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Active Exploration of Large 3D Model
Repositories

Lin Gao, Yan-Pei Cao, Yu-Kun Lai, Hao-Zhi Huang, Leif Kobbelt, Shi-Min Hu

Abstract—With broader availability of large-scale 3D model repositories, the need for efficient and effective exploration becomes
more and more urgent. Existing model retrieval techniques do not scale well with the size of the database since often a large
number of very similar objects are returned for a query, and the possibilities to refine the search are quite limited. We propose an
interactive approach where the user feeds an active learning procedure by labeling either entire models or parts of them as “like”
or “dislike” such that the system can automatically update an active set of recommended models. To provide an intuitive user
interface, candidate models are presented based on their estimated relevance for the current query. From the methodological
point of view, our main contribution is to exploit not only the similarity between a query and the database models but also the
similarities among the database models themselves. We achieve this by an offline pre-processing stage, where global and local
shape descriptors are computed for each model and a sparse distance metric is derived that can be evaluated efficiently even
for very large databases. We demonstrate the effectiveness of our method by interactively exploring a repository containing over
100K models.

Index Terms—semi-supervised, active learning, data-driven, exploration
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1 INTRODUCTION

W ITH the rapid development of 3D acquisition
and modeling techniques, geometric models

have proliferated in recent years. Large model reposi-
tories exist such as Trimble/Google 3D warehouse [1],
TurboSquid [2] etc. which contain hundreds of thou-
sands or even millions of models. It is challenging
to obtain an overview of these large repositories con-
taining models of various categories and to find the
best matching models for a given response. Previous
efforts mainly took two directions: shape retrieval and
data-driven exploration. Shape retrieval is essential
to find the most similar models in a database, but
does not support interactive exploration with the goal
to get an overall idea of all relevant models in the
repository. The effort the end user needs to invest in
order to find a model of interest increases substan-
tially when the repository scales up, as potentially a
large number of very similar models exist. The data-
driven approach, on the other hand, allows the user to
explore the models by exploiting the relationship be-
tween models and thus gives a better overall feedback
of relevant models. However, state-of-the-art methods
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focus on small datasets (typically tens to hundreds) all
coming from the same category.

In this paper, we propose a novel approach that in-
tegrates these two directions to enable the interactive
exploration of large multi category model repositories
using an intuitive, data-driven approach. We argue
that exploration is a more effective way of accessing
and assessing huge amounts of information in the
model repository than traditional model retrieval. By
analyzing the relationship between database models
in the offline stage, we make the online stage efficient
for interactive exploration, even with a very large
database. To the best of our knowledge, this is the first
work that provides a data-driven exploration of a very
large database. More specifically, the contributions of
our paper are as follows:

• We propose a scalable approach to explore large
model repositories dynamically, which involves
manageable offline precomputation and interac-
tive exploration in the online stage by maintain-
ing a dynamic set of active candidates.

• We apply an active learning approach that allows
users to flexibly explore models of interest by
labeling entire models or parts of them as “like”
or “dislike”.

• We exploit the relationship between models in
the repository and present them to the user in
a relevance driven parametric space for intuitive
exploration.

Fig. 1 gives an example of interactively exploring dif-
ferent chair models in our repository with over 100K
models. The user starts by providing some initial
query, in this case drawing a sketch (a) to roughly
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Fig. 1. Interactive exploration of chairs. (a) user input (sketch), (b) initial models retrieved, (c) with user preference
highlighted (green for liked models and red for disliked ones), (d) result of global active learning, (e)(f) selected
region of interest, (g) results of local active learning, (h) more models are revealed when zooming in.

express what models she is looking for. Alternative
initial queries such as an example model can also
be used. As no keywords are assumed in the large
repository, sketch based retrieval might also return
irrelevant models (b). Models are organized in a 2D
parametric space where similar models tend to be
placed closer to each other. Instead of showing all
the retrieved models, representative models are shown
with important models rendered larger. Users are
then allowed to choose models they like (in green)
or dislike (in red) (c), and the retrieved models are
dynamically updated to reflect these preferences (d).
The user is also allowed to choose certain regions
of interest from a model (selected model in (f) with
highlighted region in (e)). The exploration result is
updated in (g) with models containing a similar chair
handle emphasized. The local geometric information
is leveraged to align the models such that the region
correspondence can be derived easily. Our system also
allows the user to zoom in within a certain region to
discover more models (h), which were initially hidden
due to the limited screen space. Details of the algorith-
m pipeline and the experimental setup are discussed
in the following sections. The accompanying video
shows interactive exploration using our system.

2 RELATED WORK
To handle repositories with large numbers of models,
shape retrieval has been extensively studied in recent
years. Please refer to [3] for a comprehensive survey.
For retrieval systems various global features have
been proposed to compactly represent 3D models,
such as shape distribution [4], spherical harmonic
descriptors of the Gaussian Euclidean Distance Trans-
form (GEDT) function [5], light field descriptors [6]
etc. Such systems often use a combination of text, 2D
sketches [7], [8] and 3D models as input to retrieve
models with similar features.

Most shape descriptors are invariant to rigid trans-
formations and thus are suitable for retrieving whole
models. More refined shape descriptors are required

to retrieve objects with partial similarity using bound-
ary rasterization [9], compact local features and vot-
ing [10] and bag-of-features [11]. Bronstein et al. [12]
propose an approach that uses intrinsic multiscale
diffusion heat kernels [13] as local features to allow
for retrieval of shapes with isometric deformation. For
man-made objects, an approach is proposed based on
a small set of predefined primitives and a probability
model representing the spatial relationship [14]. Shape
retrieval has also been demonstrated as a useful tool
for modeling. Funkhouser et al. [9] propose a system
for interactive shape modeling using geometric details
from models in a database. To reduce the effort of
user interaction, Xie et al. [15] interactively retrieve
shape parts using sketches and assemble them for
modeling. Xu et al. [16] on the other hand take a
complete sketch describing a scene of objects as input
and automatically construct the scene of 3D models,
by exploiting the relationships between models.

