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Abstract

Genetic biodiversity contributes to individual fitness, species’ evolutionary poten-

tial, and ecosystem stability. Temporal monitoring of the genetic status and

trends of wild populations’ genetic diversity can provide vital data to inform pol-

icy decisions and management actions. However, there is a lack of knowledge

regarding which genetic metrics, temporal sampling protocols, and genetic mark-

ers are sufficiently sensitive and robust, on conservation-relevant timescales.

Here, we tested six genetic metrics and various sampling protocols (number and

arrangement of temporal samples) for monitoring genetic erosion following

demographic decline. To do so, we utilized individual-based simulations featur-

ing an array of different initial population sizes, types and severity of demo-

graphic decline, and DNA markers [single nucleotide polymorphisms (SNPs)

and microsatellites] as well as decline followed by recovery. Number of alleles

markedly outperformed other indicators across all situations. The type and sever-

ity of demographic decline strongly affected power, while the number and

arrangement of temporal samples had small effect. Sampling 50 individuals at as

few as two time points with 20 microsatellites performed well (good power), and

could detect genetic erosion while 80–90% of diversity remained. This sampling

and genotyping effort should often be affordable. Power increased substantially

with more samples or markers, and we observe that power of 2500 SNPs was

nearly equivalent to 250 microsatellites, a result of theoretical and practical inter-

est. Our results suggest high potential for using historic collections in monitoring

programs, and demonstrate the need to monitor genetic as well as other levels of

biodiversity.

Introduction

A major tool in conservation biology is the temporal moni-

toring of biodiversity with indicators such as the number

of species or size of populations. Monitoring indicators

across time periods can often identify negative trends, with

the ultimate goal being the detection of a decrease early

enough to signal a conservation need (Noss 1990; Namk-

oong et al. 1996; Pereira and Cooper 2006). For example,

Butchart et al. (2010) used temporal analysis of 31 indica-

tors to evaluate the Convention on Biological Diversity

(CBD)’s goal ‘to achieve a significant reduction of the cur-

rent rate of biodiversity loss by 2010’. They showed con-

vincingly that the goal was not met, as most indicators of

pressure on biodiversity (e.g., harvest) increased while

‘state of biodiversity’ indicators (e.g., extent of habitat)

declined. In evaluating the failure to meet the 2010 CBD

goal, some have noted that indicators were either vague or
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developed too late, and that some indicators are less sensi-

tive than others (Jones et al. 2010; Perrings et al. 2010;

Nicholson et al. 2012). Thus, a current objective of several

organizations (including the CBD and the Intergovernmen-

tal Panel on Biodiversity and Ecosystem Services, IPBES) is

to develop appropriate indicators for comparing recent,

current and future biodiversity for species, ecosystems and

services, as well as genetic diversity (Jones et al. 2011; Ho-

ban et al. 2013a; Pereira et al. 2013).

Genetic diversity was previously neglected in official bio-

diversity policy (Laikre et al. 2010) but has recently

received more attention (Sgr�o et al. 2011; Santamaria and

M�endez 2012; Hoban et al. 2013a). Target 13 of the new

CBD Strategic Plan (https://www.cbd.int/sp/) aims to ‘min-

imize genetic erosion’ and ‘safeguard genetic diversity’ in

species of agricultural, socio-economic and cultural impor-

tance. National and international resource management

agencies, especially forestry, fisheries, and agriculture, are

also seeking to monitor and preserve genetic diversity of

the wild populations they utilize (Brown 2008; FAO 2010;

Pinsky and Palumbi 2014). There is therefore an urgent

need for policy-relevant studies to help define sensitive and

robust indicators of genetic diversity change, as well as

appropriate genetic sampling protocols, knowledge that is

currently lacking (Schwartz et al. 2007; Brown 2008; Ho-

ban et al. 2013a; Pereira et al. 2013).

The value of genetic diversity is increasingly recognized

for contributing to individual fitness, species’ evolutionary

potential, and ecosystem function and resilience (Hughes

and Stachowicz 2004; Reusch et al. 2005; Whitham et al.

2008). It is also recognized that genetic diversity loss

increases species’ vulnerability, lowers fitness, and acceler-

ates the path to extinction (Spielman et al. 2004; Frankham

2005). Thus, governmental and commercial entities are

increasingly attentive to the need to monitor the genetic

status and trends of wild populations’ genetic diversity, to

inform policy decisions and management actions (e.g., pro-

tected areas, harvest limits, restoration). Measures of varia-

tion, what is termed ‘evolutionary currency’ (Parenti

1982), are basic and relevant quantities that may be of

prime interest to monitoring projects. Many conservation

studies over recent decades have empirically measured

genetic parameters such as allelic diversity or heterozygos-

ity over time (Nielsen et al. 1997; Spencer et al. 2000; Vil�a

et al. 2003; Zhu et al. 2013), and these types of studies are

increasing due to technical advances allowing genetic

analysis of low quality/quantity DNA, for example, using

non-invasive and historical samples (Farrington and Petren

2011; Casas-Marce et al. 2012). Such temporal studies typi-

cally incorporate different numbers of time points, individ-

ual samples and genetic markers, and temporal intervals

between sampling. However, the power to detect ongoing

genetic erosion using various simple and direct measures of

genetic diversity, with different sampling schemes has not

been quantified. Quantitative advice on temporal monitor-

ing methodologies is thus urgently needed to optimize

efforts of conservation researchers and practitioners.

