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Abstract

The topic of this thesis is Opportunistic Networks (opnets), a type of

mobile ad hoc network in which data are propagated by the movement

of the network devices and by short-range wireless transmissions. This

allows data to spread to many devices across large distances without the

use of any infrastructure or powerful hardware.

Opnet technology is in its fairly early stages of development and has a lot

of potential for research. There are many applications that could benefit

from opnets, such as sensor networks or social networks. However, before

the technology can be used with confidence, research must be undertaken

to better understand its behaviour and how it can be improved.

In this thesis, the way in which information propagates in an opnet is

studied. Methodical parameter studies are performed to measure the

rate at which information reaches new recipients, the speed at which

information travels across space, and the persistence of information in

the network. The key parameters being studied are device density, device

speed, wireless signal radius and message transmission time. Furthermore,

device interaction schemes based on epidemiological models are studied

to find how they affect network performance.

Another contribution of this thesis is the development of theoretical

models for message spread in regions of one-dimensional (1D) and two-

dimensional (2D) space. These models are based on preliminary theoret-

ical models of network device interaction; specifically, the rate at which

devices move within range of each other and the length of time that they

remain within range.

A key contribution of this thesis is in acknowledging that data transmis-
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sions between devices do not occur instantaneously. Due to latency in

wireless communications, the time taken to transmit data is proportional

to the amount of data being transferred. Non-instantaneous transmissions

may fail before completion. Investigation is made into the effect this has

on the rate of information propagation in opnets.
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CHAPTER 1

Introduction

This chapter provides an overview of Opportunistic Networks (opnets) and discusses

why they are an important research area. The current limitations of opnets are

discussed, and how these limitations can be overcome. Following this, the research

approach is described and the chapter is concluded with an overview of the thesis

structure.

1.1 Opportunistic Networks

An opnet is a type of digital communications network that comprises of several

wireless, mobile devices. Each device can communicate with any other device in the

network that is within range. Movement of the devices enables communication to

span many devices over large distances. No single device in the network is necessarily

more important than others—successful communication relies on the cooperation of

several devices in the network.

1.1.1 Types of Wireless Communication Networks

Since Alexander Graham Bell invented the telephone in 1876, technology has pro-

gressed to allow communication between remote devices. Any group of devices

that can communicate with one another is known as a communications network.

This chapter starts by considering key developments in wireless communications

technology that have led to the possibility of opnets.

1



Cellular Networks

As previously mentioned, telephones formed some of the earliest networks. Historic-

ally, wires were used as the communication channel; however, telephone communica-

tion has directly benefited from advances in network technology. Indeed, the advent

of cellular networks allows for the wireless communication of mobile telephones.

Cellular networks consist of several fixed-location wireless transceivers, known as

base stations (Vodafone Group 2014). Each base station serves mobile telephones

within a particular region, known as a cell. This type of network is not completely

wireless as base stations are connected with cables. When somebody makes a call,

the signal is transmitted wirelessly from the handset to the nearest base station.

The signal is then transmitted across cables to the base station that is closest to the

receiver of the call. From this base station, the signal is transmitted wirelessly to

the handset of the call receiver.

Wireless Mesh Networks

Wireless mesh networks consist of a number of static, wireless devices (Akyildiz and

Wang 2005). If all devices are within communication range of every other device,

the network is said to be fully-connected. While this is not usually the case, there

should always be a communications path between any two devices (possibly via

intermediates). Devices in a mesh network are expected to route data for others, as

well as send/receive their own data. There is no infrastructure (such as routers or

base stations) to manage the routing, and for this reason, a wireless mesh network

can be thought of as an ad hoc network.

Mobile Ad Hoc Networks

A mobile ad-hoc network (manet) is a wireless mesh network in which the communic-

ating devices are free to move independently. This type of network is self-configuring

as devices continually make and break wireless connections with other devices as

they move around. Manets assume that all devices are willing to participate in

synchronous routing (Heinemann 2007), but this is not always achievable. However,

opnets are able to cope with this situation.
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Opportunistic Network

An opnet is simply a highly disconnected manet, meaning that there is not always

a path between two devices. This is due to low device density, and/or the short-range

wireless signals of the devices. Increasing the range of these wireless signals may cause

the mobile devices to exhaust their battery power supplies too quickly. However,

even with short-range signals, it is possible for data to propagate over long distances

in physical space by the collaboration of devices.

The way in which opnet devices collaborate to spread data is known as a store–

carry–forward approach (Warthman 2003). This is described as follows:

• Devices store messages in a local buffer.

• Stored messages are carried to new locations by physical movement.

• Messages are forwarded to other devices that come within range.

This process can lead to data being spread over a large area and to many devices.

Figure 1.1 illustrates how the store–carry–forward mechanism disseminates data to

many isolated devices across a wide area. It is clear that data can only be forwarded

when the opportunity arises, hence the name opportunistic network.

A

B

Figure 1.1: Example path of data in an opnet. Network devices are displayed as
dots with their wireless range displayed as circles. The coloured lines show the path
each device travels. The dashed line shows the path the data travel to get from
device A to device B.
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1.1.2 Advantages of OPNETs

(a) Inexpensive and Convenient

Opnets are inexpensive to engineer, with the only hardware cost being the network

devices. In their simplest form, devices are made from mass-produced components

that are freely available, such as:

• a short-range wireless transceiver,

• memory to store messages,

• a central processing unit (cpu) to manage the components,

• power source (e.g. battery).

The chosen components need not be powerful, and can be purchased at low cost.

The assembled devices can be small and lightweight—therefore, easily carried by

vehicle, animal or person. In fact, many people already carry mobile phones that are

suitable for use in opnets.

A further cost besides hardware may be the licence required to use certain radio

frequencies for communication. However, several frequency bands are available that

are free and unlicensed, such as Wi-Fi Direct (Wi-Fi Alliance 2012) or Bluetooth

which operates in the 2.4 GHz band (Golmie and Mouveaux 2001).

(b) Easy Deployment

Opnets do not rely on any central infrastructure, such as a server or network

backbone. They may be self-configuring and self-organising, meaning only the

network devices manage network topology and communications (Misra et al. 2009).

Because of this, little maintenance is required and human intervention is largely

unnecessary besides replacing faulty hardware or recharging batteries. This makes

opnets an attractive alternative to communication that requires infrastructure, such

as cellular networks.

(c) Robust

Well configured opnets are robust against topology changes and the failure of

network devices. If some network devices fail or connections are broken, data can

be sent along alternative paths through the network. Furthermore, opnets can
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accommodate an abundance of devices, where many devices attempt to communicate

within a small area. This could occur in a football stadium or concert hall, for

example. A high device density makes for plenty of communication paths which

benefits the network. This is unlike cellular networks, where an abundance of devices

may cause the network infrastructure to become overloaded.

(d) Spatiotemporal Relevance

Information in an opnet propagates in the local surrounding area. It usually does

not abruptly emerge at disjoint locations, as it might on the Internet or in a cellular

network. Equally, opnet information usually propagates for just a limited amount

of time before it disappears from the network (due to the limited data capacity of

the network devices). These two factors of spatial and temporal relevance mean that

information in an opnet is usually current. An opnet user can, therefore, expect

that any received information is relevant to their current circumstances.

1.1.3 Disadvantages of OPNETs

Due to the network being highly disconnected, delivery of data to a particular

recipient in an opnet cannot be guaranteed. This is especially true in regions

of low device density. For the same reason, it is difficult for a sender (and other

participating devices) to check if data were successfully received. As well as causing

problems with resource consumption, this means opnets are not suited to critical

communications in which message delivery to a particular recipient is crucial.

Another disadvantage of opnets is that the delivery of information may take a long

time. This is because there is usually not a direct communication path between a

sender and receiver. The delivery of a message relies on new paths being created by

the movement of devices, which takes time. Delays in communication may not be a

problem for text messages or emails, but it would be unacceptable for voice calls.

Due to their disadvantages, opnets may not be suitable for unicast transmissions,

i.e. when a message is sent to one particular device. In unicast transmissions, there

could be a single point of failure whereby the sent data do not get received at all. A

more suitable transmission type is a broadcast, in which messages are spread to as
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many devices as possible. Another suitable option is a multicast transmission, in

which messages are spread to a particular group of devices.

1.2 Potential Applications

1.2.1 Sensor Networks

A sensor network consists of many wireless devices that use sensors to monitor their

surroundings and send their measurements to a central data repository. Sensors can

record, among other things, sound, movement or temperature. Recorded data are

cooperatively sent to a main location, usually via a wireless network which could

be an opnet. Opnets could accommodate the fact that some devices may be

unreachable for manual maintenance due to the position of the sensors. Most sensor

networks can tolerate the disadvantages of opnets (see Section 1.1.3), as some delay

and data loss is usually acceptable.

One benefit a sensor network would gain from using an opnet is the ability to

accommodate breaks in the network. Such breaks may occur due to broken devices

or too much distance between devices for wireless communication to operate. An

opnet is able to cope with this due to the mobility of network devices. For example,

static sensor devices could be spread across a mountain by an aeroplane. Some

devices may be out of wireless range from any other device and will have no way to

communicate. However, if another network device is attached to a mobile agent such

as a mountain goat or an unmanned aerial vehicle, it can gather data from isolated

devices as the agent moves around the mountain. Figure 1.2 shows an example of

such a scenario.

Figure 1.2: Example of coping with a disconnected network. Each black dot represents
a static network device (with wireless signal regions shown as dotted circles). The
goat carries a mobile device which enables communication between the static devices.
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Deep Ocean Monitoring: Vahdat and Becker (2000) discuss an example of a sensor

network that uses an opnet for data communication. The network is used to

measure temperatures in deep oceans. Sensor devices are attached to seals to gather

readings, which are transmitted to a database using an opnet. The network benefits

from the low power consumption of the opnet devices to enable a lengthy study.

This application example shows that opnets are useful in situations that are too

dangerous or expensive for humans to access.

Wildlife Monitoring: Pelusi et al. (2006) discuss the use of opnets for wildlife monit-

oring sensor networks. Wildlife monitoring consists of tracking wild species to learn

about the behaviour of the animals and how they interact with one another in their

natural environment. It is important to ensure that the behaviour of the animals

is not affected by the tracking devices; therefore, the devices must be non-intrusive

and not require human intervention. Opnet devices can be small, lightweight and

require no manual maintenance by humans.

1.2.2 Infrastructure Replacement

Opnets can be used as an alternative to expensive communications infrastructures.

Two examples of this are provided below.

Asynchronous Internet Connection: It can be difficult to provide a reliable Internet

connection to some rural locations. It is disruptive and inconvenient when a wired

Internet connection is lost, and it can take weeks before the problem is fixed. In

such a situation, opnets could be used to provide an intermittent connection to

the Internet, satisfying data requests several times a day (Pelusi et al. 2006). This

is achieved by fitting opnet devices onto vehicles such as buses, motorcycles or

bicycles which regularly travel between rural locations and the city centre. As the

devices travel to and from an Internet connection, requests and fulfilments can be

exchanged.

Disaster Recovery: In the event of a disaster, such as an earthquake or bomb explo-

sion, existing communications infrastructure (such as cellular networks) could be

destroyed. In such disasters, effective communication is essential for recovery teams
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to work efficiently. An opnet can be set-up quickly by scattering static devices in

the area of the disaster and having recovery workers carry mobile devices.

Attempts are currently in progress to create opnet communication facilities in

disaster situations. The Several Project (Gardner-Stephen and Challans 2012) is

developing applications for smartphones to enable opportunistic communications

using Wi-Fi technology.

1.2.3 Social Networking

Social networks are used by people to socialise with their friends or to meet new

friends. Social networks would benefit from opnets in densely populated areas.

Currently, cellular networks tend to be used for social communication, even if the

conversing parties are geographically close. In densely populated areas, such as

football stadiums or concert arenas, cellular networks can become overloaded due to

the demand. Conversely, an opnet would actually perform more effectively in the

same situation (as discussed in Section 1.1.2).

Companion Discovery: An example of an existing service which would be well-suited

to opnet technology is Grindr (LLC 2012). Grindr is a smartphone application

that allows people to locate and communicate with compatible people who are

geographically nearby. Grindr currently uses the Internet for data transmissions;

however, such close-range interactions between mobile devices could be performed

by an opnet.

Information Service: An information service often provides information that is relev-

ant only at a particular time and a particular place. For example, a railway station

information service provides information about train times. An opnet could be

used to disseminate train time information from the railway station to the local

surrounding area. This would be useful for people who are walking to the station as

it would allow them to check the train times before they reach the station.

Shared Interests: Opnets could be used to target certain types of people and provide

them with information which may be of interest to them. For example, people at
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an Italian restaurant may wish to share information with each other about similar

restaurants nearby.

1.3 Area of Research

The aim of this thesis is to better understand the behaviour of opnets, specifically

how behaviour is affected by certain parameters. The four parameters that have the

most significant influence on opnet behaviour are considered. These parameters

will be known as the fundamental parameters, and are described in Table 1.1. The

fundamental parameters may be grouped into two categories, as described in Table 1.2.

Parameter Symbol Description

Device density ρ The average number of devices per unit area.
Device speed s The speed at which devices move.
Signal radius r The radius of the wireless signal range of each

device.
Transmission time τ The amount of time required to transmit a partic-

ular message. This may be directly related to the
size of the message.

Table 1.1: Fundamental parameters.

Category Parameters Description

Environmental ρ and s These parameters exist with or without the presence
of an opnet.

Operational r and τ These parameters are only relevant if an opnet
exists. They can be controlled either by the opnet
protocol or by a user of the opnet.

Table 1.2: Fundamental parameter categories.

The effects of the fundamental parameters on opnet behaviour is studied by collecting

a series of metrics that would be useful for an engineer who is designing an opnet.

This will allow an engineer to optimise the behaviour of the opnet according to

his/her desires.

Ultimately, the aim is to model the rate at which a message spreads to devices and

throughout space and time in terms of the fundamental parameters. This problem

can be solved by considering how communication between the network devices is

affected by the parameters. For example, a higher device density and device speed
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leads to more communication opportunities between devices, which in turn leads to

faster dissemination. Similarly, a large signal radius along with a small transmission

time helps to ensure a successful message transmission while the devices remain

within range of one another.

Rather than modelling message spread directly in terms of the fundamental para-

meters, device interaction models are used, which are based on the fundamental

parameters. Specifically, the rate at which a device comes within communication

range of other devices and the length of time devices remain within range is con-

sidered.

As well as the spread of a message, the practicality of opnet technology is of interest.

System resources must be used efficiently if opnets are to be useful. For this reason,

several interaction schemes are experimented with, which define the way in which

devices manage messages in the network.

Certain interaction schemes allow devices to remove a message from its buffer after a

certain amount of time. This is an important aspect of an opnet as it can prevent

the buffer of a device becoming full. It also prevents old messages that may be

outdated from remaining in the network. There is a fine balance in how quickly

to remove messages, however, as removing a message too quickly will inhibit its

dissemination. This behaviour is studied according to a deletion rate, δ, which defines

the probability per second that a device removes a message from its buffer.

1.3.1 Key Contributions

A key original contribution of this thesis is that the applications and experiments are

embedded in the acknowledgement that data transmissions are non-instantaneous.

The majority of state-of-the-art research on opnets makes the simplifying assumption

that wireless data transmission occur instantaneously. This thesis instead aims to

discover how transmission time affects the behaviour of opnets. Transmission time is

an important aspect to consider as file sizes are getting ever larger, with the increasing

quality of music, video and photographs. It is true that wireless communication is

also getting faster, however, data still takes a significant amount of time to transmit.

This has an impact on opnets as data are only sent during a window of opportunity,

so lengthy transmissions may not complete in time. Equally, efficient use of resources
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is an important aspect of opnets; therefore, transmission speed may be limited

in order to save battery power. In this thesis, particular attention is paid to the

transmission time parameter, τ , and its effects on data dissemination.

1.3.2 Research Hypothesis

The rate and extent of information dissemination in opnets can be modelled in terms

of four fundamental parameters: the device density (ρ), the wireless transmission

range (r), the speed of the devices (s) and the message transmission time (τ). The

performance of an opnet can be optimised by choosing appropriate values of these

parameters.

1.4 Motivation

As discussed in Section 1.2, there is great potential for widespread opnet use;

however, this has yet to happen. One reason for this may be that there is currently

no way of estimating the success of message propagation. For example, the following

questions cannot yet be answered accurately:

• If a message is released in an opnet (with known values of the fundamental

parameters) at position x and time t, what is the probability that it arrives at

position x′ before time t′?

• If a message is released in a closed environment, what percentage of devices

are expected to receive it after a certain time interval has elapsed?

• When and where should a message be introduced to ensure maximum dissem-

ination in the shortest possible time?

To be able to answer questions like these, a thorough understanding of message

propagation is required. Some benefits related to data propagation modelling will

now be discussed.

(a) Appeal

Opnets will become more appealing to potential users if propagation behaviour can

be modelled accurately. For example, an organisation is more likely to deploy an
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opnet if it knows that 65–75% of its target audience will receive the information,

rather than a completely unknown percentage.

(b) Optimisation

Opnet models can be used to optimise certain operational parameters. For example,

they could be used to find the best time and place to introduce a message in a

particular situation. Models can also be used in the development of communication

protocols, i.e. the set of rules each device follows to make decisions regarding

communication. For example, it may be discovered that the following rules make for

more efficient message dissemination:

• Do not attempt to transmit a message if less than 50% of devices are within

range for less than the required transmission time.

• Only accept 20% of message offers if the rate of offers exceeds five per minute.

• Do not accept a copy of a message less than 1 hour after deleting a previously

held copy of the message.

(c) Cost Reduction

Savings on cost and resources can be achieved with the use of opnet models. For

example, an opnet engineer would be able to decide on the cheapest hardware

available that would still provide the required service quality. Battery life can be

preserved with well designed communication protocols that decide whether the next

transmission attempt will be worth the power required.

1.5 Approach

The area of research is approached by creating a series of opnet models of increasing

complexity. The developed models will represent a complete opnet, incorporating

device communication and the underlying movement of devices. A mixture of

theoretical and empirical models will be used; as explained in the following section.
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1.5.1 Theoretical vs. Empirical Models

Opnets can be modelled empirically or theoretically. Empirical models can be

gathered from real-world experiments or from simulation. Simulations provide an

idealistic environment for experimentation, unlike real-world experiments in which

the behaviour of a network is affected by many additional factors, such as radio

interference. In the context of this thesis, real-world experiments are impractical due

to complexity and expense; therefore, simulations are used for all empirical models.

The theoretical models developed in this thesis are comprised of mathematical analytic

expressions. The models are based on the general principles of interacting particle

systems, and for this reason, devices will be referred to as particles throughout this

thesis (unless discussed in context of a network). Firstly, well-known compartmental

models of epidemic modelling are used. Then, ideas from the kinetic theory of gases

are adapted to incorporate a spacial component. The developed models are verified

with simulations. Simulations are also used to more thoroughly investigate aspects

of the system which are difficult to solve analytically.

A major difference between simulations and analytic expressions is the computational

complexity. Simulations are generally far more expensive to compute than equations.

This is especially true for Monte Carlo experiments, in which non-deterministic

simulations are performed many times and the accuracy of the drawn conclusions

depends on the number of simulated trials. It is possible for device protocols to make

use of models when making certain decisions (such as those listed in Section 1.4). In

this case, it would be impractical for a device to run a batch of simulations every

time it needs to make a decision. An analytic expression would be preferable in this

situation.

1.5.2 Mobility Models

Ideally, the used mobility models will accurately represent the movement of real-world

objects. A range of mobility models of increasing complexity are used. Throughout

the progression onto more complex models, it becomes clear how the characteristics

of the models scale. This allows observations about how an opnet may react to

highly complex movement in real-world scenarios.

The used mobility models will include those where particle movement is confined
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to a graph. Movement in discrete space and continuous space is also modelled.

Furthermore, models will be provided for 1D and 2D space.

1.6 Thesis Outline

Chapter 2. Background: Relevant information is provided to allow the reader to

understand the research in this thesis. A large part of this information relates

to particle movement; however, spatial and temporal considerations, along

with communication protocols are also discussed. Following this, a comparison

is made between the area of research and those of similar systems. Finally,

state-of-the-art research on related topics is presented and reviewed.

Chapter 3. Non-Spatial Models: In this chapter, particle movement is con-

strained to graphs, and communication can only take place between pairs

of particles that are at the same graph vertex. In this chapter, analytic and

simulated models are created for particle interaction and subsequently, message

spread between particles.

Chapter 4. Discrete Spatial Models: Similarly to the previous chapter, models

are created for particle interaction and message spread. However, in this

chapter, particles move on a discrete lattice in 1D and 2D space.

Chapter 5. Continuous Spatial Models: This chapter is similar to the previ-

ous chapter, except particles move in continuous space. In this chapter, an

extension is developed for the work of Klein et al. (2010), which uses a reaction-

diffusion equation to model message spread in space and time, as explained in

Section 2.8.3.

Chapter 6. Conclusions: The thesis is summarised, evaluated and concluded in

this final chapter. Potential topics for future work are proposed and discussed.
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CHAPTER 2

Background

This chapter provides the context against which the research is presented. Information

such as similar systems, particle movement and empirical/theoretical models are

discussed in detail. Following this, a review of current literature relating to the

subject of this thesis is presented.

2.1 Epidemic Models

Drawing on the research of related systems can be useful, especially for a young

research topic like opnets. A related system with vast amounts of research can be

found in the field of epidemiology (Zhang et al. 2007). Epidemiology is the study of

epidemics—a widespread biological disease in a population. Specifically, the point

at which a disease becomes an epidemic is not well-defined. It could be judged by

the number of individuals affected, or by the length of time for which the disease

persists (or a combination of the two).

2.1.1 Chromatic States

In epidemic models, or SIR models, individuals in the population are categorised

into a number of states (Nelson and Williams 2007):

Susceptible (S): Individuals who are capable of contracting the disease but are

yet to do so.
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Infectious (I): Individuals who have contracted the disease, are carrying the disease

and are capable of infecting others with the disease.

Recovered (R): Individuals who have recovered from the disease and are now

immune to further infections.

States S, I and R are referred to as the chromatic states. This term is used to relate

the states to colours, in a similar way to how each states in a forest fire model is

assigned a colour. A forest fire model is a cellular automaton in which each cell

is either a green tree that is susceptible to fire, a red tree which is on fire or a

blue tree which has been extinguished. The fire spreads at random to nearby trees,

which are eventually extinguished after some time. This system is comparable to

the way in which a disease spreads in a population or a message spreads in an

opnet. Specifically, green, red and blue trees are similar to S, I and R individuals,

respectively. For this reason, the following colours are assigned to the chromatic

states:

• S: green

• I: red

• R: blue

These colours will be used throughout the thesis in diagrams and plots.

2.1.2 Epidemic Models Applied to OPNETs

Epidemic term Opnet term

Individual Device (referred to as particles in this thesis).
Disease Message.
Susceptible A device that is yet to receive a particular message.
Infectious A device that has received and is spreading the message.
Recovered A device that has erased a message and will not accept it again.

Table 2.1: Terms from epidemiology used to describe elements of an opnet.

The discussed terms from epidemiology are related to opnets as follows: a message

in an opnet can be seen as similar to a disease spreading in a population. For this

reason, a device that is carrying and spreading a message is referred to as infectious.

Similarly, a device that has not got the message but would accept it is referred to as
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susceptible. Finally, a device that has not got the message and would not accept it is

referred to as recovered. This naming scheme is summarised in Table 2.1.

A key difference between epidemiology and opnets is that in epidemics, it is generally

desirable to inhibit propagation. The opposite is true for opnets.

2.1.3 Chromatic State Cycle

δ

γ

S

IR

Figure 2.1: Diagram to show the ordering and probability per second of the chromatic
state transitions. Note that β is not displayed as the S → I state transition is also
dependent on whether an infectious devices is present.

Figure 2.1 shows the chromatic state transition cycle that individuals/devices follow.

Each of these state transitions are discussed as follows.

I→ R: In epidemic models, an infectious individual (I) may recover (R) from the

disease at a certain rate. In an opnet, this would be equivalent to a device deleting a

message from its buffer and refusing to accept the same message again. As discussed

in Section 1.3, the probability per second of state transition I → R is denoted as δ,

the deletion rate.

R→ S: After some time, a recovered individual (R) may become susceptible (S)

to the disease once again. In an opnet, this would be the equivalent of a device

no longer refusing to accept a certain message. The term γ is used to denote the

probability per second of state transition R → S.

S→ I: A susceptible (S) individual may contract the disease and become infectious

(I). This is equivalent to an opnet device receiving a message. The occurrence of
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this state transition (S → I) is more complex to model than the other two state

transitions as it relies on the participation of another individual, namely an infectious

individual. The term β is used to denote the probability per second that a susceptible

device receives a particular message, given that it is within communication range

of another device that has the message. The aim is to learn more about this state

transition throughout this thesis.

2.1.4 SIR Models

A variety of epidemic models can be specified by setting the values of δ and γ

appropriately. The three most significant variations are described in Table 2.2. Note

that the SIR model and all variations will be referred to as interaction schemes when

used in the context of opnets.

Cycle δ γ Description

SI δ = 0 N/A Once infected, an individual cannot recover from
the disease. They remain infectious indefinitely.

SIS 0 < δ < 1 γ = 1 A disease can be contracted multiple times. Once
recovered, an individual becomes susceptible again,
rather than immune.

SIRS 0 < δ < 1 0 < γ < 1 Immunity is temporary. Once recovered, an indi-
vidual becomes immune to the disease for a period
of time before returning to the susceptible state.

Table 2.2: Table of various types of epidemic models.

2.1.5 Epidemic Threshold

The epidemic threshold is the point at which the system parameters are only just

suitable enough for an epidemic to occur. An epidemic is likely to occur if the

parameters are any higher than the threshold, and unlikely to occur if the parameters

are lower. For example, a population density of 0.01 individuals per square metre

could be an epidemic threshold.