While substantial effort has been made in shape
retrieval, effectively finding relevant models from a
large model repository is still challenging. The most
liked models may not be returned as most relevant,
merely based on user input and geometric signatures.
Alternatively, the user may not have a clear idea at
the beginning of the search process, and the current
model search engine typically returns a list of mod-
els without organizing the content in a meaningful
manner. It can thus be a frustrating process to browse
through a long list of models to get the idea of
relevant models and find the ones of interest. To
address these issues, our approach provides flexible
tools for users to express their preferences and not
only retrieves relevant models, but also organizes
them in a way that better captures the range of models
in the repository and their relationships.

Semi-supervised learning for retrieval. To further
improve the results of retrieval, user guidance has
been used. Zhu et al. [17] propose a simple and
efficient approach for active learning based on prob-
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Fig. 2. System pipeline.
ability distributions on graphs. Semi-supervised tech-
niques have been used in image retrieval [18], [19],
[20] . In shape retrieval, relevance feedback [21], [22],
[23], [24], [25], [26] has been used to bridge the gap
between geometric features and semantics. Their ap-
proach is based on supervised feature extraction, i.e.
using user input of liked or disliked examples to find
an improved feature space for better discrimination.

Data driven shape analysis. The availability of
large model repositories also helps shape analysis.
Wang et al. [27] use active learning to segment shape
sets in a semi-supervised manner. Consistent seman-
tic labeling is obtained with a sparse set of user
constraints. Huang et al. [28] use a semi-supervised
approach to categorize shapes in a collection into fine-
grain classes. To explore models of the same category,
Ovjanikov et al. [29] propose a method to manipulate
a template shape to explore similar shapes. Kim et
al. [30] also use a template to learn the part-based
variance of the model set. Kim et al. [31] use fuzzy
correspondence to align models and select corre-
sponding regions of interest on models in the dataset.
These data-driven techniques provide more intuitive
interaction and give a better idea of overall model
distribution. However, they are generally restricted
to a relatively small number of models (typically
hundreds although [30] is able to cope with a few
thousand models) due to the expensive co-analysis
and more importantly only applied to models of the
same category for co-analysis to be robust. Huang et
al. [32] use functional map networks [33] to jointly
analyze collections of similar shapes. Huang et al. [34]
use the category tree to organize a heterogeneous
collection of models for overview and exploration.
While able to cope with models of different categories
using a qualitative distance measure, the time com-
plexity is O(n2) where n is the number of models, and
processing large repositories would be prohibitively
expensive. Kleiman et al. [35] propose an approach
that organizes shapes in a dynamic 2D grid for model
browsing.

To enable effective exploration of large model repos-
itories, our approach is based on active learning,
which unlike relevance feedback, takes into account

both feature similarity to the user specified models
and the potential effect of the user expressing their
preferences. While effective, active learning typically
requires O(n2) computation, which is not scalable to
large model databases. With the aim of exploration
of large number of models, we improve upon exist-
ing generic approaches by dynamically maintaining
a small set of models for active learning, exploiting
the relationship of geometric models and based on
this, presenting the models in a parametric spatial
embedding. The idea of using a parametric space is
related to the work by Talton et al. [36] where they
explore the parameter space to create new models for
casual users. A small number of landmark models
are used in their work while our approach deals
with exploration of large number of models in the
repository in a hierarchical manner.

3 SYSTEM OVERVIEW

Our algorithm allows users to efficiently find models
of interest in a very large model repository through an
intuitive graphical interface. Starting with a 2D sketch
or a reference 3D model, the system returns an initial
set of candidate models which are arranged according
to their relevance and mutual similarity. The user can
incrementally refine the query by labeling some of the
candidates either entirely, or only local parts of them,
as “like” or “dislike”. This information is fed into an
active learning procedure and the set of recommended
candidate models is updated. The pipeline of our
system is illustrated in Fig. 2.

The main technical challenge is to establish a dis-
tance metric between the models in the database
where the computational and memory complexity
scales (nearly) linearly with the number of models
(instead of quadratically) and which is sufficiently
expressive to reliably model the mutual similarity
between arbitrary shapes. We achieve this by first
deriving a sparse distance matrix, which only contains
non-zero entries for models that are sufficiently simi-
lar. With this reduction we are not losing any relevant
global similarity information since in practice, the
distance measures for largely different 3D models are
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not very meaningful anyway. In order to propagate
the sparse distance metric to all pairs of models, we
compute a heat diffusion embedding (cf. Sec. 4.1).

To also enable the labeling of local parts of can-
didate models, we have to establish local correspon-
dences between all the models in the database. A-
gain, we reduce the computational complexity from
quadratic to linear by propagating correspondence
maps through a sparse similarity graph (cf. Sec 4.2).
Notice that all the distance and correspondence com-
putation is performed in an offline preprocessing step
and does not slow down the interactive exploration.

In the online stage, when the user draws a 2D
sketch (or provides a 3D reference model), sketch-
based [8] (or model-based [6]) shape retrieval tech-
niques return a number of models similar to the input.
Active learning is used to iteratively refine the ob-
tained candidate models. To deal with a large number
of models, a dynamic subset of relevant models is
maintained. Models are organized in a 2D parametric
space based on their mutual similarity so that the
overall distribution of models can be perceived at
a glance, which helps the user to better understand
the distribution of relevant models and enter their
preference (Sec. 5).

4 SCALABLE MODEL SIMILARITY METRICS

For each model in the repository global and local
metrics are precomputed, along with the sparse re-
lationship between similar models.

4.1 Global Similarity Metrics

To make the global query operations effective, we use
a global similarity matrix to represent the relation-
ship between pairs of models. But to also guarantee
efficiency, we only explicitly calculate similarities for
models that are sufficiently similar, leading to a highly
sparse matrix which is precomputed in the offline
stage. In the online stage, we also propose cross voting
for effective retrieval.

In this work, the light field descriptors (LFD) [6]
are used as global features as they are known to be
well suited for model retrieval [37]. Recent descriptors
such as Heat Kernel Signatures are insensitive to
isometric deformation, however such descriptors gen-
erally assume manifold surfaces, whilst many models
available are of poor connectivity. To calculate light
field descriptors, the models are scaled to fit in a
regular dodecahedron and cameras are put in each
vertex to get 2D images. Each image is converted
into a 47-dimension signature, including Zernike mo-
ments and Fourier descriptors. The 20 images from
a particular orientation of the dodecahedron form a
complete set of descriptors to represent the model for
this orientation. The light field distance between a pair
of models is defined as the L1 vector distance between

the signatures after an optimal rotation is applied,
making it robust to rotations [6].