Our goal was to determine what genetic metrics are most

sensitive and robust, what temporal sampling protocols are

appropriate, and what genetic markers show sufficient res-

olution, on conservation-relevant time scales. Here, we use

realistic, individual-based simulations to evaluate the

power of six potential indicators and various sampling

designs to detect genetic erosion after demographic decline.

The evaluated indicators, which are common summaries of

a population’s genetic status (Allendorf and Luikart 2007)

are number of alleles, allelic size range, observed heterozy-

gosity, expected heterozygosity, the Garza-Williamson

M-ratio bottleneck statistic, and Wright’s inbreeding coeffi-

cient (Fis). These indicators are here tested under different

population decline models, sampling efforts, and sampling

schemes. Recognizing that many species of concern now

have sufficient genomic resources available, we also test the

power of moderate and large numbers of loci. We answer

the following questions: (i) which indicator is most sensi-

tive to the decline, (ii) how many temporal samples are

needed, (iii) what temporal sampling pattern (interval

between time points) is most appropriate, (iv) is power of

an indicator dependent on the type of population decline,

and (v) what is the effect of sample size and marker num-

ber on power? We also test the ability to detect genetic

change after population demographic recovery. We evalu-

ate two types of genetic markers: microsatellites, which are

currently the most common markers in ecology and con-

servation and for which baseline data are available from

many endangered species, and single nucleotide polymor-

phisms (SNPs), which are rapidly emerging as an afford-

able, high-throughput, high genome-coverage marker.

Methods

Simulation

Simulated or synthetic data created under known condi-

tions can be used to evaluate performance of analytical

methods. Such evaluations help inform the proper use of

the methods in applied settings. Simulation approaches

such as repeated-sampling and coalescent methods have

been widely used in population genetics and conservation

biology for decades. More recently, individual-based simu-

lations have gained popularity by incorporating greater

realism, which enables more thorough assessment of how a

method can be expected to perform in real-world condi-

tions (Landguth et al. 2010; Hoban et al. 2012; Hoban

2014). We therefore used the simulation software Nemo

(Guillaume and Rougemont 2006) to perform generation-

by-generation, individual-based simulations of populations
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that experience realistic demographic decreases. We then

sampled from the simulated data sets and analyzed the

samples using six indicators. In this way, we could compare

the relative performance of each indicator under known

conditions.

In our simulations, individuals are male or female, mate

at random, and produce Poisson distribution of offspring

(mean = 2). We simulated a single population with census

size N = 2000 (previously run 10 000 generations to reach

equilibrium, see Figure S1) undergoing exponential decline

for three primary situations: decline to N = 200, N = 50,

and N = 20 (90%, 97.5%, and 99% decline). We designate

these (relatively) as weak, moderate, and strong declines.

Decline occurs over 10 generations, thus a 97.5% exponen-

tial decline gives population sizes at each generation of:

2000, 1383, 956, 661, 457, 316, 219, 151, 105, 72, and 50

(Figure S2). Note that forward-in-time individual-based

simulations, including Nemo, generally model (by their

individual-based nature) census population size Nc. Of

course, effective population size (Ne) is the parameter

directly influencing loss of genetic diversity (Antao et al.

2011; Frankham et al. 2014). Considering that the model

in Nemo has Poisson distributed contributions from

each parent, and all individuals are semelparous, our

individual-based model will be close to Nc/Ne = 1, though

this situation may be uncommon in nature. Researchers

should consider our simulation results as reflective of

changes in a species whose Nc approximates Ne. Note also

that Nemo sets absolute carrying capacity and that the per

generation Nc is usually slightly (approximately 1–10%)

below this (Table S1). We first simulated exponential

decline to represent gradual habitat loss or climate-induced

decline, which is the most common shape exhibited by ani-

mal population declines (Di Fonzo et al. 2013). However,

we previously showed that bottleneck signatures may differ

for instant and gradual size changes (Hoban et al. 2013b).

As such, it is possible that power to monitor genetic diver-

sity loss may also differ for these two models of population

decrease. Therefore, we additionally performed simulations

for instant decline (in one generation), of the same degree

as above, for example, 97.5% instant decline gives popula-

tion sizes at each generation of: 2000, 50, 50, 50 . . . 50.

Instant declines may occur from disease outbreak, natural

or anthropogenic catastrophe (e.g., oil spill, volcano

eruption), population collapse (e.g., fisheries), or sudden

over-exploitation of wildlife resources (e.g., American

bison, northern elephant seal, exotic pet trade).

To determine if results depend on initial population size

we performed additional simulations from initial

N = 10 000 to N = 300, 100, and 50 (97%, 99%, and

99.5% declines). Here, the 99% decline allows direct com-

parison of magnitude to the 99% situation described above,

while the decline to 50 allows direct comparison to final

population size of 50 described above. Additionally, we

simulated populations that instantly recover (more pre-

cisely, carrying capacity is instantly raised to its original

value; census N takes several generations to fully recover

after this) to original size after periods of 2, 10, and 20 gen-

erations of low population size to determine whether

increases in genetic metrics are detectable. We performed

100 replicates of every scenario (a complete list of scenarios

is presented in Table S2). Each replicate was run for 10 000

generations to reach equilibrium, so each simulation repli-

cate has an independent starting condition.