2.1.6 Existing Research

In this section, literature in the field of epidemiology which may be beneficial in the

study of opnets is reviewed.
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Epidemics

Various mathematical models for epidemics are provided by Kermack and McKendrick

(1927). A key focus of their paper is on epidemic thresholds, which are studied

with regard to population density and rate of infection. Further mathematical

models can be found in Brauer et al. (2008), which aims to provide an introduction to

mathematical epidemiology. In this paper, studies are performed on the epidemic size,

the introduction and removal of individuals, the isolation of infectious individuals,

and endemic equilibria (meaning the disease steadily persists in the population).

Neither Kermack and McKendrick (1927) nor Brauer et al. (2008) attempt to relate

models to computer networks; therefore, leaving potential to extend this work.

Stehlé et al. (2011) introduce the exposed (E) state to the SIR model, forming an

SEIR epidemic model. The exposed state represents an incubation period that occurs

when an individual has contracted the disease but is not yet infectious. This creates a

delay in the spread of the disease which is similar to non-instantaneous transmissions

in opnets (see Section 1.3.1), except that an exposed individual becomes infectious

regardless of whether it remains in contact with other infectious individuals.

Social Diffusion

Research from the field of epidemiology can also be used to study the diffusion of

information, such as beliefs or marketing. In Arndt (1967), diffusion of information

via word-of-mouth comments is studied. The study aims to find how product sales

are affected by word-of-mouth comments. A 16 day field test was performed in which

participants received a money-off coupon for a particular food product in a local

shop. 42% of participants purchased the product within the 16 days. The buyers

were then interviewed to find whether their choice was influenced by word-of-mouth

comments. The study reveals that positive comments benefit product sales while

negative comments hinder sales.

A similar topic is addressed in Bass (1969). In this paper, a theoretical model is

derived for the forecast of product sales, based on the previous number of buyers. The

mathematics used in the theoretical model is based on the diffusion of information

and stems from the field of epidemiology. The theoretical model is verified with

empirical data gathered for eleven different products.
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Epidemics and Computer Networks

In Khelil et al. (2002), a simple SI model is applied to a simulated manet. A study is

performed on how particle density affects data propagation. Using the least squares

method, a curve is fitted to the simulation results to produce an analytic expression

for data propagation. This analytic expression is derived for use with the Random

Waypoint (rwp) mobility model with specific parameter values (see Section 2.3.3.4).

A limitation of this is that it may not extend to other mobility models.

Similar research can be found in Scellato et al. (2007), in which SIR and SIS

interaction schemes are used with a simulated manet. Again, the rwp model is

used in the studies. Additionally, movement traces from CRAWDAD—a website

that archives wireless network data (Kotz et al. 2004)—are used in the simulations.

This research shows that both the SIR and SIS models spread messages at the same

rate, however, the SIR model yields fewer message duplications. Therefore, the SIR

model can reach the same number of devices with fewer transmissions. This is a

useful finding in the interest of energy conservation. The SIR model will be studied

in more detail in Section 2.2.4.

2.2 Study on Epidemic Models

This section studies the epidemic models discussed in Section 2.1. The equilibria

of these systems is investigated and their behaviour in the context of opnets is

discussed. This work is presented as a reflection on the literature discussed in

Section 2.1, framed specifically in the context of opnets. Note that epidemic models

are not perfectly suited for use with opnets; however, they are used to illustrate

the approach.

Recall the epidemic models described in Section 2.1, where at any time a particle

may be susceptible (S) or infectious (I) depending on whether they are carrying the

message. Additionally, if the model allows, particles may be in a recovered (R) state

in which they have received the message but are no longer spreading it. Therefore,

the state of each particle is an element of the set {S, I, R} and the state of the system

consisting of N particles can be represented by a vector of length N , over this set.

The set {S, I, R}N is the state space of the system.
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The states S, I and R are referred to collectively as the chromatic states. The terms

S(t), I(t) and R(t) will be defined as the respective proportions of S, I and R particles

at time t. Therefore, at time t, there are NS(t) susceptible particles in the system

and likewise for I(t) and R(t). Only closed systems are considered, in which particles

cannot enter or leave. The following expresses the conservation of particles :

S(t) + I(t) +R(t) = 1 for all t ≥ 0. (2.1)

For continuous time models (see Section 2.5), Ṡ(t) = dS
dt

will be used to denote the

rate of change in the proportion of susceptible particles (with respect to time) at

time t. In a similar fashion, İ(t) = dI
dt

and Ṙ(t) = dR
dt

. A steady state occurs when(
Ṡ(t), İ(t), Ṙ(t)

)
= (0, 0, 0), i.e. the proportion of each chromatic state does not

change with time.

2.2.1 Equilibria

Throughout this thesis, the distinction between stable and unstable equilibria is

made. When the system is in a stable equilibrium, it will tend to revert to this state

after a small perturbation. Conversely, any perturbation to the system state when

in an unstable equilibrium will cause the system to move away from the steady state.

See Fig. 2.2 for an illustration comparing these types of equilibria.

Stable equilibrium Unstable equilibrium

Figure 2.2: Diagram to show the difference between stable and unstable equilibria.

Throughout the thesis, experiments of a stochastic nature are considered. This

allows the unstable equilibrium to be reached, unlike in a deterministic model. The

unstable equilibrium is reached when the source particle recovers before infecting

other particles. In other cases, it is reached after a few particles become infected

initially but recover in the early stages, leaving no copies of the message in the

system. Different parameter values lead to a different probability of reaching the

unstable equilibrium.
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2.2.2 Urn Models

The following four subsections explore different models of interaction between particles.

These models are based on the well-known Urn models of probability theory. Particles

will be called balls for the purpose of this discussion.

Consider a system consisting of n urns, and suppose that N balls are distributed

uniformly and independently among urns. At every time-step, each ball independently

moves to a randomly chosen urn with probability θ. This is a closed system, meaning

no balls can enter or exit the system.

The spread of a single message within this system is studied. Initially, all balls are in

the susceptible state, except for a single infectious ball known as the source ball. At

each time-step, N pairs of balls are chosen at random (from the entire system, not

individual urns). Therefore, some balls may be chosen several times, and others not

at all. If any of the pairs of balls happen to be in the same urn, they are considered

within range. If one of these balls is infectious and the other is susceptible, an

attempt is made to infect the susceptible ball, succeeding with probability τ−1.

Depending on the interaction scheme, infectious balls may change to the recovered

state with probability δ per second. Similarly, the interaction scheme may allow

recovered balls to become susceptible. In this case, each recovered ball becomes

susceptible with probability γ per second.

A steady state occurs when the net change in the number of infectious, susceptible

and recovered balls is zero. The aim is to theoretically find the steady state of

the system for the following types of interaction schemes: SI, SIR, SIS, SIRS. The

developed theoretical models will be verified by simulation. Table 2.3 lists the default

parameter values used for all simulations. These values were decided by trial and

error using preliminary simulations. Depending on the interaction scheme, the values

of δ and γ may differ or may be irrelevant. All deviations from the default values

will be made explicit in the relevant subsections.

2.2.3 SI Model

In the SI model, infectious particles cannot recover or revert to the susceptible state.

In this case δ = 0, therefore R = 0 and γ becomes irrelevant. The following system
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Parameter Default Value

N 100
n 100
θ 0.1
τ 30
δ 0.002
γ 0.005

Table 2.3: Default parameter values used for the Urn models.

of ordinary differential equations (odes) describes the dynamics of the system state

(S, I, R) for continuous time:

Ṡ(t) = −βS(t)I(t),

İ(t) = βS(t)I(t),

Ṙ(t) = 0,

where β is some combination of the contact rate and contact duration distribution

(as discussed in Section 2.1.3) and, therefore, indicates the probability per second of

becoming infectious.

The solution of this system of odes yields an expression for I(t) which is a logistic

equation, meaning growth is exponential in the initial stages but slows and only

reaches 1 as t→∞. The steady states are found by solving Ṡ = İ = 0, which gives:

βS(t)I(t) = 0. (2.2)

Therefore, either S(t) = 0 or I(t) = 0. From Eq. (2.1) (conservation of particles), the

corresponding values of S(t) and I(t) can be found, leading to the following solutions

for the steady state:

(
S(t), I(t)

)
=

(1, 0) (unstable equilibrium)

(0, 1) (stable equilibrium)

The unstable equilibrium can only occur if the message has not yet been introduced

into the system, because under the SI model, a single infectious particle will remain

infectious, making it impossible to return to a state where all particles are in the
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susceptible state. This equilibrium is unstable as a single infectious particle will

cause the system to move away from this state. When the system is in the stable

equilibrium, all particles are infectious and the system will return to this state if

more susceptible particles are introduced.

Figure 2.3 presents the results of 30 and 200 simulations using the SI model. From

these results, it is clear that the message eventually reaches all particles, which then

remain infectious indefinitely.

Results for the SI Model
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(a) 30 separate results.
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(b) Average of 200 results.

Figure 2.3: Graphs to show results of several simulations using the SI model. 30
separate results are shown in sub-figure (a), while sub-figure (b) shows the average
of 200 results with standard deviation error bars. A logistic equation has been
fitted to sub-figure (b), with β manually approximated at 0.035, as explained in
Section 2.2.3.1. All simulations use an Urn model with the parameter values listed
in Table 2.3 and δ = 0.

2.2.3.1 Fitting a Logistic Equation

The term β can be approximated by fitting a logistic equation to sub-figure (b) in

Fig. 2.3. Recall that:

dI(t)

dt
= βI(t)

(
1− I(t)

)
.
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Rearrange to get:

1

I(t)
(
1− I(t)

) dI(t)

dt
= β.

Both sides are integrated with respect to t, as follows:

I(t)∫
I(0)

1

I(t)
(
1− I(t)

) dI(t) =

t∫
0

β dt.

Evaluating this integral (by partial fractions for the left-hand side) leads to:

ln

(
I(t)

I(0)
· 1− I(0)

1− I(t)

)
= βt

I(t)

I(0)
· 1− I(0)

1− I(t)
= eβt.

Rearrange to isolate I(t) as follows (see Austin et al. (1998) for a full derivation):

I(t) =
I(0)(

1− I(0)
)
e−βt + I(0)

.

This equation is plotted in Fig. 2.3 with the name Logistic Eq. The value of β is

manually approximated by eye as 0.035.

The behaviour of the SI model is not desirable for opnets. If all devices eventually

receive the message then carry it indefinitely, less of the limited buffer space is

available for other messages. Furthermore, it is not useful to carry the same

message forever as it will invariably become irrelevant over time.

2.2.4 SIR Model

In the standard SIR model, infectious particles can recover (with probability δ per

second) but, as with the SI model, particles cannot return to the susceptible state

(γ = 0). The following system of equations shows the evolution of the system state:

Ṡ(t) = −βS(t)I(t),

İ(t) = βS(t)I(t)− δI(t),

Ṙ(t) = δI(t).
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Results for the SIR Model
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Figure 2.4: Graph to show the results of simulations using the SIR model. The
individual results of 40 simulations are shown at the top; the average of 200 simulations
is shown at the bottom with standard deviation error bars. 3% of results were not
included in the averages as they led to the unstable equilibrium (an example of which
can be seen in the upper plot). All simulations use an Urn model with the parameter
values listed in Table 2.3 and γ = 0.
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Setting Ṡ(t) = İ(t) = Ṙ(t) = 0 gives:

−βS(t)I(t) = 0,

βS(t)I(t)− δI(t) = 0,

δI(t) = 0.

From this, it is clear that a steady state occurs only when I(t) = 0. In this case, S(t)

and R(t) can take any value that satisfies S(t) +R(t) = 1. This is to be expected as

state changes can only occur if infectious particles are present.

Figure 2.4 shows the results of 40 and 200 simulations using the SIR model. From

the results, it is clear that the number of infectious particles peaks then reduces to

zero. Note that in some runs of the simulator, only one particle becomes infectious,

namely the “source particle”. Such cases occur when the initial infective undergoes

a transition to the recovered state before it has infected any other particles.

2.2.5 SIS Model

In the SIS model, infectious particles cannot enter the recovered state, but they can

revert to the susceptible state with probability δ per second. In this case, γ = 1 and

R = 0. The following system of equations shows the evolution of the system state:

Ṡ(t) = −βS(t)I(t) + δI(t),

İ(t) = βS(t)I(t)− δI(t),

Ṙ(t) = 0.

Setting Ṡ(t) = İ(t) = 0 gives

I(t)(βS(t)− δ) = 0. (2.3)

Therefore, either I(t) = 0 or S(t) = δ
β
. Substituting these values into Eq. (2.1)

provides the following solutions:

(
S(t), I(t)

)
=

(1, 0) (unstable equilibrium)(
δ
β
, 1− δ

β

)
(stable equilibrium)
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Results for the SIS Model
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Figure 2.5: Graphs to show the stable equilibrium for an Urn model with the SIS
interaction scheme. The upper plot uses the parameters listed in Table 2.3 (and
γ = 1). The lower plot only deviates from these parameter values in that δ = 0.025.
Each plot shows 12 individual results with the average of 200 results overlaid in
black (with standard deviation error bars). All simulations ending in the unstable
equilibrium were discarded (5% and 65% for upper and lower plots, respectively) to
prevent the mean being skewed. Dotted lines show theoretical model with β = 0.040
and 0.038 for upper and lower plots, respectively (approximated by eye).
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As with the SI model from Section 2.2.3, the unstable equilibrium occurs when all

particles are susceptible. However, unlike the SI model, the system can return to this

state after the initial infectious particle has been introduced. The stable solution

is achieved with the correct balance of susceptible and infectious particles. This

solution is tested with computer simulation, the results of which can be seen in

Fig. 2.5.

First, the upper plot of Fig. 2.5 are considered. Simulations for this plot use the

parameter values listed in Table 2.3. The plot shows 12 individual simulation results

with the average of 200 results overlaid in black (with standard deviation error bars).

It is clear that there is a high proportion of infectious particles in the steady state,

given the chosen parameter values.

An engineer may wish to control the proportion of infectious devices in the steady

state. In an opnet, a lower proportion of infectious devices would save resources

whilst maintaining the presence of the message in the system. To show how this

can be achieved, δ is adjusted from 0.002 to 0.025 and the results are shown in

the lower plot of Fig. 2.5.

From the plots, it can be seen that the state of the system oscillates around the steady

state. Note that if a large value is set for δ
β

(i.e. just below 1), the oscillations may

cause I(t) to return to zero. If so, the system will return to the unstable equilibrium

and stay there. This was the case for many of the simulated results, however, these

results were omitted from the plots, as discussed in the figure caption. In practice,

an engineer might want to guard against this outcome by choosing a smaller value of

δ. Alternatively, δ could be adjusted as a function of time—slowly eradicating the

message from the system as the message ages.

The behaviour of the SIS model is more suitable for opnets than the SI model

as devices are not required to carry messages indefinitely. Instead, there is a

steady presence of the message in the network provided the deletion rate is

chosen appropriately. However, it is possible for the same device to receive this

message many times. This may waste resources, or it could be advantageous in

the interest of keeping the message available in the network.
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2.2.6 SIRS Model

In the SIRS model, infectious particles recover with probability δ > 0 and remain

immune to further infections for a certain time period. However, recovered particles

return to the susceptible state with probability γ > 0 per time-step. The following

system of equations describes the state transitions for continuous time:

Ṡ(t) = −βS(t)I(t) + γR(t),

İ(t) = βS(t)I(t)− δI(t),

Ṙ(t) = δI(t)− γR(t).

Setting Ṡ(t) = İ(t) = Ṙ(t) = 0 gives:

−βS(t)I(t) + γR(t) = 0, (2.4)

I(t) ·
(
βS(t)− δ

)
= 0, (2.5)

δI(t)− γR(t) = 0. (2.6)

There are two solutions to this system:

Solution 1: Let I(t) = 0 to satisfy Eq. (2.5). From Eq. (2.6) it follows that R(t) =

0. From Eq. (2.1) it then follows that S(t) = 1; therefore, a steady state is(
S(t), I(t), R(t)

)
= (1, 0, 0).

Solution 2: Let S(t) = δ
β

to satisfy Eq. (2.5). Substituting this into Eq. (2.1) shows

that R(t) =
(

1− δ
β

)
− I(t). From Eq. (2.6) it follows that R(t) = δ

γ
I(t). Equating

these two expressions for R(t) gives:

(
1− δ

β

)
− I(t) =

δ

γ
I(t)(

1− δ

β

)
=

(
1 +

δ

γ

)
I(t)

β − δ
β

=
γ + δ

γ
· I(t)

I(t) =
γ(β − δ)
β(γ + δ)

. (2.7)
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Results for the SIRS Model
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Figure 2.6: Graphs to show how the system converges to the stable equilibrium in
the SIRS model. The individual results of 20 simulations are shown at the top; the
average of 200 simulations is shown at the bottom with standard deviation error bars.
8% of results are discarded as they led to the unstable equilibrium. All simulations
use an Urn model with the parameter values listed in Table 2.3. Dashed lines show
theoretical estimates with β = 0.04 (approximated by eye).
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Substituting Eq. (2.7) into Eq. (2.6) shows that R(t) =
δ(β − δ)
β(γ + δ)

. Therefore, a steady

state of the SIRS model is:

(
S(t), I(t), R(t)

)
=

(
δ

β
,
γ(β − δ)
β(γ + δ)

,
δ(β − δ)
β(γ + δ)

)
. (2.8)

This solution is tested with computer simulations, the results of which can be

seen in Fig. 2.6. Note that 8% of simulations led to the unstable equilibrium (see

Section 2.2.1) and were omitted from the plots to prevent the mean being skewed.

The results show a steady ratio of S, I and R particles. Like the SIS model, this

interaction scheme is efficient on resources whilst maintaining the presence of the

message in the network.

An opnet engineer may benefit from an SIRS interaction scheme as it can be

configured to create a steady presence of a message without overloading the

network. Other interaction schemes, such as the SI and SIS models, require

many infectious devices to maintain the presence of a message, which is resource

intensive and may not be practical. It is impossible to maintain message presence

in the SIR model as all infectious devices eventually become recovered. The SIRS

model is better suited to maintaining the availability of a message in an opnet.

2.3 Particle Movement

This section discusses the movement of devices in an opnet. Firstly, the impact

that device movement has on network behaviour is highlighted. Then, the way in

which movement can be modelled is discussed, as well as the effects that movement

has on device interaction. As explained in Section 1.5.1, devices will be referred to

as particles throughout this thesis, unless discussed in context of a network.

2.3.1 Motivation

As stated by Jardosh et al. (2003), “simulation results obtained with unrealistic

mobility models may not correctly reflect the true performance of the protocols”.

It is important to learn how significant an impact particle movement has on data

propagation. This will help to decide which mobility models are appropriate for
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use in the studies. In this section, some of the literature that explores the area of

particle movement is reviewed.

MANET Performance

A survey of mobility models, popularly used for manet simulations, can be found

in Camp et al. (2002). Several mobility models are tested to see how they affect

the performance of a manet. Various movement parameters are varied, and several

metrics are analysed for a series of unicast transmissions. Concluding remarks state

that “the performance of an ad-hoc network protocol can vary significantly with

different mobility models” (Camp et al. 2002). It is also discovered that performance

is significantly affected by the parameters of a mobility model.

Further studies on manet performance are performed in Divecha et al. (2007) and

Saad and Zukarnain (2009). Several mobility models are used in parameter studies

on particle density and speed. Results are analysed against performance metrics

such as throughput (the amount of data successfully transmitted from sender to

receiver per second) and routing overhead (the number of intermediate particles used

for a successful transmission). It is concluded that “empirical results illustrate that

the performance of a routing protocol varies widely across different mobility models”

(Divecha et al. 2007).

Long-Distance Jumps

Buscarino et al. (2008) show how the spread of a disease is affected by long-distance

jumps like train journeys or aeroplane flights. These jumps occur independently

for each simulated individual with probability pj per second. Results show that an

epidemic is greatly affected by pj, with higher values increasing the rate at which

the disease spreads. This is intuitive, as long-distance jumps quickly take the disease

to new locations. Results also show that the epidemic threshold is dependent on pj.

Prior to the work of Buscarino et al., Frasca et al. (2006) show that epidemics are

affected by the long-distance jumps of infectious individuals only. It is concluded

that the movement of only the infected individuals should be restricted to increase

the epidemic threshold.
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Clearly, the impact of particle movement is significant, and care should be taken

when deciding on which mobility models to use.

2.3.2 Movement Traces

Particle movement can be modelled empirically using movement traces of real-life

objects. Traces can be recorded using tracking devices such as mobile phones or

Global Positioning System (gps) devices. This leads to accurate results, but these

may not necessarily be typical. Traces show how an object moves at a certain instant

of time. Before or after this time, the object may move in a different way. Indeed,

the instance of captured movement could be a particularly unusual case.

Only a finite number of traces can be gathered. If insufficient data are collected,

further trace gathering may be required, which can be expensive. Traces are of

a finite length, so a model or simulation must stop when the end of the trace is

reached. It may be possible to overcome the problems associated with the finite

nature of traces. One potential solution is to quantify a set of traces and use their

key properties to create synthetic traces with statistically similar features. This can

be achieved by finding patterns of regularity.

By studying patterns in the traces of 100,000 mobile phone trajectories, Gonzalez

et al. (2008) show that “human trajectories show a high degree of temporal and

spatial regularity” (Gonzalez et al. 2008). The 100,000 mobile phone users were

selected at random from a sample of 6 million anonymous users who were tracked

over a 6 month period. By studying this dataset, it was shown that the mobile phone

users tend to frequent particular places with a pattern of regularity. In Song et al.

(2010), a similar study is performed that supports the finding of Gonzalez et al. Once

again, human trajectories are found to be predictable, regardless of the distance

travelled. Movement is also found to be predictable regardless of age, gender, home

location, language group, population density and rural versus urban environments.

It is even revealed that human trajectories are just as predictable during weekends

as they are during weekdays.
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2.3.3 Synthetic Mobility Models

Purely synthetic mobility models do not directly use any real-life data; rather, they

are generated using an algorithm to approximate the movement of objects in the real-

world. The algorithm can create an unlimited number of random trajectories, each of

unlimited length. It is less expensive and less time-consuming to generate synthetic

traces from simulations based on theoretical models than to gather a sufficient number

of real-world traces. However, unlike traces, they can only approximate real-world

movement.

The following sections explain several popular synthetic mobility models.

2.3.3.1 Random Walk

An example of a simple synthetic mobility model is the Random Walk (Camp et al.

2002). The Random Walk is a discrete-time mobility model, meaning that time

is divided into consecutive segments of equal size, known as time-steps. At each

time-step, particles move independently from their current positions in a random

direction for a fixed distance, called the step size. This distance is a parameter of

the model, and is constant for all particles. Movement happens instantaneously:

the position of each particle is not defined between two consecutive time-steps. A

Random Walk is a Markov process (Janssen 2014), meaning that the next chosen

movement depends only on the present position, not any past positions.

The way in which direction and step size are chosen depends on the simulation region.

For example, in a 1D region of discrete space, the direction must be either left or

right and the step size must be an integer. In a 2D region of continuous space, there

are uncountably many possibilities for both direction and step size. Note that:

• A simple Random Walk is a Random Walk with a step size of 1.

• A symmetric Random Walk is a 1D Random Walk in which the direction of

each movement is chosen with uniform probability.

1D Discrete Space: Suppose that a particle resides at the origin at time t = 0. The

particle follows a simple Random Walk with a probability of p and q of moving

left or right, respectively, where p+ q = 1. After n steps, the expected number of

steps to the left is np, and nq to the right (each with variance npq). Therefore, the
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expected displacement of the particle after n steps is n(p − q). For a symmetric

Random Walk (p = q = 0.5), the expected displacement is 0. However, the expected

distance from the origin after n steps (regardless of direction) is approximately
√

2n
π

for large values of n (Weisstein 2010). Examples of 1D simple symmetric Random

Walk trajectories can be seen in Fig. 2.7.
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Figure 2.7: Eight examples of 1D simple symmetric Random Walk trajectories, each
for 100 time-steps. Each plot is a separate trajectory.

2.3.3.2 Lev́y Walk

A Lev́y Walk is a type of Random Walk in which the step size is not constant. It

is instead chosen from a heavy-tailed probability distribution (Viswanathan et al.

1996). This means step size has a high probability of being small, but the probability

of a very large step size cannot be ignored. Step size is chosen independently for each

particle at each time-step. An example Lev́y Walk trajectory can be seen in Fig. 2.8.

It is found that the movement of many animals can be modelled with Lev́y Walks. This

is shown for animals such as monkeys (Boyer et al. 2003), albatrosses (Viswanathan

et al. 1996), reindeer (Viswanathan et al. 1996), jackals (Atkinson et al. 2002)

and microzooplankton (Bartumeus et al. 2003). The movement of animals is an

important consideration for the research of opnets as, already, several existing
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Figure 2.8: Example Lev́y Walk trajectory, consisting of 1000 time-steps. Arrows
show the direction of travel. The sub-plot shows the distribution used to select step
sizes (the standard Cauchy distribution).

opnet applications use animals to carry the network devices. One example of such

an application is Zebranet (Princeton University 2003), in which the behaviour of

zebras is studied.

Lev́y Walks have the characteristic of super-diffusive behaviour, meaning that the

step size has infinite variance (Kim et al. 2010). Kim et al. (2010) use real-world

traces to show that such behaviour can be seen in the movement of humans. This

gives evidence that, like animal movement, human movement can be modelled with

Lev́y Walks. Similar propositions are made in other publications; for example, Rhee

et al. (2011) draw a similar conclusion after analysing gps traces of 44 volunteers.

As another example, Brockmann et al. (2006) study human movement by tracking

the circulation of bank notes in the United States. It is found that “the distribution

of travelling distances decays as a power law” (Brockmann et al. 2006), leading to

the conclusion that human movement can be modelled by Lev́y Walks.