Finding close models in the light field distance is ex-
pensive as thousands of combinations are considered
for each pair of models. We propose a simple and
efficient heuristic to suggest similar models. Based
on the assumption that similar 3D models have well
matched 2D views, we put signatures of every view
of every model in a kd-tree and use it to efficiently
suggest potential models for calculation of the light
field distance. For each image of one model Mi, we
find the nearest k images (k = 6 in our experiments)
using the L1 metric in the kd-tree, and take their
corresponding models Mj as candidates. The light
field distances between Mi and each Mj are calcu-
lated. Notice that the number of models Mj that
need to be compared to Mi is typically much smaller
than the theoretical maximum of 20 × 6 = 120 since
several models appear multiple times in the k-nearest
signatures lists. For each Mi we eventually keep the k
closest models based on the light field distances. For
the model pair Mi and Mj , we add both entries (i, j)
and (j, i) in the sparse light field distance matrix Sd,
leading to a symmetric matrix. The non-zero entries
in Sd form a sparse graph Gd with edges connecting
similar models. We further define the similarity matrix
as follows:

W (i, j) = exp

{
−Sd(i, j)

2

σ2
1

}
, (1)

where σ1 is a scale parameter (σ1 = 4000 is used
throughout the paper). This gives a normalized simi-
larity with 1 representing identical LFD and close to
0 if models are sufficiently different.

To quickly estimate the distance between an arbi-
trary pair of models, we follow the diffusion frame-
work [38] which gives an optimal low-dimensional
heat diffusion embedding as follows. Given the simi-
larity matrix W representing the (unnormalized) tran-
sit probability between models, we first define D =
diag(

∑
jWij) and the normalized matrix Z is defined

as D−1W . As discussed in [38], Z is similar to the real
symmetric matrix D−

1
2WD−

1
2 , thus the eigenvalues

of matrix Z are real values. With the normalization,
the eigenvalues are distributed as 1 = λ0 ≥ λ1 ≥
.... > 0. The eigenvector υ0 corresponding to the first
eigenvalue λ0 is a vector containing identical entries.
Discarding υ0 corresponds to shifting the center of
gravity of each model to the origin such that the
diffusion coordinates φi for model Mi are obtained by
taking the eigenvectors corresponding to the l largest
eigenvalues:

φi =
(
λt1υ1(i), λt2υ2(i), ..., λtlυl(i)

)
, (2)

where υj(i) is the ith component of υj , t is the
timescale of diffusion analysis, and l determines the
dimension of the embedding space. t = 10 and l = 50
are used in all our experiments. The diffusion distance
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and heat diffusion embedded LFD (green).

between two models Mi and Mj is then defined as the
Euclidean distance in the embedding space d̂(i, j) =
‖φi − φj‖2. With the embedding space precomputed,
the diffusion distance is efficient to calculate. The
nearest neighbors in the diffusion distance can be
efficiently retrieved using kd-tree acceleration.

We performed quantitative comparisons of different
shape descriptors using the retrieval tasks on the
Princeton Shape Benchmark [37] with ground truth
labels (Fig. 3). The precision-recall (PR) curves of
the original light field descriptors (LFD), our heat
diffusion accelerated embedded LFD, spherical har-
monic descriptors (SHD) and the degree of separation
(the number of edge hops between models) in the
categorization tree (CT) [34] are shown. CT is more
suitable for the exploration and quality measurement
of heterogenous models and does not work particu-
larly well for such data. Although the original LFD
feature is effective for retrieval, distances need to
be calculated between every pair of models, which
takes quadratic preprocessing time and thus does not
scale well to large model repositories. Moreover, it is
demanding to store pairwise distances. With O(n2)
memory cost, ordinary computers are not able to pro-
cess large repositories. Our heat diffusion embedded
LFD has similar performance as the original LFD,
but can be calculated much more efficiently (nearly
linear preprocessing time), making it suitable for large
repositories, as shown in Fig. 4. Both descriptors are
significantly better than SHD.

In the online stage, the user starts by giving some
initial input to express their desired target. This can

Example Directly (%) With Cross Voting (%)
Chairs (Fig. 1) 53.5 70.5
Humans (Fig. 11) 55.0 64.0
Quadrupeds (Fig. 11) 13.0 29.5
Cars (Fig. 11) 85.0 91.0
Fighters (Figs. 9 and 12) 52.0 64.5

TABLE 1
Comparison of the precision of the initial retrieval
results either directly or after using cross voting.

be a similar model or a rough sketch [39]. As will be
shown later, even if the example model or sketch is
quite far from the models of interest, our active learn-
ing approach is able to find the models with a small
effort of user interaction. K (typically 200 depending
on the number of models of interest) good matches
are retrieved for exploration. As initial retrieval is not
very robust, 2K models closest in sketch (or geomet-
ric feature) are first returned with a similarity score
h(i) representing how well the model matches the
input, which may not be an accurate representation
of similarity. Under the assumption that geometrical-
ly similar models have similar similarity scores and
the majority of the models returned are correct, we
propose a cross voting algorithm that produces the
refined score S(i) as the average of scores of similar
models h(j), weighted by similarity derived from the
diffusion distance d̂(i, j),

S(i) =
∑
j

h(j) exp

{
− d̂(i, j)2

σ2
2

}
, (3)

with σ2 = 0.001 in our experiments. In principle
all the 2K models are considered; however, due to
the local support nature of the weights, only those
models in the local neighborhood of model i in the
feature space are effective. We keep K models with
the largest refined score for subsequent consideration.
An example is given in Fig. 5 where the top row
shows the initial matches based on the drawn sketch
(car), and the second row based on the refined score,
both in descending order of the similarity scores.
The effectiveness of cross voting is also quantitatively
evaluated by measuring the precision (the percentage
of correct models) in the K initially retrieved models
from our large repository containing over 100K mod-
els, either directly or with cross voting. The recall is
not feasible to obtain as assigning ground truth labels
for all the models is impractical. As shown in Table 1,
the precision improves significantly with cross voting.

