinguishes an already existing option.

In our case the barrier option under consideration is a contract that promises

to pay the holder the sum of one dollar if the price of the security hits or

crosses the barrier level L > 0, which is some preset value that does not

necessarily have to be an integer.

The payoff of a one touch barrier option at time T is 1(mint∈[0,T ] F (t) ≤ L)

where L ∈ (0, F (0)) is the lower barrier. The barrier may not be at a level

where the forward price can trade, due to the discreteness of assumed values

of the forward price, when it does cross or touch L from above it must be

equal to

La := F (0) + a

⌊
L− F (0)

a

⌋
, (4.7.4)

where b·c denotes the integer part. As in Carr (2011), consider the payoff of

holding1 1
2a vertical put spreads with strikes La ± a

1
2a [(La + a− F (T ))+ − (La − a− F (T ))+]

= 1(F (T ) < La) + 0.5× 1(F (T ) = La)

or holding 1
2a vertical call spreads with strikes La ± a

1
2a [(F (T )− (La − a))+ − (F (T )− (La + a))+]

= 1(F (T ) > La) + 0.5× 1(F (T ) = La).

The no arbitrage value V (t, L) of the one touch barrier option (derived in

1We point out a mistake in Carr (2011) which writes 1
a , this should in fact be 1

2a in

order to get a vertical spread of width a.
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Carr (2011)) is given by

V (0, L) = 1
a

[P (0, La + a)− P (0, La − a)]. (4.7.5)

To see this consider the following hedge when writing a single one touch

barrier option.

1. At time zero, buy two vertical put spreads at strikes La ± a.

2. If F > L for all t then both the one touch and vertical put spreads

expire worthless.

3. If F touches or falls below L then sell the long 1
2a put struck at La + a

and buy 1
2a calls struck at La − a. Also sell 1

2a calls at strike La + a

and buy back the 1
2a puts with strike La − a.

4. Regardless of future movements in the forward price the combination

of standard puts and calls that is left, 1
2a units of vertical put and

call spreads, has exactly unit payoff which is enough to match the

obligation of the sold one touch.

The hedge is called semi-static in the sense that after the initial trade is

done, at most only one further re-balancing of the hedge is required.

4.8 Fractional Poisson process

This section introduces fractional Poisson processes which will be used

through out the remainder of this thesis. We will rely upon such processes

in the next section to generalize the Skellam process to its fractional

counterpart.

The fractional Poisson process {Nα(t), t ≥ 0}, α ∈ (0, 1) can be obtained as
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4.8. Fractional Poisson process

a renewal process with Mittag-Leffler waiting times {T (n), n ≥ 1} between

events (see Mainardi, Gorenflo, and Scalas (2004)):

Nα(t) = max{n ≥ 0 : T (1) + . . .+ T (n) ≤ t}, (4.8.1)

where T (j), j ≥ 1 are independent identically distributed random variables

with common Mittag-Leffler distribution function

Fα(x) = P(T (j) ≤ x) = 1− Eα(−λxα), x ≥ 0, α ∈ (0, 1) (4.8.2)

and Fα(x) = 0 for x < 0. The probability density function of the

Mittag-Leffler distribution is

f(x) = d

dx
Fα(x) = λxα−1Eα,α(−λxα) x ≥ 0,

where

Eα,β(z) =
∞∑
j=0

zj

Γ(αj + β) , z ∈ C, α > 0, β > 0

is two parameter Mittag-Leffler function, see Haubold, Mathai, and Saxena

(2011).

The three parameter Mittag-Leffler function is defined as (see for example

Haubold, Mathai, and Saxena (2011))

Eγα,β(z) =
∞∑
r=0

(γ)rzr
r!Γ(αr + β) ,

α, β, γ ∈ C, Re(α) > 0, Re(β) > 0, Re(γ) > 0,

where

(γ)r = Γ(γ + r)
Γ(γ)

whenever the Gamma function Γ is defined, and (γ)0 = 1 for γ 6= 0.

From (Mainardi et al., 2004, Equation (3.10)) (see also Beghin and Orsingher
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(2009), the probability mass function of the fractional Poisson process is

qαk (t) := P(Nα(t) = n) = (λtα)n
n!

∞∑
r=0

(r + n)!
r!

(−λtα)r
Γ(α(n+ r) + 1)

= (λtα)nEn+1
α,αn+1(−λtα) = (λtα)n

n! E
(n)
α (−λtα)

(4.8.3)

where E (n)
α is the nth derivative of the one-parameter Mittag-Leffler function.

It was shown in Beghin and Orsingher (2009) that the probability mass

function of the fractional Poisson process satisfies the system of fractional

differential equations

tD
α
∗ p0(t) = −λp0(t)

tD
α
∗ pn(t) = λ(pn−1(t)− pn(t))

with p−1(t) = p(−1, t) = 0 and initial condition

p(n, 0) = pn(0) =


1 n = 0

0 n ≥ 1.

Here tD
α
∗ is the Caputo fractional derivative defined as

tD
α
∗ f(t) = 1

Γ(1− α)

∫ t

0

df(τ)
dτ

1
(t− τ)αdτ. (4.8.4)

It is also proven in Meerschaert, Nane, and Vellaisamy (2011) that

the definition of a fractional Poisson process as a renewal process with

Mittag-Leffler distribution of inter-arrival times is equivalent to the following

time change definition:

Nα(t) = N1(E(t)), (4.8.5)

where N1(t), t ≥ 0 is a homogeneous Poisson process with parameter λ > 0

and E(t), t ≥ 0 is the inverse stable subordinator independent of N1(t).

107



4.9. Fractional Skellam type I processes

From Beghin and Orsingher (2009), the mean and variance are given by

E[Nα(t)] = λtα

Γ(α + 1) ,

Var[Nα(t)] = tαλ

Γ(1 + α) + t2αλ2

α

(
1

Γ(2α) −
1

αΓ(α)2

)
.