On the other hand, Gonzalez et al. (2008) disagree with the findings of Brockmann

et al. (2006). Specifically, the authors argue that human movement cannot be

modelled with a random trajectory such as that of a Lev́y Walk. Instead, it is noted

that human movement has regularity and periodicity. This conclusion is made after
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analysing mobile telephone location traces. Such traces are more relevant to human

mobility than bank notes as mobile telephones are largely carried by only one person.

Bank notes diffuse as they are passed between many different people, therefore

making it hard to see any periodic patterns. It is clear that random trajectories

should not solely be relied upon, and this is discussed further in Section 5.7 in which

real-world trajectories are studied.

2.3.3.3 Random Direction

The Random Direction mobility model (Camp et al. 2002) is a simple, yet versatile

mobility model. In the model, particles move independently with periods of constant

velocity. This velocity changes at certain time intervals which can be chosen at

random. Traditionally, the model is implemented in 2D continuous space; however,

the concept can be applied to other simulation regions.

Several definitions of the Random Direction model have been published (Bettstetter

2001; Camp et al. 2002; Klein et al. 2010; Saad and Zukarnain 2009); however, the

following definition will be adopted for the remainder of this thesis:

Parameters

• Velocity distribution, chosen in either of the following ways:

– Speed distribution for all spatial dimensions: The speed for each

spatial dimension is chosen independently. Speed distribution can be, for

example, normally or uniformly distributed, or a constant value.

– Speed distribution for overall speed: This is used together with a

heading direction, θ, chosen uniformly at random. Speed distribution can

be, for example, normally or uniformly distributed, or a constant value.

Depending on the system, θ may be, for example, ±1 for 1D space, or an

angle on [0, 2π) for 2D space.

• Path-length distribution. This defines the rate at which new velocities are

chosen for a given particle. This is defined according to a turning rate para-

meter, λ, which is used as an absolute value or as the mean of an exponential

distribution.

38



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y
Random Direction

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Random Waypoint

Figure 2.9: Example trajectories for the Random Direction (left) and Random
Waypoint (right) mobility models. Arrows show direction of travel. The mean step
size for the Random Direction trajectory is 1 (Normally distributed) and λ = 1

10

(image scale: 1 : 250). Circles in Random Waypoint plot show positions of brief
pauses in movement.

Algorithm (for each particle)

1. Choose a velocity according to the velocity distribution.

2. Choose a duration, τ , for which to travel, according to the path-length distri-

bution.

3. Travel at the chosen velocity for τ time units.

4. Go to step 1 and repeat the process.

The Random Direction model is versatile despite having few parameters. The model

can be configured to match other mobility models. For example:

• Simple Random Walk: a constant speed for all particles and a constant

turning rate of 1.

• Lev́y Walk: a heavy-tailed speed distribution (e.g. Lev́y distribution) with a

constant turning rate of 1.

An example trajectory of a single particle following the Random Direction model

can be seen in Fig. 2.9.
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2.3.3.4 Random Waypoint

The Random Waypoint (rwp) model is commonly used for manet simulations

(Camp et al. 2002). This model consists of each particle choosing a random location

to move towards at a randomly chosen speed. Once arrived at the destination,

the particle may wait for a randomly chosen amount of time. This process is then

repeated, each time with another random destination and speed.

The rwp model has received criticism due to its steadily decreasing average particle

speed over time. However, this problem has since been overcome (Navidi et al. 2004).

Figure 2.9 shows an example trajectory of the rwp mobility model.

2.3.4 Human-Like Mobility Models

As discussed in Section 1.2, an interesting class of applications for opnets rely on the

network devices being carried by people. It is clear that understanding the movement

patterns of the network devices is important when studying opnets. Therefore, the

study of human movement is an important aspect of this thesis.

Several models have been designed to match the movement of people. Bettstetter

(2001) presents a modified Random Direction model that mimics the movement

of cars and pedestrians. Key modifications include gradual changes in speed and

direction. It is unclear how beneficial these modifications are and whether they are

worth the extra computation required.

In Jardosh et al. (2003), in contrast to most synthetic models, it is argued that

people do not move in straight lines nor in random directions. A mobility model is

proposed in which particles travel to and from specific destinations using well-defined

paths. A unique feature of this model is a set of obstacles such as buildings, which

obstruct wireless signals.

In Lee et al. (2009), a mobility model called slaw (Self-similar Least Action Walk)

is proposed which matches the movement of people drawn to a common interest or

meeting point. This is useful for modelling environments such as theme parks or

university campuses. Slaw mimics patterns of regularity, as discussed in Gonzalez

et al. (2008). Trajectories generated by slaw are compared to traces recorded from

40



gps devices. Comparisons reveal that slaw has several true-to-life properties, such

as a truncated power law distribution of step sizes (see Section 2.3.3.2).

Hsu et al. (2007) propose the Time-Variant Community Model, in which movement

is non-homogeneous in both space and time. An example of a trajectory generated

by this model can be seen in Fig. 2.10. The model is designed to be “mathematically

manageable” (Hsu et al. 2007), meaning it is not too complex to be studied analytically.

Indeed, theoretical models are provided for some aspects of particle interaction.

Although the model uses regular patterns to mimic human travel, it is criticised by

Lee et al. (2009) for not being statistically similar to real-life movement traces.
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Figure 2.10: Example trajectory generated by the mobility model proposed in Hsu
et al. (2007). All parameters use the default values provided by the simulator except
the region boundaries are set to be reflective, rather than periodic. Colour indicates
position time. Crossed circles represent start (blue) and end (red) points.

Other proposed models of human mobility can be found in Tuduce and Gross (2005);

Kim et al. (2006); Kamal and Al-Karaki (2007) and Boldrini et al. (2008).

2.3.5 Group Movement

In group mobility models, the trajectory of a single particle is dependent on those

of other particles. This is opposed to previously discussed mobility models, in
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which each particle moves independently. Group mobility models may be useful for

modelling how people move, for example, on a city tour, as a troop of soldiers or as

groups of friends.

It is reported that “up to 70% of people in a crowd are actually moving in groups,

such as friends, couples, or families walking together” (Moussäıd et al. 2010).

In Musolesi and Mascolo (2007), a group mobility model based on social network

theory is presented. The model can be configured for temporal variance, to model

different movement patterns on weekdays and weekends, for example. Particle

interaction statistics are analysed, and found to be similar to those of real-world

traces. Further studies are performed on how manet performance is affected by the

developed mobility model. It is found that the probability of a successful transmission

is less affected by particle speed in the group mobility model than is the case in the

rwp model, due to less frequent topology changes in the group model.

Despite their potential uses, group mobility models may not be of benefit when

modelling opnets. In an opnet, particles that form part of a group are likely to

share their messages among the group. Therefore, all members of the group carry

the same set of messages and the group can be treated as one entity. On the other

hand, particles in a group may cause interesting behaviour if they split from the

group or merge with other groups. However, little research has been done on this

type of behaviour.

2.3.6 Regional Attributes

Spatial Dimensions

A simulation region may consist of 1–3 spatial dimensions. Fewer spatial dimensions

are simpler to model but may not be adequate to represent certain environments. To

provide some examples, a 1D model may be used for roads or corridors, a 2D model

may be used for cities or shopping malls and a 3D model may be used for oceans or

multi-storey buildings.
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Boundary Effects

An infinite sized area is difficult to simulate, as an infinite number of particles would

be required to ensure a non-zero particle density. Because of this, particles are

usually restricted to movement within a finite region. There are several possibilities

as to how a particle reacts when encountering the boundaries of this region. This

behaviour is defined according to the boundary type, as explained in Table 2.4.

Boundary Type Behaviour

Reflective boundaries Particles reflect off boundaries like billiard balls.
Periodic boundaries Opposite boundaries join so that the region wraps around.

A 1D region with periodic boundaries can be visualised as
the edge of circle. A 2D region with periodic boundaries
can be visualised as the surface of a torus.

Replacing boundaries Particles leave the region when they move past the bound-
ary edges. Whenever a particle leaves the region, a new
particle is introduced at a random location. This keeps
the number of particles in the region constant.

Table 2.4: Table to explain the boundary types used for simulation regions.

Note that boundary effect considerations are not required for some types of movement.

For example, particles never encounter region boundaries in the rwp model, although

they may get close.

Homogeneity vs. Heterogeneity

Density: A region may have a homogeneous distribution of particles, meaning that

particles are spread evenly across the entire region. Alternatively, a region may be

heterogeneous with respect to particle density. For example, in a shopping centre

the density of people may vary between shops.

Velocity: The velocity of particles may be homogeneous in space. For example, cars

on a long, straight road move at roughly the same velocity regardless of their position.

Alternatively, particle velocity may be heterogeneous in space, as particles move in

different ways depending on their position. An example of this is a road network with

different speed limits. Although heterogeneous density/velocity is to be expected in

real life, most synthetic mobility models assume homogeneity for simplification.
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Temporal Properties: As well as potentially depending on location, particle density

and velocity may also depend on time. For example, particle density in the suburbs

may be low during the day, and high during the night as people commute to and

from work in the city centre.

Well-Mixed: If movement is homogeneously-mixed, each particle will proximate each

other particle in the region with equal probability.

2.4 Particle Interaction

2.4.1 Contacts

In an opnet, a pair of particles can only exchange data if they are within each

other’s wireless transmission range. When two particles come within range of each

other, it is said that each particle has “made a new contact” (regardless of whether

they have been within range of each other in the past). The pair of particles remain

“in contact” with each other until they are no longer within range. In this section,

terms relating to contacts between particles are defined.

Inter-Contact Times

The inter-contact time is the time between two consecutive new contacts. For

example, if a particle makes a new contact at time t then another at time t′, the

inter-contact time is t′ − t. Note that inter-contact time is not affected by the time

two particles remain in contact. Neither is it affected by whether two particles have

previously been in contact.

In La (2010), inter-contact time is studied for the Generalised Hybrid Random

Walk mobility model. This is similar to a Random Walk on a toroidal region of

discrete space. In the mobility model, space is divided into a grid of cells and each

cell is divided into sub-cells. Movement occurs by selecting an adjacent cell in the

same way as the Random Walk model, then moving to a sub-cell of this cell chosen

uniformly at random. Analytic models are used to show that inter-contact time

can be approximated by the exponential distribution. These models are verified

using a simulation consisting of 2 mobile devices, with 449,949 inter-contact times
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being recorded. It is also argued that the exponential distribution may approximate

inter-contact times for other mobility models.

Contact Rate

The contact rate, νc, is the number of new contacts a particle makes per second.

This is equal to the reciprocal of the inter-contact time. A higher contact rate means

more opportunities to transfer a message. One would expect νc to increase as any of

the following increase:

• Signal radius (r): In 2D or 3D space, a larger signal radius means that the

wireless signal of a particle covers a larger area as the particle moves around.

This increases the chances of making new contacts. Note that this is not the

case for 1D space, as will be seen in Section 4.4.

• Particle density (ρ): more particles per unit area increases the chances of

making new contacts.

• Particle speed (s): As particles travel faster, they are more likely to come

within range of other particles for the first time.

Contact Duration

The contact duration, Tc, is the length of time that two particles remain in contact.

Studying Tc is an essential step towards modelling non-instantaneous data transmis-

sion, which is a key contribution of this thesis (see Section 1.3.1). A longer contact

duration means that larger messages can be transmitted between particles. One

would expect Tc to increase when any of the following occur:

• Signal radius (r) increases: A larger signal radius allows two particles that are

within range to travel a further distance before moving out of range of each

other.

• Particle speed (s) decreases: A pair of slower particles that are within range of

each other take a longer time to move apart.

Note that particle density is not expected to affect contact duration as contact

duration is measured for just two particular particles at a time, which are unaffected

by the rest of the population.
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Panisson et al. (2012) use real-world data to analyse Tc for encounters between

people. The data are collected using Radio-Frequency Identification (rfid) badges

worn by conference attenders (SocioPatterns 2011). These badges collect information

about the proximity of people and whether they are face-to-face (depending on the

badge settings). The term Tc is extracted from the gathered data and compared

with the data artificially generated from the following synthetic mobility models:

• Rwp (see Section 2.3.3.4),

• Truncated Lev́y Walk (see Section 2.3.3.2).

Results show that the two synthetic models have near identical distributions of Tc,

though in both cases these results are significantly different to the real-world data.

This difference is emphasised with further studies regarding message propagation in

a manet. These findings highlight the importance of using a suitable mobility model

for opnet simulation (see Section 2.3.1). However, the article does not consider

the possibility that the discrepancy may be due to the comparison of face-to-face

contacts (real-world data) with proximity contacts (synthetic models).

Little’s Law

In Jacquet et al. (2010), it is argued that contact rate (νc) and contact duration (Tc)

are related according to Little’s Law:

“Little’s Law says that in the long-term, steady state of a production

system, the average number of items L in the system is the product of

the average arrival rate λ and the average time W that an item spends

in the system, that is, L = λW” (Gustafson 2012).

In the context of opnets, the parameters of Little’s Law can be interpreted as

follows:

L = νc · Tc,

where L is the number of particles that a given particle is in contact with at any

given time.

In Jacquet et al. (2010), studies are performed using a Random Direction mobility

model, with constant speed and exponential turning rate (see Section 2.3.3.3). An

analytic expression is provided for νc; this is combined with the average number of
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particle contacts using Little’s Law to derive the distribution of Tc. The findings of

Jacquet et al. (2010) are further discussed later in this chapter in Section 2.8.2.

2.4.2 Link Models

As an alternative to using mobility models, link models can be used to represent

interactions between particles. A link model is a dynamic graph that changes

over time. Each vertex of the graph represents a particle in the network. An edge

connecting a pair of vertices shows that the two corresponding particles are in contact

at that time. This type of graph is known as a contact graph (Panisson et al. 2012).

Link models do not provide the spatial position of particles; however, they do provide

all of the necessary information to simulate data propagation in an opnet. A benefit

of link models is that they are less computationally intensive than mobility models.

An example of opnet simulation using link models can be found in Becchetti et al.

(2011).

SocioPatterns is a research project that makes use of real-world data to study the

social dynamics of people (SocioPatterns 2011). The project offers a platform that

can be used to generate link models from interactions between people. This platform

makes use of rfid badges worn by individuals to collect information about their

proximity with others. Badges can be configured to detect only short-range contacts,

where individuals are face-to-face, or longer-range encounters of up to several metres.

2.4.3 Model Complexity

In Stehlé et al. (2011), a study is performed on how the complexity of a model

affects the simulated spread of a disease. The study makes use of the SocioPatterns

platform described in Section 2.4.2 (involving 405 volunteers over a 2-day conference)

to construct a link model for a conference. The following variations of this link model

are used in the study:

• Dynamic network (dyn): The fully-detailed link model is considered. This

consists of a contact graph for every 20 seconds of the time period considered.

• Heterogeneous network (het): A single, static graph for each day of the

conference. Graph vertices represent each individual. Graph edges connect any
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pair of individuals that were in contact at any time in the day. The weight of

each edge represents the total time a pair remained in contact. The ordering

of contacts and the time at which they occurred is lost.

• Homogeneous network (hom): The same as het, only all graph edges are

weighted with a value equal to the average contact duration.

The spread of a disease is simulated on each of these network models. Results of the

study include metrics such as the number of susceptible and recovered individuals

over time, the final size of the epidemic, the size of the epidemic at its peak and

the time at which this peak is reached. The results yielded by the dyn and het

networks were very similar, despite their difference in complexity. This means a

detailed, high-resolution dataset may not be necessary to adequately describe disease

propagation. On the other hand, the results yielded by the hom network were

significantly different, showing that contact duration is an important consideration.

This makes sense as their model uses a probabilistic infection rate, where the chance

of infection depends on contact duration.

Blower and Go (2011) reflect on Stehlé et al. (2011) with the following statement:

“Complex models are based on many assumptions that are generally not

evaluated to determine whether they are correct, and they can also include

hundreds of parameters whose values are unknown or only imprecisely

known. Consequently, complex models are not necessarily more accurate

than simple models” (Blower and Go 2011).

2.4.4 Communications Protocol

Several decisions must be made before any communication can take place in an opnet.

Each device must decide whether to interact with any other device in the network

using a set of rules known as the communications protocol. Many considerations must

be made by the communications protocol, such as security, fairness and availability

of resources. Each of these areas are discussed in this section.

(a) Resource Saving

Opnet devices are mobile and are likely to have a limited power supply. It is

important that energy is used efficiently to ensure devices can continue to participate.
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An energy saving protocol is proposed in ElBatt et al. (2000). In this protocol, energy

is conserved by adjusting the strength of the wireless transmitter depending on the

number of nearby devices. This has the added benefit of reducing signal interference.

In Basu and Chau (2008), analytic expressions are developed to show that energy

can be saved in a wireless ad hoc network by using duty cycling. Duty cycling

means devices frequently turn off their wireless transmitters to conserve power. It is

suggested that devices turn their transmitters on only at times selected by a pseudo

random number generator (p-rng). Devices would only have to synchronise clocks

and p-rng seeds to deterministically predict when another device is available for

communication. Duty cycling would be well-suited to a sensor network, such as the

ones described in Section 1.2. Simulations are used to verify the developed analytic

expressions. A network of 10 and 100 devices (moving according to a Random Walk

on a 2D plane) is used for the simulations. Simulations are repeated 1000 times

with the average result being taken. Further reading on duty cycling with regards to

broadcast transmissions can be found in Guo et al. (2009).

The Encounter Based Routing (EBR) protocol was proposed by Nelson et al. (2009).

The protocol is intended for unicast transmissions, and designed to maximise the

delivery ratio while minimising the use of resources such as energy and buffer space.

The protocol is based on the idea that a higher contact rate implies a device is more

likely to deliver a message to its destination. It is stated that the future contact

rate of a device can be roughly predicted by past contact rate. The EBR protocol is

tested using three different mobility models, namely, the rwp (see Section 2.3.3.4),

an event-based disaster model and a street-map based vehicular model. Computer

simulation is used to evaluate the protocol according to a set of metrics. The

following metrics are captured: message delivery ratio, message delivery time-taken,

and goodput, defined to be “the number of messages delivered divided by the total

number of messages transferred (including those transfers that did not result in a

delivery).” (Nelson et al. 2009). Despite economical use of resources, results show

that EBR outperforms several other well-known protocols in terms of successful

delivery ratio.

Several techniques for reducing device buffer occupancy are discussed in Zhang et al.

(2007). This includes three buffer management systems which tell devices how and

when to delete messages. It also includes mechanisms to inform devices that a
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unicast transmission has been completed and propagation of the message is no longer

required. This is achieved by spreading an anti-packet, which instructs devices to

delete the message from their buffer and stops them accepting it again in the future.

(b) Fairness

An opnet can only work if enough users engage in message propagation. It is

considered that “some kinds of incentive schemes might be necessary in opportunistic

networks to encourage user participation” (Heinemann et al. 2008). Examples of

such schemes are discussed in this section.

In Buttyan and Hubaux (2000), two counter-based mechanisms are proposed to

reduce selfishness in a manet. In this work, nuggets are used as a currency in the

network. Each device has a nugget counter stored in an encrypted secure module

(this requires tamper-proof hardware, such as some kind of chip or smart card).

Devices have the incentive to collect nuggets to allow them to send/receive messages

in the network. The two mechanisms are described below:

Packet Purse Model (PPM): A source device attaches some of its nuggets to a message

and introduces it to the network. Other devices take one of these nuggets on

forwarding the message. The message is dropped if it has no nuggets left attached. A

disadvantage of this mechanism is that nuggets are easily wasted if the source device

over/under-estimates the amount required. However, the same authors attempt

to resolve this problem in Buttyán and Hubaux (2003) by ensuring devices always

get paid for forwarding a message, even if the initial number of nuggets was under-

estimated.

Packet Trade Model (PTM): In this model, nuggets are required to receive (rather than

send) a message. Each device buys the message from the previous device for an

increasing amount of nuggets. The destination device covers the cost of the entire

transmission. A disadvantage of this mechanism is that the last intermediate device

loses many nuggets if the destination device cannot be found.

In Li et al. (2010), a different approach is taken to tolerate (rather than punish)

selfish devices. It is noted that devices are likely to be socially selfish and favour
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doing tasks for devices of past encounters rather than a device never encountered

before. This is especially interesting for social network applications (see Section 1.2).

“Our underlying philosophy is that social selfishness is a kind of user

demand that should be satisfied. It should be treated as a design metric

to measure the user satisfaction, similar to other traditional performance

metrics such as data delivery ratio and delay” (Li et al. 2010).

Using the proposed protocol, devices forward messages only to those who are willing

to pass it on. Willingness depends on many factors, such as device resources and

relationship with sender. There is no incentive to lie about intentions, meaning fewer

security measures are required, such as tamper-proof hardware as seen in Buttyan

and Hubaux (2000). When tested against other manet protocols, results show

improved performance despite the presence of selfish devices in the network.

(c) Security

The two main security concerns for opnets are as follows:

• Eavesdropping of private information.

• Malicious behaviour of certain devices that disrupts the network.

As discussed in Section 1.1.3, opnets are most suited to broadcast transmissions.

In this case, sent data are public and eavesdropping is not of concern. However, for

unicast and multicast transmissions, eavesdropping is a difficult problem to overcome.

Several potential solutions for eavesdropping in a manet are discussed in Hubaux

et al. (2001) and Yang et al. (2004); however, they are not suitable for opnets.

This is because some of the solutions require a form of infrastructure, like a security

server, which cannot be included in an opnet. Other solutions require the exchange

of encryption keys between network devices using a two-way communication path,

which are unlikely to occur in an opnet. Furthermore, cryptography algorithms

may require too much battery power from the mobile devices. With the current state

of security technology, it is not recommended to transfer sensitive information in an

opnet.

An example of malicious behaviour is a virus spreading in the network. It is up

to the operating system and applications on the device to prevent viruses causing
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disruption (Yang et al. 2004). Another example is a DoS (Denial of Service) attack,

in which devices may attempt to flood the network (Yang et al. 2004). It may be

possible to prevent this type of behaviour with a reputation or friendship system,

such as the ones described in the previous subsection.

2.5 Modelling Time

Time can be modelled as either a series of discrete events or a continuous progression

(Bratley et al. 1987). Each of these models are discussed in this section.

2.5.1 Discrete-Event Simulation

In a discrete-event simulation, the state of the system changes over time according

to a series of events. These events can be processed synchronously or asynchronously

(Bratley et al. 1987), as described below.

Synchronous Model

In synchronous discrete-event simulation, time is divided into a set of consecutive

snapshots, or time-steps, which occur at regular intervals. Between time-steps, the

state of the system is undefined and any events that occur will not be realised until

the following time-step. For all synchronous models in this thesis, it is assumed that

each time-step is exactly one second, allowing the modelling of certain parameters,

such as the deletion rate, as a probability per time-step.

Synchronous simulations are well-suited to regular or predictable events, such as

message deletion after a fixed period of time. They are also the best way to simulate

certain mobility models (such as the Random Walk of Lev́y Walk from Section 2.3).

However, care must be taken when choosing the time-step size:

• if too large, many events may be grouped together to occur at the same

time-step,

• if too small, much computation time can be wasted simulating time-steps over

which no events occur.
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Throughout this thesis, synchronous discrete-event simulation is used as it is easier

to implement. Furthermore, there is less processing overhead required when events

occur sufficiently frequently, and events are expected to occur frequently in the

simulations.

Asynchronous Model

In this type of simulation, events are handled at the exact time of their occurrence.

Simulations do not progress in time-steps; instead, the clock is incremented forward

to the time of the next event. This is appropriate for situations where inter-event

times are of high variance, as no computation time is wasted on simulation when no

events occur. However, for frequent and regular events, the overhead of asynchronous

simulation may make synchronous simulation a more efficient alternative.

2.5.2 Continuous-Time Model

In a continuous-time model, time is always defined and is not divided at all. The

state of the system continually adjusts, allowing time to be drilled-down indefinitely

into more detail (Bertsekas and Tsitsiklis 2002). Continuous-time models usually

consist of a number of differential equations, which are to be solved numerically for

time.

2.6 Real-World Experiments

From Section 2.3.4, it is clear that modelling human movement is a complex task.

It is also clear that information propagation in an opnet is greatly dependant on

the movement of the particles. For these reasons, it can be difficult to accurately

simulate a real-world opnet. This section presents current research that helps to

overcome this problem.

2.6.1 Link Models

Several simulations are performed on link models gathered using the SocioPatterns

platform described in Section 2.4.2. In Panisson et al. (2012), broadcast transmissions

53



are simulated on several link models. Proximity detection of 10–12 meters is used to

create one of the link models, while the other two use face-to-face interactions within

a distance of 1.5 meters. Data from experiments based on all three link models are

gathered at three day long conferences with over a thousand individuals participating

in total. From the link models, a series of Fastest Route Trees (FRTs) are generated,

showing the path of intermediate particles that must be taken for a message to reach

any particular particle in the shortest possible time. An analysis of delivery time is

also performed, showing the time it takes each particle to receive a message after it

is first generated in the network.

2.6.2 Movement Traces

Opnet simulations are performed on movement traces in Zyba et al. (2011). Three

traces are used in total, two of which come from real-world devices carried by people

and one comes from avatar traces from a virtual world computer game called Second

Life (Second Life 2011). Each simulation lasts for 2.5 days and is repeated until at

least 95% confidence in the average result is reached. In the simulations, messages are

disseminated as a broadcast using instantaneous transmissions. The main focus of

the paper is to show how social behaviour of particles affects message propagation. It

is found that, contrary to other research (see Section 2.3.2), the majority of particles

are irregular and infrequent in their movement. Results of the simulations show that

message dissemination is more effective when the particles in a network move with

similar frequency and regularity, as opposed to a mixture of particles with different

frequency or regularity of movement.

In Heinemann et al. (2008), movement trajectories are created with a combination

of the following models:

• Traces of coarse granularity for movement on the macroscopic scale. This

is taken from the Reality Mining dataset (Eagle and Pentland 2005), which

consists of data collected from 100 mobile telephones over the course of 9

months.