4.2 Local Similarity Metrics
Global properties provide a useful tool to measure the
similarity of the whole models. In addition, local sim-
ilarity helps to fine-tune the active learning based on
local features. As before, we directly compute fuzzy
correspondence only for similar models (Sec. 4.2.1)
and the information is then propagated to an arbitrary
pair of models. This ensures efficiency but also helps
to improve robustness. The local correspondence is
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Fig. 5. The obtained models without (top row) and with
(bottom row) cross voting.
propagated using an augmented local graph with
increased connectivity to ensure robust propagation
(Sec. 4.2.2). This is then used to propagate user s-
elected local regions to similar models, which are
further refined using a Markov Random Field (MRF)
approach (Sec. 4.2.3).

4.2.1 Alignment and Fuzzy Correspondence
We compute fuzzy correspondence between models
based on the initial co-alignment derived from the
light field calculation. We first apply furthest point
sampling on each model using Euclidean distances to
obtain m points (m = 256 in our experiments), and
scale the model to fit within a unit bounding sphere.
Euclidean distance is used for both efficiency and
robustness to non-manifold meshes. Rigid transforms
that give small distances of light field signatures
(following the calculation of light field descriptors)
are used as candidates, and the alignment is obtained
by finding the transform with the minimal overall
distance between sample points.

Given two models, namely Msrc and Mtgt, for every
sample point pi on Msrc, we can find a nearest point
p̄ti on Mtgt according to the initial alignment from the
light field matching. We estimate a fuzzy distribution
of correspondence for each vertex. The basis vector
fi for source vertex i is a Kronecker delta function
fi(pk) = δik, which is 1 for k = i and 0 otherwise. The
corresponding distribution on Mtgt is estimated based
on geometric and feature closeness. For any sample
point p̄k on Mtgt within a sphere centered at p̄ti (with
a radius of 0.15 in our experiments) the unnormalized
correspondence response is calculated as:

f̄i(p̄k) = G(p̄k; p̄ti)S(p̄k; pi), (4)

where G(p̄k; p̄ti) is based on geometric closeness to
the estimated target, and S(p̄k; pi) is based on feature
closeness to the source point. We define

G(p̄k; p̄ti) = exp

{
−‖p̄k − p̄ti‖2

σ2
3

}
, (5)

S(p̄k; pi) = exp

{
−‖s̄k − si‖2

σ2
4

}
, (6)

where ‖ · ‖ is the L2 norm, p̄i is the geometric coordi-
nates of vertex i on Msrc and Mtgt respectively, and si
and s̄i are the geometric feature vectors at vertex i on
Msrc and Mtgt. We use unique shape context [40] due
to its distinctiveness, and the distribution f̄i is then
normalized to sum to one. The unique shape context

captures sufficient local geometric information despite
a sparse sampling. σ3 = 0.4 and σ4 = 7 are used in
our experiments.

Given each basis vector fi on Msrc, the mapped
distribution f̄i on Mtgt can be calculated using Eqn. 4.
The fuzzy correspondence map Tsrc→tgt maps an
arbitrary distribution on Msrc to a distribution on
Mtgt. Assuming this mapping is linear, it satisfies

Tsrc→tgt(f1, f2, · · · , fm) = (f̄1, f̄2, · · · , f̄m), (7)

where Tsrc→tgt is the matrix representing
the mapping, fi and f̄i are column vectors,
(f1, f2, · · · , fm) and (f̄1, f̄2, · · · , f̄m) form two
matrices. Since (f1, f2, · · · , fm) is an identity matrix,
Tsrc→tgt = (f̄1, f̄2, · · · , f̄m). Given a subset of sample
points γ on Msrc, a distribution function f can be
defined as a vector with f(i) = 1 if pi ∈ γ and
f(i) = 0 otherwise. The corresponding distribution
vector f̄ on Mtgt can be obtained as f̄ = Tsrc→tgtf . If
an edge exists in the sparse graph Gd between a pair
of models Mi and Mj we precompute Ti→j and Tj→i
in the offline stage.

4.2.2 Correspondence Propagation using N -order
Graph
During the interactive exploration, a set of K models
are maintained as active candidates. A subgraph G
of the global sparse graph Gd is then extracted from
the database, keeping those vertices corresponding to
models in the active candidate set and their adjacent
edges. As establishing correspondences between sig-
nificantly dissimilar models would be unreliable, we
rather propagate fuzzy correspondences calculated for
neighboring models (as in the previous subsection).
However, when the path connecting two models is too
long, the propagation quality may also drop. We thus
propose to augment the subgraph G to obtain a graph
G̃ with stronger connectivity to robustly propagate
fuzzy correspondence between models. Let us denote
by V the nodes of G. For a given source node s, the
order of a vertex v is defined as the length of the
shortest path from v to s. An N -order graph G̃s w.r.t.
the source s satisfies that for every node v ∈ V , there
exists a path P from v to s with its length (the number
of edges) |P| ≤ N .

We use a greedy approach to incrementally add
new edges to G. For this purpose, the order of each
node can be obtained by breadth-first traversal from
s. We maintain two sets of nodes V1 with all the nodes
of order less than N and V2 with all the nodes of order
more than N . We find vi ∈ V1 and vj ∈ V2 such that
the light field distance between vi and vj is minimum.
Light field distances are only calculated on a candi-
date set of pairs which are efficiently obtained using
diffusion distances. After adding the edge (vi, vj),
the node orders are updated. We compute the fuzzy
correspondence map between vi and vj directly using
the method in Sec. 4.2.1. Since adding the edge (vi, vj)
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(a) (b) (c) (d) (e)

Fig. 6. An example demonstrating local correspondence. (a) an engine selected by the user from one model.
(b-d) Corresponding regions in another model using thresholding of fuzzy correspondence response, with only
geometric closeness (b), feature closeness (c) and both (d). (e) the final region after the MRF-based optimization.
makes vj of order N or less, vj (possibly also some
of vj ’s neighbors) will be removed from V2. With at
most |V2| iterations, the set of V2 will become empty
and the obtained graph is N -order.

Given a shortest path p : s, i1, i2, . . . , iu of length u,
we can obtain the propagated correspondence map

Ts→iu = Tiu−1→iu . . . Ti1→i2Ts→i1 . (8)

As demonstrated later, setting N too large or too small
both lead to less robust results. N = 2 generally works
well and is used in our experiments.