From Leonenko et al., the covariance function of the fractional Poisson

process is

Cov[Nα(s), Nα(t)] = λ(min(t, s))α
Γ(1 + α) + λ2Cov[E(s), E(t)]

where Cov[E(s), E(t)] is given by equation (2.14.5) so that for 0 ≤ s ≤ t

Cov[Nα(s), Nα(t)] = λsα

Γ(1 + α) (4.8.6)

+ λ2
(

αt2α

Γ2(1 + α)B(α + 1, α; s/t)

+ αs2α

Γ2(1 + α)B(α + 1, α)− tsα

Γ2(1 + α)

)
,

where B is the Beta function, and B(α, β; ·) is an incomplete Beta function.

4.9 Fractional Skellam type I processes

We now introduce a generalization of the Skellam process into a setting

where the inter-arrival times are no longer exponential but instead are

of Mittag-Leffler type. We will be using the inverse stable subordinator

throughout the remainder of this thesis. Recall that D(t), t ≥ 0 is a standard

stable Lévy subordinator with Laplace exponent ΨD(ζ) = −ζα, ζ > 0, t ≥ 0,

α ∈ (0, 1). The inverse stable subordinator E(t) is defined as the inverse of

the stable subordinator D(t), that is

E(t) = inf{u ≥ 0 : D(u) > t}, t ≥ 0,
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see section 2.14 for more details on the inverse of the stable subordinator.

Let us now go on to generalize the Skellam Lévy process to its fractional

counterpart.

Definition 15. Let N1(t) and N2(t) be two independent homogeneous

Poisson processes with intensities λ1 > 0 and λ2 > 0. Let E1(t) and E2(t)

be two independent inverse stable subordinators with indices α1 ∈ (0, 1)

and α2 ∈ (0, 1) respectively, which are also independent of the two Poisson

processes. The stochastic process

X(t) = N1(E1(t))−N2(E2(t))

is called a fractional Skellam process of type I.

A fractional Skellam process of type I X(t) has marginal laws of fractional

Skellam type I denoted by X(t) ∼ fSk(k, t;λ1, α1, λ2, α2), which is a new

four parameter distribution.

Theorem 7. Let X(t) be a fractional Skellam process of type I, the

probability mass function is given by

P(X(t) = k) =
(
λ1t

α1
)k ∞∑

n=0

(
λ1λ2t

α1+α2
)n

× En+k+1
α1,α1(n+k)+1

(
− λ1t

α1
)
En+1
α2,α2n+1

(
− λ2t

α2
)

for k ∈ Z, k ≥ 0 and when k < 0

P(X(t) = k) =
(
λ2t

α2
)|k| ∞∑

n=0

(
λ1λ2t

α1+α2
)n

× En+|k|+1
α2,α2(n+|k|)+1

(
− λ2t

α2
)
En+1
α1,α1n+1

(
− λ1t

α1
)
.

The moment generating function is

E[eζX(t)] = Eα1

(
λ1t

α1(eζ − 1)
)
Eα2

(
λ2t

α2(e−ζ − 1)
)
, ζ ∈ R. (4.9.1)
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4.9. Fractional Skellam type I processes

Proof: Since N1(E1(t)) and N2(E2(t)) are independent,

P(X(t) = k) =
∞∑
n=0

P(N1(E1(t)) = n+ k)P(N2(E2(t)) = n)Ik≥0

+
∞∑
n=0

P(N1(E1(t)) = n)P(N2(E2(t)) = n+ |k|)Ik<0.

Now use the expression for the probability mass function of the fractional

Poisson process given in equation (4.8.3) to complete the calculation. When

k > 0

P(X(t) = k) =
(
λ1t

α1
)k ∞∑

n=0

(
λ1λ2t

α1+α2
)n

× En+k+1
α1,α1(n+k)+1

(
− λ1t

α1
)
En+1
α2,α2n+1

(
− λ2t

α2
)
.

The case k < 0 is treated similarly.

The moment generating function is computed using that of the fractional

Poisson process. Denote by h(·, t) the density of E(t), then

E
[
eζNα(t)

]
=
∫ ∞

0
E
[
eζN(u)h(u, t)du

]
=
∫ ∞

0
eλu(eζ−1)h(u, t)du = E

[
eλ(eζ−1)E(t)

]
= E(λ(eζ − 1)tα),

using formula (2.14.3) for the Laplace transform of the inverse stable

subordinator. Note that formula (2.14.3) remains true for all ζ ∈ R. This

can be seen from the proof of Bondesson, Kristiansen, and Steutel (1996)

Theorem 4.3 and (2.14.2):

E
[
eζE(t)

]
= E

[ ∞∑
k=0

ζkEk(t)
k!

]
=
∞∑
k=0

(ζtα)k
Γ(αk + 1) = Eα(ζtα).

Therefore for the fractional Skellam process of type I

E
[
eζX(t)

]
= E

[
eζN1(E1(t))

]
E
[
e−ζN2(E2(t))

]
= Eα1

(
λ1t

α1(eζ − 1)
)
Eα2

(
λ2t

α2(e−ζ − 1)
)
.
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Remark 5. The moments of all orders can be obtained either from the

moment generating function (4.9.1) or using the moments of the fractional

Poisson processes. For example, the first moment of X(t) ∼ fSk is

E[X(t)] = λ1t
α1

Γ(α1 + 1) −
λ2t

α2

Γ(α2 + 1) . (4.9.2)

The variance is

Var[X(t)] = tα1λ1

Γ(1 + α1) + t2α1λ2
1

α1

(
1

Γ(2α1) −
1

α1Γ2(α1)

)

+ tα2λ2

Γ(1 + α2) + t2α2λ2
2

α2

(
1

Γ(2α2) −
1

α2Γ2(α2)

)
. (4.9.3)

A random variable X is called over dispersed if Var[X] − E[X] > 0. From

inspection of equations (4.9.2) and (4.9.3) it is clear that the fractional

Skellam law of type I has the property of over dispersion. Figure 4.2 displays

the probability mass function for the fractional Skellam distribution with

selected parameter values.

The covariance function for the fractional Skellam process of type I can be

computed by substituting the expression for the covariance function of the

fractional Poisson process (4.8.6) into the equation below:

Cov[X(t), X(s)]

= Cov[N1(E1(t)), N1(E1(s))] + Cov[N2(E2(t)), N2(E2(s))].

4.10 Fractional Skellam type II processes

This section introduces an alternative fractional Skellam process which we

shall refer to as type II. An interesting property in this case is that we are

able to deduce a system of fractional differential equations for which the
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Figure 4.2: Probability mass function for the fractional Skellam distribution at times

t = 1, · · · , 5

marginal distributions satisfy. Let us now proceed and define this process.

