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“Twigs and reason are the universal law, good for all men… 

twigs and talk will teach you to live and think better.” 

 

Richard Llewellyn 

How Green Was My Valley (1939) 
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Abstract 
 

Tree litter is a key basal resource in temperate deciduous woodlands and streams that 

drain them. Litter decomposition promotes carbon and nutrient cycling, fueling 

woodland food webs. Research to date has not thoroughly explored how ongoing 

environmental changes affect this process. This study used microcosm and field 

experiments to investigate how multiple stressors (urban pollution, elevated 

atmospheric CO2 and stream acidification) affected litter chemical composition, 

invertebrate consumption, and terrestrial and aquatic mass loss. Leaf litter chemical 

composition differed between ambient- and elevated-CO2 litters, and between rural 

and urban litters, but the direction of these responses was complex and differed 

between experiments. In microcosms, leaf litter consumption by terrestrial and 

aquatic invertebrate detritivores was species-specific. After exposure to a woodland 

floor or headwater streams, urban litter broke down faster than rural litter, while CO2 

treatment did little to influence mass loss. The abundance, richness and diversity of 

terrestrial and aquatic invertebrates associated with leaf litter generally declined from 

28 to 112 days in the field. Taxon richness and diversity were generally higher in 

elevated- than ambient-CO2 leaf litter through time, while urban leaf litter had greater 

diversity than rural litter after 112 days only. Abundance was greater in the 

circumneutral than the acid stream. Aside from leaf litter, small woody debris was 

also affected by CO2 treatment: elevated-CO2 twigs had a greater concentration of 

nitrogen and lignin, and broke down faster than ambient-CO2 twigs on a woodland 

floor and in headwater streams. This work highlights the complexity of invertebrate- 

and ecosystem-scale responses to the effects of multiple environmental stressors, with 

implications for nutrient cycling and food webs. Urban pollution may have a greater 

influence on litter chemical composition than CO2 treatment, while effects of growth 

condition may be more important than stream acidity in influencing decay and 

invertebrate communities. 
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1. General introduction 
 

1.1 Litter in temperate forests 

 

Temperate forests cover over 1.4 × 109 hectares of the Earth’s surface (Reich & 

Bolstad 2001) from 25–55° N and counterpart regions of the Southern Hemisphere. 

They are composed of an estimated 312.5 Mg ha–1 of aboveground biomass (Lefsky 

et al. 2002), dominated typically by trees of the genera Acer, Betula, Fagus, Populus 

and Quercus. The total Net Primary Production (NPP) of this habitat type is an 

estimated 2.2 × 1015 g year–1 of carbon (Melillo et al. 1993), with mean carbon 

storage estimated at 0.72 Pg year–1 (Pan et al. 2011). This makes temperate forests an 

important carbon sink (Luyssaert et al. 2007, 2008). Foliage and woody structures are 

particularly important carbon storage tissues (Mooney 1972; Aber & Melillo 2001; 

Lamlom & Savidge 2003; Lorenz & Lal 2010) given their relatively high 

concentrations of structural compounds such as celluloses and lignin (Taiz & Zeiger 

2006; Chave et al. 2009; Novaes et al. 2009), and non-structural carbohydrates, such 

as starch, sucrose and glucose (Hoch, Richter & Körner 2003). These tissues also 

store important nutrients, such as nitrogen, phosphorus and other mineral ions, 

including potassium, calcium and magnesium (Chave et al. 2009). 

 

The majority of deciduous forest NPP escapes herbivory (Cyr & Pace 1993) and 

enters the detrital pathway as litter (Hairston Jr & Hairston Sr 1993; Cebrian 1999; 

Thomas & Packham 2007). In one aspen forest in southwestern Alberta, Canada, this 

amounted to a leaf litter standing stock of 250 g m–2, encompassing 3.7% of the total 

organic matter in the ecosystem (Louisier & Parkinson 1976). In terms of input rates, 

Gosz et al. (1972) calculated that 5,702 kg ha–1 of litter per year entered the Hubbard 

Brook Experimental Forest, New Hampshire, USA, and that it was comprised of 50% 

leaf material and 25% small woody material. Such litter inputs can vary spatially and 

temporally, as leaf litter tends to fall seasonally in autumn (Gosz, Likens & Bormann 

1972; Abelho & Graça 1998; Abelho 2001), while woody debris inputs are more 

sporadic, depending on local tree death and extreme weather events (Kirby et al. 

1998; Berg & McClaugherty 2008). 
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As well as terrestrial input, litter is an important source of energy for headwater 

streams adjacent to temperate deciduous woodlands. Organic material can fall into 

water directly (vertically) or via the forest floor (laterally), with the former providing 

the major contribution (Benfield 1997; Pozo et al. 1997). Fisher and Likens (1973) 

found that 99% of the annual energy input to a headwater stream – approximately 

6,039 Kcal m–2 year–1 – was allochthonous (derived externally). The quantity of litter 

entering streams can be highly variable, however, with a review by Abelho (2001) 

finding that input rates ranged between 3 and 761 g m–2 year–1 in mixed deciduous 

forests. Abelho and Graça (1998) showed that these inputs are comprised largely of 

leaves (62%), followed by twigs (16%). Given this difference, studies of organic 

matter decomposition have tended to focus on leaves rather than woody debris 

(Harmon et al. 1986; Webster et al. 1999; Abelho 2001). Only a few studies have 

indicated that woody debris can make a large contribution to total litterfall. For 

example, leaves and branches contributed approximately equally to the  

4,730 Kcal m–2 of energy falling as organic detritus at Bear Brook, USA (Fisher & 

Likens 1973). 

 

Of the studies that consider woody litter, Small Woody Debris (SWD; e.g. twigs) is 

under-studied compared to Large Woody Debris (LWD; e.g. logs and branches). 

Small woody debris is important to standing stocks of detrital material, particularly in 

high-order streams (Bilby & Ward 1989): one temperate deciduous forest contained 

an estimated 5.06 Mg ha–1 of fragments less than 3 cm in diameter (Onega & 

Eickmeier 1991), while 20% of litter entering a temperate forest stream was 

comprised of twigs and branches, resulting in a contribution of 62% to the standing 

stock of coarse benthic organic matter (Abelho & Graça 1998). Retention of SWD is 

also higher than for leaf litter, making it a locally stable resource in the locations that 

it falls (Trotter 1990; Wallace, Whiles & Eggert 1995). It is, however, generally 

patchy in time and space, making it difficult to measure and extrapolate its role in 

carbon storage at the forest scale. It is also difficult to reach consensus when variable 

definitions have been used, encompassing material with diameters of <10 cm 

(Harmon et al. 1986), <5 cm (Kirby et al. 1998), <2.5 cm (Thomas & Packham 2007) 

and 0.4–0.7 mm (Dearden et al. 2006). Proxies, such as tongue depressors (Arroita et 

al. 2012), veneers (Hofer & Richardson 2007), wood chips (Melillo et al. 1983) and 
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ice-cream sticks (Sinsabaugh et al. 1992) are also used in place of field-collected or 

greenhouse-grown SWD, all of which may have different dynamics to natural SWD. 

 

As well as its energetic importance, litter affects the physical habitat and nutrient 

storage of temperate forests and adjacent streams. A meta-analysis by Xu et al. (2013) 

showed that removing the litter layer of the forest floor can increase soil temperatures 

and reduce soil moisture, while decreasing the Carbon-Nitrogen ratio (C/N) and total 

carbon and nitrogen content. These outcomes can be partially reversed by litter 

addition, but both soil moisture content and the total nitrogen content of the litter 

layer did not change in such studies. Coverage of the woodland floor by litter also 

influences competition between trees by reducing germination, establishment, species 

richness and aboveground biomass (Xiong & Nilsson 1999).  

 

In freshwaters, woody litter plays an important role in channel stability (Bilby 1984) 

and morphology (Harmon et al. 1986), affecting stream hydraulics and habitat 

formation (Abbe & Montgomery 1996; Beechie & Sibley 1997). Much of the litter in 

headwater streams is incorporated into woody debris dams (Bilby & Likens 1980; 

Smock, Metzler & Gladden 1989; Flores et al. 2011), which may contain as much as 

75% of the organic standing stock of a first-order stream (Bilby & Likens 1980), 

causing flow alterations and reducing litter decomposition rates (dos Santos Fonseca 

et al. 2013). Removal of litter results in reduced retention of sediment and dissolved, 

fine and coarse organic materials (Bilby & Likens 1980; Bilby 1981; Webster & Tank 

2000). For example, in one of the longest studies of its type (13 years), Eggert et al. 

(2012) showed that the export of gravel and fine particulate organic and inorganic 

matter was increased following litter exclusion.  

 

Plant detritus also underpins food webs and promotes nutrient cycling in forest 

ecosystems (Moore et al. 2004; Hagen et al. 2012). Leaf litter acts as an important 

refuge and basal resource to organisms such as macroinvertebrates and fungi in both 

terrestrial (Bardgett 2005; Sayer 2006; Lavelle et al. 2006; Berg & McClaugherty 

2008; Xu, Liu & Sayer 2013) and aquatic (Cummins & Klug 1979; Abelho 2001; 

Moog 2002) forest habitats. Forest biota also utilise woody debris as a substrate and 

energy source (Harmon et al. 1986), including fungi and bacteria (Tank, Webster & 

Benfield 1993; Tank & Winterbourn 1996; Tedersoo et al. 2003), invertebrates 
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(Anderson et al. 1978; Anderson & Sedelll 1979; Tank & Winterbourn 1996) and 

primary producers, such as macrophytes and periphyton (Cummins & Klug 1979; 

Eggert & Wallace 2007). This is particularly true of organisms with a low nutrient 

demand, or those requiring an energy source to supplement leaf material (Berg & 

McClaugherty 2008). In particular, the importance of twigs to invertebrates was 

highlighted in an exclusion experiment by Wallace et al. (1999), where losses of in-

stream biomass and abundance of invertebrates were found when SWD was removed 

from a temperate forest stream. Leaves may be more important to macroinvertebrate 

colonisation than wood (Anderson et al. 1978; Hofer & Richardson 2007), although 

higher wood availability may increase the standing crop of xylophagous invertebrates 

in particular (Anderson et al. 1978). 

 

While litter is clearly important to the physical and biotic components of woodlands 

and streams, its role is influenced by (i) the atmospheric conditions in which trees 

grow, and (ii) the habitat in which decay takes place. For example, atmospheric 

composition affects the chemical composition of both leaves (Norby et al. 2001) and 

SWD (e.g. Cotrufo & Ineson 2000). Additionally, water acidification can impact the 

decomposition process during freshwater breakdown (e.g. Dangles & Guérold 1998). 

Given the importance of litter to ecosystem functioning, it is important to understand 

how ongoing environmental changes will influence its decomposition. This 

information will allow for a better understanding of potential impacts on terrestrial 

and aquatic ecosystems, and can inform mitigation strategies. 

 

Although there has been much research into the effects of environmental stressors on 

litter production and decay, there are still knowledge gaps to be filled. It is important 

to keep knowledge of these processes up-to-date, as ongoing climate change is 

already affecting ecosystem functioning. Specifically, this requires a better 

understanding at several spatial scales. For example, more work is required on the 

effects of multiple, potentially interacting, stressors on the processes of litter 

production and decay in both woodlands and streams. Equally, there is a need to 

identify responses at the level of biota, both in terms of chemical changes to plant 

litter and the direct effects of these changes on consumer organisms. While these 

studies have largely relied on the use of leaf litter, it is also necessary to understand 
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how woody material – an important component of litter budgets in woodland and 

stream environments – could be affected. 

 

1.2 Thesis aims 

 

This study investigates how environmental impacts can alter ecosystem functioning. 

Specifically, it considers how elevated CO2, urban pollution and freshwater 

acidification affect the chemical composition and decomposition of tree litter in 

temperate deciduous woodlands and streams. Central aims are to examine (i) the 

effects of elevated CO2 and urban pollution on the chemistry of both leaf and woody 

litter from deciduous trees, (ii) the responses of terrestrial and aquatic invertebrate 

detritivores to CO2-treated leaf litters, and (iii) the decomposition of these litters in 

terrestrial and aquatic woodland environments, including acidified headwaters. 

 

Chapter 2 reviews the literature regarding decomposition of leaf litter and small 

woody debris in temperate deciduous woodlands and adjacent streams, and appraises 

how the environmental stressors of elevated CO2, urban pollution and acidified waters 

affect this process. 

 

Most studies of invertebrate detritivore responses to elevated-CO2 litter have focused 

on a small number of species, providing limited scope for identifying the responses 

among organisms. To help overcome this, Chapter 3 investigates the responses of 

eight (four aquatic and four terrestrial) invertebrate species to leaf litter of two tree 

species grown under ambient and elevated CO2. A version of this study was published 

in PLOS ONE, 9, e86246. 

 

Chapter 4 explores the effects of atmospheric change (increased CO2 and urban 

pollution) on the chemical composition of leaf litter and subsequent effects on mass 

loss, nutrient dynamics and invertebrate assemblages following exposure to a 

temperate deciduous woodland floor. 

 

Chapter 5 considers the themes of Chapter 4 in a freshwater context. Leaf litter 

chemical composition in response to different atmospheric conditions is assessed, 
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along with subsequent effects on mass loss, nutrient dynamics and colonisation by 

invertebrates and biofilms in circumneutral and acidified headwater streams. 

 

Little work has been undertaken to investigate the effects of atmospheric change on 

the chemical composition and decomposition of small woody debris. Chapter 6 seeks 

to address this this by investigating the effects of elevated CO2 on the chemical 

composition of twigs and their breakdown on a temperate deciduous woodland floor 

and in streams of contrasting pH. 

 

Chapter 7 synthesises the findings of the experimental chapters, exploring their 

implications and drawing general conclusions. The strengths and limitations of the 

experimental procedures are also highlighted, along with the remaining knowledge 

gaps to be investigated in future studies. 
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2. Literature review: The effects of multiple environmental 

stressors on leaf litter breakdown 
 

2.1 Abstract 

 

A literature review was undertaken to examine leaf and twig litter decomposition in 

deciduous temperate forests and headwater streams, and the effects of environmental 

stressors on this process. The decay of tree litter is an important ecosystem process at 

the foundation of detrital food web structure and function, providing a crucial step in 

the cycling of carbon and nutrients in both terrestrial and aquatic ecosystems. Litter 

decomposition advances through stages of nutrient leaching, microbial conditioning 

and invertebrate colonisation and maceration. This breaks coarse fragments into fine 

material, releasing nutrients and facilitating utilisation of litter as a substrate and food 

source. Litter chemical composition is an important determinant of breakdown. 

Higher nutritional quality (i.e. lower C/N ratio, higher nitrogen concentration and 

lower lignin concentration) generally leads to faster decay, as a result of increased 

palatability to invertebrates. Ongoing atmospheric change affects decay rates by 

altering litter nutritional quality: elevated CO2 can reduce quality, whereas urban 

pollution can increase it. A further stressor that affects litter decomposition is that of 

stream acidification, where streams with low pH result in reduced decay rates due to 

impoverished microbial and invertebrate communities. Knowledge gaps identified in 

this literature review indicate that further research on litter chemical composition and 

decomposition is required in a number of areas, including (i) the effects of urban 

pollution on litter chemical quality and subsequent decay, (ii) the effects of 

acidification on decay, and its effects in conjunction with litter growth conditions, (iii) 

how the feeding responses of individual invertebrate species are affected by litter 

produced under elevated CO2, and (iv) the effect of elevated CO2 on twig chemical 

composition and decay, an area of study that is poorly studied in comparison with leaf 

litter decomposition. 
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2.2 Litter decomposition 

 

2.2.1 The decomposition process 

 

Decomposition is “the physical and chemical breakdown of detritus,” a key 

ecosystem process in both terrestrial and aquatic environments (Chapin, Matson & 

Mooney 2011). It allows nutrients stored in litter to be released and subsequently 

cycled, which supports food webs by increasing nutrient accessibility to consumers. 

Terrestrial and aquatic realms are linked by the passage of litter from woodlands to 

adjacent streams, providing important allochthonous (externally derived) inputs of 

energy (Abelho 2001). This occurs via direct litterfall into streams, or via lateral entry 

of litter from the woodland floor. Ultimately, the process of terrestrial litter 

decomposition results in the mineralisation of organic matter into inorganic matter, or 

its transformation into complex recalcitrant compounds, with some energy lost via 

secondary production (Hairston Jr & Hairston Sr 1993; Nordén 1994; Chapin, Matson 

& Mooney 2011). In aquatic systems, coarse litter is transformed into fine particulates 

and dissolved organic matter that is transported downstream and utilised by stream 

organisms (Abelho 2001). 

 

The process of litter decomposition advances similarly in both terrestrial and aquatic 

environments. Soluble compounds leach out of the litter before it is colonised and 

broken down by microbes, paving the way for comminution by invertebrate 

detritivores, breaking large fragments into progressively smaller pieces (Wagener, 

Oswood & Schimel 1998). Spatial progression occurs in both environments, with 

decomposition proceeding through ‘upper’ (litter layer or headwaters), ‘middle’ (soil-

litter interface or middle reaches of a stream) and ‘lower’ (mineral soil or lower 

reaches) regions (Wagener, Oswood & Schimel 1998). The major difference may be 

temporal, as leaf (Treplin & Zimmer 2012) and Small Woody Debris (SWD; 

Sinsabaugh et al. 1992) decomposition tend to proceed faster in freshwater than 

terrestrial locations, which is likely due to the abrasive action of water on detrital 

surfaces (dos Santos Fonseca et al. 2013). This is indicated by studies that mimic 

stranding or re-entry of litter to streams after high flow events and confirm that 

aquatic episodes enhance decay rates (Hutchens & Wallace 2002; Riedl et al. 2013). 
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2.2.2 Terrestrial litter decomposition 

 

Leaves begin leaching labile nutrients, such as tannins and other phenolics (Schofield, 

Hagerman & Harold 1998), when they reach the woodland floor. These soluble 

materials are absorbed by organisms (e.g. decomposer fungi and invertebrates), react 

with the soil, or are lost in solution (Chapin, Matson & Mooney 2011). Fungi and 

bacteria, considered primary decomposers in temperate forests (Berg & 

McClaugherty 2008), colonise the litter as leaching continues. Fungi are the most 

numerous of the microflora associated with litter, and break down the structural 

components of leaves by penetrating tissues and excreting digestive cellulolytic and 

lignolytic enzymes (Lavelle & Spain 2001; Berg & McClaugherty 2008). This causes 

macromolecules, such as cellulose, to break into smaller units that can be 

incorporated into microbial tissues. As a result, litter is physically weakened and 

becomes fragmented, increasing the surface area available for subsequent microbial 

colonisation (Chapin, Matson & Mooney 2011). 

 

Leaching and microbial colonisation increase litter accessibility to detritivorous 

invertebrates, such as collembola, mites and earthworms, which contribute to the 

decay process by macerating large litter fragments into smaller pieces (Lavelle et al. 

2006; Berg & McClaugherty 2008; Kampichler & Bruckner 2009). For example, 

Oniscus asellus L. has been shown to accelerate decomposition of F. sylvatica leaf 

litter and stimulate microbial respiration by 37% (Hättenschwiler & Bretscher 2001). 

This activity can increase total carbon and nitrogen content in leachates, affecting 

their availability and temporal dynamics (Huhta, Setälä & Haimi 1988; 

Hättenschwiler & Bretscher 2001). While maceration fragments litter, faecal pellet 

production also increases surface-area-to-volume ratio, further speeding microbial 

colonisation and incorporation into soil organic matter (Chapin, Matson & Mooney 

2011). Hedde et al. (2007) proposed three classifications of soil litter transformers: 

those producing faeces with relatively high nitrogen (e.g. polydesmids and 

lumbricids); those producing faeces containing fine litter particles that stimulate CO2 

release (e.g. other lumbricids); and other invertebrate comminuters with weaker 

impacts on organic matter mineralisation.  
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There is limited work on the decomposition of SWD in temperate deciduous forests, 

given that most studies focus on leaf breakdown dynamics (Berg & McClaugherty 

2008). Small woody debris breaks down more slowly than leaves due to a higher 

prevalence of structural components, making its decomposition more dependent on 

microbial enzymes for decay. One early study by Gosz et al. (1973) showed that 

SWD (0.5 cm diameter, 30–45 cm long) from the hardwoods Betula alleghaniensis 

Britton, Acer saccharum Marsh. and F. grandifolia Ehrh. did not differ in 

decomposition rate, but all decayed faster than the coniferous species Picea rubens 

Sarg. and Abies balsamea L. (Mill.) after 10 months. The size of SWD may be an 

important determinant of its breakdown, where twigs with 0.5 cm diameter  

(k = 0.055–0.081 year–1) broke down faster than those with 1.5–3 cm diameter  

(k = 0.027–0.052 year–1) in coniferous forests of the Rocky Mountains, USA (Taylor 

et al. 1991). Scheu and Schauermann (1994) found that the dimensions of F. sylvatica 

SWD also affected chemical dynamics: C/N ratio was highest in small (< 3 mm) 

SWD, followed by medium (3–10 mm) and then large (10 mm) SWD; C/N decreased 

through time, where medium and large SWD exhibited a greater loss relative to small 

SWD; and carbon loss was greatest in large SWD, followed by medium and then 

small SWD. 

 

2.2.3 Aquatic litter decomposition 

 

Leaf decomposition in freshwater generally occurs in three stages: leaching, 

conditioning and fragmentation (Petersen & Cummins 1974; Webster & Benfield 

1986; Abelho 2001), although these stages are not discrete and may overlap (Gessner, 

Chauvet & Dobson 1999). Leaching involves the loss of labile, water-soluble 

molecules through purely abiotic processes, usually within the first 24 hours (Nykvist 

1961). This process occurs more quickly when litter has been dried (Gessner, Chauvet 

& Dobson 1999). The types and amounts of compounds retained by the leaf tissue 

dictate subsequent colonisation and early breakdown by fungi and bacteria 

(Bengtsson 1992) during the aquatic conditioning phase. Fungi tend to be the most 

prevalent microbe in this process, particularly hyphomycetes (Suberkropp & Klug 

1974; Hieber & Gessner 2002; Gessner et al. 2007; Krauss et al. 2011). As much as 
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10-17% of dry matter associated with litter may be composed of fungi after stream 

exposure (Gessner & Schwoerbel 1991; Gessner, Bärlocher & Chauvet 2003).  

 

Invertebrate detritivores ('shredders'; Graça 2001) are particularly important litter 

decomposers in streams (Wallace & Webster 1996) and their presence increases 

decomposition rates versus microbial activity alone (Gonçalves, Graça & Callisto 

2006). Shredder activity is responsible for a large proportion of leaf litter mass loss. 

For example, invertebrates caused 64 and 51% of overall mass loss of Alnus glutinosa 

(L.) Gaertn. and Salix fragilis L. leaves, respectively, in a German stream (Hieber & 

Gessner 2002). Leaf litter is ‘prepared’ for shredders by microbial conditioning, 

which softens and fragments leaf tissues (Graça 2001; Graça, Cressa & Gessner 2001). 

Despite assisting shredders, the role of fungi in the direct decomposition of litter 

should not be underemphasised (Gessner, Chauvet & Dobson 1999). Microbes that 

colonise leaf surfaces also represent a direct food source to invertebrates, given the 

immobilisation of leaf nutrients within their tissues (Findlay 2010). This is 

highlighted by the preference of the detritivores Gammarus pulex L. and Sericostoma 

personatum Kirby & Spence for conditioned rather than unconditioned A. glutinosa 

litter (Graça, Cressa & Gessner 2001). The identity of litter-associated fungal species 

may also affect shredder feeding preferences (Gonçalves et al. 2014). Positive 

feedback also occurs, as shredder excretion stimulates fungal activity by increasing 

local nitrogen availability (Villanueva, Albariño & Canhoto 2012).  

 

Not all organisms use leaf litter as a food resource: some species use it as a substrate 

and shelter. This includes other guilds of invertebrates, including predators, grazers 

and filterers (Cummins & Klug 1979; Wallace & Webster 1996; Moog 2002). 

Wallace et al. (1997, 1999) showed that the abundance and biomass of invertebrates 

were reduced following exclusion of litter from a stream, with strong bottom-up 

effects from detritivores to predators. Alongside invertebrates, algae also use leaf 

surfaces as a substrate, forming biofilms (Hax & Golladay 1993). Algal colonisation 

can result in greater palatability to invertebrate detritivores (Franken et al. 2005), 

leading to faster decay rates (Rier, Kuehn & Francoeur 2007; Danger et al. 2013). 

 

Aside from leaf material, woody litter also enters and decays in freshwater 

environments. There are some similarities between leaf and twig decay in streams. 
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For example, SWD is also broken down by stream organisms, including fungi 

(Shearer & Webster 1991), although microbial respiration was an order of magnitude 

lower on small wood (less than 40 mm diameter) compared to leaf litter in a 

headwater stream in the Appalachian Mountains, USA (Gulis, Suberkropp & 

Rosemond 2008). Saproxylophagous invertebrates are also associated with wood 

(Moog 2002) and have been shown to affect aquatic SWD breakdown in conifer 

forests (Anderson et al. 1978). Webster et al. (1999) synthesised data from the 

Coweeta Hydrologic Laboratory, North Carolina, and found that the breakdown rate 

of sticks (< 3 cm diameter) was much lower than for leaves. Similarly, A. rubra Bong. 

leaves lost around 50% of their mass compared to less than 15% mass loss in A. rubra 

wood veneers (Hofer & Richardson 2007). A review by Spänhoff and Meyer (2004) 

found that natural SWD breaks down slowly in freshwaters, with typical decay rates 

(k) ranging from 0.02 to 0.45 year–1.  

 

Commercially-modified wood substrates (e.g. veneer strips, ice cream sticks and 

wood chips) have generally larger surface-area-to-volume ratios than natural products 

and break down faster, with decay rates (k) of 0.10 to 3.1 year–1. More recent work by 

Aristi et al. (2012) showed large differences (k = 0.12–6 year–1) in the breakdown of 

P. nigra × canadinensis tongue depressors across a range of rivers with differing 

physicochemical, biological and geomorphological features. Similarly, it is known 

that water chemistry (Díez et al. 2002; Gulis et al. 2004), stream order (Melillo et al. 

1983; Díez et al. 2002), tree species (Webster et al. 1999; Díez et al. 2002; Spänhoff 

& Meyer 2004) and the presence of decomposing leaf material (Webster & Tank 

2000) are all factors that influence the breakdown of woody debris in streams. Factors 

such as altitude, catchment area, toxicity and riparian buffer width have also been 

implicated in the decay of tongue depressors (Aristi et al. 2012).  