Sampling

In general, 50 samples were taken every generation and

genotyped at 20 microsatellite DNA loci. In the 99%

decline only 20 individuals remained and all were sampled.

Twenty microsatellites provide a level of resolution that is

consistent with many ongoing studies. We also tested addi-

tional sampling approaches: all individuals in the popula-

tion (thus no sampling error), and 50 samples but 250

microsatellites. For two scenarios (moderate instant and

moderate exponential decline), we tested also a scheme of

50 samples at 2500 SNPs.

We calculated number of alleles (K), allelic size range for

microsatellites (Kr), observed and expected heterozygosity

(Ho, He), the Garza-Williamson M-ratio bottleneck statistic

for microsatellites (GW), and Wright’s inbreeding coeffi-

cient (Fis). An important caution for real monitoring pro-

grams is that if sample sizes are not equal for all time points

sampled, and sampling is not exhaustive, allelic richness

determined by rarefaction should be substituted for num-

ber of alleles, K (see Discussion). Sampling and analysis

were performed with the custom-made software ConvFstat

(available at sites.google.com/site/hoban3/scripts), which

samples, converts file formats and runs arlecore, a com-

mand-line version of Arlequin (Excoffier and Lischer 2010).

We then performed two statistical tests (described below)

on these indicators, using (R Core Development Team,

2013), to estimate power for detecting significant temporal

changes in these potentially informative indicators.

T-tests

Samples from each generation were compared pairwise to

samples from every other generation. Paired tests, with loci

as replicates, have been used previously to compare mod-

ern and historical samples (Schwartz et al. 2007; Dornelas

et al. 2013; Pinsky and Palumbi 2014). The series of com-

parisons results in a half-matrix of P-values for whether the

indicator value at each generation significantly differs from

the indicator value computed at every other generation.

We summed the number of significant tests (P < 0.05)
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over replicates, for each pair-wise comparison and each

indicator. This sum, divided by 100 (the number of repli-

cates), represents the power to conclude whether the

genetic indicator is significantly different between any two

generations.

We note that samples from consecutive generations are

non-independent, and that in an empirical study testing a

series of null hypotheses, a multiple comparisons correc-

tion would be warranted. However, our simulation study is

constructed to mimic a real monitoring program in which

a monitor would be making a single or very small number

of pairwise comparisons. For example, a real monitor

might choose to sample at T = 1 and T = 8 and would

therefore perform one statistical test; the single null

hypothesis would be that a diversity metric does not differ

between the two time points. We aimed in our study to

report the power that a real investigator could likely expect

in this situation, and thus multiple comparison correction

would not be appropriate for our work. Our results will

help inform a future monitoring program about which in-

tergenerational comparisons could be effective, and thus

when to sample.

ANOVA

We tested 20 specific temporal sampling schemes, for

example, different combinations of generations to be sam-

pled. These schemes vary in terms of different number of

samples, different temporal ‘clumping’ of samples, and

whether or not samples are available before decline begins

(Table 1, Figure S2). For example, one scheme is to sample

at generations 1, 3, 5, 7, 9, and 11. For each replicate, we

performed repeated-measures ANOVA to test whether the

factor ‘time of sampling’ significantly explains variation in

the genetic indicator, with variation across loci encom-

passed in an error term. Simple ANOVA and repeated-mea-

sures ANOVA have been used in previous genetic diversity

temporal studies (Reusch et al. 2005; Farrington and

Petren 2011). The test results in a P-value, and (using a

threshold of P < 0.05) a conclusion as to whether a signifi-

cant difference was observed. Summed over replicates and

divided by 100, this represents power of a given sampling

scheme to conclude that genetic diversity is declining over

time in a given situation.

Results

The simulated populations showed realistic numbers of

alleles (mean 5.21 for N = 2000, 11.62 for N = 10 000)

and heterozygosity (0.66 for N = 2000, 0.85 for

N = 10 000). Theoretical expectations for heterozygosity

for a population of Ne = 2000 is 0.667 (Hedrick 2011), and

for number of alleles is 4.81 under the Kimura and Ohta

(1975) approximation. Expected number of alleles for

Ne = 10 000 is approximately 10.5 based on coalescent

simulations (Hoban et al. 2013c). As expected, genetic

indicators generally decreased following population decline

in all situations (Figs 1 and 2), but the degree of genetic

loss, the time lag, and the ability to detect it, varied among

the indicators tested and among the types of decline.

t-Tests results

Exponential decline

Overall, K (and to a lesser degree Kr) shows high power

and outperformed the other indicators, which typically

show <0.50 power, often much less (Fig. 3, Data S1). In

the case of strong (99%) decline, using K, the power for

detecting significant differences was substantial (0.70 or

higher) for comparing the three most recent generations

(when populations size is lowest) to previous generations.

Table 1. Descriptions of 20 monitoring schemes- generations to be

sampled. Population decline occurs after generation one.