Definition 16. Let S(t) = N1(t) − N2(t), t ≥ 0 be a Skellam process.

Let E(t), t ≥ 0 be an inverse stable subordinator of exponent α ∈ (0, 1)

independent of N1(t) and N2(t). The stochastic process

Y (t) = S(E(t))

is called a fractional Skellam process of type II.

Fractional Skellam process of type II Y (t) has marginal laws of fractional

Skellam type II, for which we shall write

Y (t) ∼ fSk(k, t;λ1, λ2, α)

Theorem 8. Let Y (t) = S(E(t)) be fractional Skellam process of type II,
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and let rk(t) = P (Y (t) = k), k ∈ Z. The marginal distribution is given by

rk(t) = 1
tα

(
λ1

λ2

)k/2 ∫ ∞
0

e−u(λ1+λ2)I|k|

(
2u
√
λ1λ2

)
Φα

(
u

tα

)
du, (4.10.1)

where

Φα(z) =
∞∑
n=0

(−z)n
n!Γ(1− nα− α) , 0 < α < 1

is the Wright function. The marginal distribution satisfies the following

system of fractional differential equations:

Dα
t rk(t) = λ1(rk−1(t)− rk(t))− λ2(rk(t)− rk+1(t)) (4.10.2)

with the inital conditions r0(0) = 1 and rk(0) = 0 for k 6= 0.

The moment generating function L(ζ, t) = E[eζX(t)] is

L(ζ, t) = Eα(−(λ1 + λ2 − λ1e
ζ − λ2e

−ζ)tα), (4.10.3)

and for every ζ ∈ R it satisfies the fractional differential equation

Dα
t L(ζ, t) = (λ1(eζ − 1) + λ2(e−ζ − 1))L(ζ, t) (4.10.4)

with the initial condition L(ζ, 0) = 1.

Proof: With sk(t) = P(S(t) = k) as before in (4.4.3), use conditioning

argument to write

rk(t) =
∫ ∞

0
sk(u)h(u, t)du (4.10.5)

where h(·, t) is the density of E(t). Using the expression for the probability

mass function of the Skellam process (4.4.3) and the fact that

h(u, t) = 1
tα

Φα

(
u

tβ

)
,

see Meerschaert, Schilling, and Sikorskii (2014) equation (3.7), equation

(4.10.1) follows.
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4.10. Fractional Skellam type II processes

To derive the governing fractional differential equation, note that from

(Meerschaert and Scheffler, 2008, Theorem 4.1), for t > 0, u > 0, h(u, t)

satisfies

Dα
t h(u, t) = − ∂

∂u
h(u, t),

where the Riemann-Leuville fractional derivative for 0 < α < 1 is

Dα
t f(t) = 1

Γ(1− α)
d

dt

∫ t

0
f(t− s)s−αds.

Then integration by parts yields

Dα
t rk(t) =

∫ ∞
0

sk(u)Dα
t h(u, t)du = −

∫ ∞
0

sk(u) ∂
∂u
h(u, t)du

=
∫ ∞

0
h(u, t) ∂

∂u
sk(u)du− sk(0)h(0+, t),

and h(0+, t) = t−α/Γ(1 − α), see (Hahn et al., 2011, Lemma 2.1). Since

sk(0) = 0 for k 6= 0, the boundary term disappears except when k = 0.

Also, from (4.10.5), rk(0) = sk(0) = 1. Since for 0 < α < 1 the Caputo and

Riemann-Leuville derivatives are related by

Dα
t rk(t) = Dα

t rk(t)− rk(0) t−α

Γ(1− α) ,

for both cases, k = 0 and k 6= 0, we have

Dα
t rk(t) =

∫ ∞
0

h(u, t) ∂
∂u
sk(u)du.

Now apply(4.4.6) to get

Dα
t rk(t) =

∫ ∞
0

h(u, t) (λ1(sk−1(u)− sk(u))− λ2(sk(u)− sk+1(u))) du

and arrive at (4.10.2) using (4.10.5).

Through the use of conditioning and equation (2.14.3), the moment

generating function

E[eζX(t)] = E[eζS(E(t))] =
∫ ∞

0
E[eζS(u)]h(u, t)du (4.10.6)
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=
∫ ∞

0
e−u(λ1+λ2−λ1eζ−λ2e−ζ)h(u, t)du

= Eα(−(λ1 + λ2 − λ1e
ζ − λ2e

−ζ)tα).

Since the one-parameter Mittag-Leffler function is the eigenfunction for the

Caputo derivative Mainardi and Gorenflo (2000) or Meerschaert et al. (2009),

Dα
t Eα(−λtα) = −λEα(−λtα), and equation (4.10.4) follows.

Note that equation (4.10.4) can also be obtained by multiplying both sides

of equation (4.10.2) by e−ζk and summing over k ∈ Z to get

Dα
t L(ζ, t) = (λ1(eζ − 1) + λ2(e−ζ − 1))L(ζ, t),

which has the solution (4.10.3).

Remark 6. The mean, variance and covariance functions for the fractional

Skellam process of type II are obtained from Leonenko, Meerschaert,

Sikorskii, and Schilling Theorem 2.1, moments of the Skellam process (4.4.4)

and the time-change process:

E[Y (t)] = tα(λ1 − λ2)
Γ(1 + α) ,

Var[Y (t)] = tα(λ1 + λ2)
Γ(1 + α) + (λ1 − λ2)2 t2α

[
2

Γ(2α + 1) −
1

Γ2(1 + α)

]
,

and for 0 ≤ s ≤ t

Cov[Y (t), Y (s)] = sα(λ1 + λ2)
Γ(1 + α) + (λ1 − λ2)2 Cov[E(t), E(s)],

where the covariance function for the inverse stable subordinator is given by

(4.8.6) and Leonenko et al. equation (9). Fractional Skellam law of type II

also has the property of over dispersion, as does fractional Skellam law of

type I.
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4.11 Martingale properties of fractional Skellam
processes

In analogue to the Skellam process let us now introduce the symmetric,

standard and compensated versions.