4.2.3 Part Selection Propagation

To allow local active learning, user selection is prop-
agated to other models as follows. When the user
selects a part on a model Msrc, we take Msrc as the
source node to build an N -order graph and obtain
the propagated fuzzy correspondence map Tsrc→tgt
to any model Mtgt in the current set. The selected
region is represented as the source distribution fsrc
with 1 representing selected sample points and 0
unselected. The target distribution is simply obtained
as ftgt = Tsrc→tgtfsrc. ftgt is a fuzzy selection and
to obtain a discrete label lp for each sample point p
on Mtgt with lp = 1 representing selected points and 0
otherwise, we use a Markov Random Field (MRF) that
minimizes the following energy, taking into account
both the local probability and the spatial closeness:

E(L) =
∑
p

Dp(lp) +
∑
{p,q}

Vpq(lp, lq), (9)

where L = {lp|p ∈ P} represents an assignment of
labels and P is the set of sample points. The first
term sums over all the sample points p ∈ P with the
penalty being the uncertainty of assigning label lp to
the sample point p, which is defined as Dp(lp = 0) =
min (ftgt(p), 1), and Dp(lp = 1) = max (1− ftgt(p), 0).
The second term is a regularization term that con-
ceptually sums over all pairs of sample points {p, q}
defined as Vpq(lp, lq) = exp

{
−d(p,q)2

σ2
5

}
(lp − lq)2. Due

to the Gaussian local support nature of the weight
function, only neighboring samples need to be con-
sidered in practice. d(p, q) is the Euclidean distance
between sample points p and q, and σ5 = 0.15 is used

in our experiments. The MRF-based optimization is
efficiently solved using graph cut [41].

An example in Fig. 6 demonstrates local correspon-
dence. The user selects an engine region on a plane
model (a), and the corresponding regions on another
plane model obtained by thresholding fuzzy corre-
spondence responses are shown in (b-d). Using geo-
metric closeness in Eqn. 4 alone, the obtained region
in (b) does not align with the actual engine. Using
features alone, the obtained region in (c) spreads over
the plane including part of the engine on the other
side. Using both geometric and feature closeness (d),
the engine is correctly mapped. The result is further
improved by using the MRF-based optimization (e). In
this case, a small wheel part is successfully removed
from the corresponding region.

5 ACTIVE LEARNING BASED EXPLORATION
To effectively explore models in a large database, we
use an active learning approach to iteratively refine
the results based on user input. Unlike traditional
active learning, our approach allows users to choose
models or parts that they like or dislike, and retrieves
and presents the updated set of suitable models at
interactive rate. We first build an augmented local
graph with sufficient connectivity to ensure robust
active learning and visualization (Sec. 5.1). The user
is allowed to specify their preference either based on
whole models or selected parts. Global active learning
is used to improve retrieved models based on whole
models whereas local active learning is used for using
exploiting local preference information. Details of
global and local active learning are then given in
Secs. 5.2 and 5.3 respectively. At any time we maintain
a dynamic set τ of candidate models, starting with
those returned from the initial search, which permits
efficient exploration of the model database (Sec. 5.4).
The user interface organizes the retrieved models
in a 2D parametric domain, with the most relevant
models emphasized. Thus the user can easily capture
the overview of the relevant models, making user
preference specification more efficient (Sec. 5.5).

5.1 Augmented Local Graph
Given the dynamic set of models τ and the existing
edges from the global database (the sparse graph Gd),
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as shown later in the section, we need a sufficiently
well connected graph to allow efficient active learning
and embedding for visualization. Let us denote Gτ as
the subgraph of Gd containing nodes in τ and edges
involving nodes in τ . We first augment the local graph
Gτ with additional edges such that every model has
at least k̄ neighbors (k̄ = 4 is used in experiments).
This is achieved by checking each model in turn and
adding edges to the closest models according to the
diffusion distance (due to its efficiency). After this,
the obtained graph may still have multiple disjoint
components. We use Prim’s algorithm to construct a
minimal spanning tree which connects the compo-
nents. Edges are added incrementally between that
pair of models belonging to different connected com-
ponents with the minimal diffusion distance, until the
graph is connected. We denote the augmented graph
Ḡτ = (V̄τ , Ēτ ), where V̄τ is the node set and Ēτ is the
edge set. In practice only a small number of auxiliary
edges are added which does not have significant effect
on the performance.

5.2 Global Active Learning
Let us denote yi as the preference for the ith model
in the current model set τ . yi = 1 (or 0) means the
user likes (or dislikes) the model in this exploration.
We relax yi to be a real variable [17]. And denote y
to be the vector of yi’s. Similar models usually have
similar preference values. Global active learning finds
a labeling by finding y that minimizes the following
global energy over the augmented graph Ḡτ :

EḠτ (y) =
1

2

∑
i,j:(i,j)∈Ēτ

wij(yi − yj)2, (10)

where wij is the similarity between models Mi and
Mj , as defined in Eqn. 1. The solution of Eqn. 10 is
a harmonic field, which can be efficiently obtained
by solving a linear system. When the user selects the
liked and disliked models, the operation defines the
Dirichlet boundary condition of the harmonic field.

5.3 Local Active Learning
To give the user more flexibility, we further propose
local active learning which allows the user to select
some part of a model and indicate whether this part
is liked or not. Assuming model Mi is selected, for any
model Mj we obtain the label on the model Mj using
the maps T described in Sec. 4.2 which effectively
selects a set of sample points on Mj . In order to
measure the similarity between the selected part on
Mi and corresponding part on Mj , we take precom-
puted shape context signatures [40] for selected sample
points on models Mi and Mj , which are denoted as
Ci and Cj . Both matrices are of size m×q, where m is
the number of sample points and q is the dimension
of the feature. The matrix entries are zeros for those

Fig. 7. Global (top row) vs. local (bottom row) active
learning: models in descending order of preference yi.

rows related to unselected sample points. The feature
distances between the fuzzy correspondence regions
are calculated as

d̄(i, j) = ‖Ti→jCi −Cj‖F , (11)

where ‖·‖F is the Frobenius norm of the matrix. From
the function map point of view [42], the signatures
are the functions defined on the sampling points and
Ti→j is the function map. The bases are the indicator
functions on the sampling points. If two models do
not have a corresponding part, the shape context
signatures will be very different. So the d̄(i, j) will
be large. We add the following local energy terms to
the function to be minimized (Eqn. 10):

EL(y) =
1

2

∑
j

exp

{
− d̄(i, j)2

σ2
6

}
(yj − vj)2, (12)

where vj is 1 if the user likes the part (that penalizes
small values) and 0 otherwise. σ6 = 6 is used in
experiments. Global preference is usually used along
with local preference, and we thus minimize EḠτ+EL,
which leads to a linear system that can be efficiently
solved. An example is given in Fig. 7 showing the pre-
ferred models after selecting one chair globally (top
row) or locally in the back of the chair, as highlighted
(bottom row). Local active learning is more effective
in expressing the preference for local regions, as the
results show more chairs that have the similar back.