Description of sampling scheme Generations sampled

Every generation sampled 1-2-3-4-5-6-7-8-9-10-11

Even spread, six samples,

including one before decline

1-3-5-7-9-11

Even spread, six samples,

but none available before decline

3-4-6-8-9-11

Clustered, six samples at beginning

and end

1-2-3-9-10-11

Clustered, six samples at beginning

and end, but none available before

decline

3-4-5-9-10-11

Clustered, six most recent generations 6-7-8-9-10-11

Even spread, four samples, including

one before decline

1-5-8-11

Even spread, four samples, but none

available before decline

3-5-8-11

Clustered, four samples at beginning

and end

1-2-10-11

Clustered, four samples at beginning

and end, but none available before

decline

3-4-10-11

Only four recent samples 8-9-10-11

Clustered, four samples at beginning

and end, but most recent two not

available

1-2-8-9

Clustered, four samples at beginning

and end, but first two and most recent

two not available

3-4-8-9

First and most recent generation 1-11

Early and most recent 3-11

Middle and most recent 6-11

Late and most recent 8-11

First and middle 1-6

First and late 1-8

First and penultimate 1-10
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In the case of moderate (97.5%) decline, substantial power

was obtained only when comparing the most recent genera-

tion to previous generations; all other inter-generational

comparisons showed low power. For weak (90%) decline,

power never exceeds 0.20 for any indicator for any inter-

generational comparison.

Instant decline

Overall, power was much higher for instant than for expo-

nential declines (Fig. 4, Data S1). Importantly, a response

became evident more swiftly, in as few as one or two gener-

ations, for strong and moderate cases. This is readily

observed in the half-matrix of power for instant declines
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Figure 1 Genetic response (y-axis) to 99% exponential population decline, measured at 20 loci, in 50 individuals, over generations (x-axis). Error bars

represent standard deviation. Linear regression of the indicator is shown with a red line. Gray line is value at generation one.
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which shows power increasing steadily with time between

samples, whether early or late in the bottleneck, making the

matrix relatively symmetric (though with some loss of

power in the latest generations, see Discussion). In contrast

the matrix is highly asymmetric for exponential declines

(Fig. 3). For most pairwise comparisons, especially for

comparisons separated by two or more generations, using

K, power for instant declines was >0.90. On the other hand,

a response was still nearly undetectable for weak cases, with

power reaching >0.50 only after eight generations and
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Figure 2 Genetic response (y-axis) to 99% instant population decline, measured at 20 loci, in 50 individuals, over generations (x-axis). Error bars rep-

resent standard deviation. Linear regression of the indicator is shown with a red line. Gray line is value at generation one.
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never exceeding 0.62. Again, K and Kr perform best, but

other indicators (especially He) performed well in some

cases (Figs 2 and 4, Data S1).

ANOVA results

Exponential decline

As with t-tests, the indicators K and Kr showed highest util-

ity (Table 2, Data S1). Monitoring using six samples pro-

vided higher power than four, which provided higher

power than two; sampling all 11 generations provided the

Exponential Decline, strong (99% decline)
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Figure 3 Pairwise comparisons showing the proportion of 100 repli-

cates (i.e., power) in which the indicator at generation X was signifi-

cantly different from the indicator at generation Y, for the scenario

strong (99%) exponential decline from N = 2000. Darkest blue is power

>0.90. Power <0.50 is orange shades, and power <0.10 is dark red.

Abbreviations as in Table 2.

Instant Decline, moderate (97% decline)
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Figure 4 Pairwise comparisons showing the proportion of 100 repli-

cates (i.e., power) in which the indicator at generation X was signifi-

cantly different from the indicator at generation Y, for the scenario

moderate (97%) instant decline from N = 2000. Darkest blue is power

>0.90. Power <0.50 is orange shades, and power <0.10 is dark red.

Abbreviations as in Table 2.

Table 2. Number of significant ANOVAs for each monitoring scheme

over 100 replicates, for each indicator (columns), for exponential (top

section) and instant decline (bottom section). Moderate (97.5%) decline

is shown as representative, full results in Data S1.

Sampling scheme Ho He K Kr GW Fis

Exponential

1-2-3-4-5-6-7-8-9-10-11 3 27 79 57 21 9

1-3-5-7-9-11 4 20 81 57 23 6

3-4-6-8-9-11 5 19 80 52 23 9

1-2-3-9-10-11 3 24 79 59 24 6

3-4-5-9-10-11 6 24 78 59 26 7

6-7-8-9-10-11 2 18 73 51 20 8

1-5-8-11 3 25 81 54 23 9

3-5-8-11 7 20 79 54 23 6

1-2-10-11 1 26 80 57 23 10

3-4-10-11 6 22 79 60 22 9

8-9-10-11 3 16 68 43 19 7

1-2-8-9 1 14 27 25 3 8

3-4-8-9 3 7 14 15 4 8

1-11 2 16 79 50 22 13

3-11 8 15 77 51 16 10

6-11 7 17 67 47 17 11

8-11 6 13 59 40 17 10

1-6 4 6 8 7 2 6

1-8 5 6 18 12 2 4

1-10 5 13 51 33 14 4

Instant

1-2-3-4-5-6-7-8-9-10-11 57 93 100 100 72 12

1-3-5-7-9-11 50 88 100 100 70 9

3-4-6-8-9-11 43 75 100 94 63 8

1-2-3-9-10-11 64 93 100 100 72 14

3-4-5-9-10-11 47 83 100 97 62 13

6-7-8-9-10-11 24 64 90 77 37 9

1-5-8-11 44 86 100 100 66 12

3-5-8-11 40 73 100 94 55 10

1-2-10-11 65 91 100 100 71 9

3-4-10-11 49 79 100 95 65 12

8-9-10-11 14 38 76 49 19 8

1-11 45 84 100 99 60 10

1-2-8-9 39 76 100 99 65 5

3-4-8-9 30 59 99 89 56 6

3-11 40 73 100 89 51 8

6-11 26 58 90 67 29 15

8-11 15 37 66 43 9 7

1-6 18 47 100 88 43 8

1-8 28 66 100 92 50 10

1-10 35 80 100 98 57 11

Ho, Observed heterozygosity; He, expected heterozygosity; K, number

alleles; Kr, allelic range; GW, Garza-Williamson M-ratio statistic; Fis,

inbreeding coefficient.
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highest power (Table 2). However, assuming the final gen-

