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Statistical regularities exist at different timescales in temporally unfolding event sequences. Recent studies have
identified brain regions that are sensitive to the levels of regularity in sensory inputs, enabling the brain to
construct a representation of environmental structure and adaptively generate actions or predictions. However,
the temporal specificity of the statistical regularity to which the brain responds remains largely unknown. This
uncertainty applies to the regularities of sensory inputs as well as instrumental actions. Here, we used fMRI to
investigate the neural correlates of regularity in sequences of task events and action selections in a visuomotor
choice task. We quantified timescale-dependent regularity measures by calculating Shannon's entropy and sur-
prise from a sliding-window of consecutive task events and actions. Activity in the frontopolar cortex negatively
correlated with the entropy in action selection, while activity in the temporoparietal junction, the striatum, and
the cerebellumnegatively correlatedwith the entropy in stimulus events at longer timescales. In contrast, activity in
the supplementarymotor area, the superior frontal gyrus, and the superior parietal lobulewas positively correlated
with the surprise of each stimulus across different timescales. The results suggest a spatial distribution of regions
sensitive to various information regularities according to a temporal hierarchy,whichmayplay a central role in con-
currentlymonitoring the regularity in previous and current events over different timescales to optimize behavioral
control in a dynamic environment.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

A critical role of cognition is to adaptively control behavior in the face
of a dynamically changing environment. Implementing this function
requires a neural mechanism that responds to statistical regularities of
the environment and its variations, allowing the brain to construct an
internal representation of the environmental structure for generating
expectations, predicting future events and guiding behavior (Friston
et al., 2006; Mumford, 1992; Sokolov et al., 1963). Previous research
has demonstrated the ability in infants and adults to identify statistical
patterns from temporally extended sequences, and to use this informa-
tion to form expectations (Amso et al., 2005; Cohen et al., 1990; Curran
and Keele, 1993; Gomez, 2002; Kidd et al., 2012). For example, preverbal
infants can learn word segments from auditory streams based on the
statistical relationships between neighboring syllables (Saffran et al.,
1996), and even infants under 3 months can generate expectations of
visual stimuli (Canfield and Haith, 1991). Studies of statistical learning
iences Unit, Cambridge CB2 7EF,
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in adults further suggest that extracting statistical regularities from sen-
sory inputs facilitates perception (Orbán et al., 2008; Summerfield
and Egner, 2009), and this process can occur automatically, without con-
scious awareness of the underlying patterns (Fiser and Aslin, 2001;
Turk-Browne et al., 2005).

Electrophysiological and neuroimaging studies have identified brain
regions sensitive to statistical regularities in sensory information, often
relying on the response to a single unexpected stimulus as evidence of
the prediction arising from detection of regularities in low level or
higher order properties of stimuli (Ewbank et al., 2011; Näätänen
et al., 1978, 2007; Pazo-Alvarez et al., 2003). Regularities can also be
appreciated from temporally extended event sequences, such as the
relative frequencies of different events, which formulate macro-scale
environmental structures. The predictability or the uncertainty over
multiple successive stimuli has been associated with activity of the
hippocampus (Harrison et al., 2006; Strange et al., 2005; Turk-Browne
et al., 2009, 2010), the prefrontal cortex (Huettel et al., 2002; Kouneiher
et al., 2009) and the lateral temporal cortex (Tobia et al., 2012a), even
when the statistical features of the sequences are irrelevant to the task
(Nastase et al., 2014). These findings advocate the concept of the
“proactive” brain (Bar, 2007; Friston et al., 2009), which continuously
generates predictions of the relevant future events by extracting
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Experiment design and the sliding-window method. (A) Stimuli for the finger-
tapping task in the chosen condition (top row) and the specified condition (bottom row).
In both chosen and specified trials, permitted actions were indicated by the filled circles
and non-permitted actions were indicated by the unfilled circles. (B) Examples of trials.
The task stimulus was presented 1000 ms at the beginning of each trial, followed by a
1400 ms interval during which the hand image with four unfilled circles were presented.
(C) Entropymeasures were calculated in a sliding-window (15-trial length in the illustra-
tion) along a sequence of events, and the TE and SE values were assigned to the last trial
within each window (as indicated by the arrows). The sliding-window moved forward
one trial each time and a new entropy measure was calculated. As such, this approach
generated associated TE and SE series from sequences of trial events or actions.

267J. Zhang, J.B. Rowe / NeuroImage 107 (2015) 266–276
information from sensory inputs or internally generated signals (Chiel
and Beer, 1997; Friston, 2010).

However, two important issues remain unresolved. First, regularities
may exist at various time scales in a dynamic environment (Kiebel et al.,
2008; Koechlin et al., 2003). In a tennis game, for example, the player
needs to follow andpredict the opponent's position tomake a successful
return (short time scale), and maintain information about the
opponent's action sequence in order to make a strategic response
(long time scale) (Yamamoto and Gohara, 2000). Although statistical
regularities at different time scales can be important in shaping behav-
ior, it is not clearwhether different brain regions are sensitive to the reg-
ularities at different levels of this temporal hierarchy.

