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Abstract 

The binding problem presents one of the most challenging questions in psychology and 

cognitive neuroscience, despite its seemingly effortless resolution in daily life. Binding 

of visual features begins with stimulation of peripheral receptors and ends with the 

emergence of a perceived object, yet many questions remain unanswered about the 

nature of the intervening mechanisms. The primary focus of this thesis was to elucidate 

neurocognitive processes that support binding of features into a coherent object. 

Experiment 1 sought to dissociate neural correlates of feature binding from spatial and 

temporal attention, which are frequently conflated in previous studies. Results showed 

a widespread network engaged during both forms of attention, without any significant 

clusters of activity in response to an explicit feature-binding task. One explanation for 

these results may lie in evidence that feature binding is a spontaneous process that 

happens implicitly upon observing an object. Therefore, in order to measure the 

network associated with implicit visual feature binding the established reviewing 

paradigm was employed in the subsequent studies. 

Experiments 2 and 3 sought to replicate key aspects of the reviewing paradigm. The 

reviewing paradigm exploits the finding that when an object is shown in close spatial 

and temporal succession to another object it is perceived as a continuation of the same 

object. Therefore, if a feature changes between the initial object and the second 

presentation of this object then a rebinding of features occurs and a behavioural cost 

termed a partial repetition cost is often incurred.  

In order to observe the impact of a relevant feature change compared with an irrelevant 

feature change, the reviewing paradigm was modified. Results indicated that an 

irrelevant feature change carried with it a reaction time (RT) cost almost as large as a RT 

cost observed following a relevant feature change.  Experiment 4 aimed to observe the 

neural network recruited during the completion of the reviewing task experiment using 

fMRI and a whole brain analysis. Results showed a widespread network encompassing 

bilateral frontal and occipital areas. Furthermore, the network that was recruited during 

the irrelevant feature change condition was different from that engaged during the 

relevant feature change condition.  In order to probe the causality of these actions, 
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experiment 5 exploited the offline transcranial magnetic stimulation (TMS) to three key 

cortical areas: right lateral occipital complex, left superior frontal gyrus and left post-

central gyrus.  

The overarching conclusion of this thesis is that feature binding is an implicit and 

spontaneous process that is coordinated by a wider cortical network than expected 

from previous research. The parietal cortex has often been observed as the key area in 

which object representations become bound, however the results of this thesis do not 

support a unique or privileged role of this area in binding. The latter experiments show 

that feature binding is an interaction between the memory trace, action-based 

implications and perceptual demands of an object. How the brain co-ordinates this 

widespread cortical network during feature binding is a key question for future research 

involving TMS and brain imaging techniques. 
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Chapter 1 

Rationale and aim of thesis 

The human retina transmits data to the brain at the rate of 10 million bits per second 

(Koch et al. 2006). Following transmission of this data, it must be selected and 

integrated. Although the human visual cortex is arranged in a modular fashion, with 

different types of visual information processed in distinct cortical areas (e.g. colour in 

area V4 and motion in area MT), we perceive a cohesive scene.  How the brain 

integrates accurately this disparate visual information to represent the environment is 

termed the binding problem.  

Di Lollo (2012) proposed that the neural binding problem (NBP) encompasses at least 

four distinct components: coordination, subjective unity of perception, variable binding, 

and visual feature binding. The latter point of the NBP, visual feature binding, is the 

focus of this thesis. Visual feature binding refers to the process in which different 

features such as shape, colour, size, orientation and location, are integrated to form a 

coherent representation of an object, collections of which comprise the scenes we 

encounter on a daily basis.  

Although binding has been postulated to underpin a host of cognitive functions, from 

perceptual processing of objects and their constituent elements (Malsburg, 1981) to 

higher order cognitive processes such as memory and reasoning (Halford, Cowan, & 

Andrews, 2007), visual feature binding is an essential element of information 

processing, providing the basis of mental representations, which in turn are pre-

requisites for all cognitive processes. Understanding the neural substrates of visual 

feature binding, therefore, may provide greater insight as to how this process may serve 

more complex, higher-order cognition.  

This thesis employs experimental psychology, neuroimaging and transcranial magnetic 

stimulation (TMS) to probe the cortical network recruited during the process of visual 

feature binding. The main context for this thesis is work carried out by Kahneman, 

Treisman, and Gibbs (1992) and more recently by Hommel (1998) and Hommel, Proctor 

and Vu (2004).  These studies used a behavioural paradigm known as the ‘reviewing 
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paradigm’ (details provided below) to evoke rebinding or an updating of a bound 

stimuli.  

This thesis begins by investigating the neural network engaged during explicit feature 

binding. Following this, I examine the brain regions engaged during the reviewing 

paradigm (Kahneman, Treisman & Gibbs, 1992), which is assumed to reflect the process 

of rebinding. In the following sections of the Introduction, I will review the literature 

relevant to visual feature binding, before providing a brief overview of the experiments 

outlined in this thesis, and the questions that they aim to address.  
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1.1 General introduction 

“Every perception is an act of creation” – Gerald Edelman (2006). 

 

Vision is initiated via the detection of light on the retina and culminates in an 

experience of our environment that has a movie- like quality. However, between light 

hitting the retina and the phenomenological experience of ‘seeing’, a visual 

representation of the world is constructed.  

 

Figure 1.1. The eye receives information in the form of light; information is then 

transmitted to the visual cortex where a representation of the environment is 

constructed (adapted from http://www.superior-view-of-the-brain.co.uk). 

 

Much research has taken place in order to elucidate how the brain reconstructs the 

world around us, and it has been posited that a process integral to this reconstruction is 

http://www.superior-view-of-the-brain.co.uk/
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‘feature binding’.  My thesis examines the neural networks engaged during feature 

binding and therefore I will begin with a review of the literature surrounding the feature 

binding problem and the models that have been proposed as a solution.  

1.2 The Feature Binding Problem 

Feature binding concerns how different features of an object are brought together to 

form a coherent and accurate object representation (Treisman, 1998). The ‘problem’ 

relates to the as yet unanswered question of how anatomically distributed patterns of 

neural firing result in a coherent and veridical representation of the immediate 

environment. 

 Conscious experience of the environment does not consist of disembodied features; 

rather, it comprises unified objects and their backgrounds (Treisman and Schmidt, 

1982). This perceived cohesion of the environment belies the fact that the brain is 

performing a large-scale integrative process within milliseconds of receiving information 

from the retina. Some of the strongest evidence that the brain is solving the binding 

problem is evidenced when the binding process fails. The outcome of mis-binding is a 

phenomenon called ‘illusory conjunctions’.  An illusory conjunction occurs when a 

subject has accurately perceived the individual features that are present in a display, 

but has conjoined them incorrectly. For example, if the display consists of a red circle 

and a blue square, the subject might report a blue circle and a red square. I shall return 

to the discussion of illusory conjunctions later in the chapter, and their relevance in 

helping us to understand the ‘binding problem’.  

Malsburg (1981) proposed one of the first models to explain how the brain solved the 

‘binding problem’ and postulated that neural synchrony may be the mechanism by 

which information is bound together. This notion received support from Singer and 

Gray (1995), who suggested that binding is achieved by transient and precise 

synchronisation of neuronal discharges as seen in the cat striate cortex (Gray, Engel, 

Konig & Singer, 1992). The idea of synchrony assumes that, as binding occurs 

throughout the brain, synchronous firing of cortical neurons leads to the binding of 

features. Although oscillation between out of phase firing has been proposed as a 

possible mechanism to encode separate objects, it is difficult to imagine how such a 
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precise timing mechanism is possible, considering the amount of objects that are the 

visual system is presented with at multiple locations (Jaswal, 2012). Although it is likely 

that the synchronisation of neuronal firing plays a role in the binding process, a more 

comprehensive theory, the feature integration theory (FIT), garners support from a 

number of converging paradigms and has become the most viable framework in which 

to explain the feature binding process (Treisman, 1985; Treisman & Gelade, 1980; 

Treisman & Schmidt, 1982).  

The FIT argues that features are bound together by selectively attending to a location. 

Following this, features that fall within the attended space then become bound into an 

object. Therefore, the FIT consists of two stages; the first stage is the pre-attentive 

stage. At this stage perception is proposed to occur automatically and unconsciously. 

The object is analysed for details such as shape, colour, orientation and movement, with 

each feature being processed in different regions of the brain. The second stage of the 

FIT is the focused attention stage. During this stage, a location is selected and the 

features within this location become bound into an object. In order to do this, the FIT 

proposes that there is a master map of locations, which details the location of all 

features that have been detected within the visual scene. As shown in figure 1.2, once 

attention has then selected a location, the features within that location become bound.  
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Figure 1.2 shows the premise of the FIT.  In order to perceive an object a person 

would selectively attend to a location.  All features within that location become 

bound to that location in space. Image taken from 

http://www.luc.edu/faculty/asutter/FIT.html. 

 

If the predictions of the FIT are correct, and selective spatial attention is the mechanism 

by which features become bound, then one would predict that if spatial processing 

became compromised then binding errors would be observed. This is what is observed 

in both patient studies and through the phenomenon of illusory conjunctions.  I will 

discuss these below.  

Much evidence in favour of the FIT has come from the experience of illusory 

conjunctions. Firstly, IC’s are commonly seen when exposures are brief and focused 

attention to each object in turn is prevented. Second, directing attention in advance to 

the location of a target improves identification more for conjunctions that for simple 

features (Tresiman & Schmidt, 1982). However, whether these are direct effects on 

binding or an indirect result of attention being allocated to perceptual groups of 

elements is not clear.   

http://www.luc.edu/faculty/asutter/FIT.html
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 Further evidence in favour of the FIT, and the assertion that selective spatial attention 

is necessary to bind features together, comes from clinical case studies of patients who 

have Balint’s Syndrome. Balint’s syndrome is often seen following the damage of both 

parietal lobes; patients can lose the ability to process spatial information about the 

environment around them. As stated by Homles and Harax, (1919): the three main 

symptoms that characterise the disease are simultanagnosia (inability to see more than 

one object at a time); optic ataxia (the fixation of gaze with severe problems in 

voluntarily moving fixation); and optic apraxia (the inability to reach towards the correct 

location of perceived objects). Although patients can see one object at any given 

moment, they do not know where it is located; it is as if there is features do not belong 

to anyone location within the visual field, due to this patients often report the features 

jumping from one location to another (Robertson, 2003). The FIT predicts that spatial 

information is the medium through which the brain binds features together. Therefore, 

if the brain no longer computes a spatial map, then features should no longer become 

bound into objects. However, as stated by Friedman-Hill et al. (1995) - in order for the 

deficit to be binding specific, patients should still be able to accurately detect individual 

features present across the visual field.  

In order to test these predictions a series of experiments were carried out with patient 

R.M (Freidman-Hill, Robertson & Treisman, 1995). R.M. suffered nearly symmetrical 

bilateral parietal lesions, with no temporal or frontal lobe involvement, as a result of 

two strokes. Although R.M. did not exhibit an attentional bias for the left or right visual 

field, he did have great difficulty reporting where objects were located, even after 

directing his gaze to them. This allowed Friedman-Hill et al. (1995) to investigate the 

effects of degraded spatial information on feature binding.  In order to test R.M’s ability 

to bind features, he was presented with a display containing two coloured letters. His 

task was to report the name and colour of the first letter he saw. The results showed 

that R.M. had an illusory conjunction rate of 13%, even when the display times were as 

long as 10s per trial. A further observation was the R.M made significantly more errors 

when stimuli were presented simultaneously, rather than when the coloured letters 

were presented sequentially. This was apparent even though the display time was twice 

as long in the simultaneous condition than in the sequential condition. This data 
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suggests that R.M. was able to bind features using the temporal information (sequential 

order) to distinguish items, but showed specific spatial processing deficits when 

attempting to bind features together when several objects were present across the 

visual field. This implies that rather than showing a deficit in the ability to bind per se, as 

argued by Treisman et al. patients with Balint’s Syndrome demonstrate a specific 

impairment in spatial processing, which indirectly effects accurate feature binding 

(Robertson, 1999).     

The network recruited during spatial attention has been identified through convergent 

findings from neuropsychological and brain imaging studies (Corbetta, Miezin, Shulman, 

& Petersen, 1993; Nobre et al. 1997). The core brain regions comprising this network 

are the posterior parietal cortex (PPC) near the intra-parietal sulcus (IPS), frontal eye 

fields (FEF), lateral and medial premotor cortex (PMC), anterior cingulate (AC) and sub-

cortical areas such as the thalamus and the striatum (LaBurge & Buchsbaum, 1990; 

Corbetta, Patel, & Shulman, 2008; Nobre, Coull, Walsh, & Frith, 2003).  

 

Neuropsychological studies show robust evidence that damage to both right parietal 

cortex and frontal cortex can give rise to neglect of visual stimuli in the contralateral 

hemi-field (Bisiach et al. 1984; Damasio et al. 1980; Mesulam, 1981), a syndrome that is 

linked to deficits in orientating spatial attention (Mesulam, 1999). Neglect can even be 

induced in healthy participants by inhibiting the contra-lateral parietal cortex using TMS 

(Bjoertomt et al. 2002; Fierro et al. 2000).  

 

Functional neuroimaging studies of healthy participants provide further evidence that a 

large-scale distributed network, including bilateral parietal and frontal cortex, are 

involved in orienting spatial attention to both the left visual field (LVF) and right visual 

field (RVF) (Corbetta et al. 1993; Han et al. 2004; Yantis et al. 2002). Recent research has 

shown that distinct regions in the fronto-parietal network are engaged in different 

aspects of attentional control such processing of cues and attentional orienting 

(Woldorff et al. 2004). 
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As a key cortical area within the spatial attention network, PPC has long been regarded 

as a candidate structure to house the master map of locations, a key component in the 

second stage of feature binding, as proposed by the FIT, (Treisman, 1998).  The most 

compelling evidence for a contribution of PPC to feature binding comes from patient 

studies previously discussed (Friedman-Hill et al. 1995; Humphreys, 2001). However, in 

many fMRI studies a visual search paradigm is often used employed, as the task is well 

suited for investigating both spatial attention and feature binding. The visual search 

usually entails an active scan of the visual stimuli in order to identify a target among 

other objects and features. However, neuroimaging and TMS studies are yet to 

conclusively show a role for the PPC specifically in feature binding, rather than in 

processes such as search efficiency, which one would expect to be taxed during a visual 

search paradigm. 

 

Using a visual search paradigm, some neuroimaging and lesion studies in humans 

provide support for the role the PPC in feature binding, for example a PET study 

reported activation in PPC during a feature conjunction search, but not during easy 

visual searches for single features (Corbetta et al. 1995; Corbetta and Shulman, 1998; 

Robertson, 1998; Treisman, 1996). These results are also supported by the observation 

that following repetitive transcranial magnetic stimulation (rTMS) over the PPC a visual 

search for a conjunction of features was impaired whereas an easy feature search was 

not (Ashbridge et al, 1997). Furthermore patients with bilateral PPC lesions have been 

reported to mis-bind object features (Friedman-Hill et al. 1995; Humphreys et al. 2000). 

However, as previously discussed there is also evidence that the involvement of the PPC 

in visual search may not be binding specific but may reflect a more general attentional 

mechanism. Therefore, in summary, although the PPC may facilitate binding, it has been 

difficult to rule out that this region plays only an indirect role in binding by supporting 

visual search.  

 

In order to explore further the role of the parietal cortex in visual feature binding 

Shafritz, Gore and Marois (2002) conducted an fMRI study in which subjects had to 

complete a change detection task. In this task, subjects were required to determine 
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whether a test object matched either of two previously presented sample objects with 

regards to its shape, colour or combination of shape and colour. The stimuli consisted of 

5 novel geometric shapes, and sample objects were presented either simultaneously or 

sequentially. The analysis used a previously defined region of interest (ROI) in the right 

parietal cortex that had shown preferential activation for location judgement activation 

– the anterior intra-parietal and superior parietal cortex. They also used an identical ROI 

for the left parietal cortex.  In order to avoid the pitfalls of directly contrasting 

simultaneous and sequential presentations the conjunction conditions was compared to 

its respective single feature condition, as these were physically matched.  This meant 

the effects of feature judgement (colour/shape/conjunction) and presentation mode 

(simultaneous /sequential) were assessed separately in the right and left parietal ROIs. 

The results showed that when the objects were presented simultaneously, there was 

greater associated activity in the parietal cortex, compared to when subjects performed 

the same conjunction task but with the stimuli was presented sequentially.  Shafritz et 

al. (2002) concluded that the parietal cortex is engaged when spatial, but not temporal, 

cues can be used to resolve binding ambiguity.  

 

Figure. 1.3 Direct comparison of conjunction related activation in the  

simulataneous (yellow) and sequential (blue) presentations. The green and 

purple boxes indicate the position of the intra- and superiror parietal ROIs, 

respectively (Taken from Shafritz et al. 2001). 
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However, the observation that the parietal cortex, specifically the superior parietal 

cortex, has shown robust retinotopic qualities, may explain the increase in BOLD in this 

area when objects were presented simultaneously as opposed to sequentially. (Sereno, 

Pitzalis & Martinez, 2001). Differences in lower-level perceptual features of the stimuli, 

therefore, could explain the pattern of data observed in this study.  

In an attempt to establish the role of the parietal cortex in feature binding, Nobre, Coull, 

Walsh and Frith (2002) employed a visual search paradigm alongside functional MRI. 

There were four visual search tasks in which Nobre et al. (2002) manipulated: i) the 

requirement to either integrate features prior to a visual search task or the requirement 

to carry out purely a feature detection task (feature or conjunction search) and ii) the 

degree of search efficiency (efficient or inefficient). The aim of the experiment was to 

tease apart the contribution of search efficiency versus feature binding to brain 

activations during visual search. Subjects performed four visual search tasks in a single 

experimental session. In order to assess whether  the search performed was efficient or 

inefficient reaction time was measured. If reaction time remained constant the search 

was classified as efficient, whereas if the reaction time increase progressively they were 

classed as inefficient. When contrasted to the efficient feature detection condition, the 

efficient conjunction condition enabled the identification of brain areas sensitive to 

feature binding without increasing target-selection demands. Nobre et al. (2002) found 

that all search conditions activated an extensive cortical network including the bilateral 

parietal cortex, superior and inferior parietal cortex as well as the IPS. One contrast of 

interest was that comparing the inefficient search for conjunctions with efficient search 

for features. In this comparison, the factors of efficiency and binding are conflated. In 

this contrast Nobre et al. observed significant enhancement of parietal activation in the 

inefficient search for a conjunction compared to the efficient search for a feature. To 

tease apart areas engaged in binding as opposed to search efficiency the following 

contrast was calculated (efficient conjunction-efficient feature) + (inefficient 

conjunction-inefficient feature). Following this contrast, in which the activity related to 

search efficiency was controlled, results showed that feature binding exerted only 

sparse direct effects on brain activations. No brain region was selectively activated by 

conditions requiring binding of different types of features and no other brain regions 
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showed any effect of feature binding conditions. However, the conclusion that parietal 

areas are not involved specifically in feature binding is based on a null result: there is a 

lack of a BOLD response to feature binding which is independent or different from the 

BOLD response to search efficiency.  

Inconsistencies in data, not only result from the use of different paradigms but also 

different statistical analysis methods. A more recent study (Baumgartner et al. 2013) 

employed multi-variate pattern analysis (MVPA), as opposed to the commonly used 

univariate analysis, and aimed to directly investigate location-specific representations of 

feature conjunctions, in which two (or more) features from different visual dimensions, 

were represented together with their exact locations in the visual field. In order to do 

this, Baumgartner et al. (2013) showed a display consisting of 5 coloured gratings. 

Between trials either the spatial frequency of the grating, colour of the grating, or a 

combination of the two, was varied at a specific location on the display. MVPA was then 

used to classify activation patterns elicited by colour changes, spatial frequency 

changes, or changes of both colour and spatial frequency. The hypothesis was that if 

only colour or spatial frequency changes between two displays, their classification relies 

on feature detectors (neurons that are processing either colour or spatial frequency) 

alone. If both features change, however, classification could rest on conjunction 

detecting neurons, or alternatively the additive effects of colour detectors and spatial 

frequency detectors. The results showed that the right anterior superior parietal lobule 

showed higher classification accuracy for location-specific conjunctions of colour and 

spatial frequency than for either component features in isolation or their average. The 

cortical location of the conjunction of colour and spatial frequency was in the superior 

parietal lobule.  Although the parietal cortex is consistently associated with feature 

binding, the precise cortical region activated within the parietal cortex is inconsistent 

across studies. An explanation for this maybe down to the differing task requirements; 

that is, the neural substrates are functionally heterogeneous depending on the 

paradigm employed, this may also be due to the diverse statistical contrasts employed 

across fMRI studies. 

In direct contrast to these results, it has recently been demonstrated that the neural 

signature of feature binding is present much earlier in the visual processing stream than 
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previously thought. Using MVPA, Seymour and Logothetis (2010) demonstrated that 

feature conjunctions are represented already in early visual cortices (Seymour et al. 

2009, 2010).  

A possible explanation for this contradiction, as suggested by Baumgartner et al. (2013), 

could be that their study was focused on the parietal cortex and was not optimally 

suited to investigate feature binding in occipital cortex. However, the results are not 

mutually exclusive and it is likely that the formation of feature conjunctions is 

dependent upon re-entrant connections between the parietal and occipital cortices 

(Treisman, 2006). This theory is supported by studies carried out with patients with 

parietal lesions (Friedman-Hill et al. 1995) and healthy occipital lobes. These case 

studies have shown preserved processing in the occipital cortex is not sufficient to 

result in consciously perceived feature conjunctions across the visual field.  

As discussed earlier in the chapter, when patient R.M. was unable to use spatial 

information to bind features together during simultaneous presentations of coloured 

letters, sequential presentation of the coloured letters allowed R.M. to use temporal 

information to bind features together which resulted in an increase in accurate feature 

binding reports. The role of temporal attention in feature binding is relatively 

unexplored, this is something I look to address in the first experimental chapter 

(Chapter 2), therefore I summarise the relevant literature below.  

Although attention is distributed in time as well as space, temporal attention is a 

relatively neglected area of research in comparison to spatial attention. However, 

temporal attention influences and facilitates behaviour in a similar way to spatial 

attention. If spatial attention is cued to a specific location we are quicker to react to 

changes at that location, for example, we are quicker to accelerate away from a traffic 

light if our spatial focus of attention is directed towards the location of the green light, 

rather than towards a nearby shop window (Coull, 2004).  Similarly, if our attention is 

cued to a time window in which changes are expected to occur our reactions are faster. 

Although not as well researched as spatial attention there have been several fMRI 

studies that have investigated the interaction between attention and time using two 

complementary approaches. Nobre and Coull, (1998) carried out one the of the first 
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fMRI studies which aimed to reveal the brain regions involved in directing attention 

towards a particular point in time instead of a particular point in space. In order to 

investigate this question, Nobre et al. (1998) developed a task that is known as the 

temporal analogue of the spatial orientating of attention task developed by Posner 

(1980). In the spatial version of this task, subjects respond as quickly as possible to 

visual targets appearing at peripheral locations. Immediately preceding the target is a 

cue that either correctly (“valid cue”) or incorrectly (“invalid cue”) predicts the location 

of the upcoming target. In the temporal version of this task, subjects respond as quicly 

as possible to the target which is preceded by either a valid or invalid cue which predicts 

the temporal moment the stimuli would appear. This tested the hypothesis that stimuli 

that occurred at predicted intervals were detected more quickly than those that did not 

appear at the predicted intervals (see Figure 1.4 below). Nobre et al. (1998) used both 

fMRI and PET in order to visual the neural network engaged during temporal attention 

versus spatial attention.  
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Figure 1.4 The visual display consisted of a central cueing stimulus and two 

peripheral boxes inside which the target appeared. The subjects task was to 

explicitly detect the peripheral target stimuli as rapidly and as accurately as 

possible. The task manipulated subjects’ expectations of where or when target 

stimuli would appear within an experimental display. A, attentional cues used to 

direct subjects’ attention to a particular target location or stimulus-onset time. 

The neutral cue provides neither spatial or temporal  information, the spatial cue 

directions attention to the left or right, the temporal cue directs attention to a 

short or long stimulus-onset time, and a space-time cue directs attention to both 

a location and stimulus onset. B,Performance was slower for invalid spatial and 

temporal cues. C, hemispheric lateralisation in the left an right parietal cortex for 

temporal and spatial orienting, repectively. (Taken from Coull, 2004).  

 

The fMRI analysis compared each condition (spatial, temporal and spatial-temporal) to a 

resting baseline.  Contrasting the spatial condition with baseline resulted in increased 

BOLD response in the right IPL, left occipital-temporal sulcus and left cerebellum. In 

contrast, relative to baseline the temporal condition was associated with left IPS, left 

lateral inferior premotor cortex and left cerebellum BOLD signal. Carrying out both tasks 

combined led to an increase in BOLD in the right TPJ, right IPS and left IPS.  
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The right hemisphere bias for spatial orienting in the study is consistent with previous 

studies (Corbetta et a. 1993; Nobre et al. 1997). Finding a left hemisphere bias for 

temporal orienting was a novel finding. However, in this experiment the subjects were 

significantly faster completing the temporal task than the spatial task, perhaps 

reflecting differences in task difficulty that may have confounded the analysis.  

On the basis of the inconsistencies across studies, experiment one of this thesis aimed 

to contrast the neural networks recruited during a spatial, temporal and feature binding 

task while controlling task difficulty and low-level stimulus differences. The aim was to 

identify whether there were any cortical areas that were specifically engaged during 

feature binding above and beyond those engaged during spatial and temporal 

attention. 

So far the literature discussed has focused on the cortical engagement during explicit 

feature binding. However, in recent years, many dissociations have been observed 

between conscious (explicit) and non-conscious (implicit) processing of visual 

information in neurological disorders, such as unilateral neglect or simultanagnosia. 

Brain damaged patients often possess high-level visual knowledge of which they are 

unaware. Berti and Rizzolatti (1992) showed that patients with neglect denied that an 

object is present in the contra-lesional visual field, and yet show semantic priming from 

that object. This is supported by further studies that were carried out with patient R.M. 

(Wojciulik and Kanwisher, 1998) that are discussed below.  

Following bilateral parietal damage, Friedman-Hill et al. (1995) found that R.M made an 

abnormal number of ICs between colours and shapes when asked to explicitly identify 

coloured letters. It was argued that this was evidence that the binding mechanism has 

been disturbed due to the loss of the ability to process spatial information and 

therefore use the ‘master map of locations’ to bind features. However, despite this, 

Wojciulik and Kanwisher (1998) demonstrated that R.M was sensitive to Stroop 

interference, suggesting that colour and form information was bound together, at least 

at some stage. In order to demonstrate this, Wojciulik et al. (1998) presented two words 

one above the other, on a black background. One word was coloured and the other was 

white. The task was to name the non-white colour as quick as possible. There were two 
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conditions named same object consistent (SOI) and different object inconsistent (DOI). 

In the SOI condition, the colour-name word and the colour of the word was inconsistent 

(for example, the colour name was purple and the colour of the word was green); the 

white word was consistent with the colour of the word (for example the white word 

would say green). In the DOI condition, the white word was inconsistent with the 

colour, and the coloured word was consistent between the name and colour (for 

example, the white word was purple; the coloured word had a matching colour and 

name – e.g. green name and green colour).  The results showed that R.M was slower to 

name the colour in the SOI condition that in the DOI condition. Within the same study, 

R.M was then asked to read the coloured word (colour neutral words were used). The 

latter task required R.M to have explicit knowledge of which word was bound with 

which colour, where as the former task tested whether there was any implicit 

knowledge of the binding between the word and colour of the word presented. As in 

previous explicit binding studies, R.M performed at chance; he was just as likely to read 

the word in white as the coloured or non-white word.  Several other studies have 

demonstrated implicit binding in patients with parietal damage and poor explicit 

binding (Ridoch, Nys & Heinke, 2002; Cinel & Humphreys, 2006).  

Furthermore, several studies in healthy subjects have shown that viewing a stimulus can 

lead to automatic and spontaneous binding that in turn modulates subjects RT to a 

single feature within the visual field (Melcher, Papathomas and Vidnyanszky, 2005). 

Further evidence of implicit feature binding has been demonstrated following the 

completion of a reviewing paradigm, which is highly relevant to the remaining 

experiments in this thesis and therefore explored in the section below.  

1.3 Implicit feature binding and the formation of object files 

Experiment 1 (Chapter 2) focuses on the processes involved in conscious explicit 

selection of task relevant sensory input, and differentiating between the neural 

networks engaged during either an explicit spatial, temporal or feature binding task. 

However, there is much evidence for implicit feature binding that is both spontaneous 

and automatic. Therefore, in experiment 2a, 3, 4 and 5 I explore the implications and 

after-effects of implicit feature binding. In the rest of this chapter I discuss the most 
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relevant literature surrounding the formation of objects and the implicit spreading of 

attention across features in the visual field.  

Previous experiments have demonstrated that directing attention to a specific colour of 

an object results in attentional modulation of the processing of task-irrelevant features. 

Melcher et al. (2005) carried out a seminal study in which the implicit spread of 

attention was examined. The results showed that implicit cross-feature spreading of 

attention takes place according to the veridical associations between the colour and 

motion signals (Melcher et al, 2005). These results were observed following the 

employment of a novel paradigm in which Melcher et al. (2005) tested whether global 

attentional selection affects other, task irrelevant features of unattended objects that 

share the attended feature. Further to this they looked to elucidate whether implicit 

attentional selection is determined by early feature binding that is based on the 

spatiotemporal correlation between different features or a binding mechanism that 

links features that belong to the same perceptual object. 

Their results showed that implicit attentional modulation spreads to task irrelevant 

features that are spatiotemporally inked with the attended features throughout the 

field, meaning that the binding is based on the veridical physical associations between 

the features rather than a binding mechanism that relies on the linking features that are 

part of the same perceptual object. This is different from explicit attentional selection 

inside the focus of attention (Sohn et al. 2004).  

Furthermore, it has been shown that implicit associations can continue to modulate RT 

for up to 4 seconds. A mechanism by which the product of feature binding is preserve 

products of the feature integration process, has been proposed by Kahneman, Treisman 

and Gibbs (1992). 

Building upon the FIT, Kahneman et al, (1992) proposed the ‘object file theory’ in which 

they assume that the result of the integration process is temporarily stored in what they 

call an “object file”.  Object files are proposed to contain information of the feature 

conjunctions of the corresponding object, together with information about the current 

object location. Kahneman et al, (1992) suggest that once formed, object files keep 

track of objects, in spite of changes in their features over time.  
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The object file theory suggests that the visual field is separated into perceptual objects 

and a relatively undifferentiated perceptual background. It is then assumed that the end 

product of perceptual processing is a number of object files, with each object file 

containing information about a particular object in the scene. A key assertion of the 

object file model, as proposed by Kahneman et al, (1992), is that an object file can only 

be addressed by its location at a particular time, not by any non-spatial feature.  