 

2.2.4 Chemical control of breakdown 

 

One particularly important factor influencing the decomposition of leaves and SWD 

in terrestrial and aquatic environments is that of litter chemical composition. Freschet 

et al. (2012) found that the terrestrial decomposability of a range of plant species and 

tissues appears to be controlled by lignin, carbon and dry matter content, while 
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nutrient-related traits such as nitrogen and phosphorus content can have a more 

variable effect. Other terrestrial studies have found that high concentrations of 

nitrogen and phosphorus, as well as lower C/N ratios and lignin concentrations, are 

linked to faster decay in woodland settings (Melillo, Aber & Muratore 1982; Zhang et 

al. 2008). This general outcome extends into freshwaters, where lower phosphorus, 

and increased lignin and cellulose, were correlated with lower decomposition rates in 

a study of A. glutinosa (Lecerf & Chauvet 2008). 

 

A global meta-analysis of terrestrial wood decomposition found that nitrogen, 

phosphorus and C/N ratio correlate with angiosperm decomposition rates, which 

could be due to a direct effect on decomposer activity, or an indirect effect on the 

microsite in which decomposition is taking place (Weedon et al. 2009). Wood chips 

of five tree species with high lignin/N ratios broke down more slowly in low-order 

streams, while high lignin content resulted in slower breakdown in high-order streams 

(Melillo et al. 1983). The activity of lignocellulose-degrading enzymes was also 

positively associated with decomposition of B. papyrifera Marsh. ice-cream sticks, 

further demonstrating the importance of lignin to SWD decay (Sinsabaugh et al. 

1992). In another study, pine branches (3 cm diameter, 10 cm long) contained lower 

nitrogen and phosphorus than alder and oak, and also broke down more slowly (Díez 

et al. 2002).  

 

Regardless of habitat, high concentrations of structural polymers (e.g. lignin and 

celluloses) increase the physical toughness of litter, resulting in greater resistance to 

both biotic and abiotic factors. Many invertebrates prefer litter with high nutrient 

concentrations and a low C/N ratio (Anderson & Sedelll 1979; Cummins & Klug 

1979), finding it difficult to digest litter with high structural and defensive (e.g. 

tannins and secondary chemicals) content, which reduce the overall nutritional quality 

of leaf (Graça, Cressa & Gessner 2001; Motomori, Mitsuhashi & Nakano 2001) and 

wood (Cornwell et al. 2009) litter. 
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2.3 Atmospheric change 

 

Anthropogenic activities, such as the burning of fossil fuels, have increased 

atmospheric greenhouse gas concentrations by 40% since pre-industrial times (IPCC 

2013). Greenhouse gas molecules – including carbon dioxide (CO2), methane (CH4), 

nitrous oxide (N2O) and fluorinated gases (F-gases) – contribute to the ‘greenhouse 

effect’: a net global temperature increase due to absorbance and re-radiation of solar 

energy to the Earth’s surface (Houghton 2009). Ongoing land-use change, 

urbanisation and industrial activity threaten to exacerbate the problem (Akimoto 

2003; Karl & Trenberth 2003). 

 

According to data collected by the National Oceanic and Atmospheric Administration 

(NOAA) at Mauna Loa, Hawaii, the mean atmospheric concentration of CO2 for 2013 

(the latest full year on record) was 396.5 parts per million (ppm), with an average 

annual increase of 2.1 ppm year–1 (Tans & Keeling 2014). Ice-core data suggest that 

global atmospheric CO2 has not risen above this concentration for the last 800,000 

years (Lüthi et al. 2008), or perhaps for 15 million years (Tripati, Roberts & Eagle 

2009). Anthropogenic activity is related to these changes, with over 75% of fossil fuel 

emissions involving the release of this molecule (IPCC 2013). The latest report by the 

Intergovernmental Panel on Climate Change (IPCC) incorporated a range of 

atmospheric CO2 projections based on the predicted development of factors including 

global population, economics and technology. For example, one scenario that assumes 

increasing greenhouse gas emissions through time (known as RCP 8.5) predicts that 

atmospheric CO2 concentrations could more than double, reaching as much as  

1000 ppm in the next 100 years. 

 

2.3.1 Effects of atmospheric CO2 on litter 

 

Areas with naturally or artificially increased CO2 concentrations are used to study the 

effects of elevated CO2 on tree litter chemical quality. Some research has taken place 

in locations with naturally high CO2 concentrations, such as CO2 springs 

(Hättenschwiler et al. 1997), but these are rare and concentrations cannot be adjusted. 

Most studies have controlled CO2 concentrations using one of several methods 
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(Ceulemans & Mousseau 1994; Saxe, Ellsworth & Heath 1998), each of which have 

associated advantages and disadvantages. For example, it is relatively inexpensive to 

construct and maintain open- or closed-top chambers, although such designs can also 

affect the local microclimate, and are generally suitable for immature potted plants 

only. Outdoor techniques such Free-Air Carbon Enrichment (FACE) may give the 

most accurate predictions of long-term plant responses to elevated CO2, as a large 

number of mature trees can be grown for years under field conditions (Lewin et al. 

1994). Initial outlay and maintenance are, however, relatively higher for FACE 

facilities, and it may be more difficult to maintain consistent gas concentrations (Saxe, 

Ellsworth & Heath 1998). 

 

2.3.2 Effects of elevated CO2 on litter chemical composition 

 

Elevated atmospheric CO2 alters the chemical composition of leaves while still on the 

parent tree. Reduced leaf nitrogen concentration is typical of plants grown under 

elevated CO2, with a meta-analysis by Cotrufo et al. (1998) indicating an average 

reduction of 14%, with greater losses for C3 than C4 and nitrogen-fixing plants. 

Coûteaux et al. (1999) found that these effects were species-specific and dependent 

on the length of CO2 exposure. Taub and Wang (2008) suggested possible reasons for 

low nitrogen concentrations following high CO2 exposure: (i) dilution due to 

increased carbon assimilation, (ii) reduced uptake rates due to reductions in demand 

or the ability of the soil-root system to supply it, (iii) reduced transpiration due to 

reduced stomatal conductance, and (iv) increased losses as volatiles or through root 

exudates. There may also be a dilution effect associated with increases in non-

structural carbohydrate production per unit leaf area (Ainsworth & Long 2005). 

Nitrogen limitation may not always be a problem, however, as species such as A. 

glutinosa have the ability to fix nitrogen via root nodules, which may increase in size 

under elevated CO2 to allow for relatively more nitrogen to be fixed (Temperton et al. 

2003). While nitrogen concentration decreases, increased photosynthetic rates and 

fixation of CO2 (Ainsworth & Long 2005; Ainsworth & Rogers 2007) can increase 

carbon concentration. This results in a larger C/N ratio (Lindroth 2010), with a study 

by Gifford et al. (2000) indicating an increase of approximately 15% under doubled 

CO2.  
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Carbon dioxide enrichment changes the chemical composition of leaf litter across a 

range of tree species and growing conditions. In general, nitrogen concentration is 

reduced, with increases in C/N ratio, and concentrations of lignin and phenolics 

(Norby et al. 2001; Tuchman et al. 2003b; Parsons, Lindroth & Bockheim 2004; 

Oksanen et al. 2005). Results are, however, dependent on growth environment (open-

top chamber, solardome or no chamber) and whether the plant was grown in a pot. 

These results mean that differences in chemical composition between ambient- and 

elevated-CO2 leaves are maintained after falling as litter. The magnitude of the 

difference may be enhanced, as for C/N ratio (Tuchman et al. 2002), or diminished, as 

for nitrogen concentration (Norby et al. 2001). Relative amounts of chemicals may 

also be affected by senescence. For example, one study has shown that elevated-CO2 

leaves and litter both contained a higher concentration of phenolics than ambient-CO2 

material, but senescence had halved the concentration (Tuchman et al. 2002). The 

study also found no difference in the lignin concentration of green leaves grown under 

ambient and elevated CO2, but the latter had a significantly higher concentration after 

senescence. 

 

Relatively little work has been undertaken on the decomposition of deciduous SWD 

produced under elevated CO2. In one study, elevated CO2 (350, 500 or 750 ppm) 

induced little change in the nitrogen and phosphorus content of woody tissues sourced 

from saplings of multiple temperate deciduous species (Williams et al. 1986). 

Chemical changes to stem wood have, however, been recorded under elevated CO2. 

The lignin content of P. tremula × alba Aiton (Sm.) increased under elevated CO2 

(chambers, 800 ppm) as a result of increased carbon supply to the stem and 

subsequent enhancement to the process of lignin synthesis (Richet et al. 2012). 

Carbon dioxide enrichment (greenhouses, 700 ppm) also reduced nitrogen 

concentrations in woody material of Castanea sativa Mill., but a concurrent increase 

in biomass resulted in no difference in total tree nitrogen (El Kohen, Rouhier & 

Mousseau 1992). Kostiainen et al. (2006) grew seven-year old B. pendula Roth trees 

under elevated CO2 (open-top chambers, 2 × ambient) for three growing seasons in 

open-top chambers, resulting in decreased levels of cellulose and lignin. Over a 

longer period of time (five growing seasons) and in a FACE facility, CO2 enrichment 

(560 ppm) affected the chemical composition of Populus tremuloides Michx. and B. 
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papyrifera trees (Kostiainen et al. 2008), with increased uronic acids in aspen, and 

decreased starch in birch. Aside from leaves, responses of wood chemical 

composition to elevated CO2 may be species- and clone-specific, as Kaakinen et al. 

(2004) found increases in soluble sugar concentration in one P. tremuloides clone 

under elevated CO2 (FACE, 560 ppm) and decreased starch concentration in two 

clones, while hemicellulose concentration in B. papyrifera was decreased and little 

response was found in A. saccharum. 

 

2.3.3 Linking elevated CO2, litter chemical composition and breakdown 

 

Few studies have been undertaken to uncover how litter decay is affected by chemical 

composition changes as mediated by CO2 enrichment. Studies that have been 

undertaken show that mass loss proceeds at a slower rate for elevated-CO2 litter 

(Table 2.1). In general, this is linked to a reduced nitrogen concentration, along with 

an increased C/N ratio and lignin concentration (Table 2.1), although increased 

condensed tannins (Ostrofsky 1997) and total phenolic compounds (Tuchman et al. 

2003a; b) have also been found in conjunction with slower decay. Chemical dynamics 

are affected by CO2 treatment and species. For example, Rier et al. (2005) found that 

P. tremuloides, S. alba Kern. and A. saccharum litters produced under elevated 

atmospheric CO2 (open-top chambers, 720 ppm) had increased soluble phenols, 

carbohydrate-bound condensed tannins and C/N ratios than litter grown under 

ambient CO2, although effects were species-specific. Following this, exposure to a 

northern hardwood forest stream showed that litter C/N ratios generally declined 

through time, although elevated-CO2 litter generally had a higher C/N ratio than that 

of ambient-CO2 litter over 80 days. 

 

Little work has been conducted on the breakdown of SWD following growth under 

altered atmospheres. Cotrufo and Ineson (2000) grew F. sylvatica twigs (2 cm 

diameter) under elevated CO2 (open-top chambers, ambient + 350 ppm), resulting in 

38% lower nitrogen and 12% lower lignin than ambient-CO2 twigs, and subsequently 

higher C/N and lignin/N ratios. These chemical changes did not result in slower 

terrestrial decomposition, however, nor was there an effect on nitrogen and lignin 

dynamics through time. Twigs (1–2 mm diameter) of P. abies (L.) H. Karst. grown 
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under elevated CO2 (open-top chambers, 550 ppm) had lower nitrogen concentrations, 

but did not differ in carbon or lignin concentrations, when compared to twigs grown 

under ambient CO2 (Hättenschwiler, Bühler & Körner 1999). This resulted in slower 

decomposition of elevated-CO2 twigs, with 26% mass lost over 331 days of 

incubation in a temperate forest, compared to 50% mass loss for ambient-CO2 twigs. 

 

2.3.4 Invertebrate responses to elevated-CO2 litter 

 

Changes to chemical composition caused by atmospheric CO2 enrichment can affect 

invertebrate feeding and life histories. This has been established for green leaf tissues 

and herbivores, where leaf-chewing insects compensated for reduced nutritional 

quality by consuming more material, while phloem feeders increased population sizes 

and reduced development times (Bezemer & Jones 1998). After falling as litter, 

elevated-CO2 leaves continue to affect the feeding behaviour of invertebrate 

consumers. When given a direct choice between common ash (Fraxinus excelsior L.) 

litter grown in ambient and enriched CO2, the terrestrial isopod detritivore O. asellus 

consumed less of the treated material (Cotrufo, Briones & Ineson 1998). These 

findings suggest a preference for litter of higher nutritional quality, since litter grown 

under ambient conditions contains more nitrogen. When fed with either treated or 

reference litter from common beech (F. sylvatica) in a no-choice scenario, O. asellus 

and another detritivorous isopod, Porcellio scaber Latreille, consumed more of the 

former (Hättenschwiler & Bretscher 2001). This result suggests that a compensatory 

feeding response is elicited when isopods are presented with material of lower 

nutritional quality. In a choice between A. pseudoplatanus L., F. sylvatica and 

Quercus robur L. grown at ambient or elevated CO2, O. asellus preferred A. 

pseudoplatanus to F. sylvatica, but only when all litter was produced at elevated CO2 

(Hättenschwiler & Bretscher 2001). These results may not always be the case: CO2 

enrichment did not result in changes to Porcellio species across a range of hardwoods, 

although there were differences in breakdown rates as a result (Cotrufo, Drake & 

Ehleringer 2005). 



 

Table 2.1. Effects of elevated CO2 on litter chemistry and subsequent mass loss, relative to effects of ambient CO2 (S = Solardomes; FACE = Free-Air 

Carbon Enrichment; OTC = Open-Top Chambers)  

Study 
Elevated CO2 

(delivery system) 
Species 

Decay site 

(duration) 

Mass 

loss 
C N C/N Lignin 

Cotrufo, Ineson & Rowland (1994) 600 ppm (S) Fraxinus excelsior L., 

Betula. Pubescens Ehrh., 

Acer pseudoplatanus L. 

Terrestrial 

microcosm  

(155 days) 

Slower Lower  Higher Higher 

Cotrufo & Ineson (1996) Ambient + 250 ppm 

(S) 

B. pendula Roth Terrestrial  

(1 year) 

Slower   Higher Higher 

Cotruo, Briones & Ineson (1998) 600 ppm (S) F. excelsior, A. 

pseudoplatanus 

Terrestrial  

(1 year) 

Slower     

Cotrufo, De Angelis & Polle (2005) 2 × ambient (FACE) Populus spp. Terrestrial  

(8 months) 

Slower  Lower  No change 

Hättenschwiler, Bühler & Körner (1999) 550 ppm (OTC) Fagus sylvatica L. Terrestrial  

(331 days) 

Slower No change Lower  No change 

Ostrofsky (1997)  48 deciduous spp. Aquatic Slower  Lower Higher Higher 

Tuchman et al. (2003b) 720 ppm P. tremuloides Michx. Aquatic  

(120 days) 

Slower  Lower Higher Higher 
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Altered leaf chemistry as a result of CO2 enrichment can also affect litter nutritional 

quality for stream food webs (Tuchman et al. 2003b), altering shredder feeding 

behaviour. For example, when presented with a choice between litter grown in 

ambient or elevated CO2 conditions, larvae of the caddis fly S. vittatum Rambur 

preferred the latter (Ferreira et al. 2010). It is not simply consumption that is affected: 

changes in leaf chemistry brought about by enriched CO2 cause the crustaceans G. 

pulex and Asellus aquaticus L. to excrete more nitrogen and phosphorus than when 

fed on ambient material (Frost & Tuchman 2005). This loss of nutrients may be partly 

responsible for effects such as reduced growth and increased mortality of 

invertebrates (Tuchman et al. 2002, 2003b). Further investigation is required to 

understand the responses of shredding macroinvertebrates to food quality that has 

been altered by climate change processes. 

 

2.3.5 Effects of atmospheric pollution on litter 

 

Air pollution is known to affect plants physically. For example, photosynthesis can be 

affected by stomatal closure induced by air pollution, reducing carbon accumulation 

(Darrall 1989). When scaled-up, forests can act as a sink for air contamination when 

pollution levels are low, but tree mortality is the likely outcome for prolonged 

exposure to high levels of pollution (Smith 1974). Such forest declines can be linked 

to reduced soil quality caused by increased deposition of sulphur, nitrate and 

ammonium (Schulze 1989). 

 

There has been relatively little work on the effects of urban pollution on litter 

chemistry and decay. Concentrations of airborne pollutants (e.g. NO3–, NH4
+) are 

normally higher in urban than rural locations (George et al. 2007). This can result in 

increased soil nitrogen deposition may result in greater nitrogen availability to trees 

(Lovett et al. 2000; Zhu & Carreiro 2004; Fang et al. 2011), but outcomes for litter 

nutritional quality appear unpredictable (Pavao-Zuckerman & Coleman 2005). 

Increased concentrations of lignin and labile materials have, however, been identified 

in urban litter (Carreiro et al. 1999). This may result in slower decomposition rates 

relative to rural litter when decaying in terrestrial forest environments (Carreiro et al. 

1999; Pouyat & Carreiro 2003). 
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2.4 Effects of stream acidification on litter 

 

Fossil fuel consumption has changed the chemical quality of freshwaters by altering 

the composition of atmospheric gases. Atmospheric concentrations of pollutant gases 

such as sulphur and nitrogen oxides have increased, resulting in greater absorption 

into rainwater to create acid rain. This effect has perhaps been most damaging in 

Europe and North America, where acid rain has combined with base-poor soils to 

lower the pH of runoff from land to water, increasing the aquatic concentration of 

metals such as aluminium to harmful levels (Schindler 1988). The problem of acid 

rain peaked in the 1970s, but acidification still occurs episodically or even chronically, 

and still poses a threat to freshwater environments across the globe (Kowalik et al. 

2007; Ormerod & Durance 2009). 

 

Stream acidification has consistently been shown to retard the decomposition of 

organic matter. The Fernow Whole-Watershed Acidification Experiment in West 

Virginia, USA (Adams et al. 1993), simulated the effects of acid deposition by adding 

ammonium sulphate fertiliser to streams. At this site, Adams and Angradi (1996) 

recorded slower decay of Liriodendron tulipifera L., Prunus serotina Ehrh. and B. 

lenta L. litter in an acidified watershed compared to an untreated one, while litter of A. 

saccharum and Q. alba L. broke down slowest at pH 4.3 and fastest at pH 6.0, with an 

intermediate decay rate at pH 7.5 (Griffith & Perry 1994). Away from Fernow, 

Dangles et al. (2004) observed the breakdown of F. sylvatica leaves in 25 French 

streams across a pH gradient, with decay proceeding up to 20 times slower in the 

most acidified and aluminium-rich site compared to locations with more neutral pH. 

This confirmed earlier work by Dangles and Guérold (1998, 2001) demonstrating 

slower breakdown of F. sylvatica litter in acidified streams compared to 

circumneutral streams over seven and eight month exposure periods, respectively.  

 

Slower breakdown of litter in acidified streams may be due to reduced biotic activity. 

For example, fungal biomass and activity have been shown to decrease after exposure 

to acidified waters (Griffith & Perry 1994; Dangles et al. 2004), which could directly 

slow decomposition rates. The composition of primary producers, particularly 

diatoms, also changes substantially at low pH (Hirst et al. 2004). Since fungal 

(Bärlocher 1985; Graça 2001) and algal (Rier, Kuehn & Francoeur 2007; Danger et al. 
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2013) colonisation of litter can increase palatability to invertebrates, stream 

acidification could indirectly reduce shredder impacts by reducing their biomass. 

Water acidity also acts directly on invertebrates, with different species expressing 

various sensitivities (Moog 2002). This can result in impoverished invertebrate 

communities (Mackay & Kersey 1985; Simpson, Bode & Colquhoun 1985; Sutcliffe 

& Hildrew 1989) and reduced numbers of shredders (Dangles 2002) at acidified sites. 

For example, Dangles and Guérold (1998, 2001) found that the acid sensitive 

amphipod G. fossarum Koch was the most dominant shredder at non-acidified sites, 

but Leuctra and Protonemura plecopterans were the most abundant at acid sites. This 

could explain the reduced decomposition rate in the acid stream, as G. fossarum is a 

more efficient shredder than Leuctra or Protonemura species. 

 

Acidification remains a threat to stream functioning despite some signs of recovery. 

This is clear from work at Llyn Brianne Stream Observatory, Wales, UK, which hosts 

one of the longest running investigations into the effects of land use and acid 

deposition on freshwater environments. An assessment of data stretching back 25 

years by Ormerod and Durance (2009) indicated that recovery from acidification is 

occurring at the site, but this has not resulted in full recovery of invertebrate species. 

Ongoing acidic episodes at the site appear to explain this slow biological recovery 

(Kowalik et al. 2007). To investigate this, Pye et al. (2012) simulated episodic 

acidification by transplanting Q. robur litter bags between acidified and circumneutral 

streams. This reduced decomposition rates and suppressed acid-sensitive families of 

Plecoptera, the major colonists of litter in the study. Experimental liming has 

indicated that the effects of acidified waters on decomposition can be reversed: in the 

Wye Valley, UK, F. sylvatica decayed slower in acidified versus circumneutral 

streams, but experimental aerial liming resulted in a slight increase in pH and a decay 

rate indistinguishable from that found in circumneutral sites (Merrix, Lewis & 

Ormerod 2006). There is some doubt, however, that this approach is more effective 

than natural recovery (Ormerod & Durance 2009). 
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2.5 Conclusions 

 

Litter decomposition is a central process to woodland ecosystem functioning, 

influencing nutrient cycling, carbon storage and food web structure. Atmospheric 

change as a result of fossil fuel combustion could compromise this process by altering 

the chemical composition of tree leaf litter and its subsequent decay in both terrestrial 

(woodland floor) and aquatic (stream) ecosystems. In addition, acid rain and runoff 

from polluted soils have both contributed to the acidification of freshwaters, delaying 

the decomposition process further. Several areas are highlighted as requiring the need 

for greater understanding: (i) the effects of rural and urban locations on litter chemical 

composition and subsequent decomposition, (ii) effects of acidification in 

combination with effects of atmospheric pollution on litter chemical composition and 

decomposition, (iii) a more comprehensive study of invertebrate feeding responses to 

litter with chemical composition altered by elevated CO2, and (iv) the effect of 

elevated CO2 on the chemical composition and decomposition of small woody debris 

in terrestrial and aquatic habitats. These issues must be addressed to achieve a greater 

understanding of the effects of ongoing global change processes on the functioning of 

both terrestrial and aquatic ecosystems, allowing for a greater ability to predict and 

mitigate against potentially harmful ecosystem changes. 
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3. Effects of elevated CO2 on litter chemistry and subsequent 

invertebrate detritivore feeding responses 
 

A version of this chapter was published as Dray, M.W., Crowther, T.W., Thomas, 

S.M., A’Bear, A.D., Godbold, D.L., Ormerod, S.J., Hartley, S.E., & Jones, T.H. 

(2014) PLOS ONE, 9, e86246. 

3.1 Abstract 

 

Elevated atmospheric CO2 can change foliar tissue chemistry. This alters leaf litter 

palatability to macroinvertebrate detritivores with consequences for decomposition, 

nutrient turnover, and food-web structure. Currently there is no consensus on the link 

between CO2 enrichment, litter chemistry, and macroinvertebrate-mediated leaf 

decomposition. To identify any unifying mechanisms, eight invertebrate species from 

aquatic and terrestrial ecosystems were presented with litter from Alnus glutinosa 

(common alder) or Betula pendula (silver birch) trees propagated under ambient (380 

ppm) or elevated (ambient + 200 ppm) CO2 concentrations. Alder litter was largely 

unaffected by CO2 enrichment, but birch litter from leaves grown under elevated CO2 

had reduced nitrogen concentrations and greater C/N ratios. Invertebrates were 

provided individually with either (i) two litter discs, one of each CO2 treatment 

(‘choice’), or (ii) one litter disc of each CO2 treatment alone (‘no-choice’). 

Consumption was recorded. Only Odontocerum albicorne showed a feeding 

preference in the choice test, consuming more ambient- than elevated-CO2 birch litter. 

Species’ responses to alder were highly idiosyncratic in the no-choice test: Gammarus 

pulex and O. albicorne consumed more elevated- than ambient-CO2 litter, indicating 

compensatory feeding, while Oniscus asellus consumed more of the ambient-CO2 

litter. No species responded to CO2 treatment when fed birch litter. Overall, these 

results show how elevated atmospheric CO2 can alter litter chemistry, affecting 

invertebrate feeding behaviour in species-specific ways. The data highlight the need 

for greater species-level information when predicting changes to detrital processing – 

a key ecosystem function – under atmospheric change. 
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3.2 Introduction 

 

Global concentrations of atmospheric carbon dioxide (CO2) could more than double 

by 2100 (Collins et al. 2013). Typically, CO2 enrichment leads to increased plant 

photosynthesis, resulting in greater biomass and production (Curtis & Wang 1998). 

Plant tissue chemistry is typically modified, with decreasing nitrogen concentrations 

and increasing carbon-nitrogen (C/N) ratios affecting herbivore life-history and 

feeding responses (Robinson, Ryan & Newman 2012). 

 

Approximately 90% of primary production in forest ecosystems escapes herbivory 

and forms detritus (Cebrian 1999), providing a crucial energy pool that underpins the 

trophic structure of soils and adjacent freshwaters (Moore et al. 2004). The effect of 

elevated CO2 on the chemical composition of green foliar tissues reduces its 

palatability to detritivores when it falls as litter (Tuchman et al. 2002). In particular, 

elevated CO2 can reduce litter resource quality by decreasing litter nitrogen content 

(Coûteaux et al. 1999; Norby et al. 2001), subsequently increasing C/N ratios 

(Cotrufo, Ineson & Rowland 1994; Tuchman et al. 2003b). Increases in structural 

(Cotrufo, Ineson & Rowland 1994; Norby et al. 2001; Tuchman et al. 2002) and 

defensive (Tuchman et al. 2003b; Parsons, Lindroth & Bockheim 2004) compounds 

have also been reported, along with both increases and decreases in phosphorus 

concentrations (Liu, King & Giardina 2007; Ferreira et al. 2010). The potential for 

rising CO2 concentrations to alter litter chemical composition is established, but the 

consequences for invertebrate-mediated decomposition – an important ecosystem 

function – remain unclear (Prather et al. 2013). 