Second, statistical regularity in one's own actions and past choices, is
as important as regularity in external sensory inputs when guiding
future behavior (Rowe et al., 2010). Regularity in action-selection se-
quences is also critical for the transition from sensorimotor mapping
to skilled motor sequences. Previous studies showed that, over the
course of sensorimotor learning, improvements in performance in the
early learning stage are based on the order of perceptual events, while
the performance in the late learning stage depends on action sequences
(Bapi et al., 2000). Further, learnt action sequences can be generalized
and transferred to the opposite hand or to other sensory modalities
(Cohen et al., 1990; Keele et al., 1995;Willingham et al., 2000). The flex-
ibility of sequence learning requires that the brain does not only learn
an action sequence itself, but also the associations between different
representations of a sequential structure (sensory events, action events,
and selections of actions). While the existing literature focuses on the
regularity in sensory inputs, less is known of how the brain encodes
the regularity of action selection: most studies have employed para-
digms in which actions were either fully determined by sensory inputs
(Huettel et al., 2002) or irrelevant to the regularity of sensory informa-
tion (Nastase et al., 2014).

Here, we addressed these two questions by examining fMRI re-
sponses to statistical regularities in long sequences of external stimulus
events and internally-driven action selections at different time scales. In
a visuomotor task (Fig. 1A), participants pressed a button according to a
visual stimulus that mapped directly to a single button press in a
specified condition; or they voluntarily selected one action from
three visually presented alternatives in a chosen condition. In the latter
case, the stimuli indicated that subjects shouldmake a response, but not
which response to make. By permuting the trial order, and enabling
trial-specific response selections, the sequence of ‘internal’ action selec-
tions is dissociated from the external trial events. We quantified the
statistical regularity by measuring three randomness measures along
a sliding window of consecutive stimulus events (i.e., trial entropy
and surprise) or selected actions (i.e., selection entropy). By adjusting
the length of the sliding window, we identified brain regions sensitive
to the randomness measures at different time scales.

Our results demonstrate sensitivity to entropy and surprise: the
frontopolar cortex is negatively associated with selection entropy, while
the temporoparietal junction, striatum, and cerebellum are sensitive to
the trial entropy at a longer time scale. This suggests that the human
brain spontaneously monitors statistical regularities in both external
events and internal-generated actions, concurrently and at different
time scales.

Materials and methods

Participants

Sixteen healthy right-handed adults (13 females; age range,
20–39 years; mean age, 26.81 years; s.d. of age, 4.55 years) were recruit-
ed from the volunteer panel at the Medical Research Council's Cognition
and Brain Sciences Unit, and were paid 20 pounds for their participation.
All participants reported normal or corrected-to-normal vision. None had
previous experience with the task. Participants responded in 98 ± 1% of
the trials on average. The studywas approved by the local research ethics
committee and was undertaken with the understanding and written
consent of each participant.
Task

Participants performed a visually paced, right-hand finger-tapping
task in a single session (Hughes et al., 2013; Rowe et al., 2010; Zhang
et al., 2012). Details of the stimuli and task are described in a previous
study (Zhang et al., 2012), but the analysis and classification of each
trial differs in the current study. Throughout the scanning session, a
picture of a right hand was presented on the screen (4.19° × 6.31° visual
angle) on a gray background. Four circles (0.39° visual angle) super-
imposed above the four fingers in the picture, and could be filled or
unfilled. The filled circles indicated the fingers that were permitted or
required as a response.

There were eight different stimuli under two task conditions
(specified actions and chosen actions) (Fig. 1A). In each of four specified
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action stimulus, therewas onefilled circle and three unfilled circles, and
participants were required to respond with the finger indicated by the
single filled circle. In each of four chosen action stimulus, there were
three filled circles and one unfilled circle, and participants could
respond with any one of the three fingers indicated by the filled circles.
Participants were asked to make a fresh choice on each chosen trial, re-
gardless of what they had done in previous trials. They were not
encouraged or discouraged to make or avoid particular actions
sequences, nor asked tomake “random” choices. For a discussion of cog-
nitive processes underlying such self-ordered choices, see (Hughes
et al., 2013; Rowe et al., 2010; Stern et al., 2000; Zhang et al., 2012).
The focus of this paper is the temporal regularity structure of the trial
and response sequences.

On each trial, the hand picture with filled/unfilled circles were
presented for 1000 ms, followed by a 1400 ms interval during which
the hand picture with four unfilled circles were presented (Fig. 1B).
Participants could make a response at any time after stimulus onset.
To improve estimation of the BOLD response differences between task
conditions, we used null trials (duration 2400 ms) to vary the SOA
while appearing to the subject as the inter-trial screen (Josephs and
Henson, 1999; Mechelli et al., 2003).