 

Therefore, when changes occur, current information about the changing or reappearing 

objects must be assigned to the existing object files; if this fails a new file must be set 

up. This is also a mechanism through which the visual system is proposed to provide 

perceptual continuity throughout change. Kahneman et al. (1992) argue that three 

distinct operations are needed to provide perceptual continuity throughout change: (i) a 

correspondence operation determining whether the object is “new” or whether it is an 

object recently perceived, now at a different location; (ii) a reviewing process retrieves 

the characteristics of the initial object, now no longer in view; (iii) a completion process 

that uses current and reviewed information to produce a percept of change or motion 

that links the two views. In order to test their theory Kahneman et al. (1992) developed 

the reviewing paradigm.  

 

The reviewing paradigm consists of two successive displays, labelled the preview field 

and the target field, respectively. In this paradigm, the preview field contains two or 

more different letters. Participants were then presented with the target field containing 

a single letter, which the participant was required to name as quickly as possible (RT 

was recorded in this task). There were three conditions: (i) same object - when the 

target letter matched any one of the preview letters in both form and location; (ii) 

different object -when the target matched one of the preview letters in form but not in 

location; (iii) and no match - when the target did not match the preview letters in either 

form or location.  
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Figure 1.5 Examples of displays used in Kahneman et al. (1992) object file 

paradigm.  The three headings (Preview Field, Linking Field and Target Field) 

show three successive displays, shown at different time intervals . The headings 

above each screen under Target Field in each case show examples illustrating the 

three main relations between the previous field and the target field, taken from 

Kahneman et al. (1992). 

 

In summary the results showed that if the letter that appeared in the target display was 

already part of the prime display the responses we significantly faster than when there 

was no match between the probe and prime letters, Kahneman termed this a non-

specific benefit. However, this preview effect was also much larger when the matching 

letter appeared in the same location as the previous letter, this was termed the object 

preview effect. On this basis, Kahneman et al. (1992) assert that the identity of the 

prime letter and the location of the prime letter are integrated into letter-specific object 

files. If both the location and form of the letter repeat then an “object specific preview 

benefit” was seen. However, if the location did not match but the letter did, Kahneman 

et al. (1992) observed a much weaker “non-specific preview benefit”. Non-specific 
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preview effects have different theoretical implications (Hommel, 1998). Non-specific 

effects are usually attributed to the priming of “type” representations; that is, stored 

descriptions of object features in long-term memory. It is proposed that each feature is 

represented by one neural code or representation, so that, if a feature is shared by 

more than one object in the field, the activation of a code does not unambiguously 

identify its source, meaning that ‘retrieval’ is not triggered. Object-specific effects, as 

observed in negative priming and preview tasks, imply that encountering a visual event 

does not only result in the priming of object types, but also in separate episodic 

bindings of the features belonging to the objects perceived.  

In order to explore object files further, the reviewing paradigm structure was employed 

in several experiments carried out by Hommel (1998). In these experiments participants 

performed a binary-choice task in response to the shape of a stimulus (termed S2) that 

was preceded by another stimulus (termed S1), the features of which were irrelevant.  

Unlike the paradigm that Kahneman et al. (1992) had designed, the experimental design 

allowed for an independent manipulation of the shape, location, and colour of the 

stimulus between presentation in S1 and S2, so that performance could be compared 

across either a no match, complete match or a partial repetition. The effects of feature 

repetitions were not independent of each other: repeating shape produced better 

performance than alternation, only if colour was also repeated, but worse performance 

than alternation if colour alternated; the same relationship was observed between 

shape and location. Hommel (1998) argued that given that complete matches led to 

about the same performance as mismatches, these results did not point to a benefit of 

repeating a particular feature conjunction (object specific benefit), as interpreted from 

by Kahneman et al. (1992). 



 
 

33 

 

Figure 1.6 A binding account of partial repetition costs. (A) The assumption is 

that feature codes representing stimulus 1 (S1) are temporally integrated into a 

coherent event file. If relations between the features within this event file 

completely match or completely alternate then these bindings and reaction time 

performance is unaffected. However, if there is a partial repetition leads to the 

recall of incorrect event files which led to conflict and hence leads to a slower 

performance. The same logic applies when a response (R1) is integrated with S1 

(B). Taken by Hommel and Colzato (2004).   

 

 These data suggested that instead of an object specific benefit, what was being 

observed was in fact a partial repetition cost. It was further demonstrated that the 

contents of object files were not restricted to just stimulus features. Following the 

adaptation of the reviewing paradigm (Figure 1.4 - B), participants were required to 

make a speeded button press on viewing the initial stimulus (S1 - left R or right R in 

Figure 1.4). Subjects were told that this response was unrelated to the stimulus and not 

relevant to the response required during S2. This modification enabled Hommel (1998) 
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to observe whether the response that arbitrarily co-occurred with the onset of S1 

became bound with the features of S1. The relationship between the motor response 

required during S1, and the motor response required during S2, was then examined in 

order to assess whether partial repetition costs were present when the motor action 

alternated between S1 and S2, as opposed to when it repeated, and furthermore 

whether this interacted with the partial repetition of stimulus features.  The results 

showed that the repetition or alternation of stimulus features also interacted with 

response repetition. For example, response repetitions were faster and more accurate if 

stimulus shape was also repeated than if shape alternated, whereas response 

alterations were faster and more accurate if shape alternated rather than repeated.  

In experiments 2a 3, 4 and 5 of this thesis, I adapt the reviewing paradigm in order to 

differentiate a partial repetition cost caused by the alteration of either a task irrelevant 

feature or a task relevant feature. In order to do this two partial repetition costs are 

calculated with two separate baselines. This also allowed me to control for a motor 

switch cost that may be confounding the RT observed in trials in which the task relevant 

feature alternates. Further, in order to explore the limitations of object files, 

experiment 2B explores whether object files exist on a purely perceptual level; that is, 

whether conceptual information is integrated automatically along with the perceptual 

features, or whether conceptual information is something that would become 

integrated over time and stored in long-term memory structures. The literature 

surrounding the integration of semantic information is discussed in more depth in 

Chapter 3.   

1.4 The neural correlates of object files 

A single study has previously combined the reviewing paradigm with functional 

neuroimaging (Keizer, Colzato and Hommel, 2008) and the stimuli used in this 

experiment were already complex, specifically houses and faces.  In order to expand the 

limited literature that addresses the cortical areas engaged during the formation of 

object files, and possibly feature binding, experiment 4 of this thesis combines the 

reviewing paradigm with fMRI. However, unlike the experiments discussed below, 

experiment 4 of this thesis uses simple stimuli in order to avoid the possible confounds 
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of using already complex stimuli such as houses and faces.  I will discuss the current 

literature surrounding the neural correlates of object based attention and object files 

below.  

According to the integrated competition model, directing attention to one feature of an 

object enhances neural activity in the cortical module encoding that feature, which then 

spreads to different modules that encode the other features of the object. This results 

in activation of the entire network of specialised modules. This process is suggested to 

underlie the binding of features of the attended object into a unified perceptual 

experience. This model was extended in the incremental grouping model (Kanwisher, 

McDermott & Chun, 1997) which proposes that feature binding involves the spread of 

enhanced neural activity, across the network of visual areas, that encode the features of 

an object. It is thought that this is achieved via re-entrant connections between the 

occipital and parietal cortices (Schoenfeld, Hopf, Merkel, Heinze, Hillyard, 2014, Bouvier 

&Treisman, 2010). 

 A key prediction of object-based theories is that directing attention to a particular 

feature of an object, such as its shape or colour, results in the whole object being 

selected, including both task relevant and task irrelevant features. Support for this 

proposition comes from an fMRI study by O’Craven, Downing and Kanwisher, (1999). In 

their study they had a stimuli comprising three elements: a face, a house and direction 

of motion. The face was transparently overlaid onto the house and either the house or 

face could move in one of four cardinal directions. In half the blocks subjects viewed a 

series of stationary houses superimposed on faces that oscillated along one of four axes 

with a new display presented every 1.4s (Figure 1.7). In the other half of the blocks, the 

stimulus was identical except the house was moving and the face was stationary.  

The subject’s attention was directed to a different attribute in each block by instructing 

them to monitor the images for consecutive repetitions of either the face, the house or 

the direction of motion. In order to measure the neural response to each part of the 

stimlulus, O’Craven et al. (1999) employed a functional localiser in order to define the 

three region of interest: FFA, PPA and V5/MT, in each subject. They then calculated the 

average percentage BOLD signal increase relative to baseline (fixation) for each of the 
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six experimental conditions. The six conditions consisted of either the house or face 

moving and the subject would be asked to attention to either the face, house or 

direction of motion.  

 

Figure 1.7 shows the stimuli used in O’craven et al. (1999) study. The subject was 

asked to either attend to the face, house or direction of motion. Either the house 

or the face would move in one of four directions. The subjects carried out a 

repetition detection paradigm. The increase in BOLD signal from the three ROIs 

were then recorded and contrasted to baseline in order to index the amount of 

processing of each element of the display. Taken from O’Craven et al . 1999.  

 

There were three key results. First, in each region the change in fMRI signal was greater 

when the subjects attended to the preferred attribute for that cortical region (i.e. the 

FFA for faces) than when they attended to a different attribute of the same display, for 

example, the FFA did not show preferential BOLD to a moving house). This was 

consistent across all three ROI’s. A purely spatial model of selective attention cannot 

account for these results; if space was the unit of selective attention, then all three 

parts of the stimulus should be processed, and hence result in an increase in BOLD in all 

three areas. The second key result showed that when subjects attended to motion, 

there was a greater signal change observed in the FFA when the faces moved (houses 

were stationary) than when the houses moved (with faces stationary). The same results 

were seen in the PPA: signal change was greater when the house moved than when the 

face moved. This modulation of signal was observed even though both faces and houses 
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were present in each stimulus. Finally, signal change was greater in V5/MT even when 

the subjects attended to only the identification of a house or face, which happened to 

be moving.  In summary these results support the theory of object based processing; 

when subjects were asked to attend to the face that was moving, both FFA and MT 

showed and increase in BOLD. This suggests that even though motion was an irrelevant 

feature, attention implicitly spread across the face and direction of motion. However, 

no increase was seen in the PPA, which does not support a space based model of 

attention which would have predicted that all three features would have been 

processed to an equal level as they shared the same space. Furthermore, these results 

cannot be explained by a feature based model of attention as otherwise we would have 

expected to see a sole increase in BOLD signal in the area that was functional 

specialised in processing the attended feature. Instead O’Craven et al. (1999) argue that 

even when a task requires that subjects select a given visual attribute, both attributes of 

the attended object are automatically selected (motion and face or motion and house). 

 

Figure 1.8 shows the results from O’Craven et al. (1999). For each condition the 

average per cent signal change across subjects is given for each ROIs.  The grey 

boxes show the greater response in each ROI to the attended attribute compared 
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with the unattended attribute. The black boxes show the greater response to the 

irrelevant attribute of the attended object compared with the unattended 

attribute of the unattended object, as predicted only by object-based theories of 

attention. Taken from O’Craven et al. (1999). 

 

The results displayed in figure 1.8 are compatible with the ‘biased competition’ model 

(Desimone and Duncan, 1989) of attention. Although the results show that the 

irrelevant feature was processed, as indexed by the increase in BOLD in the respective 

ROI, the percent signal change was smaller when the feature was irrelevant as opposed 

to relevant to the task. The biased competition model posits that objects trigger 

neuronal representations that will compete for attentional resources. These 

competitive interactions have the ability to be biased in preference of one stimulus due 

to many different neural mechanisms – such as feedback bias. This may be weighted in 

favour of top down feedback (task relevance) or bottom up influences (a stimuli being 

more novel than another). Finally the ‘biased competition model’ posits that feedback 

biasing is not purely the result of spatial location. Biasing during processing can be due 

to a stimulus possessing a more relevant feature. Therefore the data from O’Craven et 

al. may be interpreted as follows: The instruction to attend to one part of the stimuli 

(such as motion) results in a top down bias signal (Kastner, Pinsk Weerd, Desimone & 

Ungerleider, 1999) which enhances responses in regions coding that part of the stimuli 

(i.e. V5/MT for motion). This increased response to the attended part causes an 

enhancement of the neural response to the other attributes of the same object (i.e. the 

PPA will show an increased response to the house). This enhancement occurs even 

when the task does not require the subjects to bind the visual attributes of form and 

motion.  This study complements the object file model which proposes that all features 

of an object become spontaneously integrated and stored in an object file upon 

viewing.  

Further support for this notion comes from a recent fMRI study by Yi et al. (2008) who 

found that face selective regions in the FFA exhibited significantly less activation when 

(task relevant) faces were repeated in (task irrelevant) continuous versus discontinuous 

trajectories, suggesting that discontinuity caused featurally identical objects to be 
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represented separately. This data indicate that spatiotemporal continuity modulates the 

neural representations of objects, where a continuous trajectory may lead to the 

updating of an object file, whereas a discontinuous trajectory may lead to a new object 

file to be created each time that stimulus is encountered. This supports the location 

driven model of object files as suggested by Kahneman et al. (1992). 

This data supports the observation that when two stimuli are presented in close spatio-

temporal succession there is an interaction that is dependent on the relationship 

between the features of the newly presented object (S1) and the original object (S2). 

The object file model predicts that that when the newly presented object is a partial 

repetition of the original object there is a reactivating and updating of the object file 

formed during the initial representation, with the new feature conjunction information 

gained from viewing the second presentation of the stimulus. This process carries with 

it a measurable reaction time cost (termed partial repetition cost), however the neural 

mechanisms underlying the hypothesized object file retrieval are unknown. In order to 

identify the neural correlates of the partial repetition cost Keizer, Colzato and Hommel, 

(2008) carried out an fMRI study to test whether reviewing a particular stimulus 

reactivates the features of the object it previously accompanies. The features used to 

address this question were motion, faces and houses, which activate distinguishable 

regions of the occipito-temporal cortex (O'Craven & Kanwisher, 2000).  

These features were also chosen as they have been shown to integrate previously 

(O’Craven et al. 1999). On each trial, either the face or the house moved in one of two 

possible directions and participants were instructed to respond as quickly as possible to 

the direction of the motion in the object that was presented second (S2) 
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Figure 1.9 shows an example of a trial. S1 consists of a face superimposed on top 

of a house, however either the face or house can move diagonally in the 

direction shown by the arrow. Subjects are advised that S1 is irrelevant however 

they are to passively attend to it. When S2 appears they are instructed to 

respond to the direction of motion as quickly as possible disregarding the house 

and the face stimuli. Partial repetition costs are often seen when there is a 

partial repetition between S1 and S2 e.g. if a house moves top right – bottom left 

during S1 while the house remains stationary, however during S2 the house 

moves top right – bottom left during S2 there is a partial repetition cost seen due 

to the repetition of one feature (direction of motion) and not the other (house or 

face). This reaction cost is measured against reaction time observed when all 

features change.  

 

In order to measure the presence of a reactivation effect in the PPA, Keizer et al. (2008) 

contrasted the conditions in which the direction of motion repeated between S1 and S2 

but the object that moved (house or face) alternated (partial repetition trial) against a 

trial where the motion alternated between S1 and S2 and the object which moved also 

alternated (all features change trial). If repeating the direction of motion reactivated the 

representation of the house, it would be expected that there would be an increase in RT 

and increased activation in the PPA compared to the condition in which all feature 
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changed between S1 and S2. The results confirmed their hypotheses: alternating the 

object that moved (face/house) but repeating the direction of motion was associated 

with a RT cost relative to alternating the direction of motion. Furthermore the PPA was 

more active on these ‘partial repetition’ trials that on ‘change all’ trials.  They also 

carried out a correlation between the RT cost as measured at the individual level and 

the level of activation in the PPA. There was a significant positive correlation (the higher 

the RT cost, the higher the BOLD signal in the PPA).  

 

Figure 1.10 shows the results from Keizer et al. (2008). Diagram A. shows the 

difference in RT during a trial where the motion direction repeated (but object 

moving (house) alternated) versus trials where the motion direction and the 

object moving (house) alternated. The right hand side of the graph shows the 

measurement of BOLD signal in the PPA during those trials where motion 

direction repeated or motion direction alternated. Diagram B shows the 

correlation between the RT cost observed at the individual level versus the % 

signal change observed in the PPA. Taken from Keizer et al . (2008). 

 

However, Keizer et al. (2008) did not reproduce the results in the FFA. Although they did 

observe a significant partial repetition cost they did not see a significant difference in 

the percentage signal change in the FFA. The correlation between individual reaction 

time costs and the percentage BOLD signal change was marginally significant however it 

was not as robust as the correlation observed in the PPA. 
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Figure 1.11 the results seen in the PPA were not mirrored in the FFA. Diagram A. 

shows the RT cost observed when motion direction repeated but the object that 

moved (face) repeated versus trials where both the motion direction and the 

object that moved (face) alternated. Although the behavioural result was present 

and the correlation between BOLD signal and RT cost was both significant and 

positive.  

 

This experiment provides support for the object file hypothesis and supports the view 

that a presentation of a stimulus feature that overlaps with a previous object 

representation leads to reactivation of the feature that it was previously bound with. 

Keizer et al. (2008) go on to argue that the positive correlation between the observed 

reactivation of the PPA and partial repetition cost is consistent with the possibility that 

the neural reactivation caused the corresponding performance costs. However a 

correlation cannot be used to infer causation therefore I feel this notion may be 

stretched beyond what the data can offer.  The lack of activation in the FFA is not 

unsurprising if you consider the ‘special’ role that faces play in perception. There is 

evidence that stimuli of greater biological significance such as faces, attract more 

attention and induce more activation (Vuilleumier, 2000; Ro, Friggel & Lavie, 2007). This 

may have led to an increase in processing of the face stimuli in each trial and hence a 

larger BOLD signal in each trial, hence leading to a non-significant difference between 

conditions.  

The dissociation between areas of the brain in processing features is useful when 

looking at the processing conjunctions of features. Although a partial repetition cost has 

been shown amongst low-level features such as colour and motion there has not been 

an fMRI study that looks for unique activation within these areas using the above 
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paradigm. Faces and houses are complex stimuli and may lead to potential confounds as 

observed with face stimuli.  

As previously stated, experiment 4 (Chapter 5) aims to expand the functional 

neuroimaging literature exploring the neural correlates of object files. However, in 

order to avoid the confounding effects of using already complex stimuli, low-level 

features such as motion and colour are employed. Further to this, a novel adaptation is 

incorporated in order to answer the question of whether task irrelevant feature 

changes get processed via a separate cortical route to that of task relevant feature 

changes.   

1.5 Feature binding and the aim of this thesis 

At the outset of this Introduction, feature binding was introduced as a problem that the 

brain has to solve during the process of perception.  The neural networks engaged 

during both explicit feature binding and implicit feature binding, were briefly 

introduced, as this is what will be explored in fMRI Experiments 1 and 4, respectively. 

Following this, other sections have outlined competing models of feature binding and 

provided a review of the relevant feature binding literature. Below the experiments 

comprising the bulk of this thesis are outlined.  

The first experimental chapter is an event related fMRI that employs a novel paradigm 

in order to compare the neural correlates of spatial detection, temporal order 

judgement and an explicit feature conjunction judgement. Previously, studies have 

either compared a feature conjunction task to either a spatial task or a temporal task, or 

a temporal task to a spatial task and in doing so have often not controlled for low-level 

stimuli differences (Shafritz et al. 2002). However, no study, to the best of my 

knowledge, has compared all three tasks whilst controlling for difficulty and low-level 

stimulus differences. By controlling these factors, experiment 1 aimed to tease out 

areas of the brain that may be uniquely engaged during feature binding by comparing 

all three tasks. As previously mentioned, there is evidence that unique areas engaged in 

feature binding may lie in the parietal cortex, on the contrary recent studies have 

suggested that coding for conjunctions can be detected at lower level that are relevant 

to the stimulus being bound. For this reason both a whole brain analysis and a region of 
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interest analysis focussing on V1, V4 and MT will be implemented in order to address 

this question.  

Experiment 2a and 2b (Chapter 3) tests the boundaries of the object file model 

previously discussed. By using two non-spatial features (colour and motion), I examine 

the composite elements of an object file, and also the conditions that lead to a partial 

repetition cost. Using semantically linked words, I test whether partial repetition costs 

can be caused by more than just veridical features, do object files also carry or link to 

long term memory structures allowing for semantic cross-over for physically dissimilar 

stimuli? The literature surrounding integration of semantic information has not been 

introduced in this chapter, in order to avoid repetition; however this is discussed in the 

introduction of experiment 2b. Further to this, I separate the partial repetition cost 

caused by non-relevant feature changes and those caused by irrelevant feature 

changes. Alongside the important theoretical implications of the role of irrelevant 

features in feature binding this also allows us to control for motor switch costs across 

conditions which was not controlled in the earlier studies (Kahneman et al. 1998) and 

were controlled by introducing a further motor component by later studies (Hommel, 

2004). 

Following the identification of flaws in experiment 2a, experiment 3 (Chapter 4), 

employs two integral modifications in order to increase the robustness of the results:  

firstly, shape and location were introduced as features which were controlled and 

manipulated, secondly, the area over which the stimuli was presented was decreased. 

This made the stimulus more object like and therefore led to a more robust partial 

repetition cost driven by both an irrelevant and relevant feature change. This 

modification, I ask the question of whether different features (shape, location, colour or 

motion) lead to equal repetition costs, and therefore play an equal role in the formation 

and reactivation of object files. In order to answer this question, subjects completed 

four separate sessions in which the feature that was relevant and irrelevant to the 

response changed between shape, colour, motion or location.  

Chapter 5 looks to establish the whether there is a neural network engaged the 

formation or reactivation of an object file. The functional neuro-imaging literature is 
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severely limited in this area (Keizer et al. 2008) and previous studies have predefined 

regions of interest prior to analysis, therefore in order to allow a thorough investigation 

of the areas of the brain engaged during the formation or reactivation of an object file, 

a whole brain analysis was carried out.  During the functional neuroimaging, one feature 

block (motion) is completed as opposed to the four completed in chapter 4, meaning 

motion is the feature which is task relevant and the subjects must respond to; location, 

shape and colour are task irrelevant. This allows us to look at feature specific processing 

areas (MT) alongside a whole brain analysis in order to identify the neural correlates of 

a partial repetition cost.  

Finally the, first experiment to employ cTBS alongside the reviewing paradigm, 

experiment 5 (Chapter 6) looks to establish the causality of the areas that showed a 

functional increase in BOLD in experiment 4, during in the updating or reactivating of an 

object file. The aim of this experiment was to establish the causality of these areas 

within the formation and updating of object files.  In order to do that cTBS is applied 

offline prior to the subjects carrying out the task in three separate cortical areas, 

namely the right LOC, left PCG and left SFG. The RT modulation is then contrasted to a 

sham condition, in which no cTBS is applied.  

These experimental chapters are complemented by a general discussion (Chapter 7) in 

which the findings from the five experiments are summarised, and integrated, and 

where key outstanding questions are considered in the context of the diverse literature 

presented in the introduction.  
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Chapter 2 - Experiment 1 

Using fMRI to distinguish the neural networks engaged during visual feature 

binding in contrast to temporal order and spatial location detection  

2.1 Introduction 

The concept of functional specialisation is one of the key principles of visual processing. 

Originating from lesion studies carried out in the macaque monkey (Cragg 1969; Zeki et 

al. 1991), there is now a large body of evidence demonstrating functional specialisation 

in the human visual cortex (Jbabdi et al. 2012; Kanwisher, 2010). The modularity of 

visual processing is evident from the earliest stages of cortical visual processing. Colour 

and motion are processed in two functionally and anatomically distinct cortical areas, 

V4 and V5/MT respectively (Vaina, 1994). Although not exclusively specialised, V4 plays 

a key role in processing colour (Zeki, 1973, 1974b, 1977), that is in contrast to the 

processing of motion, which is shown to take place in visual area V5/MT (Bartels & Zeki, 

2000; Shipp & Zeki, 1995).  

 

As information progresses, two streams of processing emerge; namely the ventral and 

dorsal streams. These pathways are not only distinguished on functional grounds but 

also because they are subserved by distinct anatomical substrates in the brain 

(Ungerleider & Haxby, 1994). Much evidence shows that areas in the ventral (‘what’) 

pathway, extending from the striate cortex to the infero-temporal cortex, play a major 

role in object recognition (Haxby et al. 1991; Mishkin, Ungerleider & Macko, 1983). In 

contrast, spatial processing and sensorimotor transformations, necessary for visually 

guided action, are believed to be coordinated by the dorsal (‘where’) pathway, which 

originates in V1 and extends forward to the parietal cortex (Goodale & Milner, 1992). 

 

Vision is an active process in the sense that the brain is constantly creating the visual 

environment in which we interact. In order for this to be carried out efficiently and 

accurately there is a need for both parallel and simultaneous processing of information. 

The seamless efficiency with which the brain computes and integrates information may 

lead to the conclusion that perception is effortless and integration of separately 
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processed information is integrated with little or no cognitive effort. However, swhen 

this ‘binding’ mechanism breaks down or is perturbed we can observe the extent of the 

division of labour during visual processing, which in turn, requires a high level of 

integration when reconstructing a visual percept.  

 

As discussed previously in Chapter 1, Balint’s syndrome is a rare condition that allows a 

glimpse into a visual world where integration has failed (Rafal, 2000). The mismatch of 

correctly perceived features, across space and between objects, has been termed an 

‘illusory conjunction’ (Treisman, 1982). The report of an illusory conjunction is thought 

to reflect a failure of the feature binding mechanism, as the result is the incorrect report 

of a pairing of correctly perceived features.  Illusory conjunctions and the feature 

binding difficulties observed in patients with visuo-spatial deficits have led to the 

conclusion that there is a high level of integration being performed within the visual 

processing stream. These observations lend support to a model developed by Treisman 

and Gelade (1980) called the ‘feature integration theory’ (FIT). This model proposes the 

process by which visual integration might be achieved. The main assertion of the FIT is 

that features can only become bound together following the allocation of spatial 

attention. Spatial attention is proposed to feature ‘glue’, which is to say that when 

spatial information is not available, or a patient has lost the ability to process space, 

features are prevented from becoming bound and therefore objects are seen 

incorrectly or not at all.  

 

Although many studies have shown that spatial information plays a pivotal role in the 

processing of the visual scene (Robertson, 2003; Holcombe, 2009), the exact nature of 

this role is still highly debated (Shafritz, Gore & Marois, 2002). Since the FIT was 

proposed in 1980, the integrative mechanism has proved to be more complex than the 

FIT suggests, with studies showing successful feature integration without attention 

(Wojciulik & Kanwisher, 1998) and even without awareness (Melcher, Papathomas, 

Vidnyánszky, 2005).  

 

As previously explored in Chapter 1, much evidence for feature binding and the possible 

mechanisms of action comes from patient studies.  A key patient that has been 
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observed extensively during feature binding tasks is Patient R.M.  R.M was diagnosed 

with Balint’s syndrome following two strokes that led to the obliteration of both of his 

parietal cortices. One of R.M.’s main symptoms is the loss of spatial information, which 

led to high levels of illusory conjunctions. These illusory conjunctions were observed 

when the subject was presented with two coloured letters side by side and asked to 

report the form and colour pairing in-front of him. The results showed that patient R.M 

often paired the wrong letter with the wrong colour, thus suggesting that the loss of 

spatial information was a key reason why the patient could not accurately bind features 

together. To determine whether R.M. would exhibit feature binding deficits when the 

stimulus was presented across time instead of space, that is in the same spatial location 

but at different times, the patient completed the same task again but with the stimulus 

presented sequentially. The results showed a significant reduction in illusory 

conjunctions when the letters were presented sequentially in the same location as 

opposed to concurrently across different locations; this prompted the interpretation. 

This case study prompted the conclusion that the feature binding deficits exhibited by 

patient R.M. resulted not from a breakdown in the neural apparatus used to integrate 

features per se, but from impairment in the apparatus needed to represent the space 

that the object is bound within  (Cinel & Humpreys, 2006). 

 

On this basis, the aim of this study was to distinguish the three potentially separate 

processes apart of spatial processing, temporal processing, and explicit feature binding. 

To achieve this I developed a paradigm in which subjects were either cued to make a 

feature conjunction judgement (report the combination of motion and colour), a spatial 

discrimination judgement (report whether the patch of moving dots is more to the left 

or right of a central fixation point), or a temporal order judgement (report whether the 

patch of dots appeared before or after the fixation cross changed colour).  During the 

feature conjunction task, subjects needed only attend to the conjunction of features 

(the combination of colour and direction of motion) and were told that the spatial 

position and temporal onset of the visual stimuli was irrelevant. Similarly, when subjects 

complete the spatial discrimination task, they were instructed to attend only to whether 

the patches were more to the right or left of fixation, with the feature conjunction 

(colour and motion pairing) and the temporal onset of the dots considered irrelevant. 
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Finally, when attending to a temporal onset (did the dots appear before or after an 

event?) the feature conjunction and the spatial position of the dots were task irrelevant. 

Contrasting activation states associated with these judgements while holding the stimuli 

constant allowed the direct contrast of neural activity when either explicitly attending 

to space, time, or a conjunction of object features.  

‘Where?’ – spatial discrimination task 

In the current paradigm, the feature conjunction task was contrasted with a spatial 

discrimination task in which subjects judged whether the green and red patches of dots 

were more to the left or right of fixation. The patches of dots were independent of one 

another; therefore the position of one patch of dots could not be predicted from the 

position of the other patch. This type of spatial processing is often referred to as 

coordinate spatial processing. Attending to the coordinate spatial relations of an object 

is distinct from attending to the identity of objects (Amorapanth, Widick and Chatterjee, 

2010). Coordinate representations, and hence spatial discrimination, are critical to 

guide movements such as reaching and navigation, which may lead to the assumption 

that the dorsal pathway may be engaged during such tasks.  There is much research to 

support that the brain areas engaged during a spatial discrimination task are lateralised 

to the right side of the brain (e.g. Kosslyn, 1987).  

Since then, two fMRI studies have shown that an increase in the right parietal cortex 

correlated with coordinate relation processing (Baciu et al. 1999; Trojan et al. 2002).  

Furthermore, the dorsal pathway is hypothesised to play a major role in spatial 

localisation of stimuli, and be a key component in the action pathway. Specifically, it is 

thought the cortical regions within the dorsal pathway compute the spatial relations 

between objects in the environment to allow for effective interaction. Therefore, as per 

the dorsal pathway shown in Fig 2.1, it was hypothesised that the spatial discrimination 

judgement would lead to a significant increase in BOLD along the areas in the dorsal 

pathway such as V1, right intra-parietal sulcus and right superior parietal lobule.  

‘When?’- temporal discrimination task 

Although temporal information and explicit temporal order judgements are crucial to 

many aspects of human performance (Rao, Mayer & Harrington, 2009), temporal 
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attention remains a relatively impoverished area of research, in contrast to spatial 

attention.  