Definition 17. Let {Y (t), t ≥ 0} be a fractional Skellam process of type

II, when λ1 = λ2 := λ > 0 then {Y (t), t ≥ 0} is referred to as a symmetric

fractional Skellam process of type II and we write Y (t) ∼ Sk(tλ, tλ, α).

Definition 18. Let {Y (t), t ≥ 0} be a fractional Skellam process of type II,

set λ1 = λ2 = 1
2 then {S(t), t ≥ 0} is the one parameter standard fractional

Skellam process of type II and we write Y (t) ∼ Sk(t1
2 , t

1
2 , α).

We can also define the compensated process as follows.

Definition 19. A compensated fractional Skellam process of type II

{Y ∗(t), t ≥ 0} is defined by

Y ∗(t) := S(E(t))− (λ1 + λ2)E(t)

where {S(t), t ≥ 0} is a Skellam process and {E(t), t ≥ 0} an inverse stable

subordinator of exponent α ∈ (0, 1) independent of {S(t), t ≥ 0}. We write

in notation

Y ∗(t) ∼ cfSk(tλ1, tλ2, α).

Theorem 9. The compensated fractional Skellam process type II, namely

{Y ∗(t), t ≥ 0}, is a Gt := FE(t) martingale.

Proof: Define a new process T (n), n ≥ 0 as

T (n) = inf{u : |S(u)− u(λ1 − λ2)| = n}

116



Chapter 4. Integer valued models

Then for each n we have that T is a stopping time, i.e. {Tn(ω) ≤ t} ∈ Ft.

Since the filtration is right continuous and

|S(T (n) ∧ t)− (λ1 − λ2)(T (n) ∧ t)| ≤ n

the process S(T (n) ∧ t) − (λ1 − λ2)(T (n) ∧ t) is a right continuous closed

martingale. Therefore by Doob’s optional sampling theorem

E
[
S(T (n) ∧ E(t))− (λ1 − λ2)(T (n) ∧ E(t))

∣∣∣FE(s)
]

= S(T (n) ∧ E(s))− (λ1 − λ2)(T (n) ∧ E(s)).

First note that since T (n)→∞ as n→∞ and E is a finite time change

S(T (n) ∧ E(t))− (λ1 − λ2)(T (n) ∧ E(t))

→ S(E(t))− (λ1 − λ2)(E(t)), n→∞.

Now the submartingale
∣∣∣S(T (n)∧E(t))−(λ1−λ2)(T (n)∧E(t))

∣∣∣ is dominated

by the element sup0≤u≤t

{∣∣∣S(E(t))− (λ1 − λ2)E(t)
∣∣∣} and

E
[

sup
0≤u≤t

{∣∣∣S(E(t))− (λ1 − λ2)E(t)
∣∣∣}] <∞

by the maximal inequality. Then conditioning on the sigma algebra

generated by E(t), i.e. σ(E(t)), the dominated convergence Theorem tells

us that

E
[
S(T (n) ∧ E(t))− (λ1 − λ2)(T (n) ∧ E(t))

∣∣∣FE(s)
]

→ E
[
S(E(t))− (λ1 − λ2)(E(t))

∣∣∣FE(s),
]

as n→∞. Then we have

E
[
S(E(t))− (λ1 − λ2)(E(t))

∣∣∣FE(s)
]

= N(E(s))− (λ1 − λ2)(E(s))

and the stochastic process S(E(t))− (λ1 − λ2)E(t) is a Gt martingale.

Using similar arguments the symmetric fractional Skellam process type II
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and the standard fractional Skellam process type II can also be shown to

both be Gt martingales.

4.12 An empirical investigation of waiting times

We consider transaction records for the September 2011 Eurofx over a three

month horizon from the 22nd June until expiration on the 22nd September

2011. The Eurofx is a type of forward asset known as a future, and the

data set was obtained directly from the Chicago mercantile exchange. The

market is open from 12pm Sunday evening until Friday at 5pm with a one

hour close each day between 4pm and 5pm.

The observed price of the future at time t is denoted by F (t), t = 1, 2, ..., N .

For this period there are N = 5, 465, 779 timestamped transactions recorded

over market opening hours. Of these records, 71% of transactions get

completed at the previous trade price. No tick change from one trade to

the next, and single tick price changes account for 98% of all transactions.

Close symmetry between negative and positive tick jumps of the same

magnitude is seen. The count for jumps of three ticks up or down is 1,411 and

1,419 respectively a difference of only eight counts, with a similarly finding

for jumps of a four ticks. The frequency of both positive and negative jumps

in general decreases as the jump size increases but does not hold true for an

absolute jump size of eight ticks, which has a higher frequency than both

six and seven tick jumps.

The data contains the transacted price along with timestamps binned to the

nearest second, when multiple trades occur during the same second interval,
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the trades are recorded in the order they are filled but with identical time

stamps. Since we are interested in the inter arrival time between trades this

rounding off in timestamps will cause a data loss.

A second issue is market micro structure noise in the form of the bid-ask

bounce. The futures contract is very liquid and it is not uncommon to see

strings of transactions occurring in rapid succession bouncing from the bid

to the ask, a difference of a single tick. We note though, that our data set

does not implicitly state the bid and ask prices we have only interpreted the

price bounce to be such a spread. The bid price and the ask price have not

changed but the transaction record details a series of positive and negative

returns of a single tick.

We filter the series by only recording the transactions if they go outside the

bid ask spread. The spread is fixed to a single tick of 0.0001 by setting

F (0)bid = F (0) and F (t)ask = F (t)bid + 0.0001 and computing F (t)bid as

F (t)bid =



F (t− 1)bid if F (t− 1)bid ≤ F (t) ≤ F (t− 1)ask

F (t) if F (t) < F (t− 1)bid

F (t)− 0.0001 if F (t) > F (t− 1)ask

The resulting filtered transaction chain still contains 5, 465, 779 records but

we now deleted all entries where the bid price has not changed from the

previous bid price, that is no up or down jump has occurred, leaving 682, 550

records.