 

Detritivorous macroinvertebrates are functionally important in detritus-based 

ecosystems (Yang & Gratton 2014), as they are responsible for both comminution and 

consumption of litter, releasing nutrients for other organisms, such as saprophagous 

fungi (Wallace & Webster 1996; Lavelle et al. 2006). To maintain optimal body 

nutrient concentrations, theoretical predictions and empirical evidence suggest that 

invertebrates can increase feeding rates of reduced-quality material (e.g. Cotrufo, 

Briones & Ineson 1998; Hättenschwiler, Bühler & Körner 1999), a process known as 

‘compensatory feeding’ (as defined by Gessner et al. 2010). Despite this, poor quality 
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litter has also been shown to increase handling times (Ott, Rall & Brose 2012), while 

reducing nutrient assimilation, slowing development rates, and increasing mortality 

(Tuchman et al. 2002; Frost & Tuchman 2005). These conflicting responses have 

resulted from studies focusing on a small number of species (e.g. Hättenschwiler, 

Bühler & Körner 1999; Ferreira et al. 2010), which also fail to incorporate aquatic 

and terrestrial invertebrates, despite differences in detrital accumulation and energy 

flow between these habitats (Shurin, Gruner & Hillebrand 2006). A broad-scale study 

incorporating a range of invertebrate species from different habitats is essential to 

identify the unifying mechanisms that govern invertebrate feeding responses to 

elevated-CO2 litter. 

 

In this study, the feeding preferences and consumption rates of eight detritivorous 

macroinvertebrate species presented with Alnus glutinosa (L.) Gaertn. (common 

alder) and Betula pendula Roth (silver birch) leaf litter produced under ambient and 

elevated atmospheric CO2. It was hypothesised that: (1) CO2 enrichment will reduce 

leaf chemical quality and, given nitrogen-fixing ability in alder, responses will differ 

by tree species; (2) when presented with a choice between ambient- and elevated-CO2 

litter, invertebrates will prefer ambient material, assuming its higher quality; (3) when 

given litter of one CO2 treatment only, consumption of elevated-CO2 litter will be 

greater, to compensate for its reduced quality. 

 

3.3 Materials and methods 

 

3.3.1 Leaf litter preparation 

 

Alder and birch litters were produced at the BangorFACE facility, Bangor, UK 

(Smith et al. 2013; Fig. 3.1). Trees were grown in eight identical plots (four ambient 

CO2 and four elevated CO2) to minimise infrastructure-induced artefacts. CO2 

enrichment was carried out using high velocity pure CO2 injection, controlled using 

equipment and software modified from EuroFACE (Miglietta et al. 2001). Elevated 

CO2 concentrations, measured at 1 min intervals, were within 30% deviation from the 

pre-set target concentration of 580 ppm CO2 (ambient + 200 ppm) for 75–79% of the 

photosynthetically-active period (daylight hours from budburst until leaf abscission) 
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of 2005–2008. Vertical profiles of CO2 concentration measured at 50 cm intervals 

through the canopy showed a maximum difference of +7% from reference values 

obtained at the top of the canopy (Smith et al. 2013). From the beginning of leaf 

senescence, fallen leaf litter was collected weekly until all leaves had abscised 

(October to December). Litter within each CO2 treatment was homogenised and air-

dried. 

 

 
Fig. 3.1. Overview of the experimental approach. Litter was produced under ambient and 

elevated CO2 atmospheres at BangorFACE, UK. Half of the litter from each CO2 treatment 

was conditioned aquatically and half terrestrially. Chemical analyses of the conditioned litter 

were undertaken, and litter discs were presented to aquatic and terrestrial invertebrates in 

choice and no-choice tests. Only one tree and one invertebrate species have been shown for 

clarity. Not to scale. 

 

Initial chemical leaching and microbial colonisation of litter (‘conditioning’) are 

crucial steps in making litter palatable to detritivorous macroinvertebrates (Daniel et 

al. 1997; Graça, Cressa & Gessner 2001). Prior to the start of the experiment, litter 

was conditioned in fine mesh bags (100 µm to permit microorganisms only) placed in 

plastic containers (29 × 29 × 10 cm; Fig. 3.1). For each tree species × CO2 treatment 

combination, one bag was placed in aerated stream water that was inoculated with 

stream-collected litter of mixed-species origin (‘aquatic conditioning’); a second bag 

per tree species × CO2 treatment combination was inserted between field-collected 

soil and mixed deciduous leaf litter (‘terrestrial conditioning’). Containers were 

maintained at 11 ± 1°C with a 12:12 h light-dark cycle and terrestrial containers were 
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sprayed with deionised water every three days to maintain humidity (approximately 

50%). These conditions were selected to represent natural conditioning processes in 

aquatic and terrestrial habitats in a controlled manner. After two weeks, leaf discs 

were cut using a 9 mm diameter cork-borer (avoiding the mid-vein), which were air-

dried and weighed (± 0.1 mg) prior to experimental use. 

 

Litter samples allocated to chemical analyses (Fig. 3.1) were stored at –80°C before 

being oven-dried (50°C for 24 h) and ground into powder (120 s, 50 beats s–1; 

Pulverisette 23 ball mill, Fritsch GmbH, Idar-Oberstein, Germany). Each sample was 

composed of litter from three separate leaves. For carbon, nitrogen and phosphorus 

analyses, five samples were processed per tree species × CO2 treatment × 

conditioning type combination; for lignin analysis, four samples were used. The 

percentage leaf dry mass (% leaf DM) of carbon and nitrogen, and the Carbon-

Nitrogen (C/N) ratio, were determined by flash combustion and chromatographic 

separation of approximately 1.5 mg leaf powder using an elemental analyser 

(Elemental Combustion System 4010 CHNS-O Analyzer, Costech Analytical 

Technologies, Inc., Milan, Italy), calibrated against a standard (C26H26N2O2S). 

Phosphorus concentrations (% leaf DM) were quantified using X-ray fluorescence 

(see Reidinger, Ramsey & Hartley 2012 for detailed methodology). The percentage of 

acetyl-bromide-soluble lignin in litter Dry Cell Walls (% DCW) was determined 

following the acetyl bromide spectrophotometric method (Foster, Martin & Pauly 

2010). Lignin-Nitrogen (lignin/N) ratios were calculated for each tree species × CO2 

treatment × conditioning treatment combination. 

 

3.3.2 Invertebrates 

 

Eight macroinvertebrate species were selected for study (Table 3.1), representing a 

taxonomic range of litter consumers found in temperate forest habitats (Moog 2002; 

Wurst, De Deyn & Orwin 2012). Aquatic species were collected from streams in the 

Brecon Beacons National Park, South Wales, UK (51°50’53” N, 3°22’16” W and 

51°50’55” N, 3°33’43” W) and Roath Park, Cardiff, UK (51°30’00” N, 3°10’10” W); 

terrestrial species were collected from soil-litter interfaces in Bute Park, Cardiff, UK 

(51°48’49” N, 3°18’24” W). All individuals were adults, apart from larval 
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Odontocerum albicorne and Sericostoma personatum caddis flies. Individuals from 

within each species were selected for size similarity. Prior to experimental use, 

invertebrates were maintained for at least four weeks in single-species containers  

(11 ± 1°C, 12:12 h light-dark cycle) and were fed Fagus sylvatica L. (common beech) 

litter conditioned as for experimental litter, preventing habituation to experimental 

alder and birch litter. Feeding was ceased two days prior to the experiments to allow 

for gut clearance. 

 

3.3.3 Experimental arenas 

 

All experiments were conducted in 11 × 16.5 × 3.5 cm lidded plastic arenas (Cater 

For You Ltd, High Wycombe, UK) lined with compacted sterilised aquarium gravel 

(Unipac, Northampton, UK) and were maintained at 11 ± 1°C with a 12:12 h light-

dark cycle. Aquatic microcosms were filled with 400 ml of filtered (100 µm mesh) 

stream water (circumneutral pH; collected from 51°50’53” N, 3°22’16” W) and 

aerated through a pipette tip (200 µl Greiner Bio-One) attached to an air-line. 

Terrestrial microcosms were sprayed with deionised water every three days to 

maintain moisture content and humidity (approximately 50%). All arenas were 

uniquely labeled (‘microcosm ID’). These standardised conditions were chosen to 

mimic natural habitats, while minimising the availability of supplementary organic 

material that could act as a confounding resource during the feeding trials. 

 

Table 3.1. Detritivorous macroinvertebrate species used in the study. 

Habitat Name Authority Order: Family 

Aquatic Asellus aquaticus (Linnaeus 1758) Isopoda: Asellidae 

 Gammarus pulex (Linnaeus 1758) Amphipoda: Gammaridae 

 Odontocerum albicorne (Scopoli 1763) Trichoptera: Odontoceridae 

 Sericostoma personatum (Kirby & Spence 1826) Trichoptera: Sericostomatidae 

Terrestrial Blaniulus guttulatus (Bosc 1792) Julida: Blaniulidae 

 Oniscus asellus Linnaeus 1758 Isopoda: Oniscidae 

 Porcellio scaber Latreille 1804 Isopoda: Porcellionidae 

 Tachypodoiulus niger (Leach 1815) Julida: Julidae 
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For litter of each tree species, detritivores were presented with: (i) a choice between 

ambient- and elevated-CO2 material, to provide a direct comparison of detritivore 

preferences, and (ii) a no-choice situation with each CO2 treatment presented on its 

own, approximating litter consumption in current (ambient CO2) and future (elevated 

CO2) atmospheric conditions (Fig. 3.1). In each experiment, ten microcosms were set 

up for each invertebrate and tree species combination (n = 160). A single invertebrate 

was added to each arena and was placed in the end opposite the airline in aquatic 

arenas and equidistant to both discs in the choice test. In the choice test, one disc of 

each CO2 treatment was pinned to the centre of the arena, 4 cm apart. Discs were 

replenished when at least 50% of the existing disc had been consumed. In the no-

choice test, half of the microcosms contained one ambient-CO2 disc and the other half 

one elevated-CO2 disc, pinned to the centre of the arena. Both experiments ended 

after 14 days, or when five (50%) of the individuals of a specific species consumed at 

least 50% of one disc (choice experiment only). For each invertebrate, the total mass 

of litter consumed was calculated (± 0.1 mg). For choice experiment data, this value 

was divided by the number of days over which the test had taken place. 

 

Additionally, control microcosms were set up to ensure that differences in mass loss 

between CO2 treatments were due to invertebrate activity alone. For each experiment, 

ten microcosms were set up for each habitat type × tree species combination. Controls 

for the choice test each contained one disc of each CO2 treatment; half of the no-

choice control microcosms contained one ambient-CO2 disc and the other half 

contained one elevated-CO2 disc. Leaf discs were air-dried and weighed (± 0.1 mg) 

after 14 days and their total mass loss calculated. 

 

3.3.4 Data analysis 

 

Statistical analyses were performed separately for alder and birch litter using R 

version 3.0.1 (R Development Core Team 2013). Data were checked for normality 

and homogeneity of variance following Crawley (2007); response variables were 

transformed using Box-Cox power transformations when assumptions were not met 
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(powerTransform function, car package, Fox & Weisberg 2011). Significance was set 

at α = 0.05 for all analyses. 

 

Two-way Analysis of Variance (ANOVA) was used to test the main and interactive 

effects of CO2 treatment and microcosm type on each chemical variable (carbon, 

nitrogen, phosphorus and lignin concentrations, and C/N ratio). Planned contrasts of 

Least-Square Means (LSM; lsmeans function, lsmeans package, Lenth 2013) were 

used to compare the effects of CO2 treatments for each conditioning treatment. 

 

The main and interactive effects of CO2 treatment and microcosm type were tested on 

the mass loss of control discs. General Linear Mixed Models (GLMMs) were used to 

analyse choice control data (lme function, nlme package, Pinheiro et al. 2013), where 

non-independence of discs sharing the same microcosm was accounted for by 

including microcosm ID as a random term. The same fixed terms were used to 

analyse control data from the no-choice test using two-way ANOVA. 

 

In the choice test, litter consumption per day was analysed using GLMMs (lme 

function, nlme package, Pinheiro et al. 2013) with the main and interactive effects of 

CO2 treatment and invertebrate species as fixed effects and microcosm ID as a 

random effect. Planned contrasts were performed to compare consumption of 

ambient- and elevated-CO2 discs within (i) each invertebrate species, and (ii) 

invertebrate species grouped by habitat of origin (contrast function, contrast package, 

Kuhn et al. 2011). 

 

In the no-choice test, the main and interactive effects of CO2 treatment and 

invertebrate species on litter consumption were tested using two-way ANOVA. 

Planned contrasts were performed to test the effects of CO2 treatment on disc 

consumption within (i) each invertebrate species (lsmeans function, lsmeans package, 

Lenth 2013) and (ii) invertebrate species grouped by habitat of origin (fit.contrast 

function, gmodels package, Warnes 2012). 
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3.4 Results 

 

3.4.1 Litter chemical composition 

 

Carbon dioxide enrichment altered leaf litter chemical composition, but effects 

differed between tree species. For birch, CO2-enriched litter contained lower nitrogen 

concentrations, and higher lignin concentrations and C/N ratios than ambient-CO2 

litter (Tables 3.2 and 3.3). Litter chemical varied between conditioning types, with 

higher carbon concentrations in aquatically-conditioned litter and lower nitrogen 

concentrations in terrestrially-conditioned litter (Table 3.2). For both conditioning 

types, elevated-CO2 litter contained lower nitrogen concentrations (aquatic,  

LSM = 0.76% DM, P < 0.001; terrestrial, LSM = 1.2% DM, P < 0.001; Table 3.3) 

and higher C/N ratios (aquatic, LSM = 8.3, P < 0.001; terrestrial, LSM = 10.3,  

P < 0.001; Table 3.3). For alder litter, the effect of CO2 treatment was less predictable, 

with differential responses between conditioning types (Table 3.2). Elevated CO2 

increased alder nitrogen concentrations when conditioned terrestrially (LSM = 0.3% 

DM, P = 0.036; Table 3.3), although there was no concurrent effect in aquatically-

conditioned litter (LSM = 0.1% DM, P = 0.44; Table 3.3). No treatment or species 

effects on litter phosphorus concentrations were observed (Tables 3.2 and 3.3). 

 

3.4.2 Invertebrate responses 

 

For both tree species in the choice and no-choice control arenas, disc mass loss in the 

absence of invertebrates was unaffected by CO2 treatment and conditioning type  

(P > 0.05). Litter mass loss in the presence of invertebrates was therefore assumed to 

be a result of invertebrate feeding alone. 

 

In the choice test, leaf palatability affected invertebrate feeding, but this was 

dependent on tree species. Birch litter consumption was higher for ambient- than 

elevated-CO2 discs overall (F1,72 = 10.48, P = 0.002); there was no effect of CO2 on 

consumption of alder discs (F1,72 = 187.21, P = 0.34). Consumption also varied 

between invertebrate species (alder, F7,72 = 0.92, P < 0.001; birch, F7,72 = 30.05, 



 

 

Table 3.2. ANOVA summary table of main and interactive effects of CO2 treatment and conditioning type (CT) on litter chemistry. P values < 0.05 are 

emboldened. 

  Carbon Nitrogen Phosphorus Lignin C/N 

Tree sp. Variables F1,16 P F1,16 P F1,16 P F1,12 P F1,16 P 

Alder CO2 0.6 0.435 1.1 0.305 2.8 0.117 0.04 0.543 1.3 0.271 

 CT 0.3 0.577 4.1 0.059 0.2 0.684 0.2 0.673 3.8 0.071 

 CO2 × CT 1.5 0.241 4.7 0.045 0.4 0.387 3.6 0.082 4 0.064 

Birch CO2 0.1 0.712 791 < 0.001 3.1 0.098 4.8 0.048 605.3 < 0.001 

 CT 12.1 0.003 95 < 0.001 0.04 0.848 1 0.331 62.5 < 0.001 

 CO2 × CT 3.6 0.077 36.4 < 0.001 0.3 0.566 0.1 0.756 6.8 0.019 

 



 

 

Table 3.3. Chemical composition of leaf litter (expressed as Dry Mass (DM), Dry Cell Wall (DCW), or a ratio; mean ± 1 SEM). Different lowercase letters 

indicate significant differences (P < 0.05) between CO2 treatments for each tree species × CT combination. 

   Elemental composition Elemental ratios 

Tree species 
Conditioning 

type 

CO2 

concentration 
Carbon (% DM) Nitrogen (% DM) Phosphorus (% DM) Lignin (% DCW) C/N Lignin/N 

Alder Aquatic Ambient 48.61 ± 0.37a 3.73 ± 0.16a 0.074 ± 0.009a 22.17 ± 2.64a 13.11 ± 0.16a 5.94 

  Elevated 48.48 ± 0.25a 3.63 ± 0.091a 0.064 ± 0.009a 19.56 ± 2.74a 13.37 ± 0.36a 5.38 

 Terrestrial Ambient 48.04 ± 0.22a 3.35 ± 0.016a 0.084 ± 0.009a 19.16 ± 1.01a 14.33 ± 0.02a 5.71 

  Elevated 48.68 ± 0.40a 3.65 ± 0.026b 0.062 ± 0.01a 24.34 ± 1.14a 13.35 ± 0.10a 6.68 

Birch Aquatic Ambient 51.22 ± 0.13a 2.54 ± 0.018a 0.09 ± 0.008a 22.10 ± 3.28a 20.17 ± 0.11a 8.7 

  Elevated 50.84 ± 0.13a 1.79 ± 0.004b 0.066 ± 0.01a 27.76 ± 1.69a 28.47 ± 0.08b 15.55 

 Terrestrial Ambient 49.86 ± 0.24a 3.08 ± 0.017a 0.082 ± 0.01a 25.09 ± 2.07a 16.19 ± 0.04a 8.15 

  Elevated 50.44 ± 0.41a 1.91 ± 0.063b 0.07 ± 0.006a 29.32 ± 1.52a 26.47 ± 0.74b 15.33 
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P < 0.001). The effect of CO2 on birch consumption varied by invertebrate species 

(F7,72 = 3.44, P = 0.003), where O. albicorne preferred ambient-CO2 discs (LSM =  

1.3 mg d−1, P < 0.001; Fig. 3.2b). The effect of CO2 on litter preference did not vary 

between invertebrates feeding on alder (F1,72 = 0.5, P = 0.83; Fig. 3.2a). When 

grouped, aquatic species preferred ambient-CO2 birch discs over those grown under 

elevated CO2 (LSM = 1.1 mg d−1, P = 0.008), but no other preferences were exhibited 

(all P > 0.05). 

 

 
Fig. 3.2. Effects of CO2 treatment on feeding responses of each invertebrate species. The 

mean litter consumption (± 1 SEM) of each invertebrate species is shown for (a) alder and (b) 

birch in the choice test, and (c) alder and (d) birch in the no-choice test. Asterisks indicate 

significant differences between CO2 treatments within each invertebrate species (***P < 

0.001). Species are arranged by habitat of origin: aquatic species are Asellus aquaticus (Aa), 

Gammarus pulex (Gp), Odontocerum albicorne (Od) and Sericostoma personatum (Sp); 

terrestrial species are Blaniulus guttulatus (Bg), Oniscus asellus (On), Porcellio scaber (Ps) 

and Tachypodoiulus niger (Tn). 

 

In the no-choice test, consumption rates were higher when invertebrates fed on 

ambient- rather than elevated-CO2 birch discs (F1,64 = 6.4, P = 0.014). The trend was 
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consistent across all invertebrate species, but no individual species showed a 

significant response (CO2 treatment × invertebrate species: F7,64 = 0.341, P = 0.932; 

Fig. 3.2d). This overall effect of CO2 did not occur in alder leaves (F1,64 = 3.6,  

P = 0.062), but the effect of CO2 varied significantly between species (F7,64 = 4.56,  

P < 0.001); more of the elevated-CO2 discs were consumed by G. pulex (LSM =  

2.9 mg, P = 0.002) and O. albicorne (LSM = 3.2 mg, P < 0.001), while O. asellus 

consumed more of the ambient-CO2 discs (estimate = 2.9 mg, P = 0.002; Fig. 3.2c). 

When grouped by habitat, aquatic invertebrates ate more elevated-CO2 than ambient-

CO2 alder (LSM = 2 mg, P < 0.001) but there was no effect on birch (LSM = 0.1 mg, 

P = 0.073). CO2 treatment had no effect on consumption by terrestrial species fed 

either alder (both P > 0.05). 

 

3.5 Discussion 

 

Elevated atmospheric CO2 and microbial conditioning type modified leaf litter 

chemistry, though effects differed between tree species (supporting Hypothesis 1). 

Individual invertebrate species varied in their responses, suggesting that caution has 

to be taken when extrapolating general trends from single-species studies. 

 

Elevated atmospheric CO2 reduced birch litter quality: the concentration of nitrogen 

decreased and the C/N ratio increased, regardless of conditioning type. Most species 

did not respond to this change; O. albicorne was the only species with behaviour that 

supported Hypothesis 2, showing a strong preference for ambient-CO2 litter. Prior 

work supports this response: Ferreira et al. (2010) showed that low C/N ratios 

reduced birch litter consumption by the caddis fly Sericostoma vittatum Rambur, 

while Cotrufo et al. (1998) found that the woodlouse P. scaber preferred high quality 

(lower C/N ratio and lignin concentration) Fraxinus excelsior L. litter grown under 

ambient CO2. Alder litter showed negligible chemical change as a result of elevated 

CO2, perhaps due to symbiosis with nitrogen-fixing bacteria that help maintain 

nutrient supplies (Temperton et al. 2003). Unexpectedly, a slight increase in quality 

(increased nitrogen concentration) under elevated CO2 occurred when alder litter was 

conditioned terrestrially, but this did not result in any feeding preferences. Effects of 

conditioning type on litter chemistry may have occurred due to differences in 
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chemical leaching and microorganism activity between aquatic and terrestrial 

environments (Treplin & Zimmer 2012). The data indicate that CO2 enrichment will 

affect litter palatability to macroinvertebrate detritivores as a result of chemical 

change, though these effects will be plant and invertebrate species-specific. 

 

In the no-choice test, invertebrates were expected to compensate for low-quality litter 

by increasing consumption relative to high-quality litter. In contrast to this 

expectation, compensatory feeding was not observed in either tree species. There was 

no clear pattern for alder; invertebrate responses were highly idiosyncratic, with O. 

asellus being the only species to consume more of the low-quality resource 

(terrestrially-conditioned alder litter contained lower nitrogen when grown under 

ambient CO2). Hättenschwiler et al. (1999) detected a similar compensatory response 

for O. asellus and another woodlouse, P. scaber: higher consumption rates were 

recorded on low-quality, CO2-enriched F. sylvatica litter (low nitrogen concentration, 

high C/N ratio). The current study showed that G. pulex and O. albicorne consumed 

more elevated-CO2 than ambient-CO2 alder, despite no observed chemical differences. 

It is possible that elevated CO2 reduced litter palatability by altering chemical 

constituents that were not quantified here, such as secondary metabolites. For 

example, phenolics and tannins have been shown to be affected by CO2 levels 

(Lindroth 2012). Birch litter responses appeared less idiosyncratic, with no individual 

species increasing consumption of elevated-CO2 litter. These results suggest that litter 

species identity determines the predictability of invertebrate feeding responses, but 

that compensatory feeding is not a unifying trend amongst detritivorous 

macroinvertebrates. 

 

Feeding rates may have varied due to increased handling times associated with low 

quality birch litter (e.g. Ott, Rall & Brose 2012), or because of differences in species’ 

body chemistry and their ability to cope with elemental imbalances with CO2-

enriched resources (Martinson et al. 2008; Hladyz et al. 2009). Heterotrophs, such as 

the detritivores in the present study, tend to maintain constant body elemental 

composition (Sterner & Elser 2002) and may alter feeding behaviour to achieve 

optimum chemical balance. Altered consumption of litter by macroinvertebrates will 

affect energy release from detritus, in turn affecting secondary production, and food-

web structure and functioning (Moore et al. 2004). Specifically, on the basis of 
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invertebrate responses in our study, mineralisation of carbon and nutrients could slow 

down in forests dominated by birch or other tree species with similar chemistry. This 

is reinforced by observations of high lignin/N and C/N ratios of elevated-CO2 birch 

litter in the current study, which are predictors for slow decomposition rates (Melillo, 

Aber & Muratore 1982). Conversely, stands containing a lot of alder, or other species 

with lower C/N ratios, may show little response in terms of detrital processing and 

nutrient turnover. Differences between tree species make it difficult to predict overall 

decomposition rates, a task made more difficult by the prevalence of litter mixtures in 

temperate deciduous forests, which tend to exhibit non-additive decay (Gartner & 

Cardon 2004). 

 

Changes to litter quality as a result of elevated CO2 may also affect invertebrate 

community composition, a potentially important determinant of decomposition rates 

(Gessner et al. 2010). This could be caused by changes to food selection 

(Hättenschwiler & Bretscher 2001) and increased patchiness of resource quality in 

litter mixtures on the forest floor (Swan & Palmer 2006b). Differential changes to 

feeding rates may alter competitive dynamics between invertebrate species, with 

advantages for species whose dietary breadth extends beyond leaf litter, such as G. 

pulex (MacNeil, Dick & Elwood 1997) and S. personatum (Friberg & Jacobsen 1999). 

 

The present study provides, to date, the broadest assessment of detritivorous 

invertebrate species’ feeding responses to CO2-enriched litter, improving our 

mechanistic understanding of a key ecosystem process in temperate woodland 

ecosystems. Future elevations of atmospheric CO2 are predicted to affect the 

breakdown of detritus indirectly by reducing leaf litter quality for macroinvertebrate 

detritivores. The study highlights that this process is highly tree species-specific, and 

there will be strong responses in some forest stands and minimal effects in others. 