 

Processing temporal information can occur on many scales. Battelli et al. (2007) asserts 

that the most complex level of temporal processing is at the intermediate scale 

(between 1 and several seconds), yet this is also the least understood (Burr & Marrone, 

2006). As previously explored in Chapter 1,  a temporal analogue of the spatial orienting 

of attention task (Posner 1980) was developed in order to identify the cortical network 

engaged during temporal attention (Coull & Nobre, 1998). This enabled the dissociation 

of spatial and temporal attention by solely manipulating the top down allocation of 

attention to either a point in space or a point in time, yet keeping the task identical and 

equating low-level stimulus characteristics. The visual display consisted of a central cue 

and two peripheral boxes inside which the target appeared. The subjects’ task was to 

explicitly detect the peripheral target stimuli as rapidly and as accurately as possible. 

The task manipulated subjects’ expectations of where or when target stimuli would 

appear within the experimental display. Using fMRI and PET, Coull and Nobre (1998) 

observed a striking hemispheric lateralisation for attention to spatial location versus 

temporal interval with preferential activation for the right and left parietal areas, 

respectively.  

 

However, due to possible task confounds and different methodology, evidence in 

support of hemispheric lateralisation has not been consistent. During the 

aforementioned study of Coull and Nobre (1998), the spatial condition elicited a 

significantly slower RT in contrast to the temporal attention task, indicating a higher 

level of task difficulty, which has in turn been shown to be associated with changes in 

activity in the right parietal cortex (Drager et al. 2004). 

 

Further evidence of a lateralised domain specific attentional network comes from a 

recent fMRI study in which BOLD selectively increased in the left temporo-parietal 

junction (TPJ) during a temporal order judgement (TOJ) in contrast to a feature 

judgement (Davis et al. 2009). Participants were asked to either make a shape 

judgement or a TOJ of rapidly presented, spatially separated stimuli. Participants were 
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presented with a sequence of two rectangles, which contained two grey lines of 

different widths. Prior to each trial, participants were cued by a coloured central 

fixation point to either attend to the width of the grey line or the temporal onset of the 

rectangles. Depending on the conditions, they were then required to identify which grey 

line was wider or which rectangle appeared first. This paradigm allowed researchers to 

compare the neural response to physically identical stimuli, and observe differences in 

BOLD specific to each task, namely the temporal task and the feature task. In line with 

the hemispheric lateralisation of temporal attention reported by Coull and Nobre 

(1998), Davis et al. (2009) reported the selective involvement of the left TPJ, the left 

supra-marginal gyrus (SMG) and the left IPS during the TOJ whereas the contrast of 

shape>temporal order judgement led to no significantly activated voxels. Although the 

physical stimuli were matched between tasks, the shape judgement yielded a 

significantly lower accuracy compared with the temporal order judgement; therefore 

leaving open the possibility that the observed task-specific activations were driven by 

systematic variation in task difficulty rather than the engagement of categorically 

distinct perceptual or attentional processes. In addition, compared with Coull et al. 

(1998), different statistical contrasts were used to identify the different cortical areas 

active during a temporal task. While Coull et al.(1998) compared a temporal and a 

spatial task independently to a baseline (BL) and then contrasted the two outcomes 

with each other, Davis et al. (2009) directly compared temporal attention to feature 

based attention. Due to the subtractive nature of fMRI statistics, this inconsistent 

comparative approach could lead to results that are not necessarily reflective of 

anything but the contrast that is calculated during that specific analysis, and therefore 

not comparable across the literature.   

 

Further conflicting results are born out of studies of neural interference. Patients with 

right (Baylis et al. 2002; Rorden et al. 1997; Robertson et al. 1998; Sinnett et al. 2007; 

Snyder and Chaterjee, 2004) or left (Baylis et al. 2002) hemisphere injuries can exhibit 

biased performance on a TOJ. However, recently Woo, Kim and Lee,, (2009) reported 

that disrupting the right but not the left parietal cortex, using transcranial magnetic 

stimulation (TMS), led to biased TOJ performance. Bringing together results primarily 

from TMS studies, Battelli et al. (2007) recently proposed that temporal information is 
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processing along a ‘when pathway’ that co-exists alongside the dorsal and ventral 

streams (see Fig 2.1).  

 ‘What?’ – feature conjunction task 

Although feature binding has been correlated with activity in the parietal cortex 

(Friedman-Hill et al. 1995; Karatekin et al. 1999; Ashbridge et al. 1997) this may be 

reflective of the spatial context in which the information is being bound. Recently, 

evidence of colour-motion binding, as early as V1, has been observed (Seymour et al. 

2009).  As noted earlier, colour and motion are processed primarily in V4 and V5/MT 

respectively. The selectivity of these areas has been confirmed causally in patients with 

lesions in the area of V4 showing impaired colour perception but spared motion 

perception, whereas the opposite is true for lesions to the V5/MT complex (Damasio, 

1985; Vaina, 1994).  

In order to establish whether the lower visual areas do contain feature conjunction 

information, Seymour, Clifford, Logothetis and Bartels (2009) used fMRI and MVPA to 

explore whether lower visual areas such as V4 and V5/MT contain information 

regarding the conjunction of motion and colour, or contain purely information on either 

motion or colour.  The stimuli consisted of two transparent motion stimuli that each 

contained the same two colours and two motion directions but differed exclusively in 

their unique pairings, (i.e red clockwise and/or green anticlockwise). Using pattern 

classifiers, Seymour et al. (2009) found that information about the colour and motion 

pairing was present to varying extents across the visual cortex. They found evidence for 

conjunction coding as early as V1 and across the entire visual cortex. However, no 

colour information was present in V5/MT. A further study by Seymour, Clifford, 

Logothetis and Bartels (2010) was carried out using the same methodology. However 

this time they looked at the conjunction of colour and orientation. Again fMRI and 

pattern classifiers were applied to examine whether BOLD signals in human visual 

cortex could correctly discriminate stimuli that differed only by their specific pairing of 

colour and orientation. Their results showed that conjunctions of colour and orientation 

could be decoded from patterns of activation as early as V1. However they also found 

that the most informative voxels about the conjunction of colour and orientation did 
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not overlap with voxels most informative about colour or orientation alone. This 

suggests that separate functional units may be tuned to specific combinations of colour 

and orientation (Seymour et al. 2010) – a neural ‘signature’ of feature binding. 

In order to fully examine the areas of the brain that were engaged in an explicit feature 

conjunction task, experiment 1 of this thesis included an ROI analysis on areas V1, V4 

and V5/MT.  V4 and V5/MT were specifically examined due to their specialised role in 

processing colour and motion respectively. If feature binding was to take place in the 

lower visual cortex and in areas specific to processing those features then a task that 

requires attention to feature conjunctions should elicit an elevated BOLD signal 

compared with spatial discrimination and temporal order judgements. 

 

Figure 2.1. The three proposed pathways of visual processing of temporal, spatial 

or object based processing. The dorsal pathway is represented using blue dots, 

the temporal pathwa using red dots and the object-based pathway using green 

dots. The newly proposed temporal pathway (Battelli et al, 2007) extends from 

V1 into a larger network with the key anatomical locus being the TPJ within the 

IPL. However, the pathway is thought to include a wider network of the right 

ANG, the SMG and the STG. MT = medial temporal; IPS = intra-parietal sulcus; SPL 

= superior parietal lobe; ANG = angular gyrus; SMG = supramarginal gyrus; IPL = 
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inferior parietal lobe; TPJ = temporo-parietal junction; STG = superior temporal 

gyrus; ITG =inferior temporal gyrus. 

 

Dual tasks 

To permit manipulation of attention without altering the physical properties of stimuli, 

all information for all possible tasks had to be present in each trial. Therefore, it was 

important to ensure that top-down selective attention was engaged. The load theory of 

attention (Lavie, 1995, 2005) suggests that the extent to which irrelevant stimuli are 

processed depends on the level of perceptual load required by the prevailing task. To 

ensure that selective attention was under sufficient load, participants completed some 

trials in which they attended to two aspects of the stimuli. For example, the spatial (S), 

temporal (T) and conjunction (C) tasks were combined into three dual task conditions: 

ST, TC and SC. Statistically contrasting TC trials to SC trials (TC-SC) would then allow us 

to observe areas that are specifically engaged during temporal order judgments that 

may not be observable under the low perceptual load of the single temporal trials.  An 

alternative approach would have been to increase the difficulty of the single task 

conditions; however, most subjects were at the highest difficulty setting in order to 

calibrate accuracy to 70%. Therefore increasing attentional load was considered the 

most appropriate method for increasing task demands.  

In summary, the aim of this experiment was to establish whether there is a dedicated 

neural circuit for explicit, task-relevant feature binding over and above processing of 

space and time. More specifically, are distinct brain areas selectively recruited during 

the reporting of an explicit conjunction of motion and colour in contrast to a spatial 

discrimination task or a temporal order judgement? To examine this all low-level task 

differences and task difficulty were held constant or matched as closely as possible 

across the three tasks.  
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2.2 Materials and Methods 

2.2.1 Participants 

The experiment consisted of three parts: behavioural thresholding, retinotopic mapping 

and fMRI scanning while completing the task. Seventeen healthy right-handed 

participants were recruited for all three parts of the experiment (Mean age = 21 SD = 

1.5 years, 11 females). All participants had normal or corrected-to-normal visual acuity 

and had normal colour vision. Each participant also completed a safety screening prior 

to the experiment to ensure they were eligible to enter the MRI scanner. They gave 

their written informed consent to the experimental procedure, which was approved by 

the research ethics committee at the School of Psychology, Cardiff University.  

2.2.2 Apparatus 

The initial behavioural experimental sessions were conducted in a darkened laboratory. 

Visual stimuli were presented at a mid-sagittal viewing distance of 50cm, on a 21–inch 

CRT monitor (60Hz vertical refresh rate; 1024x768 resolution; black background). 

Throughout the experiment the participant’s head was fixed within a chin rest. Although 

gaze was not monitored with eye tracking, participants were asked to focus on the 

fixation cross at all times. 

 

2.2.3 Paradigm 

Every forth trial would begin with a cue that indicated whether subjects would need to 

complete a temporal, spatial or feature conjunction judgement during the upcoming 

trial (see Figure 2.2). During dual task trials the cue would indicate which two of the 

aforementioned tasks the participant would need to complete (Figure 2.5).  
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INSERT FIG 2.2 HERE separate page . 

 

 

Figure 2.2 A. An example trial from the ‘what’, ‘where’ and ‘when’ conditions. 

The cue indicates the task that the subject will complete for the next four trials 

until a new cue appears. The red and green boxes represent patches of moving 

dots; presented as red or green squares for clarity. B. The temporal structure of a 

trial. This example trial is for a single task. The cue is shown initially and is valid 

for four trials; the following 3 trials are preceded by a cue.  
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The cue presented at the beginning of trial 1 was valid for 4 trials, indicating that the 

subject would perform the same task 4 times before the presentation of a different cue. 

The cue always switched to ensure that participants never performed more than 4 

repetitions of each condition during a scanning block. As shown in Figure 2.2, the cue 

was immediately followed by a centrally presented white fixation cross. At 1500ms two 

square patches of moving dots would appear. The coherence of the dots was 

dependent on the individual threshold-level; in each patch there was a density of 50 

dots per patch; each patch was 50mm x 50mm and the coherent dots moved at 0.6 

degrees per second. One patch of dots would appear above the fixation cross and the 

other below. The fixation cross could change from white to yellow at any time, in sync 

with the screen refresh rate of 16.7ms.  Each patch could appear shifted to the left or 

the right, relative to the centre of the fixation cross. The amount in which the patch was 

shifted was set in accordance with the individual psychophysical thresholds; this also 

established the ease of the task.  The temporal sequence of a single task trial is 

summarised below in Figure 2.3.  

 

 

 

Figure 2.3 The timeline of a single task trial. The dual task trial would be identical 

apart from the added question at the end; extending the total time of a trial to 

9000ms.  
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The single task trials could begin with the cue of either: "What?" "Where?" or "When?". 

These cues indicated a feature conjunction task, a spatial discrimination task or a 

temporal order task respectively. The colour of the stimulus that the participant is asked 

to attend to is counterbalanced across the block.  The accompanying questions to these 

cues were as follows:  

 Where? - Red: Left or Right? – This asked the participant whether the red patch of dots 

were more to the left or right of the central fixation cross.  

 When? - Green: Before or After? – This asked the participant whether the green patch 

of dots appeared before or after the central fixation-cross changed from white to 

yellow. 

 What? - Red: Up or Down? – This asked the participant whether the red patch of dots 

consisted of dots moving mostly up or mostly down.  

The participant responded with either a left or a right button press using their index or 

middle finger, respectively, in response to the question displayed on the screen. If the 

answer on the left was correct, the index finger was used to respond with a left button 

press and if the correct answer was on the right then the middle finger was used to 

press the right button. Participants had 2000ms to respond. The first response was the 

only response that was recorded. Single task trials would last for 7s (Figure2.2), whereas 

dual task trials would last for 9s (Fig 2.4). Due to necessary jittering between trials, each 

participant had an unpredictable break of 2-8s in length. This was calculated in 

increments of 500ms and occurred after each trial. Each experimental block consisted of 

48 trials; including 8 per condition, and a total of 6 experimental blocks were completed 

per participant. Each experimental run lasted for approximately 9 minutes.  
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INSERT DIAGRAM OF DUAL TRIALS HERE 2.4  
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Similarly to the single task conditions, the dual task trials could consist of either the cue: 

“What & Where?” “Where & When?” or “When & What?” and the accompanying 

questions at the end of the trial were as follows. Question 1 (Q1) and question 2 (Q2) 

were presented separately for 2000ms each:  

 

 What & where?       Q1: Green: Up or Down?         Q2: Green: Left or Right? 

 Where & when?     Q1: Red: Left or Right?             Q2: Red: Before or After? 

 When & what?      Q1: Green: Before or After?    Q2: Green: Up or Down? 

 

Each participant completed a brief colour calibration to ensure the red and green dots 

were of equal luminance. This was carried out using a MATLAB script that changed the 

luminosity of the dots on screen when the mouse was moved left or -right on the desk 

in-front of the subject. When the subject felt the luminosity was matched between the 

red and green dots they pressed the left mouse button and the two colour codes were 

recorded. This was important to ensure that no particular set of dots attracted more 

attention than the other.  

Thresholding of behavioural task 

Thresholding consisted of a 90-minute session in which participants’ accuracy threshold 

was set to 70%. Using a method of constant stimuli, this was completed offline, in a 

behavioural testing lab. In order to assess the subjects’ threshold, participants 

undertook 100 trials in each condition (T, S, C, ST, SC, and CT). Rest periods were offered 

at the completion of each block. In order to threshold the temporal task, the time 

between the change of the colour of the fixation cross and the onset of the dots was 

either lengthened or shortened making a temporal order judgement easier or more 

difficult.  The spatial task varied the degree to which the squares of moving dots were 

shifted over the centre of fixation (see Figure 2.5) below.  The feature conjunction task, 

in which subjects had to decide whether the red or green dots were moving up or 

down, were a mixture of coherently moving dots, either moving up or down at 0.6 

degrees per second or replotted at 63hz in order to give the impression of incoherent 

noise. The degree of coherent dots with incoherent dots varied during the thresholding 
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session between 100% coherence where all dots moved in one direction to 0% 

coherence where all the dots appeared to move incoherently. 

 

 

Figure 2.5 shows examples of ‘hard’ and an ‘easy’ spatial trials, respectively. The 

more central the dots were positioned, the harder the subject found the 

judgement of left or right. However in an easy trial this was more obvious.  

 

Once all data had been collected we then calculated the ideal stimulus parameters that 

would produce 70% accuracy across all conditions. The calculated threshold was then 

set for that participant and would dictate the parameters of the stimulus displayed in 

the MR scanner during the participant’s scanning session.   

 

2.2.4 fMRI Data Acquisition and Statistical Analysis 

All data were acquired using a GE Signa HDx 3T scanner with an 8-channel head RF 

receive coil. T2*- weighted gradient echo fMRI data were acquired using an echo-planar 

imaging (EPI) pulse sequence with the following parameters; 53 interleaved oblique-

axial slices (orientated along the participants' AC-PC lines) covering the whole brain, TR 

=3000ms, TE= 35ms, flip angle = 90 degrees, acquisition matrix= 64x64, slice thickness 

of 3.4mm, spacing between slice =3.4mm, parallel imaging acceleration (ASSET) factor 

2. Each scanning sequence was comprised of 152 volumes and lasted for approximately 

9 minutes. 

Participants completed 6 experimental runs. Each run consisted of 48 trials; 8 per 

condition.  
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Anatomical scans were acquired using a T1-weighted fast, spoiled gradient recalled 

sequence (FSPGR) with the following parameters; 1mm isotropic resolution, acquisition 

matrix 256x256x176, TR/TE=7.9/3.0 ms, TI=450ms, flip angle=20deg. 

 

Field-maps were collected at the end of each scanning session. The field-map 

acquisition consisted of 2 SPGR scans with two different echo times of 7ms and 9ms.  

Field maps were collected because EPI images often exhibit substantial signal dropout 

and spatial distortion in regions where the magnetic field is inhomogeneous (Bandettini 

et al. 1995; Hutton et al. 2002). As we cannot recover lost signal, the field maps attempt 

to remove any distortion from the images. Field maps help make the shape of each 

individual’s fMRI data more similar to their anatomical scan – which improves the 

quality of the normalisation leading to improved group level statistics.  

Stage 1: fMRI data analysis 

The fMRI data were analysed using the FMRIB software library (FSL; 

www.fmrib.ox.ac.uk/fsl). Preprocessing parameters were as follows: motion correction 

using MCFLIRT (Jenkinson, Bannister, Brady & Smith, 2002); non-brain removal with BET 

(Smith, 2002). The fMRI data were then registered to the participant’s structural scan. 

All functional volumes were then smoothed with a 55 mm full-width half-maximum 

(FWHM) isotropic Gaussian kernel to compensate for residual between-subject 

variations after spatial normalization. The resulting time series across each voxel were 

then high pass filter cut-off at 1/128Hz. Intra-subject analysis 

Statistical maps were generated using a fixed effects model. At the subject level, 6 event 

types were identified according to the 6 conditions (S, T, C, ST CT and CS), which were 

separately modelled as either single task events that lasted 5 seconds or dual task 

events that lasted 7 seconds. Both correct and incorrect responses were included in the 

analysis. Data was analysed by modelling the evoked hemodynamic response function 

(HRF) and its hemodynamic temporal derivatives (HRT) in the context of fixed effects 

general linear model. Contrasts of parameter estimates were then calculated to 

produce statistical maps for each contrast of interest. Each single task was contrasted 

with every other single task (S, T & C) and each dual task was contrasted with every 
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other dual task (ST, SC & TC) to produce statistical maps. The single task conditions were 

not contrasted to the dual task conditions as the analysis of the behavioural data 

showed that they were not equal in task difficulty.  Following the creation of the 

statistical maps, the fMRI data was then registered to the participant’s structural scan. 

Group level analysis 

The statistical maps then generated at the subject level were then entered into a group 

level mixed effects model. Voxel based thresholding was then applied to the resulting 

statistical maps (Z=2.3), and cluster-based thresholding was used to correct for multiple 

comparisons, with a (corrected) cluster significance threshold of P=<0.05.  

Stage 2. Retinotopic mapping and ROI Analysis of V1, V4, V5/MT 

Retinotopic mapping data were acquired using a gradient-echo EPI sequence with the 

following parameters; TR=3.0s, TE=35ms, Flip angle=90°, 128x128 acquisition matrix, 

256mmx256mm FOV, 37 2mm thick slices parallel to the calcarine sulcus, 100 volumes, 

spatial smoothing using a Gaussian kernel of full width half maximum (FWHM) 0.5mm. 

The stimuli consisted of 70 - degree wedges, rotating at 1 rpm, containing dots that 

moved and changed in a 3D flow pattern. In each session, two clockwise and two anti-

clockwise runs were performed in a counterbalanced manner. Analysis of retinotopic 

data was performed using in-house software (developed by Krish Singh) that computed 

phase angle estimates with correction for hemodynamic lag for each voxels and 

estimated the strength of retinotopy, using the power of the variance in the time series 

at 1 rpm frequency. The phase angles were plotted as a coloured map on the flattened 

occipital cortex using mri3dX software, this is downloadable at 

http://www.cubric.cf.ac.uk/Documentation/mri3dX. Once the functional data was 

loaded onto the flatmaps three ROIs were defined: V1, V4 and V5/MT.  

  

http://www.cubric.cf.ac.uk/Documentation/mri3dX
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Fig 2.6 V1, V4 and V5/MT were segregated and saved as a ROI mask. This was 

then applied to the data in order to get a percentage of BOLD signal change in 

the lower visual areas. Taken from Kurniawan, 2012. 

 

To investigate whether the feature conjunction task led to a significant increase of BOLD 

above a spatial judgement or a temporal order judgement, an ROI analysis was carried 

out for each participant. Using retinotopic-mapping data V1, V4 and V5/MT were 

identified. A mask of each area was then created and entered into Feat-query with the 

participant’s data from the fMRI scanning session. Within each individual’s ROI the 

percentage signal change was calculated for each single task contrast versus every other 

single contrast, (S>T, T>S, C>S, S>C, T>C, C>T).  The percent signal changes were then 

averaged across participants.  A t-test was then carried out to see if the BOLD signal 

significantly varied from zero during each condition in contrast to every other condition. 
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2.3 Results 

Behavioural results during fMRI scanning 

The accuracy was measured for each condition in order to make sure that the difficulty 

level had remained consistent throughout the scanning sessions. Each subject was 

calibrated to achieve 70% accuracy during scanning. This was based on the thresholding 

session carried out individual prior to the scanning session, as previously described in 

the Methods. Although some practice effects were expected, these were predicted to 

be consistent across all conditions. The percentage of correct responses during the 

scanner session for the spatial (S), temporal (T) and feature conjunction (C) task was 

83%, 80.9% and 84.8%, respectively. Overall accuracy in the dual task conditions 

(M=77.86, SE=0.15) significantly lower than in the single task conditions (M=82.97, SE 

=1.12), t(3)=4.44, p=<0.02). However, a one-way ANOVA revealed no significant 

differences between task types (S, T, C) within the single task conditions F (7, 16=1.124, 

p=0.345). Within the dual task conditions, participants performed at 78.2%, 77.7% and 

77.6%, respectively, for the spatial/temporal (ST), temporal/feature conjunction (TC) 

and spatial/feature conjunction (SC) conditions; as with the single task conditions, these 

did not differ significantly from each other, F (7,16)=0.77, P=0.749.   

  



 66 

 

 

 

 

 

Figure 2.7. Behavioural results, including mean accuracy of each condition across 

all 17 participants. The mean accuracy is shown as a percentage. The error bars 

represent the standard error in each condition. S = spatial detection task; T = 

temporal task; C = feature conjunction; ST = spatial-temporal tasks; TC = 

temporal-feature conjunction tasks; SC = spatial-feature conjunction tasks. Error 

bars = SEM. 

 

2.4 Imaging results – whole brain analysis 

In order to distinguish the BOLD response associated with the feature conjunction task 

over and above that of a spatial or/and a temporal task, a whole brain analysis was 

carried out for all single tasks versus all other single tasks (S>T, T>S, C>S, S>C, T>C, C>T).  

The three contrasts that led to significant levels of BOLD (P<0.05) are presented below. 

T>S, C>T and C>S did not lead to any significant activations across the brain.  The 

clusters labelled below represent the areas over which the activation was observed. 

Table 2.1 details where the peak Z-score was observed and therefore may not reflect 

the areas labelled in figure 2.8 below.  
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Figure 2.8. Modulation of brain activity by task (P<0.05). Three brain slices in the 

(a) sagittal (b) coronal (c) axial plane show modulation of brain activity by the 

spatial task in contrast to the feature conjunction task (red), the spatial task 

versus the temporal task (yellow) and temporal task versus the feature 

conjunction task (blue). Brain activations are overlaid on the MNI template, 

Images are in radiological convention (i.e. right and left are reversed). T -C = 

temporal > conjunction; S-C = spatial > conjunction; S-T = spatial > temporal.  
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Table 2.1. Areas with increased BOLD within the single task conditions. X, Y and Z  

denote the co-ordinates of these cortical areas in MNI space. The Z-score relates 

to the peak Z stat within the cluster, however the full cortical areas that these 

clusters covered are lablelled in figure 2.8.  

 

 

Spatial > Conjunction 

Although activation peaked in the left lateral occipital cortex, the activation was spread 

bilaterally across the right and left intra-parietal sulcus. The second cluster also peaked 

in the left middle frontal gyrus but extends across to the right middle frontal gyrus. The 

third main cluster peaked in the right parahippocampal gyrus. 

Spatial > Temporal 

Unlike spatial>conjunction, a contrast between the spatial and temporal task led to 

significantly less frontal cortex activation. Although a cluster of activity was observed in 

the right front-medial cortex, frontal activation was restricted to this area. Occipital lobe 

activation peaked in the right LOC, however similarly to the spatial>conjunction task, 

the BOLD clusters spread bilaterally across the left and right IPS. A third cluster was also 

observed in the left cingulate gyrus.  

Temporal > Conjunction 

Unlike the spatial>temporal contrast, this contrast revealed substantial frontal cortical 

activation. Clusters peaked at the right and left IFG, and right middle frontal gyrus. 

Localisation of the peak voxel is reported in Table 2.1 however the clusters were more 
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widespread. Clear lateralisation of activity was not observed: in the left hemisphere, 

activations were seen in the SFG, IFG and the SPL. In the right hemisphere, activations 

were observed in the right TPJ and the right IFG, MFG, SFG and right lingual gyrus.  

Activations associated with explicit feature conjunction 

Two statistical contrasts were undertaken to observe task specific activations that 

correlated with the conjunction task in contrast to either the spatial task or the 

temporal task. No significantly activated voxels were detected with either the 

conjunction > spatial contrast or the conjunction > temporal contrast.  

 

Chapter 5  

In the introduction section you sought explanation around:  

 spontaneous integration that has been shown to last up to 4 seconds 

 The explanation around the study carried out aby Keizer et al. ,2008.  

 You also didn’t like my inconsistent use of V5/MT (MT/MST). I have corrected this 

throughout the thesis to V5/MT.  

 You had noted several points of confusing surrounding my retinotopic mapping data 

acquisition section. This is now on page 135 and has been broken down to explain the 

percentage signal change analysis that was carried out on  the data. I have also inserted 

the equations that were used to calculate the IFCC/RFCC in the behavioural data and the 

percentage signal change in the ROI  - V5/MT.  

 In the results section the two correlations that were carried out were not consistently 

formatted. This has now been corrected on page 144 and 145.  

 

Chapter 6 

You looked for explanation around the Smith et al. (2004) study on page 119 of the submitted 

thesis. This has been expanded on page 166 of the second thesis submitted.  
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2.4.1 Dual Tasks 

Six contrasts were calculated when contrasting each dual task against each other. 

However, only three contrasts yielded significant activation clusters. These are 

presented in Figure 2.6. 

 

Figure 2.9. Areas within the brain that show significant clusters of activation 

during the dual task conditions. Brain activations are overlaid on the MNI 

template. Unlisted contrasts resulted in no significant clusters to report. The key 

shows the dual tasks that were contrasted against one another. For example, red 

indicates ST>CS, yellow is CT>CS and blue is ST>CT. As described in section 2.3 

(Methods), the dual task consisted of the subject being cued to, and answering, 

two questions regarding the stimuli, ST = spatial/temporal; CT = 

conjunction/temporal; CS = conjunction/spatial.  
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Table 2.2. The dual task contrasts that resulted in significant activations. The 

anatomical location of the peak voxel is identified. Figure 2.6 illustrates the 

regions covered by these clusters.  

 

Note. The coordinates are shown in MNI space. ST = spatial/temporal; CT = 

conjunction/temporal; CS = conjunction/spatial; L = left; R = right. Z –Score is 

equal to the peak z-stat in that cluster. 

 

2.4.2 Retinotopic Mapping Results and ROI Analysis 

An ROI analysis was carried out on V1, V4 and V5/MT in order to test for a differential 

BOLD signal in associated with the feature conjunction task over and above the spatial 

and temporal tasks. V5/MT and V4 have been shown to preferentially process motion 

and colour respectively (Zeki, 1974). In order to assess the hypothesis that the 

formation of a feature conjunction happens in the areas that show specialised 

processing of the features being bound, V4 and V5/MT were defined as regions of 

interest using retinotopic mapping.  Following this, the percentage signal change was 

calculated in each of these areas for each of the single task contrasts (S>C, S>T, T>C, 

C>S, C>T, T>S). The percentage signal change was calculated in Featquery.  Featquery 

was implemented per participant using an individually retinotopically defined mask for 

V1, V4 and V5/MT. The mean percentage increase was then calculated. A one-sample t-

test was then conducted to establish whether any contrast revealed a significant signal 
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change relative to zero. Table 2.3 below shows the percentage increase in BOLD signal 

for each of the single task contrasts. The reverse contrasts are not listed as the BOLD 

increase or decrease in this case is the mathematical opposite of the main analysis.  

 

V1 

V1 responded more strongly during the spatial detection task, over and above the 

conjunction and temporal tasks: S>C led to a significant increase in the percentage of 

BOLD signal, t(16)=2.709, P=0.008, as did S>T, t(16)=2.584 P=0.015, however, T>C did 

not lead to a significant BOLD increase,  t(16)=-1.186, P=0.254.  

V5/MT 

V5/MT showed an overall preference for the spatial task in contrast to the feature 

conjunction task. S>C led to a significant increase in the percentage of BOLD signal, 

t(16)=2.541, P=0.023, as did S>T, t(16)=1.504, P=0.153. T>C did not lead to a significant 

increase in BOLD, t(16)=-1.035, P=0.1585. 

V4 

V4 did not show a significant change in BOLD, for any of the single task contrasts. (all 

t<2.0, all p> 0.05).  

Table 2.3. Mean percentage increase in BOLD Signal for each single task contrast.  

 

Note. The * denotes the contrasts that were significantly different from zero. S-C 

= spatial minus conjunction; S-T = spatial – temporal;; T-C = temporal minus 

conjunction; MT = medial temporal; MST = medial superior temporal area.  
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2.5 Discussion 

The main aim of this experiment was to seek evidence for a neural substrate of explicit, 

task-relevant feature binding by measuring the BOLD signal change associated with 

discrimination of spatial location, temporal order or feature conjunctions. Crucially, 

both the sensory stimulus and the motor response demands were held constant 

throughout the experiment, permitting a direct comparison of task-related cortical 

activity which is not confounded by variation in stimulus characteristics. The dual tasks 

triggered a significant increase in difficulty relative to the single tasks; consequently the 

dual task analysis was restricted and dual tasks were contrasted to one another.   

Single Tasks 

The single task analysis led to 6 main contrasts being calculated (S>T, S>C, T>C, T>S, C>T 

and C>S). Each single task was compared to every other, leading to a more thorough 

approach and addressing contradictions present in the literature surrounding temporal 

attention (Battelli et al. 2007) as well as the role of cortical areas associated with spatial 

detection and explicit feature conjunction judgements.  