5.4 Dynamic Set

Since the model repository can be very large, direct
application of active learning to the whole data set
is prohibitively expensive. Our solution is to instead
maintain a small dynamic set τ containing a subset of
K models. In each interaction step, we propagate the
user interests to the whole repository by allowing new
relevant models to be added and irrelevant models to
be removed dynamically.

After each interaction, we propagate the preference
field yi to the neighboring models in the global repos-
itory. For each model in τ , we find k̃ nearest models
in the diffusion distance, accelerated using a kd-tree.
We take k̃ = 10 in this work. Assuming model Mj

is one of the neighbors of model Mi ∈ τ currently
being considered, the propagated preference value is
defined as pi→j = yi exp

{
− d̃(i,j)2

σ2
7

}
,where d̃(i, j) is

the diffusion distance between Mi and Mj . σ7 = 0.01
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in our experiments. The total propagated value for
Mj is the sum of propagation received from all the
neighbors in τ , i.e. pj =

∑
i:Mi∈τ pi→j .

The dynamic set τ is first updated by adding T
new models with the largest propagated values. We
set T = K

4 in our experiments, where K = |τ | is
the size of the dynamic set. Given the same user
preference as boundary conditions, we obtain the
updated preference values by minimizing the active
learning energy EḠτ or EḠτ + EL like described in
the previous section. The models with lowest values
except for the user labeled ones will then be removed.
This maintains a consistent number of active models
and ensures interactive performance. While previous
co-analysis based exploration methods may be able
to handle a repository containing K models, they are
not directly applicable because the dynamic set is
updated after each user interaction, and such methods
typically require minutes for pre-processing, given a
new set of models. Also, most methods are designed
for models of the same category which is not generally
satisfied for τ .

5.5 User Interface Design
In order to present the active set of candidate mod-

els to the user in a way that intuitively conveys the
current state of the exploration session, we develop
a user interface that is designed to provide as much
information as possible without generating excessive
visual clutter. Our interface concept is based on pre-
senting the 3D models over a 2D plane while their
relative position and size encode their similarity and
relevance respectively.

Position: When the user is confronted with an un-
sorted set of candidates, it is difficult to obtain a
structured assessment of what types or classes of
models are available. Hence, we determine the rel-
ative position of the models such that similar models
are grouped closer together. This can be achieved by
applying the Isomap [43] algorithm to compute a 2D
embedding of the models that locally preserves their
relative distances from the light field descriptor space.

Size: To express the different degrees of relevance
for the refinement of the exploration, we scale the
models according to their preference but also by their
potential to have significant impact on the candi-
date set update when they are labeled as “like” or
“dislike”. For this we use a measure for the risk of
misclassification (= uncertainty), and the risk of each
model is defined as the modified total risk when the
model is assigned a label. The labeling of low-risk
models by the user has more impact on the explo-
ration than the labeling of high-risk models since for
high-risk models the labeling is uncertain while low-
risk models more effectively reduce the ambiguity
among the candidates. Hence we display models with
high preference and low risk larger. More specifically,

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

Parameter Space

Y

X

Fig. 8. The parameter space for visualization. Each red
dot corresponds to a model and blue circles indicate
representative models and their sizes.

(a) (b) (c)

Fig. 9. Exploration of fighters. (a) alignment with N =
2, (b) alignment with N = 5, (c) direct model alignment
vs. via an intermediate model. The solid red rectangle
corresponds to the dashed red rectangle when zoomed
in with more models revealed.

given a label assignment L, the risk is defined as

R(y) =
∑
i

∑
vi=0,1

[sgn(yi) 6= vi]p(yi|L), (13)

where sgn(x) is 1 if and only if x > 0.5, [·] is 1 if
the condition is true and 0 otherwise, p(yi|L) is the
probability of yi given the label assignment L. The
expected modified risk is

Ri = (1− yi)R(y|yi = 0) + yiR(y|yi = 1), (14)

which considers the expected impact on the risk
with the additional preference specified for the model
i [17]. Ri is normalized by linear scaling to [0, 1],
denoted as R̂i. The size of the model Mi in the para-
metric domain is determined by a radius ri, defined as
ri = r0

(
(1− λ)yi + λ(1− R̂i)

)
, where λ is a constant

balancing the weights of both terms (λ = 0.3 in
experiments), r0 is a global scaling factor set to 0.3,
with the 2D parameter space normalized to [−1, 1]2.

Clustering: Finally, in particular in large model
repositories, we often find a large number of very sim-
ilar models which can lead to visual clutter, making
it difficult for the user to keep a good overview. This
is why we apply a clustering scheme that replaces
groups of similar models by one representative each.
Only if the user zooms in on one of these represen-
tatives, the group members are displayed to enable a
refined exploration.

We maximize the following function to decide
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Example tg (s) tl (s) K
Chairs (Fig. 1) 0.745 2.640 200
Humans (Fig. 11) 0.779 1.789∗ 200
Quadrupeds (Fig. 11) 0.732 1.655∗ 200
Cars (Fig. 11) 0.429 0.998∗ 100
Fighters (Figs. 9 and 12) 0.756 2.940 200

TABLE 2
Statistics of different exploration. tg, tl: running times
with global as well as global and local active learning.