The experiment session comprised 1008 trials with 50% choice trials,
25% specified trials and 25% null trials. The trials were pseudorandomly
intermixed, with no more than four consecutive trials of the same con-
dition. The identity of the task stimulus in each trial further depended
on participants' last action: in the chosen condition the option to repeat
the last action was available in half of the trials, regardless whether the
last action was chosen or specified. Similarly, in the specified condition,
the instruction to repeat the last response was presented in half of the
trials.

Quantitative measures of randomness from sliding windows

For each participant's scanning session, there was a finite, discrete
set of eight possible stimuli Ci = {a, b, c, d, e, f, g, h} (i = 1, 2, 3, …)
(Fig. 1A) and a set of four possible actions Ai = {1, 2, 3, 4}. Note that
there were different numbers of chosen and specified trials, and the
task stimulus for each condition further related to the participant's pre-
vious responses. As a result, the sequences of stimuli and participant's
responses could not be completely random.

A sliding-window method was used to quantify the randomness
in Ci and Ai (Fig. 1C) (Bollt et al., 2009). For a sliding window with a
length of n trials, the randomness measures at trial i were estimated
from the most recent trials within the range [i − n + 1, i], and the
randomness measures were assigned to the last trial i in the current
window (i ≥ n). The sliding window moved along the Ci and Ai se-
quences to obtain a continuousmeasure for all trials i (i≥ n) throughout
a session.

Three quantitative measures of randomness were estimated. The
first randomness measure, hereafter referred to as trial entropy (TE),
was defined as the Shannon entropy of all task stimuli within a sliding
window. A larger TE value (i.e., high entropy) indicated that the recent
task sequence prior to the current trial is more random. The TE at trial i
with a window length of n trials is given by:

TE ið Þ ¼ H Stimulið Þ ¼ −
X

k¼ a;b;c;d;e; f ;g;hf g
P C j ¼ k
� �

log P C j ¼ k
� �

; i−nþ 1ð Þ≤ j≤ i;

where P(.) is the probability mass function.
The second randomness measure, hereafter referred to as selection

entropy (SE), was defined as the conditional entropy of all actions
from the chosen condition within a sliding window, given the stimuli
of the chosen trials. The SE value indicated the level of randomness of
participant's own selection, given the randomness of recent task se-
quence. The SE at trial i with a window length n is given by:

SE ið Þ ¼ H ActionsjStimuli ¼ a; b; c; df gð Þ
¼ −

X
k ¼ a;b; c;df g
m ¼ 1;2;3; 4f g

P Aj ¼ m;C j ¼ k
� �

log P Aj ¼ mjC j ¼ k
� �

; i−nþ 1ð Þ≤ j≤ i:

The third measure is the “surprise” (SUP) (Strange et al., 2005),
which quantifies the amount of information conveyed by the current
stimulus in the context of recent events in a specified window. If the
stimulus in the current trial i is k, (k = {a, b, c, d, e, f, g, h}), the SUP
with a window length n is given by:

SUP ið Þ ¼ − log P C j ¼ k
� �

; i−nþ 1ð Þ≤ j≤ i:

We assumed that all the measures are sustained state representa-
tions of the randomness based on recent trials, and therefore TE, SE,
and SUP are all modeled on a trial-by-trial basis, regardless whether
the current trial is a chosen or specified trial. In particular, we
modeled the SE based on all recent chosen trials even when the
current trial is a specified trial, although participants did not make
selections in specified trials and their responses were fully deter-
mined by the task stimulus. By changing the position and size of
the sliding-windows, we can quantify the three randomness measures
and their fluctuations at different temporal scales. For each participant,
TE, SE and SUP values were estimated at six different sliding-window
lengths (25–50 trials, step size 5 trials). The randomness measures
were used as parametric modulators in analysis of fMRI data.

Imaging data acquisition

A Siemens Tim Trio 3 T scanner (Siemens Medical Systems,
Germany) with 12-channel head coil was used to acquire BOLD sensitive
T2* weighted echo-planar images (TR= 2000 ms, TE= 30 ms, FA= 78
degrees, 32 × 3mm slices, in-plane resolution 3 × 3 mmwith slice sepa-
ration 0.75 mm, sequential descending order). One thousand three hun-
dred volumes were acquired in a single session and the first six volumes
were discarded to allow for steady-state magnetization. Participants also
underwent high resolution magnetization prepared rapid gradient echo
scanning (MP-RAGE: TR = 2250 ms, TE = 2.99 ms, FA = 9 degrees,
IT = 900 ms, 256 × 256 × 192 isotropic 1 mm voxels). Visual stimuli
were presented by using Matlab 7.8 (Mathworks, Natick, MA) and the
Psychtoolbox-3 (www.psychtoolbox.org), and were displayed onto a
screen using a Christie video projector with a resolution of 1024 × 768
and a refresh rate of 60 Hz.