 

The contrasts designed to isolate unique activation associated with the feature 

conjunction task (C>S and C>T) revealed no significant clusters of activity in either 

contrast, and no significant increases in activation within the pre-defined ROIs. There at 

least two possible explanations for this negative finding. First, it is possible that there 

are no unique anatomical substrates for feature binding, and that the neural processes 

permitting explicit (task-relevant) feature conjunctions are subsumed within cortical 

networks that oversee spatial and temporal decision-making. Second, since the dot 

patches were spatially distributed across the visual display, it is possible that the 

conjunction task also implicitly engaged spatial attention, and that by doing so any 

unique activity associated with feature binding per se was masked. A key hypothesis of 

the FIT model is that attending spatially to the position of the moving dots would have 

led to an implicit binding of motion and colour via the mechanism of spatial attention 

(Treisman et al. 1980), therefore, both processes may have been evoked by the spatial 

discrimination task, leading to a lack of unique activations during an explicit feature 
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binding task. An alternative explanation for the lack of unique activations observed 

during the feature conjunction task stems from the “integrated-competition” model 

(Duncan, Humphreys and Ward, 1997). A key prediction of this “integrated-

competition” model is that directing attention to one feature of an object will result in 

the selection of its other features; not just those relevant to the task but also those 

features that are currently irrelevant to that task. Therefore, attending to one of the 

features or spatial location of those features, irrelevant of the task condition, could lead 

to implicit binding of motion and colour in each trial that the subject completes.  If true, 

this explanation presents a significant logical challenge for studies of feature binding 

given the impossibility (in the undamaged brain) of decoupling individual visual features 

from their spatial reference frame.  

 

It was clear from both spatial contrasts (S-C and S-T) that spatial discrimination elicits a 

large and widespread BOLD signal across the established fronto-parietal network, often 

associated with spatial attention. Clusters of activity were seen in the expected epi-

centres of the spatial attention network; the bilateral parietal cortices, specifically the 

right and left IPS, and the medial temporal lobe (Kim et al. 1999). 

 

In order to distinguish the cortical areas engaged in feature binding from those engaged 

during a  spatial detection task,  the “What?” task was contrasted to the “Where?” task. 

As discussed in the introduction section of this chapter, categorical relations assign a 

spatial configuration or a range of positions without defining the exact metric 

properties (such as above/below,left/right). It is thought that categorical spatial 

information is integral to the identification and recognition of objects.  Based on the left 

hemispheres specialised processing of language (Springer and Deutch, 1985) and a right 

hemisphere dominance for navigation (De Renzi, 1982), Kosslyn et al. (1989) proposed 

that the left cerebral hemisphere would be involved specifically in categorical 

processing, whereas the right hemisphere should be more specialised in exact metric 

coordinate processing. In particular Kosslyn et al. (1998) argues that the posterior 

parietal cortex is integral for categorical spatial judgements.  
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Two statistical contrasts were performed to establish the areas more responsive to the 

spatial discrimination judgement in contrast to either the temporal judgement or the 

feature conjunction judgement. For the spatial discrimination task, activation was 

overall biased toward the left hemisphere, including the left MFG, right 

parahippocampal gyrus and the left LOC. An increase in BOLD in the left MFG is 

consistent with previous results that have been associated with categorical spatial 

memory (Sitnick and Moo, 2006). Furthermore right parahippocampal gyrus activity has 

been consistently associated with visual spatial memory (Bohbot et al. 1998; Kopelman, 

Stanhop and Kingsely, 1997; Johnrude, Owen, Crane, Milner & Evans, 1999). These 

results are consistent with the conclusion that the spatial task successfully led to the 

processing of categorical spatial relations. However, the parahippocampal gyrus has 

been suggested to play a role in maintaining bound representations, in particular bound 

representations with spatial associations (Piekema, Rijpkema, Fernández, & Kessels, 

2010).  

The documented cortical network engaged during temporal judgement tasks has been 

inconsistent (Davis et al. 2009; Coull et al. 1998). The structure of this experiment 

allowed the cortical activity associated with a temporal judgement to be observed in 

contrast to both spatial discrimination and a feature conjunction judgement. In contrast 

to the feature conjunction judgement, temporal order judgements were associated with 

a widespread network of activity in the left hemisphere in the SFG, IFG and SPL and the 

right hemisphere in the TPJ, IFG, MFG, SFG and right lingual gyrus. This These findings 

are inconsistent with early studies which suggested that the left hemisphere plays a 

more dominant role in processing temporal information (Coull & Nobre, 1999) as well as 

more recent studies which argue that the right TPJ shows unique activation during 

temporal order judgement tasks (Davis et al. 2009). As noted earlier, both of these 

previous experiments differ considerably from each other and with the current study in 

several ways. Coull and Nobre (1999) compared their temporal condition to a baseline 

task involving the observation of a fixation cross, whereas Davis et al. (2009) failed to 

control the difficulty level between the temporal condition and the feature condition.  

 

The current model of temporal attention proposed by Battelli et al. (2007) is consistent 

with the notion that right and left SPL (including IPS) are specialised in spatial attention 
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for the contralateral visual field. However, other neuropsychological and imaging 

studies have challenged the traditional view that the right IPL is selectively responsible 

for visuospatial processing (Husain & Nachev, 2007). Evidence suggests that the IPL has 

a crucial role in tasks that require the control of attention over time and forms one of 

the pivotal cortical areas in the temporal model of attention (Battelli et al. 2007; 

Rorden, 1997). In the current experiment both the right and left IPL including bilateral 

IPS were preferentially active during the discrimination of spatial location in contrast to 

temporal order. These cortical areas also show a significant increase in activity during a 

temporal order judgement in contrast to a feature conjunction judgement. These 

results thus support the hypothesis that the right and left IPL are involved in both 

spatial and temporal processing. Even so, it must be acknowledged that a shared 

anatomical location does not indicate a shared mechanism of action or unitary cognitive 

process (Chambers, Stokes and Mattingly, 2004).  

 

The results document a consistent fronto-parietal network, engaged during spatial 

discrimination judgements. This finding helps to establish whether different domains of 

attention rely on domain specific cortical sources (Giesbrecht et al. 2003; Shulman et al. 

2002; Slagter et al. 2007). While the results provide no evidence for domain specificity, 

studies involving transcranial magnetic stimulation suggests that parietal interference 

can dissociate the selection of different visual features and sensory modalities (e.g. 

Chambers et al. 2004; Schenkluhn et al. 2008). Here, the spatial discrimination 

judgement elicited a widespread BOLD signal, in contrast to the temporal and feature 

conjunction judgement. The bilateral activation profile associated with the temporal 

order judgement differed from the findings of Davis et al. (2009), which reported that 

the right TPJ was selectively activated during a temporal order judgement in contrast to 

a feature based judgement. A possible explanation for the difference in results may lie 

in the failure of Davis et al. to control task difficulty between the two conditions 

measured; the temporal order task was evidently easier than the shape judgement. This 

confound was circumvented in the current experiment by matching the difficulty levels 

as closely as possible across task conditions. Furthermore, Davis et al. (2009) compared 

the temporal task to a feature judgement, whereas the temporal task in this paradigm 

was contrasted to a feature conjunction judgement.  
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Retinotopic Mapping 

In the whole brain analysis, the explicit feature conjunction condition did not produce 

any significant clusters in contrast to the spatial judgement or the temporal judgement. 

It was hypothesised that attending to the conjunction of colour and motion would yield 

a specific increase in BOLD in the feature specific areas V4 and V5/MT. However, ROI 

analyses did not reveal this and instead, V1 and V5/MT showed an increased level of 

BOLD during the spatial discrimination task and a lack of differentiation between all 

three tasks in V4. The retinotopic data complements the recent literature review (Roe 

et al. 2012) arguing that areas such as V4 and MT are not as specialised and modular as 

initially believed based on the pioneering work of Zeki (1973, 1983). As the visual cortex 

is organised in a retinotopic fashion, it is not surprising that spatial information is 

especially important within early cortical areas.  

 

 As a mid-tier cortical area in the visual ventral stream, V4 is believed to be important 

for object recognition and characterised as a colour area by Zeki (1973, 1983). However, 

subsequent studies also reported prominent orientation selectivity of V4 neurons 

(Mountcastle et al. 1987; Schein et al. 1982; Van Essen & Zeki, 1978), leaving the overall 

role of V4 uncertain (Roe et al. 2012). It has recently been suggested that V4 circuitry 

has the unifying role of enabling “selective extraction”. Roe et al. (2012) argue that our 

perceptual system is continuously confronted with much more information that it can 

actively deal with, therefore the processing load is reduced by selecting a fraction of the 

incoming information for deeper scrutiny. This “selective extraction” can be via bottom-

up feature-specified shape or by goal-directed spatial or feature defined attention. This 

is supported by the current results showing that V4 did not differentiate between the 

spatial, temporal or conjunction task; suggesting that it may have played a more general 

role in all tasks in a “selective extraction” capacity. 

 

Due to the established role of V5/MT in motion perception, it was hypothesised that 

during the feature conjunction judgement, an increase in BOLD in area V5/MT would be 

observed. However, the data showed that the V5/MT area was selectively responsive to 

the spatial discrimination task. A possible explanation may lie in the fact that, despite 
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exhibiting coarse retinotopy, V5/MT does represent precise positions of objects in the 

visual field (Fischer et al. 2011). These results do not support the proposition by Battelli 

et al. (2007) that V5/MT plays a functional role in processing temporal information. In 

direct contradiction to the model presented by Battelli et al. (2007) area V5/MT did not 

show a significant increase in BOLD in response to either the temporal task or the 

conjunction task. Theoretically, the BOLD response from area V5/MT could have 

become saturated, which is to say that the neurons in V5/MT were stimulated during 

each trial due to the implicit processing of motion. If so, a dissociable BOLD response in 

area V5/MT would not have been expected in response to the temporal, spatial or 

conjunction task; however, a significant increase of BOLD in this region was observed 

during the spatial discrimination task relative to the feature conjunction task. McGraw, 

Walsh and Barrett (2004) recently used TMS to show that motion and positional 

information interact in area V5/MT. Other studies also support the hypothesis that the 

processing of motion in area V5/MT has a spatiotopic component (Ong, Hooshvar, 

Zhang and Bisley, 2009).   Alongside the consideration that V5/MT may have been at 

least partially saturated due to implicit processing of motion, this may act as an 

explanation as to why V5/MT showed preferential activation during spatial 

discrimination judgements.  

Dual Tasks 

To ensure that the tasks were attentionally demanding and thus likely to yield 

widespread cortical activity, the single task conditions were also combined into dual 

task conditions. As noted previously, it was decided to increase attentional load using a 

dual task manipulation rather than raising the perceptual difficulty of the single tasks, 

because the ceiling level of difficulty had already been reached during thresholding for 

some participants.  Perceptual discriminations were made correspondingly easier in the 

dual task condition in an attempt to maintain accuracy at 70%. Theoretically, this would 

have rendered the dual task conditions comparable with the single task conditions; 

however, the behavioural results during the MRI scanning session revealed a significant 

(10%) residual difference in the accuracy of response during the single task conditions 

compared with the accuracy of response in the dual task conditions. Consequently, 

while the dual tasks conditions can be compared with each other, a BOLD contrast 
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between the single task and dual task conditions would be inappropriate due to this 

unforeseen confound of task difficulty.  

 

Consistent with the results of the single task conditions, no cortical regions 

demonstrated a significant increase in BOLD when completing a feature conjunction 

judgement in contrast to a spatial or temporal based judgement. Thus there was no 

evidence for a unique neural signature of activation associated with explicit feature 

binding when contrasted to discrimination of spatial location or temporal order. 

 

Two large clusters of activation demonstrate that the right and left IFG are especially 

activated by the specific combination of the spatial and temporal tasks. Activity 

observed in this area is consistent with the hypothesis that this region plays a key role in 

both task switching (Monsell, 2003), integration of bottom-up, sensory information and 

top-down response related information (Hampshire, Chamberlain, Monti & Duncan, 

2002), and therefore providing an extension to the findings of previous studies. Unique 

activation in this area also suggests that carrying out the spatial and temporal task 

together may have required more inhibition and cognitive flexibility than carrying out a 

spatial or temporal task alongside a conjunction task. A reason for this could stem from 

an earlier observation: attending to the spatial location of a feature allows the 

conjunction of features to be encoded at no extra attentional cost. However, a temporal 

judgement and spatial detection task employed explicitly separate cognitive processes 

and therefore may require an increased level of task switching and cognitive flexibility.  

 

In summary, the data presented here supports the notion of a ‘when’ pathway involving 

areas traditionally associated with spatial attention. However, a limitation of fMRI 

statistical inference is that the areas of BOLD observed are specific to the statistical 

contrast that is calculated. No evidence of temporal based functional specificity was 

observed in contrast to spatial detection judgement. Yet, when the temporal task was 

contrasted to a feature conjunction judgement, significant areas of cortical activation 

were observed in both the bilateral parietal and temporal cortices; further supporting 

previous literature (Battelli et al. 2007; Davis et al. 2009). This ambiguity might be 

resolved by adopting an alternative multivariate approach that circumvents the 
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(arguably simplistic) logic of subtractive inference in univariate fMRI analysis. As 

previous studies have shown, univariate analysis often leads to negative findings when 

contrasting conditions that are highly similar (Seymour et al. 2010). But using multivoxel 

pattern analysis (MVPA), which enables the classification of distributed activity patterns, 

Seymour et al. revealed evidence of feature conjunctions  within the visual cortex, as 

early as V1.  

 

As noted earlier, feature binding is often observed as a spontaneous process that 

happens implicitly on observing an object. A clear dissociation between implicit feature 

binding and explicit feature binding was observed in a study by Kanwisher, (1998). 

Kanwisher studied patient R.M, whose condition was previously discussed in both 

Chapter 1 and the Introduction to this chapter. When presented with two coloured 

letters side by side, R.M. was at chance level (50-50) at reporting the correct letter with 

the correct colour. This suggested that R.M. was no longer able to bind features 

coherently. In a previous study, Friedman-Hill et al. (1995) concluded that due to the 

obliteration of the representation of space in R.M.’s parietal cortices, there was no 

spatial reference on which to ‘hang’ each feature, and so features became mis-bound 

and incorrectly reported. However, following this, Kanwisher (1998) carried out the 

same task but measured performance in an implicit reaction time task, results showed 

that although the patient was unable to accurately report the correct colour and letter 

pairing (e.g red T and a green S), the correct colour-word bindings were represented in 

his visual system. These results show a dissociation between implicit binding and 

suggest that the parietal lobes may be critical for explicit but not implicit feature 

binding.  

 

Further evidence has also shown that not all features are processed equally.  Chen 

(2009) showed that attending to the colour of an object leads to the involuntary 

processing of the location information of that object. However, attending to the 

location of that object does not necessarily lead to the processing of non-spatial 

features of that object, such as colour, especially when the non-spatial features are not 

task relevant.  This serves as a possible explanation as to why the current experiment 
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revealed a lack of significant difference between the BOLD signal during the spatial 

conjunction judgement and the feature conjunction judgment.  

 

In order to measure the network associated with visual feature binding it may be 

necessary to employ a paradigm in which feature binding can be measured implicitly. 

The measurement of implicit feature binding allows the impact of the binding process to 

be observed and forms the focus of the remaining four chapters of this thesis.   
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Chapter 3 

Experiment 2A and 2B  

3.1 Introduction 

Implicit feature binding and the formation of object files 

 

Visual information processing occurs in a distributed fashion; that is, different 

features of objects are processed in anatomically and functionally distinct cortical 

areas (Zeki, 1976). Given that object processing is based on neurally distributed 

codes, a mechanism must be in place that integrates the codes representing the 

perceptual features that belong to that object (Treisman, 1996). Integration of 

information is integral to preserve object continuity throughout change, movement 

and obstruction, however, the mechanism by which the brain achieves this task 

remains unclear. There have been many proposed answers to this question, with 

several researchers arguing that spatial attention is the mechanism by which the 

brain binds features together to form perceptual objects (Hoffman & Nelson, 1981; 

Kahman & Treisman, 1984; Posner, 1980; Treisman et al. 1982).  

 

It was traditionally believed that visual attention operated within a spatial 

reference (Treisman, 2006; Tresiman & Gelade, 1980); however, while there is little 

doubt that space plays an integral role in visual selection (Cave & Bichot, 1999; 

Lami & Tsal, 2001), it is now clear that space is not the only frame of reference in 

which attention operates.  Much evidence has been gathered demonstrating that 

objects, as the unit of attention, can modulate the distribution of attention (Chen, 

2000; Kramer, Weber & Watson, 1997). A seminal fMRI study carried out by 

O’Craven, Downing and Kanwisher (1999) took advantage of the distinct cortical 

processing areas within the visual processing stream in order to test key predictions 

of the object-based theory of attention. The aim of their experiment was to test the 

proposition that pre-attentive mechanisms segment the visual array into discrete 
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objects, groups or surfaces, which then serve as targets for visual attention (Driver 

Baylis, Godrich & Rafal, 1994; Duncan, 1984; Vandenberghe et al . 1997).  

 

As explained in some detail in Chapter 1, O’Craven et al. (1999) employed fMRI to 

investigate the units of selective attention. The stimulus used was made up of three 

elements: a face, a house and the direction of motion.The face and the house were 

superimposed on top of one another and either the house or face would move in one of 

four cardinal directions. The functionally dissociated nature of the three distinct cortical 

areas within the visual processing stream allowed O’Craven et al. (1999) to measure the 

level of processing of each element of the display, from the measure of the BOLD signal 

from each visual processing area (processing of faces - FFA, houses -PPA and motion -

V5/MT). During a typical trial, either the house or the face would move in one of four 

cardinal directions; however, it was only the direction of motion that was task relevant.  

As all three attributes occupied the same location, it was hypothesised that if space was 

the unit of selective attention, then there should be an equal level of BOLD increase 

within each processing hub. However, if attention were able to exclusively select 

motion as a feature, it would be expected that only V5/MT would show a significant 

increase in BOLD. A third hypothesis postulated that if objects were the unit of 

selection, then attending to the motion of a house or face would lead to attention also 

spreading to the part of the stimulus that was moving. This would lead to the 

integration of the face or house with the direction of motion to form an object. If the 

house/face did become integrated with the direction of motion it was predicted that a 

significant increase in BOLD would be observed in both area MT and PPA/FFA 

respectively. In contrast, the cortical area associated with the processing of the non-

moving part of the stimulus was predicted to show a non-significant change in BOLD 

siganl.  

 

Results confirmed the latter hypothesis and demonstrated that during trials when the 

participant was attending and responding to the motion of a house, the BOLD signal 

was enhanced not only in V5/MT but also in the PPA area; whereas there was no 

significant change in the BOLD signal in the FFA. Similarly, when attending to a moving 

face, there was a significant increase in BOLD in area MT and the FFA; whereas the 
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BOLD in the PPA did not significantly differ. These results cannot be explained by 

theories in which attention solely selects either space (Treisman, 1988) or features from 

a scene (O’Craven, Rosen, Kwong, Treisman & Savoy, 1997; Wolfe, Cave & Franzel, 

1989). This study thus supports the view that attention can operate via the selection of 

objects in a way that can be detected both behaviourally (Chen, 2000; Kramer et al. 

1997) and neurally (O’Craven et al. 1999). The demonstrated importance of objects 

within the visual environment highlights the need for an object-based mechanism that 

underlies the encoding, maintaining and retrieval of object based information. One such 

mechanism proposed to underlie the immediate processing of objects is the ‘object file’. 

Following several studies, Kahneman et al. (1992) suggested that information about 

objects was integrated and stored in a temporary structure that would function like a 

file maintaining the representation of an integrated object; this was termed the ‘object-

file’.  

 

Kahneman et al. (1992) investigated the relationship between visual processing and 

object continuity using the object-reviewing paradigm. A typical trial consisted of a 

preview display (S1) with two or more letters, each in an individual frame, and a target 

display (S2) with a single letter in one of the frames. The task was to report the identity 

of the target letter as fast as possible. The results showed that RT to the target were 

reliably shorter when the target was a previewed letter that appeared in the same 

frame compared with a previewed letter that appeared in a different frame. Kahneman 

et al. (1992) argued that these results provided evidence for an object-specific 

advantage that could be observed when two objects were presented in close spatio-

temporal proximity and therefore seen as different states of the same object instead of 

two separate objects (Chen, 2012). However, this object-specific advantage was only 

present when both the location and letter matched. When only the letter matched, 

negligible RT benefits were observed. This led Kahneman et al. (1992) to argue that it 

was spatial information that modulated the encoding and retrieval of an object file.   

 

Repetition effects between two objects, presented in close spatial and temporal 

succession, indicates that the features no longer exist as individual features; they have 

become integrated. This is evidenced by the modulation of reaction time by the 
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relationship of the task relevant feature to the other features that are present in the 

object. 

 

More recent experiments have led to an evolution of the ‘object file’ model. Hommel 

(2004) argues that instead of a processing benefit, what is actually being observed is a 

partial repetition cost. Hommel (1998) has shown that there is not a significant 

difference between the reaction time following the repetition of all features, in contrast 

to the alternation of all features. Therefore, incomplete repetitions (e.g. colour match 

combined with a motion mismatch) lead to a RT or a ‘partial repetition’ cost, above and 

beyond that observed when all features change (Hommel, 1998; Hommel & Colzato, 

2004). If, as Kahneman et al. (1992) argues, location is integral to the formation and 

retrieval of an object file, then this would mean that non-spatial matches would be 

insufficient to cause a retrieval of information unless they were mediated by a location 

match. However, although spatial information plays a clear role in multi-element 

displays, due to the need to track the identity of an object, it has been shown that 

spatially unmediated interactions between non-spatial features can, and do occur 

(Calzone, Raffone & Hommel, 2006; Hommel, 1998, 2007). One aspect of the reviewing 

paradigm overlooked by Kahneman et al. (1992) was that of motor actions. If the 

temporal co-occurrence of perceptual features led to a spontaneous binding of all 

perceptual features, it would logically follow that motor actions associated with that 

object also become integrated into the object file.  

 

To answer this question, Hommel (2004) modified the reviewing paradigm and showed 

that the temporal co-occurrence of the object, along with an arbitrary button press, led 

to integration of both perceptual and motor features of the stimulus presented. This 

was evidenced by the partial repetition cost seen when either the colour, location, form 

or motor action alternated between S1 and S2 in contrast to when all features either 

repeated or changed.   

Using the reviewing paradigm, the current experiment sought to demonstrate a partial 

repetition cost using stimuli with two non-spatial features (colour and motion) while 

making location-based information obsolete by presenting the stimuli in the preview 
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screen (S1) and the target screen (S2) across the whole screen. It was assumed that by 

colour and motion sharing the same location in S1, they would be integrated into an 

object (van Dam & Hommel, 2010).  

To enable the comparison of partial repetition costs caused by either alternating the 

relevant feature or alternating the irrelevant feature, the task consisted of 4 conditions 

that represented the relationship between S1 and S2. These were: all change (AC) 

where both colour and motion alternated between S1 and S2; no change (NC) where 

both motion and colour repeated between S1 and S2; relevant feature change (RFC) 

where only the task relevant feature alternated between S1 and S2 and; the irrelevant 

feature change (IFC) where only the irrelevant feature alternated between S1 and S2.  

This revision to the reviewing paradigm further allows the analysis of the contribution of 

the both the task relevant and task irrelevant feature to the partial repetition cost. 

There is much evidence that unattended features are processed and bound with the 

attended feature of the object (Emmanouil, Burton & Ro, 2013; O’Craven et al. 1999), 

leading to the irrelevant feature modulating the behavioural response to the attended 

feature (Melcher, Papathomas & Zoltan, 2001). By making the distinction between a 

RFC and an IFC, I was able to separate and contrast the impact of a RFC versus IFC on 

RT.  

 

A further advantage of separating the trials into 4 conditions and 2 contrasts was the 

ability to control the previously uncontrolled confound of a motor switch cost. Switch 

costs are generally believed to reflect the control processes that are engaged when 

participants switch between two or more competing tasks (A-B) as opposed to when a 

task repeats (A-A). It has been shown that the presentation of an object also carries 

with it information about the action that the object affords (Hommel, 2002). Therefore, 

in the reviewing paradigm, the presentation of stimuli in S1 would not only prime the 

subject to the perceptual aspects of the stimuli but would also prime the subject to the 

action that the stimulus affords. Hommel (1998, 2004) avoided confounding stimulus 

repetition and switch costs by adapting the reviewing paradigm to include an arbitrary 

motor response (R1) on the mere onset of S1. For example, participants would press 

either the left or right button as soon as the stimulus appeared during S1. This button 
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press was unrelated to S1 but was presumed to prevent the motor priming caused by 

the viewing of the stimuli during the viewing of S1, and hence prevent switch costs.  

 

This experiment took a different approach and matched the response repetition/switch 

effects across two contrasts. The relevant change condition (RFC) constituted not only a 

perceptual change but also motor switch effect; this was also true of the AC. The only 

difference was whether all features changed or whether only one feature changed. 

Therefore, to calculate a true perceptual partial repetition cost that was caused by the 

repetition of the task relevant feature, only the RFC and the AC condition were 

contrasted.  In the same way, response repetition effects are present in the NC and AC 

condition. Therefore to calculate a purely perceptual repetition cost the IFC condition 

was contrasted only to the NC condition. It is predicted that a significant partial 

repetition RT cost would be observed in both the relevant and irrelevant change 

condition (IFC), in contrast to the AC and NCs respectively. Participants completed two 

separate sessions; one attending to colour and the other attending to motion. The trial 

began with the preview screen presenting green or red dots, either moving up or 

moving down. Following a 500ms gap; S2 was presented, consisting of red or green dots 

moving up or down. The subject responded by pushing a button as fast as possible in 

response to the attended feature. For example, participants pressed left for green and 

right for red).  
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Figure 3.1 shows two trials from an all change condition (AC, left) and a relevant 

feature change condition (RFC, right).  The relevant feature change cost (RFCC) 

would be calculated by subtracting the RT during the RFC trial from the RT during 

the AC trial. As both trials are matched in terms of a motor switch cost the 

difference in RT would be attributed to the interaction between S1 and S2. In the 

AC trial all features alternate between S1 and S2, according to the object file 

theory, in this scenario there should be no reactivation of the object file on 

viewing S2. However in the RFC trial there is a partial repetition between S1 and 

S2 and therefore viewing S2 should lead to a reactivation of the object file 

formed on viewing S1. The old feature conjunction is then overwritten with the 

new combination of features. This should lead a slower RT in the RFC condition 

than the AC condition. The difference will be termed the RFCC and reprsents the 

time it takes to overwrite a previous binding of features with a new binding of 

features.  
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Figure 3.2 shows two trials from an no change condition (NC, left) and a 

irrelevant feature change condition (IFC, right).  The irrelevant feature change 

cost (IFCC) would be calculated by subtracting the RT during the IFC trial from the 

NC trial. As both trials are matched in terms of a motor switch cost, the 

difference in RT would be attributed to the interaction between S1 and S2. In the 

NC trial, all features are repeated, which according to object file theory should 

lead to an object specific benefit (OSB). However in the IFC trial there is a partial 

repetition between S1 and S2 and therefore viewing S2 should lead to a 

reactivation of the object file formed on viewing S1. This should lead a slower RT 

in the IFC condition than the NC condition. The difference will be termed the IFCC 

and reprsents the time it takes to overwrite a previous binding of features with a 

new binding of features. 

 

It was predicted that colour and motion would be integrated upon viewing S1, even 

though location information was made obsolete and the stimulus was made up of two 
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non-spatial features. Following this, if either a relevant or a task irrelevant feature 

alternated between S1 and S2 it was predicted a RT cost would be incurred above and 

beyond that incurred by a complete alteration.  
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3.2 Method and Materials 

3.2.1 Participants  

30 paid volunteers (19 female and 11 male, aged 18-29 years) took part in experiment 

2A. All reported having normal or corrected to normal vision and they were not familiar 

or made aware with the purpose of the experiment.  

3.2.2 Apparatus and Stimuli 

The stimulus was displayed on a 21-inch CRT monitor (vertical refresh rate of 60Hz; 

1024/768 resolution; black background) at a mid-sagittal viewing distance of 50cm. 

Participants were asked to place their head in the chin rest and maintain focus towards 

the centre of the screen. Eye movements were not monitored. During the trials, 

participants responded by pressing either a left button or a right button on the number 

keypad of a keyboard centred on a desk in front of them.  The stimulus was 

programmed on MATLAB and the results were collected at the end of each session and 

analysed via MATLAB.  

 

Figure 3.3. A schematic illustration of the displays and timings of events in experiment 

2A. The coloured arrow superimposed on top of the coloured dots denotes the 

direction of motion.  The stimulus is explained further below.  

Screen 1 (S1) appeared for 680ms. Following this, a grey fixation cross appeared for 

500ms prior to the appearance of screen 2 (S2) that was displayed for 680ms. This 
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would equate to one full trial. The inter-trial intervals (ITI) were 2000ms and were 

indicated by the appearance of a white fixation cross. This was to allow perceptual 

separation of trial sets of S1 and S2. Participants were also advised that in-between S1 

and S2 a grey fixation cross would appear. This aimed to reduce confusion about which 

screen they were to respond to if the participants’ concentration lapsed. The dots were 

displayed across the whole screen. In total there were 200 dots that were all 2 pixels 

wide and round.  The dots moved at a speed of 0.6°/s with 100% coherence. MATLAB 

was used to programme the stimulus and collect RT data.  

3.2.3 Procedure and Design 

Participants completed 2 x 1-hour sessions, carried out on 2 separate days. These were 

separated into a colour response session and a motion response session. The order in 

which the motion and colour tasks were completed was counterbalanced, leading to 15 

participants completing the motion task first and 15 participants completing the colour 

task first.  

 

Participants were advised that there was no connection between S1 and S2. Participants 

were asked to make a speeded choice during the presentation of S2. They were 

informed that they had 680ms to respond and any responses made after S2 had 

disappeared would not be recorded. In the motion condition, the subject decided as 

quickly as possible whether the dots were moving up or down. Participants were 

instructed to use the index and middle finger of their right hand to respond to the 

moving dots. The response mapping was balanced between participants with 50% 

pressing the left button to indicate upward motion and the other 50% using the right 

button to indicate upward motion. Participants were advised that the colour was 

irrelevant, that it had no relationship with the direction of motion, and hence should be 

ignored.  

 

In the colour condition, participants were advised that the direction of motion was 

unimportant & uninformative, and hence should be ignored. In colour blocks, 

participants made a speeded choice at the onset of S2 as to whether the dots were red 

or green. As above the response mapping was counterbalanced. Instructions to 
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participants emphasised speed, however, they were also advised that errors and missed 

trials would be assessed at the end of each run and the run would be repeated if the 

percentage of errors or missed trials was too high. Each participant completed 8 blocks 

over 2 sessions, with 64 trials per block totalling 512 trials. There were 128 trials per 

condition, with 64 in response to motion and 64 in response to colour. The order of 

trials was randomised at the beginning of each block. After each run, the RT was 

checked to ensure that the participant was not missing trials or responding too slowly. If 

the participant had missed more than 10 percent of trials then the block was repeated. 