Identifying the mechanisms governing such ecosystem variation in functional 

responses to climate change is essential if we are to predict the consequences of 

elevated CO2 for forest carbon dynamics and nutrient cycling at regional and 

landscape-scales. 
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4. Effects of atmospheric change on leaf litter chemical 

composition and breakdown in a temperate deciduous 

woodland 
 

4.1 Abstract 

 

Deciduous woodlands are dependent on leaf litter breakdown to drive carbon and 

nutrient turnover, and to support a diverse community of organisms. This study aimed 

to understand how this service is threatened by ongoing changes to atmospheric 

composition, which can alter litter nutritional quality and decay dynamics. Betula 

pendula litter was collected from and compared between (i) ambient CO2 and 

elevated CO2 conditions (produced ex situ in a greenhouse), and (ii) rural and urban 

conditions (collected from in situ trees). Litter bags were constructed and exposed to a 

woodland floor for 0, 28, 56 or 112 days. In terms of chemical composition, ambient- 

and elevated-CO2 litters did not differ, but urban litter had lower carbon and nitrogen 

concentrations than rural litter, along with a higher phosphorus concentration and a 

higher C/N ratio. In general, litter chemical composition changed after 28 days of 

exposure, with carbon and nitrogen concentrations increasing, and phosphorus 

concentration, lignin concentration and C/N ratio decreasing. Regarding decay, there 

was no difference in the remaining ash-free dry mass of litter between ambient- and 

elevated-CO2 litters. Urban litter had consistently less mass remaining at each time 

period. Litter decay rates (k) were in the order elevated CO2 > ambient CO2 > urban > 

rural. Ambient-CO2 litter had lower invertebrate richness and diversity than elevated-

CO2 litter, while urban and rural litters did not differ in invertebrate composition. 

Abundance and richness generally fell through time for all litters, while diversity 

decreased for ambient- and elevated-CO2 litters only. Community analysis showed 

that invertebrate communities differed between time periods. These differences were 

shaped largely by the relative assemblages of Acari, Chironomidae and collembolan 

taxa. These results suggest that ongoing atmospheric changes could impact litter 

chemistry, mass loss and invertebrate community composition, and effects of urban 

environments may be more important than effects of elevated CO2. 
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4.2 Introduction 

 

The majority of primary production in woodlands is fated to enter the detrital pathway, 

largely as leaf litter (Cyr & Pace 1993; Hairston Jr & Hairston Sr 1993; Cebrian 1999). 

This material affects the physical and chemical characteristics of woodland floors 

(Sayer 2006; Xu, Liu & Sayer 2013) and is a key basal resource that influences food 

web structure (Hagen et al. 2012). Detrital decomposition provides a crucial 

ecosystem function by promoting the release and cycling of carbon and nutrients 

locked up in organic matter (Moore et al. 2004). It is important, therefore, to 

investigate factors that influence decomposition rates. 

 

Litter nutritional quality is a key driver of litter decay. Breakdown is generally slower 

for poor-quality litters, which are typified by low nutrient content (e.g. nitrogen and 

phosphorus) and greater concentrations of recalcitrant carbon-rich compounds, such 

as lignin (Melillo, Aber & Muratore 1982; Zhang et al. 2008; Cornwell et al. 2008; 

Freschet, Aerts & Cornelissen 2012). Changes in chemical composition also occur 

through the decay process, including the accumulation of nitrogen due to 

immbolisation by decomposers (McClaugherty, Pastor & Aber 1985; Manzoni et al. 

2008). Altered chemical composition can affect the activity of detritivorous 

invertebrates, which are the main organisms responsible for breaking litter into 

smaller fragments (comminution) by maceration and faecal production (Seastedt 

1984; Lavelle et al. 2006; Berg & McClaugherty 2008), processes that increase 

decomposition rates (Wall et al. 2008). Invertebrate activity also increases the surface 

area of litter available for colonisation by saprophagous microorganisms, particularly 

fungi, which further accelerate decay (Lavelle & Spain 2001; Berg & McClaugherty 

2008; Chapin, Matson & Mooney 2011). Changes to leaf litter chemical composition 

could therefore affect decay rates as mediated by decomposer activity. 

 

Atmospheric concentrations of carbon dioxide (CO2) and other pollutant gases (e.g. 

NOx and SOx) have been increasing since pre-industrial times (IPCC 2013) Such 

changes alter the process of litter decomposition in woodland habitats by altering the 

chemical composition of detritus. Elevated CO2 generally decreases the nutritional 

quality of tree leaves by reducing nitrogen concentrations and increasing C/N ratios 
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(Cotrufo, Ineson & Scott 1998; Coûteaux et al. 1999; Gifford, Barrett & Lutze 2000; 

Lindroth 2010). These chemical changes are maintained after leaves fall as litter, 

slowing decay on woodland floors (Cotrufo, Ineson & Rowland 1994; Cotrufo, 

Briones & Ineson 1998; Coûteaux et al. 1999; Norby et al. 2001). Responses to this 

material are mixed at the level of litter consumers (Cotrufo, Briones & Ineson 1998; 

Chapter 3). Urbanised areas have higher concentrations of CO2 and other pollutants 

relative to rural areas (Berry & Colls 1990; Ziska, Bunce & Goins 2004; George et al. 

2007) with further differences in soil chemistry (McDonnell et al. 1997). Effects on 

leaf chemical composition are relatively unknown. Increased deposition of pollutant 

nitrogen compounds (e.g. NH4
+, NO3

–) into the soil may result in greater nitrogen 

availability to trees (Lovett et al. 2000; Zhu & Carreiro 2004; Fang et al. 2011), while 

lignin concentrations may also increase, reducing litter nutritional quality and slowing 

breakdown rates (Carreiro et al. 1999; Pouyat & Carreiro 2003). There is, however, 

some evidence to suggest that urban litter may decay slower than rural litter (Pavao-

Zuckerman & Coleman 2005). 

 

This study compared the effects of atmospheric change on leaf litter chemical 

composition and the consequences for mass loss and associated invertebrate 

communities. Experiments were separated to test effects of CO2 conditions (ambient 

and elevated CO2) and urbanisation (rural and urban) on the chemical composition, 

mass loss, and invertebrate assemblages associated with leaf litter. It was 

hypothesised that (1) litter chemical composition will differ between atmospheric 

conditions, with higher quality in (a) urban versus rural litter, and (b) ambient-CO2 

versus elevated-CO2 litter; (2) litter nutritional quality will increase (i.e. C/N ratio will 

decrease) through time; (3) litter decay rates will differ between growth conditions, 

where decay rates of low-quality litter will be slower than for high-quality litter; (4) 

litters of different quality will support different invertebrate assemblages, with 

increased invertebrate metrics (abundance, richness and diversity) on higher quality 

litter; and (5) invertebrate communities will differ between time periods, with a 

general reduction in invertebrate metrics (abundance, richness and diversity) through 

time. 
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4.3 Materials and Methods 

 

4.3.1 Leaf litter production 

 

Leaf litter was collected from silver birch (Betula pendula Roth), a widespread 

deciduous tree species, growing in four different atmospheric conditions: ambient- 

and elevated-CO2 litters were produced ex situ in a growth facility at Cardiff 

University, UK, and freshly abscised rural and urban litters were collected in situ 

from mature trees.  

 

One year-old saplings (n = 100; Chew Valley Trees, Bristol, UK) measuring up to  

60 cm were planted in pots (height 11 cm and diameter 13 cm) containing John Innes 

Potting Compost Number 2. Half (n = 50) were grown under ambient CO2 

concentrations (404 ± 1 ppm) and half under elevated CO2 concentrations  

(857 ± 8 ppm), with irrigation every two days and ambient lighting for a full 

photosynthetically-active season (22 March 2012–26 October 2012).  

 

Trees grown under ambient conditions were placed on a bench top within the 

greenhouse, and temperature and relative humidity were recorded using a digital 

thermo-hygrometer (Exo-Terra, Yorkshire, UK). Trees grown under elevated CO2 

conditions were distributed equally between ten clear-acrylic closed-top chambers 

(1.0 × 0.4 × 0.8 m), fed by a closed-loop air delivery system (Fig. 4.1). Fans in an Air 

Handling Unit (AHU; Diffusion Highline Waterside 260I, size 6) drew air through 

pre-chamber and post-chamber ducts (200 mm) that split into separate branch pipes 

(80 mm diameter) for each chamber. Air was monitored every 15 min by two 

temperature and two CO2 sensors (Vaisala CARBOCARP Carbon Dioxide 

Transmitter GM20D), while relative humidity was recorded manually between 0900 

and 1100 h using a digital thermo-hygrometer (Exo-Terra, Yorkshire, UK). Automatic 

responses to temperature and CO2 sensor readings were controlled by a Building 

Management System (BMS; TREND IQ 151). When air exceeded pre-set 

temperatures (> 20°C at 0600–1800 hrs, > 12°C at 1800–0600 hrs), water in the AHU 

coils was passed to a fan-assisted chilling unit (Daikin air-cooled water chiller 

EUWY5HB), cooling the air in the system. A solenoid valve controlled the injection 
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of CO2 into the system, opening when concentrations fell below 600 ppm and closing 

when this concentration was exceeded. When opened, CO2 was introduced to the 

airflow from a replaceable cylinder (99 kg VK; BOC UK) fitted with a two-stage 

regulator (200 kPa). 

 

 
Fig. 4.1. Schematic of the Controlled Environment Facility (AHU = air-handling unit; Hum. 

= humidifer; Sol. = solenoid valve; CO2 = carbon dioxide cylinder). Filled arrows show 

direction of airflow and dashed arrows show inputs to the airstream. 
 

Rural litter was collected from an oak-birch woodland in Ystradffin, Carmarthenshire, 

UK (52°09’84” N, 3°78’48” W) and urban litter was collected in Grangetown, a 

residential area of Cardiff, UK (51°47’26” N, 03°18’41” W). Mean values of air 

pollutants for the five years preceding collection (2006–2010) were taken from 

recording centres closest to the collection sites. At Aston Hill, Powys (52°50’38” N, 

3°03’41” W), mean values of NO, NO2 and O3 were 1.2, 7.7 and 65 µg m-3, 

respectively (Department for Environment Food and Rural Affairs 2013). In Cardiff 

City Centre (51°48’17” N, 3°17’63” W), values of NO, NO2, O3 and SO2 were 11.7, 

31.09, 40.7 and 2.6 µg m-3, respectively (Welsh Air Quality Forum 2013). Litter was 

air dried immediately on collection and stored separately by growth condition. 

Hum.                                                     Chambers 

AHU 

Sol.

Tank            Chiller                    CO2 
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4.3.2 Study area 

 

The experiment took place in a temperate deciduous broadleaf forest at Nantrhydifor, 

Carmarthenshire, UK (52°09’79” N, 03°81’55” W), categorised as a W17b woodland 

(National Vegetation Classification; Hall, Kirby & Whitbread 2004) dominated by 

sessile oak Quercus patraea (Matt.) Liebl., along with downy birch B. pubescens 

Ehrh. and the fern Dryopteris dilatata (Hoffm.) A. Gray. The soil is clayey to silty 

loam, and acidic. 

 

4.3.3 Litter bags 

 

Litter bags (n = 168) measuring 10 × 15 cm were constructed with 1 mm mesh (EFE 

& GB Nets, Cornwall, UK) and filled with 3 ± 0.01 g of litter. Bags permitted entry of 

micro- and mesofauna, which are key litter decomposers (Seastedt 1984; Chapin, 

Matson & Mooney 2011), and limited losses to non-decay processes (e.g. wind). To 

assess mass loss and invertebrate assemblages, one bag of each growth condition was 

attached to a nylon thread that was tied to a labeled 0.5 m steel rod. Nine threads were 

produced for collection at each of four time periods: 0, 28, 56 and 112 days. Threads 

allocated to 0 and 28 days were allocated one extra bag of litter from each growth 

condition, to be used for chemical analyses. Three threads per time period were 

randomly allocated to each of three blocks placed 20 m apart on a slope gradient. 

Each block was composed of rods anchored 3 m apart in a randomly-ordered 3 × 3 

grid. Bags were placed on the surface of the litter layer. Threads allocated for 

collection after 0 days were returned immediately to the laboratory for calculation of 

handling losses and initial litter chemical composition. Bags were placed into separate 

sealed plastic bags upon collection and returned to the laboratory in a cool box for 

processing. The experiment ran from 02 November 2012 until 01 February 2013. 

 

4.3.4 Litter chemical composition 

 

Bags allocated for chemical analyses were collected after 0 and 28 days. Litter was 

washed with deionised water to remove debris (e.g. sediment) and invertebrates, 
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before being air dried to constant mass and stored at –80°C. Prior to analysis, samples 

were oven-dried (50°C for 24 hrs) and ground into powder (120 s at 50 beats s–1 in a 

Pulverisette 23 ball mill; Fritsch GmbH, Idar-Oberstein, Germany). Carbon and 

nitrogen concentrations were determined simultaneously by flash combustion and 

chromatographic separation of approximately 1.5 mg of ground and homogenised leaf 

material, calibrated against a standard (C26H26N2O2S) using an elemental analyser 

(Elemental Combustion System 4010 CHNS-O Analyzer, Costech Analytical 

Technologies, Inc., Milan, Italy). Phosphorus was quantified using X-ray fluorescence 

(see Reidinger, Ramsey & Hartley 2012 for detailed methodology). Carbon, nitrogen 

and phosphorus concentrations were recorded as a percentage of leaf Dry Mass  

(% DM). The lignin concentration of litter Dry Cell Walls (% DCW) was determined 

by following the acetyl bromide spectrophotometric method (Foster, Martin & Pauly 

2010). C/N ratios were calculated for each litter sample. 

 

4.3.5 Invertebrate assemblages 

 

Invertebrates were extracted from litter bags using Tullgren funnels (24 hrs) and 

stored in 70% industrial methylated spirits (Fisher Scientific, UK). Individuals were 

identified to the lowest practicable taxonomic unit (Acari to order; Annelida to 

subclass; Collembola to superfamily; Araneae, Coleoptera and Diptera to family; and 

Diplopoda and Isopoda to species). The following parameters were determined: (i) 

abundance of each taxon, (ii) richness at the taxon level, and (iii) Simpson’s index of 

diversity, using the equation 1–D = 1–(Σn(n–1)/N(N–1)), where n is the total number 

of organisms of a particular taxon and N is the total number of organisms of all taxa. 

 

4.3.6 Mass loss 

 

Following invertebrate extraction, litter samples were washed with deionised water to 

remove inorganic matter. Litter was air-dried to constant mass (± 0.01 g) and 

corrected for handling error. This was followed by measurement of Ash-Free Dry 

Mass (AFDM), where litter was subsampled (0.5 g ± 1 mg) and combusted in a 

muffle furnace (Carbolite ELF Chamber Furnace 11/14; 550°C for 5 hrs). AFDM was 

calculated using the equation AFDM = MT–[MT(MA/MS)], where MT = dry mass (g) of 
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the total litter sample, corrected for handling error; MA = ash subsample mass (g); and 

MS = subsample mass (g). The decay coefficient (k) per day was calculated for litter 

of each growth condition (Petersen & Cummins 1974), using the equation  

Mt = M0(e–kt), where Mt = AFDM (g) at time t, M0 = initial AFDM (g), and t = time 

(days). Values were then used to calculate biological half-life (t1/2; time in days to 

50% mass loss) using the equation t1/2 = ln(2)/k. 

 

4.3.7 Data analysis 

 

Statistical analyses were conducted in R version 3.0.2 (R Development Core Team 

2013), with alpha set at 0.05. For all analyses, separate models were built for (i) litter 

grown ex situ (ambient- and elevated-CO2), and (ii) litters grown in situ (rural and 

urban), as effects of environmental change were confounded by in situ and ex situ 

growing conditions. Models were assessed graphically for normality and homogeneity 

of variance (Crawley 2007) and were simplified by stepwise removal of non-

significant terms (P > 0.05) until a minimum adequate model was reached. Significant 

interactive terms were explored using planned comparisons of Least-Square Means 

(LSM) between factor levels (lsmeans function, lsmeans package, Lenth 2013) 

 

To assess litter chemical composition, separate General Linear Models (GLMs) were 

constructed for each chemical variable (carbon, nitrogen, phosphorus and lignin 

concentrations, and C/N ratio), with the main and interactive effects of growth 

condition (ambient CO2 and elevated CO2, or urban and rural) and time period (0 and 

28 days) as explanatory variables.  

 

For litter of each growth condition, dry mass (g) was corrected by adding the mean 

handling loss of bags collected at Day 0 before calculation of AFDM. Litter mass loss 

was assessed using a General Linear Mixed-Model (GLMM) with AFDM as the 

response variable; growth condition (ambient CO2 and elevated CO2, or rural and 

urban), time period (0, 28, 56 and 112 days) and their interaction as fixed categorical 

explanatory variables; and a random effect term of rod identification number nested 

within block (lme function, nlme package, Pinheiro et al. 2013). 
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Invertebrate abundance, richness and diversity were analysed using separate GLMMs, 

with growth condition (ambient CO2 and elevated CO2, or rural and urban) time 

period (28, 56 and 112 days) and their interaction as fixed explanatory variables, and 

rod identification number nested within block as the random term. Invertebrate 

abundance was log(abundance+1)-transformed to meet assumptions of normality in 

the analysis of ambient- and elevated-CO2 litters. 

 

Differences in invertebrate community composition between growth conditions and 

time periods were visualised in two dimensions using Non-metric Multi-Dimensional 

Scaling (NMDS; Kruskal 1964; metaMDS function, vegan package, Oksanen et al. 

2013). First, a matrix of all pairwise distances was computed using the Bray-Curtis 

distance measure (4,999 permutations, adonis function, vegan package), which is the 

most suitable measure for zero-skewed data (Clarke & Warwick 2001). NMDS then 

iteratively assigns samples to a plotting space, attempting to maximise the rank 

correlation between the plotted distances and pre-calculated distances. Good 

agreement between these distances lowers ‘stress’, where a value > 0.3 indicates poor 

agreement and therefore unreliable graphical interpretability (Zuur, Ieno & Smith 

2007). Given the large range in abundances (0–166 individuals), data were fourth-root 

transformed to down-weight the influence of the most abundant taxa (Clarke & 

Warwick 2001). 

 

Permutational Analysis of Variance (PERMANOVA; Anderson 2001) is a non-

parametric version of multivariate ANOVA that uses permutation techniques to 

compute P values that indicate significant dissimilarities between samples belonging 

to different groups. An overall PERMANOVA using Bray-Curtis dissimilarities was 

used to test the response of invertebrate community composition to litter growth 

condition (ambient CO2 and elevated CO2, or rural and urban), time period (28, 56 or 

112 days) and their interaction, with iterations constrained within each block (adonis 

function, vegan package, Oksanen et al. 2013). This method is sensitive to unequal 

variance between treatments, so multivariate homogeneity of group dispersions was 

assessed (betadisper function, vegan package; Oksanen et al. 2013). Factor levels of 

significant terms in the overall model were compared using pairwise PERMANOVAs. 

For the analysis of time periods, Bonferroni corrections were used to account for 

multiple comparisons. Species contributing most to overall community dissimilarity 
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were identified by Similarity Percentage (SIMPER) analysis (Clarke 1993; simper 

function, vegan package, Oksanen et al. 2013). 

 

4.4 Results 

 

4.4.1 Litter chemical composition 

 

Litter chemical composition differed by growth condition (Fig. 4.2). Urban litter had 

lower carbon (Fig. 4.2a) and nitrogen (Fig. 4.2b) concentrations, and a higher 

phosphorus concentration (Fig. 4.2c) than rural litter. The C/N ratio of urban litter 

was greater than for rural litter, but only for measurements at Day 0 (Fig. 4.2d). Litter 

chemical composition also changed through time (Table 4.1). For all litters, carbon 

(Fig. 4.2a) and nitrogen (Fig. 4.2b) concentrations increased, and phosphorus (Fig. 

4.2c) concentrations decreased. The lignin concentration fell in ambient-CO2, rural 

and urban litters (Fig. 4.2d), and the C/N ratio fell in ambient-CO2, elevated-CO2 and 

urban litters (Fig. 4.2e). Initial lignin/N ratios were 40% higher in ambient CO2 

(27.32) than elevated CO2 (19.35), and 26% higher in urban (40.91) than rural (32.56) 

litter. The ratio was reduced after 28 days in the field, narrowing the difference 

between ambient-CO2 (14.56) and elevated-CO2 (15.49) litters, and rural (45.02) and 

urban (46.62) litters. The mean C/N ratio of ambient- and elevated-CO2 litters was 

46% lower than rural litter, and 63% lower than urban litter. Rural litter had an 8% 

higher carbon concentration than ambient- and elevated-CO2 litter, while ambient- 

and elevated-CO2 litters had a 39 and 68% higher nitrogen concentration than 

ambient- and elevated-CO2 litters, respectively. 

 

4.4.2 Mass loss 

 

Litter AFDM was significantly lower in elevated- than ambient-CO2 litter (F1,26 = 

6.94, P = 0.014) and in urban than rural litter (F1,26 = 219.7, P < 0.001). AFDM also 

differed between time periods (ambient and elevated CO2 litters, F3,26 = 769.89, P < 

0.001; rural and urban litters, F3,36 = 56.16, P < 0.001), decreasing through time 
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between all pairs of time periods (all P < 0.001, except P < 0.01 for 28 and 56 days 

and P < 0.05 for 56 and 112 days for ex situ litters; Fig. 4.3).  

 

  
Fig. 4.2. Leaf litter chemical composition (mean ± 1 SEM) following exposure to a woodland 

floor (DM = Dry Mass, DCW = Dry Cell Wall). Different lowercase letters indicate 

significant differences (P < 0.05) between growth conditions. Asterisks indicate significant 

differences (**P < 0.01, ***P < 0.001) between time periods within a growth condition.
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Table 4.1. Litter chemical composition in response to growth condition (GC), time period (T), and their interaction (GC × T). Dashes indicate that the 

parameter was removed during model minimisation. Significant (P < 0.05) values are emboldened. 

 Carbon  Nitrogen  Phosphorus  Lignin  C/N ratio  

Factor F (d.f.) P F (d.f.) P F (d.f.) P F (d.f.) P F (d.f.) P 

In situ (ambient- and elevated-CO2) litters 

GC – – – – – – 0.03 (1,8) 0.862 – – 

T 5.7 (1,10) 0.038 6.84 (1,10) 0.003 9.03 (1,10) 0.013 4.35 (1,8) 0.071 5.15 (1,10) 0.047 

GC × T – – – – – – 118.62 (1,8) 0.022 – – 

Ex situ (rural and urban) litters 

GC 189.56 (1,9) < 0.001 25.82 (1,9) < 0.001 123.79 (1,8) < 0.001 – – 11.42 (1,8) 0.01 

T 10.97 (1,9) 0.009 6.02 (1,9) 0.037 61.3 (1,8) < 0.001 30.28 (1,10) < 0.001 6.23 (1,8) 0.037 

GC × T – – – – 18.13 (1,8) 0.003 – – 5.55 (1,8) 0.046 
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Fig. 4.3. The effect of growth condition on leaf litter Ash-Free Dry Mass remaining (AFDM; 

mean ± 1 SEM) through time. Lowercase letters indicate significant differences (P < 0.05) 

between growth conditions within each time period. 
 

In the analysis of the in situ litters, the effect of growth condition on AFDM differed 

by each time period (F3,93 = 528.3, P < 0.001), as urban litter had significantly lower 

AFDM at 28, 56, and 112 days (Fig. 4.3). Ex situ CO2 litters had consistently lower 

mass than rural (28 days = 34% lower; 56 days = 59%; 112 days = 87%) and urban 

(28 days = 17% lower; 56 days = 25%; 112 days = 51%) litters through time. 

Elevated-CO2 litter had the fastest decay rate and shortest half-life (k = 0.00663 day–1, 

t1/2 = 105 days), followed by ambient-CO2 (k = 0.00582 day–1, t1/2 = 119 days), urban 

(k = 0.00256 day–1, t1/2 = 271 days) and rural (k = 0.000865 day–1, t1/2 = 801 days) 

litters.  

 

4.4.3 Invertebrate assemblage 

 

Invertebrate abundance differed through time (Table 4.2), increasing from 28 to 56 

days for the ex situ litters (LSM = 33.2 individuals, P = 0.048), and decreasing 

between 28 and 112 days (LSM = 28.9 individuals, P < 0.001), and between 56 and 

112 days (LSM = 24.6 individuals, P = 0.002), for rural and urban litters (Fig. 4.4a). 

Invertebrate richness was greater in elevated- than ambient-CO2 litter (Table 4.2). 
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Taxon richness also differed between time periods (Table 4.2), decreasing from 56 to 

112 days in ambient- and elevated-CO2 litters (LSM = 1 species, P = 0.006), and 

between 28 and 112 days in rural and urban litters (LSM = 1.8 species, P = 0.003; Fig. 

4.4b). Invertebrate diversity was higher for elevated-CO2 litter than ambient-CO2 

litter (Table 4.2), and decreased from 28 to 112 days for these litters (LSM = 0.16,  

P = 0.003; Table 4.2; Fig. 4.4c). 

 

Table 4.2. Response of invertebrate metrics to litter growth condition (GC) and time period 

(T). Dashes indicate that the parameter was removed during model minimisation; the GC × T 

interaction was removed from all models. Significant (P < 0.05) values are emboldened. 

 Abundance  Richness  Diversity  

Factor F (d.f.) P F (d.f.) P F (d.f.) P 

In situ (ambient- and elevated-CO2) litters 

GC – – 23.64 (1,25) < 0.001 13.11 (1,25) 0.001 

T 3.5 (2,23) 0.047 5.08 (2,23) 0.015 5.41 (2,23) 0.012 

Ex situ (rural and urban) litters 

GC – – – – – – 

T 9.18 (2,22) 0.001 5.31 (2,22) 0.013 – – 

 

Invertebrate community composition was affected by time period for ambient- and 

elevated-CO2 litters (F2,48 = 9.19, P < 0.001; Fig. 4.5a), and rural and urban litters, 

(F2,47 = 6.22, P < 0.001; Fig. 4.5b). Communities differed between 28 and 56 days 

(rural and urban litters, t1,34 = 3.61, P < 0.011), 28 and 112 days (ambient- and 

elevated-CO2 litters, t1,34 = 11.69, P < 0.001; rural and urban litters, t1,33 = 5.98,  

P < 0.001), and 56 and 112 days (ambient- and elevated-CO2 litters, t1,34 = 10.43,  

P < 0.001; rural and urban litters, t1,33 = 8.36, P < 0.001). Results of the analysis on 

rural and urban litter should be interpreted with caution, as there was evidence for 

unequal dispersion between time periods in this dataset (F2,50 = 3.36, P = 0.043). The 

taxa accounting for the largest dissimilarity between time periods were chironomids 

(ambient- and elevated-CO2 litters) and collembola taxa (rural and urban litters; Table 

4.3). 
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Fig. 4.4. Effects (mean ± 1 SEM) of leaf litter growth condition on (a) abundance, (b) 

taxonomic richness, and (c) taxonomic diversity (Simpson’s index) of invertebrates. 
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Table 4.3. Taxa accounting for greatest difference between pairs of time periods (days; A vs 

B) following SIMPER analysis, measured as the percentage contribution of each taxon to the 

overall dissimilarity between time periods. 