eration (generation 11, lowest population size) was sam-

pled, the difference in using 2, 4, 6, or 11 samples was

minor. For example, there was little difference in power

between schemes sampling generations 1-2-10-11 and 1-11.

Furthermore, if the two most recent generations were un-

sampled (when the population is smallest and subject to

the greatest genetic loss), power was low (consistent with

t-test results). For example, sampling generations 1-2-8-9

(for moderate exponential decline, for K), had <0.30 power
to detect differences, while sampling generations 1-2-10-11

had power of 0.80 (Table 2). Additionally, temporal

arrangement (clumped or evenly spread, pre-decline sam-

ple availability, etc.) did not substantially affect power (e.g.,

1-5-8-11 vs 1-2-10-11). Thus, important factors were time

between samples (e.g., 1-11 was better than 3-11), time

since start of the decline, and whether samples were avail-

able from periods of small population size (e.g., 6-11 was

better than 1-6).

Instant decline

Again, power was much higher under instant than expo-

nential decline (Table 2). Similar to the results above, more

temporal sampling points yielded higher power, though if

the first and final generations were included, the gain in

power from including more time points was minor. In

marked contrast to results for the exponential decline, the

temporal arrangement of samples following instant decline

(clustered samples, before and after start of decline, etc.)

did substantially affect power. Specifically, when we com-

pared sampling schemes that were identical except for

whether or not a sample was obtained before the decline

(i.e., the first sample at generation 3 instead of generation

1), we found that the unavailability of samples prior to

decline typically resulted in approximately 0.20 lower

power, depending on the indicator. Temporally clustered

samples (two at the beginning and two at the end) yielded

slightly higher power than regular sampling (equidistant

temporally). Also in marked contrast to exponential

declines, the unavailability of the most recent generations

did not reduce power, for example, schemes 1-6 and 6-11

were similar. (Actually, sampling 1-6 performed slightly

better – see Discussion regarding power reduction for the

later generations). It should be noted that, for K, most sam-

pling schemes perform reasonably well for moderate and

strong declines (power often >0.90), and poorly for weak

ones (power typically <0.70).

Other simulations

In all additional simulations the strong effects of decline

type and weaker effects of particular sampling strategy were

apparent, and the best indicator remained K (Figure S3).

Unsurprisingly, greater power was achieved for a decline

from N = 10 000 to 50 than from N = 2000 to 50. When

considering a decline of equivalent percentage, the 97%

and 99% declines from N = 10 000 showed less power than

the 97% and 99% declines from N = 2000.

As expected, genotyping 250 microsatellites achieved

higher power than 20. Nonetheless, there was still low

power early in the exponential decline – reasonable power

was not achieved until seven generations after decline or

later (Fig. 5). Genotyping 2500 SNPs achieved approxi-

mately similar (though slightly higher) to 250 microsatel-

lites (Figure S4). Note that approximately half the SNPs

are monomorphic at equilibrium.

Sampling the entire population represents the maximum

obtainable power for a given number of markers. Under

this condition, power is substantially increased over a sam-

ple size of 50, especially for moderate and weak bottlenecks

(Fig. 5).

In spite of a slight upward response in indicators follow-

ing full demographic recovery, there was essentially no

power to detect genetic diversity increase, for all three

recovery situations, for any indicator (Figure S5). None-

theless, we observed that recovery after two generations

resulted in a population that lost approximately one-third

of the heterozygosity and number of alleles that would be

lost in a more delayed recovery (5% heterozygosity loss and

10% allelic loss for a two generation decline, vs 15% and

30% loss after 20 generations, Fig. 6). Thus, genetic erosion

can be halted quickly via demographic recovery, although

the genetic erosion that has occurred is essentially irrevers-

ible on small time-scales (tens of generations) and genetic

indicators will not substantially increase (noted also in Nei

1975).

Discussion

Consistent with population genetic theory predicting that

alleles are lost rapidly during population size reductions

(Nei et al. 1975) and empirical observations in small popu-

lations (Spencer et al. 2000), the number of alleles (K)

showed the clearest response and highest power for moni-

toring genetic decline across all scenarios (Figs 1–4). Lars-
son et al. (2008) also observed more rapid and more

significant response in K than heterozygosity (He) in simu-

lations parameterized to black grouse, as did Pinsky and

Palumbi (2014) in simulations of fish stock declines. While

the strong performance of K might have been predictable a

priori from a general and qualitative standpoint, our work

is the first quantitative and direct comparison of the utility

of six genetic diversity metrics for genetic monitoring fol-

lowing a wide variety of realistic scenarios of population

decline (see Carvajal-Rodr�ıguez et al. 2005 for an evalua-

tion of the utility of quantitative traits, though on a longer
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time scale of 100 generations). We show that, with micro-

satellites, measuring K is often 2–4 times more powerful

than using He (Table 2), and K is the only metric that con-

sistently yields power >0.90 across many situations. More-

over and perhaps most importantly we show that power

differed strongly for type and severity of decline, but less

strongly for most sampling schemes.