fMRI data preprocessing

MRI data were processed using SPM8 (www.fil.ion.ucl.ac.uk/spm).
fMRI data were converted from DICOM to NIFTII format, spatially
realigned to the first image, and corrected for acquisition delay with
references to the middle slice. The mean fMRI and MP-RAGE images
were coregistered using mutual information, and the MP-RAGE image
was segmented and normalized to the Montreal Neurological Institute
(MNI) T1 template by linear and non-linear deformations. The normal-
ization parameters were applied to all spatiotemporally realigned func-
tional images, and normalized images were resampled to 3 × 3 × 3mm
before smoothing with an isotropic Gaussian kernel with full-width
half-maximum of 8 mm.

fMRI data analysis

For each sliding-window length, a first-level general linear model
(GLM) included five regressors. The first regressor represented onsets
of stimulus presentation in all trials. The second regressor contrasted

http://www.psychtoolbox.org
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the choice and the specified trials (consisting +1 and −1), modeling
the differences between the two task conditions (Rowe et al., 2010).
The three additional parametric modulators represented the TE, SUP
and SE values across trials, estimated from the sliding-window method
andmean-corrected to the entire session. Response times from individual
trials were entered as a regressor of no interest. All parametric regressors
were mean-corrected and orthogonalized with respect to their previous
regressor by using the Gram–Schmidt orthogonalization procedure in
SPM.1 Therefore, the SUP regressor was orthogonalized with respect to
TE to account for the variance that cannot be attributed by the TE values
and the SE regressor was orthogonalized with respect to SUP and TE be-
cause SE is conditioned on trial information by definition. Two additional
regressorswere included tomodel the error trials in the chosen and spec-
ified conditions (i.e., trials with invalid responses or trials without
responses, which accounted for 4.54% of all trials). Imaging volumes
within the first sliding-window of a scan session were removed from
analysis, because the randomness measures were not available prior to
the first window. Six rigid-body motion correction parameters were
included as nuisance covariates. Regressors were convolved with a
canonical hemodynamic response function, and the data were high-
pass filtered with a frequency cutoff at 400 s.

First-level contrast images of TE, SE and SUP from the six sliding-
window lengths were entered into three second-level ANOVAs, adjusted
for non-sphericity with dependence between measures and unequal
variance. A liberal threshold was firstly used to localize the effect of
each randomness measure averaged across the six sliding-window
lengths (p b 0.001 uncorrected and cluster of 50 voxels ormore). Regions
of interest (ROIs) were then defined at the peaks of the significant clus-
ters (with 8 mm radius) using the MarsBar toolbox (http://marsbar.
sourceforge.net). Averaged regional BOLD response was tested for differ-
ences between different window lengths by using repeated-measures
ANOVA. For each analysis, resultswere reported as statistically significant
for p b 0.05, corrected for FDR using the Benjamini–Hochberg procedure
(Benjamini and Hochberg, 1995).

Next, we identified supra-threshold activities associated with the
randomness measures at each individual window-length in a post-hoc
exploratory analysis. For each sliding-window length, five first-level
contrast images (the effect of stimulus presentation in all trials, the
three randomnessmeasures, and the contrast between choice and spec-
ified conditions) from each participant were entered into a second-level
analysis, and statistical parametric maps were generated for each effect
of interest. Results in the statistical parametric maps were reported
at a cluster extent threshold corrected for multiple comparisons using
Gaussian random field theory (p b 0.05, FDR) with a conventional
voxelwise threshold (p b 0.001 uncorrected) (Chumbley and Friston,
2009).

Results

We estimated three types of randomness in a right-hand finger-
tapping task: trial entropy (TE) quantifying the randomness of external
stimulus, selection entropy (SE) quantifying the randomness of action
selection, and surprise (SUP) quantifying the information content of
the current stimulus. For each participant, the TE, SE and SUP values
were calculated from a sliding window of consecutive trials, and were
assigned to the last trial in thewindow (Fig. 1C). By incrementally sliding
the window along the entire trial sequence in each scanning session, we
obtained TE, SE and SUP series that continue and evolve over time. All the
three randomness series from individual participants exhibited fluctua-
tions over time (see Fig. 2A for the randomness series from an individual
participant). Such variances in the randomness series could be used to
inform the analysis of fMRI data. Below, we reported the characteristic
1 We tested alternativemodels that did not orthogonalize parametermodulators to one
another, but only to the onset regressor. The primary activation associatedwith SE, TE and
SUP was not altered by using the alternative model (Supplementary Fig. S3).
properties of the randomness series, and then identified brain regions
that were associated with the different measures at different time scales.