This only happened with one participant and their performance improved on the 

second run. Each session consisted of a practice block of 20 randomly selected trials. 

Once the participant had confirmed they were comfortable with the instructions, they 

completed 4 experimental blocks. A short break was given after each block, where the 

subject could have water and relax their eyes.  

 

As stated earlier, three equations were used to calculate the OSB, RFCC and IFCC. The 

mean RT was calculated for each subject during each condition. The mean for each 

condition was then used in the equations below: 

 

OSB = Mean RT during NC – Mean RT during RFC 

IFCC = Mean RT during IFC – Mean RT during NC 

RFCC = Mean RT during RFC – Mean RT during AC 
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3.3 Results 

In experiment 2A, the percentage of responses within the trials that were missing or 

anticipated (<250ms) were 2.0% and 1.3%, respectively. Trials with missing or 

anticipated responses were excluded from analysis. For the remaining data, which 

included correct and incorrect responses, mean RTs and proportions of errors (PEs) 

were calculated for each experiment as a function of the 4 possible relationships 

between S1 and S2; that is, whether all features repeated or alternated, or whether 

only the attended or unattended feature alternated. A 2x4 ANOVA, with repeated 

measures, was carried out to analyse the results. Table 3.1 below displays the mean RT 

across conditions in the both the motion and colour blocks and an average of both 

conditions. 

 

Table 3.1. 

Average RT Across Participants in msec and PE.  

 

Note. Both collapsed across and within each block type and across each condition. RT = 

reaction time; PE = percentage of errors. 
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3.3.1 RT Data 

A 2X4 ANOVA was carried out on the mean RT’s in each of the four conditions of S1-S2 

relationship (NC, AC, RFC and IFC) in two separate attended-feature block types (colour 

and motion).  This was a two-tailed analysis because differences in either a positive or 

negative direction would be theoretically significant. 

A 2x4 ANOVA (block type X S1-S2 relationship) revealed a significant main effect of S1-

S2 relationship, F(2.62, 75.9)=5.192, P=0.002, partial η2  =0.152 (P values adjusted using 

Greenhouse-Geisser). However, there was no main effect of block type, F 

(1,29)=0.488,P=0.509, pη2   =0.015. Therefore, there was no significant difference in RT 

when participants were responding to colour (M=547.8msecs, SE=8.67) or motion 

(M=555.23, SE=11.20) as the task relevant feature. Furthermore, there was no 

significant interaction between condition and block type, F(3,87)=1.28, P=0.286, partial 

η2 =0.042. Analysis of simple main effects with Bonferroni correction revealed that the 

significant main effect of the condition was driven by a slower RT when the irrelevant 

feature alternated (M=553.46, SE=8.38) in contrast to the average RT when all features 

changed (M=548.62, SE=8.41), MD= 4.84msecs, SE=1.54, P=0.0048, pη2  = 0.383. IFCC 

was calculated across both the motion and the colour blocks by subtracting the average 

RT in the NC from the average RT in the IFC. The RFCC was calculated as above by 

subtracting the average RT in the AC from the average RT in the RFC. The results are 

displayed in figure 3.4 with the negative bars indicating a RT benefit and the positive 

bars indicating a RT cost. Figure 3.4 displays the RT cost or benefit collapsed across both 

the colour and motion blocks.  
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Figure 3.4. Graphical Representation of RT Benefits and Costs.  RT benefit and 

costs collapsed across both the colour and motion blocks. Although trending in 

the predicted direction, neither the object-specific benefit, nor either the RFCC or 

IFCC RT costs reached significance; OSB = (Mean Difference =5.26ms, SE = 1.92, 

P=0.064,  partial η2 = ), IFCC = (Mean Difference=5.26ms, SE= 1.92, P=0.064, 

partial η2= 0.085) and RFCC (Mean difference = 7.28ms, SE=2.74, P= 0.057, partial 

η2 =  0.251) approach significance. IFCC = irrelevant feature change cost; RFCC = 

relevant feature change cost; OSB = object specific benefit. Error bars =SEM.  

3.3.2 Percentage of Errors 

A 2x4 ANOVA was carried out on the percentage of errors across conditions and block 

type.  The percentage of errors is displayed in table 1. The ANOVA revealed that there 

was no significant difference between conditions, F (3,87)=2.27, 0.086, partial η2 =0.058. 

However, the ANOVA did reveal that participants were less erroneous when responding 

to motion (M=1.46%, SE=1.89) in contrast to responding to colour (M=1.91%, SE=0.246), 

F(1,29)=11.66, P=0.002, partial η2  =0.287. There was no significant interaction between 

condition and block type F (2,87)=2.27, P=0.086, partial η2 =0.073. Figure 3.5 below 
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shows the difference in percentage error across each condition in both the motion and 

colour block.  

 

Figure 3.5 shows the percentage of error across each condition (S1-S2 

relationship) when the subjects either completed a motion or colour block. There 

was no significant different between conditions however subjects made fewer 

errors when responding to motion as opposed to colour.  Error bars = SEM. 
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3.4 Discussion  

Object-specific effects and partial repetitions costs were not replicated in this study. 

Although they approached significance, the object specific benefit (OSB), irrelevant 

feature change cost (IFCC) or relevant feature change cost (RFCC) were not observed. 

There are several explanations as to why this result is observed.  

 

Across the two stimuli there are overlapping features that have been ignored. These are 

namely shape and location. It could be argued that the lack of significant repetition 

effects observed in experiment 2A are due to the stimulus, presented in S1 and S2, 

lacking a clear ‘location tag’. Kahneman et al. (1992) asserts that non-spatial matches 

are insufficient to cause the retrieval of an object file, unless mediated by a location 

match. However, a study, in which three non-spatial features (colour, shape and 

orientation) were manipulated while spatial location was held constant between S1 and 

S2, successfully demonstrated repetition effects (Colzato et al. 2006). Such results 

indicate that the re-activation of the representation need not be modulated by location. 

A pivotal difference between the stimuli used in the latter study and experiment 2A can 

be seen in the way that the location of the object was held constant. In contrast to the 

current study, where moving dots covered the whole screen on each trial, Colzato et al. 

(2006) presented the stimuli within a clearly defined square in the centre of a grid. 

Although location was held constant in both experiments, the latter format may have 

acted as a stronger location cue than the current stimulus, hence allowing location 

information to be processed and used in the formation and therefore reactivation of an 

object file. A further explanation may lie in another shared feature: shape. Both S1 and 

S2 were made up of moving coloured circular dots. This was overlooked as a possible 

feature that could interact with the other features of colour and motion during the 

processing of S1 and S2.  

 

Theoretically, one could argue that with location and shape being held constant 

between S1 and S2, along with the repetition of either one of the experimental features 

(motion or colour), each trial could be classed as a partial repetition trial and hence may 

have a similar RT cost in each trial. This would have led to a non-significant difference in 
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RT’s. However, if this was the case, a strong OSB would be predicted to be present 

during the NC, in which all 4 features, including location and shape, were repeated 

(shape, location, motion and colour). Although approaching significance (P=0.067), this 

was not observed.  

 

A further explanation could be that no integration took place; therefore there was no 

interaction between S1 and S2 and thus no statistically significant difference across 

conditions.  An explanation for a lack of integration may be that the stimulus did not 

represent an object.  In an attempt to make location information obsolete, the coloured 

dots were presented across the whole screen.  It could be argued due to the lack of 

coherent location information, the stimulus was not a sufficiently defined object 

representation in order for object-based attention to be elicited.   

 

Following the identification of the limitations in the experimental design, the paradigm 

was modified in order to address these concerns. Although the results show that the 

data was trending in the predicted direction, with some P-values being marginally non-

significant, it could be argued that the study may have been underpowered. However, 

In order to be comparable to other studies that had observed a partial repetition 

reaction time cost, 30 subjects had been chosen, therefore it was not appropriate to 

test any further subjects until the paradigm had been modified to take into account the 

identified flaws in the paradigm. Therefore, in Chapter 4 the paradigm was modified 

with features such as shape and location incorporated in order to increase the object 

like nature of the stimulus.  A further question remains as to whether object files also 

contain semantic information. I adapted the paradigm in order to answer this queston 

in experiment 2b.   
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Experiment 2B 

3.5 Introduction 

Since the development of the reviewing paradigm by Kahneman et al, (1992), it has 

been established object files not only contain information regarding the perceptual links 

between features (Kahneman et al. 1992; Hommel, 1998; Hommel et al. 2004), but also 

contain information on an action afforded by that object (Hommel, 2004; 2008). 

However, it remains unexplored as to whether object files also contain conceptual 

information associated with that object.   

Increasingly, evidence is supporting the view that perceptual recognition is multi-modal 

and implicitly linked with conceptual knowledge (Heusser, Tarimotimi, Awipi & Davachi, 

2013; McClelland & Pring, 1991). Furthermore, it is established that exposure to a 

concept can facilitate the subsequent processing of the same perceptual information, 

even when the perceptual information is presented in a different modality than the cue 

(McClelland et al. 1991). 

 It is not established whether object files exist on a purely perceptual level; that is, 

whether conceptual information is integrated automatically along with the perceptual 

features, or whether conceptual information is something that would become 

integrated over time and stored in long-term memory structures. A study by Tipper and 

Driver (1988) examined negative priming across symbolic domains (pictures and words) 

where there was no structural relationship between objects. The results show that 

pictures that subjects ignore while attending to another picture achieve abstract levels 

of internal representation. Therefore, the results suggested that physical resemblance is 

not a necessary condition for negative priming to be observed. However, Tipper et al. 

(1988) assert that for priming to take place there must be a sufficient internal 

representation already in place.  In the current experiment the stimulus that was used 

consisted of two main features: colour and motion. It would be expected that the 

subjects would have a strong representation of the colours red and green and the 

direction of upward and downward motion; however, it was unclear whether the colour 

and motion would have become integrated into an object file during the viewing of S1 
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and whether there would had been a strong enough internal representation of the 

bound features  to lead to a cross domain feature integration.  

The present experiment attempts to identify the level of internal representation 

achieved on viewing S1. To this end, repetition effects are observed between objects 

represented in different symbolic domains (pictures and words) that have no features in 

common. It has been posited that “objects are perceptions that reflect the physical 

properties that they represent” Anderson (1980). On the other hand,  words are 

arbitrary representations that symbolise meaning. Therefore any repetition effects 

observed between words and objects must be beyond the physical level of internal 

representation; the object file must also hold abstract semantic information.   

In order to test this the paradigm was modified so that S1 contained words that 

represented features, such as ‘red’ and ‘up’. S2 would then follow in the form of red or 

green moving dots, as in experiment 2a.  

If the OSB, IFCC and RFCC depend on the low-level physical features of an object being 

repeated then we would not expect to see a modulation of the RT across conditions. 

Alternatively, if semantic representations of physical features are encoded within 

formed object files, and there is cross domain feature integration, we would expect to 

see a partial repetition cost when S2 is a partial repetition of S1, irrelevant of the 

physical resemblance of S1 and S2.  
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3.6 Method and Materials 

3.6.1 Participants 

The participants remained consistent throughout experiment 2A, 2B and 2C (appendix).  

3.6.2 Apparatus and Stimuli 

 These conditions were consistent with that of experiment 2A, with the following 

exceptions: S1 would contain two words; one word would denote colour, i.e. RED or 

GREEN, and the second word would denote motion direction, i.e. UP or DOWN. In 

addition, the words were presented 2 degrees above and 2 degrees below fixation.  

3.6.3 Procedure and Design 

The procedure and design elements within this experiment were identical to that in 

experiment 2A. The sequence of a trial is shown below in Figure 3.3. 

 

Figure 3.6. Schematic Illustration of the Display and Timing of Events in 

experiment 2B.  S1 consisted of a combination of a colour word (red or green) 

and a direction word (up or down). S2 consisted of coloured dots (red or green) 

moving either up or down.  
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3.7 Results  

In experiment 2B, responses were missing or anticipated (<250ms) in 1.9% and 1.2% of 

the trials, respectively. Trials with missing or anticipated responses were excluded from 

analysis. For the remaining data, mean RTs and PEs were calculated as a function of the 

4 possible relationships between S1 and S2; that is, whether all features repeated or 

alternated, or whether only the attended or unattended feature alternated. ANOVA was 

performed by 2x4 ANOVA with repeated measures.  

 

Table 3.2. Average RT Across Participants during either a colour block or motion 

block and an average of both (msec). Percentage error (PE) is presented in 

brackets.  

 

Note. The average RT and PE are also displayed for block type and congruency. RT 

= reaction time; PE = percentage error. 

3.7.1 RT Data 

The 2x4 repeated measures ANOVA with factors block type x condition revealed that 

condition had no main effect, F(3, 87)=1.339, P=0.276, partial η2  =0.044. Further to this, 

the ANOVA revealed no significant main effect of block type, F(1,29)=0.010,P=0.922, 

partial η2   =0.000, and there was no significant interaction between condition and block 

type, F (2.32,67.5)=1.102, P=3.53, partial η2    =0.037. IFRC was calculated across both 
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the motion and the colour blocks by subtracting the average RT in the NC from the 

average RT in the IFC condition. The RFCC was calculated as above by subtracting the 

average RT in the AC from the average RT in the RFC condition. The results are displayed 

in figure 3.4 with the negative bars indicating a RT benefit and the positive bars 

indicating a RT cost. The results were trending in the predicted direction but neither the 

RFCC (MD=3.7, SE=3.04 P=>0.99), IFCC (MD=3.76 SE=2.45, P=0.818) nor OSB (MD=-3.76 

SE=2.45 P=0.818) reached significance.   

 

Figure 3.7. RT Benefit and Cost as a Function of Condition. Object-specific 

benefits (OSB = NC-IFC), Irrelevant feature change cost (IFCC = IFC-NC) and 

relevant feature change cost (RFCC = RFC-NC) collapsed across both colour and 

motion blocks in experiment 2.2. Error bars = SEM. 

3.7.2 Errors 

A 2x4 ANOVA was carried out on the PEs across conditions and block type.  The PEs is 

displayed in brackets in table 2. The ANOVA revealed that there was no significant 

difference between conditions, F(2.25,63.10) =1.512, P=0.217, partial η2 =0.051 (p 

values adjusted using Greenhouse-Geisser). Further to this, there was no significant 

difference in the percentage of errors between block type, F(1,29)=0.328 P=0.571, 
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partial η2  =0.012. The ANOVA also revealed that there was not a significant interaction 

between condition and block type (F (2,56.2)=1.81, P=0.150, pη2 =0.061.  

 

Figure 3.8 shows the percentage of error across the S1-S2 relationship condition 

within both the motion and colour blocks.  A 2X4 ANOVA revealed that there was 

not a significant difference between the S1-S2 relationship conditions or the 

colour or motion block trials. Error bars = SEM. 
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3.8 Discussion 

The aim of experiment 2b was to identify the level of internal representation achieved 

upon viewing S1 and to establish whether cross-domain binding would lead to the 

observation of partial repetition costs. There is evidence for binding within visual, 

auditory, and action related codes, as well as cross-domain bindings. However, this 

experiment sought to determine whether short-term integration of information into 

object files would also include semantic information regarding features. To answer this 

question, words were presented during S1 denoting colour and direction of motion, 

closely followed by a second stimulus (S2) made up red or green dots moving either up 

or down, which were either congruent or incongruent with the words presented during 

S1. It is clear from this experiment that the presentation of words did not disrupt or 

enhance RT to the target feature. The data fails to provide evidence that conceptual 

information is encoded as part of an object file.  

Much literature supports the idea that there is conceptual priming between words and 

objects (Hirshman, Snodgrass, Mindes, & Feenan, 1990; Weldon, 1993; Weldon & 

Jackson-Barrett, 1993). This is often tested through word fragment completion tasks 

where the time to complete the word is modulated by the images shown to the subject 

prior to the task. However, the current data would suggest that the creation of object 

files is a purely data driven process and may be insensitive to conceptual driven effects; 

meaning that the object file may bind together visceral information that represents the 

immediate environment and semantic connections are not formed in this short-term 

memory formation. However, it is entirely possible that over time objects become 

associated semantically with other representations. Therefore, due to the timescales 

that both perceptual and conceptual priming operate within, this paradigm design may 

not be optimised to isolate conceptual priming.  A study by Weldon et al. (1993) showed 

that, although both perceptual and conceptual priming processes can be recruited 

during cross modal priming between images and words it is the perceptual priming that 

is recruited earlier and faster.  As S1 was only shown for 680ms, it is likely that the 

slower and less direct recovery of conceptually similar, but physically dissimilar, primes 

could not be recruited within the short time span available.  
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Further to this, the results presented in experiment 2B are consistent with 

neuropsychological and neuroimaging studies which suggest that there is a clear 

distinction within the visual system between the recognition of printed words and 

common objects. This is supported by neuropsychological studies that report patients 

with an inability to read printed words in the absence of object recognition deficits, 

while other forms of language-related processing are preserved (Farah, 1994). Taken 

together with the available evidence in the current literature, these results suggest that 

object files do not encode conceptual information, but act on a purely data driven basis.  

If conceptual information is encoded in object files, the retrieval of that information 

may be slower and recruited later in the recognition process. Therefore, in an 

experiment with an exposure time of 680ms, we would not expect to observe 

conceptual repetition effects.  It is also possible that participants found it easier to 

ignore the words than the objects normally presented in S1 in previous experiments 

that have produced repetition effects.  

Furthermore, interpreting the results of experiment 2B maybe problematic due to 

experiment 2A failing to produce significant repetition effects using low-level perpetual 

stimuli.  If, as discussed in experiment 2A, the red and green dots occupying the whole 

screen during S2 did not lead to a integration of features into an object, then we would 

not expect to see object file effects such as partial repetition costs and object specific 

benefits in experiment 2B either. As experiment 2A, 2B and 2C were run in parallel 

changes to the paradigm are implemented in experiment 3 where location and shape 

information are introduced and controlled for in order to make the stimulus more 

object like.  

In summary, this experiment produced no evidence to suggest that non-physical 

information is stored in an object file, or if it is then it is not reactivated by non-similar 

physical objects.  

 

  



 108 

 

3.9 General discussion 

Experiment 2a and 2b within this chapter were aimed at addressing both the non-

spatial modulation of repetition effects and the wider nature of the information held in 

object files. Object files were considered in terms of containing information of a 

perceptual and semantic nature. As discussed, the failure to reproduce the established 

partial repetition RT costs or an object specific RT benefit, normally observed during the 

completion of the reviewing paradigm could be due to the stimulus presented during S1 

and S2. By focusing on two non-spatial features (colour and motion), shape, as a 

feature, was overlooked (all dots were circular) as a contributing feature to the object 

formation in S1. Furthermore, the lack of location information may have either 

prevented an object file forming or prevented the retrieval of the non-spatial features. 

It has been shown previously that, for repetition effects to be observed, both S1 and S2 

must be perceived as a continuation of the same object (Chen & Yeh, 2013).  

 

A final explanation of the null results in experiment 2A is that in an attempt to make 

location obsolete the dots were positioned over the whole screen, which makes the 

stimulus less object like. If the stimulus were not perceived as an object then we would 

not expect to see a RFCC or an IFCC.   

 

Experiment 2B yielded further null results. The results from experiment 2B could either 

suggest that conceptual information is not encoded at the object file level, or it is 

encoded but retrieved at a slower and later stage not captured by this paradigm.  

Considered together, these experiments suggest that object file formation is highly data 

driven, meaning that information that may be semantically or conceptually linked with 

the visually present object may not be integrated, or at least not within the short time 

scales of temporary feature integration. Information within an object file may therefore 

be limited to the veridical information presented.  

In order to fully explore the data, further analysis could look at the repetition cost as a 

function of time. Due to the large amount of trials, the stimulus may have become 
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easier to ignore as the session progressed. If subjects were able to ignore S1 then and 

selectively attend to one feature in S2 then we would no expect to see any partial 

repetition costs. In order to modify the paradigm and make the stimulus more object 

like it was necessary to control for both shape and location. Furthermore, if the location 

was smaller and more clearly defined then the stimuli may appear more object-like and 

lead to integration. Therefore in experiment 3 (Chapter 4) the stimulus is modified with 

shape being manipulated along with location. Furthermore, the location of the stimulus 

is presented over is much smaller.  
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Chapter 4 – Experiment 3 

Feature binding and the formation of object files  

4.1 Introduction 

The process of forming object representations and supposedly object files in visual 

short-term memory (VSTM) entails binding together different features of a stimulus, 

such as colour, shape, size, orientation, location, movement, and so forth. There has 

been discussion concerning the role of various categories of stimulus features within 

the bound objects formed. Previous research has shown that not all features are 

created equal, for example previous studies have shown that there is an asymmetry 

between the automatic selection of spatial features, such as location and the automatic 

selection of non-spatial features such as colour or texture (Chen, 2009).  

Other studies have also shown evidence for spontaneous location processing when 

attention is directed towards a non-spatial feature such as colour or form (Cave & 

Zimmerman, 1997; Cepeda, Cave, Bichot & Kim, 1998). In order to examine the 

asymmetry in feature selection, Chen (2009) looked at whether the processing of an 

objects colour or texture automatically entails the processing of the object’s location, 

regardless of task relevance, and vice versa. Over a series of experiments Chen (2009) 

showed that there was evidence of spontaneous location processing regardless of task 

relevance, when colour was attended. Although, processing of location was 

spontaneous, the degree of processing was modulated by the participant’s behavioural 

goals, this was indicated by a larger effect when location was task relevant rather then a 

task irrelevant feature.  However, in reverse, results showed that colour was only 

processed when it was a task relevant attribute.  As Chen (2009) states, these results 

show processing asymmetry between location and colour and suggest that location 

selection is the default unit of attentional selection in the visual system.  

Although this has been discussed extensively within the literature on visual attention 

and visual perception (Cave & Pashler, 1995; Cave & Zimmerman, 1997; Kim and Cave, 

1995), it is unclear whether the asymmetry that is observed in visual selection tasks also 

apply in the formation and interaction of object files. A key difference between these 



 
 

111 

studies and the reviewing paradigm is that in the aforementioned studies the target 

display contained several irrelevant objects. Therefore the display contained several 

distractors. In the experiment reported in this chapter, the target display consisted of 

one object. Therefore, evidence of the selection of non-spatial features will provide 

strong evidence for the symmetry between the processing of both spatial and non-

spatial features.  

Within the domain of visual perception, FIT holds that, in contrast to other stimulus 

properties such as colour and shape, location plays a key role in binding by providing 

the spatial map to which the individual features are then attached and are thus 

combined to form objects (Treisman, 2006; Treisman & Gelade, 1980).  

Kahneman et al. (1992) proposed that it was solely the repetition of location 

information between S1 and S2 in the reviewing paradigm that allowed object files to 

be accessed and information to be used. However, it has been shown that a partial 

repetition of an object, caused either by a spatial feature or a non-spatial feature 

alternating, leads to a partial repetition cost (Hommel, 2004; Hommel & Colzato, 2004). 

In experiment 2A, an attempt was made to control the role of location-based 

information between trials by presenting both S1 and S2 over the same area. However, 

as we failed to reproduce repetition effects altogether, it is possible that the repetition 

of location may have led to partial repetition effects on each trial, hence leading to a 

non-significant difference between conditions. To test this assumption, the paradigm 

was adapted so that shape and location were manipulated along with colour and 

motion. Further to this, the adaptation of the paradigm also facilitated the investigation 

into whether each feature led to an equal IFCC and RFCC, inevitably indicating whether 

each feature played an equal role in the formation and retrieval of an ‘object file’ when 

present in the stimulus as either a relevant or irrelevant feature.  

 

To do this, the stimulus was adapted so the object would alternate on 4 feature-based 

dimensions: shape of dot (square or circle), motion (up or down), colour (red or green) 

and location (left or right). In any given session, only one feature would be relevant and 

the other three would be task irrelevant. As in experiment 2A, trials could occupy 1 of 4 
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conditions: all change (AC), no change (NC), relevant feature change (RFC) and 

irrelevant feature change (IFC). We predicted that a RFC, irrespective of what feature 

that was, would lead to a partial repetition cost over and above that observed when all 

features alternated. Furthermore, it was predicted that an IFC would cause a partial 

repetition cost, although this RT cost need not necessarily be driven equally across all 

features. It is likely that because of a change in location being of higher salience due to 

the necessity to reorient attention to a new area of space, an irrelevant location change 

will lead to a higher RT cost than either an irrelevant colour or shape change.  
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Method and Materials 

4.2.1 Participants 

30 paid volunteers (19 female and 11 male, aged 18-29 years) took part in experiment 

3. All reported having normal or corrected to normal vision and they were not familiar 

with the purpose of the experiment. No participants were colour-blind. All participants 

gave their written informed consent to the experimental procedure, which was 

approved by the research ethics committee at the School of Psychology, Cardiff 

University. 

4.2.2 Apparatus and Stimuli 

The stimulus was displayed on a 21-inch CRT monitor (vertical refresh rate of 60Hz; 

1024/768 resolution; black background) with a mid-sagittal viewing distance of 50cm. 

Participants were asked to place their head in the chin rest and maintain focus towards 

the centre of the screen. Eye movements were not measured. During the trials 

participants responded by pressing either a left button or a right button on the number 

keypad on a keyboard centred in front of them.  

The stimulus was of a similar format and identity as experiment 2A; figure 4.1 shows the 

structure of an ‘all change’ trial. Participants were instructed that S1 was task irrelevant 

but they were to passively attend to the stimulus on the screen. A grey fixation cross 

would then appear for 500ms (ISI), followed by the second screen (S2). Participants 

were asked to make a speeded choice during the presentation of S2; they were 

informed that they only had 680ms to respond and that any responses made after S2 

had disappeared from the screen would not be recorded. Although eye movements 

were not recorded, subjects were asked to maintain attention towards the screen and 

keep chin placed in the chin rest, which ensured that they faced the screen at all times.  

The stimulus was made of 4 features: colour, motion, location and shape. However only 

one of these features were task relevant during a block of trials. For example, in a 

motion block the participant was asked to attend and respond to the direction of 

motion during S2. The participant was instructed that all other features (shape, colour 

and location) were irrelevant during this block. The stimulus was displayed in an 
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aperture that was 500 X 500, unlike experiment 2a there was now only 50 dots and they 

were 5 pixels by 5 pixels and moved at of 0.6°/s with 100% coherence. Dots could either 

be square or round, this differences constituted the shape condition. All stimuli was 

programmed on MATLAB.  

 

 

 

Figure 4.1.  An example of an all change (AC) trial. S1 would appear for 680ms, 

participants would attend to this screen however they were told it was task 

irrelevant. Following an ISI of 500ms S2 would then appear for a further 680ms. 

Participants were told to respond to the direction of motion and discard all other 

features. In an AC trial all features would change between the presenation of S1 

(green dots moving up) and S2 (red squares moving down). 

 

4.2.4 Procedure and Design 

Participants completed 4 x 1.5 hour session. For each of the four sessions the task 

relevant feature would be different. For example during the first experimental session 
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the participant would complete four blocks lasting around 8.5 minutes each and they 

would attend and respond to motion information only. During the second experimental 

session the participant would complete four blocks however they would attend and 

respond only to location information. The final two experimental sessions subjects 

would attend either to only colour or only shape. The order in which the participants 

would complete the experimental sessions (attend colour, motion, location or shape) 

was counterbalanced with a latin - square design across subjects.  

 

 Each block had 128 trials, with 32 trials per condition (AC, NC, RFC, IFC). The order of 

trials was randomised at the beginning of each block. At the beginning of each 

experimental session the subject was told which feature was task relevant and carried 

out 50 practice trials to ensure that the correct button press was associated with the 

correct answer.  

 

After each block, the RT was checked to ensure that the participant was not missing 

trials or responding too slowly. If they had missed more than 10% of trials then the 

block was repeated. This happened with just 1 participant who therefore had to be 

excluded. Each session consisted of a practice block of 50 randomly picked trials. Once 

the subject had confirmed they were comfortable with the instructions they completed 

4 blocks. There was a short break after each block where the subject could have water 

and relax their eyes.  

 

In order to test for repetition costs the following calculations were carried out, these 

were identical to those in experiment 2A and 2B.  The mean RT was calculated for each 

condition: AC, NC, RFC, IFC and the following equations were applied:  

 

OSB = mean RT during NC – mean RT during RFC 

IFCC = mean RT during IFC –mean RT during NC 

RFCC = mean RT during RFC – mean RT during AC 
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4.3 Results 

On average, across all four feature, blocks the percentage of responses that were 

missing or anticipated (<250ms) were in 1.8% and 0.4% of the trials, respectively. Trials 

with missing or anticipated responses were excluded from the analysis. For the 

remaining data, average RTs and PEs across all feature blocks were calculated as a 

function of condition. A 4x4 ANOVA (feature attended x condition) revealed a main 

effect of condition (F (2.2,63.8)=22.74, <0.001, partial η2  =0.440) and a main effect of 

feature (F (3,87)=3.59, P=0.017 partial η2 =0.110). There was also a significant 

interaction between condition and feature (F (5.59,162.29)=2.4,P=0.01, partial η2 = 

0.077). 

4.3.1 Condition 

The results show that there was a significant main effect of condition. As in experiment 

2A, the IFCC, RFCC and OSB were calculated to test for repetition effects. These 

calculations are detailed in the methods section.  

RFC (M=579.60ms) was significantly slower than the AC (M=539.60ms), mean difference 

40ms, Std Error=6.84, P=<0.001, partial η2 =0.541. IFC (M=568.85) was significantly 

slower than the NC (M=528.84) with a mean difference of 40.01ms, Std Error=7.332, 

P=0.005, partial η2 = 0.323.  

Table 4.1 shows the mean RT across all participants in each condition. The second 

column shows the mean percentage error (PE) across all subjects in each 

condition 

 

 

Note. RT = reaction time; PE = percentage error. 
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The RFCC and IFCC were then calculated using the equations presented in the methods 

section of this chapter. The reaction time cost (increase in mean RT) and reaction time 

benefit (decrease in mean RT) is plotted below in Figure 4.2. 

 

Figure 4.2.  shows the relevant feature change cost (RFCC), irrelevant feature 

change cost (IFCC) and the object specfic benefit (OSB). The reaction time costs 

were calculated using the equations presented in the methods section of the 

chapter. The postive bars show the reaction time cost (increase in RT) and the 

negative bar shows the reaction time benefit (decrease in RT).  Error bars = SEM 

4.3.2 Feature 

There was also a significant main effect of feature, F(3,87)=3.59, P=0.017 partial η2 

=0.110). Pair-wise comparisons show that, on average, participants were faster to 

respond to location than they were shape (mean difference = 25.11msecs, P=0.024) and 

colour (mean difference =23.19, p=0.034 partial η2   = 0.253).  
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Condition x Feature interaction 

There was a significant interaction between condition and feature, 

F(5.59,162.29)=2.4,P=0.01, partial η2 = 0.077). To explore this interaction further, a 1x4 

ANOVA was carried out on each feature session. This enabled us to identify any 

differences in the production of the IFCC and RFCC while attending to one feature.   