• Synthetic models for movement on the microscopic scale. The following syn-

thetic models are separately used and compared:

– Rwp model, see Section 2.3.3.4.
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– Gauss-Markov Model, which is similar to the rwp model but yields

smoother trajectories as future velocities are influenced by past velocities.

– Manhattan Grid Model, in which particles move only along predefined

perpendicular paths. This mimics how people move in an American city.

Opnet message propagation is simulated on these trajectories with broadcast trans-

missions. Each simulation is repeated 100 times, with the average result being taken.

Simulation results show that propagation is more effective with the addition of static

devices known as information sprinklers, especially if they are connected with a

backbone network. Information sprinklers are static devices that participate in the

network. As these devices are static, they may include enhancements such as a large

buffer size, or they may be mains powered. The benefits of information sprinklers

are less significant if the mobile devices use a larger signal radius. Analysis is also

performed on the number of intermediate devices used to get a message to each

recipient. The main finding of this paper is that human movement is indeed suitable

for effective opnet communication.

2.6.3 Implementations

Serval Project

The Serval project is an implementation of a manet that runs on smart phones

(Gardner-Stephen 2011). The project aims to make mobile telephone communication

(voice calls and sms) available either by enhancing current cellular networks, or

by replacing them. In Gardner-Stephen (2011), the implementation is tested in

several locations that lack cellular infrastructure, such as the Australian outback

and underground caves. Several test case scenarios were studied, including locating

a lost party and re-establishing communication in a disaster situation.

Haggle

Haggle is a fully-functional implementation of an opnet that runs on smart phones

(Nordström et al. 2012). A key feature of Haggle is that it ranks content in terms of

user interest; therefore, providing more relevant information. The ranking system

works by matching network content to similar content on the individual devices.

A range of content can be used with Haggle, such as audio files or social network
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text updates. In Nordström et al. (2012), studies are performed on a real-world

implementation of Haggle. Studies include analysis of power consumption, and

delivery ratio analysis for various interest group sizes and content relevance.

Pietiläinen and Diot (2009)

An Opnet technology for smart phones was developed by Pietiläinen and Diot

(2009). The technology was tested at conferences by providing attendees with

suitably configured mobile phones. Bluetooth is used for transmissions, and the use

of Wi-Fi is also discussed. During experimentation, devices make several attempts to

transmit various file formats as a unicast or multicast transmission. Several metrics

are recorded from the experiments, such as power consumption, contact rate and

data throughput. Concluding remarks from the paper state that:

“While the contact opportunities arise regularly in the type of environment

we have studied, they are often simultaneous, short and limited by the

available bandwidth and other resources on the mobile device such as

battery and storage” (Pietiläinen and Diot 2009).

2.7 Non-Spatial Models for Data Propagation

This section discusses non-spatial models for data propagation. All research in this

section assumes instantaneous data transmissions between particles. Unless otherwise

stated, models use unicast transmissions, where there is a single source and a single

destination particle.

2.7.1 Groenevelt et al. (2005)

Through the use of Markov chains, a stochastic model for unicast transmissions in a

manet is presented by Groenevelt et al. (2005). The following two protocols are

considered:

• 2-hop multi-copy: the message is only ever transmitted from the source and/or

to the destination.
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• Unrestricted multi-copy: message copies are transmitted across as many inter-

mediate particles as required.

Network delay is modelled with precise analytic expressions rather than simple scaling

laws. Analytic expressions are also presented for the distribution of the number of

message copies in the system (due to intermediate particles) at the time of delivery.

The models developed in Groenevelt et al. (2005) apply to arbitrary movement

patterns in any number of spatial dimensions, provided contacts occur according to

a Poisson process (meaning the inter-contact times are exponentially distributed).

The models require only two parameters: the number of particles in the network

and the contact rate. Contact rate encapsulates several features of the network on

which propagation models are dependent, such as signal range and interference, as

well as movement properties such as speed. After creating analytic expressions for

contact rate, the models are validated with simulations for three synthetic mobility

models. Results show that the theoretical models closely match simulated data for a

small to moderate signal radius. Larger radii lead to inter-contact times that are not

exponentially distributed, meaning they cannot be modelled by a Poisson process.

2.7.2 Zhang et al. (2007)

The work of Groenevelt et al. (2005) is extended by Zhang et al. (2007) where, once

again, theoretical models are provided for network delay and the number of copies of

the message in the network. This time, models are in the form of odes, which means

derivation is simpler. Additionally, the probability of a message successfully reaching

its destination is modelled. The following protocols are considered for the models:

• 2-hop multi-copy: identical to that of Groenevelt et al. (2005).

• Probabilistic multi-copy: message transmissions (when possible) occur with a

certain probability. Multiple intermediate particles are allowed1.

• Limited-time multi-copy: particles remove a message from its buffer after a

certain time period.

These three protocols are compared with regard to performance and resource consump-

tion. Further discussion of resource consumption includes several buffer management

1Although not mentioned in Zhang et al. (2007), the probability in this protocol could be
configured to incorporate the average effects of factors such as interference and signal blocking.
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systems that determine when particles delete messages. Buffer occupancy is theoret-

ically modelled for each management system, revealing how resource consumption

can be significantly reduced whilst maintaining an effective network. All theoretical

models are verified with simulations using the Random Direction mobility model

(see Section 2.3.3.3).

2.7.3 Jacquet et al. (2009a)

Jacquet et al. (2009a) derive a generic scaling law for lower-bounds on network delay

using an asymptotic analysis. In contrast to other work surveyed here, this work

also focuses on broadcast transmissions by providing a model for the time until

all particles in the network receive the message. The scaling law is verified using

simulation. Each simulation is repeated 10 times with the average result taken.

Results show that the average delay and the average broadcast time are both of the

same order. The authors discuss a discrepancy between their model and the model in

Zhang et al. (2007), and claim that this discrepancy is due to the (allegedly incorrect)

assumption that contact rate is independent for each particle in the network.

2.8 Spatial Models for Data Propagation

In this section, models of data propagation in both space and time are discussed.

This means a message is modelled to progressively spread outwards from its source,

rather than uniformly across the entire region. The work in this section assumes

instantaneous message transmissions between particles, except for the two papers in

the appropriate subsection.

2.8.1 Instantaneous Transmissions

Jacquet et al. (2007) use an asymptotic analysis to provide lower-bounds on network

delay. The model concerns a manet using an unrestricted multi-copy protocol, where

message copies are transmitted across as many intermediate particles as required. The

Random Direction mobility model is considered (with various values for turning rate,

see Section 2.3.3.3) on a 2D region of infinite size. The destination of the transmission

can be a mobile or static particle. Because of this flexibility, the destination can also
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be modelled as a position, rather than a particle. The combination of this and the

unrestricted multi-copy protocol means the model is applicable to broadcast as well

as unicast transmissions. For example, the amount of time taken for a broadcast

message to reach a certain distance from its source can be modelled.

The model from Jacquet et al. (2007) is extended in Jacquet et al. (2008) for (infinite)

regions of one and three dimensions. It is also extended to model the success of

a transmission between two particles as a function of the distance between those

particles. This is useful for considerations such as signal fading and interference.

Jacquet et al. (2009b) is a similar paper to Jacquet et al. (2007) (indeed, they have

the same title). However, in this paper, the model is extended for large regions of

finite size, rather than infinite regions.

2.8.2 Non-Instantaneous Transmissions

The work of Jacquet et al. (2008, 2009b) is extended to consider non-instantaneous

data transmissions in Jacquet et al. (2010). This work concerns the Random

Direction mobility model in a 2D region of finite size. The authors present their work

in terms of journeys, defined to be a path in space and time between a source and

destination (i.e. as the network topology changes due to movement). A theoretical

model is provided for journey capacity (the amount of data that can be transported

through a journey). Furthermore, asymptotic analysis—approximating behaviour

with functions as the parameters tend to infinity (Hildebrand 2009)—is used to

provide upper and lower bounds of information propagation speed (applicable to

unicast and broadcast transmissions) as a function of journey capacity. Theoretical

models are verified using simulation. The theoretical models show that information

propagation speed is of the same order as particle speed for large journey capacities.

Baccelli et al. (2011) consider information propagation speed in a vehicular ad hoc

network (vanet)—essentially an opnet where the network devices are carried by

vehicles. The network is located on a motorway where vehicles travel in either

direction. By repeatedly passing data to the vehicle in front, propagation speed

can exceed that of the vehicles. If the vehicle in front is out-of-range, a vehicle

travelling in the other direction may bridge the gap. A theoretical model is created

for both instantaneous and non-instantaneous message transmissions. These models
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are verified with simulations, with the total number of vehicles in the simulations

varying from 1000 to 5000. The models show that data propagation speed (in terms

of the distance a message travels along the road) is dependent on vehicular density.

If density is below a certain threshold, propagation speed is the same as vehicular

speed on average, otherwise, it is significantly higher.

2.8.3 Klein et al. (2010)

In Klein et al. (2010), non-spatial models (such as those in Section 2.7) are criticised

as they assume well-mixed regimes (see Section 2.3.6). Theoretical and simulated

modelling is used to show that this assumption only holds if contact rate is low

enough, otherwise, spatial aspects become significant. Contact rate is affected by

signal radius and particle density; by varying these parameters, a critical threshold is

revealed, showing a transition between a well-mixed regime and when spatial effects

become significant. Simulated models involve 200 mobile devices moving according

to the Random Direction movement model on a 2D plane.

Klein et al. derive a partial differential equation (pde) to model data propagation

(for instantaneous transmissions only). This pde is based on the reaction-diffusion

equation developed by Kolmogorov et al. (1937) and Fisher (1937). Mathematical

analysis is used to show that the model reduces to an ode (like the non-spatial

models in Section 2.7) when the system is adjusted to behave as well-mixed.

A travelling wave solution to the pde is derived and used to create scaling laws for

delay. The expected value of the delay is compared for a well-mixed regime and for

when spatial aspects become significant. The theoretical and simulated models show

that the well-mixed model becomes increasingly optimistic for larger signal radii and

particle densities. This is because, for spatially significant regimes, particles closest

to the source will receive the message first. Therefore, the message spreads from the

source like a radial wave, rather than the uniform spread observed for well-mixed

regimes.

Unlike the models of Jacquet et al., the model presented in Klein et al. (2010) is

non-asymptotic. This means that exact values are provided for delay rather than

the bounds. The model is verified with simulations and a replica example can be

seen in Fig. 2.11. A further study demonstrates how the model is affected by the
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aspect ratio of the simulation region. Theoretical and simulated modelling is used to

show that this behaviour is not captured by non-spatial models.
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Figure 2.11: Replica of an experiment performed in Klein et al. (2010). A broadcast
transmission is spread from the centre of a 16 km2 2D region. Red (filled) circles
are infectious while green (crossed) circles are susceptible. The black ring shows the
wave front as predicted by the reaction-diffusion model in Klein et al. (2010).

2.8.4 Summary (Spatial Models)

The work of Klein et al. and Jacquet et al. constitutes the state-of-the-art regarding

models for data propagation in opnets. Their work is especially applicable to this

thesis, as spatial considerations are incorporated into the models and, in the case of

Jacquet et al., non-instantaneous transmissions.

The key benefit of the model proposed by Klein et al. (2010) over those of Jacquet

et al. is that it is based on an exact analysis, rather than on upper/lower bounds

found through asymptotic analysis. This is more applicable to this thesis, and is

most useful for the motivational topics discussed in Section 1.4.

The model of Klein et al. (2010) could be improved by adapting it to work with

any mobility model, rather than just the Random Direction model. This could be

achieved by defining the model in terms of contact rate/duration distributions, which

encapsulates specific, mobility model dependent properties that are currently being

used (such as particle speed and turning rate). In doing this, the model could be

used in a wider variety of scenarios. For example, the model could be used with

movement that is too complex to model analytically, such as real-world movement,

as the contact rate and contact duration distributions could be captured empirically.

Throughout this thesis, models have been defined to work with any mobility model
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by defining the models in terms of contact rate/duration distributions. Furthermore,

the same idea is used to extend the model of Klein et al. (2010) in Section 5.6.

Another way in which the model of Klein et al. (2010) might be improved is to include

a message transmission time, as discussed in the key contributions (see Section 1.3.1).

In real-world networks, it takes time to transfer data between particles; however, the

model in Klein et al. (2010) assumes instantaneous transmissions. This assumption

may affect the accuracy of the model. In Section 5.6, the model of Klein et al. (2010)

is extended to include message transmission time.

2.9 Chapter Summary

In this chapter, relevant information relating to this thesis has been introduced. This

chapter started with a literature review and study of epidemic models applied to

opnets (Section 2.1). Several interaction schemes were discussed, such as the SI and

SIS models, which are used later in this thesis in Section 4.2. Following epidemic

models, particle movement was discussed. The mobility model primarily used in this

thesis is the Random Direction model, discussed in Section 2.3.3.3. After particle

movement, particle interaction was discussed (see Section 2.4.1). In this section,

contact rate and contact duration models are introduced, which are used throughout

this thesis, for example in Section 3.2. Models for time have also been discussed in

this chapter (see Section 2.5). All simulations in this thesis use the synchronous

discrete-event time model. Following time, real-world experiments were discussed in

Section 2.6. This information comes in useful later in this thesis when real-world

data are studied in Section 5.7. Finally, Spatial and non-spatial models are discussed

in Sections 2.7 and 2.8. Non-spatial models are studied in Chapter 3 and spatial

models are studied in Chapters 4 and 5.

This chapter has provided the reader with the necessary understanding of the

underlying concepts on which this thesis builds upon. The context for the remainder

of this thesis has been set and a clear indication has been given of the way in which

it will proceed. The next chapter will be the first in this thesis to present an original

contribution.
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CHAPTER 3

Non-Spatial Models

This chapter starts by introducing a particle interaction model based on a transport

graph. Following this, contact rate and contact duration is modelled for particles

that interact on the transport graph. The contact rate and contact duration models

are used to theoretically model message spread in the case of non-instantaneous

transmission.

The models used for particle interaction in this chapter are not strictly non-spatial.

However, the chapter earns its name as the chosen models simplify message spreading

in an opnet so that spatial aspects are not significant. In a truly spatial model,

a message spreads from its source as a travelling wave through space, in a similar

way to the spread of a drop of ink in water. This travelling wave causes difficulties

when modelling message spread theoretically, as will be seen later in this thesis.

The “non-spatial” models in this chapter avoid this complication and provide a

straightforward starting point for the study on message spread.

3.1 Transport Graph

In this section, a transport graph for particle interaction is introduced. The transport

graph is identical to the Urn models from Section 2.2.2 except for the following

points:

Use of Terms: The terms particles and sites are used instead of balls and urns.

As with the Urn models, there are N particles and n sites.
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Time Progression: In the Urn models, N pairs of balls are selected per second

for potential interaction. However, in the transport graph, all particles can

potentially interact with all other particles per second. This change is made as

it allows for easier theoretical modelling and leads on to other models discussed

later in this thesis.

Message Transmissions: In the Urn models, messages are transmitted with prob-

ability τ per second. This simplifying assumption was made due to the way

in which time progresses in the model. It is an unrealistic assumption as it

allows the possibility of a large message being completely transmitted in a short

amount of time. In the transport graph, this idea is abandoned. Instead, mes-

sage transmission occurs after exactly τ seconds of contact between particles,

as illustrated in Fig. 3.1. If τ = 0, susceptible particles become infected as

soon as they make contact with an infectious particle.

· · ·

t t+ 1 t+ τ

Infectious particle
Susceptible particle

Figure 3.1: Diagram to show how several susceptible particles can be infected by a
single infectious particle if and only if they remain in the same site for at least τ
seconds.

In the transport graph, particles can simultaneously communicate with many particles

that are in the same site (as shown in Fig. 3.1). All particles in other sites are

considered to be out of range. Suppose a particle moves into a site that contains k

other particles. This particle makes contact with all k particles in the site, and vice

versa (see Fig. 3.2). Likewise, a pair of particles lose contact when one or both move

out of their site.

In the context of real-world opnets, it may be difficult for a device to commu-

nicate with multiple devices simultaneously. However, this could potentially be

achieved with channel multiplexing or multiple antennae.
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2 new contacts

1 new contact each

All three particles make
two new contacts

Figure 3.2: Diagrams to show how particles interact in the transport graph. The left
site contains two particles and is about to receive a third. The right site contains
one particle and is about to receive two more. The number of new contacts each
particle makes is displayed in the figure.

As with the Urn models, each particle initially resides in a site chosen uniformly at

random. At each time-step, each particle instantly moves, or jumps, to another site

with probability θ (otherwise, it remains at the same site). The new site is chosen

uniformly at random from the remaining n− 1 sites. The following assumption is

made regarding jumps:

Assumption To simplify the development of theoretical models, it is assumed that

at any given time-step, the probability that two particles simultaneously jump from

site i to site j (where i 6= j) is zero. This is a reasonable assumption provided n is

sufficiently large and θ is sufficiently small.

The transport graph is illustrated in Fig. 3.3.

3.1.1 Distribution of Particles

Let Ni be the number of particles at site i, where N =
∑n

i=1Ni is the total number of

particles in the system. Given that the transition of particles between sites is equally

weighted, the distribution of Ni is the same for all values of i. This is true because

all site transitions are chosen uniformly at random. However, if site transitions were

unequally weighted (e.g. certain sites were favoured over others) then a steady state

could still be reached, but the distribution of Ni would depend on the site index i.

Let k ∈ {0, 1, . . . , N}. The occupancy number Ni = k if and only if exactly k

particles from the population are located at site i. Thus Ni has binomial distribution
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Figure 3.3: Diagram of the transport graph used for particle interaction. Each square
is a site (numbered 1 to n). The red circle is a particle within site 1. Edges between
any pair of sites are equally weighted (with probability a). Self-loops represent the
lack of movement to another site (occurring with probability 1− θ).
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with parameters N and 1
n
:

Ni ∼ Binomial

(
N,

1

n

)
, (3.1)

which has probability mass function:

P (Ni = k) =

(
N

k

)(
1

n

)k(
1− 1

n

)N−k
. (3.2)

Note that when N and n are both large, Eq. (3.2) can be approximated by the

Poisson distribution with a parameter value of N · 1
n

= ρ:

P (Ni = k) =
ρk

k!
· e−ρ. (3.3)

Here, ρ is the average number of particles per site. Despite the lack of a spatial

aspect in the model, ρ shall still be referred to as particle density.

Table 3.1 lists the symbols used to represent each variable in the model:

Symbol Meaning

N Number of particles in the system
n Number of sites in the transport graph
ρ Mean occupancy

(
N
n

)
in steady state (particle density)

θ Probability (per second) of moving to a new site

Table 3.1: Description of the symbols used when discussing the transport model.

3.2 Contact Rate

In this section, particle contact rate νc is modelled. In Section 2.4.1, νc was defined

to be the number of new contacts made by a particle per second. Generally speaking,

one would expect νc to increase in the following situations:

• particle movement (θ) increases, making new contacts more likely;

• the number of particles (N) increases, thus increasing particle density;

• the number of sites (n) decreases, again increasing the particle density.

Theorem 3.2.1 The probability that an arbitrary particle makes exactly k new
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contacts in any given time-step is:

P (νc = k) = θ ·
(
N

k

)(
1

n

)k(
1− 1

n

)N−k
+ (1− θ) ·

(
N

k

)(
θ

n

)k(
1− θ

n

)N−k
. (3.4)

Proof The problem is firstly divided into two parts that are easier to solve:

• Contact rate is modelled for a particle that has just jumped to its current site.

This means that the particle was in a different site at the previous time-step.

This type of contact rate shall be denoted as νjump
c .

• Contact rate is modelled for a particle that has not moved since the previous

time-step. This shall be denoted as νstayc .

νc is simply a combination of νjump
c and νstayc with respect to θ (the probability that

a particle jumps at any given time-step):

P (νc = k) = θ · P (νjump
c = k) + (1− θ) · P (νstayc = k). (3.5)

The distributions of νjump
c and νstayc are derived separately.

Contact Rate Given a Jump: Consider a particle that has just jumped to its current

site. In this case, our particle makes a new contact with every other particle at the

same site. Therefore, νjump
c is equal to the number of particles in the site just before

our particle jumped to the site. The distribution of this number is given by Eq. (3.2),

with N replaced by N − 1 to exclude our jumping particle. Thus,

P (νjump
c = k) =

(
N − 1

k

)(
1

n

)k(
1− 1

n

)N−1−k
. (3.6)

This is simply the binomial distribution with parameters N−1 and 1
n
. It is reasonable

to assume that N ≈ N − 1 for large values of N , hence,

νjump
c ∼ Binomial

(
N,

1

n

)
. (3.7)

Contact Rate Given No Jump: Let us now look at νstayc , the contact rate of particles

that did not jump to a new site at the previous time-step. Let N jump
i and N stay

i

respectively denote the number of particles that did and did not move to site i at the

previous time-step. N jump
i = k if and only if any combination of k particles at site i
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jumped at the last time-step and the remaining Ni − k particles did not. Therefore,

N jump
i has binomial distribution with parameters Ni and θ. Any particle that did

not move into its current site at the previous time-step will make new contacts with

the N jump
i that did. Thus,

νstayc ≡ N jump
i ∼ Binomial (Ni, θ) . (3.8)

The following Binomial distribution relationship is used: if X ∼ B (n, p) and Y ∼
B (X, q) then Y ∼ B (n, pq) (Bertsekas and Tsitsiklis 2002). This relationship can

be used with Eqs. (3.1) and (3.8) to provide a simplified distribution for νstayc :

νstayc ∼ Binomial

(
N,

θ

n

)
.

Substituting Eqs. (3.7) and (3.8) into Eq. (3.5) provides the equation for νc regardless

of whether a particle jumped:

P (νc = k) = θ ·
(
N

k

)(
1

n

)k(
1− 1

n

)N−k
+ (1− θ) ·

(
N

k

)(
θ

n

)k(
1− θ

n

)N−k
.

Note that when N and n are large, the binomial distributions in Eq. (3.4) can be

approximated Poisson distributions as follows:

P (νc = k) = θ · ρ
ke−ρ

k!
+ (1− θ) · (ρθ)ke−ρθ

k!
. (3.9)

Figure 3.4 compares the developed theoretical and simulated models for contact

rate. Clearly, the theoretical model matches the simulated results.

3.2.1 Expected Contact Rate

The mean value of the Binomial distribution with parameters n and p is np. By

applying this property to both Binomial distributions in Eq. (3.4), the expected

contact rate is found, as follows:

E(νc) = θ · ρ+ (1− θ) · θρ,

= θρ(2− θ). (3.10)
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Figure 3.4: Theoretical/simulated model comparison for the contact rate distribution.
Left plot parameter values: N = 100, n = 100, θ = 0.1. Right plot parameter values:
N = 500, n = 100, θ = 0.5.

Figure 3.5 compares the theoretical expected contact rate model to a simulated

model for various values of ρ and θ. From the results, it is clear that E(νc) linearly

increases with ρ. This is confirmed in Eq. (3.10), from which it can be deduced that

E(νc) ∝ ρ. This is not surprising, as a higher occupancy means more particles per

site and hence more contact opportunities. It is also clear that E(νc) increases with

θ, as shown by the results and deduced from Eq. (3.10) as follows:

E(νc) = 2ρθ − ρθ2,
dE(νc)

dθ
= 2ρ− 2ρθ,

= 2ρ(1− θ) ≥ 0 as 0 ≤ θ ≤ 1.

Again, this is expected as a particle is likely to make more contacts if it moves around

instead of waiting for others to come within range.

3.3 Contact Duration

In this section, contact duration Tc is modelled for the transport graph model.

Generally, one would expect Tc to increase as particle movement (θ) decreases. This

is because decreased movement leads to particles remaining co-located for longer.
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Expected Contact Rate/Duration Against Particle Density/Jump Probability
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Figure 3.5: Theoretical/simulated model comparisons for expected contact rate (top
row) and expected contact duration (bottom row) against jump probability (left
column) and particle density (right column). All error bars show standard error
(some are too small to see). Parameter values: N = 100, n = 100, ρ = N

n
= 1 (left

column only); θ = 0.5 (right column only).
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Theorem 3.3.1

P (Tc ≥ t) = (1− θ)2(t−1).

Proof For any pair of particles, Tc = t if and only if the following are true:

• Both particles occupy the same site (i.e. neither jump) from time 0 to t−1. This

occurs with probability (1− θ)2(t−1). The possibility of two co-located particles

jumping together to the same site is ignored, as explained in Section 3.1.

• Both particles occupy different sites (i.e. one or both jump) at time t. This

occurs with probability 1− (1− θ)2.

Combining these two expressions provides the distribution of Tc:

P (Tc = t) =
[
(1− θ)2

]t−1 [
1− (1− θ)2

]
. (3.11)

This is the probability mass function of the Geometric distribution with parameter

value 1− (1− θ)2; therefore, Tc ∼ Geometric (1− (1− θ)2).

The cumulative distribution function of the geometric distribution with parameter p

is 1− (1− p)t for some t ∈ {1, 2, 3, . . .}. Substituting p with 1− (1− θ)2 gives:

P (Tc ≤ t) = 1− (1− (1− (1− θ)2))t. (3.12)

Subtract this from 1 to get:

P (Tc > t) = 1− (1− (1− (1− (1− θ)2))t),

=
[
(1− θ)2

]t
.

Finally, substitute t for t− 1 to get:

P (Tc ≥ t) = (1− θ)2(t−1).

The probability mass function for Tc for various values of θ is presented in Fig. 3.6.

In Fig. 3.7, the developed theoretical model is compared to simulated results for

two sets of parameter values. Clearly, the theoretical model matches the simulated

results.
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Figure 3.6: Plot to show the probability mass function of the contact duration for
various values of θ.
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Figure 3.7: Theoretical/simulated model comparison for Tc. Left plot parameter
values: N = 10, n = 10, θ = 0.1. Right plot parameter values used: N = 100,
n = 100, θ = 0.1. Simulated results averaged over 50 simulations, each of 500
seconds.
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3.3.1 Expected Contact Duration

As discussed, Tc ∼ Geometric (1− (1− θ)2). The expected value of the Geometric

distribution is the inverse of the parameter. Therefore, the expected value of Tc is:

E(Tc) =
1

1− (1− θ)2 (3.13)

From this equation, it is clear that E(Tc)→∞ as θ → 0, i.e. particles remain in

contact indefinitely if they never move. Also, E(Tc)→ 1 as θ → 1, meaning particles

stay in contact for only one second if they jump at every second.