Randomness in trial and selection sequences

We examined the similarity of each randomness measure at different
temporal scales by calculating Pearson's correlations of each randomness
series estimated from six window lengths (25 to 50-trial windows with
an incremental step of 5 trials). The randomnessmeasures from two sim-
ilar window lengths were strongly correlated with each other (Fig. 2B).
This is expected because any two sliding windows with similar length
share a proportion of information. For example, compared with a
25-trial window, a 30-trial window contains five new trials and shares
the rest of the data with the 25-trial window. As the difference of the
two windows' length increases, the amount of shared information de-
creases and a randomness measure from the two windows become
less correlated. We compared the Fisher z-transformed correlations of
SE, TE and SUP between the two most distinct window lengths (25
and 50 trials). A nonparametric analysis of variance for repeated mea-
sures (Friedman's test) showed significant higher correlation in SUP
than that in SE and TE (p b 0.00001). In other words, window length
had larger effects on entropies (TE and SE) than on surprise.

We then examined the relations between TE and the other two
randomness measures (Fig. 2C). SUP was positively correlated with TE
at all window lengths (p b 0.001, one-sample Wilcoxon signed-rank
test) and the correlations were higher for small windows than for
large windows (p b 0.00001, Friedman's test). Further, there was also
a significant main effect of window length on the correlations between
TE and SE (p b 0.00001, Friedman's test), and the SEwas negatively cor-
related with TE across participants at small windows (25-trial window,
p b 0.001; 30-trial window, p b 0.01; 35-trial window, p b 0.05; 40-trial
window, p b 0.05, one-sample Wilcoxon signed-rank test), but the
correlations were not significant at larger windows (45-trial window,
p = 0.08; 50-trial window, p = 0.18).

To testwhether the randomnessmeasures couldmodulate response
time (RT) (e.g., Jamieson and Mewhort, 2009), we conducted a within-
subject GLManalysis using single-trial RT as the dependent variable and
the three randomness measures as the independent variables. Coeffi-
cient estimates from individual participants were then entered into a
second-level analysis. No significant effect of TE, SE and SUP on the RT
was observed at any window length (Supplementary Fig. S1). The lack
of relationship between the randomness measures and RT implies that
our fMRI analysis was not confounded by trial-by-trial variations in RT.

fMRI BOLD responses associated with randomness

We used individual participant's randomness series to inform the
models of BOLD responses. A whole-brain random-effect analysis
showed brain regions that were associated with SE, TE, and SUP when
averaged across the six window lengths (Fig. 3). SE negatively correlated
with BOLD responses in the right frontopolar cortex (FPC) and the right
temporal-parietal junction (TPJ) (p b 0.001 uncorrected, cluster size N 50
voxels). TE negatively correlated with the activity in the right TPJ, the
right middle temporal gyrus (MTG), the right inferior temporal gyrus
(ITG), and the right cerebellum. In contrast, SUPwas positively associat-
ed with bilateral activity in the supplementary motor area (SMA), the
superior frontal gyrus (SFG), and the superior parietal lobule (SPL). No
significant activation was observed from reverse contrasts testing for
a positive BOLD correlation to SE or TE, or a negative correlation to
SUP. In summary, these regions showed increased BOLD responses
when recent stimulus or action sequences are more regular (i.e., low
trial and selection entropies), orwhen current events had higher unpre-
dictability (i.e., high surprise).

The regions of interest (ROI)were defined as spheres of 8mmradius
centered on peak coordinates of randomness-related activation averaged
across the six window lengths. All ROIs except FPC showed increased

http://marsbar.sourceforge.net
http://marsbar.sourceforge.net
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Fig. 2. Randomness measures. (A) TE (left), SE (middle), and SUP (right) values at two different window lengths (25-trial and 50-trial) from one single participant. (B) Mean correlation
coefficients of the randomness measures from different window lengths. For each randomnessmeasure, a Pearson correlationmatrixwas calculated between two of six possible window
lengths and averaged across participants. (C) Themean Fisher z-transformed correlations betweenTE andSE (left) andbetweenTE andSUP (right). Error bars represent 95%bootstrapping
confidence interval.
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BOLD response to stimulus onset (Supplementary Fig. S2). Therefore the
negative BOLD-entropy correlations suggest increased activation with
more ordered sequence. We then examined whether the BOLD-
randomness associations depended on the length of the sliding-
window in eachROI (Fig. 4). For SE, a repeated-measures ANOVA showed
a significant effect of window length in the TPJ (F(5,75)=6.97, p b 0.001,
FDR corrected) but not in the FPC (F(5,75)=1.71, p=0.14). For TE, there
was a significant effect of window length in the TPJ (F(5,75) = 2.82,
p b 0.05, FDR corrected), MTG (F(5,75) = 3.67, p b 0.01, FDR corrected),
and cerebellum (F(5,75) = 3.44, p b 0.01, FDR corrected), but not in
the ITG (F(5,75) = 1.67, p = 0.15). No significant effect of window
length was observed on the BOLD response to the SUP (SMA,
F(5,75) = 0.42, p = 0.84; SFG, F(5,75) = 0.28, p = 0.92; SPL,
F(5,75)=1.36, p=0.25). Post-hoc analysis on the regionswith a signif-
icant main effect of window length showed that the SE effect at 50-trial
window was larger than that at 25-trial window in the TPJ (t(15) =
3.04, p b 0.01). The TE effect at 50-trial window was larger than that
at 25-trial window in the MTG (t(15) = 2.14, p b 0.01) and cerebellum
(t(15) = 2.30, p b 0.05), and the difference was marginal in TPJ
(t(15) = 2.10, p = 0.05). Supplementary Fig. S4 shows how the BOLD
response negatively scales with SE and TE at 25-trial and 50-trial
windows.