Time periods   Abundance (mean ± 1 SEM) 

A B Taxon Contribution A B 

In situ (ambient- and elevated-CO2) litters 

28 112 1. Chironomidae 23.6% 2.05 ± 0.9 6.22 ± 1.21 

  2. Poduroidea 22.8% 8.89 ± 2.34 3.56 ± 1.42 

  3. Acari 18% 7.17 ± 0.69 3.61 ± 1.05 

56 112 1. Chironomidae 21.3% 5.56 ± 2.9 6.22 ± 1.21 

  2. Acari 21% 14.39 ± 2.06 3.56 ± 1.42 

  3. Poduroidea 14.1% 4.72 ± 0.84 3.61 ± 1.05 

Ex situ (rural and urban) litters 

28 56 1. Poduroidea 18.7% 7.67 ± 2.17 2.22 ± 1.16 

  2. Chironomidae 14.8% 5.11 ± 1.06 3.06 ± 1.23 

  3. Symphypleona 14.7% 3.28 ± 1.13 0.89 ± 0.4 

28 112 1. Entomobryoidea 17.3% 17.61 ± 2.42 4.17 ± 1.27 

  2. Poduroidea 16.7% 7.67 ± 2.17 1.5 ± 0.87 

  3. Acari 14.8% 14 ± 3.24 7 ± 2.3 

56 112 1. Entomobryoidea 19.8% 20.17 ± 2.77 4.17 ± 1.27 

  2. Acari 18.8% 17.72 ± 2.15 7 ± 2.3 

  3. Chironomidae 15% 3.06 ± 1.23 5.83 ± 1.32 

 

4.5 Discussion 

 

The results of this study suggest that ongoing changes to atmospheric gas composition 

will have variable effects on B. pendula litter chemical composition and its 

subsequent decomposition. There was little difference in the chemical composition of 

ambient- and elevated-CO2 litters, and no difference in mass loss, although 

invertebrate diversity and richness were higher in elevated-CO2 litter. Conversely, 

chemical composition differed between urban and rural litters, with urban litter 

decaying faster but supporting similar invertebrate communities. These results 

suggest that the storage and cycling of carbon and nutrients in woodland ecosystems 

could be disrupted by atmospheric change, with implications for food web structure. 
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Fig. 4.5. Invertebrate community dissimilarity through time for (a) ex situ litters (stress = 

0.194), and (b) in situ litters (stress = 0.191), visualised using Non-metric Multi-Dimensional 

Scaling (NMDS). 

 

Litter chemical composition showed some differences between growth conditions. 

The only difference in chemical composition between ambient- and elevated-CO2 

litters was a higher initial lignin/N ratio in the former, providing poor support for 

Hypothesis 1a. This was unexpected, as elevated CO2 tends to reduce nitrogen and 

increase lignin concentrations of plant litter (Cotrufo, Ineson & Scott 1998; Norby et 

al. 2001). Previous studies of Betula species under elevated CO2 have found changes 

including increased C/N, lignin/N and phosphorus concentration, along with 

decreased nitrogen concentration (Parsons, Lindroth & Bockheim 2004; Liu, King & 

Giardina 2005; Kasurinen et al. 2006). Beyond Betula species, studies show that 

changes to chemical composition are species-specific (Coûteaux et al. 1999). This 

includes a lack of response in chemical composition to elevated CO2, as found for 

both Q. cerris L. and Q. pubescens Willd. (Gahrooee 1998). Chemical composition 

differed between rural and urban litters to a greater extent than for ambient- and 

elevated-CO2 litters. In particular, rural litter was of higher initial quality (i.e. lower 

C/N ratio), providing no support for Hypothesis 1b. This is despite evidence of greater 

nitrogen deposition into urban soils, potentially allowing for greater uptake of 

nitrogen into foliar tissues (Lovett et al. 2000; Zhu & Carreiro 2004; Fang et al. 2011). 

Urban litter did, however, have a greater phosphorus concentration, but this was not 
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found in a study of Quercus rubra L. leaf tissues grown in urban and rural locations 

by Baxter et al. (2002). Ultimately, the effect of urbanisation on litter quality may be 

greater than the effects of elevated CO2, although chemical differences appear to be 

species-specific and not always predictable based on environmental conditions. 

 

Litter chemical composition changed though time. Quality increased from 0 to 28 

days (i.e. C/N ratio decreased) for ambient-CO2, elevated-CO2 and urban litters, 

supporting Hypothesis 2. Increased nitrogen concentration in this study agrees with 

McClaugherty et al. (1985), who also found that nitrogen accumulated in leaf litter 

samples during nearly two years of breakdown in temperate deciduous forests. This 

could be due to incorporation of nutrient-rich microbial tissues into the chemical 

analyses, following colonisation of leaf surfaces by fungi and bacteria (Chapin, 

Matson & Mooney 2011). Relative reductions of other chemical components, such as 

phosphorus, may also help explain the relative increase in litter nitrogen concentration. 

Phosphorus concentrations are, however, species- and site-specific (Gosz, Likens & 

Bormann 1973; Moore et al. 2006). Along with elemental changes, litter structural 

integrity was reduced in ambient-CO2, rural and urban litters given reduced lignin 

concentrations. This is likely due to the release of lignin-degrading enzymes by 

microorganisms (Berg & McClaugherty 2008). 

 

Differences in litter mass loss between growth conditions were associated with 

chemical composition, but not in the direction anticipated (that higher leaf litter 

nutritional quality results in faster breakdown), providing little support for Hypothesis 

3. Rural litter was of higher nutritional quality (i.e. lower C/N ratio) than urban litter, 

but it lost mass more slowly. This is contrary to a study by Carreiro et al. (1999), who 

found that a higher lignin/N ratio and cellulose concentration of urban Q. rubra litter 

resulted in 25% slower mass loss compared to rural litter. This finding also 

contradicts previous work showing that birch litter decays slower with a higher C/N 

ratio (Cotrufo, Ineson & Roberts 1995) and that breakdown rate has a positive 

relationship with nitrogen concentration and a negative relationship with C/N ratio 

across a range of tree species (Melillo, Aber & Muratore 1982; Taylor, Parkinson & 

Parsons 1989; Pérez-Harguindeguy et al. 2000; Freschet, Aerts & Cornelissen 2012). 

Urban litter did, however, have a higher phosphorus concentration, which has been 

linked with faster decay in a global meta-analysis of decomposition (Cornwell et al. 
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2008). Conversely to rural and urban litters, there was little difference in the chemical 

composition of ambient- and elevated-CO2 litters, and no difference in mass loss. This 

contradicts a meta-analysis by Norby et al. (2001), showing that elevated atmospheric 

CO2 increases the lignin concentration and decreases the nitrogen concentration of 

leaf litter from woody plants, and slows decomposition relative to ambient-CO2 litter. 

Species previously shown to follow this pattern include the current study species B. 

pendula (Cotrufo & Ineson 1996), as well as F. excelsior, A. pseudoplatanus (Cotrufo, 

Briones & Ineson 1998) and Populus species (Cotrufo, De Angelis & Polle 2005). 

 

Differences in litter chemical composition were not related to differences in 

community composition, nor were invertebrate abundance, richness and diversity 

affected, providing no support for Hypothesis 4. Despite this, invertebrate richness 

and diversity were higher for elevated- than ambient-CO2 litter, which may reflect 

lower palatability in the latter due to a higher lignin/N ratio. The study of invertebrate 

feeding in Chapter 3 showed that four terrestrial invertebrate detritivore species did 

not show a preference for A. glutinosa or B. pendula produced under ambient and 

elevated CO2, despite a lower nitrogen concentration and higher C/N ratio in elevated-

CO2 B. pendula. Compared to the effects of growth condition, there was a greater 

difference in invertebrate community composition between time periods. This 

included general reductions in abundance, richness and diversity between 28 to 112 

days in the field, supporting Hypothesis 5. These changes may reflect falling substrate 

availability, where litter at the end of the experiment was composed mostly of tissues 

with high structural integrity (e.g. midribs) that have low palatability and provide 

little refuge for invertebrates. 

 

The results of this study imply that elevated atmospheric CO2 will have little effect on 

the chemical composition and breakdown of B. pendula litter. There was, however, 

and indication that urban pollution had a greater effect on these parameters. This 

could affect ecosystem functioning, as detritus provides an important habitat and 

resource for invertebrate and microbial litter decomposers. At the invertebrate scale, 

lower litter nutritional quality can reduce palatability (Cotrufo, Briones & Ineson 

1998). Differences in invertebrate responses to this low-quality material – as for 

invertebrate species fed A. glutinosa litter in Chapter 3 – could shift invertebrate 

community structure. In the current study, invertebrate abundance was unaffected by 
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litter growth conditions, so the availability of invertebrates as a prey item is likely to 

be unaffected where litter has grown under elevated CO2 or urban atmospheres. This 

means that food webs may remain stable, given little impact on feeding by consumers 

and predators in higher trophic levels (Hagen et al. 2012). Invertebrate richness and 

diversity were higher on elevated- than ambient-CO2 litter, which could affect 

decomposition: the number of trophic levels, species identity and the presence of 

keystone species can all impact litter decay in terrestrial systems (Hättenschwiler, 

Tiunov & Scheu 2005). Faster breakdown of litter will result in faster release of 

nutrients and a reduced capacity for carbon storage. Regardless of litter breakdown 

rates, there could be more detrital inputs to forest floors in the future, as elevated 

atmospheric CO2 is expected to increase the amount of leaves produced per plant (Liu 

et al. 2009). 

 

Detritus “often increases system stability and persistence, having substantial effects 

on trophic structure and biodiversity” (Moore et al. 2004). It is therefore of great 

importance to understand how ecosystems may be affected by changes to detrital 

chemical composition and breakdown dynamics. This study has shown that changing 

growth conditions may affect the chemical composition and breakdown of B. pendula 

leaf litter, with a greater relative difference between rural and urban growth 

conditions than ambient and elevated CO2 conditions. Further work is required to 

understand the complex relationship between changing atmospheric composition and 

decomposition. For example, Leuzinger et al. (2011) noted that multiple explanatory 

variables (e.g. elevated CO2, warming, drought), longer study duration and larger 

spatial scales are needed to get a better understanding of the effects of global change 

on terrestrial systems. It has been argued, however, that climate-related factors – 

including CO2 concentration – may not be as important as invertebrate presence and 

tree species within a system (Gartner & Cardon 2004; Cornwell et al. 2008; Rouifed 

et al. 2010). It will therefore be important to explore effects of global change in 

tandem with multiple species. It is essential that work in this field continues, allowing 

for a fuller understanding of how ongoing changes to atmospheric composition might 

affect the crucial ecosystem service of decomposition. 
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5. Multiple stressor effects on leaf litter chemical 

composition and breakdown in upland streams 
 

5.1 Abstract 

 

Leaf litter is a major source of nutrients and energy in headwater streams draining 

temperate woodlands. Litter nutritional quality and decomposition are affected by 

multiple stressor effects including greenhouse gases, urban pollution and acidification. 

To identify some of the possible consequences of environmental change, litter bag 

experiments in acid and circumneutral headwater streams were used to compare 

chemical composition, decomposition and invertebrate assemblages in Betula pendula 

litter produced (i) under ambient and elevated CO2 atmospheres ex situ, and (ii) in 

rural and urban locations. Growth conditions affected chemical composition. Elevated 

CO2 lowered nutritional quality (nitrogen concentration decreased, and phosphorus 

concentration and C/N ratio increased), while urban pollution increased it (C/N ratio 

decreased and nitrogen concentration increased). Once exposed in headwaters, urban 

litter lost more mass than rural litter through time, while there was no consistent 

pattern of difference between ambient- and elevated-CO2 litters. During litter 

breakdown, environmental stressors had variable effects on invertebrate assemblages. 

Invertebrate abundance was higher in the circumneutral than the acid stream, but was 

unaffected by litter source. Taxon diversity was affected by growth condition, but 

only after 112 days when urban litter held higher invertebrate diversity than rural litter. 

Invertebrate assemblages differed between streams and between time periods, largely 

as a result of decreased leuctrid abundances and increased chironomid abundances in 

later time periods and in acid streams. These results illustrate how atmospheric 

composition has the potential to alter litter chemical composition and breakdown, but 

not sufficiently to affect invertebrate use of leaf litter by comparison with acid stress. 

This could have knock-on effects for nutrient turnover and the stability of food webs 

in headwater streams. 



 

61 

5.2 Introduction 

 

Ninety percent of forest primary productivity enters the detrital pathway in terrestrial 

and freshwater ecosystems (Cebrian 1999), largely as leaf litter (Abelho & Graça 

1998; Oelbermann & Gordon 2000). Allochthonous litter inputs play a crucial role in 

trophic structure and nutrient cycling in running waters in particular (Wallace et al. 

1997, 1999; Moore et al. 2004), providing an important energetic resource for 

invertebrate detritivores ('shredders'; Graça 2001) and fungi (Krauss et al. 2011), as 

well as a substrate for primary producers (e.g. algae; Hax & Golladay 1993). 

Shredders are among the most important biotic contributors to leaf mass loss (Hieber 

& Gessner 2002), and by comminution they speed litter decay rates, making 

recalcitrant nutrients accessible to other organisms (Wallace & Webster 1996). Algal 

colonisation can increase litter palatability to detritivores (Franken et al. 2005) and 

further stimulate decomposition rates (Rier, Kuehn & Francoeur 2007; Danger et al. 

2013). While the importance of tree leaf litter to stream ecosystem processes is well 

established, little is known about the impacts of global environmental change on litter 

chemical composition and how this will affect the processing and fate of litter in 

freshwaters. 

 

Fossil fuel combustion has altered both the atmospheric gas concentrations in which 

plant litter is produced (IPCC 2013) and the chemistry of surface waters in which 

litter breakdown occurs (Schindler 1988). Atmospheric carbon dioxide (CO2) 

concentrations have been particularly affected and are currently 40% higher than in 

pre-industrial times (IPCC 2013). Elevated CO2 raises photosynthetic rates in woody 

tree species, altering growth rates and production (Curtis & Wang 1998; Ainsworth & 

Long 2005). In turn, foliar chemistry is affected, changing the chemical composition 

of subsequent litter. At elevated atmospheric CO2 concentrations, nitrogen 

concentrations may decrease (Coûteaux et al. 1999; Norby et al. 2001), while C/N 

ratios (Cotrufo, Ineson & Rowland 1994; Tuchman et al. 2003b), and structural 

(Norby et al. 2001; Tuchman et al. 2002; Cotrufo, Drake & Ehleringer 2005) and 

defensive (Tuchman et al. 2003b; Parsons, Lindroth & Bockheim 2004) compounds 

may increase. Phosphorus concentrations may either increase (Liu, King & Giardina 

2007) or decrease (Ferreira et al. 2010). Altered leaf chemical composition as a result 
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of CO2 enrichment is liable to affect the nutritional quality of litter entering stream 

food webs (Tuchman et al. 2003b). These changes reduce feeding rates by 

invertebrates (Cotrufo, Briones & Ineson 1998; Ferreira et al. 2010), slowing their 

development and increasing mortality (Tuchman et al. 2002, 2003a). In addition, algal 

colonisation and growth can be affected by litter chemical composition via leachates 

from decomposing leaves (Friberg & Winterbourn 1996). 

 

Along with the effects of elevated atmospheric CO2 on litter chemical composition, 

elevated concentrations of airborne pollutants (e.g. NO3–, NH4
+) in urban locations 

further affect litter quality (George et al. 2007). Increased soil nitrogen deposition 

may result in greater nitrogen availability to trees (Lovett et al. 2000; Zhu & Carreiro 

2004; Fang et al. 2011) but outcomes for litter quality (C/N ratio) appear 

unpredictable (Pavao-Zuckerman & Coleman 2005). Increased concentrations of 

lignin and labile materials have been identified in urban litter (Carreiro et al. 1999) 

potentially slowing decomposition rates relative to rural litter in forest environments 

(Carreiro et al. 1999; Pouyat & Carreiro 2003). 

 

In surface waters, atmospheric gases from fossil-fuel combustion have also 

dramatically altered chemical quality. In particular, base-poor soils and waters over 

large areas of Europe and North America have been acidified by the deposition of 

strong mineral acidity arising from sulphur and nitrogen oxides which, when 

dissolved in rainwater, were deposited as ‘acid rain’ that reduced runoff pH and 

increased the concentration of metals such as aluminium (Schindler 1988). Although 

this industrial phenomenon peaked in the 1970s, streams, rivers and lakes have only 

partially recovered, and are still widely affected by chronic or episodic acidification 

(Kowalik et al. 2007; Ormerod & Durance 2009). The resulting conditions in surface 

waters may retard leaf litter processing by the combined effects of reduced 

invertebrate activity (Dangles & Guérold 1998, 2001; Pye, Vaughan & Ormerod 

2012) and reduced decomposition by fungi (Krauss et al. 2011). The composition of 

primary producers, particularly diatoms, also change substantially at low pH (Hirst et 

al. 2004), but the effects of changing litter quality and breakdown on these organisms 

has not been addressed. More significantly, there has been no attempt to identify the 

combined, multiple-stressor effects of altered atmospheric gas concentrations on litter 

quality and subsequent breakdown in surface waters affected by acidification. 
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This study set out to examine the effects of atmospheric CO2 concentration, urban 

pollution and stream acidification on leaf litter chemical composition, followed by 

litter mass loss and invertebrate community metrics and diatom assemblages 

associated with litter through time. Specifically, it was hypothesised that (1) litter 

chemical composition will differ between (a) growth conditions, with higher 

nutritional quality in ambient-CO2 than elevated-CO2 litters, and urban litters than 

rural litters, (b) time periods, with an increase in quality between 0 and 28 days of 

stream exposure, and (c) streams of differing pH; (2) litter breakdown will differ 

between (a) litters of different nutritional quality, with faster decay of higher quality 

litter, and (b) stream of differing pH, with slower decay in the acidified stream; (3) 

invertebrate communities will differ between (a) litters of different quality, (b) time 

periods, with a general decline in taxon abundance, richness and diversity through 

time, and (c) stream pH, with reduced abundance, taxon richness and taxon diversity 

in acid streams; and (4) biofilm will be more prevalent (a) on leaves with higher 

lignin concentration (as they are tougher and provide a better substrate), (b) earlier in 

time sequence, and (c) in the circumneutral than the acidified stream. 

 

5.3 Materials and Methods 

 

5.3.1 Leaf litter growth and production 

 

Leaf litter came from field environments and from artificial rearing facilities (Section 

4.3.1) to provide the array of rural, urban and controlled ambient and elevated CO2 

concentrations required for the investigation. 

 

In the controlled facilities, 100 Betula pendula Roth (silver birch) trees 

(Carmarthenshire Tree Nursery, Carmarthen, UK), each one-year old and measuring 

up to 60 cm, were potted (diameter 13 cm, depth 11 cm; John Innes Potting Compost 

Number 2) and transferred to a greenhouse (Section 4.3.2). Fifty randomly selected 

trees were grown in ambient conditions (407 ± 4 ppm) and the remaining 50 in a CO2-

enriched atmosphere (956 ± 16 ppm). Trees were propagated from 16 March–29 

October 2011 in ambient light and were watered every 2 days. Leaves of each 
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treatment were collected upon abscission and stored at room temperature prior to 

experimentation. 

 

Abscised leaf litters from rural and urban locations were collected in October 2011 

from in situ silver birch trees. Rural litter was collected from Ystradffin, UK 

(52°09’75” N, 3°78’91” W) and urban litter from Central London, UK (51°50’81” N, 

0°10’01” W). From 1990–2009, the mean daily air temperature at the rural site was 

10.4 ± 0.19 ºC and the mean precipitation per month was 57 ± 2 mm; the 

corresponding readings at the urban site were 10.9 ± 0.22 ºC and 49 ± 2 mm 

(Microsoft Research 2014). At the nearest air pollution recording sites (Department 

for Environment Food and Rural Affairs 2013), mean values of atmospheric NO, NO2 

and O3 in the five full years preceding collection (2006–2010) were 1.2, 7.7 and  

65 µg m-3 (Aston Hill, Powys; 52°50’38” N, 3°03’41” W), and 20.4, 44.8 and  

35.2 µg m-3 (Westminster, London; 51°49’46” N, 0°13’19” W), respectively. 

 

5.3.2 Field study area 

 

Following litter production and collection, the breakdown experiment was located in 

two low-order streams within Llyn Brianne Stream Observatory, mid-Wales (52°08’ 

N, 3°45’ W), one of the world’s longest-running investigations of land use and acid 

deposition on stream ecosystems (for site details see Durance & Ormerod 2007; 

Ormerod & Durance 2009). Soft-water runoff (mean total hardness 4–8 mg  

CaCO3 L-1) occurs at the site as a result of base-poor rocks combining with 

stagnopodzol, brown podzolic and peat soils. Stream LI1 was acidified (pH 4.9–5.4) 

as a consequence of interactions between acid deposition and catchment plantations of 

Sitka spruce (Picea stichensis (Bong.) Carrière) and lodgepole pine (Pinus contorta 

Douglas ex Loudon). Stream LI6 was a circumneutral (pH > 6.9) moorland stream 

buffered by small calcite veins running through its catchment (hardness 15–19 mg 

CaCO3 L-1). 
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5.3.3 Litter bags 

 

Litter bags (n = 288) measuring 10 × 15 cm were constructed from 1 mm nylon mesh 

(EFE & GB Nets, Cornwall, UK), allowing the entry of detritivorous invertebrates 

while reducing litter loss as a result of physical abrasion. This mesh size was known 

from previous investigations (Pye, Vaughan & Ormerod 2012) to allow entry of 

organisms typical of the local shredder community. Each bag was filled with  

3 ± 0.01 g (mean ± 1 SEM) of air-dried leaf litter and an embossed plastic 

identification label and then heat-sealed at the margins. For invertebrate community 

and mass loss analyses, 240 bags were produced (five time points ×�two pH levels ×�

four growth conditions ×�six replicates), along with a further 48 bags for chemical 

analysis. Bags were randomly assigned to four metal-framed, open-top cages (32.5 × 

10.5 × 8.5 cm, 2 × 2 cm minimum aperture) and secured using plastic cable ties. 

Cages were submerged in a random order along 20 m reaches of each study site and 

secured with 0.5 m steel rods. Bags allocated to the first time period (0 days) were not 

placed in-stream, but returned to the laboratory immediately and handling error 

calculated. The remaining bags were placed in separate sealed plastic bags upon 

collection (after 14, 28, 56 or 112 days) and transported back to the laboratory in a 

cool box. 

 

5.3.4 Litter chemical composition 

 

Bags containing litter for chemical analyses were collected after 0 and 28 days. Litter 

was washed with deionised water, air dried to constant mass and stored at –80°C. 

Samples were air dried (50°C for 24 hrs) and powdered (120 s at 50 beats s–1 in a 

Pulverisette 23 ball mill; Fritsch GmbH, Idar-Oberstein, Germany) prior to chemical 

analyses. An elemental analyser (Elemental Combustion System 4010 CHNS-O 

Analyzer, Costech Analytical Technologies, Inc., Milan, Italy) was used to determine 

carbon and nitrogen concentrations simultaneously, each expressed as a percentage of 

leaf dry mass (% DM). This involved flash combustion and chromatographic 

separation of approximately 1.5 mg of each sample, calibrated against a standard 

(C26H26N2O2S). Carbon and nitrogen values were used to calculate C/N ratios for each 

sample. X-ray fluorescence was used to measure the phosphorus concentration (see 
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Reidinger, Ramsey & Hartley 2012 for detailed methodology). The acetyl bromide 

spectrophotometric method (Foster et al. 2010) was used to measure the lignin 

concentration of litter dry cell walls (% DCW). C/N ratios were calculated for each 

litter sample. Lignin and phosphorus values were derived from separate litter samples 

to nitrogen values, so lignin/N and N/P ratios were calculated using mean values for 

each time period × stream pH × growth condition combination. 

 

5.3.5 Invertebrate assemblages 

 

Litter was removed from bags allocated to invertebrate and mass loss analyses, and 

rinsed in a sieve (500 µm mesh) with deionised water to dislodge invertebrates and 

inorganic debris (e.g. gravel). Invertebrates were extracted and stored in 70% alcohol 

before identification to the lowest practicable taxonomic unit (Ephemeroptera and 

Plecoptera to species; Coleoptera and Trichoptera to genus or species; Diptera to 

family; Annelida to subclass). The following were calculated for each bag: (i) the 

total number of individuals (abundance), (ii) the number of taxa (richness) and (iii) 

Simpson’s index of diversity, using the equation 1–D = 1–(Σn(n–1)/N(N–1),  

where n is the total number of organisms of a particular taxon and N is the total 

number of organisms of all taxa. 

 

5.3.6 Mass loss 

 

After invertebrate removal, the litter was air-dried to constant mass (± 1 mg) and 

values were corrected for handling error (see below). The ash-free dry mass (AFDM) 

of litter from each bag was calculated, where subsamples of litter (0.5 g) from each 

bag were weighed (± 1 mg), before combustion in a muffle furnace (Carbolite ELF 

Chamber Furnace 11/14; 550°C for 5 hrs). Ash-free dry mass was given by AFDM = 

MT–[MT(MA/MS)], where MT = dry mass (g) of the total litter sample, corrected for 

handling error, MA = ash subsample mass (g), and MS = subsample mass (g). 

 

Breakdown rates per day were calculated using an exponential decay model, 

following Petersen and Cummins (1974). The decay coefficient, k, was calculated as 

the slope of the line fitted to each combination of growth condition and stream pH 
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through time. This was approximated using an exponential decay model in the form 

Mt = M0(e–kt), where Mt = AFDM (g) at time t; M0 = AFDM (g) at time 0; k = the 

decay coefficient; and t = time (days). Values of k were allocated to processing groups 

as an indicator of breakdown speeds (Petersen & Cummins, 1974): fast (k < 0.01), 

medium (0.005 < k < 0.01) and slow (k < 0.005). Values of k were used to calculate 

biological half-life (time to 50% mass loss; t1/2), with the equation t1/2 = ln(2)/k. 