Next we consider the up and down jump processes in two models for the

spot prices. First is the model from Barndorff-Nielsen et al. (2011), where
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Figure 4.3: Price path plot of original data and filtered data

the price is modeled by the Skellam process. The second model is proposed

by us and it uses fractional Skellam process of type I to model the price

movements. In the empirical analysis of these models, we separate up

and down jumps seen in Figure 4.3. In the case of Skellam processes,

which is the difference of two independent Poisson processes, the absence of

simultaneous jumps for the two processes follows from a general result: two

independent Lévy processes have no common points of discontinuity almost

surely (Meerschaert and Sikorskii (2012) page 106). As follows from the

Lemma below, absence of simultaneous jumps also holds for two components

in fractional Skellam process of type I.
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Lemma 7. 2 Let X(t) = N1(E1(t)) − N2(E2(t)) be the fractional Skellam

process of type I. The processes N1(E1(t)) and N2(E2(t)) have no common

points of discontinuity almost surely.

Proof: We use the definition of Mainardi, Gorenflo, and Scalas (2004) of

the fractional Poisson process as a renewal process. Since the sample paths

of E1(t) and E2(t) are continuous almost surely, the discontinuities of the

fractional Poisson process come from jumps of the outer Poisson process.

Therefore

P
[
N1(E1(t+)) > N1(E1(t)) and N2(E2(t+)) > N2(E2(t))

for some t > 0
]

= P
[ n∑
i=1

T1(i) =
m∑
j=1

T2(j) for some m, n ∈ N
]

≤
∑

m,n∈N
P
[ n∑
i=1

T1(i) =
m∑
j=1

T2(j)
]
,

where the independent random variables T1(i) and T2(j) are waiting

times between events from (4.8.1). Since these random variables follow

Mittag-Leffler distribution, the distribution of their sum has a density, and

the probabilities of the events summed above all have probability zero.

We now proceed with the data analyses by separating the up and down jump

processes.

Up jump process: To construct the up jump time series we remove all

trades with negative jumps leaving 317, 212 observations, all duplicate time

stamps are removed leaving only the last recorded entry for each second. A

time series of 253, 092 entries remain representing the positive jump process.

2The proof of this theorem was provided in by A. Sikorskii, in Michigan State

University and is not the work of the author of this thesis.
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Figure 4.4: Survival function for the up jump process

Figure 4.4 clearly shows that the exponential distribution provides a poor

fit to the data which can be quantified with the 95% confidence interval

(0.9512, 0.9554) for α1 and so α1 6= 1. The Mittag-Leffler provides a closer

fit to the data and supports our generalization to a fractional process in this

setting.

Down jump process: As with the up jump process to build the down
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jump series we remove the trades with negative jumps leaving 365, 338

observations, all duplicate time stamps are removed leaving only the last

recorded entry for each second. A time series of 281, 833 observations is left

representing the down jump process.
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Figure 4.5: Survival function for the down jump process

Similar to the up jump process, Figure 4.5 shows the exponential distribution

does not provide a realistic match to the empirically observed survival
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probabilities. This can be quantified through the 95% confidence interval

for α2 computed as (0.9557, 0.9597), concluding that α2 6= 1 as would be the

case if inter-arrival times where exponential in law. It can also be seen that

the Mittag-Leffler although producing a closer fit to the down jump waiting

times is not perfect, as the data depict heavier tails than the Mittag-Leffer

law can support, although there is a considerable improvement over the

exponential.

In summary, we have shown that the inter-arrival times between the jumps

in both the positive and negative jump processes are clearly not exponential.

The Mittag-Leffler law provides a closer fit to the data, however the fit is not

perfect and even with the added flexibility of an additional parameter, the

Mittag-Leffler does not seem to provide tails that are as heavy as the market

suggests. This is true for our data set and more empirical work would be

needed to see if this is a common feature amongst different asset classes.

Further, although the magnitude of ninety eight percent of jumps is a single

tick, there is the case to extend the models to allow for jumps greater than

one tick. It would then seem sensible to model the random component not

as the difference between two fractional Poisson processes but instead as the

difference of two compound fractional Poisson processes.

Appendix: Statistical analysis of the Mittag-Leffler distribution

The methods for parameter estimation are from Cahoy et al. (2013). Let

T be a random variable with Mittag-Leffler distribution and T1, . . . , Tn iid

sample, then the moment estimators for the parameters,

α̂ = 2π√
2(6Var[l̂og(T )] + π2)

, and λ̂ = exp{−α̂(E[l̂og(T )] + γ)}
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where γ is Euler’s constant and

E[l̂og(T )] := 1
n

n∑
i=1

log Ti, Var[l̂og(T )] := 1
n

n∑
i=1

(log Ti − E[l̂og(T )])2

For the above estimators to be of use we must have data where Var[l̂og(T )] >

π2/6 = 1.6449 so that the standard deviation of l̂og(T ) is greater than

1.2825. The estimator for α is asymptotically normal as n→∞:
√
n(α̂− α) −→ N

[
0, α

2(32− 20α2 − α4)
40

]
,

and we obtained an asymptotic (1− ε)100% confidence interval for α.

4.13 Continuous time random walks

In this section we give details on some definitions and known results for

continuous time random walks (CTRW), see Meerschaert and Sikorskii

(2012) for a complete discussion.

Firstly we define an integer valued random walk

W (n) = J(1) + · · ·+ J(n)

where the integer jumps J(n) are independent and identically distributed

with the random variable J which takes integer values. Consider another

random walk T (n) of independent and identically distributed waiting times

τ(i),

T (n) = τ(1) + · · ·+ τ(n)

where τ(n) is independent and identically distributed with τ . Let

N(t) = max{n ≥ 0, T (n) ≥ t}

denote the number of jumps by time t ≥ 0, where T (0) = 0. Then a
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continuous time random walk is defined by

W (N(t)) = J(1) + · · ·+ J(N(t)).

Next let us detail the limit process for a CTRW, see sections 4.3 and 4.4

of Meerschaert and Sikorskii (2012) and reference therein for a complete

discussion. Suppose that Y is a random variable that is not degenerate, we

want to know when

an(J(1) + · · ·+ J(n))− bn ⇒ Y (4.13.1)

for some an > 0 and bn ∈ R. We say that J belongs to the domain of

attraction of Y , and we write J ∈ DOA(Y ), if (4.13.1) holds. From Theorem

4.5 in Meerschaert and Sikorskii (2012) if J ∈ DOA(Y ) the distribution of

Y is either normal if and only if

E[J2IJ≤x]

is slowly varying or is stable if and only if P(|J | > x) is regularly varying

with index −α and

lim
x→∞

P(J > x)
P(|J | > x) = p, for some 0 ≤ p ≤ 1.