Table 4.2. Mean RT in response to shape, motion, location or colour along with 

the percentage error when attending and responding to the relevant feature.  

 

 

Note: RT = reaction time; PE = percentage error.   

 

Shape 

A 1x4 ANOVA led the observation of a significant IFCC (mean difference =37.73ms, 

P=<0.001, partial η2 = 0.318). Further to this, we observed a RFCC, which was just on the 

cusp of significance (mean difference = 34.18ms, P=0.054, partial η2   =0.213). 
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Figure 4.3 shows the mean RT across subjects in each condition. The relevant and 

irrelevant feature change condition led to a slower RT in contrast to the all 

change and no change condition. During this experimental condition subjects 

attended to shape. Colour, location and motion were task irrelevant features. 

The RFCC was calculated by subtracting the mean RT during the All Change 

condition from the mean RT during the Relevant Feature Change condition. The 

IFCC was calculated by subtracting the mean RT during the No Change condition 

from the mean RT during the Irrelevant condition. Error bars =SEM. 

Location 

A 1x4 ANOVA revealed a slightly different pattern of data. Here we saw a significant 

RFCC (mean difference = 53.48ms, P=<0.001, partial η2 = 0.476) but failed to see an IFCC 

(Mean difference=19.24, P=>0.99, partial η2   = 0.049). 

  



 
 

121 

 

Figure 4.4 shows the mean RT across subjects in each condition. The relevant and 

irrelevant feature change condition led to a slower RT in contrast to the all 

change and no change condition. During this experimental condition subjects 

attended to location. Colour, shape and motion were task irrelevant features. 

Error bars =SEM. 
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Motion 

Similarly to the location condition, we failed to detect an IFCC (mean difference = 

2.8ms, P=>0.99, partial η2 = 0.003) but we did observe a robust RFCC (mean difference = 

35.03ms, P=0.007, partial η2   0.308). 

 

 

Figure 4.5 shows the mean RT across subjects in each condition. The relevant and 

irrelevant feature change condition led to a slower RT in contrast to the all 

change and no change condition. During this experimental condition subjects 

attended to motion. Colour, shape and location were task irrelevant features. 

Error bars =SEM. 

 

Colour 

 A 1x4 ANOVA revealed both a RFCC (mean difference = 37.28ms, P=0.016, partial η2  = 

0.191) and an IFCC (mean difference = 57.84ms, P=0.001, partial η2 = 0.406). This was 

the only feature block to show both a significant RFCC and IFCC.  
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Figure 4.6 shows the mean RT across subjects in each condition. The relevant and 

irrelevant feature change condition led to a slower RT in contrast to the all 

change and no change condition. During this experimental condition subjects 

attended to colour. Location, shape and motion were task irrelevant features. 

Error bars =SEM.  

4.3.3 Errors 

The number of errors made across both condition and feature was analysed in a 4x4 

ANOVA. The results showed that there was no main effect of condition on error rate; F 

(3,87) = 0.055, P=0.983, partial η2 = 0.002. There was also no main effect of feature 

block on error rate; F (3,87)=0.040, P=0.989, partial η2  = 0.001. Further to this, there 

was no significant interaction between condition and feature on error rate,  

F (5.9,171.15)= 3.43, P=0.960, partial η2   = 0.012.  
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4.4 Discussion 

The present study sought to replicate established results from previous experiments 

showing a partial repetition cost (Kahneman et al. 1992; Hommel et al. (1998), while 

controlling for motor switch costs. Following from experiment 2a, where no significant 

partial repetition costs were observed, two key changes were made to the paradigm: 

firstly, both shape and location was introduced as an explicit stimulus feature and 

secondly, the areas over which the stimulus was presented was made much smaller. 

This made the stimulus much more ‘object-like’.  

 

By manipulating the to-be-attended feature of the object, we also aimed to establish 

whether location plays a special role within the re-activating of an object file or whether 

shape, motion, colour and location carry equal weight. An alternative, but not mutually 

exclusive interpretation of the object specific benefit (Kahneman et al. 1992), is partial 

repetition costs (Hommel, 1992). Partial repetition costs are incurred when one or more 

features are repeated, theoretically leading to the automatic retrieval of the just 

created binding. The RT cost is thought to reflect the cost of updating the currently held 

representation of an object. Partial repetition costs are thought to be the product of 

perceptual conflict between S1 and S2, therefore, it is less clear whether complete 

repetitions actually facilitate RT in the way that Kahneman et al. (1992) envisioned. The 

data presented here did not demonstrate a significant decrease in RT when all features 

were repeated between S1 and S2 in contrast to when all features alternated between 

S1 and S2. These findings show that full repetition held no RT benefit in contrast to a 

complete alteration. This is supported by previous work by Hommel (1998, 2004 & 

2008) and suggests that the object specific benefit as reported by Kahneman et al. 

(1992) is only apparent in contrast to a partial repetition cost.  

 

 In experiment 2A, in a modest but important extension of the work completed by 

Hommel (1998), we measured two types of partial repetition costs against two different 

baselines: an irrelevant feature change cost and a relevant feature change cost. In 

experiment 2A, we failed to produce either partial repetition cost. However, following 

the inclusion and control of location and shape information, these effects have 
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emerged. Both a RFCC and an IFCC was observed, supporting the idea that, irrespective 

of whether the partial repetition of an object was due to a task relevant or task 

irrelevant feature change, an object file was retrieved and updated. In contrast to 

experiment 2a, an increase in the percentage error is also seen. This suggests that the 

irrelevant features in this experiment were either more distracting than those in 

experiment 2a or participants were trying to respond faster and therefore became more 

erroneous. The data does not support this latter explanation, which suggests that the 

irrelevant features presented experiment 2a may have been easier to ignore, possibly 

due to the features of the stimulus not being integrated into an object.  

 

A further point of investigation was whether location, motion, colour and shape would 

lead to equal partial repetition costs, either as relevant or irrelevant features in the 

display. The role of location information has previously been a point of contention. 

Kahneman et al. (1992) stress the importance of location in the creation and retrieval of 

an object file. However, Van Dam et al. (2010) argue that it was unclear whether RT 

benefits were the result of previewing a particular area of space, or previewing those 

features within that space. Further to this, evidence from attentional studies (Hommel 

1998, 2007; Hommel & Colzato, 2004) and developmental studies (Leslie, Xu, Tremoulet 

& Scholl, 1998) suggest that feature bindings do not necessarily need to include spatial 

codes in order to be retrieved. A 1x4 ANOVA was carried out on the individual feature 

based blocks to enable us to see the difference in results, depending on which feature 

was task relevant. When location was relevant, we saw a task RFCC. However, when an 

irrelevant feature changed, such a shape, motion or colour, there was no significant 

impact upon RT. This suggests that location plays a special role and that, as long as 

location is repeated, an object file can be accessed with minimal cost to the perceptual 

system.  

 

By looking at each feature block separately, we were able to identify differences in the 

way that each feature contributes to object files. When non-spatial features were 

irrelevant (location block), we did not see any partial repetition costs suggesting that 

non-spatial features can be ignored or updated with marginal cost to the perceptual 

system. When a non-spatial feature is task relevant, we see a different pattern of 
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results. Attending to colour led to both a robust and significant RFCC and IFCC. Shape 

also showed a significant IFCC, along with a RFCC that was borderline significant 

(P=0.054), however with an effect size of 0.213 (partial eta- squared) suggesting that 

this is a partial repetition cost. However, in the motion block, we only observed a RFCC 

but failed to detect an IFCC. These results suggest that all features do not play an equal 

role, but instead task salience modulates the impact of feature alternation of object 

representation. Although location did produce robust IFCC and RFCC, if location 

information was the only way in which object files could become reactivated you would 

not expect to see a RFCC in any other block.  

 

An alternative explanation for the seemingly equal role of location as a feature may lie 

in the fact that there was only ever one object. Episodic retrieval via non-spatial 

features has been demonstrated in the previous research, however, like this 

experiment, there was only one object (Colzato, Raffone, & Hommel, 2006; Hommel, 

1998; Hommel, & Colzato, 2004). Therefore, when multiple objects are present, spatial 

correspondence may be integral to deal with the spatial uncertainty (Kahneman, 

Treisman & Gibbs, 1992; Mitroff & Alvarez, 2007; Saiki, 2003). 

 

 The observation of both the Simon effect and the spatial stroop effect have led to 

location being assigned an important status. The Simon effect (Craft & Simon, 1970) is 

observed when participants are asked to respond to a non-spatial feature in a binary 

choice task with a left and right assigned key response. A faster RT is observed when the 

key response is congruent with the side of the screen that the object appears on. The 

accepted view of the Simon effect is as follows: assume that subjects are responding to 

two letters, R and T with either a left or right button press. If the R appears on the left 

or response corresponding side, this stimulus will be processed along two routes. One 

route is under intentional control, and it is this route that acts voluntarily on task 

instruction. The other route is assumed to be automatic (Hommel, et al. 2004) and 

unconditional and connects the internal codes of spatially corresponding stimuli and 

responses. If the R appears on the left then both routes will become activated and 

therefore the left response code will reach the required response threshold quicker 

than in a spatially neutral condition.  However if the R appears on the right, the 
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automatic and unintentional route will activate the left response code, which in turn 

will lead to response conflict and delays in response execution, this is called the dual 

route model.  

 

Alternatively, the object file theory offers an integration account of the Simon effect. If 

you apply the event file assumption that the combination of stimulus and response 

features in the preceding trial become integrated and are still associated with each 

other when the next trial begins, it is hypothesized that reactivating one member of this 

temporary association will also activate the other member. So if the same combination 

of stimulus and response features (R > Left , R >Left)  were repeated, this would mean a 

complete match of old  and new stimulus response features.  This would not provide 

any kind of coding or selection problem, processing for these trials might be faster than 

control trials. Similarly no problems are expected for a complete mismatch of stimulus 

response features, so R = left button press preceded by a T = right button press. 

However, partial matches may cause processing conflicts.  If, in the first trial, the letter 

R becomes associated with a left response, then in the following trial the R appears on 

the right side - a partial match results; the letter has been repeated and the location has 

been alternated. Therefore you would expect to see a delayed RT.  Four experiments by 

Hommel, Proctor and Vu, (2004) showed that the Simon effect was eliminated if the 

preceding trial involved a non-corresponding stimulus response pairing (either a 

complete mismatch or complete repeat), however, following a partial stimulus- 

response mismatch, the Simon effect was present and robust.  

 

Similarly, the ’Spatial Stroop Effect’ (MacLeod, 1991) is observed when the subject must 

respond to a word that has spatial information (e.g. right or left) with a right or left key 

response. Although location information is irrelevant during the task, the location of the 

spatial word significantly modulates the RT to that word. Although, the Spatial Stroop 

Effect has not been examined as the Simon Effect was above it is plausible that short-

term integration, as explained in the object file model, may also account for the Spatial 

Stroop Effect.  

 

The current results also showed that there was significant effect of feature, meaning 
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that participants did not respond to all features equally; attending to location did yield a 

faster response time than attending to shape. This suggests that location is processed at 

a higher speed than non-spatial features and may play an integral role in the encoding 

of object files.  However, before a conclusion is reached it must be considered as to 

whether the reaction time to the four different features are comparable.  It has been 

shown that RT to motion onset is related to the perceived speed of motion; as the 

speed increases the RT to motion onset decreases. The speed of the dots were not a 

feature that was included in the analysis or manipulated as a feature of the object. 

Therefore the features may not be comparable due to the different ways in which they 

interact with RT. In this respect, going forward this may not be a valid comparison.  

 

The neural mechanisms underlying the impaired performance, observed after partial 

repetitions of objects, are unknown. It is assumed that this impairment happens due to 

the conflict between the retrieved and perceptually available features and/or because 

the old associations need to be deconstructed (Colzato, van Wouwe, Lavender & 

Hommel, 2006). 

 

In summary, the results from experiment 3 support the assumption that alternating a 

feature of an object leads to the retrieval of a previously created binding as well as an 

updating of that binding. Theoretically, it is this process driving an increase in RT. Going 

forward, the mechanisms by which object files are formed and reviewed needs to be 

established. There is a lack of literature directly demonstrating that partial feature 

repetition indexes the retrieval of corresponding object files. By using fMRI and TMS to 

observe and probe the networks involved in processing features within object files, it 

may become clearer how the brain overcomes the monumental ‘binding problem’. To 

directly demonstrate that feature repetition actual indices the retrieval of 

corresponding object files, we need to exploit the modular processing nature of feature 

processing hubs and the use of fMRI as an exploration method into whether features 

are being reviewed and then overwritten. 
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Chapter 5 – Experiment 4 

Exploring the neural network recruited during the formation of object files  

5.1 Introduction 

Due to the modular and distributed organisation of the primate brain, accurate visual 

perception relies on the fast integration of features (Treisman, 1996). It has been 

demonstrated in experiment 3 of this thesis, as well as in many other studies (Hommel, 

1998; Hommel & Colzato, 2004; Kahneman & Treisman, 1992) that, when two objects 

are presented in close spatio-temporal succession, there is an interaction between the 

two objects that are captured by the reviewing paradigm. As explored in the previous 

chapters, a decrease in performance is observed during the reviewing paradigm if the 

target stimulus (S2) is a partial repetition of the preview stimulus (S1).  However the 

neural correlates of this partial repetition cost is relatively unexplored.  

 

The partial repetition of an object during S2 has been argued to cause conflict due to 

the ‘reactivation’ of the previously bound object (S1). Therefore, trials of this nature 

lead to conflict between the stored representation of an object and the newly 

presented representation of the object (Hommel, 2004; Kuhn, Keizer, Colzato, 

Rombouts & Hommel, 2010). The conflict caused by the mismatch in feature-based 

information is thought to lead to the automatic process of updating the object-file with 

the new and accurate information. It is hypothesised that the process of updating the 

new feature binding drives the observed partial-repetition RT cost (Hommel, 2004). 

Although this effect is established behaviourally, the cortical pathway engaged during 

this process and the underlying neural mechanisms are yet to be established. Although 

it has been shown that spontaneous feature integration and the immediate neural 

consequences of such integration can be measured with fMRI (O'Craven, 2000) and 

event related potentials (ERP’s) (Schoenfeld, 2003), the cortical network engaged during 

the updating and rebinding process, which is theoretically engaged during the 

‘reactivation’ process, is relatively unexplored.  
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As explained in detail in Chapter 1, Keizer et al. (2008) carried out an fMRI study using 

the reviewing paradigm and a stimulus made up of three types of neurally dissociable 

visual stimuli:  faces, houses and direction of movement.  Participants were presented 

with preview displays (S1) and targets (S2) that both consisted of blended images of a 

house and a face. The house or the face moved in one of two possible directions. 

Participants were to respond to the direction of S2, irrespective of what object moved. 

Of particular interest were the conditions where S1 showed a moving house and S2 a 

moving face; if the direction of motion between S1 and S2 were the same (i.e. the 

motion feature was repeated) the PPA was more active than if the motion direction 

alternated. Therefore, repeating the motion feature during S2 led to the retrieval of the 

object that moved during S1 (house) and hence led to an increase in activation within 

the PPA. This showed evidence that repeating a feature can reactivate the neural code 

of this feature, which then spreads activation to the other feature codes that it is still 

bound to. However, Keizer et al. (2008) failed to mirror this effect in the FFA; no 

significant increase in BOLD was observed in trials where the repetition of the motion 

direction should have led to a reactivation of the previously bound face, even though, 

behaviourally, the partial repetition cost was present. Due to the complex stimuli that 

Keizer et al. (2008) employed in their paradigm, it is difficult to interpret the partial null 

result. As it is established that faces are processed faster and to a much higher level 

than other objects (Roisson & Gauthier, 2002), one could argue that it is not unusual 

that the pattern of BOLD observed in the PPA was not mirrored in the FFA.  As the 

authors themselves comment, there is evidence that stimuli of greater biological 

significance, such as faces, attract more attention and induce more activation 

(Vuilleumier, 2000; Ro, Friggel and Lavie, 2007). 

 

The current experiment sought to explore the cortical networks associated with object 

files using a whole brain analysis. Through scanning the whole brain, this experiment 

questioned whether the ‘reactivation’ effects are restricted to the object or feature 

specific cortical areas (V4 & V5/MT), as per previous assumptions (Keizer et al. 2008; 

Kuhn et al. 2010). Using identical stimuli to experiment 3, the experiment aimed to 

replicate the two significant partial repetition costs in response to both an irrelevant 

feature alternation and a relevant feature alternation. Further to this, by separating the 
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RFC condition from the IFC condition, we sought to establish whether alternating a task 

irrelevant feature recruits the same cortical pathways that are recruited by a task 

relevant feature alteration. Previous experimental findings (Xu, 2010) suggest that, 

although the encoding of irrelevant features may be automatic and necessary, it does 

not mean that all features are processed equally and to the same level. Consistent with 

previous results (Xu & Chun, 2006) and neurophysiological findings (Toth & Assad, 2002; 

Freedman & Assad, 2006), Xu (2010) showed that the superior IPS seemed to process 

only the task relevant features, and although the task irrelevant processing of shape 

was indexed with an increased level of BOLD in the LOC, this quickly decayed, 

suggesting that the task relevant feature would be processed to a higher level. 

Therefore, the dissociation of an irrelevant and a relevant feature change in the 

paradigm will allow us to observe the possible separate neural fates of both relevant 

and irrelevant feature processing during the formation of object files. A further point of 

investigation was motivated by the hypothesis that partial repetition costs observed 

during object file processing reflect higher cognitive processes involved in monitoring 

and detecting conflicts between incoming information. Therefore, we would predict 

higher levels of BOLD in areas associated with conflict monitoring and resolution, such 

as the ACC (Botvinick et al. 2004), the supplementary motor cortex, IFG, MFG and 

parietal cortices (Peterson et al. 2002). 

 

Finally, we also sought to address the question as to whether the updating of an object 

file with new information during S2 would lead to an area-specific increase in BOLD.  

This was following on from a previous fMRI study  (Keizer et al. 2008)  where the data 

showed that the right PPA, a house-selective brain area, showed increased activation to 

moving faces (in S2) if a couple of seconds earlier the same direction of motion had 

been paired with a house (in S1), compared to when both the direction of motion and 

the moving object alternated.  The authors argue that this supports the view that the 

presentation of a stimulus feature (a direction of motion) reactivates features it was 

previously bound with (house) in an object file.  Their results showed that both neural 

and behavioural measures were closely correlated across participants.  
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As discussed in Chapter 1, the authors found a similar positive correlation between the 

RT cost observed and level of BOLD in the FFA, however they observed a positive 

correlation between the RT cost and BOLD level in the FFA yet did not find the RT to be 

significant. This meant their results were inconclusive, however as mentioned 

previously, faces carry biological significance that may modulate processing in a 

different way to pictures of houses.  The PPA and FFA were examined because they 

were specific to the features manipulated in the stimuli (faces and houses). In order to 

replicate the analysis methods of Keizer et al. (2008), two correlation tests will be 

carried out: firstly, between the change of BOLD in area V5/MT and the irrelevant 

feature change RT cost and secondly, between the change of BOLD in area V5/MT and 

the relevant feature change cost.  V5/MT has been chosen as the studied cortical area 

because the attended feature in this study is motion. How the percentage signal change 

and RT costs were calculated is detailed in the methods section of this chapter.  

We predicted that, if old information regarding the feature binding of the motion, 

colour shape and location had to be updated during partial repetition, then this may 

also be reflected in an increase in BOLD activity in the cortical areas that processes the 

task relevant feature: area V5/MT. If this was the case, we would expect to see a 

specific increase in BOLD during the RFC and IFC conditions above and beyond that seen 

in the NC and the AC. To test this hypothesis, we carried out retinotopic mapping on 

each subject allowing a region of interest (ROI) analysis to be carried out on V5/MT and 

the percentage signal change to be calculated. We then aimed to correlate the increase 

in RT with an increase in BOLD percentage change in area MT. 

Previous chapters have measured 3 types of RT data: an IFCC, a RFCC and an OSB. As an 

OSB is the direct opposite of the IFCC measurement I no longer report this in this thesis.  
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5.2 Materials and Methods 

5.2.1 Participants 

20 healthy, right-handed participants were recruited for both parts of the experiments 

(mean age = 26, SD =3.8 years; 9 females). All participants had normal or corrected-to-

normal visual acuity. No participants were colour-blind. All participants completed 

safety screening to ensure it was suitable for them to go into the MRI scanner. They 

gave their written informed consent for the experimental procedure, which was 

approved by the Research Ethics Committee at the School of Psychology, Cardiff 

University.  

5.2.2 Apparatus  

All visual stimuli were rendered on a black background and back-projected onto a 

screen using the MR projector system installed at CUBRIC. The participant was asked to 

maintain central fixation.  

5.2.3 Stimulus and Procedure 

At the beginning, middle and end of each block, a white fixation cross was presented for 

30 seconds. The recorded haemodynamic response during this time acted as a baseline. 

On each trial the participant was presented with a stimulus that they were to passively 

attend (S1) and a stimulus that they must respond to (S2), as illustrated in Figure 5.1. 

The first trial began immediately after the 30 seconds had lapsed. S1 was presented for 

680ms and then followed by an ISI for 500ms. During the ISI, a grey fixation cross was 

presented; this was coloured grey to act as a cue to the participant that the following 

stimulus was the target stimulus to which they should respond. Following the ISI, S2 was 

presented for 680ms. The ITI were randomly jittered with a mean of 4s (ranging from 3s 

to 7s). Participants were asked to selectively attend to the feature of motion. A speeded 

response was collected within the presentation window of S2.  

 

Participants completed a practice session the day before the experimental scanning 

session. The practice session was conducted in a darkened laboratory.  Visual stimuli 

were presented at a mid-sagittal viewing distance of 50cm, on a 21 –inch CRT monitor 



 134 

(60Hz vertical refresh rate; 1024/768 resolution; black background). Throughout the 

practice session, the participant’s head was fixed within a chin rest. Although gaze was 

not monitored, the participants were asked to focus on the fixation cross at all times. 

Participants were given two practice blocks to complete; these were presented in the 

exact same way that they would be presented in the scanner. Therefore, there was an 

ITI jitter and a 30sec baseline at the beginning, middle and end. This was to ensure that 

the participant was familiar with the structure of the experiment to prevent confusion 

during the experimental session. After each of the 2 practice blocks, the RT and 

percentage of missed or anticipated responses (RT = <250ms) was calculated. If more 

that 10% had been missed, anticipated or answered incorrectly then they repeated that 

block. No participants were required to repeat the block during this experiment.  

 

The stimulus consisted of 4 features: shape (circle or square), location (left or right), 

colour (red or green) and direction of motion (up or down). Depending on condition, 

these features could alternate or repeat between S1 and S2 independently of each 

other. The only feature that participants were asked to attend and respond to was the 

direction of motion. At the onset of S2, participants were required to press either a left 

(up) or right (down) button to decide whether the dots were moving up or down. This 

was counterbalanced across all participants. All participants were right handed and 

were asked to use their index finger on the left button and their middle finger to press 

the right button. S2 was only presented for 680ms and the participants were informed 

that only the first response was recorded and that once the S2 has disappeared, no 

responses were accepted.  
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Figure 5.1. Schematic illustration of the displays and timings of events in a typical 

AC trial. The arrow denotes the direction of motion. 

 

5.2.4 fMRI Data Acquisition 

All data were acquired using a GE Signa HDx 3T scanner with an 8-channel head RF 

receive coil. T2*- weighted gradient echo fMRI data were acquired using an echo-planar 

imaging (EPI) pulse sequence with the following parameters; 53 interleaved oblique-

axial slices (orientated along the participants AC-PC line) covering the whole brain, TR 

=3000ms, TE= 35ms, flip angle = 90 degrees, acquisition matrix= 64x64, slice thickness 

of 3.4mm, spacing between slice =3.4mm, parallel imaging acceleration (ASSET) factor 

2. Each scanning sequence was comprised of 180 volumes and lasted for approximately 

9 minutes. Participants completed 6 experimental runs. Each run consisted of 64 trials; 

16 per condition. Structural scans were acquired using a T1-weighted fast, spoiled 

gradient recalled sequence (FSPGR) with the following parameters; 1mm isotropic 

resolution, acquisition matrix 256x256x176, TR/TE=7.9/3.0 ms, TI=450ms, flip 

angle=20deg. Fieldmaps were collected at the end of each scanning session. The 

fieldmap acquisition consisted of 2 SPGR scan with two different echo times of 7ms and 

9ms. From these images, a phase-difference image was created to yield the frequency 

offset at each point in the fieldmap.  
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image pre-processing 

The fMRI data were analysed using the FMRIB software library (FSL; 

www.fmrib.ox.ac.uk/fsl). Preprocessing parameters were as follows: motion correction 

using MCFLIRT (Jenkinson, Bannister, Brady & Smith, 2002); non-brain removal with BET 

(Smith, 2002). The fMRI data were then registered to the participant’s structural scan. 

All functional volumes were then smoothed with an 8 mm full-width half-maximum 

(FWHM) isotropic Gaussian kernel to compensate for residual between subject 

variations after spatial normalization. The resulting time series across each voxel were 

then high pass filtered to 1/128Hz.  

Intra-subject analysis 

5 event types were identified according to the 5 conditions: baseline (BL), NC, AC, RFC 

and IFC. Each event was separately modelled and lasted 1860ms from the onset of S1 to 

S2. 6 contrasts were calculated: IFC vs. NC, RFC vs. AC and each condition vs. BL 

Statistical maps were generated using a fixed effects model. Both correct and incorrect 

responses were included in the analysis. Data was analysed by modelling the evoked 

hemodynamic response function (HRF) and its hemodynamic temporal derivatives (HRT) 

in the context of fixed effects general linear model. Contrasts of parameter estimates 

were then calculated to produce statistical maps for each contrast of interest. Each 

condition was contrasted with every other condition and each condition was contrasted 

with baseline. Baseline consisted of a white fixation cross. This was collected for 30s at 

the beginning, middle and end of each run. 

 

Group level 

The statistical maps then generated at the subject level were then entered into a group 

level mixed effects model.  Voxel based thresholding was then applied to the resulting 

statistical maps (z=2.3), and cluster-based thresholding was used to correct for multiple 

comparisons, with a (corrected) cluster significance threshold of P=0.05. 
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2.2.5 Retinotopic Mapping Data Acquisition 

Retinotopic mapping data were acquired using a gradient-echo EPI sequence with the 

following parameters; TR=3.0s, TE=35ms, Flip angle=90, 128x128 acquisition matrix, 

256mmx256mm FOV, 37 2mm thick slices parallel to the calcarine sulcus, 100 volumes), 

spatial smoothing using a Gaussian kernel of full width half maximum (FWHM) 0.5mm. 

The stimuli consisted of 70 - degree wedges, rotating at 1 rpm, containing dots that 

moved and changed in a 3D flow pattern. In each session, two clockwise and two anti-

clockwise runs were performed in a counterbalanced manner. Analysis of retinotopic 

data was performed using in-house software (developed by Krish Singh) that computed 

phase angle estimates with correction for hemodynamic lag for each voxels and 

estimated the strength of retinotopy, using the power of the variance in the time series 

at 1 rpm frequency. The phase angles were plotted as a coloured map on the flattened 

occipital cortex using mri3dX software, this is downloadable at: 

http://www.cubric.cf.ac.uk/Documentation/mri3dX.  

 

Percent Signal Change analysis 

Featquery was used to calculate percentage signal change in V5/MT during each 

condition (AC, NC, RFC, IFC). A mask of area V5/MT was created for each subject 

following retinotopic mapping and the percentage signal change each condition was 

calculated between the RFC and the AC condition and the IFC condition and the NC 

condition.  

Once the percent signal change for each condition was calculated for each subject this 

was then entered into a 1X4 ANOVA in order to see if there was a significant change in 

BOLD signal during the RFC and IFC conditions over and above the AC and NC 

conditions.   

Further to this we also carried out a correlation test in order to see whether there was a 

correlation between an individuals RFCC or IFCC and the percentage signal change in 

V5/MT.  

http://www.cubric.cf.ac.uk/Documentation/mri3dX
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In order to calculate the IFCC and the RFCC, I applied the same equations as explained in 

Chapter 3. These are repeated below for clarity.   

 

 

We then carried out a correlation test to see whether the mean percent signal change 

in V5/MT correlated with the mean RT cost during the RFCC and the IFCC at the 

individual level.   
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5.3 Results 

5.3.1 Behavioural results 

Responses were missing or anticipated (<250ms) in 1.4% and 0.4% of the trials, 

respectively. Trials with missing or anticipated responses were excluded from analysis. 

For the remaining data, mean RTs and PEs were calculated for each experiment as a 

function of the 4 possible relationships between S1 and S2; that is, whether all features 

repeated or alternated, or whether only the attended or unattended feature alternated 

(Table 1). A 1x4 ANOVA with repeated measures was carried out to analyse the results.  

A 1x4 ANOVA revealed that there was a main effect of condition on RT (F 

(3,2.215)=17.164, <0.001), partial η2   = 0.47), therefore replicating results from 

experiment 3 and previous studies (Hommel, 1998, 2004; Keizer et al. 2008).  

Table 5.1. Mean RT Across All Participants in Each Condition 

 

Note. The PE is displayed within the brackets. RT = reaction time; PE = percentage 

error.  
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Figure 5.2. RT Benefit and Costs. The IFCC bar represents the increase in RT 

observed when an irrelevant feature  (colour, shape or location) alternated 

between S1 and S2 (contrasted to when no features changed).  The RFCC bar 

represents the increase in RT observed when a relevant feature alternated 

between S1 and S2 (contrasted to the all change condition) RT = reaction time; 

IFCC = (IFC-NC) ; RFCC= (RFC – AC), OSB = (NC-IFC). Error bars=SEM. 

 

The IFCC was calculated by subtracting the mean RT during the NCs (606.38ms) from 

the RT in the IFCC (588.86ms) and the RFCC was calculated by subtracting the mean RT 

during the ACs (608.2ms) from the RT in the RFC (620.02ms). The 1x4 ANOVA showed 

that there was a significant increase of RT when a task irrelevant feature was changed 

between the presentation of S1 and S2, in comparison to when no features changed 

(mean difference =18ms, P=0.009, partial η2   = 0.0422). The 1x4 ANOVA showed that 

there was a significant increase of RT when the task relevant feature was changed 

between the presentation S1 and S2, in comparison to when all features changed (mean 

difference =11ms, P=0.011, partial η2   = 0.406). I do not report the OSB here as this is 

simply the reverse of the IFCC.  
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5.3.2 Errors 

A 1x4 ANOVA was carried out on the percentage of errors across conditions. The mean 

percentages of errors (PE’s) are displayed in table 1. The ANOVA revealed no significant 

main effect of condition on error rate, (F(3,57)=0.103,P=0.958, partial η2 =0.005.  