 

5.3.7 Microalgal biofilm variable chlorophyll fluorescence 

 

A Pulse Amplitude Modulated (PAM) fluorometer (Walz WATER PAM, Heinz Walz 

GmbH, Germany) with EDF/B fibre optic detector/emitter unit was used to measure 

diatom activity on leaf surfaces by chlorophyll fluorescence (Maxwell & Johnson 

2000). Readings were taken from three leaves per bag. Measurements were taken as 

soon as possible after removing each bag from the water. Minimum fluorescence (F0; 

a proxy for microphytobenthic biomass), and dark-adapted maximum quantum yield 

of photosystem II (Fv/Fm; an indicator of ecosystem health) were determined from the 

initial 30 second dark light step of a rapid light curve (Perkins et al. 2006). Sigmaplot 

v14 was used to calculate iterative solutions for each rapid light curve following the 

method of Eilers and Peeters (1988). This determined the parameters of maximum 

relative electron transport rate (rETRmax), light saturation coefficient (Ek) and 

maximum light use coefficient (α) (for full details see Perkins et al. 2006, 2010). 

 

5.3.8 Data analysis 

 

All statistical analyses were performed using R version 3.0.2 (R Development Core 

Team 2013) with significance set at α = 0.05. Separate models in each analysis were 

constructed for ex situ litters (ambient and elevated CO2) and in situ litters (rural and 

urban), because effects of CO2 and urban pollution could not be separated from 

effects of tree size and age. All models were checked graphically for normality and 

homogeneity of variance (Crawley 2007). Minimum adequate models were reached 

by stepwise deletion of non-significant terms. Planned comparisons of factor levels 

were performed when model terms were significant, using least-square means (LSM; 

lsmeans function, lsmeans package, Lenth 2013). Three bags allocated to mass loss 
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and invertebrate analyses – one containing ambient-CO2 litter and two containing 

urban litter – were lost from the acid stream at the third time period (56 days) and 

were excluded from the analyses. 

 

Separate General Linear Mixed-Models (GLMMs) were fitted for each chemical 

factor (carbon, nitrogen, phosphorus and lignin concentrations and C/N ratio), with 

growth condition (ambient- or elevated-CO2, rural, or urban), time period (0 or 28 

days), stream pH (circumneutral or acid), and all two- and three-way interactions used 

as fixed categorical explanatory variables, while cage ID was used as a random term 

to account for non-independence of litter bags sharing the same cage (lme function, 

nlme package, Pinheiro et al. 2013). 

 

The dry mass (g) of litter from each growth condition was corrected by adding the 

mean handling loss of bags collected at Day 0 before calculation of AFDM. To 

compare litter AFDM at each time period, a GLMM (lme function, nlme package, 

Pinheiro et al. 2013) was constructed with AFDM as the response variable and 

growth condition (ambient CO2 and elevated CO2, or rural and urban), stream pH 

(circumneutral or acid) and days in the field (0, 14, 28, 56 and 112 days) as 

categorical explanatory variables, and cage ID as a random term. 

 

Separate GLMMs (lme function, nlme package, Pinheiro et al. 2013) were 

constructed for each measure of invertebrate assemblage (abundance, taxon richness 

and taxon diversity), with growth condition (ambient or elevated CO2, rural, or urban), 

time period (14, 28, 56 and 112 days), stream pH (acid or circumneutral), and all 

interactions as fixed categorical explanatory variables. To account for within-cage 

variability, cage ID number was included as a random variable. To meet assumptions 

of normality, invertebrate abundance was log(abundance+1)-transformed in both the 

analysis of ambient- and elevated-CO2 litters, and rural and urban litters. 

 

Non-metric Multi-Dimensional Scaling (NMDS; Kruskal 1964) was performed on the 

invertebrate communities associated with the litter samples (metaMDS function, 

vegan package, Oksanen et al. 2013). Abundances were fourth-root transformed to 

down-weight the influence of the most abundant taxa (Clarke & Warwick 2001). 

Bray-Curtis dissimilarity matrices were then constructed with 4,999 permutations 
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(adonis function, vegan package, Oksanen et al. 2013) and the associated stress score 

was recorded. Permutational Analysis of Variance (PERMANOVA; Anderson 2001) 

was used to test the effects of growth condition (ambient CO2, elevated CO2, rural and 

urban), stream pH (acid or circumneutral) and time point (14, 28, 56 and 112 days) on 

invertebrate communities, with iterations constrained within each cage ID (adonis 

function, vegan package, Oksanen et al. 2013). The data were checked for 

multivariate homogeneity of group dispersions (betadisper function, vegan package, 

Oksanen et al. 2013) before model simplification by stepwise deletion of non-

significant terms. For the remaining significant terms, factor levels were compared by 

pairwise PERMANOVA. Bonferroni-adjusted critical significance levels were used to 

correct for multiple comparisons. Similarity Percentages (SIMPER; Clarke 1993) 

analysis was used to determine the invertebrate species that contributed most to the 

observed dissimilarity between litter samples (simper function, vegan package, 

Oksanen et al. 2013). Further information on these multivariate techniques can be 

found in Section 4.3.7. 

 

5.4 Results 

 

5.4.1 Litter chemical composition 

 

Growth condition affected the chemical composition of leaf litter, but effects were 

more pronounced in ex situ than in situ litters: elevated-CO2 litter had a lower 

nitrogen concentration (Fig. 5.1b), higher phosphorus concentration (Fig. 5.1d) and 

higher C/N ratio (Fig. 5.1c) than ambient-CO2 litter, while urban litter had a higher 

nitrogen concentration (Fig. 5.1b) and a lower C/N ratio (Fig. 5.1c) than rural litter 

(Table 5.1). These differences were present at the start of the experiment and after 28 

days of exposure to stream conditions, although the difference in nitrogen 

concentration between urban and rural litters became more pronounced through time 

(Fig. 5.1b).  

 

Exposure to stream acidity had a lesser effect on leaf litter chemical composition than 

growth condition, although ex situ litters in the acid stream had greater carbon and 
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nitrogen concentrations than in the circumneutral stream after 28 days of exposure 

(Table 5.1). Moreover, stream acidity appeared to interact with the effects of growth  

condition on in situ litter chemical composition (Table 5.1); the nitrogen 

concentration of urban litter was higher than rural litter, but only in the acid stream 

(LSM = 0.3 ± 0.1%; P = 0.004). The C/N ratio of rural litter was higher in the 

circumneutral than the acid stream (LSM = 5.4 ± 2.6; P = 0.036), but this was not 

evident in urban litter. The combined effect of these stressors on litter chemical 

composition was dependent on time period, but only for the ex situ litters (Table 5.1): 

the C/N ratio of elevated-CO2 litter was higher than for ambient-CO2 litter, but only 

after 28 days’ exposure to acidified stream conditions (LSM = 3.2 ± 0.8, P < 0.001). 

 

Table 5.1. The response of leaf litter chemical composition to growth condition (GC), stream 

pH (pH) and time period (T), given as F value (degrees of freedom), with asterisks indicating 

significance level (P < 0.05*, P < 0.01**, P < 0.001***; or ns = non-significant). Dashes 

indicate that a parameter was removed during model minimisation. 

Factor Carbon Nitrogen Phosphorus Lignin C/N 

Ex situ (ambient- and elevated-CO2) litters 

GC ns 12.61 (1,4)* 20.19 (1,21)*** – 42.09 (1,4)** 

T 16.34 (1,12)** 23.45 (1,12)*** 126.2 (1,21)*** 10.96 (1,14)** 164.9 (1,12)*** 

pH 8.69 (1,12)* 9.86 (1,12)** – – ns 

GC × T – – – – ns 

GC × pH – – – – ns 

T × pH 5.59 (1,12)* – – – ns 

GC × T × pH – – – – 20.07 (1,4)* 

In situ (rural and urban) litters 

GC ns 66.25 (1,7)*** ns – 49.44 (1,8)*** 

T ns 38.99 (1,9)*** 22.73 (1,11)*** 8.18 (1,12)* 24.96 (1,11)*** 

pH ns ns ns – ns 

GC × T ns 11.67 (1,7)* – – – 

GC × pH ns 10.81 (1,7)* – – 6.72 (1,8)* 

T × pH ns – – – – 

GC × T × pH 6.27 (1,9)* – – – – 
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5.4.2 Mass loss 

 

The effect of growth condition on litter AFDM depended on time period (ex situ 

litters, F4,17 = 3.35, P = 0.034; rural and urban litters, F4,18 = 6.48, P = 0.002): 

elevated-CO2 litter had higher AFDM than ambient-CO2 litter after 14 days (LSM = 

0.26 g, P = 0.006), but this relationship was reversed after 112 days (LSM = 0.2 g, P 

= 0.035). Conversely, the AFDM of urban litter was lower than for rural litter 

throughout the manipulation (after 14 days, LSM = 0.47 g; 28 days, LSM = 0.65 g; 56 

days, LSM = 0.85g; 112 days, LSM = 0.93 g; all P < 0.001; Fig. 5.2). Unlike growth 

condition, the stressor of stream acidification had no influence on litter AFDM at any 

time points. 

 

Growth condition had more of an effect on litter decay rates (k) and half-lives (t1/2) 

than stream pH. Elevated-CO2 litter decayed faster than ambient-CO2 litter in both the 

circumneutral (Fig. 5.2a) and acid (Fig. 5.2b) streams, although their half-lives were 

similar (Table 5.2). Urban litter had a faster rate of decay than rural litter (Table 5.2), 

but the half-life of rural litter was approximately two-and-a-half times larger in both 

streams. The ex situ litters decayed faster than the in situ litters. 

 

Table 5.2. Leaf litter decay characteristics, including the mean Ash-Free Dry Mass (AFDM) 

at the start and end of the experiment (n = 3), the decay constant (k), biological half-life (t1/2), 

and processing groups based on Petersen and Cummins (1974): fast (k (day–1) > 0.01), 

medium (0.01 > k (day–1) > 0.005), and slow (k (day–1) < 0.005). 

Stream 

pH 

Growth 

condition 

Start AFDM 

(g) ± 1 SEM 

End AFDM (g) 

± 1 SEM 
k (day-1) 

t1/2 

(days) 

Processing 

group 

Circum-

neutral 

Elevated CO2 2.84±0.01 0.28±0.1 0.0206 34 Fast 

Ambient CO2 2.76±0.02 0.57±0.11 0.0141 49 Fast 

 Urban 2.78±0.07 1.21±0.28 0.0074 94 Medium 

 Rural 2.91±0.01 2.23±0.14 0.0023 295 Slow 

Acid Elevated CO2 2.79±0.04 0.42±0.14 0.0170 41 Fast 

 Ambient CO2 2.77±0.02 0.54±0.14 0.0146 48 Fast 

 Urban 2.77±0.01 1.3±0.21 0.0068 102 Medium 

 Rural 2.89±0.01 2.13±0.21 0.0027 254 Slow 
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Fig. 5.1. Leaf litter chemical composition (mean ± 1 SEM) through time following exposure 

to streams of differing pH. Plots show (a) carbon and (b) nitrogen concentrations, (c) C/N 

ratio, (d) phosphorus and (e) lignin concentrations. 
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5.4.3 Invertebrate assemblages 

 

In contrast to mass loss, total invertebrate abundance on litter was more affected by 

stream acidification than litter growth condition: there were more individuals in the 

circumneutral than the acid stream (in situ litters, F1,21 = 5.69, P = 0.027), but there 

was no effect of elevated CO2 or urban pollution. Abundance generally fell through 

time (ex situ, F3,25 = 4.76, P = 0.009; in situ, F3,21 = 6.31, P = 0.003), being lower 

after 112 days than after 14 days (ex situ, LSM = 1 ± 0.4 individuals, P = 0.049; in 

situ, LSM = 1 ± 0.4 individuals, P = 0.023), 28 days (ex situ, LSM = 1.4 ± 0.4 

individuals, P = 0.002; in situ, LSM = 1.4 ± 0.4 individuals, P < 0.001) and 56 days 

(in situ, LSM = 1.3 ± 0.4 individuals, P = 0.005) of stream exposure. 

 

 
Fig. 5.2. The effect of growth condition on leaf litter Ash-Free Dry Mass remaining (AFDM; 

mean ± 1 SEM) after exposure to (a) a circumneutral or (b) an acidified stream. 
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Neither litter growth condition nor stream acidification affected the taxon richness of 

invertebrates colonising litter. Similarly to invertebrate abundance, taxon richness fell 

from the start to the end of the experiment (ex situ, F3,25 = 4.25, P = 0.015; in situ, 

F3,21 = 6.9, P = 0.002), being lower after 112 days than 14 (ex situ, LSM = 2.6 ± 1 

taxa, P = 0.047; in situ, LSM = 0.7 ± 0.2 taxa, P = 0.007) and 28 (LSM = 3.5 ± 1 taxa, 

P = 0.004; in situ, LSM = 1 ± 0.2 taxa, P < 0.001) days of stream exposure. 

Taxon diversity was unaffected by stream pH, while the effect of growth condition 

changed through time (in situ, F3,14 = 3.69, P = 0.038): diversity was higher on urban 

than rural litter after 112 days of stream exposure (LSM = 0.4 ± 0.1, P = 0.006). 

 

Litter-associated invertebrate communities differed between circumneutral and acid 

streams for in situ litters only (F1,39 = 4.74, P < 0.002; Fig. 5.3c), making stream pH 

more important than growth condition (Table 5.3): acidification lowered leuctrid 

abundance, but increased chironomid abundance (Table 5.3). Community 

composition also varied between time periods for both ex situ (F3,27 = 2.03, P = 0.015; 

Fig. 5.3a) and in situ (F3,39 = 4.4, P < 0.001; Fig. 5.3b) litters, differing between 14 

and 56 days (ex situ, F1,19 = 3.26, P = 0.003), 14 days 112 days (ex situ, F1,16 = 4.23, P 

< 0.001; in situ, F1,17 = 7.2, P < 0.001), 28 and 112 days (in situ, F1,18 = 5.79, P = 

0.001), and 56 and 112 days (in situ, F1,16 = 4.09, P = 0.008). Most of these effects 

were caused by a reduction in leuctrids with progression through the experiment, 

while chrionomids and oligochaetes increased (Table 5.3). 

 

5.4.4 Algal fluorescence 

 

Fluorescence variables could not be evaluated from most litter bags. As a result, no 

statistical analyses were undertaken. Patterns of algal activity could not be interpreted 

(Table 5.4), but the majority of diatom activity was recorded in bags containing rural 

litter (five out of nine). Algal growth also occurred on the mesh of the litter bags. 

 

5.5 Discussion 

 

Changes in the chemical composition of litter caused by elevated CO2 and urban 

pollution could change rates of litter decay, with further impacts on breakdown 
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processes in acidified streams. The implication is that ongoing changes in 

atmospheric composition could affect the decay of leaf litter in headwaters, 

potentially interacting with water quality to impair the provision of an important 

nutrient source. Such effects have the potential to disturb ecosystem functioning by 

destabilising river food webs from the bottom-up. 

 

 
Fig. 5.3. Invertebrate community dissimilarity between time periods for (a) ex situ and (b) in 

situ leaf litters, and (c) between streams of differing acidity for in situ litters only, visualised 

using Non-metric Multi-Dimensional Scaling (NMDS; ex situ litters, stress = 0.134; in situ 

litters, stress = 0.167). 
 

Litter chemical composition differed between growth conditions, as ambient-CO2 and 

urban litters were of higher nutritional quality (i.e. lower C/N ratio) than elevated-

CO2 and rural litters, respectively (supporting Hypothesis 1a). Reduced quality as a 

result of elevated CO2 has been observed previously in B. pendula (Ferreira et al. 

2010), with mixed results for other deciduous tree species (Coûteaux et al. 1999; 
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Tuchman et al. 2002, 2003b; Rier, Tuchman & Wetzel 2005). One possible 

explanation is that stomatal number decreases in response to elevated CO2 

(Woodward & Bazzaz 1988), reducing transpiration, and affecting the passage and 

incorporation of soil-borne nitrogen into the plant (Taub & Wang 2008). Elevated-

CO2 litter had a higher phosphorus concentration than ambient-CO2 litter, however, 

which was also true of litter collected from the AspenFACE facility by Liu et al. 

(2007). This may result from greater carbon availability to exchange for soil-derived 

phosphorus with mycorrhizae, standing stocks of which have been shown to increase 

under elevated CO2 (Treseder 2004). Urban litter may have been of higher nutritional 

quality than rural litter as a result of greater nitrogen deposition (Lovett et al. 2000; 

Zhu & Carreiro 2004; Fang et al. 2011) and phosphorus availability (Zhang & Ke 

2004) in urban soils. Litter quality also appeared to be affected by artificial growth 

conditions, as greenhouse-grown (ambient and elevated CO2) litters were of higher 

initial quality than outdoor-grown (urban and rural) litters. This is likely due to 

optimal growth conditions under greenhouse conditions (e.g. optimal soil nutrients, 

temperature or irrigation), or that sapling litter was of higher quality than that of 

mature trees. This has important ramifications for the interpretation of experiments 

using leaves or litter produced under artificial conditions. 

 

Litter chemical composition changed after 28 days of stream exposure, including 

increased quality of all litters (i.e. C/N ratio decreased), supporting Hypothesis 1b. 

The reduction in phosphorus concentration is likely to reflect its high solubility, 

resulting in rapid loss from leaf litter during the leaching phase (Abelho 2001). 

Increased nitrogen concentration has been observed previously for Alnus glutinosa 

(L.) Gaertn., Castanea sativa Mill. and Quercus faginea Lam. decomposing in a low-

order Portuguese stream (Canhoto & Graça 1996). One possibility is that this reflects 

increased fungal biomass during the conditioning phase (Abelho 2001; Krauss et al. 

2011), resulting in incorporation of fungal tissues into the chemical analyses. 

Incorporation of nitrogen from fungal biomass could be expected to be lower in 

acidified streams, given evidence of fungal preference for circumneutral streams (Hall 

et al. 1980; Griffith & Perry 1994), but stream pH had little effect on litter chemical 

composition, providing no support for Hypothesis 1c. 
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Litter mass loss appeared to be linked to litter nutritional quality: urban litter was of 

higher quality than rural litter, and had significantly lower mass at every time point 

(supporting Hypothesis 2a). Conversely, there was little to separate mass loss between 

ambient- and elevated-CO2 litters, despite the higher quality of ambient-CO2 material. 

Despite this, ambient-CO2 litter lost significantly more mass than elevated-CO2 litter 

after 14 days.  

 

Table 5.3. Litter-associated taxa accounting for the greatest difference between pairs of time 

periods (days) and stream pH following SIMPER analysis, measured as the percentage 

contribution (%) of each taxon to the overall dissimilarity between contrasts (A vs B). 

Contrast   Abundance (mean ± 1 SEM) 

A B Taxon % A B 

Ex situ (ambient- and elevated-CO2) litters 

14 56 1. Leuctra inermis 18 2.33 ± 0.8 0.55 ± 0.55 

  2. Chironomidae 15 0.92 ± 0.4 1.55 ± 0.55 

  3. L. hippopus 14 2.17 ± 0.99 0.09 ± 0.09 

14 112 1. L. inermis 19 2.33 ± 0.8 0.08 ± 0.08 

  2. Chironomidae 16 0.92 ± 0.4 0.92 ± 0.5 

  3. L. hippopus 15 2.17 ± 0.99 0 

In situ (rural and urban) litters 

14 112 1. L. inermis 16 3.17 ± 0.83 0.08 ± 0.08 

  2. Chironomidae 14 0.67 ± 0.22 1.75 ± 0.78 

  3. Oligochaeta 14 0 0.83 ± 0.37 

28 112 1. L. hippopus 13 3.08 ± 1.25 0.25 ± 0.25 

  2. Oligochaeta 12 0.83 ± 0.83 0.83 ± 0.37 

  3. Chironomidae 10 1.67 ± 0.41 1.75 ± 0.78 

56 112 1. Oligochaeta 17 0.1 ± 0.1 0.83 ± 0.37 

  2. L. inermis 16 3.1 ± 1.4 0.08 ± 0.08 

  3. Chironomidae 16 3.6 ± 1.44 1.75 ± 0.78 

Circumneutral Acid 1. L. inermis 14 4 ± 0.97 1.18 ± 0.54 

  2. Chironomidae 12 1.38 ± 0.42 2.36 ± 0.72 

  3. L. hippopus 11 2.21 ± 0.83 0.86 ± 0.42 
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 This is similar to the findings of Rier et al. (2002) and Tuchman et al. (2003b). These 

studies showed that Populus tremuloides Michx. decay rates were slower for 

elevated-CO2 litter after 30 days of stream exposure, with no differences after 60, 90 

and 120 days. This suggests that the effects of initial chemical quality on litter decay 

may occur over the early stages of decay in some cases. 

 

Table 5.4. Algal fluorescence parameters (rETRmax, maximum relative electron transport rate; 

α, maximum light use coefficient; Ek, light saturation coefficient) recorded from leaf litter and 

litter bag surfaces. 

Days Source Stream pH Growth condition rETRmax α Ek 

14 Litter Acid Elevated CO2 54.42 0.279 224.84 

   Rural 66.78 0.3 224.84 

 Litter Circumneutral Rural 44.92 0.21 214.39 

 Bag Circumneutral Rural 39.44 0.265 148.7 

28 Litter Acid Ambient CO2 34.06 0.016 92.56 

 Litter Circumneutral Rural 28.1 0.166 169.55 

56 Litter Acid Rural 43.37 0.273 158.62 

   Urban 25.06 0.215 116.67 

 Litter Circumneutral Rural 70.31 0.253 278.32 

   Urban 61.6 0.251 278.32 

 Bag Circumneutral Elevated CO2 44.28 0.38 116.55 

 

Along with litter quality, leaf mass was affected by stream pH, with lower AFDM in 

the circumneutral stream (supporting Hypothesis 2b), though the effect was small and 

only occurred for ambient- and elevated-CO2 litters. This supports prior work 

showing reduced mass loss in acidified streams (Griffith & Perry 1994; Merrix, Lewis 

& Ormerod 2006), including at Llyn Brianne (Pye, Vaughan & Ormerod 2012), but 

the effect was much weaker than in studies such as Dangles et al. (2004), which 

showed that breakdown was over 20 times slower under acid conditions.  

 

Decay proceeded at a comparable rate to other Betula species, although there are few 

studies of this genus and large variation between available data. For example, the 

decay rate (k) of B. pubescens ranged from 0.0085 to 0.0331 day-1 across several 

Scottish streams (Collen, Keay & Morrison 2004); B. lenta decayed at 0.004 to 0.01 
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day-1 in North Carolina, USA (Meyer & Johnson 1983); and B. pubescens at 0.0033 

day-1 in Central Spain (Escudero et al. 1991). The clearest discrepancy in the current 

study was between greenhouse-produced (ambient and elevated CO2) litters and 

outdoor-grown (rural and urban) litters. The former was categorised as ‘fast’ decay 

according to Petersen and Cummins (1974), and the latter as ‘medium’ or ‘slow’. This 

appears to be linked to litter chemical composition, as high quality ambient- and 

elevated-CO2 litters broke down faster than lower-quality urban litter, which in turn 

broke down faster than the lowest quality litter from the rural growth condition. In 

general, decay coefficients were typical of deciduous litter (Abelho 2001). 

 

Invertebrate abundance and richness generally decreased from the early to late stages 

of the experiment, while community dissimilarity tended to be greatest between the 

early and latter stages of the experiment (supporting Hypothesis 3b). This is likely to 

be a result of reduced substrate availability: litters with greater AFDM tended to 

support a higher abundance and richness of invertebrates. The switch from coarse to 

fine particulate organic matter within the bags was reflected in a switch from 

shredding species (e.g. Leuctra species) to those that consume detritus that has 

become more sediment-like (e.g. Oligochaeta). There was little effect of growth 

condition on any measure of invertebrate assemblages, providing poor support for 

Hypothesis 3a. This is surprising, given that shredders are sensitive to litter quality 

(Irons, Oswood & Bryant 1988; Graça, Cressa & Gessner 2001; Tuchman et al. 2002, 

2003a) and might be expected to have greater abundance on higher quality litters in 

this experiment.  

 

For rural and urban litters, invertebrate communities were more affected by stream 

acidity than litter growth condition. This agrees with prior work showing that 

acidification causes impoverished invertebrate communities (Mackay & Kersey 1985; 

Simpson, Bode & Colquhoun 1985; Sutcliffe & Hildrew 1989), supporting 

Hypothesis 3c. This reinforces prior findings from Llyn Brianne showing that, despite 

some recovery, acidified streams still deter sensitive species (Ormerod & Durance 

2009). Shredders appeared to be particularly affected by acidity. For example, acid-

sensitive chironomids (Orendt 1999), and the putative shredders L. inermis Kempny 

and L. hippopus Kempny were less abundant in the acidified stream. Shredder 

reduction has been observed in acidified streams before (Dangles 2002), but not in 
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every instance (Dangles et al. 2004). One mechanism for reduced shredder abundance 

is that stream acidity reduces fungal biomass on litter (Griffith & Perry 1994), 

lowering palatability to invertebrates (Bärlocher 1985; Graça, Cressa & Gessner 

2001). This may, in turn, explain the reduced decay rate of litter observed in the 

acidified stream, a pattern found in the breakdown of other deciduous species 

(Griffith & Perry 1994; Dangles et al. 2004; Merrix, Lewis & Ormerod 2006). 

Invertebrates may also be physically intolerant of acidified conditions, while reduced 

litter availability in acidified streams may also be responsible for impoverished 

communities (Rosemond et al. 1992). 

 

Little biofilm activity was recorded on leaf material in any combination of time period, 

growth condition and stream pH; there was therefore no evidence to support 

Hypothesis 4. Light penetration may have been limited by the mesh material and by 

tight packing of litter, limiting photosynthetic activity within the bags. While the 

potential for algal colonisation of leaf litter was established, no effect of algal-assisted 

decomposition could be observed. The effect of biofilm development on leaf litter has 

been shown to influence breakdown rates (Rier, Kuehn & Francoeur 2007; Danger et 

al. 2013), but the question of how multiple stressors affect algal colonisation of leaf 

litter – and its subsequent decomposition – remains unresolved.  

 

This study further confirms that atmospheric growth conditions can affect litter 

quality and breakdown, and that acidity remains a persistent problem for ecosystem 

functioning in headwater streams. Detritus is an important component of most 

ecosystems (Moore et al. 2004) and is particularly important in stream habitats 

(Wallace et al. 1999). Changes to mass loss as a result of altered chemistry and 

exposure to acid stream conditions could affect standing stocks of litter, which are an 

important carbon store (Meyer, Wallace & Eggert 1998). Leaching rates appear to be 

correlated with nutrient concentrations (Gosz, Likens & Bormann 1973), so litter 

chemistry change, as a result of altered growth conditions, could result in changes to 

the release and transport of nutrients downstream. This could disrupt food web 

structure and functioning, change invertebrate trophic composition (Wallace et al. 