The convergence (4.13.1) extends to random walks (see remark 4.17 in

Meerschaert and Sikorskii (2012)) and we have

an(J(1) + · · ·+ J([nt]))− [nt]
n
bn ⇒ Z(t).

The limit is a Lévy process {Z(t), t ≥ 0}.

Remark 7. If E[J ] = 0 then

anW ([nt])⇒ B(t)

where B(t) is a Brownian motion. Furthermore if E[τ ] exists, then by the

126



Chapter 4. Integer valued models

renewal theorem N(t)/t→ λ = 1/E[τ ], then

anW (N(nt))⇒ B(λt)

The effect of the waiting times is just a change of scale.

Remark 8. If E[τ ] = ∞, the CTRW behaves quite differently from the

previous remark. Let A be either normal or stable and E(t) the inverse stable

subordinator then from Meerschaert and Sikorskii (2012) pages 100-102 we

have convergence in distribution

(c−1/αW ([nt]), c−βN(ct))⇒ (A(t), E(t)) (4.13.2)

Using the continuous mapping Theorem it can be seen that (4.13.2) also

holds in the sense of finite dimensional distributions. Furthermore in the

space D[0,∞) of cádlág functions with the Skorokhod M1 topology we have

convergence in stochastic process

{c−β/αW (N([nt])), t ≥ 0} ⇒ {A(E(t)), t ≥ 0} (4.13.3)

This is a hard result to prove, for complete details see Meerschaert and

Sikorskii (2012) and references therein.

4.14 Fractional Skellam type II CTRW representation

In this section we show that the standard fractional Skellam of type II has

a continuous time random walk representation which appropriately normed

converges to the activity time model of section 2.15, thus providing a link

between the models explored in this thesis.

Firstly the standard Skellam process {S(t), t ≥ 0}, where S(t) ∼ Sk(1
2t,

1
2t)

has a continuous time random walk representation. To see this define an
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integer valued random walk

W (n) = J(1) + · · ·+ J(n)

with integer jumps J(n) which are independent and identically distributed

with random variable J : Ω → Z, whose probability mass function is given

by

P(J = k) = 1
2δ{1} + 1

2δ{−1}.

where δ is the Dirac delta function. Consider another random walk T (n) of

independent and identically distributed waiting times τ(i),

T (n) = τ(1) + · · ·+ τ(n)

where τ(n) is independent and identically distributed with τ ∼ exp(1) an

exponential random variable. Let

N(t) = max{n ≥ 0 : T (n) ≥ t}

denote the number of jumps by time t ≥ 0, where T (0) = 0. Then the

continuous time random walk

W (N(t)) = J(1) + · · ·+ J(N(t))

has equality in distribution to the standard Skellam process, i.e.

W (N(t)) d=S(t).

The expectation of the jump J is

E[J ] :=
k=∞∑
k=−∞

kP(J = k) = 0

and the variance is

Var[J ] :=
k=∞∑
k=−∞

k2P(J = k) = 1.

Now instead of using the exponential distribution for the waiting times τ(i),
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we now use the Mittag-Leffler distribution (see equation 4.8.2), namely

τ(i) ∼ML(α, λ).

Then E[τ ] = ∞ and the CTRW behaves as in Remark 8 and then by

the results in Meerschaert and Sikorskii (2012) pages 100-106 we have the

stochastic process convergence

c−β/α(σW (N([nt]))−N([ct])(θ + 1
2σ

2)) + c−1N([ct])(θ + 1
2σ

2)

⇒ (θ + 1
2σ

2)E(t) + σB(E(t)). (4.14.1)

In other words the standard fractional Skellam of type II appropriately

normed converges to the activity time model of section 2.15.

4.15 Fractional Skellam tempered stable process

We now go on to generalize a step further in analogue to section 4.6 where

we extended the Skellam process to exhibit jumps greater than one. Here in

this section we will be extending the fractional Skellam process of type II,

to allow for greater than unit jumps.

Definition 20. The fractional Skellam tempered stable process {X(t), t ≥

0} is defined by

X(t) := S (T (E(t))) .

Where S(t) ∼ Sk(1
2t,

1
2t) is a standard Skellam process, T (t) ∼ TS(κ, tδ, γ)

a tempered stable Lévy subordinator and E(t) ∼ IS(α) an inverse stable

subordinator. In notation we write

X(t) ∼ fSkTS(α, κ, tδ, γ).

Theorem 10. Let X(t) ∼ fSkTS then the characteristic function is given
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by

ψX(t)(ζ) = Eα
(
−
(
(γ1/κ + 2(1− cos(ζ)))κ − δγ

)
tα
)
. (4.15.1)

The probability mass function f(x, t) satisfies the fractional differential

equation

Dα
t D

α
t f(x, t)− 2δγDα

t f(x, t) = 22κδ2

( ∞∑
j=0

(
2κ
j

)
(1

2γ
1/κ + 1)2κ−j2j

×
j∑
r=0

(
j

r

)
f(x− j + 2r, t)

)
− δ2γ2f(x, t)

where Dα
t is the Caputo fractional derivative given in equation (4.8.4).

Proof: The characteristic function can be computed as follows

ψX(t)(ζ) =
∫
eiζxf(x, t)dx

=
∫
eiζx

( ∫ ∞
0

∫ ∞
0

p(x, z)r(z, u)h(u, t)dudz
)
dx

where p(x, z) := P(S(z) = x) is the pmf of the Skellam process, r(z, u) :=

P(T (u) ≤ z) the pdf of the tempered stable process and h(u, t) := P(E(t) ≤

u) is the probability density function of the inverse stable subordinator.