Figure 3.5 compares the developed theoretical model for Tc to simulated data for

various values of ρ and θ. From the plots, it is clear that ρ does not affect Tc.

However, θ does affect Tc, which decreases at a rate inversely proportional to θ. This

can be seen in the polynomial Eq. (3.13). This polynomial decay is expected as

contacts are terminated sooner if particles move more frequently.

3.4 Message Spread

In this section, a theoretical model is developed for message spread in the transport

graph described in Section 3.1. In the transport graph, particles can only communicate

with other particles in the same site. Each particle jumps to a new site with probability

θ at each time-step. The used message spread model relies on the contact rate and

contact duration distributions, derived in Sections 3.2 and 3.3 respectively. A single

message is propagated for each experiment. Despite not being most suited to opnet

technology (as discussed in Section 2.2.3), the SI interaction scheme is used to

simplify the theoretical models.

Definition Let I(t) be the proportion of infectious particles (particles which are

carrying the message) in the system at time t. Only one particle has the message at

time 0, therefore, I(0) = N−1. Let S(t) = 1− I(t) be the proportion of susceptible

particles in the network at time t.

Let ∆τ (t) be the increase in the proportion of infectious particles at time t, given

a message transmission time of τ . Note that ∆0(t) corresponds to instantaneous
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transmissions. Let Tc be the contact duration for any two particles in the system

(see Section 3.3).

Theorem 3.4.1

∆τ (t) = P (Tc ≥ τ) ·∆0(t)

Proof If transmission time is instantaneous, a successful transmission occurs with

every infectious–susceptible contact. For non-instantaneous transmissions, only a cer-

tain proportion of the infectious–susceptible contacts result in successful transmissions—

those of a duration of at least τ .

Let us now proceed to create a model for ∆0(t).

Definition Let νc be the number of new contacts a particle makes in a given second

(see Section 3.2).

Theorem 3.4.2

∆0(t) = S(t) ·
∞∑
k=0

P (νc = k) · (1− S(t)k)

Proof At time t, a particle is susceptible and makes k new contacts with probability

S(t) ·P (νc = k). This susceptible particle becomes infected unless all k new contacts

are not infectious, which occurs with probability S(t)k. Therefore, the probability

that our susceptible particle is infected at time t (given that it made k new contacts)

can be expressed as follows:

S(t) · P (νc = k) · (1− S(t)k).

The sum of this expression over all possible values of k provides the probability of

infection regardless of the number of new contacts made. This is equal to ∆0(t), the

proportion of particles that become infected at time t:

∆0(t) = S(t) ·
∞∑
k=0

P (νc = k) · (1− S(t)k).

Theorem 3.4.3

∆τ (t) = P (Tc ≥ τ) · S(t) ·
∞∑
k=0

P (νc = k) · (1− S(t)k)
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Proof Follows from Theorem 3.4.1 and Theorem 3.4.2.

3.4.1 Experimental Results

Figure 3.8 presents a comparison of simulated results with the theoretical model

developed in this section. The top-left plot is the control plot which presents the

results of a control experiment. The three other plots each present the results of an

experiment which differs from the control experiment by a single parameter value.

This makes it easy to see how each parameter affects the accuracy of the developed

theoretical model. Table 3.2 shows the parameter values used for the control plot.

The deviated parameter values are indicated at the bottom-right of each other axis

in the figure.

Parameter Value

Number of particles (N) 100
Number of sites (n) 1000
Jump probability (θ) 0.1
Transmission time (τ) 0

Table 3.2: List of parameter values used for the control plot in Fig. 3.8.

Control Plot: Looking at the control plot (a), it can be seen that the developed model

is accurate as it falls within the error bars of the simulated results. The developed

model fits perfectly for the first 100 seconds or so, after which the proportion of

infectious particles starts to be overestimated. The reasoning for this is speculated

upon later in this section.

High Particle Density: The results in plot (b) use a higher particle density than the

control experiment. This is achieved by decreasing n from 1000 to 100, giving a

density of 1 instead of 0.1. It is clear that this has little effect on the developed

model, reducing the accuracy only slightly. The model still falls within the empirical

error bars, but not as much as with the control plot. Looking at the x axis scale, it

is clear that the rate of message spread has increased. This is due to a higher contact

rate, resulting from the increased particle density.
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Comparison of Simulated/Theoretical Models of Message Spread
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(c) Non-Instantaneous Transmissions
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Figure 3.8: Plots to compare simulated/theoretical models of message spread for
the transport graph model using an SI interaction scheme. Table 3.2 shows the
parameter values used for the control plot. All other plots have one parameter
value adjusted (indicated in the bottom-right of the axis). All markers represent the
averaged empirical data of 100 simulations; all errorbars show standard deviation.
Note the different scales used on the x-axis.
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Non-Instantaneous Transmissions: The results for non-instantaneous transmissions

can be seen in plot (c). This experiment differs from the control experiment in that

the transmission time is 5 rather than 0. It is clear that the model is still accurate

for the first 100 or so seconds. Beyond this, accuracy starts to deteriorate and the

model eventually falls outside of the empirical error bars. Nevertheless, the model

still provides a fair estimate of message spread. Both the empirical results and the

theoretical model show that propagation is slower than the control experiment, which

is due to the longer transmission time.

High Jump Probability: In plot (d), jump probability is set to 0.5 instead of 0.1. By

looking at the scale of the x-axis, it is clear that increasing the jump probability

increases the rate of message spread. This is due to an increased contact rate.

Although contact duration is decreased, this does not affect message spread as

instantaneous transmissions are used. It is clear that increasing the jump probability

has had little effect on the accuracy of the developed model.

3.4.2 Evaluation

Overall, the developed model appears to provide a good estimate for message spread

in the transport graph. However, a consistent over-estimation of the proportion of

infectious particles in the system is observed. This may be because the theoretical

model is deterministic, while the simulations are non-deterministic. This may

be causing small discrepancies between the models in the early stages which are

subsequently amplified in the ensuing evolution of the system. It can sometimes take

a long time for a message to start propagating in a simulation, due to how fortunate

the source particle is to contacting other particles. Conversely, fractional proportions

of particles become infected straight away in the theoretical model (continuous time),

leading to a slightly higher value in the early stages. Each value of the theoretical

model is dependent on the previous, so a small deviation in the early stages has a

snowball effect, leading to a large discrepancy in the later stages. Eventually, all

particles become infectious and the model matches simulated results once again.
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3.5 Chapter Summary

In this chapter, opnets have been studied where the particles move on a graph-based

transport model. The particle contact rate for such a transport model has been

theoretically modelled in Section 3.2. This informs subsequent chapters of this thesis

as contact duration is modelled for more complex systems in Sections 4.4 and 5.4.

Similarly, contact duration has been modelled for a graph-based transport model

in Section 3.3, which informs Sections 4.6 and 5.5 later in this thesis. The models

for contact rate and contact duration were combined and built upon to model the

spread of a message in an opnet in Section 3.4. This informs Sections 4.7 and 5.6

later in this thesis, which also aim to model message spread. In the next chapter,

focus is shifted from graph-based regions to regions of discrete space.
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CHAPTER 4

Discrete Spatial Models

In this chapter, discrete spatial models are considered. Empirical studies are per-

formed to find how the behaviour of opnets is affected by the fundamental parameters

in 1D and 2D space. Following this, theoretical models are created for contact rate

and contact duration in 1D space. Finally, an empirical study is performed on

message spread and the results are discussed with regard to the developed models

for contact rate and contact duration.

4.1 Mobility Model

This chapter starts by introducing a discrete-space mobility model for 1D and 2D

space. The mobility model is based on the Random Direction model, as discussed

in Section 2.3.3.3. Synchronous, discrete-event simulation is used as described in

Section 2.5.1. This section gives details of the mobility model for 1D and 2D space.

1D Space

Consider a lattice consisting of n of vertices, or sites, sequentially connected by edges.

Particles reside in a single site at any time. Edges are used only for movement,

which occurs instantaneously. At every time-step, each particle moves to an adjacent

site (chosen at random) with probability θ, which shall be referred to as the jump

probability. Periodic boundaries are used for the region, which can be visualised as
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Figure 4.1: Diagram of the 1D lattice used for particle movement. Each black line
emerging from the black circle is a site. The sites have no dimensions and only
appear long so that the particles can be drawn onto them. The red dots are particles
and the dotted line between them shows an example path that a particle may take.

a circle. Figure 4.1 shows an example of such a region. Note that this model is

identical to the transport graph described in Chapter 3 with all chords removed.

2D Space

Consider a 2D lattice consisting of n uniformly distributed sites. Edges connect all

sites along the vertical and horizontal axes and there are no diagonal edges. Particles

reside in a single site at any time. Edges are used only for movement, which occurs

instantaneously. For every time-step, each particle moves to an adjacent site (chosen

at random) with probability θ. It is assumed that the width and height of the lattice

is equal. The lattice is periodic in both directions, meaning it wraps around to form

the surface of a torus. Figure 4.2 illustrates this region and shows how distance is

measured within the region.

For 1D and 2D space, only closed systems is considered, meaning that no particle

may enter or leave the region. It is assumed each edge is of unit length and each site

has no dimensions. This allows the following definition of particle density: ρ = N
n

,

where N is the total number of particles and n is the total number of sites. It also

allows the definition of particle speed as the number of sites travelled along per

second.

82



Distance = 1
Distance = 2
Distance = 3
Distance = 4
Distance = 5

E
d
ge

s
w

ra
p

ar
ou

n
d

Figure 4.2: Diagram to illustrate how distance is measured in the 2D region. Instead
of Euclidean distance, Manhattan distance is considered. This means distance is
measured as the shortest path across the grid edges, rather than a straight line that
is not restricted to the grid. In the figure, distance is being measured from the star
in the centre.

4.2 Fundamental Parameter Study

In this section, a methodical study is performed on each of the fundamental para-

meters:

• particle density (ρ),

• transmission time (τ),

• signal radius (r),

• particle speed, in this case defined by jump probability (θ).

Each parameter will be studied to find how it affects message propagation in an

opnet. All studies are performed using the discrete space mobility model described

in Section 4.1 for both 1D and 2D space.

4.2.1 Approach

The Monte Carlo method is to be used for all studies. This involves stochastic

simulations that are repeated many times and the accuracy of the conclusions

depends on the number of trials performed. Preliminary simulations showed that 200
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simulation trials for each experiment provides a good compromise between confidence

and computation time, given the considered parameter ranges. Therefore, 200 trials

will be used for each study. Averaged results with standard deviations will be taken

from each set of trials.

4.2.2 Parameter Values

Table 4.1 shows the values that will be used for each parameter study. All parameters

except for the one being studied will use the default values. All parameter values

were decided by running preliminary experiments to find a suitable combination. The

preliminary experiments were the same as the actual experiments in the study, except

only the minimum and maximum values were tested. Each preliminary experiment

was repeated 100 times.

Parameter Default Min. Max. Increment

ρ 0.1 0.05 0.5 0.05
τ 10 0 100 10
r 0 0 100 10
θ 0.1 0.1 1.0 0.1

Table 4.1: Range of parameter values used in the studies. The value of just one
parameter is scaled at a time (from the minimum to maximum values shown in this
table) while the other three parameters are set to their default values.

Signal Radius: A signal radius of r = 0 means that particles can only interact with

co-located particles, i.e. in the same site. A signal radius of r > 0 means that

particles can interact with particles in sites up to r jumps away in any direction. This

concept is illustrated in Fig. 4.3. See also Fig. 4.2 for understanding how distance is

measured in 2D space. Note that r is a member of the set of positive integers.

Communication range (r = 2)

Figure 4.3: Diagram to show which sites (vertical lines) are within range of the
particle (red circle) given r = 2. The illustrated particle can communicate with any
particle in the same site or in sites that are 1 or 2 steps to the left/right.
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Region n Default N Min. N Max N Increment

1D 1000 100 50 500 50
2D 10000 1000 500 5000 500

Table 4.2: Range of values used for particle density.

Transmission Time: Particles can transmit data at a rate of 1 bit per second. A

message of 10 bits would, therefore, require a transmission time of 10 seconds. Note

that a value of τ = 0 means instantaneous transmissions (rather than a non-existent

message).

Particle Density: Note that ρ will be adjusted by varying the number of particles in

a region of fixed size. This is shown in Table 4.2. Note that the 2D region is square,

so n = 100× 100.

4.2.3 Metrics

There are many ways in which the performance of an opnet can be measured. It

is difficult to know which metrics will provide the most useful results before they

are recorded. Some metrics may produce uninteresting results due to high variation

or high sensitivity to extreme circumstances. For example, the time taken for the

message to be received by all particles in the network may vary greatly due to some

particles residing in particularly hard-to-reach locations. To increase the chances of

gaining useful insights into the behaviour of opnets, several performance metrics

will be recorded. Each of the chosen metrics are described below. To the best of the

author’s knowledge, these particular metrics are original concepts.

TQ50: The time until a certain quota of the particles have received a particular

message. A quota of 50% shall be used for all studies as this is plenty of

particles and results will not be skewed by waiting for the last few to receive

the message. For example, waiting for all particles to receive the message may

take a particularly long time due to one or two particles that do not receive

the message for an abnormally long amount of time. This metric will provide

insight into how fast a message spreads among the particles. A low value of

TQ50 implies the message has spread quickly.
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TD50: The time until a message reaches a certain distance (in any direction) away

from its origin. A distance of 50 units shall be used as this is the largest

distance possible in the 2D region, which is of size 100× 100. The Manhattan

distance will be taken when using 2D space, as illustrated in Fig. 4.2. The term

TD50 will provide insight as to the way in which information spreads with respect

to geographical space. A low value of TD50 would suggest that the message has

spread quickly across a region.

SP60: The probability that a message survives in the network for at least 60 minutes.

A duration of 60 minutes is chosen as the relevance of a typical message may

start to lose relevance beyond this time. A message survives, or persists, until

its final copy is deleted from the network. Figure 4.4 shows how the probability

that a message persists in an opnet varies depending on the age of the message.

In this figure, SP60 is highlighted for 1D and 2D space. This metric will provide

understanding of the length of time that a message is available in an opnet.
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Figure 4.4: Plot to show the probability that a message persists given its age. Results
averaged for 1000 simulations, all using the discrete space mobility model described
in Section 4.1. Parameter values used: ρ = 0.1, s = 5, r = 0, τ = 10. From the
graph, it is clear that SP60 = 0.28 in the 2D region and 0.12 in the 1D region.
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The terms TQ50 and TD50 shall be collectively referred to as the temporal metrics. These

metrics are subject to a 24 hour cut-off time. Therefore, data are not recorded if it

takes longer than 24 hours for the message to reach 50% of particles or a distance of

50 units.

4.2.4 Communications Protocol

In all simulations, there is one source particle and one message. This message is

propagated as a broadcast transmission meaning that each particle, having received

the message, attempts to forward it to as many other particles as possible. The

source particle introduces the message as soon as the simulation begins.

For simplicity, an SI interaction scheme (as described in Sections 2.1 and 2.2) will be

used when recording the temporal metrics (TQ50 and TD50). This will reveal the purest

behaviour of opnets, minimally affected by communication protocol. This makes

sense when recording the temporal metrics as another interaction scheme, such as

the SIS, may cause the thresholds of the metrics to never be reached. However, the

message persistence metric (SP60) measures whether the message has become extinct

at a certain time. The protocol used must, therefore, allow deletion of the message.

For a closed system, it is important that particles can become infected with the

same message more than once, otherwise the message persistence duration is greatly

limited. Because of this, an SIS interaction scheme is used for simulations in which

SP60 is recorded.

For all SIS simulations, the rate at which infectious particles delete the message (δ)

will be set to 0.0035 per second, so that each infectious particle is expected to carry

the message for δ−1 ≈ 5 minutes. This value was decided semi-arbitrarily as it is

a reasonable amount of time to carry a message. As a sanity check, preliminary

experiments each consisting of 100 simulation runs were used to confirm that the

value of δ is appropriate. The preliminary experiments were much like the final

experiments presented here, except only the maximum/minimum parameter values

were studied, rather than the whole range.
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4.2.5 Expected Outcome

One might anticipate that the message will spread more quickly and persist for longer

in 2D space rather than 1D space as there is more surface area between infectious

and susceptible particles. In 2D space, particles have more choice of where to move.

This is beneficial for message spread as infectious particles tend to be tightly coupled

in space as a group. Hence, if particles have more choice of where to move, they

are more likely to jump outside of the group and find a susceptible particle. This

concept is illustrated in Fig. 4.5.

Sites with no infectious particles
Sites with one or more infectious particles
Sites that the message can spread to next

Figure 4.5: Diagram to show the size difference of the susceptible/infectious boundary
in 1D space (left) and 2D space (right). It is assumed that r = 1 and ρ is large. It
is clear that the message can spread to many more sites in the 2D region, despite
having the same number of infectious particles (which are grouped as tightly as
possible). This accounts for why propagation is faster in 2D space.

4.2.6 Experimental Results

4.2.6.1 Particle Density

Figure 4.6 shows the results of the study on particle density. The results are very

similar in both regions (with smaller values for the temporal metrics in the 2D region,

as predicted in Section 4.2.5). It is clear that both the time taken for 50% of particles

to receive the message, and the time taken for the message to travel a distance of 50
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units, decreases as particle density increases. This rate of decrease appears to reduce

as the particle density gets higher.

1D Space—Particle Density Study
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2D Space—Particle Density Study
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Figure 4.6: Parameter study on particle density, ρ. The first/second row shows
results for 1D/2D space, respectively. All markers represent the averaged empirical
data of 200 simulations; all errorbars show standard deviation. The results show
that the message propagates faster and persists for longer as ρ increases. Note that
τ = 10 for all simulations.

Looking at the right-hand column of Fig. 4.6, it is clear that the persistence probability

of the message increases as particle density increases. As with the temporal metrics,

the rate of increase appears to reduce as the particle density gets higher.

In summary, it is concluded that increasing particle density is beneficial to message

propagation. This is expected, as a higher density of particles means more interactions

and more transmissions.
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Note that in the context of opnets, there may also be drawbacks to a high

device density. Depending on the hardware, a high density of devices may cause

signal interference, leading to a reduction in channel capacity.

4.2.6.2 Transmission Time

Figure 4.7 shows the results of the study on transmission time. For 1D and 2D space,

it is clear that the time taken for 50% of particles to receive the message increases as

transmission time increases. This rate of increase appears to be sharper for 2D space.

This may be due to the fact that particles are less likely to simultaneously jump to

the same site in 2D space as they have additional options of moving up/down rather

than just left/right.

It is clear that the message takes longer to travel a given distance as transmission

time increases. The rate of increase appears to be the same for 1D and 2D space;

it is slow and perhaps reduces to zero for larger messages. The term TD50 certainly

seems less affected by transmission time than TQ50. This may be because TD50 relies

more on particle movement whereas TQ50 relies more on message passing—only the

latter is affected by transmission time. Perhaps this effect becomes more prominent

as transmission time increases, explaining why TD50 appears to stabilise for longer

transmission times.

The persistence probability decreases as the transmission time increases. Results are

similar for 1D and 2D space. The probability that the message persists for at least

an hour sharply decreases to near-zero for a transmission time of about 20 units.

In summary, it is concluded that larger messages do not propagate as quickly, or

persist for as long as smaller messages. This is expected as larger messages take

longer to transmit and can, therefore, lead to more unsuccessful transmissions.

4.2.6.3 Signal Radius

Figure 4.8 shows the results of the study on signal radius. It is clear that both the

time taken for 50% of particles to receive the message, and the time taken for the

message to travel a distance of 50 units, decreases as signal radius increases. The

rate of decrease appears to be approximately linear for 1D space and polynomial
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1D Space—Transmission Time Study
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2D Space—Transmission Time Study
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Figure 4.7: Parameter study on transmission time (τ) for 1D and 2D space. All
markers represent the averaged empirical data of 200 simulations; all errorbars show
standard deviation. Not all results are shown for TQ50 as they go beyond the 24 hour
cut-off time. The results show that the message propagates slower and persists for
less time as τ increases.
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1D Space—Signal Radius Study
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Figure 4.8: Parameter study on signal radius (r) for 1D and 2D space. All markers
represent the averaged empirical data of 200 simulations; all errorbars show standard
deviation. The results show that the message propagates more quickly and survives
for longer as the signal radius increases. Note that τ = 10 for all simulations.
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for 2D space. This is expected as signal area is proportional to r in 1D space and

proportional to r2 in 2D space.

The probability that the message persists for at least an hour increases as signal

radius increases. Once again, this effect is sharper for 2D space, where it quickly

rises until the message almost always persists for at least an hour.

In summary, it is concluded that a larger signal radius causes the message to spread

more quickly and to survive for longer. This is expected as a larger signal radius

leads to more particle interactions and, therefore, more message transmissions.

4.2.6.4 Jump Probability

Fig. 4.9 shows the results of the study on jump probability. Results show that the

time taken for the message to spread to 50% of the particle increases sharply as

the jump probability increases, in both 1D and 2D space. The rate of increase is

so large that it quickly exceeds the 24 hour cut-off. Similarly, the probability that

the message persists for more than 1 hour quickly decreases as the jump probability

increases. These results are to be expected as a higher jump probability means fewer

particles remain co-located for the entire 10 second message transmission.

Results show that jump probability has little overall effect on the distance travelled

by the message. This may be related to the point discussed in Section 4.2.6.2: as

there are fewer particles carrying the message, the speed at which the message travels

is reduced. However, this is countered by the fact that the particles are moving faster,

so overall the message travels at a fairly constant speed. Note that the system may

be affected more significantly by particle movement for other values of transmission

time, as will be seen in the following chapter.

4.3 Asymmetric Particle Movement

As well as jump probability, it is interesting to study bias in the direction of the

jump. Until now, it has been assumed that particles move in all directions with equal

probability. Now, the possibility of particles tending to favour a certain direction

over others is discussed. A brief study is performed with a 1D space experiment in
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1D Space—Jump Probability Study
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2D Space—Jump Probability Study
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Figure 4.9: Parameter study on jump probability (θ) for 1D and 2D space. All
markers represent the averaged empirical data of 200 simulations; all errorbars show
standard deviation. Not all results are shown for TQ50 as they go beyond the 24 hour
cut-off time. The results show that jump probability does not affect the speed at
which the message travels. However, the message does not survive for as long, and it
takes longer for particles to receive the message for larger jump probabilities. Note
that τ = 10 for all simulations.
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which particles only move to the right (never to the left). The following parameter

values are used:

• jump probability, θ = 0.1;

• particle density, ρ = 0.1;

• transmission time, τ = 10;

• signal radius, r = 12.

Rather than recording the metrics used in previous studies, simply the spatial spread

of the message is looked at over time.

The results of this study can be seen in the upper plot of Fig. 4.10 (see note1). As

expected, the message spreads from left to right at roughly the average speed of the

particles (0.1 sites per second). However, notice that the message spreads slightly

to the left, even though particles are moving only to the right. This is due to the

signal radius being 12 units. This allows the message to hop wirelessly to particles

at positions to the left (without a particle carrying it there). For the same reason,

the spatial extent of infectious particles increases as more particles become infected

over time.

It became clear that the message can spread against the movement of the particles.

Now, certain parameter values are adjusted to emphasise this behaviour. The lower

plot in Fig. 4.10 (see Footnote 1) shows the same results as before, but with θ = 0.01

and r = 20. It is clear that the message now spreads a lot further to the left, giving

an almost symmetrical profile. The message also stays to the left of the origin for a

longer period of time.

It may be useful for engineers to configure opnets to encourage message spread

against the movement of the devices. For example, it may be desirable to pass a

message backwards to cars on a motorway to warn of high congestion ahead.

1It should be noted that the data displayed in Fig. 4.10 have been normalised in order to display
it correctly. To be able to produce such a plot, the message must be released from the same
position in all 200 trials (or, the start positions must be aligned after simulation). In doing this, an
artificially high particle density appears around the origin. This is due to the fact that there is
always a particle at this position (the message source) in all 200 trials. Although this effect fades
over time, the plots still remain affected. To counter this artefact, each bar of the histogram has
been individually scaled according to the particle density at that time and position. This eradicates
the artificially high peak of infectious particles at the mode.
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Figure 4.10: Histogram to show the message spread profile in 1D space with uni-
directional movement. For both plots, ρ = 0.1, τ = 10 and particles move only to
the right. The values of r and θ are indicated in the plot titles. In the upper plot,
the message appears to spread primarily in the direction of particle movement, but
the signal radius of the particles allows the message to travel slightly in the other
direction. This behaviour is emphasised in the lower plot because of the adjustment
to the parameter values. Both plots have been normalised as described in Footnote 1.
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4.4 Contact Rate Theoretical Model

In this section, a theoretical model is created for particle contact rate, νc. The 1D

discrete space mobility model described in Section 4.1 is considered. Due to time

constraints, theoretical models are not developed for 2D discrete space. However, a

contact rate theoretical model for 2D continuous space is developed in Section 5.4.

The same assumption is made from Section 3.1, which is:

Assumption At any given time-step, the probability that two particles simultan-

eously move from site i to site j (where i 6= j) is zero. This is a fair assumption to

make provided n is sufficiently large and θ is sufficiently small.2

Given this assumption, the contact rate distribution of the 1D mobility model is

equal to that of the transport network studied in Chapter 3. Therefore, the same

contact rate model developed in Section 3.2 is adopted:

P (νc = k) = θ ·
(
N

k

)(
1

n

)k(
1− 1

n

)N−k
+ (1− θ) ·

(
N

k

)(
θ

n

)k(
1− θ

n

)N−k
(4.1)

and

E(νc) = θρ(2− θ). (4.2)

Contact rate for the 1D mobility model is unaffected by signal radius. This is

because particles only ever move one site at a time left or right. Hence, this contact

rate model holds regardless of signal radius. Figure 4.11 shows that the developed

theoretical model matches simulated results. It is clear that the results are the same,

regardless of signal radius. A theoretical model for contact rate in a 2D region is not

considered.