Principally, we showed that power critically depends on

the type and severity of demographic decline. All genetic

indicators show markedly lower power under exponential

population decline (Figs 1–4, Table 2). For this decline

type, loss of genetic diversity is difficult to identify by tem-

poral monitoring: (i) during the initial generations of even

severe population size declines (i.e., there seems to be low

potential for these indicators as very ‘early warning’ signs),

(ii) if samples are not available from periods of low popula-

tion size, for example, N < 100, or (iii) if samples are extre-

mely close in time. This is consistent with theoretical

expectations that population size, time between samples,

and time since start of demographic decline will affect

genetic erosion. Under instant decline, on the other hand,

using K, decreased genetic diversity can be identified with

good power within one or two generations after decline,

for severe (99%) or moderate (97.5%) declines, and nota-

bly even while population size remains constant. However,

weak (90%) declines yielded lower power, in agreement

with Pinsky and Palumbi (2014), who tested power to

detect genetic erosion after 90% instant declines in large
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Figure 5 Comparison of the proportion of 100 replicates (i.e., power) in which the indicator at generation X was significantly different from the indi-

cator at generation Y, contrasting population scenarios that vary the kind of population decline, number of microsatellite markers analyzed and sam-

ple size (columns) with results for K; otherwise as Fig. 3. Top, middle, and bottom panels show results for weak (90%), moderate (97%), and strong

(99%) decline. Abbreviations as in Table 2 (pop’n-population).
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fish stocks. Our results suggest that genetic erosion may

not be detectable with these indicators in some cases of

substantial, ecologically-relevant demographic decline. One

example would be taxa that are deemed ‘Critically endan-

gered’ under International Union for the Conservation of

Nature (IUCN) criteria after ≥80% population size reduc-

tion over the last three generations (http://www.iucnredlist.

org/technical-documents/categories-and-criteria/2001-cat-

egories-criteria). Our results should not be interpreted that

weak declines are unimportant, only that the resulting

genetic loss may be difficult to detect in the short term.

Our results also indicate several considerations regarding

sampling scheme during temporal genetic monitoring. In

both types of decline (exponential and instant), results

show that as few as two temporal samples can reveal genetic

diversity loss (with K) when declines were moderate or

severe and when sampling spans the period of decline. For

exponential declines, power is largely unaffected by the

spacing of samples in time, and whether two, four, six, or

more samples are taken. For instant declines, power is usu-

ally improved by approximately 0.20 if samples are avail-

able before the onset of the decline as compared to when

sampling started multiple generations into the decline. This

result emphasizes the importance of ancient or archived/

museum samples (Larsson et al. 2008; Magurran et al.

2010; Jackson et al. 2011). On the other hand, clustered

sampling is only slightly better than regular sampling.

Indeed, many schemes were sufficient, and strict adherence

to a particular sampling protocol seems unnecessary.

Under exponential or gradual declines it seems never ‘too

late’ to initiate a monitoring program, in particular if some

historical material is available (even if collected for another

reason, e.g., museum specimens). However, for instant

declines, some later pairwise comparisons (e.g., comparing

generations 8 and 10) show low or no power (Fig. 4), pos-

sibly because alleles at many loci become fixed, after which

no significant differences could be further observed. There-

fore, if historical samples are unavailable, for instant

declines in particular, monitoring schemes should be

implemented as soon as possible, before all variation disap-

pears. Samples taken for monitoring should be stored

securely for future analysis with new genetic techniques

that may arise (Schwartz et al. 2007; Magurran et al. 2010).

With reasonable numbers of markers and samples, once

a population is small (N ~ 100), genetic diversity loss

should be readily identifiable before severe erosion occurs.
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Figure 6 Number of alleles and heterozygosity, through time, under a scenario in which near-instantaneous population recovery takes places either

10 or two generations after a period of a small size due to instant decline. Indicator values before the decline and after the recovery are shown by

gray solid and red dashed lines, respectively.
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Specifically, by examining the mean values of K at each

generation (e.g., Figs 1 and 2, exact values not shown), we

observed that approximately 85–90% of alleles remain

when the signal of loss is first detected under exponential

severe declines (at generation 9), under exponential moder-

ate decline (at generation 11), under instant moderate

decline (at generation 4), or under instant severe (at gener-

ation 3). Percentages are lower (70–80%) if diversity loss is

calculated on the entire population rather than the sample,

as noted by Pinsky and Palumbi (2014), showing that many

alleles lost are extremely rare. In any case, we recommend

using K for genetic biodiversity monitoring as feasible and

affordable for a range of population decline situations.

However, it must be noted that K is very sensitive to sample

size (Allendorf and Luikart 2007), so monitors should

strive for equal sample sizes. When sample sizes differ,

investigators must adjust the value of K using a technique

such as rarefaction (e.g., allelic richness).