5.3.3 Imaging Results  

This experiment calculated 2 fMRI contrasts in order to reflect the same behavioural 

contrast as above. This also enabled the differentiation between the cortical pathways 

engaged in a RFC (Figure 5.3) and an IFC (Figure 5.4). Further to this, the two contrasts 

also allowed us to match the motor switch or repetition effects between conditions.   

Table 5.2 The brain areas that showed increased levels of BOLD are presented  

along with the MNI co-ordinates of the peak voxel within the cluster. 
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Figure 5.3. The cortical areas that showed increased levels of BOLD when a 

irrelevant feature alternated between S1 and S2, as opposed to trials where all 

features repeated (IFC Vs NC). 
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Figure 5.4. The cortical areas that showed increased levels of BOLD when a 

relevant feature alternated between S1 and S2 as opposed to trials where all 

features alternated (RFC Vs AC).  

5.3.4 ROI Analysis and Percent Signal Change in MT: Brain-Behaviour Correlation  

A ROI analysis was carried out on area MT. Area MT was chosen because it is a 

specialised processing area for motion, which was the task relevant feature. If 

alternating one task feature led to an increase in RT, in contrast to either repeating or 

alternating all features, it was hypothesised that the theoretical rebinding that drives 

the RT cost would be associated with an increase in BOLD in area MT. A 1X4 ANOVA was 

carried out to look at whether a significant difference in BOLD signal was present in 

conditions that carried the RT cost. The method of this calculation is explained on page 

120. Only the relevant change condition showed a significant increase in BOLD above 

and beyond that of the IFC condition. No other condition significantly differed from any 

other. The results are displayed in the table 5.2 below. 
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Further to this we tested whether there was any correlation between an individual’s 

IFCC and RFCC and their individual increase in BOLD in MT. A positive correlation was 

expected between the percentage signal change in MT and the RT cost observed, as 

found in previous experiments (Keizer et al. 2008). A percentage signal change was 

calculated separately for both IFCC and RFCC to control for the confounding impact of 

the motor repetition effect previously explained. Percentage signal change difference 

was calculated as per explained in the methods section. 

 

Figure 5.5 shows an example of a retinotopic map and area V5/MT. Once this 

area was defined then a mask was created. This mask was then used in featquery 

to extract the percent signal changes in this area of the cortex.  
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Table 5.2 ROI Analysis Results: Mean percentage change in BOLD signal within 

area MT in the contrasts specified. 

 

These predictions were not confirmed. Participants did not display the predicted 

positive correlation for IFCC (Figure 5.6) or RFCC (Figure 5.5): the RT cost associated 

with alternating either an irrelevant or relevant feature was not significantly correlated 

with an increase in BOLD in the relevant features processing hub (MT). 
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Figure 5.6. Correlation between the RFCC in reaction time and the percentage 

BOLD change in the RFC >AC conditions in area V5/MT. The difference between 

the percentage signal change in the RFC condition and the AC was calculated. 

This was then plotted against the RFCC which was calculated by subtracting the 

RT in the RFC condition from the RT during the AC condition. There was not a 

correlation between the increase in RT observed in the RFC and the percentage 

increase in area MT. RFC = relevant feature change; AC = all change; RT = reaction 

time; MT = medial temporal. 
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Figure 5.7. Correlation between the IFCC in reaction time and the percentage 

BOLD change in the IFC >NC conditions in area V5/MT. The difference between 

the percentage signal change in the IFC condition and the NC was calculated.  The 

IFCC was then calculated by subtracting the RT in the NC condition from the RT in 

the IFC condition.  This was then plotted against the difference in relation to RT 

in the IFC condition and the NC. 
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5.4 Discussion 

The aim of this study was to explore cortical areas that were engaged during partial 

repetition trials, in which a RT cost is often observed. We also aimed to determine 

whether a task RFC would engage a different cortical network than a task IFC. Alongside 

a whole brain analysis, a ROI analysis was carried out on area MT to establish whether 

we would see an increase of BOLD in this area that would correlate with the partial 

repetition cost observed behaviourally.  We also looked at whether the individuals IFCC 

and RFCC correlated with the BOLD signal in area MT on a subject level. The behavioural 

results replicated previous findings (Hommel, 2004; Hommel, 2008) was replicated and 

a significant increase in RT was observed when either a task relevant or irrelevant 

feature was alternated relative to the AC and the NC, respectively. The whole brain 

analysis revealed that the cortical pathway engaged during a task RFC was different 

from the cortical areas engaged during an IFC. A RFC led to 2 large and significant 

clusters of activity in the right LOC and the left PCG, whereas a task IFC led to both the 

left and right LOC becoming engaged alongside the SFG and the MFG.  

 

In the ROI analysis we saw a significant increase in BOLD during the RFC condition in 

contrast to the IFC condition. A key difference between the RFC condition and the IFC 

condition is the latter involved the repetition of a direction of motion between S1 and 

S2.  The repetition of features as opposed to the presentation of new features may have 

led to an attenuation of the BOLD signal.  Both the IFC and NC task both encompass a 

repetition of the direction of motion; this may have led to adaptation of the BOLD signal 

in the motion sensitive areas such as V5/MT, whereas the RFC and AC conditions 

involved an alternation between two motion directions and would lead to a relative 

increase in the BOLD signal.  The data supports this hypothesis, RFC led to a significant 

increase in BOLD (0.056%) in area V5/MT in contrast to the percentage change in BOLD 

during the IFC condition.  

 

Since there is no published fMRI that has carried out a whole brain analysis using the 

reviewing paradigm, this experiment can be classified as exploratory and therefore, that 
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should be considered while interpreting the results. The RFC trial consisted of the 

direction of motion changing between S1 and S2 while the location, shape and colour 

feature were repeated. This condition was contrasted to the AC where the location, 

motion, shape and colour feature alternated. The largest cluster seen in response to the 

RFC was in the left PCG. Since both conditions are matched in terms of motor actions 

and motor switch costs, this result was unexpected. An explanation for this cluster of 

activity could be found in the previously discussed data, which establishes that object 

files contain more than just perceptual information.  

 

Hommel (2004) has shown that the motor action afforded by that object also becomes 

bound alongside the features of the object. Therefore, if the RFC caused the retrieval or 

reactivation of the object representation formed in S1, then it may be possible that the 

motor action afforded by the previously presented direction of motion is being 

retrieved and overwritten alongside the RFC. The somatosensory cortex has been 

shown to play an important role in the formation of goal directed actions, and therefore 

the retrieval of a primed but not actioned movement may have led to an increase of 

BOLD in the post central gyrus. Due to the RFC condition being contrasted to the AC, the 

motor switch cost would have been controlled. However, one could argue that the 

perceptual overlap in the RFC condition would have led to the reactivation of the 

previous object, and hence the attached motor action. There is no perceptual overlap 

between S1 and S2 during the AC condition, therefore, theoretically, would not have led 

to a reactivation of the previous motor action. A further explanation for the increase of 

BOLD in the left PCG during the RFC condition is the accompanying increase of RT during 

the RFC conditions. Although RT is one of the most widely used measures of 

performance in experimental psychology, relatively few fMRI studies have explored the 

neural correlates of RT variability (Yarkoni et al. 2009). Previous experiments have 

shown an increase in the power of BOLD in correlation with an increased RT (Honey, 

Bullmore & Sharma, 2000). Therefore, this could explain an increase of BOLD in the 

motor region if the RFC was causing an increase in RT, caused by response conflict by 

reactivating S1. The second significant cluster of activity was in the right LOC. The LOC is 

a cortical area that shows preferential processing for objects (Kanwisher, Chun, 

McDermott & Ledden, 1996).  
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To identify areas engaged during an IFC trial, the IFC condition was contrasted to the NC 

condition. There were 2 main clusters of activity observed: bilateral LOC and the left 

SFG; as well as spreading over the right MFG. The frontal cluster observed that was 

covering both the left MFG and SFG indicated that a task irrelevant alternation is 

leading to perceptual conflict. Activity in these areas have been associated with the 

ability to inhibit responses (Swick, 2011; Muggleton, Chen, Tzeng, Hung and Juan, 2010) 

and in particular the SFG is thought it contribute to higher cognitive functions, 

particularly working memory (Boisgueheneuc et al. 2006). It is thought that the highest 

level of executive processing and spatial orientated processing triggers the participation 

of this region. Within the working memory, the SFG is specifically thought to be integral 

to the monitoring and manipulating of information (du Boisgueheneuc et al. 2006). This 

suggests that irrelevant features are integrated spontaneously and the alternation of a 

task irrelevant feature leads to a retrieval of the previous representation and an update 

within working memory. This is contrary to what is suggested by Xu et al. (2010), where 

irrelevant features are shown to be processed to a lower level and degrade much 

quicker than other features. 

In order to determine when object-based processing may or may not occur, Xu et al, 

(2010) varied the overall task encoding load and measured the processing of object 

shapes when attention was directed to object colours. In essence, the processing of an 

irrelevant feature was examined by measuring fMRI responses in the LOC, an area of 

the brain involved in object shape representation. In three experiments it was found 

that, whereas object based processing was present at low colour encoding load, it was 

attenuated or even suppressed at high colour encoding load. The authors found that 

even when task irrelevant shapes were encoded by the LOC, this information was not 

processed and retained in the superior IPS, a brain area involved in VSTM information 

encoding and storage (Todd & Marois, 2004; Xu & Chun, 2006).   

 In the current experiment the encoding load of the task relevant feature is relatively 

low; participants have one object to focus on and must decide whether the direction of 

motion is up or down, therefore in the context of Xu et al. (2010) results it is 



 
 

151 

unsurprising that we see bilateral activation of the LOC and SPL suggesting that during 

this task object based processing is taking place and irrelevant features are being 

processed to a higher level. However, unlike Xu et al. (2010) study, there is not just two 

features being manipulated; an IFC trial can be either a shape colour or location change. 

Due to the role of the left SFG in spatial orienting, we do not know whether the spatial 

alternation is driving the BOLD cluster, or whether this area is involved in resolving the 

perceptual conflict. In order to gain insight into the causal role in the formation of 

object files within these areas, it is necessary to apply TMS to these areas. In the 

following chapter, continuous cTBS is used to inhibit the left PCG, right SFG and right 

LOC. 
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Chapter 6 – Experiment 5 

Using cTBS to probe the cortical network of feature binding  

6.1 Introduction 

The final experiment in this thesis aimed to demonstrate the causal roles of the areas 

identified in the whole brain analysis carried out in experiment 4. This is the first 

documented TMS study using the reviewing paradigm. We applied an offline protocol of 

continuous theta-burst stimulation (cTBS; see Huang et al. 2005) to 3 cortical sites: 

namely the right LOC, left SFG and the left PCG. Results indicated that cTBS to the left 

PCG led to significant decrease in RT in comparison to the sham condition but only in 

the AC condition. This was also true of the right LOC. However TMS to the left SFG did 

lead to a significant decrease in RT during the irrelevant change condition. This is 

important, as this was an area that showed a significant increase in activity during the 

completion of the task, as shown in experiment 4. As this is the first time the reviewing 

paradigm has been explored using cTBS these results are preliminary and hence should 

be interpreted with caution. This chapter begins with a brief introduction to TMS.  

6.1.1 Background 

Transcranial magnetic stimulation (TMS) exploits Faraday’s principle of electromagnetic 

induction. Passing a powerful and rapidly changing current through a wire produces a 

magnetic field. When this wire is within a coil and the coil is placed against the scalp the 

magnetic field passes through the cranium, virtually unimpeded and relatively painlessly 

to the cortical tissue below. An eddy current is then induced in the cortical tissue, and 

this in turn penetrates the membranes of the neurons. This results in either an action 

potential or an excitatory or inhibitory post-synaptic potential (Terao &Ugawa,2002).  

The first studies of transcranial magnetic stimulation (TMS) were performed in 1985 and 

demonstrated that TMS of the motor cortex could safely produce observable 

movement of the hand (Barker, Jalinous & Freeston, 1985). Although early studies were 

based around the application of single pulses of TMS, research quickly expanded and 

TMS developed to allow the administration of multiple pulses over a short period of 

time. This was termed repetitive transcranial magnetic stimulation (rTMS). rTMS was 
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shown to have lasting effects on cortical excitability that persisted after the actual 

delivery of the rTMS had ceased (Chen et al. 1997). 

When TMS is applied at appropriate intensities, the induced electrical current is 

sufficient to depolarize neurons and create action potentials (Pascual-Leone et al. 

2002).  Although single pulses do not carry effects that last longer than a few seconds, 

when pulses are applied in a repetitive manner with a short inter-stimulus duration 

(typically 1Hz or greater) the effects outlast the time of stimulation by up to 60 minutes 

(Siebner & Rothwell, 2003). 

A relatively recent development has seen the introduction of a novel rTMS protocol 

(Huang et al. 2005) termed theta burst stimulation (TBS).  During TBS, pulses are applied 

in triplets delivered at a frequency of 50Hz and an inter-burst interval of 200ms, 

resulting in an envelope frequency of 5Hz (theta band).  TBS was developed following 

the observation that theta rhythms as measured by EEG were associated with long-term 

potentiation. It has been observed that TBS protocols appear to lead to sustained 

changes in cortical activity lasting well beyond the duration of the TMS application 

(Oberman, Edwards, Eldaief and Pascual Leone, 2011).  

There are two main types of TBS, continuous TBS (cTBS) and intermittent TBS (iTBS). It 

has been shown that cTBS reduces the motor evoked potential (MEP) whereas iTBS 

increase the MEP suggesting an inhibitory and excitatory effect, respectively (Cárdinas -

Morales, Nowak, Kammer, Wolf and Lecuona, 2010).  

Experiment 5 employed cTBS in an attempt to selectively inhibit specific cortical areas in 

order to further assess the causal role that they play in the formation of object 

representations.  By inhibiting areas that have shown an increase in BOLD activity 

during specific conditions of the reviewing paradigm I aimed to selectively interfere with 

the reaction time observed during the reviewing paradigm.   

Previous literature (Xu, 2010) and results from experiment 4 have shown that task 

irrelevant features seem to have separate cortical and perceptual fate, meaning that 

the irrelevant features not only play a different role in the binding process but also, 

when processing an irrelevant feature change (IFC) between two objects, recruit a 
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different cortical pathway that of an relevant feature change between two objects 

(RFC). Further to this it has been shown that not all features are of equal salience in the 

visual processing of objects; that is, features such as location seem to have higher 

salience than colour (Chen, 2009). Although it has been shown that a task irrelevant 

feature modulates processing of the whole object, it has been argued that task 

irrelevant features degrade more rapidly and are processed to a much lower degree 

(Xu, 2010).   

Spatial attention has a heavily documented role in visual feature binding (Tresiman et 

al. 1984) and, alongside this, it is established that the parietal cortex is recruited during 

the engagement of spatial attention (Corbetta et al. 2008).  This is one of the key 

reasons why the parietal cortex has been an area of interest when applying rTMS as a 

method of probing the cortical substrate of feature binding. Esterman et al. (2007) 

applied offline 1Hz rTMS to the right IPS, right AG/TOS and the left IPS. Only TMS to the 

right IPS led to a decrease in illusory conjunctions, which suggests an improvement of 

accurate feature binding.  

 

Further to this, Esterman, Verstynen and Robertson (2006) applied TMS to the posterior 

parietal lobe. The participants who completed the feature binding task were deemed 

colour – grapheme synesthetes. Colour-grapheme synaesthesia is a condition in which 

graphemes are automatically bound with colours. For example, the letter “A” is always 

perceived in a particular shade of blue. Synaesthesia is thought to be an example of 

hyper-binding that may rely on similar mechanisms to normal perceptual feature 

binding (Cohen-Kadosh & Henik, 2006; Robertson, 2003; Sagiv, Heer, & Robertson, 

2006). Results showed that in contrast to sham, rTMS of the right parietal ROI 

decreased reactions times (RT), so that subjects became faster, on trials where the 

stimulus colour and synesthetic percept were incongruent. The authors suggest this is 

because the interference between features has been attenuated following rTMS to the 

right parietal lobe.  

 

The parietal lobe has received a lot of focus, which has been at the neglect of other 

cortical areas that may play a key role in visual feature binding. Visual feature binding is 
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a deceptively complex process that engages a widespread neural network due to 

integration of perceptual, motor and behavioural goals. These fundamental processes 

include the short-term maintenance of relevant information, the mental manipulation 

of this information and the mental organization of the forthcoming sequences of 

actions (Baddeley, 1996; Goldman-Rakic, 1987, 1995). Boisgueheneuc et al. (2006) 

reported that the left SFG, in particular, showed a significant increase in BOLD during 

tasks that engaged these fundamental processes. Their results suggest that the left SFG 

is highly involved in processes gathered under the concept of ‘monitoring and 

manipulation’ (Duncan &Owen, 2000) or ‘executive processing’ (Postle et al. 2000) 

within WM. Boisgueheneuc (2006) asserts that the left SFG is recruited by the specific 

task that includes the maintenance of two or three items in short term memory. During 

the preview task it is thought that the RT modulation is observed because the features 

of an object become automatically bound and are present in visual working memory for 

up to 4 seconds (Hommel & Colzato, 2004), this representation is then updated and/or 

maintained if certain conditions are met.  The selective activation of this area observed 

during an IFC condition suggests that on viewing S2 there is a manipulation of 

information being held in the working memory.  Therefore the left SFG may play a key 

role in process of feature binding.  During experiment 4 we saw an increase of BOLD in 

the left SFG during the irrelevant feature change task when contrasted to a no change 

task. The irrelevant feature change involves manipulation of the current representation 

to incorporate the new information.  This is not necessary during a no-change condition 

as all the information is repeated.  

 

The aim of experiment 5 was to selectively inhibit the left SFG. As the SFG showed 

increased activity during the IFC condition in experiment 4, it would be expected that 

inhibition of this area would lead to an inhibition of the manipulation of information 

and therefore an increase in RT and/or errors during the IFC condition, while leaving the 

NC and AC condition unchanged in contrast to the RT observed following sham cTBS.  

 

The second site of stimulation in this experiment was the right LOC. During experiment 

4, the LOC has shown an increase in BOLD during in both the RFC condition and the IFC 

condition. As both the RFC and IFC conditions are thought to evoke the binding process 
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due to the partial overlap of features, the right LOC is a likely candidate as a key cortical 

substrate in the process of rebinding. If the recruitment of the right LOC is purely due to 

the rebinding or updating of the current object representation then we would expect an 

inhibitory protocol cTBS to the right LOC to lead to increased RT and/or error rates in 

the RFC and IFC conditions only. However, if the right LOC plays a general role in 

processing all stimuli presented then we should see a general increase in RT across all 

four conditions, in contrast to the sham condition.  

 

The third site of cortical stimulation is the left somatosensory cortex or the left PCG.  

The large cluster observed in the left PCG in response to a RFC over and above an AC 

condition was unexpected. Both conditions were matched in motor demands and both 

conditions would have incurred a motor switch cost. The somatosensory cortex lies 

within the anterior parietal cortex, posterior to the central sulcus, and is characterised 

by its map of sensory space called the sensory homunculus. Following damage to this 

area patients often have difficulty identifying an object by active touch of the hands 

without other sensory input (Valens, 2001).  

 

 The relevant feature motion carries with it an associated task response. In both the AC 

and RFC conditions the direction of motion presented in S1 (up or down) is alternated 

so that the direction of motion in S2 is opposite to that in S1. This means that the 

motion direction in S1, although irrelevant, has primed the participant to a button 

press. When the direction of motion changes on the presentation of S2 there is a then a 

motor switch cost invoked. As the motor switch is constant across the two conditions, 

the main difference in these conditions is that the RFC condition would have involved 

the manipulation of one feature, therefore updating an object; whereas the AC 

condition would have no interaction with the previously presented object in S1. This 

may have prevented the action from S1 being processed as a prime. Turella, Tubaldi, 

Erb, Grodd and Castiello (2012) investigated the influence that the presence of an 

object, intended as the target for action, might have on the action observation network 

(AON). This network includes both the motor and somatosensory cortices. This suggests 

that viewing an object automatically entails processing the action that the object 

affords. Hommel (2004) has shown that object files do not just contain information 
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regarding perceptual features but also contain information regarding actions. Therefore 

an explanation for this cluster of activity may lie in the over-writing or manipulation of 

the goal oriented motor action that the three features repeated from S1 may have re-

activated. If this is the case then applying inhibitory cTBS to the left PCG may lead to a 

slower RT in the RFC condition in contrast to the AC condition in contrast to those 

observed following sham cTBS.  

 

In summary by applying cTBS to the selected areas that were recruited in response to 

the RFC and IFC conditions, this preliminary experiment seeks to address the causal role 

of these areas in the rebinding and updating of an object representation in both the RFC 

and IFC condition.  
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6.3 Method and Materials 

6.3.1 Participants  

10 participants undertook experiment 5, for which they were reimbursed £10 per hour 

(mean age 23, SD = 2.5 years; 6 females). Three of the participants also took part in 

experiment 4. All provided informed consent and were screened for contraindications 

to TMS, including personal or family history of epilepsy (Maizey et al. 2013). This 

research was approved by the Ethics Committee, at Cardiff University School of 

Psychology.  

6.3.2 Stimulus and Procedure 

The stimulus was displayed on a 21-inch CRT monitor (vertical refresh rate of 60Hz; 

1024/768 resolution; black background) with a mid-sagittal viewing distance of 50cm. 

Participants were asked to place their head in the chin rest and maintain focus towards 

the centre of the screen. Eye movements were not measured. During the trials, 

participants responded by pressing either a left button or a right button on the number 

keypad on a keyboard centred in front of them.  

The paradigm was identical to the stimulus used in experiment 4 with the only 

exception being the removal of the inter-trial jitter. Instead, the ITI was adjusted to a 

constant 2000ms. Prior to the 4 main experimental sessions each subject completed 

approximately 2-3 hours of preparatory testing. During this phase participants were 

screened for suitability for TMS, and the motor threshold was obtained (Varnava, Stokes 

and Chambers, 2011). Participants then completed 4 individual sessions that lasted up 

to 1 hour each consisting of 6 blocks of 64 randomised trials, consisting of the 4 

conditions of S1 and S2 combination in a randomised order. There were 3 active TMS 

sessions and a sham session to provide a baseline.  

The sham TMS session consisted of the TMS coil being held at 90 degrees to the scalp. 

The order of sessions was balanced in a Latin square design. Eight minutes was 

allocated for each block: as each block lasted around 6 minutes, a short rest period was 

included. The first experimental block started within 30 seconds of the cTBS ending 

meaning that data were collected up to 40 minutes after the cTBS had started.  
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5.3.3 Equipment and TMS Procedure 

Cortical stimulation was delivered with a Magstim figure-8 coil in conjunction with a 

Magstim Rapid2 biphasic stimulator. A standard continuous theta-burst stimulation 

(cTBS) protocol was applied (burst of 3 pulses in 50Hz, repeated at 5Hz; 200 bursts over 

40s, 80% of individual resting motor threshold). Motor threshold was established using 

the observation of movement method and was calculated as the average across the 

hemispheres (Stokes et al. 2005;Varnava, Stokes & Chambers, 2011). Positioning was 

achieved using a miniBIRD system (Ascension Technology Corp) in conjunction with the 

MRIcro and MRI reg software (Chris Rorden) and structural MRI scans (Rorden & Brett, 

2000). TMS was targeted at 3 main sites that were chosen based on the MRI co-

ordinates of significant clusters of activity in experiment 4. Theses 3 areas and MNI co-

ordinates were as follows: right LOC (14 -96 2), Left SFG (-24 4 58) and the left PCG (-46 

-24 52). In order to use the MNI coordinates as a TMS site, the co-ordinates from the 

fMRI data were converted into individual non-normalised x-y-z space using SPM5.  The 

TMS coil was oriented ∼45° laterally from the midline with the handle pointing caudally. 
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6.4 Results 

Reported p values were adjusted for violations of sphericity using the Greenhouse-

Geisser correction. A 4X4 (TMS site X S1-S2 condition) repeated-measures ANOVA was 

carried out on the reaction time data from correct trials.  This revealed a significant 

main effect of TMS site, F (3,27)= 11.07, P= <0.001, ηp
2 = 0.570.  There was also a main 

effect of condition, F (3,27) =9.206, P<0.001, ηp
2

 =0.506. 

There was also a significant interaction between the TMS site targeted and the S1- S2 

relationship, F (9,81)= 6.980, P<0.001, ηp
2 = 0.437.  These results are explored in more 

depth below.    

6.4.1 Error data 

A 4x4 ANOVA was carried out the percentage of error made in each experimental 

condition after each TMS session (TMS site X S1-S2 condition). The dependent variable 

was the percentage of errors from each subject in each condition following sham, left 

SFG, left PCG or right LOC cTBS.  The results showed that there was no main effect of S1 

–S2 condition on the observed error levels across the 4 conditions of AC, NC, RFC and 

IFC, F(3,27)=1.008, P=0.405, ηp
2  = 0.101. There was also no significant main effect of 

TMS site, F(3.27)= 0.565, P=0.643, ηp
2  =0.059. There was also no significant interaction, 

F(9,81)= 0.900, P=0.530, ηp
2   = 0.091 

  



 
 

161 

6.4.2 TMS Site 

There was a main effect of TMS site F(3,27) =11.907, P=<0.001, ηp
2=0.570, with TMS 

being applied to the left SFG resulting in a slower RT than both the application of TMS 

to the right LOC (Mean difference = 31.62ms, P=0.003) and the left PCG (Mean 

difference =35.275ms, P=0.002). 

 

Figure 6.1. TMS Site. There was a main effect of TMS site with TMS being applied 

to the left SFG resulting in a faster RT than both the application of TMS to the 

right LOC and the left PCG (31.62ms and 35.27ms respectively).  Error bars = SEM. 

The * denotes the sites of stimulation that led to a significant change in RT in 

contrast to the sham condition. 
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6.4.3 S1-S2 Relationship 

There was also a significant effect of S1-S2 relationship condition, F(3,27)=9.206, 

P=<0.001, ηp
2= 0.506. Overall, participants were significantly slower responding to the 

RFC condition (601 msec) than the AC condition (520.20 msec) and the NC condition 

(519.20msec), P<0.001. However, there were no other significant differences between 

conditions.  

 

Figure 6.2.  The mean RT plotted as a function of the S1-S2 Relationship across all 

experimental conditions. Error bars = SEM. The * denotes the sites of stimulation 

that led to a significant change in RT in contrast to the sham condition.  
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6.4.4 TMS site x S1-S2 relationship 

As noted above, there was also a significant interaction between the site that received 

cTBS and the AC, NC RFC and IFC conditions, F (9,81)= 6.980, P= <0.001, ηp
2 = 0.437. To 

explore this further I carried out four 1X4 ANOVAs (site x condition).  

All change  

The all change condition does not lead to a reactivation of a previous representation 

and therefore does not lead to a reaction time cost. The reaction time observed during 

this condition represents the time it takes to form a new representation. There was a 

significant main effect of TMS across the AC conditions, F(3,27)=5.707, P=0.004, 

ηp
2=0.388. Following cTBS to the right LOC and left PCG there was significant increase in 

RT (MD=42.1ms,P=0.018, ηp
2 =0.642; MD=86.7ms, P=<0.001, ηp

2 = 0.550). 

 

Figure 6.2 shows the mean reaction time during each cTBS session for the all 

change condition. The * denotes the sites of stimulation that led to a significant 

change in RT in contrast to the sham condition. 
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No change 

The reaction time in the no change condition represents the time it takes to respond to 

a primed object. There was a main effect of cTBS across the NC condition, 

F(3,27)=5.918, P=0.003, ηp
2    = 0.397. cTBS to the right LOC, left PCG or the left SFG did 

not lead to any significant change in RT in contrast to the RT observed during the sham 

condition, P= 0.1, >0.99 and >0.99 respectively. 

 

Figure 6.3 shows the mean reaction time during each cTBS session for the no-

change condition. The * denotes the sites of stimulation that led to a significant 

change in RT in contrast to the sham condition.  
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Relevant feature change 

There was no significant effect of cTBS on the RFC condition, F(3,27)=2.674, P=0.067,  

ηp
2   =0.229. 

 

Figure 6.4 shows the mean reaction time during each cTBS session for the 

relevant feature change condition. The * denotes the sites of stimulation that led 

to a significant change in RT in contrast to the sham condition.  

 

Irrelevant feature change 

There was a significant main effect of cTBS across the IFC condition. F(3,27) = 13.205, 

P=<0.001, ηp
2 = 0.595. Following cTBS to the left SFG there was a significant decrease in 

RT in contrast to the sham condition (mean difference = 97.6ms, P=0.13, ηp
2   = 0.668). 

However, cTBS to the right LOC (P>0.99) or left PCG (P>0.99) did not lead to a significant 

change in RT.   
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Figure 6.5 shows the mean reaction time during each cTBS session for the 

irrelevant feature change condition. The * denotes the sites of stimulation that 

led to a significant change in RT in contrast to the sham condition.  

 

In summary cTBS to the right LOC and left PCG led to an increase in RT during the AC 

condition in contrast to the sham condition. In contrast to sham cTBS, cTBS to the left 

SFG led to a significant decrease in RT in response to the IFC condition. However, cTBS 

to the right LOC, left SFG and left PCG did not lead to any significant change in the RT 

during the RFC and the NC conditions. 
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6.5 Discussion 

The results of experiment 5 show a critical role for the left SFG in the processing of task 

irrelevant features during the reviewing paradigm. In contrast to the hypotheses the 

results do not show a causal role for the right LOC or left PCG in the RFC condition, but 

instead show a critical role in the AC condition.  

 

The results of experiment 4 suggested that there is a widespread fronto-parietal 

network that is engaged during the process of feature binding and object 

representation.  It was expected that applying the inhibitory protocol of cTBS to the 3 

key areas that showed an increase in BOLD during experiment 4 (right LOC/left SFG/left 

PCG) would allow us to selectively suppress neural mechanisms that may be integral to 

the rebinding and updating process. However, these preliminary results were not 

consistent with the fMRI results.  It was predicted cTBS of the right LOC and left PCG, 

both of which showed increase in BOLD during the RFC condition in contrast to the AC 

condition, would lead to an increase in RT during the RFC condition and leave the RT in 

the AC condition unchanged.  On the contrary, the results revealed an increase in RT in 

the AC condition only following cTBS to the right LOC and left PCG. There was no other 

significant change in RT following right LOC cTBS.  

 

An explanation for this result may lay in the nature of the processes being recruited 

during each condition. For example, the RFC condition recruits perceptual and motor 

processes that are postulated to conflict with previously held perceptual and motor 

representations, due to the presentation of a similar object 680ms earlier. On the other 

hand, although the AC condition recruits both perceptual and motor functions, 

perceptual conflict should not occur as the object presented has completely changed in 

its appearance from the previously presented object 680ms ago. Therefore, it is possible 

that because the RFC condition engages more complex processes than the AC condition, 

that disruption of any one area is not sufficient to interfere with the overarching 

process and network that is recruited.  