1997), and alter food availability to top predators, such as fish (Wallace & Webster 

1996) and birds (Steinmetz, Kohler & Soluk 2003). 
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The experimental results indicated that litter chemical composition was affected by 

growth condition, but this did not necessarily result in major differences in mass loss 

or invertebrate assemblages, nor was there a consistent effect of stream pH across the 

litter types. This variability highlights the need for further work to understand better 

how tree litter decay will respond to ongoing environmental changes. For example, 

future studies could involve the use of stressor gradients and additional tree species to 

help elucidate general mechanisms and to predict the response of litter decay to the 

interactive effect of atmospheric change and stream acidification. It is, however, clear 

that changes to litter chemical composition and stream acidity are important factors to 

consider when evaluating the future of freshwater functioning, particularly with 

respect to decomposition and associated faunal activity. 
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6. Effects of elevated CO2 on twig chemical composition and 

subsequent decay in terrestrial and acidified aquatic 

environments 

 

6.1 Abstract 

 

Small woody debris (SWD) is an important but overlooked resource in temperate 

deciduous woodlands and adjacent streams. Its breakdown results in the gradual 

release of stored carbon and nutrients to the environment, helping to support food 

webs and nutrient cycling. Global change processes threaten this function. For 

example, the decay of SWD is related to its chemical composition, but little is known 

about how this linkage might be affected by ongoing increases in atmospheric CO2 

and stream acidification. To investigate these effects, twigs of Betula pendula were 

produced under ambient and elevated CO2, before exposure to a woodland floor or 

forested headwater streams of acidic and circumneutral pH. Regardless of habitat, 

initial lignin concentrations were higher in elevated-CO2 twigs, implying lower 

nutritional quality, while carbon concentrations also increased through time. In the 

aquatic study, nitrogen concentration increased through time in the circumneutral 

stream, but not the acidified stream, while the C/N ratio decreased through time. The 

proportion of twig mass remaining at the end of each experiment was lower for 

elevated-CO2 twigs in both the aquatic and the terrestrial environments, despite the 

perceived lower quality of this material. Breakdown rates differed between habitats, 

as exponential decay constants were lower in the terrestrial (k = 0.05–0.091 year-1) 

than the aquatic (k = 0.216–0.277 year-1) experiment, which may result from greater 

physical abrasion in the stream environment. These results indicate that the stressors 

of elevated CO2 and stream pH can affect nutrient and breakdown dynamics of SWD. 

This could cause increased retention of SWD in these environments, enhancing its 

role as a carbon and nutrient store, but resulting in slowed release of these resources 

to terrestrial and aquatic organisms. 
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6.2 Introduction 

 

The majority of primary productivity in temperate deciduous forests is allocated to 

wood production (Luyssaert et al. 2007), and approximately one quarter of this 

material is dead at any given moment (Thomas & Packham 2007). Studies of dead 

wood have tended to focus on large woody debris (e.g. logs and branches) rather than 

Small Woody Debris (SWD), which is generally defined as sticks and twigs with a 

diameter of 10 cm or less (Harmon et al. 1986; Kirby et al. 1998; Dearden et al. 2006; 

Thomas & Packham 2007). Despite this, SWD can be ubiquitous (Harmon et al. 

1986; Dearden et al. 2006): for example, approximately 20% of the litter generated in 

temperate deciduous woodlands is SWD (Gosz, Likens & Bormann 1972), and it 

composes approximately 60% of the coarse matter standing crop of adjacent streams 

(Abelho & Graça 1998). Studies of SWD decomposition dynamics have largely been 

restricted to commercially modified substitutes, such as tongue depressors (Arroita et 

al. 2012), veneers (Hofer & Richardson 2007) or chips (Melillo et al. 1983), which 

can have different sizes, shapes, and area-to-volume relationships compared to natural 

material (Spänhoff & Gessner 2004). More work is required therefore to unravel the 

breakdown of natural SWD in woodland ecosystems. 

 

Woody litter is an important resource in woodlands, delivering a range of services to 

both terrestrial and aquatic environments. For example, it provides habitat for primary 

producers and invertebrates, such as mosses, algae, woodlice and caddis flies 

(Harmon et al. 1986; Eggert & Wallace 2007; Hofer & Richardson 2007). Microbes 

and xylophagous invertebrates can also take advantage of woody debris as a nutrient 

source (Anderson et al. 1978; Tedersoo et al. 2003; Berg & McClaugherty 2008). Its 

sporadic appearance in time and space (Kirby et al. 1998; Berg & McClaugherty 

2008) makes woody litter a useful supplementary nutrient source for decomposers 

outside of peak leaf-litter fall in autumn (Gosz, Likens & Bormann 1972; Abelho & 

Graça 1998). Furthermore, woody ‘jams’ can promote pool formation in streams, 

contributing to habitat heterogeneity and limiting losses of organic matter 

downstream (Bilby & Likens 1980; Bilby 1981). Given its importance to woodland 

ecosystems, it is crucial to understand how SWD’s role as a resource and habitat 
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modifier might be affected by environmental changes and subsequent alterations to 

woody traits. 

 

The chemical composition of woody litter influences its breakdown. For example, a 

global meta-analysis of angiosperm wood decay by Weedon et al. (2009) found that 

higher nitrogen concentrations and lower C/N ratios correlate with faster decay. 

Ongoing changes to atmospheric gases can influence litter chemistry and could 

therefore alter breakdown. Carbon dioxide (CO2) is of particular note, as it has been 

steadily increasing in concentration following the advent of industrialisation (IPCC 

2013). The effect of elevated CO2 on woody litter chemical composition is unclear, 

however, having been shown to increase (El Kohen, Rouhier & Mousseau 1992), 

decrease (Cotrufo & Ineson 2000) or have no effect (Williams et al. 1986) on nitrogen 

concentrations. Similarly, elevated CO2 can either increase (Richet et al. 2012) or 

decrease (Cotrufo & Ineson 2000) lignin concentrations. Furthermore, chemical 

changes as a result of elevated CO2 do not necessarily result in changes to mass loss 

and nutrient dynamics through time (Cotrufo & Ineson 2000). Further work is 

required to link atmospheric composition with litter chemical composition and mass 

loss, which will help untangle the relationship between global change and the 

essential ecosystem process of litter decomposition. 

 

Freshwater acidification is another stressor frequently linked with global change that 

could affect wood decay. Pollutants dissolved in rainwater – particularly sulphur and 

nitrogen oxides – have reduced runoff pH, acidifying headwater streams in Europe 

and North America. Chronic or episodic acidity is still a threat to stream habitats 

despite some signs of recovery (Kowalik et al. 2007; Ormerod & Durance 2009). 

Acidity can affect the breakdown of organic material: leaf litter was shown to 

decompose up to 20 times slower in acid than in circumneutral streams (Dangles et al. 

2004), an effect partially due to reduced decomposer activity (Dangles & Guérold 

1998, 2001; Krauss et al. 2011; Pye, Vaughan & Ormerod 2012). It is important to 

understand how acidification might affect the process of woody decomposition and 

whether the effects are altered by the changing composition of the atmosphere. 

 

The aim of this study was to compare the chemical composition and breakdown of 

woody debris – produced under ambient and elevated CO2 – on a woodland floor, and 
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in headwater streams of contrasting pH. The following hypotheses were tested: (1) 

elevated CO2 will alter twig chemical composition, resulting in lower quality 

compared to ambient-CO2 twigs (i.e. the C/N ratio and lignin concentration will be 

reduced), (2) the proportion of twig mass remaining at the end of each experiment 

will be lower for ambient-CO2 twigs as a result of higher quality, and (3) twigs 

exposed to acid streams will decompose more slowly than in circumneutral streams. 

 

6.3 Materials and Methods 

 

6.3.1 Twig litter production 

 

The trees used in this study were the same as those used for the studies reported in 

Chapters 4 and 5. Two batches of 100 Betula pendula Roth (silver birch) trees were 

grown over separate seven-month growing periods (March–October 2011 and 2012) 

in a growth facility at Cardiff University, UK (see Section 4.3.2 for details). Trees 

were all a year-old and measured up to 60 cm in height (2011, Carmarthenshire Tree 

Nursery, Carmarthen, UK; 2012, Chew Valley Trees, Bristol, UK), and were potted 

(diameter 13 cm, depth 11 cm) in John Innes Potting Compost Number 2. Half of the 

saplings were produced under ambient CO2 concentrations (2011, 407 ± 4 ppm; 2012, 

404 ± 1 ppm) and half under elevated CO2 concentrations (2011, 956 ± 16 ppm; 2012, 

857 ± 8 ppm). At the end of the growing season, aboveground woody material was 

harvested, cut into ‘twigs’ (10 cm long; 3–6 mm diameter), oven-dried (50°C for 48 

hrs), and stored prior to experimental use. Twigs produced in 2011 were used in the 

aquatic study and those from 2012 were used in the terrestrial study. 

 

6.3.2 Study area 

 

Terrestrial decomposition of twigs took place at Nantrhydifor, Carmarthenshire, UK 

(52°05’52” N, 3°48’57” W), a temperate deciduous broadleaf forest classed as W17b 

woodland (National Vegetation Classification; Hall et al. 2004). Sessile oak 

Quercus ,patraea (Matt.) Liebl., is the dominant species, with intermittent downy 

birch, Betula pubescens Ehrh., and the fern Dryopteris dilatata (Hoffm.) A. Gray. The 
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underlying bedrock is Silurian shale and the soil below the litter layer is acidic, and 

comprises of clayey to silty loam. Mean rainfall is 166 mm month-1 (1990–2000) with 

a mean temperature of 5.1°C (1984–2000) during the months of study (November–

April) at Gwenffrwd-Dinas, <3.5 km from Nantrhydifor (pers. comm. D. Anning, 

Royal Society for the Protection of Birds). 

 

Aquatic decomposition of twigs took place in six streams at Llyn Brianne, mid-Wales, 

UK (52°08’ N, 3°45’ W). This location is home to one of the longest running 

investigations into freshwater acid deposition (see Durance & Ormerod 2007; 

Ormerod & Durance 2009). Three circumneutral streams were used (pH > 6.9; G2, 

52°06’09” N, 3°51’20” W; L6, 52°07’57” N, 3°43’18” W; and L7 52°07’41” N, 

3°43’40” W), along with three acidic streams (pH 4.9–5.4; L1, 52°09’48” N, 3°44’32” 

W; L3, 52°08’31” N, 3°44’00” W; and L8, 52°07’29.61” N, 3°44’48” W). 

 

6.3.3 Litter bag construction 

 

Two randomly-selected twigs from the same year (2011 or 2012) and same CO2 

treatment (ambient or elevated CO2) were inserted into 15 × 5 cm mesh bags (1 × 1 

mm aperture), along with an embossed plastic identification label. One twig per bag 

was weighed (± 0.01 g) and marked by tying a short piece of fishing line around it. 

This was used to determine dry-mass loss over the course of the experiment. The 

remaining twig was used for chemical analyses.  

 

For the terrestrial decomposition experiment, 24 twig bags of each CO2 treatment 

were constructed. One bag of each CO2 treatment was attached 20 cm apart along 

nylon threads (0.25 mm diameter, 3.5 kg tensile strength; Maxima Fishing Lines, 

Germany), tied to 0.5 m steel rods (as for Chapter 4) and placed on the surface of the 

litter layer The experiment ran from 02 November 2012 to 01 May 2013 (182 days). 

 

For the aquatic experiment, 48 twig bags of each CO2 treatment were constructed. 

Four twig bags – two of each CO2 treatment – were attached to metal cages (32.5 × 

10.5 × 8.5 cm, aperture 2 × 2 cm) with plastic cable ties. Four of these cages were 

submerged and secured with 0.5 m steel rods along 10 m reaches in each of the six 
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study streams. Bag positions were randomised within each cage. The experiment ran 

from 8 August 2012 to 01 May 2013 (268 days).  

 

6.3.4 Chemical analyses 

 

Along with the experimental twigs dedicated for chemical analysis, three twigs of 

each CO2 treatment were set aside for assessment of initial chemical values, and 

stored at –80 °C until the end of the experimental period. At this time, all twig 

samples were individually immersed in liquid nitrogen and ground coarsely using a 

pestle and mortar. Fine powder was then produced by ball-milling the samples (120 s 

at 50 beats s-1 in a Pulverisette 23 ball mill, Fritsch GmbH, Idar-Oberstein, Germany). 

The percentage dry mass (% DM) of carbon and nitrogen were determined 

simultaneously by flash combustion and chromatographic separation of 

approximately 1.5 mg of twig powder, calibrated against a standard (C26H26N2O2S) 

using an elemental analyser (Elemental Combustion System 4010 CHNS-O Analyzer, 

Costech Analytical Technologies, Inc., Milan, Italy). Lignin content was expressed as 

the percentage of acetyl-bromide-soluble lignin in the Dry Cell Walls (% DCW) of 

each twig, following the acetyl bromide spectrophotometric method of Foster et al. 

(2010). C/N and lignin/N ratios were calculated. 

 

6.3.5 Mass loss 

 

All twigs allocated for mass loss analysis were rinsed with deionised water before 

being dried (50°C for 48 hrs) and weighed (± 0.01 g). The proportion of mass 

remaining was calculated as 1–[(Mt–M0)/M0] and the decay rate constant (k) per year 

was calculated using the exponential decay model (Petersen & Cummins 1974), 365(–

ln(Mt/M0)/t), where M0 is the initial mass (g) and Mt is the mass (g) at time t (days). 

The biological half-life (t1/2; time to 50% mass loss) was calculated as ln(2)/k. 
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6.3.6 Data analysis 

 

All analyses were undertaken using R version 3.0.1 (R Development Core Team 

2013). All models were checked graphically for normality and homogeneity of 

variance (Crawley 2007) and were minimised following a stepwise deletion procedure 

of non-significant terms (P < 0.05) to obtain a minimum adequate model. Planned 

comparisons of least-square means (LSM; lsmeans function, lsmeans package, Lenth 

2013) were performed between the levels of each significant term remaining in the 

models. 

 

In the terrestrial experiment, separate linear models were fitted for the response 

variables of carbon, nitrogen and lignin concentrations, and C/N ratio, with 

atmospheric treatment, days of exposure, and their interaction as explanatory 

variables. In the aquatic experiment, separate general linear mixed effects models 

(GLMM; lme function, nlme package, Pinheiro et al. 2013) were fitted for carbon and 

nitrogen concentrations, and C/N ratio, with fixed main and interactive effects of 

atmospheric treatment, days of exposure and stream pH, and a random effect of 

stream identity. Initial lignin concentrations were compared using a two-tailed t-test, 

and lignin concentrations after 268 days were compared using a GLMM with 

atmospheric treatment and stream pH as fixed interactive effects, and stream identity 

as a random effect. 

 

The proportion of mass lost in the terrestrial experiment was analysed using a GLMM 

with atmospheric treatment as a fixed effect and rod number nested within block as 

the random effect structure. A GLMM was also fitted to the proportion of mass lost in 

the aquatic experiment, using atmospheric treatment and stream pH as fixed 

interactive effects and cage identity nested within stream identity as the random effect 

structure. 
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6.4 Results 

 

6.4.1 Chemical composition 

 

In the terrestrial study, the initial carbon concentration of twigs increased after 182 

days of exposure (F1,10 = 9.72, P = 0.011; Fig. 6.1a). The lignin concentration of 

elevated-CO2 twigs was 15% higher than ambient-CO2 twigs (F1,8 = 12.81, P = 0.007; 

Fig. 6.1b), but this effect was diminished through time (F1,8 = 12.38, P = 0.008; Fig. 

6.1b): elevated-CO2 twigs had a higher initial lignin concentration than ambient-CO2 

twigs (LSM = 4.3%, P = 0.005; Fig. 6.1b), but no other pair of atmospheric 

treatments and time periods differed in lignin concentration (P > 0.05). In the aquatic 

study, the initial lignin concentration of elevated-CO2 twigs was 65% higher than 

ambient-CO2 twigs (t4 = 2.94, P = 0.042; Fig. 6.2d). Twig carbon (F1,65 = 50.39, P < 

0.001; Fig. 6.2a) and nitrogen (F1,63 = 4.31, P = 0.042; Fig. 6.2b) concentrations were 

higher after 268 days of exposure compared to initial values, and the C/N ratio was 

lower (F1,65 = 7.18, P = 0.009; Fig. 6.2c).  

 

6.4.2 Mass loss 

 

Decay rates (k) were 0.05–0.091 year-1 in the terrestrial study and 0.194–0.277 year-1 

in the aquatic study, resulting in biological half-lives of approximately 8–14 and 3 

years, respectively (Table 6.1). Ambient-CO2 twigs had a greater proportion of mass 

remaining after 182 days of decomposition on the forest floor compared to elevated-

CO2 twigs (F1,23 = 28.13, P < 0.001; Fig. 6.3b). The proportion of mass remaining 

after 268 days of stream exposure was also higher for ambient-CO2 compared to 

elevated-CO2 twigs (F1,65 = 18.65, P < 0.001; Fig. 6.3a), with no effect of stream pH 

(F1,4 = 4.71, P = 0.096). 
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Fig. 6.1. Effect of CO2 treatment on twig chemical composition following exposure to a 

temperate deciduous forest floor. Plots show the responses of (a) carbon, (b) nitrogen, and (c) 

lignin concentrations, and (d) the C/N ratio (DM = Dry Mass, DCW = Dry Cell Wall). An 

asterisk indicates a significant difference (P < 0.05) between time periods within a CO2 

treatment. 
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Fig. 6.2. The effect of CO2 concentration on chemical composition of twig litter exposed to 

streams of differing pH. Plots show the responses of (a) carbon, (b) nitrogen, and (c) lignin 

concentrations, and (d) the C/N ratio (DM = Dry Mass, DCW = Dry Cell Wall). 
 

6.5 Discussion 

 

Woody litter is an important carbon and nutrient store in woodlands and adjacent 

streams, and provides a resource for many organisms. These roles could be disrupted 

via altered chemical composition and decay caused by atmospheric change and 

acidification. This study showed that elevated CO2 increased lignin concentration, 

that stream pH influenced the change in nitrogen concentration through time, and that 

mass loss was greater in elevated-CO2 small woody debris (SWD). These findings 

suggest that the process of SWD breakdown could be affected by changing 
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atmospheric composition, and that local habitat conditions could also result in 

changes to nutrient dynamics. 

 

Table 6.1. Breakdown characteristics of experimental twig litter, including the exponential 

decay constant (k) and time to 50% mass loss (t1/2). 

Habitat Factors Levels k (year-1) t1/2 (years) 

Terrestrial CO2 Ambient 0.050 13.81 

  Elevated 0.091 7.66 

Aquatic CO2 Ambient 0.216 3.21 

  Elevated 0.277 2.5 

 pH Acid 0.227 3.05 

  Circumneutral 0.260 2.66 

 pH × CO2 Acid × Ambient 0.194 3.56 

  Acid × Elevated 0.265 2.62 

  Circumneutral × Ambient 0.234 2.96 

  Circumneutral × Elevated 0.286 2.42 

 

Atmospheric CO2 treatment altered twig nutritional quality by increasing lignin 

concentrations, providing some support for Hypothesis 1. Initial lignin concentration 

was greater in elevated- than ambient-CO2 twigs, although values were above the 

normal range for woody stems (16–32%; Chave et al. 2009). Increased lignin 

concentration is typical for woody plants, according to a meta-analysis by Norby et al. 

(2001), although Cotrufo and Ineson (2000) found a 12% drop in the lignin 

concentration of Fagus sylvatica L. twigs. The extra lignification of elevated-CO2 

twigs could have been related to carbon availability – as it was in in a study by Richet 

et al. (2012) – although carbon concentrations were unaffected in the current 

experiment. The difference in initial lignin concentration between ambient- and 

elevated-CO2 twigs was lost by the end of both experiments, unlike a study by Díez et 

al. (2002), which found that the disparity remained for Q. robur L., Alnus glutinosa 

(L.) Gaertn. and Pinus radiata D. Don branches after three years of stream exposure. 

Conversely to lignin, carbon and nitrogen concentrations were unaffected by CO2 

treatment in the current study. Similarly, the woody carbon concentration of Populus 

tremuloides Michx. and B. papyrifera Marshall was unaffected by CO2 treatment 

(Kostiainen et al. 2008), as was nitrogen in a study of six deciduous species (Williams 
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et al. 1986), although nitrogen concentration was reduced in the stems of Castanea 

sativa Mill. seedlings (El Kohen, Rouhier & Mousseau 1992). Effects may not have 

been observed due to the limited duration of the experiments. For example, twigs may 

have been expected to gain nitrogen due to incorporation of microbial tissues into the 

chemical analyses (Dangles et al. 2004; Krauss et al. 2011), but there may have been 

insufficient time for differences in colonisation to emerge.  

 

 
Fig. 6.3. Effect of CO2 treatment on mass loss of twigs exposed to (a) a temperate deciduous 

woodland floor for 182 days and (b) to headwater stream environments of contrasting pH for 

268 days. 
 

The proportion of mass remaining was greater in ambient- than elevated-CO2 twigs, 

which was the opposite result to that predicted by Hypothesis 2. This is unusual, as a 

greater lignin concentration tends to result in slower decay of organic material 

(Freschet, Aerts & Cornelissen 2012). For example, a study of wood-chips in large 

streams found that higher lignin concentrations reduced the breakdown rate, while 

high lignin/N ratios slowed decay in low order streams (Melillo et al. 1983). Despite 

this, CO2-induced chemical changes do not always result in altered decomposition 

rates; the study by Cotrufo and Ineson (2000) found that the nitrogen and lignin 

content of F. sylvatica twigs was reduced under elevated CO2, but mass loss on a 

woodland floor was unaffected. In contrast to the effect of CO2 treatment on mass loss, 

stream acidity had no effect and provided no support for Hypothesis 3. Organic 

material has, however, been shown to break down slowly in acidified streams: F. 
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sylvatica leaves, for example, broke down as much as 20 times slower in acidified 

than in circumneutral streams (Dangles et al. 2004). It is possible that the effects of 

stream acidification may not take effect until beyond the end of the current study, 

when only approximately 17% of mass had been lost.  

 

Decay rates in the terrestrial study were comparable to coniferous twig decay rates (k) 

of 0.055–0.062 year-1 in Colorado, USA (Taylor et al. 1991), but lower than rates of 

0.14–0.24 year-1 in Washington, USA (Edmonds 1987), suggesting that inter-site 

differences may be more important in influencing breakdown than CO2 treatment. 

Aquatic decay rates (k) were within the typical range of 0.02 to 0.45 year-1 for woody 

debris, as reviewed by Spänhoff and Meyer (2004). Notably, twigs in the current 

study broke down faster than SWD with low surface-area-to-volume ratios, 

supporting Spänhoff and Meyer’s (2004) assertion that greater surface-area-to-volume 

ratios equates to faster decay. Aquatic decay rates were an order of magnitude faster 

than for terrestrial decomposition, regardless of CO2 treatment; this may be a result of 

increased abrasion and leaching in stream environments (Treplin & Zimmer 2012). 

Slower decay of twigs in both aquatic and terrestrial ecosystems under elevated 

atmospheric CO2 could increase residence time of SWD in forests and streams. This 

could result in extended substrate and nutrient availability to wood-associated biota 

(Anderson et al. 1978; Harmon et al. 1986; Tedersoo et al. 2003; Berg & 

McClaugherty 2008) and may increase the role of SWD in habitat modification 

(Harmon et al. 1986; Flores et al. 2011; Xu, Liu & Sayer 2013) and nutrient retention 

(Bilby & Likens 1980; Bilby 1981, 1984; Webster & Tank 2000; Xu, Liu & Sayer 

2013). 

 

This study has shown that elevated CO2 and stream acidification can influence 

concentrations of lignin and nitrogen in SWD, while mass loss appears to be linked to 

CO2 treatment alone. Such effects must be considered alongside other factors 

implicated in woody decomposition, including tree species (Díez et al. 2002; 

Spänhoff & Meyer 2004), water chemistry (Gulis et al. 2004), and stream order 

(Melillo et al. 1983), as well as other global change factors, such as increased 

anthropogenic activity (Aristi et al. 2012). Research in this area is crucial, as the 

process of SWD decomposition is important to the storage and cycling of carbon and 

nutrients, and the organisms that use this material as a resource. As such, alterations 
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to woody debris functioning could result in unpredictable consequences for ecological 

interactions in both terrestrial and aquatic woodland environments. 
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7. General discussion 
 

7.1 Synthesis 

 

7.1.1 Overview 

 

Studies in this thesis fulfilled the aims to investigate (i) the effects of elevated CO2 

and urban pollution on the chemistry of both leaf (Chapters 3, 4 and 5) and woody 

(Chapter 6) litter, (ii) the responses of terrestrial and aquatic invertebrate detritivores 

to CO2-treated leaf litters (Chapter 3), and (iii) the decomposition of these litters in 

terrestrial (Chapters 4 and 6) and aquatic woodland environments (Chapters 5 and 6). 

An attempt has been made to fill wider knowledge gaps as identified by the literature 

review (Chapter 2). This includes a greater understanding of (i) the effects of rural 

and urban locations on litter chemistry and subsequent decomposition (Chapters 4 and 

5), (ii) effects of acidification in combination with effects of atmospheric pollution on 

litter chemical composition and decomposition (Chapters 5 and 6), (iii) a more 

comprehensive study of invertebrate feeding responses to litter with chemical 

composition altered by elevated CO2 (Chapter 3), and (iv) the effect of elevated CO2 

on the chemical composition and decomposition of small woody debris in terrestrial 

and aquatic habitats (Chapter 6). Although complex, the findings expand on our 

current understanding of multiple environmental stressors on litter chemical 

composition and the key ecosystem function of decomposition. 

 

7.1.2 Chemical composition and dynamics 

 

Changes to litter chemical composition were recorded in each experiment, but the 

direction of these responses was not consistent. For example, urban litter was of 

higher quality (i.e. lower C/N) than rural litter in Chapter 4, but the opposite was true 

of Chapter 5 (Table 7.1). CO2 enrichment generally reduced quality – as found in a 

meta-analysis by Norby et al. (2001)  – but this was not true of Alnus glutinosa (L.) 