As expected, power increased by increasing the number

of markers. However, under the exponential decline model,

even 250 microsatellites or 2500 SNPs rarely yielded good

power in the initial generations. Sampling all individuals

provided a clearer signal (Fig. 5), but still did not succeed

in the earliest stages of exponential decline. While sampling

the entire population is more powerful than using many

loci, such sampling scheme may be impossible, so it is

important to note that increasing the number of loci also

increased power. Microsatellites are commonly used in

genetic studies, but new methods, including restriction site

associated DNA sequencing, now permit screening thou-

sands of loci at comparable costs. (Notable, developing a

SNP chip may be cost effective for repeat screening over

time.) Four of the six indicators (excepting allelic size range

and M-ratio) that we evaluated can be calculated for any

previously popular (e.g., allozymes) or future (e.g., SNPs or

genome sequencing) marker types. Individual SNP loci are

generally less polymorphic than microsatellite loci. In our

study, 2500 SNPs were comparable to 250 microsatellites,

suggesting that ability to detect genetic losses may depend

on the total number of alleles available. One issue with

SNPs and microsatellites is ascertainment bias- during

marker development, loci are usually chosen to be poly-

morphic in the current population, thus genetic losses may

be underestimated. Our simulations did not replicate such

bias. Monitoring adaptive genetic biodiversity is also

emerging as a complement to neutral markers (Brown

2008; Hansen et al. 2012). It would be worthwhile for a

future evaluation study to test indicators on adaptive-

linked loci, because diversity at adaptive markers may be

more resilient under population decline (Aguilar et al.

2004), depending on the type of locus-specific selection in

operation. It may also be worth evaluating the utility of

metrics specifically applied to SNP markers.

When population decline was exponentially convex, the

response of most genetic diversity metrics was exponen-

tially concave over time (slow then rapid loss), and when

population decline was instantaneous the genetic response

was linear (Figs 1 and 2, Figure S4). This phenomenon is

also reflected in the near-symmetry of the heat matrix for

instantaneous decline. Larsson et al. (2008) also observed

near-linear loss in K after near-instantaneous population

collapse in black grouse. This has some implications for the

general shape of genetic response that can be expected rela-

tive to the shape of population decline- almost certainly the

curves will not be of the same shape, and genetic erosion

will not be proportional to population loss (see also Nei

1975). Another important observation is that genetic diver-

sity loss does accumulate over time even after the popula-

tion contraction has stopped, and can be quite rapid in

small constant-size populations. Additionally, the standard

deviation of most metrics increases moderately through

time (on the time scale we tested; standard deviations

should diminish once new equilibrium is reached). This

means that forecasts of the exact genetic diversity impact

on a population may inherently exhibit increasing uncer-

tainty through time, making it difficult to predict exact

genetic composition into the future.

New variation is only introduced via mutation in an iso-

lated population (significant increase of genetic variation

can occur via migration), so once diversity is lost, it is very

slowly restored even if population size fully recovers. Thus,

monitoring genetic increase after population size recovery

has essentially no power. However, if population decline

was recent, rapid population demographic recovery can

instantly halt loss of remaining diversity, as illustrated in

Fig. 6 and in recent empirical work (Brekke et al. 2011).

Facilitating population recovery as fast as possible is clearly

crucial for demographic (Martin et al. 2012) and genetic

reasons, and would constitute the best possible intervention

for isolated populations. We emphasize, of course, that

monitoring census size in many species, especially follow-

ing size changes, will be a poor indicator of genetic loss, as

the effective size may be orders of magnitude smaller than

the census size especially during recovery from a small size.

We also emphasize that monitoring effective size accurately

is difficult, and that direct genetic metrics may be pre-

ferred.

In addition to showing differing sensitivity, the indica-

tors we tested summarize different aspects of genetic diver-

sity. Number of alleles and allelic range are analogous to

alpha diversity in ecology (i.e., richness, or count data)

while heterozygosity is a measure of evenness. In both dis-

ciplines, the two aspects are typically correlated. The most

responsive indicator, allelic diversity, is notable because it

directly represents extinction of genetic variants, with

direct consequences for alleles with present or future
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functional/adaptive importance. The G-W M-ratio and Fis
are ‘compound’ indicators that are often interpreted, when

computed on a single time sample, as evidence of recent

bottlenecks or excess homozygotes in small populations,

respectively. Both estimators, perhaps due to their variance,

perform poorly. It is unsurprising that Fis shows little

response as our populations are modeled with random

mating. It may be surprising that M-ratio performs more

poorly than the statistics on which it is based (namely

number of alleles and allele size range), though this statistic

has high variance and moreover was designed to detect

extremely severe declines. It is currently unclear how other

‘synthetic’ (a.k.a. ‘compound’, or ‘higher-level’) indicators

perform relative to basic metrics such as number of alleles.

If ‘compound’ statistics in general show high variance,

direct and more easily interpretable genetic measures may

be most promising. Work to develop further metrics is

required. Possibilities include use of temporal FST or the

allele frequency spectrum to monitor another aspect of

genetic erosion (drift in allele frequencies); these could

complement the indicators we investigated (Schwartz et al.

2007). Quantitative genetic variation is another possibility

(Carvajal-Rodr�ıguez et al. 2005). These are all ‘state’ indi-

cators; work is also needed to test the utility of ‘pressure’

indicators such as degree of fragmentation or harvest, or

domesticated-wild hybridization.

Our study focused on genetic erosion, but temporal

monitoring may be desired for other reasons such as

changes in genetic connectivity due to fragmentation or to

monitor the response of a population to genetic restoration

or ‘genetic rescue’, such as via translocation (Vil�a et al.