 

 



 168 

Although a number of studies investigating the maintenance of an object 

representation in the visual working memory have revealed a significant role for 

prefrontal regions (Ranganath et al. 2000; Sakai et al. 2002; Song and Jiang, 2006) and 

the LOC (Xu and Chun, 2006), these studies did not focus on the neural basis on 

updating a representation.  The current task specifically recruits processes that update 

previously held representations with new information. Results from experiment 4 are 

consistent with the results observed by Schulte et al. (2009) which show that where a 

task leads to perceptual conflict a more frontal parietal network is engaged whereas 

motor conflict engages a more posterior network including the PCG.  

 

In addition, a recent study carried out by Smith and Goodale (2014) provides further 

insight into the link between action and vision and an explanation as to why cTBS of the 

left PCG would lead to an increase of RT in the AC condition.  Smith et al. (2014) 

investigated whether different visual images of common object categories would be 

reliably discriminated in early somatosensory cortex despite participants having no 

interactions with the visual stimuli during the experiment. Using fMRI, Smith et al. 

(2014)  investigated whether different visual images of common object categories 

would be reliably discriminated in early somatosensory cortex, even without any 

interaction. It was predicted that this might be possible due to associative links that are 

formed through experience with specific objects. The results showed that the 

somatosensory cortex (PCG/S1) carries information that discriminates familiar object 

categories. This was the case even though subjects had no interaction with the ojects 

presented in the experiment, and neither did the static images depict any interaction. 

The authors conclude that cross modal connections from vision to early somatosensory 

cortex transmit content-specific information about familiar object categories based on 

visual appearance alone.  

 

Smith et al. (2014) results also fit with the neuro-architectural framework (convergence 

divergence zone framework) proposed about the neural representation of perceptual 

experience (Damasio, 1989; Meyer & Damasio, 2009), which implies that early sensory 

areas (V1/S1) simultaneously represent perceptual information in either recall or 

recognition (Smith et al. 2014).  Therefore inhibiting the PCG may have directly inhibited 
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the perception of that object and/or the action afforded by that action. However, there 

was no evidence that this was happening during the RFC condition, which may indicate 

a different process being engaged during this condition.  

 

Experiment 4 revealed a differentiation in cortical areas recruited, dependent on 

whether a relevant feature or irrelevant feature alternated between the presentation of 

S1 and S2. The neuroimaging results showed a large increase in BOLD in the left SFG 

during the IFC condition in contrast to the NC condition. The current study is able to 

confirm the causal role of this area in the IFC condition.  There was a significant 

decrease in RT following cTBS to the left SFG as opposed to sham cTBS.  

The observed disruption of the updating of an object representation following cTBS to 

the left SFG is consistent with studies that have shown that perceptual conflict engages 

a more frontal network (Schulte et al. 2009) and that the SFG is specifically integral to 

the monitoring and manipulation of perceptual information in VWM (du 

Boisgueheneuc, 2006). This is in contrast to the proposed low level and fast 

disintegrating processing that Xu (2010) proposed irrelevant features were subject to 

during object processing.   

In conclusion, cTBS to the three distinct cortical areas spanning the occipital, parietal 

and frontal cortices caused a specific modulation of RT within both the IFC and AC 

condition. Inline with the hypothesis regarding the causal role of the left SFG during an 

irrelevant feature change update, the data shows that following an inhibitory protocol 

to the left SFG the RT during the IFC condition only significantly increases. The results 

following the application of cTBS to both the right LOC and left PCG were not inline with 

predictions and are inconclusive.  As this study, to the best of my knowledge, is the first 

cTBS study carried out to specifically probe the processes engaged during the reviewing 

paradigm, further data needs to be collected in order to gain a clearer understanding of 

the network engaged. Further scope for study may lay in the use of strategically timed 

single pulse TMS to disrupt delayed processes at play when the bound representation is 

being updated during the RFC or IFC conditions. 
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Chapter 7 – General Discussion 

The cortical network of visual feature binding 

The aim of this thesis was to explore the process of feature binding, where different 

features such as location, shape, colour and motion are linked together to form a 

coherent representation of an object, with a specific focus on differentiating the cortical 

network associated with feature binding from the cortical regions of the brain 

associated with attention and other processes. Two paradigms were employed to 

achieve this objective. The first paradigm was developed to meet the unique demand of 

experiment 1. Experiment 1 aimed to contrast spatial detection, temporal attention and 

explicit feature binding in one paradigm, whilst keeping both task difficulty and low-

level stimuli differences constant across conditions.  In addition to exploring the cortical 

networks engaged during feature binding this paradigm allowed exploration of both 

spatial processing and temporal attention. In comparison to spatial processing, 

temporal attention is relatively unexplored, and this paradigm enabled a closer 

exploration of the conflicting models of temporal attention alongside the main research 

question.  

The second paradigm, namely the reviewing paradigm (Kahneman et al. 1992), was 

employed in experiments 2a, 3 4 and 5. The reviewing paradigm provided a means to 

elicit implicit feature binding and therefore following the use of fMRI, enabled the 

detection of cortical areas engaged in the feature binding process. In contrast to the 

current literature experiment 2a reduced the stimuli down to two simple features; 

colour and motion. This modification aimed to control for possible confounds from 

using already complex stimuli (Keizer et al. 2008). The task then consisted of a simple 

feature detection choice being made on one of the features (i.e. motion) while the 

binding between both of the features (i.e. colour and motion) was being measured. 

However prior to the subject making the feature detection choice, a preview of an 

object was presented (S1). S1 also consisted of a selection of dots moving in a set 

direction (either up or down) and all one colour (either red or green). This object was 

deemed irrelevant by task instruction and participants were instructed to just observe 

the object and wait for the appearance of the second object (S2) prior to response.   
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The focus of experiment 2a was to measure the change in the RT performance when a 

feature, rendered irrelevant through task instruction (colour) was either alternated or 

remained identical between S1 and S2. The difference in the RT between a condition 

where only colour alternated between S1 and S2 and a condition where both colour and 

motion remained the same between S1 and S2 was termed the irrelevant feature 

change cost (IFCC). Two further conditions were included: when only the relevant 

feature (motion) alternated between S1 and S2 or when all features alternated (both 

motion and colour) between S1 and S2. The difference in RT when a relevant feature 

alternated in contrast to when all features alternated was termed the relevant feature 

change cost (RFCC). The absence of the IFCC and RFCC would indicate that participants 

could ignore the irrelevant features and attend only to the relevant features, in 

accordance with task instructions. Reduced performance (increased RT) during the RFC 

condition and IFC condition, which in turn would lead to a larger RFCC and IFCC, would 

indicate that all features automatically participate in the initial representation of an 

object, even if they are irrelevant to the task. Furthermore, the presence of an RFCC and 

IFCC suggest that when features change between two representations that are 

considered, by the visual system, to be a continuation of one object, an updating 

process takes places in which the previous object representation is updated with the 

new information that has been presented to the system. Using this paradigm we were 

able to observe the network engaged during the implicit binding and updating process.  

Feature binding versus attention 

Previous studies using the visual search paradigm have led to the assertion that it is the 

ability to focus spatial attention that allows us to bind features together into well-

defined mental representations (Treisman et al. 1980; Albert et al. 2013).  The feature 

integration theory (FIT) proposes that visual feature binding requires accurate spatial 

information (Treisman et al. 1980; Robertson, Treisman, Friedman-Hill & Grabowecky, 

1997). The spatial information that appears critical for feature binding proposed by the 

FIT has been linked to parietal function (Friedman-Hill, Robertson and Treisman, 1995).  

Therefore it has been suggested that interactions between parietal areas and lower 

cortical areas such as V4 and MT are necessary for resolving the binding problem 

(Robertson, 1999).  
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Empirical support for the FIT has been gained through several observations. First, visual 

detection of the presence or absence of a feature produces RTs that are independent of 

the number of distractors in the display; however, the detection of a conjunction 

creates an increasing RT, correlating with the increasing number of distractors. 

Therefore it was argued that when participants have to find a target, spatial attention is 

engaged and a serial spatial search entails (Treisman & Gelade, 1980). Feature binding 

errors, termed illusory conjunctions, are seen when items are presented for a brief time 

and attention is divided or diverted (Prinzmetal, Presti & Posner, 1986; Treisman & 

Schmidt, 1982).  According to FIT, attentional allocation to a location is necessary to 

properly bind features together, and although this model has received a remarkable 

level of support, studies indicate that when spatial attention is impaired or not relevant 

that we are still able to bind features together successfully, especially if the participants 

can engage temporal attention (Robertson, 1999). Furthermore, binding has been 

shown to take place without attention or awareness (Melcher et al. 2005). 

 Experiment 1 contrasted spatial and temporal based judgements to an explicit feature 

binding task which involved participants reporting the specific combination of colour 

and motion. A whole brain analysis and retinotopic mapping was carried out to allow a 

thorough analysis of the whole brain during each of the three tasks. It was hypothesised 

that we would see previously established cortical areas engaged during spatial 

detection and temporal attention; however, I hypothesised that in the feature-specific 

areas of V4 and MT we would see a specific increase of BOLD during the explicit feature 

binding task. The data did not support this: retinotopic visual areas showed a significant 

increase in BOLD during the spatial task only, with no unique observable signature 

associated with the explicit feature binding task.  

On further reflection it seems plausible that the reason this experiment failed to reveal 

an explicit feature binding network was either because the cortical areas recruited were 

subsumed within the spatial processing network, or the explicit feature binding task was 

engaging spatial and temporal processing, or more likely, the spatial and temporal task 

also led to feature binding taking place. The latter explanation is consistent with the 

model of integrated competition of attention (Duncan, 1984; Luck and Vogel, 1997; 

Scholl, 2001) which posits that when attention is directed to an objects feature all other 
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features of that object may be registered, even when those unattended features are 

also irrelevant (O’Craven et al. 1999). Therefore it became evident that the paradigm 

developed for experiment 1 was not suitable for observing and measuring visual feature 

binding.   

In experiment 2 the reviewing paradigm was introduced. This task allowed the 

measurement of the impact of feature binding, for which there was no explicit task 

demand  to do so and the window in which attention could be engaged was brief 

(680ms).  

Object files and spontaneous feature binding 

For consistency, colour and motion were the chosen features to be used during the 

reviewing paradigm.  As the RFCC and IFCC have been previously established 

(Kahneman et al. 1992; Hommel, 1998, 2004, 2008) the initial experiment sought to test 

the parameters that allowed the secondary presentation of an object (S2) to be seen as 

a continuation of the first object (S1).  

Previous research suggests that conceptual priming between words and objects is 

common (Hirshman et al. 1990; Weldon, 1993). The main aim of experiment 2B was to 

assess whether an object file would encompass conceptual information about features, 

for example whether S1 consisted of the word red or the colour red would affect the 

IFCC observed.  If an RFCC or an IFCC was observed this would suggest that when an 

object is bound then its conceptual counterparts are also primed, therefore the words 

“red” and “up” should lead to an IFC RT cost if the object that appeared consisted of 

green dots moving up.  If no information regarding the conceptual nature of the object 

were held within the object file then it would not be expected to produce any change in 

the RT across conditions.  

The results did not show any change in RT across conditions suggesting that an object 

file may be purely data driven and that cross modal priming does not lead to 

reactivation of a previous representation. An explanation for this may lie in the 

difference between retrieval processes for implicit and explicit retrieval processes 

(Lombardi et al. 2010). Lombardi (2010) suggests that implicit retrieval processes 
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automatically retrieves information that provides a good match to the target, however 

explicit retrieval processes operate as an intentional retrieval set to access particular 

categories or types of memory information.  As per the object file theory, in order to 

observe a binding cost such as an IFCC or an RFCC the S2 image must implicitly evoke 

the retrieval of the initial object. Therefore if implicit retrieval looks for the best match 

physically then it is unlikely that red upward moving dots will lead to the retrieval of the 

words red and up.  

However, the null results observed in experiment 2B should be interpreted with care as 

experiment 2A failed to replicate standard feature change costs.  It was concluded that 

this might be due to two ignored features namely shape and location of the dots.  

Therefore the reviewing paradigm was adapted for experiment 3.  

In experiment 3 there was one relevant feature: motion. Three other features (location, 

colour and shape) could alternate between S1 and S2 however all three features were 

classed as irrelevant. In order to explore the role of features within the formation and 

retrieval of an object representation, 4 separate sessions of testing were carried out in 

which the relevant feature changed to one of the four possible features. Participants 

were then told to attend explicitly to this feature only and ignore all other features.  

In experiment 2A, we failed to produce any IFCC or RFCC. However, following the 

inclusion and control of location and shape information, these effects emerged. Both an 

RFCC and an IFCC was observed, supporting the idea that, irrespective of whether the 

partial repetition of an object was due to a task relevant or task irrelevant feature 

change, an object file was retrieved and updated. 

A further point of investigation was whether location, motion, colour and shape would 

lead to equal partial repetition costs, either as relevant or irrelevant features in the 

display. The role of location information has previously been a point of contention. 

Kahneman et al. (1992) stress the importance of location in the creation and retrieval of 

an object file. However, Van Dam et al. (2010) argue that it was unclear whether RT 

benefits were the result of previewing a particular area of space, or previewing those 

features within that space. Further to this, evidence from attentional studies (Hommel 

1998, 2007; Hommel & Colzato, 2004) and developmental studies (Leslie, Xu, Tremoulet 



 
 

175 

& Scholl, 1998) suggest that feature bindings do not necessarily need to include spatial 

codes in order to be retrieved. 

These results suggest that all features do not play an equal role, but instead task 

salience modulates the impact of feature alternation of object representation. Although 

location did produce robust IFCC and RFCC, if location information was the only way in 

which object files could become reactivated you would not expect to see a RFCC in any 

other block.  

An alternative explanation for the seemingly equal role of location as a feature may lie 

in the fact that there was only ever one object. Episodic retrieval via non-spatial 

features has been demonstrated in previous research, however, like this experiment, 

there was only one object (Colzato, Raffone, & Hommel, 2006; Hommel, 1998; Hommel, 

& Colzato, 2004). Therefore, when multiple objects are present, spatial correspondence 

may be integral to deal with the spatial uncertainty (Kahneman, Treisman & Gibbs, 

1992; Mitroff & Alvarez, 2007; Saiki, 2003). 

The ‘Simon Effect’ and the ‘Spatial Stroop Effect’ have been identified as a factor leading 

to the assignment of location as an important status. The ‘Simon Effect’ (Craft & Simon, 

1970) is seen when participants are asked to respond to a non-spatial feature in a binary 

choice task with a left and right assigned key response. A faster RT is observed when the 

key response is congruent with the side of the screen that the object appears on. 

Similarly, the ’Spatial Stroop Effect’ (MacLeod, 1991) is observed when the subject must 

respond to a word that has spatial information (e.g. right or left) with a right or left key 

response. Although location information is irrelevant during the task, the location of the 

spatial word significantly modulates the RT to that word. This is not to imply that 

location information is not of a special status within perception.   

Results also showed that there was significant effect of feature, therefore participants 

did not respond to all features equally; attending to location did yield a faster response 

time than attending to shape. This suggests that location is processed at a higher speed 

than non-spatial features and may play an integral role in the encoding of object files. 

The neural mechanisms underlying the impaired performance, observed after partial 

repetitions of objects, are unknown. It is assumed that this impairment happens due to 
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the conflict between the retrieved and perceptually available features and/or because 

the old associations need to be deconstructed (Colzato, van Wouwe, Lavender & 

Hommel, 2006) 

The results from experiment 3 showed robust partial repetition costs following both 

relevant and irrelevant feature changes. This provided confirmation that feature binding 

was taking place upon viewing S1 and then an updating of that feature binding was 

taking place upon viewing S2.  

Object files and the cortical network of feature binding 

In order to return to the main research aim, the reviewing paradigm was then 

performed during fMRI. Keizer et al. (2008) carried out an fMRI study using the 

reviewing paradigm and a stimulus made up of three types of neurally dissociable 

components:  faces, houses and movement.  Participants were presented with preview 

displays (S1) and targets (S2) that both consisted of blended images of a house and a 

face. The house or the face moved in one of two possible directions. Participants were 

to respond to the direction of S2, irrespective of what object moved. Of particular 

interest were the conditions where S1 showed a moving house and S2 a moving face; if 

the direction of motion in these two displays was the same (i.e. the motion feature was 

repeated) the PPA was more active than if the motion direction alternated. Therefore, 

repeating the motion feature during S2 led to the retrieval of the object that moved 

during S1 (house) and hence led to an increase in activation within the PPA. This 

showed evidence that repeating a feature can reactivate the neural code of this feature, 

which then spreads activation to the other feature codes that it is still bound to. 

However, Keizer et al. (2008) failed to mirror this effect in the FFA; no significant 

increase in BOLD was observed in trials where the repetition of the motion direction 

should have led to a reactivation of the previously bound face, even though, 

behaviourally, the partial repetition cost was present. Due to the complex stimuli that 

Keizer et al. (2008) employed in their paradigm, it is difficult to interpret the partial null 

result. As it is established that faces are processed faster and to a much higher level 

than other objects (Roisson & Gauthier, 2002), one could argue that it is not unusual 

that the pattern of BOLD observed in the PPA was not mirrored in the FFA. 
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In contrast to Keizer et al. (2008) experiment 4 entailed a whole brain analysis to 

determine whether a task RFC would engage a different cortical network than a task 

IFC. Alongside a whole brain analysis, an ROI analysis was carried out on area MT to 

establish whether we would see an increase of BOLD that correlates with the increase in 

the partial repetition cost observed behaviourally.  We also tested whether individual 

differences in IFCC and RFCC correlated with individual difference in the BOLD signal in 

area V5/MT. The predicted behavioural result was replicated and a significant increase 

in RT was observed when either a task relevant or irrelevant feature was alternated 

relative to the AC and the NC, respectively. 

Results from this experiment showed that updating an object with a change in either a 

relevant or irrelevant feature recruited a wide range of areas across the parietal, 

occipital and frontal cortices. Due to the matching of motor demands across the tasks 

the RFC condition was never directly contrasted to the IFC condition. For this reason it 

was not possible to draw direct comparisons between the cortical networks engaged 

during the RFC and the IFC. However in response to an IFC vs NC we did observe 

activation in the right and left LOC and the left SFG. However the activation observed 

following a RFC vs AC contrast was in the right LOC and left PCG only.  

In contrast to experiment 1, where no unique cortical areas of activation were observed 

in response to the explicit binding task, experiment 4 revealed increased BOLD across 

the left MFG, SFG and bilateral IPS and LOC in response to a task that elicited implicit 

feature bidning. It was postulated that the lack of BOLD in response to an explicit 

feature-binding task maybe due to the feature binding network becoming subsumed 

within the cortical areas engaged during the spatial and temporal detection tasks. 

During experiment 1 these were also areas where activation was observed during the 

spatial and temporal detection tasks. While this overlap could indicate a shared 

mechanism of action, I am unable to conclude this from the null- effect observed in the 

data.  The data may imply that the cortical areas engaged during explicit feature binding 

are also engaged during a spatial detection and temporal processing task.   

As in experiment 1, an ROI analysis was undertaken on area MT. In experiment 4 it was 

hypothesized that area MT may show an increase of BOLD during the IFC condition that 
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correlated on an individual level with the IFCC.  However this was not the case and 

there was no correlation.  Further to this, area MT showed no significant increase in the 

BOLD level during the conditions in which a RT cost was incurred, in contrast to the 

conditions in which no RT cost was observed. This along with the results of experiment 

1 suggest that area MT does not play a specific role in feature binding even when 

motion is the featuring that is being bound. This runs contrary to a fMRI study carried 

out by Seymour et al. (2009) in which MVPA was employed during the analysis to look 

for areas that were showed processing of the conjunction of colour and motion. The 

results showed that information regarding the processing of the conjunction of colour 

and motion was present through in V5/MT. However, when they carried out a 

univariate analysis, as was done in experiment 1 and experiment 4 of this thesis they fail 

to find any preferential activation of the lower cortical areas such as V5/MT. Therefore 

the lack of significant BOLD being observed in the lower visual areas may be accounted 

for by the analysis method. This may be a question that can be addressed future 

research.  

It is worth noting that fMRI results indicate areas that show an increase in BOLD in 

correlation with the completion of a task.  In order to probe the direct and specific roles 

of these cortical areas in the rebinding and updating process, cTBS was employed as an 

interference method. Following the application of cTBS to either the right LOC, left SFG 

or left PCG, participants carried out the reviewing paradigm task in an identical format 

to the previous fMRI experiment (4).  

The number of participants tested in experiment 5 was modest and therefore the 

results are preliminary. It was hypothesised that applying cTBS to the right LOC would 

lead to an increase in the RT during both the RFC and IFC conditions but not the NC and 

AC conditions. It was hypothesised that applying cTBS to the left PCG would lead to an 

increase during the RFC and cTBS to the left SFG would lead to a significant increase in 

the RT during the IFC condition only. This would then lend further evidence to the 

supposition that these areas play a causal role specifically under conditions in which 

binding is known to take place.   
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The results of experiment 5 were not consistent with the fMRI results of experiment 4. 

Results showed that cTBS to the left PCG and right LOC increased RT during the AC 

condition only. This was at odds with the fMRI data in experiment 4, which revealed an 

increase of BOLD activity in response to the RFC vs AC in both the right LOC and left 

PCG. However, the observation that cTBS to the left SFG led to a reduced reaction time 

to an IFC condition was consistent with the fMRI data of experiment 4.  This 

demonstrates that this area is selectively involved in rebinding process when an 

irrelevant feature is being updated.  

Conclusions 

The over-arching goal of the thesis was to explore the neural networks and 

neurocognitive mechanisms that are recruited during visual feature binding. The work 

described in early chapters of this thesis suggest that cortical areas associated with 

explicit feature binding tasks can be inseparable from those recruited during either 

temporal or spatial attention. In the chapters 3, 4, 5 and 6 it becomes clear that viewing 

an object or a co-occurrence of features led a spontaneous binding of those features. 

The conclusions from the behavioural results seen in experiments 2, 3, 4 and 5 may 

provide an explanation for the lack of BOLD observed in experiment 1 in response to a 

feature binding task. Furthermore, experiments 2, 3, 4 and 5 provide further evidence 

of an automatic object based mechanism of selective attention (O’Craven et al.1999). 

To explain this processing benefit, previous researchers have often argued that different 

object features can be processed and retained independently, meaning that the RT 

benefit results from features not competing with each other for the same processing 

resources. This suggests that an irrelevant feature of an attended object can be 

registered for ‘free’ (Wheeler and Treisman, 2002; Xu, 2002a). However the results 

observed following the completion of the reviewing paradigm does not support this 

hypothesis. The results presented here suggest that a task irrelevant feature is 

integrated spontaneously with task relevant features and that a partial repetition of 

those bound features leads to an increase in RT whether or not the feature is task 

relevant. This suggests that the features are no longer independent from each other. 

However, the neuroimaging results of experiment 4 do support previous findings (Xu, 
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2010) that processing of a task irrelevant feature does take a different cortical path and 

therefore results in a different neural fate than task relevant features. 

The neural correlates that were observed following whole brain analysis in experiment 4 

currently stand alone in the respect that only ROI analyses have been carried out in 

conjunction with the reviewing paradigm, therefore further replication is needed. This is 

also true of the application of cTBS to cortical areas engaged during the RFC and IFC 

conditions. Moving forward, the application of online TMS would be of interest in 

probing the formation and updating of object files. For example, if the RFCC and IFCC 

represent the formation of an object file then the application a single pulse during the 

viewing of S1 may interrupt the formation of an object file and hence no partial 

repetition cost (or a reduced cost) would be predicted irrespective of which feature was 

alternated.  

 In contrast to previous research in which either the visual cortex (Seymour et al. 2010; 

Golledge 2003) or parietal cortex (Shafritz et al. 2002; Albert, Sheremata, Silver and 

Robertson, 2013) has been then main focus of study, this thesis turned its attention to 

the whole brain. Results have shown that as with higher cognitive functions such as 

attention and temporal order judgements, something as fundamental as binding colour, 

shape and motion engages a widespread network and recruits areas that are otherwise 

associated with high-level processes such as the SFG.  

In summary this thesis has made several important empirical contributions. By creating 

a paradigm in which spatial, temporal and feature conjunction tasks can be contrasted 

while controlling for low level stimuli differences and task difficulty. The results of this 

experiment allowed previous contradictions within the literature surrounding temporal 

and spatial processing to be addressed. The following chapters move the focus to 

implicit feature binding in which an established paradigm is adapted in order to make 

several important contributions.  In experiment 2a, an irrelevant  feature change is 

contrasted to a relevant feature change,  which in contrast to previous literature 

enables the observation of the differing of impact on the RT dependent on whether the 

feature is relevant or not.  In experiment 3, the paradigm is adapted further and the 

stimulus alternates on four feature dimensions. This then enables the contrast between 
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the RT impact of changing different features when either relevant or irrelevant to the 

task.  Following this, the reviewing paradigm is combined with fMRI for the second time 

in the literature. However, the stimulus was reduced to low-level stimulus in order to 

avoid the confounds of the previous experiment (Keizer et al. 2008) in which already 

complex stimuli was used.  

Experiment 5 then combines the reviewing paradigm with cTBS for the first time in 

order to probe the causal influence of those areas showing increased BOLD during 

experiment 4. As discussed above these results need further development and this is 

important for future research. 

The important question moving forward is how the brain achieves synchrony. It has 

been suggested that gamma oscillations may be a mechanism by which the brain 

coordinates many areas across the brain. Future studies may benefit from increasing 

use of concurrent EEG-TMS. The use of rhythmic TMS will allow this hypothesis to be 

tested.  
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Appendices - Appendix A 

Experiment 2C 

Introduction 

Hommel (2002) has shown that, when forming an object representation, the 

integration of features also entails information concerning the action that the object 

affords. In order to distinguish and quantify the contribution of motor response 

priming from that of perceptual priming, the reviewing paradigm was further 

modified. The modification involved changing S1 to a stimulus that would represent 

only the motor response and not overlap perceptually with the stimulus presented in 

S2. S2 would continue to be identical to the stimulus presented in experiment 2A and 

2B: red or green dots moving either up or down. Participants were instructed to 

respond to the relative feature in S2 as fast as possible with either a left or right 

button press. Trials could either be congruent or incongruent with the motor action 

that was primed in S1. It was predicted that incongruent trials would lead to an 

increase in RT and an increase in error rates.  

This final experiment looked to isolate the RT benefit and cost observed when a 

stimulus in S1 was not perceptually linked to S2, but instead acted purely as a motor 

response prime. S2 could either be motor congruent or motor incongruent with S1. 

Previous experiments have shown that observing finger movements strongly 

influences movement execution, irrespective of whether the finger movement was 

the relevant or the irrelevant stimulus dimension. This has been termed visuo-motor 

priming. However, although visuo-motor priming effects have been demonstrated 

robustly in numerous studies (Brass, Bekkering, Wohlschläger, & Prinz, 2000; 

Craighero, Fadiga, Umiltà, & Rizzolatti, 1996; Vogt, Taylor, & Hopkins, 2003), other 

studies, such as Cant, Westwood, Valyear & Goodale (2005), fail to find visuo-motor 

priming effects and therefore the factors causally influencing remains unclear. 
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If we successfully prime the motor action with the image of the finger associated with 

either the left/right button press, we should see a motor congruency effect. This 

should lead to faster responses than if the image presented is incongruent with the 

motor action required by the target.  
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A1.2 Method and Materials 

A.2.1 Participants 

The participants remained consistent throughout experiment 2A, 2B and 2C.  

A1.2.3 Procedure and Design 

The design was identical to experiment 2A with the following exceptions: S1 consisted 

of a picture of a right hand with either the index or the middle finger circled. 

Participants were also told to watch the preview screen but informed that it had no 

implications on the stimulus to follow during S2. The motor image presented during S1 

was congruent for 50 % of the trials and incongruent for the remaining trials. The 

amount of trials and blocks were identical to experiment 2A and 2B. An example of 

the sequence of a trial is shown below in figure 3.5. 

 

 

 

Figure A1.2.1. Schematic Illustration of the Displays and Timings of Events in 

Experiment 2C.  
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A1.3 Results 

A 2x2 repeated measures ANOVA was carried out on both the RT data and PE data. 

Table A1.1 presents the average RT for the congruent and incongruent conditions as a 

function of block type (colour and motion) and collapsed across both block types.  

Table A1.1 The Average RT in congruent\incongruent trials in either a colour or 

motion block. The average of both blocks are also presentd. The PE is presented 

in brackets.  

 

 

Note. The average RT and PE is also displayed for block type and congruency. RT 

= reaction time; PE = percentage error. 

A1.3.1 Congruency 

The mean RT and PEs are presented in table A1.4. The ANOVA revealed a significant 

main effect of congruency between the RT in the congruent condition (M=526.64, 

SE=5.76) and the RT in the incongruent condition (M=565.61, SE=7.14), F(1,29)=35.5, 

P=0.00, partial η2  =0.550.  Further to this, the ANOVA revealed that there was a 

significant effect of block type with participants responding to colour slower (M=554.5 

msecs, SE=8.035) than motion (M=537.7, SE=8.035), F (1,29)=5.224,P=0.03, partial η2   

=0.153. However, there was not a significant interaction between congruency and 

block type, F (1,29)=0.571, P=0.456, partial η2    =0.019. 
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Figure A1.2. Graphical Representation of RT as a Function of Congruecy. Results 

demonstrate that participants responded faster to colour than motion and 

responded faster overall when the target stimuli was preceded by a picture of 

the congruent motor action. RT = reaction time. Error bars = SEM. 

A1.3.2 Errors  

A 2x2 ANOVA was carried out on the PEs across conditions and block type. The PE's 

are displayed within brackets in table 3.3. The ANOVA revealed that there was no 

significant difference between conditions, F (1,29)=0.22, P=0.883, partial η2 =0.001. 

Further to this, there was no significant difference in the PEs between block type, F 

(1,29)=0.390 P=0.537, partial η2  =0.013. The ANOVA further revealed that there was 

not a significant interaction between condition and block type (F (1,29)=0.131, 

P=0.720, partial η2 =0.004. 
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A1.4 Discussion 

Experiment 2C was successful in demonstrating that there is a response priming 

effect. By using an image of a motor response that shared no perceptual features with 

the target object, we were able to isolate and quantify the impact of a response 

priming effect. The average response congruency effect was 39ms.  The results 

support previous data that shows that the observation of an object does not merely 

lead to categorization in order to comprehend it, but is sufficient to lead to the 

activation of the motor response afforded by that object.  

This supports previous experiments that have shown that action observation can 

facilitate recognition of an object that typically involves a similar action. The action 

priming effect also supports the notion that action representations play a functional 

part in object recognition.  

This confirms the necessity to avoid confounding stimulus repetition effects with 

response repetition effects.  

 

 