K: dynamic set size. ∗for alignment only.

which models are to be selected for visualization:

EV (x) =
∑
i

(
(1− λ)yi + λ(1− R̂i)

)
xi,

s.t. ∀i,
∑

‖Pi−Pj‖<ri+rj

xj = 1, (15)

xi is a 0-1 variable indicating whether the model is
selected as a representative for visualization. Pj is the
2D position of the model Mj in the parameter space.
The constraint ‖Pi −Pj‖ < ri + rj ensures that there
is no overlap between two models in the parameter
space (and 3D space). This is a 0-1 programming prob-
lem which is efficiently solved using a branch-and-
bound algorithm [44]. It takes less than 0.12 second for
all the examples in the paper. The parameterization
and representative model selection are illustrated in
Fig. 8 (corresponding to the example in Fig. 1(g))
where each red dot represents a model in τ and blue
circles indicate the size of the bounding sphere for
each representative model. Our method effectively
finds representative models without overlapping in
space. When the user zooms in, a portion of the
2D parameter domain is mapped to cover the whole
view space, by linearly scaling the coordinates. The
distances between models become larger. Thus more
models can be revealed without overlapping.
6 RESULTS

Our experiments were carried out on a computer with
a 2.4GHz Intel E5620 CPU and 16GB memory. Our
model repository contains 103, 738 models from the
following sources: 18, 312 models from Tsinghua 3D
model repositories [45], 10, 911 models from the light
field retrieval repository [6], 1, 814 models from the
Princeton shape benchmark [37], 1, 200 models from
SHREC’12 [46], 380 models from the Princeton shape
segmentation benchmark [47]. The remaining models
are from Google 3D warehouse [1]. Duplicate mod-
els (automatically detected as models with identical
shape descriptors) are removed.

Running times and comparisons. The one-off pre-
processing time for the repository after calculating
geometric features is 9, 524 seconds (about 2.65 hours).
For a repository with n models, finding the neigh-
boring models takes O(n log n) time and computing
the first few eigenvectors of the sparse matrix was
performed using the Lanczos algorithm, which takes
linear time in the nonzero elements (O(n)). The pre-
processing thus takes O(n log n) and can be easily

parallelized. This shows that our method scales well
with large model repositories. For examples in the
paper, the average time of the initial sketch-based
retrieval is 1.72s. The total duration of each inter-
active session using global or local active learning
are reported in Table 2. The average time of our
global active learning is 0.75s in these examples,
and the average time of Leng’s relevance feedback
method [24] is 1.62s. Note however their method is
only for shape retrieval rather than exploration, and
does not consider relationship between models.

Parameter settings. Our method has a few param-
eters; the fixed values reported in the paper were
found empirically and worked well for all the ex-
amples presented. The only adjustable parameter is
the number of models K in the dynamic set (200 by
default), which is specified by the user depending on
how much model variation the user prefers to exhibit
at the same time. As shown in Fig. 10, with increasing
K, more variation of models from the repository are
presented, while the number of models displayed is
more or less fixed, because this is restricted by the
limited screen space. These examples also show that
our system generally performs well for a wide range
of K. The numbers of examples in the paper are
reported in Table 2. The running time increases with
the size of the dynamic set but for all the examples in
the paper it takes less than 3 seconds and so is well
suited for interactive exploration.

We demonstrate the effectiveness of our method
by exploring various models of interest (Figs. 1, 11,
12). Liked (disliked) models specified by the user are
highlighted in green (red). The user may also select
some region of a model and express their preference.
Models are placed in the 2D parametric space with
important models (those the user likes most or most
useful for active learning) shown bigger in the ex-
ploration. Only representative models are rendered
and the user is also allowed to zoom in at some local
region such that more models are revealed. For the ini-
tial exploration, the original orientation of the models
is used for rendering as it is less reliable to establish
correspondence between significantly different mod-
els. To provide more aesthetically pleasing rendering,
the models in the repository have correct “up” direc-
tion, which may come from the original source, can
be automatically computed [48] or specified manually
when the repository is compiled. In later stages of
interaction, the alignment between models are used so
that they can rotate consistently. We use the selected
model (for local active learning), or the model with the
minimal overall diffusion distances to other models in
τ (for global active learning) as reference and align all
the other models to it.

Fig. 9 shows an example of exploring fighters. With
a couple of active learning steps the rendered models
are all fighters. However, alignment obtained using
local correspondence works much better when the N -



ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

Fig. 10. Results with different dynamic set sizes K. From left to right: results of global active learning with K
being 50, 100, 300 and 400, respectively. Models are retrieved using the same sketch as Fig. 1. Top row: initial
retrieval results with user preference; bottom row: results after active learning.

(a) (b) (c) (d) (e)

Fig. 11. Exploration of humans, quadrupeds and cars. (a) user input (drawn sketch/specified model),(b) initially
retrieved models with liked (in green) and disliked (in red) models, (c)(d) results obtained with one and two
iterations of global active learning, (e) zoom in.

(a) (b) (c)

(d) (e) (f )

Fig. 12. Exploration of fighters. (a) user drawn sketch,
(b) initially retrieved models with liked (in green) and
disliked (in red) models, (c) result with global active
learning, (d) selected local region highlighted (e) result
of local active learning, (f) zoom in.

order graph is constructed with N = 2 (a) instead of
N = 5 (b). Using N = 2 is also more robust than
finding correspondence directly, as demonstrated by
the example in (c) where direct alignment gives an
inappropriate result (top arrow) whereas alignment
via an intermediate model gives correct alignment
(bottom arrow). Increasing N tends to reduce the
number of added edges and N = 2 works well for
all the examples in the paper.

Fig. 11 shows three active exploration examples,
the first two (humans and quadrupeds) with sketch
as input and the third (cars) using a model. The
initial retrieval results contain irrelevant models, such
as missiles for the human example, tables and beds
(containing four legs) for the quadruped example.

By using one or two iterations of active learning,
relevant models are preserved and presented in a
way with similar models being closer to each other,
effectively giving an overview of relevant models. As
local distances between neighboring models are used,
our method is able to obtain models with moderately
different poses or shapes (see e.g. humans). For the
third example, although the input model (an SUV) is
quite different from the models to be explored, the
aim is achieved by using active learning with only a
small number of labeled examples, demonstrating the
effectiveness of active learning.