4.5 Contact Duration Theoretical Model (Coarse-Grained)

Note that, due to time constraints, theoretical models are not developed for 2D

discrete space. However, a contact duration theoretical model for 2D continuous

2This assumption is less likely to hold true for the discrete-space mobility models described in
this chapter than the non-spatial models described in Chapter 3. This is because each particle has
far fewer options of which site to move to next. To overcome this, the time-scale in the developed
models is adjusted. For example, each time-step may be considered to be a millisecond rather than
a second, and θ is to be scaled accordingly. This significantly reduces the chances of two co-located
particles jumping together in a single time-step.
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Figure 4.11: Plot to compare theoretical model with simulated results for particle
contact rate. Simulated results show the contact rate distribution after 1 hour of
simulation time. The following parameter values are used: N = n = 500, θ = 0.2.
Signal radius is indicated in the title of each plot and it is clear that it does not
affect the results.

space is developed in Section 5.5.

When r = 0, the chosen mobility model shall be described as coarse-grained, otherwise,

fine-grained. A contact duration (Tc) theoretical model is developed for the coarse-

grained model in this section and the fine-grained model is considered in the following

section.

As with contact rate, contact duration in 1D space (coarse-grained) is identical to

that of the transport network studied in Chapter 3. Therefore, the theoretical models

derived in Section 3.3 is used:

P (Tc ≥ t) =
[
(1− θ)2

]t−1
,

P (Tc = t) =
[
(1− θ)2

]t−1 [
1− (1− θ)2

]
,

E(Tc) =
1

1− (1− θ)2 .

Results are produced to compare the developed 1D simulated/theoretical models in

Fig. 4.12. It is clear from the plots that the theoretical model appears to match the

empirical data closely.
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Figure 4.12: Plot to compare the developed theoretical model with simulated results
for particle contact duration in 1D space (coarse-grained). The following parameter
values are used: N = 200, n = 1000, θ = 0.1. Simulated results show the average
after 5 hours of simulation time.

4.6 Contact Duration Theoretical Model (Fine-Grained)

Now, contact duration (Tc) is considered in the fine-grained 1D mobility model in

which r > 0 and particles can communicate with other particles up to r jumps

away. Let d be the number of jumps separating a pair of particles. For a successful

transmission, d ≤ r must hold true for at least τ seconds. Therefore, in order to

model contact duration when r > 0, the length of time for which d ≤ r holds true

must be modelled. Gambler’s Ruin theory is used to solve this problem. In this

section, Gambler’s Ruin theory is described and, as an original contribution, its

application to the developed contact duration model is explained.

4.6.1 Gambler’s Ruin (with draws)

A typical Gambler’s Ruin problem (with draws allowed) consists of a gambler with an

initial finite capital of m pennies, playing an opponent with an initial capital of a−m
pennies (therefore, a combined capital of a pennies). For each trial, our gambler

wins, loses or draws with probabilities α, β and γ respectively, where α + β + γ = 1.

Therefore, the opponent wins, loses or draws a trial with probabilities β, α and γ
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respectively. For each trial, the winner gains a penny from the loser. If a trial results

in a draw, no pennies change hands. Our gambler continues to play his opponent

until he has won the entire combined capital a (he wins the game), or until his capital

reaches zero (he is ruined) (Bertsekas and Tsitsiklis 2002).

4.6.2 Particles as Gamblers

Gambler’s Ruin theory can be applied to the 1D mobility model described Section 4.1

in order to find the length of time two particles remain within range of each other.

In this case, each particle can be seen as a gambler and the relative positions of

each particle is represented by the gambler’s capital. A game begins as soon as two

particles move within range of each other. Our gambler (one of the two particles)

always begins with an initial capital of 1. The game ends when the particles have

moved out of range, i.e. when our gambler’s capital reaches either of the absorbing

barriers, 0 or a. In our case a = 2(r+ 1), where r is the signal radius of the particles.

This is shown in Fig. 4.13. The contact duration of two particles is represented by

the duration of the game.

Wireless signal range (r)

Particle

r + 11

0 (absorbing barrier)

2r + 1

(absorbing barrier) a

· · · · · ·

Figure 4.13: Figure to show the absorbing barriers of a Gambler’s Ruin game and
how a game can be applied to a particular particle in 1D space. The blue circle is our
particle (or gambler). Each dotted vertical line is a site (or capital of the opponent).
A game begins when a previously out-of-range particle moves within range of our
particle. The game ends once that particle moves to either of the absorbing barriers.
Note that the absorbing barriers are relative to the position of our particle, and
therefore move with our particle.

4.6.3 Generating Functions

In the following section, it is necessary for the reader to understand generating

functions. For this reason, a brief introduction is provided in this section.
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A generating function is a series of numbers presented as the coefficients of a

random variable in a power series (Weisstein 2014b). The index of each coefficient is

determined by the power to which the variable is raised. Therefore, the generating

function for sequence {a0, a1, a2, . . .} is G(z) (where z is a random variable), defined

as follows:

G(z) = a0z
0 + a1z

1 + a2z
2 + . . . =

∞∑
k=0

akz
k.

Generating functions can be used to solve recurrence relations, such as the Fibonacci

Sequence (Johnston 1940). As a simple example, the following generating function is

considered:

G(z) = 1 + z + z2 + z3 + z4 + . . .

In this case, the coefficient is always 1, therefore, the series produced by this generating

function is 1, 1, 1, . . . This power series can also be expressed in its closed form:

G(z) =
∞∑
k=0

zk =
1

1− z .

As a more general case, we can multiply z by some constant c:

G(z) =
∞∑
k=0

(cz)k =
1

1− cz . (4.3)

4.6.4 Specific Worked Example of a Generating Function

As a more detailed example, a recurrence relation similar to the Fibonacci Sequence

is considered. We denote this sequence a = {a0, a1, a2, . . .} and we express it

algebraically as follows:

ak = ak−1 + 2ak−2, (4.4)

a1 = 1,

a0 = 1.

This gives the sequence {1, 1, 3, 5, 11, 21, 43, . . .}. Using these equations, it would

take a long time to calculate ak for a large value of k. However, generating functions

can be used to create a formula for each value without needing to know the previous

values.
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Let G(z) be the generating function for our sequence. This means that the coefficient

of each power is the corresponding value from the sequence.

G(z) = 1 + z + 3z2 + 5z3 + 11z4 + 21z5 + 43z6 + . . .

Now, use algebraic manipulation to find the closed form of this equation.

G(z) = a0 + a1z + a2z
2 + a3z

3 + . . .

−z ×G(z) = − a0z − a1z
2 − a2z

3 − . . .

−2z2 ×G(z) = − 2a0z
2 − 2a1z

3 − . . .

Taking the sum of these three equations gives:

G(z)− zG(z)− 2z2G(z) = a0 + (a1 − a0)z +

(a2 − a1 − 2a0)z
2 +

(a3 − a2 − 2a1)z
3 + . . .

From Eq. (4.4), we know that ak − ak−1 − 2ak−2 = 0, and the value of a0 and a1 are

also known. Thus,

(1− z − 2z2)×G(z) = a0 + (a1 − a0)z,

G(z) =
1

1− z − 2z2
,

G(z) =
1

(1− 2z)(1 + z)
.

Now we use methods of partial fractions to change the expression for G(z) to be of

the form of Eq. (4.3).

1

(1− 2z)(1 + z)
=

A

(1− 2z)
+

B

(1 + z)

1

(1− 2z)(1 + z)
=

A(1 + z)

(1− 2z)(1 + z)
+

B(1− 2z)

(1− 2z)(1 + z)

1

(1− 2z)(1 + z)
=
A+ Az +B − 2Bz

(1− 2z)(1 + z)

1

(1− 2z)(1 + z)
=

(A+B) + (A− 2B)z

(1− 2z)(1 + z)
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So A+B = 1 and A− 2B = 0. Therefore, A = 2
3

and B = 1
3
. Thus,

G(z) =
2

3
× 1

1− 2z
+

1

3
× 1

1 + z
.

Now we have fractions in the form of Eq. (4.3), so now we can extract the coefficients

of our generating function, giving us a formula for each number in the original

sequence:

ak =
2

3
2k +

1

3
(−1)k.

We verify this equation by calculating the first four numbers in our sequence:

a0 =
2

3
20 +

1

3
(−1)0 = 1,

a1 =
2

3
21 +

1

3
(−1)1 = 1,

a2 =
2

3
22 +

1

3
(−1)2 = 3,

a3 =
2

3
23 +

1

3
(−1)3 = 5,

a4 =
2

3
24 +

1

3
(−1)4 = 11.

Indeed, this matches the sequence from the start of this section, demonstrated for

the first five terms.

4.6.5 Gamber’s Ruin Game Duration

In this section, the theoretical model of Gambler’s Ruin game duration is described

according to the work of Feller (1957); Heyman and Sobel (2003) and Lengyel (2009).

Let pm,n denote the probability that a game will end with our gambler ruined at the

nth trial, given an initial capital of m. After the first trial, our gambler’s capital is

m+ 1, m− 1 or m with probabilities α, β and γ respectively. Therefore, we have

the following difference equation:

pm,n+1 = αpm+1,n + βpm−1,n + γpm,n. (4.5)
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with boundary conditions:

p0,n = pa,n = 0 when n > 0

p0,0 = 1, pm,0 = 0 when m > 0

 (4.6)

Generating functions are now introduced. Let

Gm(z) =
∞∑
n=0

pm,nz
n (4.7)

be the generating function for the probability that a game will end with our gambler

ruined at the nth trial (given an initial capital of m). Multiply Eq. (4.5) by zn+1

and sum for n = 0, 1, 2, ... to get

∞∑
n=0

pm,n+1z
n+1 = α

∞∑
n=0

pm+1,nz
n+1 + β

∞∑
n=0

pm−1,nz
n+1 + γ

∞∑
n=0

pm,nz
n+1.

Now we re-arrange to get formats similar to Eq. (4.7):

−pm,0z0 +
∞∑
n=0

pm,nz
n = αz

∞∑
n=0

pm+1,nz
n + βz

∞∑
n=0

pm−1,nz
n + γz

∞∑
n=0

pm,nz
n.

Finally, we substitute Eq. (4.7) to get the difference equation:

Gm(z) = αzGm+1(z) + βzGm−1(z) + γzGm(z), 0 < m < a. (4.8)

Doing the same to Eq. (4.6) leads to the boundary conditions of Eq. (4.8):

G0(z) = p0,0 + p0,1z + p0,2z
2 + . . . = 1

Ga(z) = pa,0 + pa,1z + pa,2z
2 + . . . = 0

 (4.9)

Given a capital of m, our gambler would have to lose m times to become ruined.

A loss occurs with probability p1,n, hence, Gm(z) = pm1,n. Therefore, we can expect

a solution for Eq. (4.8) of the form fm(z) for some function f(z) taking values in

[0, 1]. We solve f(z) by substituting it into Eq. (4.8) to create a quadratic equation
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as follows:

f(z) = αzf 2(z) + βz + γzf(z), (4.10)

0 = αzf 2(z) + (γz − 1)f(z) + βz.

Using the quadratic formula, we find the following two solutions (taking the positive

square root where 0 < z < 1):

f±(z) =
1− γz ±

√
(γz − 1)2 − 4αβz2

2αz
. (4.11)

Eq. (4.10) is the characteristic equation with roots as given in Eq. (4.11). These

roots are distinct, therefore, according to the superposition principle, we have the

following general solution for Eq. (4.8):

Gm(z) = A(z)fm+ (z) +B(z)fm− (z), (4.12)

where A(z) and B(z) are arbitrary functions. We now solve Eq. (4.12) using the

boundary conditions of Eq. (4.9) to get simultaneous equations:

G0(z) = A(z) +B(z) = 1,

Ga(z) = A(z)fa+(z) +B(z)fa−(z) = 0. (4.13)

Now we solve for A(z) and B(z) by substituting A(z) = 1− B(z) in Eq. (4.13) as

follows:

0 = [1−B(z)]fa+(z) +B(z)fa−(z),

0 = fa+(z)−B(z)[fa+(z)− fa−(z)],

B(z) =
fa+(z)

fa+(z)− fa−(z)
, (4.14)

A(z) = 1−B(z) =
−fa−(z)

fa+(z)− fa−(z)
. (4.15)

Substituting Eqs. (4.14) and (4.15) into Eq. (4.12) gives:

Gm(z) =
fa+(z)fm− (z)− fm+ (z)fa−(z)

fa+(z)− fa−(z)
. (4.16)
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This equation is simplified using f+(z)f−(z) = β
α

from Vieta’s formulas (Weisstein

2014c):

Gm(z) =

(
β

α

)m
fa−m+ (z)− fa−m− (z)

fa+(z)− fa−(z)
. (4.17)

This generating function is used to find the probability that a game ends with our

gambler ruined at the nth trial. The probability that the game ends at the nth trial

with our player winning (the opponent is ruined) is found by substituting α, β and

m with β, α and a−m, respectively, as follows:

(
α

β

)a−m fm+ (z)− fm− (z)

fa+(z)− fa−(z)
. (4.18)

The generating function for the game duration (regardless of who wins) is the sum

of Eqs. (4.17) and (4.18):

Gm(z) =

(
β

α

)m
fa−m+ (z)− fa−m− (z)

fa+(z)− fa−(z)
+

(
α

β

)a−m fm+ (z)− fm− (z)

fa+(z)− fa−(z)
. (4.19)

4.6.6 Particle Movement as Gambler’s Capital

Recall that α, β and γ are the respective probabilities of our gambler winning, losing

or drawing a trial. Now, the relation of these probabilities to particle movement is

discussed. Let θL, θR and 1− θ be the probability that each particle independently

moves left, right or remains still at any given time-step. Let ∆d be the change

in distance between two particles at a given time-step. The term ∆d = 0 in the

following cases:

• [×,×] Neither particle jumps
(
probability (1− θ)2

)
• [<,<] Both particles jump left (probability θ2L)

• [>,>] Both particles jump right (probability θ2R)

Therefore, the probability that the outcome of a trial is a draw, γ, is (1−θ)2+θ2L+θ2R.

If ∆d 6= 0 then ∆d is equally likely to be positive/negative (this does not affect the

magnitude). Therefore, α = β = (1− γ)/2 regardless of θL, θR and (1− θ) as each

particle moves independently. The term ∆d > 0 in the following cases:

• [<,×] One particle jumps to the left and the other particle remains still, with

probability (1− θ)θL
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• [×, >] One particle jumps to the right and the other particle remains still, with

probability (1− θ)θR
• [<,>] One particle moves to the left and the other particle moves to the right,

with probability θLθR

Therefore, we have α = (1 − θ)(θL + θR) + θLθR. Note that the [<,>] case listed

above gives |∆d| = 2, when usually |∆d| = 1. This causes problems as it is not

included in the Gamber’s Ruin model. We solve this problem in the following section.

4.6.7 Adapting Gambler’s Ruin Model

If both particles jump in opposite directions, |∆d| = 2 rather than 1. This means

that in the Gambler’s Ruin problem, two pennies change hands rather than one.

This is not included in the standard Gambler’s Ruin model, therefore, such moves

cause inaccuracy to the developed model. There are several ways in which this can

be avoided and they are now discussed as an original contribution of this thesis.

Totally Asymmetric Movement Setting θL or θR = 0 means that all particles move

in the same direction. This makes it impossible for particles to jump in opposite

directions, therefore eradicating the chance that |∆d| = 2.

Particles Rarely Jump Setting (1 − θ) � 0 reduces the chances of two particles

jumping at once. If 1− θ is large enough, P (|∆d| = 2) is negligible.

Particles Always Jump Setting 1− θ = 0 means that all particles jump every second.

Although this does not exclude |∆d| = 2, it does exclude |∆d| = 1. Now we can use

the developed Gambler’s Ruin model as before, only we must adjust the absorbing

barriers by halving a. Note that roughly half of particle contacts will start with an

initial distance of r − 1 rather than r; however, this does not not affect the integrity

of the model.

Unrestricted Approximation Building on the method used for when particles always

jump, an unrestricted approximation is created. Instead of simply halving a, we

divide a by E(∆d|∆d > 0). As P (∆d = 1) = (1−θ)(θL+θR) and P (∆d = 2) = θLθR,
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we get

E(∆d|∆d > 0) =
1 · (1− θ)(θL + θR) + 2 · θLθR

α
=
α + θLθR

α
. (4.20)

Recall that a = 2(r + 1). Dividing a by Eq. (4.20) and rounding gives

a =

⌊
2α(r + 1)

α + θLθR

⌉
.

Note that the model becomes an approximation for some values of θ as a must be

rounded and sometimes the initial distance between particles is r − 1 rather than r.

4.6.8 Final General Model

The contact duration, Tc, of any pair of particles can be modelled by Eq. (4.19).

Given our initial capital of 1 and recalling that α = β, this becomes:

G(z) =
fa−1+ (z)− fa−1− (z) + f+(z)− f−(z)

fa+(z)− fa−(z),
(4.21)

where a =

⌊
2α(r + 1)

α + θLθR

⌉
and f±(s) =

1− γs±
√

(γs− 1)2 − (2αs)2

2αs
,

where γ = (1− θ)2 + θ2L + θ2R and α = (1− γ)/2.

Eq. (4.21) is the required generating function for P (Tc = n). Note that, to the best

of the author’s knowledge, this is the first time that Gambler’s Ruin theory has been

applied to opnet technology. A message with transmission time τ can be transferred

given any Tc ≥ τ ; therefore, it is useful to point out P (Tc ≥ τ) = 1−∑τ−1
τ=0 P (Tc = τ).

4.6.9 Experimental Results

Experimental results are produced for all four adaptations in Section 4.6.7. Figure 4.14

shows results for asymmetric movement and for when particles always/rarely jump.

Results for unrestricted approximations can be seen in Fig. 4.15. All of these

results combine theoretical and empirical models for 1D discrete space (fine-grained).

Although not theoretically modelled, empirical results are included for 2D space in

Fig. 4.16 for the reader’s interest. All results show that the probability of a longer
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Figure 4.14: Contact duration distribution for 1D discrete space. All markers
represent the averaged empirical data of simulations; all line plots represent theoretical
models. The inset axis presents the same data on a log-log scale. Results shown for
asymmetric particle movement and for when particles always/rarely jump. The term
r = 10 for all simulations.
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Figure 4.15: Contact duration distribution for 1D discrete space. All markers
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models. The inset axis presents the same data on a log-log scale. Results shown for
two examples of unrestricted approximation. Different values of r are used, as shown
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Figure 4.16: Contact duration distribution for 2D discrete space. All markers
represent the averaged empirical data of simulations. The inset axis presents the
same data on a log-log scale. Results shown for when particles always/rarely jump.
The term r = 40 for all simulations.

contact duration sharply decreases. It is clear from the plots that the theoretical

model appears to match the empirical data closely.

4.7 Message Spread Empirical Model

The creation of a theoretical message spread model for discrete space is left to future

work. However, the current author believes that such a model will consist of some

combination of the developed models for contact rate and contact duration. In this

section, empirical results are produced for message spread and their relation to the

theoretical models derived in this chapter is discussed.

1D Spatio-Temporal Spread: As a basic starting point, the spatio-temporal infection

density is looked at for 1D space. Results are displayed as a histogram in Fig. 4.17.

It is clear that there is only a small concentration (depicted by colour) of infectious

particles near the origin at the start of the simulation. Over time, this concentration

increases until the infection density reaches the average particle density of 0.15. It
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Figure 4.17: Histogram to show how a message spreads in 1D discrete space. Figure
was generated from the averaged results of 200 simulations with the following
parameter values: ρ = 0.15, r = 10, θ = 0.1, τ = 0. Note that results have been
normalised as described in Footnote 1 on Page 95.

is clear that the message also spreads throughout space, across the region in both

directions.

2D Spatio-Temporal Spread: Similar empirical results are produced for 2D space in

Fig. 4.18. The state of the system is displayed after 15 minutes and 30 minutes in

the two plots. Results show that the system behaves similarly in 1D and 2D space,

with the message spreading in all directions over time.

Effects of Transmission Time: Non-instantaneous data transmissions are now con-

sidered to see how the transmission time, τ , affects message spread. Figure 4.19

shows the message spread profile for 1D space after 100 simulation minutes for various

values of τ . From the results, it is clear that a larger τ inhibits message spread.

This is to be expected as fewer particle contacts last for τ seconds if τ is large. This

behaviour is captured in the developed model for contact duration in Section 4.6.
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Figure 4.18: Surface plot to show how a message spreads in 2D space. Results were
generated from the averaged results of 1000 simulations with the following parameter
values: ρ = 0.005, r = 10, θ = 0.1, τ = 0. Note that results are not normalised as
described in Footnote 1 on Page 95, hence why the infectious density mode is higher
than the average particle density (ρ).

112



−600 −400 −200 0 200 400 600

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16
Average particle density

−600 −400 −200 0 200 400 600

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

x

Infection density

Transmission Time Study

τ = 0
τ = 30
τ = 60

Figure 4.19: Message spread profile after 100 minutes in 1D space for various
transmission times. Results show the average of 200 simulations with the following
parameter values: ρ = 0.15, r = 10, θ = 0.1.

Effects of Signal Radius: Signal radius is now varied for instantaneous transmissions.

From Fig. 4.20, it is clear that a larger signal radius is beneficial for message spread.

However, this behaviour is not captured in the theoretical models developed in this

chapter. To prove this, the contact rate model derived in Section 4.4 is looked at

(models for contact duration can be discarded as τ = 0). The term r does not appear

in the developed model for contact rate, therefore, r must appear separately in any

model derived for message spread. This means that such a model is more complex

than a simple combination of contact rate and contact duration models, as previously

expected. This is why a theoretical model for message spread has been left to future

work. Perhaps message spread is affected by r only because of initial conditions. For

instance, a larger value of r means that more devices will be within range of the

source device when the message is first released, in turn leading to more devices

spreading the message in the network.
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Figure 4.20: Message spread profile after 100 minutes in 1D space for various signal
radii. Results show the average of 200 simulations. Parameter values: ρ = 0.15,
θ = 0.1, τ = 0.

4.8 Chapter Summary

In this chapter the focus has been on opnets deployed in regions of discrete space. A

methodical study has been performed on the fundamental parameters in Section 4.2

to better understand the behaviour of opnets. The approach and findings of this

study inform Section 5.2 in which a similar study is performed. A theoretical model

has been created for contact rate in Section 4.4. This will prove useful in Section 5.4

where contact rate is studied for 2D continuous space. Similarly, the theoretically

model for contact duration (Section 4.6) will inform Section 5.5. In Section 4.7 it

was discussed how the developed models for contact rate and contact duration could

be used to model message spread. The discussion and empirical study from this

section will inform Section 5.6 later in this thesis.

In the next chapter, focus is shifted from 1D discrete space to 2D continuous space.
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CHAPTER 5

Continuous Spatial Models

5.1 Mobility Model

This chapter considers continuous space in one and two dimensions. As with the

previous chapter, synchronous discrete-event simulation with the Random Direction

mobility model is used throughout (see Section 2.5.1 and Section 2.3.3.3). Firstly,

specific details about the movement of particles is provided.

1D Space

In the 1D continuous space model, particles move independently along a line. The

line is periodic, meaning that any particle which moves past the left edge of the line

will appear at the right edge and vice versa. The starting positions of the particles

are randomly distributed along the line. Each particle assumes a velocity chosen at

random from the Normal distribution, denoted N (µ, σ2), with the mean value µ set

to zero. Therefore, there is an equal chance of moving left or right. Each particle

independently chooses another velocity at random after a certain time period. This

time period is determined according to a turning rate, which is chosen at random

from the Exponential distribution for every velocity change, with mean value λ.

2D Space

The following property of the Normal distribution is used in this section:
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Definition 1: Given two independent Normally distributed random variables, X ∼
N (0, σ2) and Y ∼ N (0, σ2),

√
X2 + Y 2 ∼ Rayleigh(σ) (Siegrist 2014).

In the 2D continuous space model, particles move independently on a periodic plane

of equal height and width. The region can be visualised as the surface of a torus, as

illustrated in Fig. 5.1.

Figure 5.1: Diagram of 2D continuous-space plane used for particle movement.

The following parameters are used for the Random Direction mobility model:

• An exponential turning rate with mean value λ. It is assumed that λ is

sufficiently small so that it is unlikely for particles to change direction during

interaction.

• A velocity with components u, v ∼ N (0, σ2), where σ =
√

2
π
E(s). According

to Definition 1, this gives an overall speed distributed according to Rayleigh(σ).

This has a mean value of σ
√

π
2
, therefore the mean speed is E(s).

Relative Speed

Consider two particles moving independently, each with velocity components chosen at

random from N (0, σ2), where σ =
√

2
π
E(s). Each component of the relative velocity

of our two particles is calculated as follows: v1− v2 ∼ N (0, 2σ2), where v1 and v2 are

corresponding velocity components from our particles. Using Definition 1, it is found

that the particles have a relative speed of s̃ ∼ Rayleigh(σ
√

2) = Rayleigh(2E(s)√
π

),

with mean value E(s)
√

2 and the following density function:

h(s̃) =
πs̃

4E(s)2
· exp

( −πs̃2
8E(s)2

)
.
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where exp is the exponential distribution.

5.2 Fundamental Parameter Lookup Table

In this section, the empirical study on the fundamental parameters from Section 4.2

is extended. Recall that the four fundamental parameters are:

• particle density (ρ),

• transmission time (τ),

• signal radius (r),

• particle speed (s).