Then

ψX(t)(ζ) =
∫ ∞

0

∫ ∞
0

e−zφS(ζ)r(z, u)h(u, t)dudz

=
∫ ∞

0
e−uφT (φS(ζ))h(u, t)du

= Eα (−φT (φS(ζ))tα)

and (4.15.1) follows. For the second part since clearly

Dα
t ψX(t)(ζ) = −φT (φS(ζ))ψX(t)(ζ)
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let ψ̄X(t)(ζ) :=
∫
e−stψX(t)(ζ)dt then taking Laplace transforms of both sides

yields

sαψ̄X(t)(ζ)− sα−1ψ̄X(0)(ζ) = −φT (φS(ζ))ψ̄X(t)(ζ)

rearranging gives

ψ̄X(t)(ζ) = sα−1

sα + φT (φS(ζ))
sα − φT (φS(ζ))
sα − φT (φS(ζ))

which can be written as

sα(sαψ̄X(t)(ζ)− ψX(0)(ζ))− ∂

∂t
ψX(0)(ζ)− 2δγ(sαψ̄X(t)(ζ)− ψX(0)(ζ))

= 22κδ2(1
2γ

1/κ + 1− cos(ζ))2κψ̄X(t)(ζ)− δ2γ2ψ̄X(t)(ζ).

Invert the Laplace transform to see

Dα
t D

α
t ψX(t)(ζ)− 2δγDα

t ψX(t)(ζ)

= 22κδ2(1
2γ

1/κ + 1− cos(ζ))2κψX(t)(ζ)− δγψX(t)(ζ). (4.15.2)

Note that for the first expression on the right hand side can be expanded as(1
2γ

1/κ + 1− cos(ζ)
)2κ

=
∞∑
j=0

(
2κ
j

)
(1
2γ

1/κ + 1)2κ−j cosj(ζ)

=
∞∑
j=0

(
2κ
j

)
(1
2γ

1/κ + 1)2κ−j
j∑
r=0

(
j

r

)
eiζ(j−2r).

Since the Fourier transform of f(x − j + 2r, t) is eiζ(j−2r)ψX(t)(ζ), then by

Fourier inversion of (4.15.2) the result follows.

4.16 Delta fractional negative binomial process

In the previous section we extended a fractional Skellam type II to allow

for jumps greater than one. However it might be of interest in terms of

econometrics to extend processes of fractional Skellam of type I. The logic

131



4.16. Delta fractional negative binomial process

here is that type I processes can be split into their negative and positive

parts (the up and down jump process), this is important empirically as we

are then able to calibrate the up and down jump processes separately, which

may be of some use.

The fractional negative binomial process has recently been introduced by

Beghin and Macci (2014). We consider the case of the difference between

two fractional negative binomial processes, firstly let us introduce the well

known logarithmic distribution with probability mass function

P(Y (j) = n) = 1
| log(1− p)|

pn

n
, i = 1, 2, p ∈ (0, 1).

The mean is given by

E[Y ] = 1
| log(1− p)|

p

1− p
and variance

Var[Y ] = −p p+ log(1− p)
(1− p)2 log2(1− p)

.

The n-fold convolution density is known in closed form and is given by

P(Y (1) + · · ·+ Y (n) = k) = n!
(− log(1− p))n

pk|s(k, n)|
k!

where |s(k, n)| are the unsigned Stirling numbers of the first kind.

Definition 21. A delta fractional negative binomial process {X(t), t ≥ 0}

is defined by

X(t) =
N1(E1(t))∑

j=1
Y1(j)−

N2(E2(t))∑
j=1

Y2(j)

where for i = 1, 2, Ni(t) are two independent Poisson processes with

intensities

λi = δi| log(1− pi)|, pi ∈ (0, 1), i = 1, 2
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and for i = 1, 2, Ei(t) are two independent inverse stable subordinators with

parameter αi = pi ∈ (0, 1) both independent from all other process. And the

innovations follow the logarithmic distribution with parameter pi ∈ (0, 1) for

i = 1, 2, which are again independent from all other processes.

If instead we set α = 1 we arrive at the delta negative binomial process as

introduced by Barndorff-Nielsen, Shephard, and Pollard (2011).

Theorem 11. Let {X(t), t ≥ 0} be a delta fractional negative binomial

process, then the marginal distribution of X(t) will have point probabilities

given by

P(X(t) = k) (4.16.1)

=
∞∑
n=0

(1− p1)n+k

(n+ k)!

n+k∑
j=1
|s(n+ k, j)|tp1(n+k)E j+1

p1,p1j+1(log(p1)tp1)

× (1− p2)n
n!

n∑
j=1
|s(n, j)|tp2nE j+1

p2,p2j+1(log(p2)tp2)

the moment generating function of X(t) has the form

E[eζX(t)] = Eα1

(
δ1 log

(
1− (e−ζ − 1)p1

1− p1

)
tp1

)

× Eα2

(
δ2 log

(
1− (eζ − 1)p2

1− p2

)
tp2

)
where for i = 1, 2, Eαi(·) is the one-parameter Mittag-Leffler function given

by equation (2.14.4).

We shall use the the notation

X(t) ∼ ∆fNB(tδ1, p1, tδ2, p2)

to indicate that X(t) follows a delta fractional negative binomial

distribution, which appears to be a new four parameter distribution.
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Remark 9. For X(t) ∼ ∆fNB(tδ1, p1, tδ2, p2) the mean of X(t) is

E[X(t)] = δ1p1t
α1

Γ(p1 + 1)(1− p1) −
δ2p2t

α2

Γ(p2 + 1)(1− p2)
and the variance is

Var[X(t)] = p1t
p1+1δ1

(1− p1)Γ(1 + p1)

(
p1t

p1+1δ1

(1− p1)Γ(1 + p1)

× (2p1B(p1 + 1, p1)− 1) + p1

1− p1
+ 1

)

+ p2t
p2+1δ2

(1− p2)Γ(1 + p2)

(
p2t

p2+1δ2

(1− p2)Γ(1 + p2)

× (2p2B(p2 + 1, p2)− 1) + p2

1− p2
+ 1

)
For t ≥ s the covariance of the delta fractional negative binomial process is

given by

Cov[X(t), X(s)]

= tδ1

(
p1

1− p1
+
(

p1

1− p1

)
2

)
sp1

Γ(1 + p1) +
(
tδ1p1

1− p1

)

×
(

p1t
2p1

Γ2(1 + p1)B(p1 + 1, p1; s/t) + p1s
2p1

Γ2(1 + p1)B(p1 + 1, p1)

− tsp1

Γ2(1 + p1)