The above analysis suggested that certain brain regionswith averaged
effects across different window lengthswere differentially sensitive to SE
or TE at different temporal scales. But this analysis cannot test whether
some regions significantly respond to randomnessmeasures at individual
window length. Therefore, in an exploratory analysis, we examined
supra-threshold BOLD responses to the SE and TE, separately for each of
the six window lengths. The SE negatively correlated with the activity
in bilateral frontopolar cortex (FPC) at the 25-trial window (p b 0.05
cluster-corrected, Table 1). No significant activation was observed for
the SE at other longer windows. To determine whether the effect of SE
was specific to the short window, we exclusively masked the results of
the 25-trial window with the results of the longest 50-trial window at a
threshold of p b 0.05 (uncorrected). The bilateral FPC survived this dis-
junction analysis at a lower threshold (p b 0.001 uncorrected, cluster
size N 50 voxels). The results from the disjunction tests did not survive
cluster-extent corrections for multiple comparisons.

TE negatively correlated with the activation in the TPJ, the temporal
cortex, the frontopolar cortex, and the cerebellum at short to medium
window lengths (30, 35 and 40 trials) (p b 0.05 cluster-corrected,
Table 1). At longerwindows (45 and 50 trials), TE also negatively corre-
lated with the activation in the striatum and the anterior cingulate
cortex. Exclusivemasking of the results of the 50-trialwindowby the re-
sults of the 25-trial window at a threshold of p b 0.05 (uncorrected), re-
vealed that only the striatum survived the disjunction analysis
(p b 0.001 uncorrected, cluster size N 50 voxels), suggesting that the sub-
cortical response to TE may be specific to longer windows.
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Fig. 3. Brain regions showing significant responses to (A) SE, (B) TE and (C) SUP averaged across different window lengths (illustrated at p b 0.001 uncorrected, cluster size N 50 voxels).
PeakMNI coordinates in (A) FPC (39, 53, 19), TPJ (30,−58,43); (B) CRBL (−15,−73,−29), MTG (63,−19,−14), ITG (48,−55,−8), TPJ (57,−46, 31); and (C) SFG (left,−27,−7, 64;
right, 15,−16, 67), SMA (6,−10, 58), SPL (left,−27,−52, 55; right 21,−55, 55). The cluster in (B) comprising the TPJ and ITG survivedwhole brain cluster-extent correction (p b 0.05),
and the cluster in (C) also survived whole brain cluster-extent correction (p b 0.05).
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Repetition versus alternation of stimuli and responses

We have shown that BOLD responses in different brain regions neg-
atively associatedwith TE and SE from a sequence of previous trials.We
tested whether these effects could be driven by the most recent stimu-
lus (i.e., switching ormaintaining task stimuli) or action (ie. sameversus
different action). This would predict increased BOLD response in stimu-
lus repetition or action repetition (low entropy) comparedwith alterna-
tion (high entropy) in two consecutive trials (see Tobia et al., 2012a,b,
for a detailed discussion). We therefore directly contrasted task trials
with repetition and alternation of stimulus presentation (regardless
participant's actual actions), and task trials with repetition and alterna-
tion of actions (regardless which task stimulus was presented).

No voxels showed significant activity in repeating versus switching
task stimuli or actions. This result suggested that the entropy effects
cannot be simply driven by the most recent event. Instead, there were
repetition suppression effects (Fig. 5). Switching compared with
repeating stimulus presentationwas associated with increased activation
in the superior parietal cortex (p b 0.05 cluster-corrected). Switching
comparedwith repeating actionswas associatedwith increased activation
in the sensorimotor cortex, the ventromedial frontal cortex, and the
cerebellum.
Discussion

This study has identified anatomical specificity in the neural corre-
lates of three types of information theoretic measures: the entropy of
stimulus sequences, the entropy of action selections, and the surprise
of current stimulus. In addition, there is evidence for temporal specificity
in trial entropy, and weak evidence for temporal specificity of selection
entropy in some regions. At longer window lengths, an extensive net-
work including the TPJ, striatum, and cerebellum was associated with
TE. The activity in the FPC correlated with the SE at a short window
length (25 trials: although the effect of window length was not signifi-
cant). In contrast, activity in the sensorimotor cortex was associated
with the surprise across all window lengths. Together, these results
provide new insights into the fundamental processes of monitoring
and prediction, demonstrating cortical and subcortical sensitivity to reg-
ularity or uncertainty, in sensory inputs and action selections over short
and long timescales.