As an addition to the fundamental parameters, the deletion rate δ is included in the

experiment, giving a total of five parameters to be studied. Instead of studying each

parameter individually, their combined behaviour is now looked at. This is achieved

by creating a multi-dimensional lookup table of simulation results. Each cell of this

table is indexed by five values, one for each parameter, and holds the value of a

certain performance metric for those parameter values. The metric chosen for this

study is SP60, defined in Section 4.2.3 to be the probability that an information

epidemic persists for at least 60 minutes.

The lookup table may provide a useful tool to opnet engineers as it can be used

to find suitable parameter values. For example, let us assume an engineer knows

the value of four out of five parameters, (say δ, E(s), ρ and r), and would like to

spread a message that will persist for at least an hour with high probability. The

lookup table can be used to find the maximum value of the fifth parameter, τ .

To do this, the engineer would use the four known parameter values to index a

single row of the lookup table. This row will hold metrics results for the known

parameter values and a range of transmission times. The engineer can use this

information to decide on the size of the message to introduce into the network.

5.2.1 Experimental Description

All simulations are performed using the 2D mobility model described in Section 5.1,

with a region size of 1 km × 1 km. The only deviation from the described mobility

model is that all particles move with the same constant speed and the turning rate
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is an absolute value of 1 s−1. As the focus of this chapter is on 2D space, and due

to time constraints, the 1D region is not included in this study. We focus on the

2D model in this chapter as this thesis progresses towards more true-to-life mobility

models.

A single broadcast message is disseminated using an SIS interaction scheme (see

Section 2.1). The SIS scheme is used as this is required when recording the SP60

metric (as explained in Section 4.2).

A lookup table is created with five dimensions—one for each parameter studied.

These dimensions correspond to a range of values for each parameter, as stated in

Table 5.1. Each of these ranges (i.e. dimension of the table) is uniformly split into

10 bands, creating a total number of 105 cells. Each cell contains an (empirical)

estimate of SP60 for the corresponding parameter values. These values are computed

by performing many simulations, each with randomly chosen parameter values.

Simulation results are mapped (according to parameter values) to the correct table

cell where an average is taken. The aim is to have an average of 100 simulated results

for each cell in the table, therefore, a total of 100× 105 = 107 simulations shall be

performed1. The method in which the lookup table is filled at random is chosen as it

allows an average to be taken for each cell in the table. The alternative is to repeat

a single experiment with the same parameter values 100 times for each cell, but this

would not be a true average value for the corresponding cell.

Parameter Minimum Maximum

ρ (particles/m2) 5× 10−5 5× 10−4

s (m/s) 1 10
r (m) 10 100
τ (s) 0 100
δ (s−1) 0.0 0.1

Table 5.1: Table of parameter values used in simulations for the lookup table.

5.2.2 Experimental Results

Figure 5.2 presents several example datasets from the lookup table. Four histogram

plots are presented, each comparing two fundamental parameters. The value range

for the other three parameters are displayed in a text-box inside each axis. Colour

1These simulations were performed on Cardiff University’s High Performance Computer: Merlin.
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Example Results from Lookup Table
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Figure 5.2: Four histogram plots, each displaying results from the lookup table for a
comparison between two parameters. The colour of each cell represents the value of
SP60 for the corresponding parameter values, as indicated by the colour-bar below
the plots. The value ranges of the remaining three parameters are displayed in a
text-box within each axis.
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shows the value of SP60, as indicated by the colour-bar at the bottom of the figure.

The results of each plot are now discussed.

Transmission Time vs. Deletion Rate: Figure 5.2 top-left. From this comparison, an

engineer may learn that the deletion rate should be decreased to allow larger messages

to persist. This makes sense as a longer transmission time reduces propagation (as

seen in Section 4.2) and a higher deletion rate leads to fewer copies of the message

in the network (as seen in Section 2.2.5).

Particle Density vs. Deletion Rate: Figure 5.2 top-right. This plot shows how the

deletion rate should be adjusted depending on particle density. If the region is

particularly dense, messages can be deleted more readily and still persist substantially.

This makes sense as a higher particle density increases propagation (as seen in

Section 4.2) and a higher deletion rate leads to fewer copies of the message in the

network (as seen in Section 2.2.5).

Signal Radius vs. Transmission Time: Figure 5.2 bottom-left. An engineer may choose

the signal radius of each particle based on the required transmission time. From this

plot, it is clear that a larger signal radius should be used for messages that take a

long time to transmit. This makes sense as a longer contact duration is required for

longer transmissions.

Signal Radius vs. Particle Speed: Figure 5.2 bottom-right. Similarly, it is clear that a

larger signal radius should be chosen in regions where particles move quickly. Again,

this makes sense as it increases contact duration.

In Fig. 5.3, the results of two more comparisons are displayed, this time as surface

plots. In the upper plot, signal radius is compared to particle density. It is clear that

a larger signal radius should be used in regions of low particle density to ensure that

the message persists in the network with high probability. The lower plot compares

the effects of particle speed and transmission time on SP60. This shows an interesting

result, which shall be discussed in the following subsection.
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Example Results from Lookup Table
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Figure 5.3: Two surface plots, each displaying results from the lookup table for
a comparison between two parameters. The height/colour of each cell represents
the value of SP60 for the corresponding parameter values. The value ranges of the
remaining three parameters are displayed in a text-box beside each axis. All results
are generated according to Section 5.2.1.
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5.2.3 Transmission Time vs. Particle Speed

The focus of this section is on the relationship between transmission time and particle

speed. Although it is usually not possible to control particle speed in real life, it is

possible to observe the average speed and potentially use this information to make

an informed choice about the amount of data to attempt to send.

The lower plot in Fig. 5.3 shows the relevant comparison from the lookup table.

Interestingly, there appears to be a transition in how message propagation is affected

by the parameters. It is clear that faster movement is beneficial when transmission

time is short, but the opposite is true when transmission time is long. This finding

shall be further probed by extending the study to include results for the other metrics

described in Section 4.2.3: TQ50 (time until 50% of particles receive the message) and

TD50 (time until the message travels 50 meters from its origin). These results are

shown in Fig. 5.4.

Looking at Fig. 5.4, it is clear that faster particle movement is usually beneficial to

data propagation. However, if the transmission time is sufficiently long, a threshold

is reached beyond which any further increase in speed inhibits data propagation. The

reason for this is that contact duration decreases as the speed of movement increases,

as seen in Sections 3.3 and 4.6. A shorter contact duration leads to less successful

transmissions if the transmission time is long. This is why detrimental effects are

eventually seen on data propagation for larger messages. However, if the speed of

movement is slow and/or the transmission time is short, this detrimental effect is not

significant. Instead, an increase in speed is actually beneficial to data propagation as

it increases the contact rate, as seen in Section 3.1. Later in this chapter (Section 5.5)

an expression for the contact duration distribution in continuous-space models is

obtained, confirming this theory.

5.3 Critical Deletion Rate

5.3.1 Definition

Recall that the deletion rate, δ, is the probability per second that an infectious

particle deletes the message from its buffer. The critical deletion rate, δc, shall be

defined as the smallest value of δ for which an epidemic no longer persists for a
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Study on Particle Speed and Transmission Time
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Figure 5.4: Study on particle speed for various transmission times. Each plot shows
the results of 200 simulations. All particles move in 2D space according to the
Random Direction model with absolute speed and an absolute turning rate of 1 s−1.
The following parameter values are used for all simulations: ρ = 2× 10−4, r = 40
and δ = 0.0035.
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significant amount of time. This amount of time is chosen to be 60 minutes and the

metric for measuring such persistence shall be denoted SP60 (see Section 4.2.3).
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Figure 5.5: Study on SP60 for various deletion rates in 1D and 2D space. An SIS
interaction scheme is used for all simulations (see Section 2.1). The critical deletion
rate (δc) has been labelled for each plot.

Examples of δc are shown in Fig. 5.5 for 1D and 2D space. It is clear that an epidemic

is less likely to persist as δ increases. This is expected as a a large value of δ means

the message is being deleted more often. The smallest value of δ for which SP60 = 0

is δc, as labelled in the plot.

5.3.2 Experimental Description

This experiment shows how δc scales as each fundamental parameter is adjusted. All

simulations are performed using the 2D space mobility model described in Section 5.1,

with a region size of 1 km × 1 km. A single broadcast message is disseminated using

an SIS interaction scheme. Following this, δc is estimated by searching through the

results of the various simulations (each with 200 trials).
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5.3.3 Experimental Results

The results of the study on δc are shown in Fig. 5.6. Results have been transformed

along the x-axis to show the linear relations to δc; for example, r2 is used on the

x-axis of the third plot instead of r. By doing this, it is clear how δc is affected by

the fundamental parameters. Taking all results into account, the following relation

for δc is derived:

δc ∝
ρr2

sτ
. (5.1)

As seen in Section 5.2.3, particle speed can affect data propagation in different ways

depending on the transmission time. For this reason, the study is repeated on δc for

various values of s but this time instantaneous transmissions are used (τ = 0). All

other parameter values are left unchanged. The results are shown in Fig. 5.7. It

is clear that as the average speed increases, particles can delete the message more

quickly while still ensuring persistence. This is due to a higher contact rate caused

by the faster particle movement.
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Figure 5.6: Plots to show how δc scales with each fundamental parameter. All
simulated results are presented as scatter plots with lines of best fit. Plots are
transformed along the x-axis to show their linear relations to δc. All results are taken
from the average of 200 simulations. The following default parameter values are
used: ρ = 2× 10−4, s = 2, r = 20, τ = 40.

Comparing x-axis labels for Figs. 5.6 and 5.7 it is clear that particle speed affects data

propagation in different ways depending on the transmission time. For instantaneous

transmissions, faster particle speed is beneficial. For long transmission times, the

opposite is true. The reasoning for this has been explained in Section 5.2.3. It is

therefore concluded that for instantaneous transmissions, the s in Eq. (5.1) moves to

the numerator:

δc ∝
sρr2

τ
.
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Figure 5.7: Plot to show how δc scales with particle speed for instantaneous trans-
missions. All results are taken from the average of 200 simulations with the following
parameter values: ρ = 2× 10−4, r = 20, τ = 0. All particles move according to the
Random Direction model with absolute speed and an absolute path length of 1.

5.4 Contact Rate

In this section, a theoretical model is presented for particle contact rate, νc. The 2D

continuous space mobility model described in Section 5.1 is considered. Note that

the same model for νc is briefly presented in Klein et al. (2010), however, the full

derivation is explained in this section. Furthermore, this model is extended for this

thesis by simplifying it for use with the Normal speed distribution considered in this

chapter.

Theorem 5.4.1

E(νc) =
√

8 · ρrE(s) (5.2)

Proof Let x be an arbitrary position that is stationary in our frame-of-reference so

that all other particles are travelling at speed s̃ relative to x. The expected contact

rate E(νc) at x is the rate at which particles move to cover x with their wireless
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signal. This is equal to the expected number of particles per second that enter the

disk of radius r, centred at x.

s̃ ·∆
t

2r

x

θ

Figure 5.8: Diagram to show how the contact rate is calculated. The circular region
depicts the signal coverage area of a particle positioned at x. All particles in the
orange shaded strip will move into the blue circle in the next second; therefore,
forming a contact with the particle at x.

Given particles travelling at angle θ and speed s̃, the contact rate is equal to the

number of such particles that are at an appropriate position relative to x, so that

they will move within distance r of x in ∆t seconds. Appropriate positions can

be anywhere within a specific region, A, as depicted by the orange shaded strip in

Fig. 5.8.

The area of A is 2rs̃∆t; therefore, the expected number of particles in A (travelling at

θ and s̃) is 2rρs̃∆t. Integrating the expected number of particles in A for all θ and all

s̃ gives the contact rate, νc. As θ does not appear in the equation, integrating for all

θ has no effect. Integrating for all s̃ has the effect of replacing s̃ in the equation with

its expected value from the Rayleigh distribution, E(s̃) =
√

2E(s) (see Section 5.1).

The full derivation of E(νc) is shown as follows. It is assumed that ∆t = 1 so that
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the rate, νc, is per second.

E(νc) =

∫ 2π

0

[∫ ∞
0

2ρrs̃h(s̃) ds̃

]
dθ

2π

=

∫ ∞
0

2ρrs̃h(s̃) ds̃

= 2ρr · E(s̃)

=
√

8 · ρrE(s)

which agrees with a result of Klein et al. (2010).

5.4.1 Experimental Results

In Fig. 5.9, the contact rate E(νc) is studied for a range of parameter values for signal

radius, mean particle speed and particle density. Simulated results are produced for

1D space, and the developed theoretical model is compared with simulated results

for 2D space. Table 5.2 shows the default parameter values used for each plot.

Parameter 1D Default 2D Default

ρ 0.025 (particles/m) 2× 10−4 (particles/m2)
E(s) 1 (m/s) 1 (m/s)
r 20 (m) 40 (m)

Table 5.2: Table of default parameter values used in the contact rate study. Note
that τ is not listed as it does not affect contact rate.

Firstly, the results for 2D space are looked at in the lower plots. It is clear that the

theoretical model fits perfectly for the entire range of parameter values studied. It is

clear that E(νc) is affected by all three parameters, linearly increasing with signal

radius, particle speed and particle density. This correlation appears to be the same

for 1D space (upper plots) with one exception: signal radius does not appear to

affect contact rate for 1D space. This is the same result that was seen in the previous

chapter for the discrete-space models and is discussed in Section 4.4.

5.5 Contact Duration

In this section, an original contribution is provided for a theoretical model of contact

duration Tc in 2D continuous space. The 2D mobility model described in Section 5.1
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Study on Contact Rate

1D Simulated 2D Simulated 2D Theoretical

0 50 100

2

4

6
·10−2

Radius

E
(ν

c
)

0 0.5 1 1.5

2

4

6
·10−2

Mean Speed

E
(ν

c
)

1 2 3 4

·10−2

2

4

6
·10−2

Density
E
(ν

c
)

0 50 100

2

4

6
·10−2

Radius

E
(ν

c
)

0 0.5 1 1.5 2

2

4

6
·10−2

Mean Speed

E
(ν

c
)

0 2 · 10−4 4 · 10−4

2

4

6
·10−2

Density

E
(ν

c
)

Figure 5.9: Plots to show how contact rate is affected by signal radius, mean particle
speed and particle density for 1D and 2D space. All simulated results are the average
of 20 simulations (each 500 seconds in duration) with standard error error bars (some
are too small to see). Table 5.2 shows the default values used for each parameter. In
all cases, the expected contact rate scales linearly with each parameter, except for
signal radius in 1D space.
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is considered.

Theorem 5.5.1

P (Tc ≥ t) =
πk√

2
· exp

(
−πk

2

4

)
· I1
(
πk2

4

)
,

where I1 is the modified Bessel function of the first kind and k = r
E(s)t

.

Proof Consider an arbitrary particle that is stationary in our frame-of-reference

so that all other particles are travelling at speed s̃, relative to our particle. Let x

denote the position of our particle and B(x, r) denote a circle of radius r centred at

x, as illustrated in Fig. 5.10.

s̃∆t

w r

s̃t

x

Figure 5.10: Diagram to show how contact duration is calculated. The circular region
depicts the signal coverage area of a particle positioned at x. All particles positioned
within the red shaded strip will enter the circle within one second (assuming a relative
speed of s̃), and remain in the circle for at least t seconds.

Any particle that enters B(x, r) will remain within communication range of our

particle for at least t seconds if and only if the distance travelled within B(x, r) is at

least s̃t. This occurs if a particle passes within distance w of x. Pythagoras’ theorem

is applied to the triangle in Fig. 5.10 to find the distance to the point of closest

approach, w, as follows:

w =

√
r2 − s̃2t2

4
.

Given the relative speed s̃, all particles in the red strip shown in Fig. 5.10 will enter

B(x, r) in the interval [t, t + ∆t]. The area of the shaded strip is 2ws̃ (assuming
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∆t = 1). Multiplying this by ρ gives the expected number of particles in the red

strip at any time: ρ · (2w) · s̃.

If s̃ ≤ 2r/t, all particles in the red strip will be resident in B(x, r) for at least t

seconds. Conversely, particles with s̃ > 2r/t will be resident in B(x, r) for less than

t seconds, even if they pass through the centre of B(x, r).

Integration is used to find the number of particles in the red strip for all values of

s̃ ≤ 2r/t, where s̃ occurs with probability h(s̃). Dividing by the expected contact

rate E(νc) (see Section 5.4) gives the proportion of contacts with a duration of at

least t:

P (Tc ≥ t) =
1

E(νc)
·
∫ 2r

t

0

2ρws̃ · h(s̃) ds̃. (5.3)

Recall that

w = r
√

1− y, where y =
s̃2t2

4r2
(5.4)

and

h(s̃) =
πs̃

4E(s)2
· exp

( −πs̃2
8E(s)2

)
. (5.5)

Substituting Eqs. (5.4) and (5.5) into Eq. (5.3) gives:

P (Tc ≥ t) =
1

E(νc)
·
∫ 2r

t

0

2ρ · r
√

1− y · πs̃2

4E(s)2
· exp

( −πs̃2
8E(s)2

)
ds̃. (5.6)

Rearranging y gives s̃2 =
4yr2

t2
= 4yk2E(s)2 which is substituted into Eq. (5.6):

P (Tc ≥ t) =
1

E(νc)
·
∫ 2r

t

0

2ρ · r
√

1− y · πyk2 · exp

(−πyk2
2

)
ds̃. (5.7)

Taking the square root of s̃2 =
4yr2

t2
gives s̃ =

2r

t
y

1
2 which is differentiated to get

ds̃ =
r

t
y−

1
2 dy. Substituting this into Eq. (5.7) gives:

P (Tc ≥ t) =
1

E(νc)
·
∫ 1

0

2ρ · r
√

1− y · πyk2 · exp

(−πyk2
2

)
· r
t
y−

1
2 dy. (5.8)

Note the new integral limits, calculated from y = s̃2t2

4r2
for s̃ = 2r

t
and s̃ = 0.
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We now rearrange and simplify to get:

P (Tc ≥ t) =
1

E(νc)
· 2πρr2k2

t
·
∫ 1

0

√
y(1− y) · exp

(−πyk2
2

)
dy,

=
2πρr2k2√
8ρrE(s) · t

·
∫ 1

0

√
y(1− y) · exp

(−πyk2
2

)
dy,

=
πk3√

2
·
∫ 1

0

√
y(1− y) · exp

(−πyk2
2

)
dy. (5.9)

Kummer’s Function

We now attempt to simplify Eq. (5.9) with the use of Kummer’s Function (Abramowitz

and Stegun 1964). Firstly, Eq. (5.9) is written as follows:

P (Tc ≥ t) =
πk3√

2
· J , where J =

∫ 1

0

√
y(1− y) · exp

(−πyk2
2

)
dy. (5.10)

J is related to the confluent hypergeometric function (Abramowitz and Stegun 1964),

also known as Kummer’s function, represented as an integral below.

M(a, b, z) =
Γ(b)

Γ(b− a)Γ(a)
·
∫ 1

0

exp(zt) · ta−1(1− t)b−a−1dt,

where Γ is the Gamma Function (Weisstein 2014a), or alternatively

M(a, b, z) =
∞∑
n=0

a(n)zn

b(n)n!

and a(n) = a(a+ 1) · · · (a+ n− 1) is the rising factorial.

In our case, a = 3
2
, b = 3, z = −π

2
k2. So,

J =
Γ
(
3
2

)
Γ
(
3
2

)
Γ(3)

·M
(

3

2
, 3,−π

2
k2
)

=
π

8
·M
(

3

2
, 3,−π

2
k2
)

, (5.11)

where we have used the fact that Γ

(
3

2

)
=

√
π

2
and Γ(3) = 2. Substituting Eq. (5.11)

into Eq. (5.10) gives:

P (Tc ≥ t) =
π2k3

8
√

2
·M
(

3

2
, 3,−π

2
k2
)

. (5.12)
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Properties of Kummer’s function

The following properties of Kummer’s function are used:

1. M(a, b, z) = exp(z) ·M(b− a, b,−z) (Kummer’s transformation).

2. M(a, 2a, z) = exp
(z

2

)
·
(z

4

) 1
2
−a
· Γ
(
a+

1

2

)
· Ia− 1

2

(z
2

)
,

where Ia− 1
2
(·) is the modified Bessel function of the first kind.

Applying property 1 to Eq. (5.11) gives

J =
π

8
· exp

(
−π

2
k2
)
·M
(

3

2
, 3,

π

2
k2
)

. (5.13)

Applying property 2 to Eq. (5.13) gives

J =
π

8
· exp

(
−π

2
k2
)[

exp
(π

4
k2
)
·
(
πk2

8

)−1
· Γ(2) · I1

(
πk2

4

)]

=
1

k2
· exp

(
−π

4
k2
)
· I1
(
πk2

4

)
, (5.14)

where we have used the fact that Γ(2) = 1. Substituting Eq. (5.14) into Eq. (5.10)

gives:

P (Tc ≥ t) =
πk√

2
· exp

(
−πk

2

4

)
· I1
(
πk2

4

)
. (5.15)

Remark Note that

k → 0 as


r → 0

E(s)→∞
t→∞

and k →∞ as


r →∞
E(s)→ 0

t→ 0

,

in particular; this reduces the expression for instantaneous transmissions.

Approximation for Small Values of k

A key contribution of this thesis is in the analysis of models for which it has been

assumed that data transmissions may not occur instantaneously. A long transmission

time leads to a small value of k; therefore, it is useful to create a simpler model

to approximate contact duration for small values of k. To do this, the following
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property of Kummer’s Function is used:

M(a, b, z)→ 1 as |z| → 0.

Applying this to Eq. (5.12) give the following approximation for small values of k:

P (Tc ≥ t) ' π2k3

8
√

2
.

5.5.1 Experimental Results

Figure 5.11 shows simulated results for 1D and 2D space (upper/lower plots, respect-

ively). The parameter values used are shown in a box next to each plot. The speed

of each particle is taken from the Normal distribution with mean E(s). Each particle

maintains its speed and direction for the entire simulation.

It is clear that, for both 1D and 2D space, the distribution of contact duration has

a long tail and mimics the shape of a Rayleigh distribution. It is clear that the

theoretical model perfectly matches the results for 2D space.

5.6 Message Spread

The theoretical model for contact rate and contact duration distribution are now

discussed with regard to how they can be used to model the spatial spread of a

message in 2D space. Furthermore, the model from Klein et al. (2010) is extended

to work with non-instantaneous transmissions.

5.6.1 Reaction-Diffusion Equation

Klein et al. (2010) show that the spatial spread of a message in an opnet can be

modelled with a reaction-diffusion equation, such as the following:

∂u

∂t
= −α∂u

∂x
+D

∂2u

∂x2
+ f(u),

where the terms on the right-hand side of the equation are respectively the advection

term (the drift of particles due to a flow of movement in a particular direction), the
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Figure 5.11: Experimental results for contact duration distribution in continuous
space. The upper plot shows simulated results for 1D space. The lower plot compares
simulated and theoretical results for 2D space. The probability density function can
be seen in the main plots. The inset sub-plots show the cumulative distribution
function. The parameter values used were decided based on trial and error of
preliminary simulations and are displayed next to each plot.
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diffusion term (movement due to concentration gradients) and the reaction term

(representing the copying of messages among particles). In this chapter, isotropic

movement is assumed so the advection term is zero. In this case, the classical

KPP/Fisher equation is obtained, first studied by Kolmogorov et al. (1937) and

Fisher (1937) to describe the spread of an advantageous gene through a population:

∂u

∂t
= D

∂2u

∂x2
+ f(u). (5.16)

It is well known that such reaction-diffusion systems have travelling wave solutions

of the form u(x, t) = w(x− ct), where c is the propagation speed of the wave. Using

phase-plane analysis, it can be shown that travelling wave solutions of Eq. (5.16) exist

for all c ≥ cmin, where the minimum propagation speed is given by cmin = 2
√
D · f ′(0).

In this equation, D is the effective diffusion coefficient which can be used to model

particle movement in the system, while the reaction term, f ′(0), can be used to

model the message passing aspect. The terms D and f ′(0) will now be discussed.

5.6.2 Diffusion Properties

Diffusion theory is used to model the movement of infectious particles in the system.

Typically, diffusion concerns particles whose mean squared displacement (msd) is

a linear function of time, t. Therefore, the displacement from the origin of the

simulated particles must scale with
√
t. This can be achieved using the Random

Direction mobility model, as explained below.

In the Random Direction mobility model, the turning rate, λ, can be increased

until velocity jumps are sufficiently frequent to behave like diffusion. This makes it

possible to model the movement of particles with diffusion theory. However, a higher

turning rate creates difficulties in modelling message passing between particles, which

is greatly simplified by the assumption that communicating particles move with

constant velocity for the entire transmission. Fortunately, it is possible to enforce

this assumption while maintaining the diffusion-like movement. Indeed, diffusive

movement is only necessary on the macroscopic scale, while ballistic movement is

only required on the microscopic scale to ensure particles do not change direction

during communication.

The Random Direction mobility model is well-suited to achieving the described
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Figure 5.12: Example Random Direction trajectory with a zoomed-in section. It is
clear that the trajectory consists of many direction changes on the macroscopic scale,
but not on the microscopic scale. Arrows show direction of travel.

combination of ballistic and diffusive movement. Looking at the example trajectory

in Fig. 5.12, is is clear that particles move in straight lines for small periods of time.

Therefore, on the microscopic scale, trajectories appear ballistic. However, on the

macroscopic scale, many velocity jumps are observed, yielding diffusive behaviour.

Figure 5.13 shows the combination of diffusive and ballistic behaviour for the Random

Direction mobility model by looking at the msd. Used parameter values match

those of Klein et al. (2010). Lines of best fit are fitted to the simulated data on

either side of the transition point that can be seen at around 22 seconds. The

exponent of the green line (larger time-scale) is 1.01 ≈ 1, showing that the msd scales

approximately with time squared, meaning movement is diffusive on the macroscopic

scale. Conversely, the exponent of the equation for the red line (smaller time-scale)

is 1.91 ≈ 2, which means movement is ballistic on the microscopic scale.