)
+ tδ2

(
p2

1− p2
+
(

p2

1− p2

)
2

)
sp2

Γ(1 + p2) +
(
tδ2p2

1− p2

)

×
(

p2t
2p2

Γ2(1 + p2)B(p2 + 1, p2; s/t) + p2s
2p2

Γ2(1 + p2)B(p2 + 1, p2)

− tsp2

Γ2(1 + p2)

)

We can also give a mixed representation

X(t) = N∗(1)
α1 (L1(t))−N∗(2)

α2 (L2(t)), t ≥ 0 (4.16.2)
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where for i = 1, 2 the Lévy subordinator is gamma distributed, that is

Li(t) ∼ Ga(tδi, (1− pi)/pi) with density given by

gi(x, t) =

(
pi

1−pi

)tδi
Γ(tδi)

xtδi−1e
− pi

1−pi
xI(0,∞)(x)

and mean

E[Li(t)] = tδipi
1− pi

variance

Var[Li(t)] = tδi

(
pi

1− pi

)2

and Laplace exponent

ΨLi(1)(ζ) = δi log
(

1− ζpi
1− pi

)
.

The process of mixed representation given by equation (4.16.2) with Li(t)

gamma in law as described above will have the same probability mass

function as the compound version, that is the pmf given by equation (4.16.1).

4.17 Concluding remarks

This chapter has developed some new fractional integer valued models

motivated by the analysis of high frequency trade by trade data. The

modeling focus was on the distribution of times between trades. Using

high frequency data for the EuroFX currency product it was demonstrated

that the Mittag-Leffler distribution provides a more realistic description

of inter-arrival times between trades. These models are quite different

from activity time models, however we proved a link back in the form

of convergence of limiting behavior over long time periods. Finally we

considered the situation when the price may jump up or down in multiple

of the tick size and proposed suitable models for these cases.
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Chapter 5

Conclusion

Contributions to activity time models have been made in the form of fractal

activity time types I, II and III and their corresponding risky asset models.

The models proposed provided a realistic fit to real world data, the normal

tempered stable distribution is a suitable description for the probability

empirical observed. The dependence properties of the models allow the

practitioner to choose the memory parameter to match his beliefs going

forward or look for ways to calibrate to empirical autocorrelations. However

since we did not state methods for computation of the memory parameter H

for dependent data, this would form future research. For the zero skew case,

calibration by method of moments was possible, so there is tractability in

the sense of model fit. Estimation of all six parameters with no restrictions

will require further theory and a numerical investigation. The concept of

volatility clustering is not directly displayed by our activity time models, it

would be of some interest to extend to incorporate such a feature.

Our first construction is closely related to the Ornstein-Uhlenbeck
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constructions of Leonenko, Petherick, and Sikorskii (2011b) and Finlay and

Seneta (2012), where inverse Gaussian and generalized inverse Gaussian

were used. This present work described a Ornstein-Uhlenbeck construction

given by fractal activity time type I with tempered stable laws and extends

further by constructing such a process with continuous sample paths.

This allows the alternative starting point for the model in the form of a

stochastic differential equation, which is not possible in the above mentioned

papers. The technique of superpositions was used to construct processes

with long range dependence or short range dependence in the case of finite

superpositions. An interesting furture research project would be to establish

some procedures for estimation of the number of superpositions that should

be used in the finite case.

The second construction is essentially new to the fractal activity time

geometric Brownian motion literature. However like most theory it relies

on the theory developed by others in the form of convoluted subordinators

and quantile clocks. Fractal activity time type II is, to the best of the

authors knowledge, the only fractional tempered stable motion with long

range dependence where exact distributions can be obtained. An alternative

fractional tempered stable motion was introduced in Houdré and Kawai

(2006) with long range dependence, theoretically they showed that the

process has tempered stable marginal distributions, however it does not seem

possible to compute the exact parametrization of the resulting tempered

stable law. Further research could construct fractional motions for other

distributions such as the inverse Gaussian, gamma and generalized inverse

Gaussian.
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The third construction of the inverse stable subordinator has been

introduced in Magdziarz (2009), although under a different name of a

subdiffusive regime. These activity models were presented as a bridge, in

terms of convergence to related integer valued models.

Option valuation under activity time models produced a good fit to market

prices over different strikes. A broker can certainly use such models to

compute option prices to a greater accuracy than the classic model. The

hedging of options is an open question as under activity time models the

dependence property presents a significant issue. Without dependence the

practitioner looks to buy or sell stock for which the option is written upon.

The amount of stock transacted to hedge is directly related to the rate

of change of the option value with respect to time. In practice, this is

done by taking derivatives of the pricing formula, known as the delta. For

activity time models, derivatives for the pricing formula were presented.

However since the price process has dependence by its construction, it is

unclear if the derivatives will suffice as a hedging tool. Consider the classic

model with no dependence, then the derivatives are computed and the hedge

constructed, but with memory models the price is changing not only due to

current instantaneous conditions but also due to the entire price history

in the case of long range dependence. Therefore hedging strategies under

activity time models would be a useful future research project from the

viewpoint of their use in practice for writing and hedging options. We

saw that parameter estimation under the symmetric model was possible

using method of moments. For the asymmetric model GMM techniques

were discusses and a numerical and theoretical investigation to estimate all

parameters under GMM would be a useful work. Furthermore the case of
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multiple assets has yet to be addressed for either activity time models or

integer valued models.

For integer valued models we have shown through an empirical investigation

that fractional models with Mittag-Leffler waiting times provide a more

realistic fit to inter-arrival times between trades at high frequency. We

have seen how a one tick model, where the price jumps by single ticks, can

be extended to integer models where the price may jump up or down by

multiple ticks. It may be of some interest to look for an improvement to the

fit of empirical waiting times, for which the three parameter Mittag-Leffler

distribution may be of use. Furthermore we saw that the traditional hedging

tools of the delta and gamma of the option pricing formula under integer

valued process do not exist and an investigation into techniques that could be

used for hedging European options may prove useful to practitioners. Future

research could focus on even smaller time scales by obtaining nanosecond

data for trade by trade dynamics, also empirically the covariance structure

at such small time intervals may be investigated. However we feel our work

generalizing integer valued models to their fractional counterparts to be a

worthwhile exercise.
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