2003; Landguth et al. 2010; Aitken and Whitlock 2013). It

remains to be tested whether the sampling schemes and

indicators that we tested could be appropriate for such

goals. Our results do emphasize that stable but small popu-

lations (e.g., prairie chicken, Mauritius kestrel) that are

often currently only monitored for population size should

undergo genetic monitoring to evaluate the success of these

programs. It should also be noted that ancient DNA sam-

ples are often scattered across time and therefore samples

from several time points are sometimes combined (due to

insufficient samples at each single time point) to represent

one time period, which may be problematic for analyses.

An alternative is to use individual-based metrics and meth-

ods (J. Godoy, unpublished data).

While our study highlights general points regarding the

potential of genetic monitoring, we considered a limited set

of conditions. Simulations can be used to tailor monitoring

programs to particular species’ life histories that are known

to affect retention of genetic diversity, for example, over-

lapping generations, variance in reproductive success, sex

ratios (Hoban et al. 2013c,d; Pinsky and Palumbi 2014), or

to test other realistic conditions (e.g., linear population

decline, uneven sample sizes). A single population was

modeled in this study, representing an isolated population

or the species as a whole. However, many organisms are

organized as metapopulations, where genetic diversity may

decline more slowly with increasing levels of connectivity

(Pinsky and Palumbi 2014). Genetic differentiation among

demes and current gene flow are parameters to monitor in

such context.

Lastly, in order to avoid ‘describing the world’s fate

ever more precisely while doing nothing to avoid it’ (Fi-

scher et al. 2012), monitoring programs should be con-

nected to broader conservation policy (Martin et al.

2012; Nicholson et al. 2012; Lindenmayer et al. 2013)

rather than simply being used as ‘record-keeping’. Specif-

ically, indicators should provide a signal for action (e.g.,

active habitat protection and management, perhaps sup-

plemented with captive breeding, translocation). Thresh-

olds or ‘red flags’ for genetic diversity loss (e.g., 10%

decline in K), and plans of appropriate actions to imple-

ment after thresholds are observed (Martin et al. 2012),

require discussion and establishment by the population

genetic community. Much further work is needed to

incorporate genetic status and trends into policy (Brown

2008; Laikre et al. 2010; Santamaria and M�endez 2012;

Hoban et al. 2013a).

Summary

The power to detect genetic erosion differed strikingly for

exponential and instant declines, and among indicators,

while the precise number and distribution of temporal

samples available has less effect. The often limited effect of

differing temporal distribution of samples shows that

opportunistically collected museum or archival specimens

can be utilized effectively in genetic monitoring. Typing a

relatively small number of loci appears adequate and cost-

efficient, especially under the most dangerous condition of

rapid and severe population declines. Fortunately genetic

diversity loss can be detected while the vast majority of ori-

ginal allelic diversity remains, in time to signal need for

conservation actions.

Notably, we observe that substantial genetic diversity loss

does not occur even 10 generations after a population is

reduced from N = 2000 to N = 200, but becomes quickly

detectable once N ~ 50 or 100. This threshold matches

some proposed Minimum Viable Population Sizes and

agrees with empirical observations of genetic loss (Allen-

dorf and Luikart 2007; Larsson et al. 2008). We conclude

that monitoring genetic erosion may be unfeasible and per-

haps unnecessary when Ne (effective population size)

exceeds several hundreds or the decline is very recent (a

few generations), even when using many genetic markers.

Monitoring will likely be most effective once population
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size is small (Ne < 100), and sampling should increase in

frequency after this size threshold. Small but constant-size

or slowly recovering populations are also in need of intense

genetic monitoring. This concurs with Lindenmayer et al.

(2013) who recommend ‘adaptive monitoring’, that is,

changing the monitoring scheme through time.

Lastly, we emphasize an observation which might not

be intuitive for non-geneticists such as most policy mak-

ers: genetic loss may sometimes be slight even if a popu-

lation is declining, while substantial genetic loss can

occur quickly in populations of small, stable size (e.g.,

Ne = 50 or 20). This is analogous to species disappear-

ance following habitat loss, which may be small at initial

levels of habitat loss, but then accelerates, with potential

for further species loss even after habitat loss ceases

(Krauss et al. 2010). Similarly, genetic diversity loss asso-

ciated with population decline occurs not only during

the decline itself but also (with increasing rapidity) there-

after in small constant-size populations. As such, stable

indicators under population monitoring may mislead if

used as a proxy for genetic changes. Similarly, genetic

monitoring indicators may mislead if used as a proxy for

population size change. A combination of indicators

bases on direct population monitoring and genetic diver-

sity is desirable. These results emphasize the importance

of monitoring all levels of biodiversity, as genetic biodi-

versity components may be eroding even while species or

population-level indicators show stability.
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Figure S3. Pairwise comparison for scenarios from original N = 2000

and N = 10 000, for number of alleles (K).

Figure S4. Pairwise comparison for microsatellites and SNPs, as well

as temporal trend in indicator values.

Figure S5. Genetic response to a recovery after 10 generations of

reduced population size (reduction from N = 2000 to N = 50); at right,

power of two indicators to detect significant change over time (see also

Fig. 3).

Table S1. Carrying capacity and census size of populations during

simulations.
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