Previous studies have linked information theoretic indices of ran-
domness in sensory and motor sequences to brain activation, including
Shannon's entropy, mutual information, conditional entropy, and
surprise (Bischoff-Grethe et al., 2000, 2001; Harrison et al., 2006,
2011; Nastase et al., 2014; Strange et al., 2005; Tobia et al., 2012a,b),
but give different interpretations of their functional significance. One in-
terpretation is that a relation between BOLD responses and statistical
regularity of the environment indicates the involvement of brain re-
gions in the computation of the randomness measures. For example,
hippocampus and paralimbic structures have been proposed to encode
the uncertainty of the environment based on a Bayesian observermodel
(Geisler, 1989). This interpretation is supported by positive correlations
between hippocampal activity and Shannon's entropy in visual stimulus
streams (Strange et al., 2005), and the mutual information in consecu-
tive events in a sequential reaction time task (Harrison et al., 2006).

However, a BOLD-randomness relation alone does not imply the
encoding of entropy per se, but can also be interpreted as the presence
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Fig. 4. The regional effect size (beta) of BOLD response to the (A) SE, (B) TE and (C) SUP at different window lengths. The regions of interest were defined at the peaks of the significant
clusters (with 8mm radius) that showed averaged effect across all windows for each outcomemeasure (Fig. 3). The bars denote the averaged response in the ROIs. Error bars denote stan-
dard errors across participants. (A) and (B) showed the absolute value of the effect size because the correlation between the BOLD response and entropy measures are negative.
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of other cognitive processes that are sensitive to entropy measures
(Tobia et al., 2012b). A positive correlation between randomness and
BOLD could indicate predictive processing of error signals, because larger
prediction errors are expected in more random sequences within a pre-
dictive coding perspective (Bubic et al., 2010; Rao and Ballard, 1999).
Conversely, a negative correlation could occur if a region is sensitive to
the degree of predictability of the current event given the knowledge
of recent events (Bischoff-Grethe et al., 2001; Tobia et al., 2012b).

We found systematic negative correlations between BOLD response
and the two entropy measures (TE and SE) across different brain re-
gions, and positive correlations between BOLD response and surprise.
This extends previous studies showingnegative BOLD-entropy relations
under the presence of visual or auditory sequences (Nastase et al., 2014;
Tobia et al., 2012a,b) and positive BOLD-surprise relations in serial reac-
tion time paradigm (Strange et al., 2005). A more recent study also
reported that BOLD response positively correlated with the surprise of
events when participants observing another person's action sequences
(Ahlheim et al., 2014).

Several cognitive processes could account for the direction of the
BOLD-entropy correlations in our study. For example, it is consistent
with the possibility of an online monitoring process that constantly
evaluates statistical regularities from recent event sequence. This
monitoring process would invoke increased BOLD response when the
observed frequency of different events deviates from a random se-
quence (i.e., low entropy state), and thereby allow the system to
generate predictions of future events. Alternatively, the effect of selec-
tion entropy could relate to conscious attention to self-initiated, system-
atic choice sequences which have low entropy. Interestingly, frontal-
lobe damage is often associated with inflexible and preservative behav-
ior (Burgess and Shallice, 1996; Duncan, 1986), suggesting that the pre-
frontal cortex is essential to switch behavior at different levels of
randomness (Rowe et al., 2010). In order to distinguish the cognitive pro-
cesses underlying the BOLD-entropy associations, future experiments
should investigate how voluntary action selection can be affected by pre-
vious action sequences.

It is possible that participants paid more (or less) attention to the
task over the course of the experiment, but a lapse of attention on the
task is less likely to account for our results, because BOLD response to
the entropy in sensory inputs has been shown in both active tasks
(instruct to explicitly monitor regularity) and passive tasks (instruct
to ignore the sensory input and perform an orthogonal task) (Tobia
et al., 2012a). Furthermore, the lack of association between RT and
selection entropy does not support that entropy fluctuation relates to a
lapse of attention, whichmay lead to increased response time. The nega-
tive BOLD-entropy correlation also makes it unlikely that our results are
simply driven by neural repetition suppression (Grill-Spector et al.,
2006). The repeated occurrence of a stimulus or an action invokes
reduced neural response in specific sensory or motor regions (Hamilton
and Grafton, 2009; Majdandzic et al., 2009; Summerfield et al., 2008),
and indeed we observed repetition-related BOLD signal reductions in



Table 1
Regions associated with TE and SE at different window lengths. Statistics (p b 0.05 cluster-corrected with p b 0.001 voxelwise threshold) and peak coordinates reported in MNI space
(mm). Note that the separate contrasts at multiple window lengths are not independent (see Discussion).