Figs. 1 and 12 show some examples of exploring
chairs and fighters, with both global and local active
learning. For the exploration of chairs, initial sketch
based results involve irrelevant models such as a
drum and a robot. With simple user interaction, non-
chairs are removed. By using a local region, chair
models with the similar handle shape are emphasized.
For the fighter example, while the initially retrieved
models are presented with relevant models clustered
in close regions, they also contain irrelevant models
such as a missile. Active learning is effective to select
models of interest with a small amount of user interac-
tion. The local region preference is more useful in this
case to specify fighters with a similar secondary tank.
The zooming in feature allows more relevant models
to be displayed.

Retrieval comparison. Although the purpose of
our work is exploration of large model repositories,



ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

our method can be used for model retrieval and in
this sense we quantitatively compare our work with
other relevant feedback based retrieval methods [21],
[22], [23], [24] on the Princeton Shape Benchmark
which contains the ground truth labels. The work [25]
uses Support Vector Machine (SVM) thus requires a
training stage and the work [26] combines 10 different
features many of which cannot be applied to models
of poor connectivity. Thus these methods cannot be
directly applied to the repositories considered in this
work and are not suitable for direct comparison.
Fig. 13 shows the average performance. Following the
experimental set up in the previous work [24], we
take the 7 categories with most models and use each
model as input. Doing so avoids categories with too
few models and thus user feedback would become too
strong a constraint, oversimplifying the problem. For
all the methods, correct manual labeling is provided
as user preference for the top 20 returns. We then
measure the Average Precision, First-Tier, Second-Tier
and DCG (see [37]) (the larger the values, the bet-
ter). Our active learning is more effective than these
relevance feedback based approaches, because more
detailed pairwise similarity is taken into account, as
demonstrated by the results.

Comparison with [31]. Both [31] and our method
use fuzzy correspondence for model exploration. [31]
uses co-analysis to obtain robust local correspon-
dence; their method however is designed to handle
relatively small datasets as the complexity increases
significantly with large datasets. Our method scales
well and is able to handle repositories with more than
100K models in different categories.

We performed quantitative comparison with [31]
using all the two published datasets with ground
truth (Chair and Boeing) where Euclidean distances
are used, as shown in Fig. 14. We take a random
model from each dataset (as shown in the figure)
and calculate the correspondence between this model
and all the remaining models in the dataset. For key
points, the deviations from the ground truth in the Eu-
clidean metric are calculated (as used for evaluation in
[31]). The graphs give the proportion (y-axis) of key
points in percentage whose deviation is within a given
threshold (x-axis). Although much simpler and more
efficient, our method achieves similar performance
as [31]. As the dynamic set cannot be predetermined,
even if [31] is applied to a subset similar to the size of
τ , several minutes would be needed, as reported in Ta-
ble 4, which is not sufficiently efficient for interactive
exploration (although their purpose is different and
benefits from pairwise correspondence which is not
needed for exploration). Using N -order graph (with
N = 2 by default) for correspondence propagation
gives better results (and slightly faster) than directly
(N = 1), as shown in Fig. 14 and Table 4.

User study. It is generally difficult to quantitatively
evaluate a system for interactive exploration. A user

Task (a) human (b) chair (c) helicopter (d) car
td 95.17 91.44 128.77 81.54
tRF 90.99 70.25 103.35 65.84
to 52.77 40.41 64.01 43.21
p 2.08× 10−5 0.0090 1.82× 10−5 1.25× 10−7

TABLE 3
Statistics of user study. td, tRF and to are the average

interaction time (in seconds) of direct, relevance
feedback and our approaches. p is the p-value of

statistical analysis between our and RF approaches.
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Fig. 13. Comparison of retrieval effectiveness with rel-
evance feedback approaches (values in percentage).
study is one way to get at least some indicators. Since
a comprehensive user study is beyond the scope of
this paper, we focus on a simple task that asks the user
to find a specific target model in the database, starting
from some initial queries (2D sketches or representa-
tive 3D models), as shown in Fig. 15. The 12 partic-
ipants in our user study applied (1) a feature-based
ranking (direct) approach, (2) relevance feedback (R-
F) [24] and (3) our approach. A counterbalanced
approach is used that assigns tasks and methods in
a random order to each subject to avoid a learning
bias. The distribution of interaction times is illustrated
in Fig. 16 and the statistics are shown in Table 3. On
average our approach took the shortest time across all
the tasks. Using analysis of variance (ANOVA) the p-
values in Table 3 show that our approach is superior
to RF-based approach at p = 0.001 level for three tasks
and at p = 0.01 level for the Chair task.

Limitations. Our system has some limitations. The
light field descriptors we used are insensitive to rigid
transforms but may not be very effective for finding
models under non-rigid deformation. Alternative sig-
natures such as Heat Kernel Signatures [13] may work
better in such cases but they may not be very robust
for non-manifold models which is a common problem
for man-made objects. As demonstrated in the first
row of Fig. 11, our method is capable of finding
smoothly deforming models because we only apply

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Euclidean Error

%
 C

or
re

sp
on

de
nc

e

Chair Dataset

Ours, N=2
Ours, N=1
Kim et al.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Euclidean Error

%
 C

or
re

sp
on

de
nc

e

Boeing Dataset

Ours, N=2
Ours, N=1
Kim et al.

Fig. 14. Comparison of Euclidean error distribution
with [31].
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Dataset Ours, N=1 (s) Ours, N=2 (s) Kim’s[31] (s)
Chair 0.908 0.804 183.36
Boeing 0.804 0.679 155.40

TABLE 4
Running times of our and Kim’s approaches.

(a) (b) (c) (d)

(a’) (b’) (c’) (d’)

Fig. 15. Inputs/targets for user study. Top row: query
sketches and models; bottom row: target models.

light field distances for sufficiently close models. As
future work we would like to explore a combina-
tion of various signatures to handle diverse models
more effectively. Feedback retrieval based on relative
attributes similar to [49] could be used to allow
more subtle personal preference to be expressed. New
embedding techniques for visualization may also be
explored [50].

7 CONCLUSION
In this paper, a novel active exploration algorithm is
proposed for exploring large model repositories. As
demonstrated by various examples, active learning
is effective in obtaining relevant models with only a
small amount of user input. Unlike traditional active
learning, our approach maintains a dynamic set of
models, allowing active learning to be efficient even
on a very large set of models. We use both global
and local geometric features to give the user flexibility
of specifying their preference either on the whole
models or in local regions of interest. We also propose
novel visualization to clearly present the models in the
dynamic set with the important models emphasized.
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