Gaertn. leaf litter or Betula pendula Roth twig litter. This suggests that both inter- and 
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intra-species-specific effects may be more important in defining litter chemical 

composition than atmospheric CO2. While differences in chemical composition 

occurred, the response of each chemical variable was not always consistent between 

experiments. For example, the carbon concentration of rural litter was higher than 

urban litter in the terrestrial leaf decomposition study (Chapter 4), but there was no 

difference in the aquatic leaf decomposition study (Chapter 5). Urban litter in these 

two chapters was sourced from separate locations (Cardiff and London), implying that 

inter-site differences could be responsible (e.g. different pollution levels, climate, etc.). 

As a further example, litter nitrogen concentration was higher in ambient- than 

elevated-CO2 leaf litter in the leaf decomposition studies (Chapters 4 and 5), but the 

opposite was true of twig material (Chapter 6). This suggests that the chemical 

composition of litter from different plant tissues is affected differentially by tree 

growth conditions. Unlike the effects of growth condition, changes to chemical 

composition through time were relatively consistent across experiments: nitrogen 

concentration increased, and C/N ratio and phosphorus concentration decreased 

(Table 7.1). Overall, this work shows that ongoing CO2 enrichment and urban 

pollution can alter the nutritional quality of leaf litter and Small Woody Debris 

(SWD).  

 

7.1.3 Mass loss 

 

Litter mass was lost through time in all experiments, but different experimental 

conditions varied in their effects on this process. For leaf material, there was little 

difference in the Ash-Free Dry Mass (AFDM) of ambient- and elevated-CO2 litters 

through time, whereas urban litters lost mass faster than rural litters (Table 7.2). 

Chemical composition appeared to be related to differences in breakdown, as found 

previously in both terrestrial (Freschet, Aerts & Cornelissen 2012) and aquatic 

(Ostrofsky 1997) systems. This was, however, not true of leaf litter in the aquatic 

experiment (Chapter 5), as differences in chemical composition did not result appear 

to affect mass loss. For twig litter, CO2 enrichment altered chemical composition by 

increasing lignin concentration and resulted in faster breakdown. This was unexpected, 

as higher lignin concentrations generally indicate greater resistance to breakdown 

(Melillo et al. 1983; Cornwell et al. 2008; Freschet, Aerts & Cornelissen 2012). 
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Results for twig litters must, however, be interpreted with caution given the short 

nature of the study. It is perhaps surprising that an effect of CO2 treatment was 

actually found for twigs, given that so much mass remained (96–97% in the aquatic 

study and 81–86% in the terrestrial study). This study did show that, at least in the 

short-term, CO2-enriched twig litter breaks down faster than ambient-CO2 twigs. 

These results indicate that differences in growth condition can result in changes to 

mass loss, and that the relationship between litter chemistry and breakdown is highly 

variable. 

 

Table 7.1. Summary of changes to litter chemical composition in response to growth 

condition (GC), conditioning type (CT), stream pH (pH) and time period (T, days). All litter 

was composed of Betula pendula, or Alnus glutinosa where marked with †. Litter was 

composed of leaves (Chapters 3–5) and twigs (Chapter 6). Litters produced in the Controlled 

Environment Facility (CEF) and Free-Air Carbon Enrichment facility (FACE) were 

composed of ambient- and elevated-CO2 material; litters produced in situ were composed of 

rural and urban material. For chapter 6 results, superscripts indicate the experiment location 

(Te = terrestrial, Aq = aquatic). Asterisks indicate the level of significance (*P < 0.05, **P < 

0.01, ***P < 0.001). Non-significant responses are excluded for brevity. Where a factor has 

more than two levels, planned contrasts took place (marked with asterisks where significant). 

Chemical Factors Sig. Direction of difference Origin Chapter 

Carbon GC *** Rural > Urban In situ 4 

 CT * Aquatic > Terrestrial FACE 3 

 pH * Acid > Circumneutral Ex situ 5 

 T * 28 > 0 CEF 4 

  ** 28 > 0 In situ 4 

  ** 0 > 28 Ex situ 5 

  * 182 > 0 Ex situ 6Aq 

  *** 268 > 0 Ex situ 6Te 

 pH × T * 0 > 28 (Circumneutral**), Acid > 

Circumneutral (28***) 

Ex situ 5 

 GC × pH × T * 0 > 28 (Urban, Acid**) In situ 5 

Nitrogen GC *** Ambient > Elevated CO2 FACE 3 

  *** Rural > Urban In situ 4 

  * Ambient > Elevated CO2 Ex situ 5 

  *** Urban > Rural In situ 5 

  ** Elevated > Ambient CO2  Ex situ 6Aq 



 

99 

Table 7.1 (continued) 

Chemical Factors Sig. Direction of difference Origin Chapter 

 CT *** Terrestrial > Aquatic FACE 3 

 pH ** Acid > Circumneutral Ex situ 5 

 T ** 28 > 0 Ex situ 4 

  * 28 > 0 In situ 4 

  *** 28 > 0 Ex situ 5 

  *** 28 > 0 In situ 5 

  * 268 > 0 Ex situ 6Te 

 GC × CT *** Ambient > Elevated CO2 

(Aquatic***, Terrestrial***) 

FACE 3 

  * Elevated > Ambient CO2 

(Terrestrial*) 

FACE 3† 

 GC × pH * Acid > Circumneutral (Urban**) In situ 5 

 GC × T * Urban > Rural (0***, 28***); 28 > 

0 (Rural*, Urban***) 

In situ 5 

  ** 0 > 182 (Elevated CO2*), Elevated 

> Ambient CO2 (0**) 

Ex situ 6Aq 

Phosphorus GC *** Urban > Rural In situ 4 

  *** Elevated > Ambient CO2 Ex situ 5 

 T *** 0 > 28 Ex situ 5 

  *** 0 > 28 In situ 5 

  * 0 > 28 Ex situ 4 

  *** 0 > 28 In situ 4 

 GC × T ** Urban > Rural (0***, 28**), 0 > 

28 (Rural*, Urban***) 

In situ 4 

Lignin GC * Elevated >Ambient CO2 FACE 3 

 T * 0 > 28 In situ 4 

  ** 0 > 28 Ex situ 5 

  * 0 > 28 In situ 5 

 GC × T * Elevated > Ambient CO2 (0*) Ex situ 6Te 

  * 0 > 28 (Ambient CO2**) Ex situ 4 

C/N GC *** Elevated >Ambient CO2 FACE 3 

  * Urban > Rural In situ 4 

  ** Elevated > Ambient CO2 Ex situ 5 

  *** Rural > Urban In situ 5 
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Table 7.1 (continued) 

Chemical Factors Sig. Direction of difference Origin Chapter 

 CT *** Aquatic > Terrestrial FACE 3 

 T * 28 > 0 Ex situ 4 

  * 0 > 28 In situ 4 

  *** 0 > 28 Ex situ 5 

  *** 0 > 28 In situ 5 

  * 0 > 268 Ex situ 6Te 

 GC × CT * Ambient > Elevated (Aquatic***, 

Terrestrial***) 

FACE 3 

 GC × pH * Rural > Urban (Circumneutral**, 

Acid***), Acid > Circumneutral 

(Rural*) 

In situ 5 

 GC × T * Urban > Rural (0**), 0 > 28 

(Urban**) 

In situ 4 

 GC × pH × T * 0 > 28 (Ambient CO2, Acid***), 0 

> 28 (Elevated CO2, Acid***), 

Elevated > Ambient CO2 (28, 

Acid***), Elevated > Ambient 

CO2 (0, Circumneutral***), 0 > 28 

(Elevated CO2, Circumneutral***) 

Ex situ 5 

 

7.1.4 Invertebrates 

 

Invertebrate responses to litter growth conditions were complex, both in terms of 

feeding (Chapter 3; Table 7.3) and the composition of the assemblage (Chapters 4 and 

5; Table 7.3). Prior terrestrial (e.g. Cotrufo, Briones & Ineson 1998) and aquatic (e.g. 

Ferreira et al. 2010) studies have shown that invertebrate feeding is affected by 

altered litter chemical composition. This only occurred for some species in the 

invertebrate feeding study (Chapter 3), with little effect on invertebrate assemblages 

during breakdown on a forest floor (Chapter 4) and in headwater streams (Chapter 5). 

These results suggest some scale-dependency in both terrestrial and aquatic habitats: 

effects at the invertebrate species level may not scale up to the community level. It 

may also be due to the dominance of microfauna in the litter bag studies, compared to 

the use of macroinvertebrates of the laboratory experiment. The lack of a community-
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level effect may also be the result of the presence of species from non-detritivore 

guilds, which were less affected by changes to litter chemical composition. Beyond 

effects of CO2 and urban pollution, consumption of litter was dependent on tree and 

invertebrate species, along with the habitat of origin (terrestrial and aquatic) of each 

invertebrate species (Chapter 3). In addition, litter breakdown in streams may be more 

affected by stream pH than effects of CO2 and urban pollution on chemical 

composition (Chapter 5). 

 

Table 7.2. Summary of litter ash-free dry mass changes in response to growth condition (GC) 

and time period (T, days). All litter is from Betula pendula. Litter was composed of leaves 

(Chapters 3–5) and twigs (Chapter 6). For Chapter 6 results, superscripts indicate the 

experiment location (Te = terrestrial, Aq = aquatic). Asterisks indicate the level of 

significance (*P < 0.05, **P < 0.01, ***P < 0.001). Non-significant responses are excluded 

for brevity. 
Factors Sig. Levels Origin Chapter 

GC * Ambient > Elevated CO2  Ex situ 4 

 *** Rural > Urban In situ 4 

 *** Rural > Urban In situ 5 

 *** Ambient > Elevated CO2 Ex situ 6Te 

 *** Ambient > Elevated CO2 Ex situ 6Aq 

T *** 0 > 28***, 28 > 56***, 56 > 112*** Ex situ 4 

 *** 0 > 28***, 28 > 56**, 56 > 112* In situ 4 

 *** 0 > 28***, 28 > 56***, 56 > 112*** Ex situ 5 

 *** 0 > 14***, 14 > 28*, 28 > 56* In situ 5 

GC × T *** Rural > Urban (28***, 56***, 112***) In situ 4 

 ** Rural > Urban (14***, 28***, 56***, 112***) In situ 5 

 * Elevated > Ambient CO2 (14**), Ambient > Elevated 

CO2 (112*) 

Ex situ 5 
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7.1.5 Habitat differences 

 

Studies in this thesis considered decay rates in both terrestrial and aquatic 

environments, although there were no formal comparisons of the two. While 

similarities exist in the breakdown of litter in these realms (Sinsabaugh et al. 1992; 

Wagener, Oswood & Schimel 1998; Treplin & Zimmer 2012) differences emerge as a 

result of the influence of stream flow and abrasive action of water, which can speed 

up the decay process (dos Santos Fonseca et al. 2013). Observations in Chapters 4 

and 5 reinforced this idea for leaf litter and those of Chapter 6 for SWD, as decay 

rates were faster in aquatic than terrestrial habitats. Regardless of breakdown habitat, 

rural litter had the slowest decay rate, followed by urban litter and then ambient- and 

elevated-CO2 litters together. Chemical composition also appeared to be affected by 

the decay habitat. For example, leaf litter chemical composition responded similarly 

to 28 days’ exposure in terrestrial and aquatic habitats in both Chapters 4 and 5 (Table 

7.1). Twig chemical composition changed through time in both chapters, but the 

nature of these changes was dependent on the habitat: nitrogen increased and C/N 

ratio was reduced through time in the terrestrial study only. This may, however, be a 

result of differences in the duration of exposure in the terrestrial (182 days) and 

aquatic (268 days) locations. In Chapter 3 microbial conditioning was shown to affect 

leaf litter chemical composition differently depending on whether it was exposed to 

terrestrial or aquatic conditions. Invertebrate feeding responses to this material also 

seemed to be related to habitat, as aquatic species preferred ambient- to elevated-CO2 

birch discs, but there was no response from terrestrial invertebrate species. Ultimately, 

repercussions for chemical cycling and invertebrate assemblages may differ between 

habitat types, but mass loss could remain unaffected. 

 

7.1.6 Litter production site 

 

Leaf litters used in the decomposition studies (Chapters 4 and 5) were collected from 

trees growing under rural and urban conditions in situ, and from ex situ trees growing 

under ambient and elevated atmospheric CO2 in Cardiff University’s Controlled 

Environment Facility (CEF). Litters produced in situ and ex situ were not formally 

compared, but differences in chemical composition, mass loss and invertebrate 
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assemblages were apparent. These differences may be due to a more optimal growth 

condition for ex situ than in situ litters, as the use of potting soil, and a regular 

watering regime made nutrients and water less limiting in the CEF. Ontogenic factors 

may also have also played a role, given that litter was collected from mature trees in 

situ, but from saplings ex situ. Age and size in temperate deciduous trees can affect 

not only morphology and phenology (Thomas & Winner 2002; Augspurger & Bartlett 

2003; Thomas 2010), but also chemistry. For example, a study of trees ranging from 

1–100 cm in diameter by Thomas (2010) found that, in Tilia americana L., leaf 

carbon concentration increases linearly with tree diameter, while nitrogen 

concentration peaks, and C/N ratio is at its lowest point, at a diameter of 

approximately 5 cm in B. alleghaniensis Britt. and T. americana. Although not 

analysed statistically in the studies contained in this thesis, nitrogen concentrations of 

mature trees (in situ) were lower and C/N ratios higher in comparison with saplings 

(ex situ), and carbon concentrations were higher in rural trees than in both of the ex 

situ treatments. The lower nutritional quality of in situ trees may have influenced 

breakdown, as the remaining AFDM of ex situ litters was lower than for in situ litters 

at all time points in both Chapters 4 and 5, indicating consistently faster breakdown of 

ambient- and elevated-CO2 litters compared to rural and urban litters. 

 

These findings highlight the need for care when interpreting the results of studies 

using litter grown under ‘artificial’ conditions (e.g. greenhouses and closed-top 

chambers). Alternatives to this method exist, but have their own challenges. In 

particular, CO2 can be introduced to trees in situ, but there are geographical and 

financial constraints. For example, some studies make use of litter collected from 

trees growing near natural CO2 springs (e.g. Hättenschwiler et al. 1997), but these 

only exist in certain locations and the concentration of gases cannot be controlled. 

Free-air carbon enrichment facilities (Hendrey & Miglietta 2006) are perhaps the best 

solution, as they allow for large-scale control of CO2 inputs to otherwise naturally-

growing trees, but they also require a great amount of space and investment (Saxe, 

Ellsworth & Heath 1998). Financial and practical limitations will likely result in the 

continuation of ‘artificial’ conditions in small-scale investigations requiring the 

control of atmospheric conditions, but the limitations of this approach must be 

appreciated. 
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Table 7.3. Summary of invertebrate assemblage responses to growth condition (GC), stream 

pH (pH) and time period (T, days). Litter was composed of Betula pendula leaves (Chapters 

3–5) and twigs  (Chapter 6). Asterisks indicate the level of significance (*P < 0.05, **P < 

0.01, ***P < 0.001). Non-significant responses are excluded for brevity. Note that 

community analysis does not provide a direction of response, only that there is a difference or 

not. 

Measure Factors Sig. Levels Origin Chapter 

Abundance pH * Circumneutral > Acid In situ 5 

 T * 56 > 28* Ex situ 4 

  ** 28 > 112***, 56 > 112** In situ 4 

  ** 14 > 112*, 28 > 112** Ex situ 5 

  ** 14 > 112*, 28 > 112***, 56 > 112** In situ 5 

Richness GC *** Elevated > Ambient CO2 Ex situ 4 

 T * 56 > 112** Ex situ 4 

  * 28 > 112** In situ 4 

  * 14 > 112*, 28 > 112** Ex situ 5 

  ** 14 > 112**, 28 > 112*** In situ 5 

Diversity GC ** Elevated > Ambient CO2 Ex situ 4 

 T * 28 > 112** Ex situ 4 

 GC × T * Urban > Rural (112 **) In situ 5 

Community pH ** Circumneutral–Acid In situ 5 

 T *** 28–112***, 56–112*** Ex situ 4 

 T *** 28–56*, 28–112***, 56 –112*** In situ 4 

 T * 14–56**, 14 –112*** Ex situ 5 

 T *** 14–112***, 28–112***, 56–112** In situ 5 

 

7.2 Implications 

 

The results of the studies reported in this thesis have several implications for the 

decomposition of litter following changes to atmospheric conditions and stream pH. 

For example, expansion of urban areas could result in litter that is susceptible to faster 

decay, given that urban litter decayed faster than rural litter (Chapters 4 and 5). 

Conversely, there was little difference in the mass loss of ambient- and elevated-CO2 

leaf litters in either terrestrial (Chapter 4) or aquatic (Chapter 5) locations, suggesting 

little change to decomposition rates under future CO2 regimes. Regardless, elevated 
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atmospheric CO2 can boost woody plant production (Curtis & Wang 1998; Ainsworth 

& Long 2005), which could result in a greater amount of leaves. The subsequent 

build-up of litter on the forest floor could affect several physical factors, such as 

increased temperature and reduced soil moisture (Xu, Liu & Sayer 2013). Litter 

stocks could also aggregate in streams, creating anoxic conditions and further 

disrupting the decay process. Build-ups could also reduce stream flow and encourage 

habitat formation (Abbe & Montgomery 1996; Beechie & Sibley 1997). This scenario 

would result in increased carbon and nutrient storage in both terrestrial and aquatic 

realms. 

 

Invertebrate species composition may also be altered as a result of changes to litter 

growth conditions and nutritional quality. For example, in the invertebrate feeding 

study (Chapter 3), differences in the responses of macroinvertebrate species to 

elevated-CO2 litter were highlighted. Those responding positively to elevated-CO2 

litter (e.g. Gammarus pulex L. and Odontocerum albicorne Scopoli fed A. glutinosa) 

could outcompete those that show a neutral or negative response, altering their 

relative abundances. Generalist species, such as the freshwater amphipod G. pulex 

(Moog 2002), may also be able to take advantage of additional food sources. 

Sympatric species, such as the woodlice Porcellio scaber Latreille and Oniscus 

asellus L., are able to operate in similar niches with slight differences in their dietary 

needs (Zimmer & Topp 2000); changes to litter nutritional quality could therefore 

affect the relationship between these organisms. These changes to invertebrate 

assemblage structure can influence decay, as greater species richness of invertebrate 

leaf consumers is linked to increased litter processing rates in freshwaters (Jonsson & 

Malmqvist 2000). 

 

Given the importance of litter as the base of food webs (Moore et al. 2004; Hagen et 

al. 2012), alterations to chemical composition and availability could affect multiple 

trophic levels in both terrestrial and aquatic habitats. This includes microbial 

decomposers, such as fungi and bacteria (Abelho 2001; Berg & McClaugherty 2008), 

which in turn can influence invertebrate assemblages. Non-shredder invertebrates in 

streams will also be affected by changes to the quantity and decay of litter. For 

example, filtering invertebrates depend on fine particulate organic matter, which 

could reduce in quantity with reduced decay rates. Altered invertebrate assemblages 



 

106 

in both terrestrial and aquatic locations could affect the wider food web, as these 

organisms are important prey for fish, birds and small mammals on woodland floors 

and in streams. 

 

7.3 Limitations 

 

Litter accumulations vary greatly in structure and content, making it difficult to trace 

the fate of a given litter sample through time. Litter bags resolve this problem by 

enclosing material of known mass and composition, while being easy to produce and 

inexpensive. The litter bag approach is an established method (Abelho 2001; 

Kampichler & Bruckner 2009), having been pioneered in terrestrial systems in the 

1950s and 1960s (Bocock & Gilbert 1957; Shanks & Olson 1961; Crossley & 

Hoglund 1962), and aquatic habitats in the 1970s (Fisher & Likens 1973; Petersen & 

Cummins 1974). Criticisms of the approach highlight that litter bags can create an 

artificially stable microclimate and provide invertebrates with extra protection from 

predators (Crossley & Hoglund 1962), reducing invertebrate migration (Braioni, 

Gumiero & Salmoiraghi 2001). The choice of mesh size can also have an effect 

(Crossley & Hoglund 1962; Stewart & Davies 1989; Bradford et al. 2002): small 

apertures may limit the establishment of larger invertebrates (Petersen & Cummins 

1974), but also reduce losses due to physical action (wind or stream flow) that might 

confound detritivore-driven losses. Invertebrates found in litter bags may also not 

reflect invertebrate composition in the surrounding habitat (Di Sabatino et al. 2014). 

 

Most litter bag studies are short-term. For example, a meta-analysis by Kampichler 

and Buckner (2009) showed that terrestrial litter bag studies generally last for a year 

or less. Aquatic litter bag studies generally last less than a year (Abelho 2001), 

reflecting faster breakdown of leaf material in aquatic conditions (Sinsabaugh et al. 

1992; Treplin & Zimmer 2012; dos Santos Fonseca et al. 2013). The duration of 

decomposition experiments in the studies reported in this thesis were limited by 

necessity, given the time constraints inherent in a study of this type (e.g. growing 

trees, performing multiple experiments). The 112 day period did, however, prove to 

be a suitable timescale for observing the decay of B. pendula leaf material in the 

locations selected: litter lost up to approximately 50% of AFDM on the woodland 
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floor (Chapter 4), while some litter bags in the aquatic study were almost empty by 

the end of the experimental period (Chapter 5). While the majority of mass remained 

at the end of the twig experiments (Chapter 6), the study was still able to provide 

information on the early decay of this material, as differences in litter chemical 

composition and proportion of AFDM remaining were already apparent after the short 

exposure periods. 

 

7.4 Future directions 

 

Experimental studies reported in this thesis considered single species – both trees and 

invertebrates – in isolation. This simplicity has allowed for broad underlying 

principles to be investigated. Future work should seek to expand the number of 

species used to better mimic natural situations. For example, despite the use of 

multiple invertebrate and trees species reported in Chapter 3, individuals of each 

invertebrate species were fed litter of one tree species in isolation (e.g. Asellus 

aquaticus fed A. glutinosa separately to B. pendula). Given the potential for 

competition between species for litter resources, it would be more realistic to 

investigate how altering invertebrate abundance and species diversity might affect, 

and be affected by, litter mixtures of differing tree species. In addition, leaf litter 

decomposition of just one species (B. pendula) was investigated in Chapters 4 and 5, 

yet litters on forest floors and stream beds are often composed of a multitude of 

species. There is evidence that the decomposition of litter mixtures can be complex 

and non-additive (Hättenschwiler, Tiunov & Scheu 2005; Taylor, Mallaley & Cairns 

2007; Lecerf et al. 2007; Berglund & Ågren 2012) and influenced by invertebrate 

diversity (Swan & Palmer 2006a; Sanpera-Calbet, Lecerf & Chauvet 2009), making it 

harder to predict effects of multiple stressors on litter decomposition. 

 

Pairs of contrasting growth conditions – ambient and elevated atmospheric CO2, and 

rural and urban – were used to simulate the effects of environmental change on litter 

chemical composition in Chapters 3 to 6. Responses may vary along gradients of 

these environmental variables, so future studies should include a greater number of 

values to increase the resolution of our understanding. For example, CO2 

concentrations could take any value on the continuum from current (approximately 
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400 ppm) to future concentrations, with projections suggesting that concentrations 

could approach 1000 ppm by the end of the century (Collins et al. 2013). Emissions 

of pollutant gases also exist on a gradient from urban to rural areas (Lovett et al. 

2000). 

 

Microbial biofilms are important contributors to the functioning of headwater streams 

(Battin et al. 2003) and can influence leaf litter breakdown (Rier, Kuehn & Francoeur 

2007; Danger et al. 2013). It is important to understand how changes to litter 

chemical composition and stream acidity might affect the ability of biofilms to 

colonise and develop on this substrate. An attempt to investigate this relationship is 

reported in Chapter 5, but the study was hampered by methodological problems. For 

example, in a few cases, biofilms grew on the litter bag surfaces rather than leaf 

surfaces. The use of loosely bound leaf packs could be used to overcome this issue in 

future, where no material is used to encase the leaves, but rather a thread is used to 

hold them together. 

 

The Intergovernmental Panel on Climate Change (IPCC) has predicted reduced 

precipitation and increased temperatures, along with increased frequency of extreme 

events (IPCC 2013). These changes are likely to affect litter chemistry and 

decomposition, and should be considered in future studies. For example, Graça and 

Poquet (2014) found that changes to water availability and soil nutrients resulted in 

species-specific changes to leaf litter chemistry, with knock-on effects for stream 

decay. Beyond chemistry-mediated effects, climate influences the breakdown process 

directly: a global experiment by Boyero et al. (2011) found that warm water 

temperatures resulted in a switch from detritivores to microbes as the main 

contributor to leaf litter decomposition, increasing CO2 production and reducing the 

breakdown of large recalcitrant litter particles. Climate is also an important 

determinant of invertebrate-mediated decomposition (Wall et al. 2008). For example, 

saprophagous terrestrial macroinvertebrates, such as millipedes and woodlice, could 

increase in abundance in response to increased temperatures, but the effect could be 

negated by drought at low latitudes (David & Handa 2010). Increased temperatures 

influenced feeding preference, growth rate and mortality of the larval form of the 

caddis fly Sericostoma personatum Kirby & Spence, and may have been a better 
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determinant of invertebrate performance than changes to litter nutritional quality 

(Ferreira et al. 2010). 

 

7.5 Conclusion 

 

The various studies reported in this thesis investigated multiple stressors – CO2 

enrichment, urban pollution and stream acidification – and their effects on the 

chemical composition and decomposition of leaf and twig litter. Results were 

dependent on growth conditions (ambient or elevated CO2, and rural or urban), time 

periods, stream pH (acidified or circumneutral), invertebrate species (from both 

terrestrial and aquatic environments), tree species (A. glutinosa or B. pendula), plant 

tissues (leaf or twig litter), and habitats (terrestrial or aquatic). This work furthers 

current understanding on litter decomposition, but more research is required on a 

wider range of species (invertebrates and trees); on the effects of gradients of 

environmental variables on chemical composition and decay; the role of biofilms in 

the decomposition of litters of differing quality; and interacting effects of atmospheric 

growth conditions and other climate change factors (e.g. temperature and moisture). It 

is important to anticipate how human-induced global change processes will affect 

ecosystem functioning in woodlands and headwater streams, given potential impacts 

to nutrient cycling and the support of food webs. This will allow for a better 

understanding of how humans may mitigate or cope with future perturbations to 

ecosystem service provision. 
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