5.6.2.1 Effective Diffusion Coefficient

It has been made clear that the Random Direction mobility model is compatible

with the reaction-diffusion model described earlier. A value for the effective diffusion
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Figure 5.13: Plot to show how the Random Direction mobility model can simultan-
eously behave as ballistic on the microscopic scale and diffusive on the macroscopic
scale. Dashed lines have been fitted and their equations show that msd scales ap-
proximately linearly for large time-scales and with time squared for small time-scales.
Used parameter values match those of Klein et al. (2010).
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coefficient D, which describes the diffusive behaviour of the mobility model, is now

needed. Unfortunately, it remains unclear how D is calculated in Klein et al. (2010),

and so this is left to future work. This means that, for the rest of this experiment, we

are restricted to using the mobility model parameter values from Klein et al. (2010)

as shown in Table 5.3.

Parameter Value

ρ (particles/m2) 1.56× 10−5

s (m/s) 1 (constant speed)
E(s̃) (m/s) 1.27
r (m) 100
λ (s−1) 900−1

D (m2/s) 28

Table 5.3: Table of parameter values used in Klein et al. (2010).

5.6.3 Extending Klein et al. (2010) for Non-Instantaneous Transmissions

Klein et al. (2010) show that the speed of the travelling wave for the dissemination

of a message in an opnet implemented on particles following the Random Direction

mobility model is:

c = 2
√

2ρrE(s̃)D. (5.17)

Klein et al. (2010) use the same 2D mobility model that is used throughout this

chapter. Therefore, the contact rate model from Section 5.4 can be used to simplify

Eq. (5.17) as:

c = 2
√
D · E(νc).

To extend this model for non-instantaneous transmissions, the expected contact rate

E(νc) is multiplied by the proportion of contacts that are long enough for a successful

transmission, P (Tc ≥ τ):

c = 2
√
D · E(νc) · P (Tc ≥ τ).

Note that the speed of particles in Klein et al. (2010) is constant, but the models

assume Normally distributed speed. This is not a problem for the developed contact

rate model as the expected relative speed is used, as provided by Klein et al. (2010).

139



However, the developed contact duration model must be adapted for constant speed

and this is left to future work. For now, the average speed from the Normal

distribution (used in the developed model for contact duration) shall match the

constant speed from Klein et al. (2010).

5.6.4 Experimental Results

Fig. 5.14 shows the spread of a message in 2D continuous space for two different

values of τ . Looking down the rows, it is clear how the message spreads over time.

The results in the left-hand column are from an exact replica of the experiment used

by Klein et al. (2010), with instantaneous transmissions (τ = 0). The results in the

right-hand column are from an identical experiment only with τ = 60. It is clear

that the message spreads slower when τ = 60, as expected. The black, dashed circle

in each plot marks the theoretical model for message spread. It is clear that the

theoretical model is accurate for both instantaneous and non-instantaneous message

transmissions.

Figure 5.15 shows how a message spreads in 1D continuous space. The message

spread profile is displayed after two time intervals. The theoretical modelling for this

experiment is left to future work.

5.7 Real World Comparison

As mentioned in Section 1.5.1, all empirical studies in this thesis are performed with

computer simulations. It is important to understand to what degree the simulated

models represent the real-world. In this section, the results of the simulated models

are further analysed using real-world data to find how accurately they match real-

world opnet behaviour.

As discussed in Section 1.5.1, time and cost constraints prevent the analysis of

opnets operating in the real world. However, it is possible to gather real-world

movement trajectories and simulate an opnet on these trajectories. Although this

is not the same as a fully implemented opnet, it is a step closer to understanding

how opnets behave in real life.
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Figure 5.14: Plots to show the spread of a message in 2D continuous space. Time
progresses down the rows of the plots. Each column is a separate experiment: the
left-hand column is an exact replica from Klein et al. (2010) (τ = 0). The right-hand
column is identical except τ = 60. The dashed circles are the theoretical model for
message spread. It is clear that the message spreads slower when τ = 60. Results
generated from the average of 1000 simulations with parameters from Table 5.3.
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Figure 5.15: Plot to show message spread in 1D space. The average of 100 simulations
is plotted. The Random Direction mobility model is used with Normal speed
distribution and the following parameter values r = 20, E(s) = 0.2, τ = 20, λ = 1

60
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5.7.1 Trajectory Dataset

As many of the applications discussed in Section 1.2 relate to human movement,

human trajectories shall be used for this study. Fortunately, several human trajectory

datasets already exist and are available for use. Three of the most applicable datasets

are described below:

CRAWDAD Metadata: NCSU/Mobilitymodels (Rhee et al. 2009)

Gathered with hand-held gps devices at five different locations, independently.

The five locations include two university campuses, New York City, a theme

park and a state fair. Each recorded trajectory is for a single person in a single

day. The traces are presented as a list of X and Y coordinates at thirty second

intervals. All coordinates are relative to a reference point and each trace starts

at time = 0. The dataset is reasonably sparse, with fewer than 100 traces at

any of the five locations.

Infectious SocioPatterns Dynamic Contact Networks (Isella et al. 2011)

This dataset is gathered with RFID badges worn by visitors of a science gallery.
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The dataset is presented as a list, stating who is in contact with whom at

intervals of 20 seconds. Exact XY-coordinates are not available; however, it is

possible to simulate an opnet using only contact information. Unfortunately,

the dataset only includes face-to-face contacts, rather than contacts within a

certain proximity.

Geolife Version 1.2 (Zheng et al. 2009, 2008, 2010)

Gathered with hand-held gps devices by 178 participants for over four years.

This is the largest dataset with a total of 17,621 trajectories in and around the

city of Beijing. The data are presented as a list of points (one for every 1–5

seconds), including longitude position, latitude position and absolute time.

The Geolife dataset is chosen for the study as it is the largest dataset and has the

most information. Trajectories from a large region of the Geolife dataset can be seen

in Fig. 5.16. In the figure, a geographic map is aligned adjacent to the trajectory

plot to show the exact position of the relevant region in Beijing.
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Figure 5.16: Figure to show trajectories from the Geolife dataset on a map of Beijing.

5.7.2 Overcoming Limitations

As a whole, the chosen dataset is large; however, it covers a vast area over a long

period of time. The set of trajectories within any specific range of time and space
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is actually too sparse to be useful in the simulations. It would not be an accurate

representation of the number of people carrying mobile devices.

To overcome the problem of sparsity, the Geolife dataset is used as training data to

create a statistically similar, synthetic mobility model. This is a novel technique and

original contribution of this thesis, which has several benefits:

• it allows some control over the number of particles in the network, and

• it allows for Monte Carlo simulations (multiple trials).

5.7.3 Synthesising the Dataset

This section describes how the Geolife dataset is used as a training set to create a

statistically similar, synthetic mobility model. Essentially, the Geolife trajectories

are discretised to a grid and the rate of movement between each grid cell is matched

by the synthetic mobility model. As far as the current author is aware, this is the

first time this technique has been used, and is therefore an original contribution of

this thesis. Below is a comprehensive algorithm:

1. Firstly, a densely populated 1km x 1km region is chosen from the dataset.

2. This region is divided into a uniformly distributed grid.

3. All Geolife data within the region are simulated on this grid and a log records

the movement of particles between grid cells (including the time of day).

4. The entire log is flattened so that all movement happens on the same day. Only

the time of day is important, not the date.

5. From the log, a cell transition rate matrix is created with three dimensions

(current cell, destination cell, hour of day).

6. The rate at which particles move in/out of the region to/from each grid cell is

also recorded.

A custom mobility model is created which uses this transition rate matrix to create

statistically similar trajectories. The mobility model uses the same region and grid.

Each particle selects a destination cell to move into (at random according to the

matrix) and a specific, randomly chosen location within that cell. The particle then

moves to its destination with a speed (chosen uniformly at random) that ensures an

arrival within the next hour. On arrival, a new destination is chosen and the cycle is

repeated.
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A warm-up period is required to fill the region with synthetic particles as particles

can only enter the region according to the transition rate matrix. Experimentation is

used to decide on an appropriate warm-up duration to allow for the particle density

to steady. The warm-up period is set to end at 9:00 am (simulation time), at which

time the message is introduced to the network and the performance metrics begin to

be recorded.

(a) Discretising Geolife trajectories (b) Statistically similar, synthetic trajectory

Figure 5.17: Diagrams to show how trajectories from the Geolife dataset are dis-
cretised to create grid cell transition rate data. Sub-figure (b) shows an example
synthetic trajectory that uses the transition rate data from sub-figure (a).

Figure 5.17 shows an example of how a single Geolife trajectory is discretised into

grid cells (left sub-figure). The right sub-figure shows an example synthetic trajectory

that was generated using the transmission rate matrix from the left sub-figure. Note

that exactly the same grid cells are passed through by both trajectories. This is

because only one trajectory was used in the training data. A large set of training

data yields a higher variance of the synthetic trajectories.

5.7.4 Geolife Data Preparation

The Geolife dataset contains the following fields (Zheng et al. 2009, 2008, 2010):

• Latitude in decimal degrees.

• Longitude in decimal degrees.

• Altitude in feet (-777 if not valid).

• Date—number of days (with fractional part) that have passed since 12/30/1899.
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• Date as a string.

• Time as a string.

The following data must be extracted from the Geolife data in order to create the

Synthetic Geolife mobility model:

• Time of day in seconds (regardless of date).

• X-coordinate in meters relative to a reference point in Beijing (greater value

means further East).

• Y-coordinate in meters relative to a reference point in Beijing (greater value

means further North).

Listing 5.1 shows the Bash/Awk script written by the current author which is used

to extract the required data from the original Geolife dataset.

5.7.5 Speed and Velocity Distributions

In this section, speed and velocity distributions are compared for the Geolife real-

world traces and the Synthetic Geolife mobility model developed in this chapter.

This study will help to determine the similarity of the two models. Speed and

velocity data are collected from the models by considering the distance moved (and

the time taken) for all recorded adjacent positions of each particle. These data are

grouped into appropriate bins for speed and velocity, and are presented as histograms.

The histograms show the proportion of recorded speed and velocity values that are

grouped within each bin.

Figure 5.18 shows the results of the speed and velocity study. The upper plots show

the speed distributions of the Geolife traces (left-hand plot) and the Synthetic Geolife

mobility model (right-hand plot). Although the shapes of the plots are similar, by

looking at the scale of the x-axes it is clear that the distributions are dissimilar. The

same outcome is seen in the velocity distributions, shown in the lower plots (with

colour bars). Although there is a similar proportion of particles moving up, down,

left and right, the scales used on the x and y-axes show that the results are dissimilar.

Unfortunately, it is not possible to show the Geolife traces velocity distribution in

more granularity due to low levels of detail in the dataset.

The study in this section has shown that speed and velocity distributions do not
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Listing 5.1: Bash/Awk script to convert each line of each Geolife trajectory file to
the following format: time of day in seconds, X-coordinate in meters from a reference
point, Y-coordinate in meters from a reference point.

1 # Directory constants.

2 INPUT_DIR=‘pwd ‘/ OriginalData

3 OUTPUT_DIR=‘pwd ‘/Data

4 cd $INPUT_DIR

5

6 # Loop through each file in every trajectory directory.

7 for dir in *; do

8 cd $dir/Trajectory

9 mkdir $OUTPUT_DIR/$dir

10

11 for file in *; do

12 for line in ‘tail -n +7 $file ‘; do # Use tail to skip headers.

13

14 # EARTH_RADIUS , PI: Mathematical constants.

15 # REF_LAT , REF_LON: Reference point in Beijing to be used as

the origin for all coordinates.

16 echo "$line" | awk -F, \

17 -v EARTH_RADIUS =111000 -v PI =3.14159 \

18 -v REF_LAT =39.913889 -v REF_LON =116.391667 ’

19 {

20 # Print time of day in seconds.

21 printf("%d ", ($5 - int($5)) * 86400);

22

23 # Find longitudinal difference (within +-180 degrees).

24 diff = $2 - REF_LON;

25 if (diff > 180) diff -= 360;

26 else if (diff < -180) diff += 360;

27

28 # Convert lat/lon to x/y coordinates from origin in meters.

29 printf("%d ", EARTH_RADIUS * diff * cos(PI*REF_LAT / 180));

30 printf("%d\n", ($1 - REF_LAT) * EARTH_RADIUS);

31 }’ >> $OUTPUT_DIR/$dir/$file

32

33 done

34 done

35 cd ../..

36 done
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Figure 5.18: Plots to show speed distributions (upper plots) and velocity distributions
(lower plots with colour bars) for the Geolife real-world traces (left-hand plots) and
the Synthetic Geolife mobility model developed in this chapter (right-hand plots).
Note the different scales used on the graph axes. It is clear that the distributions for
the two models are dissimilar.
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match for the Geolife traces and the Synthetic Geolife mobility model. This is

an undesirable result as it shows that Synthetic Geolife does not model real-world

movement as well as the current author had intended. The reason for this result is

likely due to the difference in movement on the microscopic scale. Particles in the

Synthetic Geolife model move directly between two locations with constant speed,

once per hour. Conversely, the Geolife traces show much finer detail, with particles

moving indirectly between destinations, with wiggly lines rather than straight lines.

This explains why a higher average speed and velocity is observed in the Geolife

traces, even though movement on the macroscopic scale may be similar to that of

Synthetic Geolife.

5.7.6 Experimental Description

A methodical study is performed on the four fundamental parameters. Two mobility

models will be compared: Synthetic Geolife, as described in this section and the 2D

mobility model described in Section 5.1. It is not practical to study particle density ρ

or particle speed s as these parameters are not configurable in the Synthetic Geolife

mobility model; instead, they are set to match the real-word conditions. Therefore,

only signal radius, r, and transmission time, τ , will be studied.

Each parameter is studied individually, in much the same way as the individual

parameter studies performed in Section 4.2. The parameter values used for the

studies are shown in Table 5.4. These values have been chosen to match previously

used values in Section 5.2.1 to allow comparison of results.

Parameter Default Minimum Maximum

r (m) 40 10 100
τ (s) 20 0 100

Table 5.4: Table of parameter values used in the individual parameter studies on
real-life comparison.

All simulations use a region size of 1000× 1000. For the Random Direction mobility

model, ρ = 2× 10−4 and s = 2.

As usual, a single message will be broadcast to all particles in the simulations.

However, due to the nature of the Synthetic Geolife mobility model, the message will

be introduced at a random position on the edge of the simulation region, as opposed
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to the centre of the region. Because of this, the TD50 metric will not be recorded.

Only TQ50 (time until 50% of particles receive the message) and SP60 (probability that

an information epidemic persists for at least one hour) will be recorded (using SI

and SIS interaction schemes, respectively). For all SIS simulations, the deletion rate,

δ = 0.0035.

5.7.7 Experimental Results

The results of the studies on r and τ are shown in Fig. 5.19. Looking at the results

for r, it is clear that the behaviour is similar for both mobility models. For TQ50, a

sharp drop is seen as r increases, which levels off for larger values of r. For SP60,

a rise is seen as r increases, giving the plots an S-shaped appearance. Looking at

the results for τ , similarities are seen again in the behaviour of the network for each

mobility model. As τ increases, TQ50 steadily increases while SP60 steadily decreases.

It is clear that the simulated networks behave similarly given Synthetic Geolife

movement or Random Direction movement. This adds confidence that the opnet

simulation in this thesis, which use purely synthetic mobility models, adequately

represent real-world behaviour.

5.8 Chapter Summary

In this chapter, the focus has been on opnets deployed in regions of continuous

space. A lookup table of simulated results was created, that show how the behaviour

of opnets scales with the fundamental parameters. This behaviour was further

analysed with a study on the critical deletion rate. Following this, particle contact

rate and contact duration were studied. Following this, it was shown how these

models can be combined with a diffusion coefficient to model the spread of a message.

This is the final chapter in which an original contribution is provided. The next

chapter concludes the thesis and discusses some of the future work that the current

author would like to undertake.
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Parameter Study on Transmission Time
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Figure 5.19: Parameter study on signal radius and transmission time using Geolife-
based trajectories. Results are compared to those that use the Random Direction
model. Results appear to be similar, regardless of mobility model. All results show
the average of 200 simulations, with standard error error bars for TQ50. The term
τ = 20 for upper plot and r = 40 for lower plot.
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CHAPTER 6

Conclusions

In this final chapter, the thesis is summarised and the key contributions are discussed.

This thesis is assessed with regard to the initial proposal. Furthermore, this work

is reflected upon with a critical evaluation. Finally, the direction of this research is

assessed and areas of future work are suggested.

6.1 Summary of Thesis

This thesis proposes that information dissemination in an opnet can be modelled

in terms of the four fundamental parameters: the particle density (ρ), the wireless

transmission range (r), the speed of the particles (s) and the message transmission

time (τ). It is also proposed that the behaviour of an opnet could be optimised by

selecting the values of these four parameters.

The area of research in this thesis was motivated by the fact that opnets are a young

and potentially revolutionary technology with much to be learnt about their complex

behaviour. By developing this understanding, it is hoped that the technology will

become more appealing, more efficient and lower in cost.

It was found in the related literature that there is very little research in the area of

opnets that take into account the time taken to transmit data between particles. It

was found that this is an important factor, and furthering the understanding of this

aspect of opnet behaviour has been focused upon.
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This thesis has focused on the theoretical modelling of opnet message propagation

through space and time. To make this complex idea easier to understand, the

following types of spatial model have been progressed through:

• non-spatial (experiments where spatial aspects were not significant in the

spread of the message),

• 1D discrete space,

• 2D continuous space.

Furthermore, the theoretical modelling of message propagation has been simplified

by breaking the problem down into several smaller modules: message spread was

modelled by defining it in terms of particle contact rate and contact duration

distribution which, in turn, were modelled using the four fundamental parameters.

As well as reducing complexity, this also has the benefit of making the developed

theoretical models easier to generalise to other scenarios, such as a new mobility

model, as the modules can easily be replaced with another theoretical or empirical

model.

Throughout this thesis, the potential real-world applications for opnets have been

kept in mind. This was done by choosing appropriate parameter values for the

experiments. A study was also performed using the real-world movement traces

from the Geolife dataset (Section 5.7). The work in this thesis has been kept fairly

abstract to allow other areas of research and similar systems to benefit from findings

in this thesis, such as the field of epidemiology.

6.2 Contributions

In this section, the key contributions of this thesis are discussed.

Interaction Schemes: The idea of SIR models were adopted from epidemiology and

applied to opnets as interaction schemes (see Section 2.2). It was shown how

certain parameters of the interaction schemes, such as the message deletion rate, can

be adjusted to vary the concentration of the steady presence of a message in the

network. This is useful for striking a balance between efficient message propagation

and efficient use of resources. It was also shown how a logistic equation can be used

to approximate the number of infectious devices in a network (see Section 2.2.3.1).
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Methodical Parameter Study: In Section 4.2, a methodical study was performed on

the five parameters that have the most significant impact on message propagation:

particle density, particle speed, wireless signal radius, transmission time and mes-

sage deletion rate. From these studies, valuable information was gained about how

opnets behave and how their behaviour can be improved. It is shown that message

propagation is less effective in 1D rather than 2D regions, in sparsely populated

regions, for smaller wireless signal radii and for higher deletion rates. Furthermore,

it is shown how particle speed and transmission time combine to affect network beha-

viour, and how they can be balanced appropriately for efficient message propagation

(Section 5.2.3). Some interesting phenomena have also been discovered, such as

the spread of a message in the opposite direction to the movement of particles (see

Section 4.3).

Parameter Study Lookup Table: As part of the methodical parameter study, a large

dataset of performance statistics was created, in the form of a lookup table (see

Section 5.2). This table could be useful to an opnet developer, or anybody that

would like to deploy a message in an opnet. It would be easy to create a user

interface for the table, such as a smart phone app, which would make the information

more accessible.

Non-Spatial Theoretical Models: Theoretical models of particle distribution (Sec-

tion 3.1.1), particle contact rate (Section 3.2) and contact duration (Section 3.3) were

created for graph-based transport networks. These models revealed that contact rate

increases with particle speed and particle density, while contact duration decreases

with particle speed. The transport networks were referred to as non-spatial as the

spatial aspects did not impact the spread of a message by means of a susceptible/in-

fectious boundary, as seen in 1D and 2D cases later in the thesis. This made it easier

to create a theoretical model for message spread based on the developed contact rate

and contact duration models. The theoretical model for message spread is developed

in Section 3.4.

Models for 1D Discrete Space: Theoretical models of particle contact rate and contact

duration were developed for 1D discrete space (Sections 4.4 and 4.6, respectively).

Gambler’s Ruin theory was adopted and extended for the developed contact duration
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model. An empirical study was performed on message spread and it was discussed

how the developed models of contact rate and contact duration could be used to

model message spread (Section 4.7).

Models for 2D Continuous Space: Theoretical models of particle contact rate and

contact duration were created for 2D continuous space (Sections 5.4 and 5.5, respect-

ively). It was discussed how these models could be used to model message spread

theoretically using a reaction-diffusion equation (Section 5.6). It has been shown that

the Random Direction mobility model is suitable for use with a reaction-diffusion

equation as it has ballistic properties on the microscopic scale and diffusive properties

on the macroscopic scale. The developed models were used to extend the work of

Klein et al. (2010) to the case of non-instantaneous message transmissions.

Real-World Study: In Section 5.7, a novel approach is used to create a synthetic

mobility model based on real-world traces. Properties of the artificially generated

traces are compared to the real-world traces and are shown to be statistically similar.

The synthetic mobility model is then used for opnet simulations. The behaviour

of an opnet is compared for the artificially generated trajectories and for the

Random Direction mobility model. It is shown that an opnet behaves similarly

for both mobility models. This provides evidence to show that the findings in this

thesis—where the Random Direction mobility model has been used—are applicable

in real-world situations.

6.3 Critical Evaluation

Throughout this thesis, the focus has been on modelling message propagation with

little more than the particle contact rate and contact duration distributions. However,

in Chapter 4, a surprising result showed this methodology did not extend to 1D space.

It was found that message spread in 1D space is dependent on the wireless signal

radius (r), but neither the contact rate nor the contact duration were dependent

on r. This was an unexpected result, which may hint that focusing exclusively on

contact rate and contact duration may not be the best way to learn about message

propagation.
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It was never found where r should appear in a theoretical model of message spread

in 1D space. However, the current author speculates that the observed effects of r

are due to initial conditions of the model. A source device with a larger signal radius

will be within range of more devices at the start of a simulation. These devices

will become infectious soon after the simulation begins. This will have a knock-on

effect on the rest of the simulation, as more devices are carrying and propagating

the message, leading to accelerated message spread.

A more positive aspect of using contact rate and contact duration to model message

spread is that they are modular. This means that any mobility model, or even

movement traces can be “plugged in” to the message spread model. Theoretical

models of contact rate/duration can be used or, if the movement is too complex,

empirical measurements can be used instead. Therefore, this work can be easily

extended to other particle movement models, which is useful as only the Random

Direction model has been focused on in this thesis.

The work of Klein et al. (2010) has been a key inspiration for this thesis. Unfortunately,

their value for the diffusion coefficient could not be reproduced, despite much research

into diffusion theory. As a consequence, this thesis has been restricted to using

their experimental parameters when evaluating the theoretical models against their

results.

An opnet engineer could learn a lot from this thesis about what can be achieved

with opnets and the best approach to use. For example, smaller messages spread

more effectively than larger messages. The lookup table from Section 5.2 can be

used to find the optimal balance of parameter values for a message in an opnet.

Furthermore, the developed theoretical models can be used to provide accurate

performance estimates, which can provide evidence to show whether a new project

will be feasible.

6.4 Future Work

Based on the direction of research in this thesis and the critical evaluation, potential

future work is discussed.
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Investigate 1D Message Spread Theory: As discussed in Chapter 4, message spread in

1D space is more difficult to model theoretically than expected. This was due to

the dependency on signal radius, which was not accounted for in the contact rate

model. This complication must be further investigated before a theoretical model

for message spread in 1D space can be created.

Investigate 2D Message Spread Theory: As previously discussed, the 2D message

spread theoretical model could not be completed as the effective diffusion coef-

ficient used by Klein et al. (2010) could not be derived. Further efforts should be

made to understand the approach of Klein et al., combined with further research

into elementary diffusion theory (Einstein 1905).

Real-World Experiments: The message spread models developed in this thesis are

intended for use in real-world situations. Indeed, all of the theoretical models for

message spread are designed to work with any type of particle movement. The focus

has been on the Random Direction mobility model in this thesis and the testing of

other movement models is left to future work. It would be particularly interesting to

test the accuracy of the developed message spread models for human movement in

a real-world situation. By doing this, the research in this thesis would become far

more valuable to the development of opnet technology.

Message Frames: This thesis has shown how large messages propagate more slowly

than small messages. This is due to an increased likelihood of communicating

particles moving out of range before the transmission completes. When this happens,

the data transmission is wasted as the partially received message is deleted. A key

focus of this thesis is on larger messages that take longer to transmit, therefore, it

is desirable to increase the efficiency of propagation for such messages. One way

that large messages could be propagated more effectively is to divide them into a

sequence of smaller frames. The frames could each be transmitted individually while

the sender and receiver remain in contact. Should contact be lost, the partially

received message is not wasted as transmission can continue when the receiver moves

within range of the sender again, or with another particle that holds a copy of the

same message. An interesting area to study would be the optimal size for message

frames. If frames are too large then more data are lost when a connection is broken.
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However, if frames are too small, the overhead of each transmission may decrease

the speed of propagation.

6.5 Conclusion

This thesis has made much progress in the field of modelling and optimising opnet

behaviour. Although all of the questions posed at the outset of this research project

could not be fully answered, a solid base has been created on which to build upon.

The current author feels privileged to have contributed to this emerging technology

at this early stage of its development. Lastly, the current author hopes to have

demonstrated that opnet technology is an exciting area of research, and he looks

forward to being part of its development in the future.
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