Window length (trials) Region t Cluster-extent threshold x y z

SE 25 Frontopolar cortex −5.05 111 −27 53 19
−4.29 24 59 10

TE 30 Inferior temporal gyrus −4.53 203 −48 −34 −8
35 Frontopolar cortex −4.61 122 30 56 −5

Middle temporal gyrus −5.25 63 −22 −14
Temporoparietal junction −5.25 60 −46 34
Cerebellum −4.34 −15 −73 −29

40 Temporoparietal junction −4.30 194 54 −61 22
Middle temporal gyrus −3.86 57 −19 −11

45 Caudate −4.88 108 12 17 −5
−5.17 −12 14 −8

Anterior cingulate −4.53 6 35 −8
−4.22 −6 32 −8

Temporoparietal junction −4.56 54 −52 25
−4.72 −39 −58 31

Middle temporal gyrus −4.77 63 −10 −17
Cerebellum −5.00 15 −73 −32

−4.65 −15 −73 −29
50 Temporoparietal junction −4.99 110 36 −61 22

−4.11 −42 −58 31
Middle temporal gyrus −4.54 42 −28 −11
Putamen −4.28 −15 14 −8
Cerebellum −4.89 51 −64 −32

−4.67 18 −73 −23
−4.62 −18 −76 −29
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the parietal cortex for stimulus repetition and in the sensorimotor cortex
for action repetition. However, more repetitions of a task stimulus or an
action within a sliding-window also introduce unequal probabilities of
events, and lead to a lower entropy value. As a result, neural repetition
suppression effects alone would be expected to lead to a positive BOLD-
entropy relation, which is not supported by our data.

Many studies on the neural correlates of randomness have calculated
information theoretic indices based on all previous events (Bestmann
et al., 2008; Harrison et al., 2006; Mars et al., 2008; Strange et al., 2005)
or on a fixed block of events (Bischoff-Grethe et al., 2000, 2001; Tobia
et al., 2012a). These approaches introduce implicit assumptions of
A) Stimulus repeti

B) Action repetitio

CRBL

PostCGPreCG

SPL

Fig. 5. Brain regions showing significant repetition suppression effects in (A) stimulus repetit
(A) SPL (left: −18, −58, 58; right: 21, −58, 58) and (B) precentral gyrus (preCG, −36,−16
precuneus (PCS, 3, 55,−13), CRBL (15,−73, 23).
temporal scales on randomness measures and may, in turn, impose
constraints to imaging results. For example, if a brain region responds
to randomness measures at a specific time scale (e.g., Ostwald et al.,
2012), calculating entropy from all previous events would be less sensi-
tive to detect such an effect.

The current study did not make a priori assumptions about the
temporal scale, but considered entropy measures at multiple window
lengths. In order to get meaningful entropy measures, our analysis
was focused at a range of window lengths from 25 to 50 trials, which
is also in linewith previous studies on the neural representations of sta-
tistical information over long temporally-extended sequences of events
tion suppression

n suppression

vmPFCPCS

SPL

ion and (B) action repetition (p b 0.05, cluster level corrected). Peak MNI coordinates in
, 58), postcentral gyrus (postCG, 36, −42, 64), ventromedial frontal (vmPFC, 0, 14, −2),
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(Harrison et al., 2006; Strange et al., 2005; Tobia et al., 2012a). This
method revealed that posterior cortical and subcortical regions were
more sensitive to TE from a longer window. This contrasts with a tem-
poral discounting model of a serial response task (Harrison et al.,
2011) which gives greater weight to recent events. However, Harrison
et al. used a demanding probabilistic visuomotor association task as op-
posed to the current deterministic task (with direct stimulus–response
mapping and chosen actions). These task differences may underlie the
differential effects of window length.

Our study provides new insights into the hierarchy of brain regions
responding to statistical regularities in a dynamic environment. It has
been proposed that the lateral frontal cortex embodies a rostro-caudal
hierarchy that is sensitive to different time scales of environmental dy-
namics (Badre, 2008; Koechlin and Hyafil, 2007; Koechlin et al., 2003).
In this model, more caudal frontal regions engage faster dynamics and
more rostral frontal regions respond to dynamic changes at a larger
time scale (Badre, 2008; Botvinick, 2008; Fuster, 2004). Our results on
selection entropies suggested that the frontopolar cortexmay be sensitive
to selection entropy changes at a relatively short time scale (25 trials).
However, our results on trial entropies also suggest a spatially distributed
temporal hierarchy elsewhere. At more extended temporal scales (N35
trials), brain activations associated with statistical regularities include
temporal and parietal cortex. Therefore, some brain regions are more
affected by recent information than others.

We propose that this temporal-dependent BOLD-entropy associa-
tion serves two functions. First, if the information of temporal structure
frommore distant events mainly affects neural activities in parietal and
temporal regions, the prefrontal cortex is available to monitor more
recent events as a priority within a critical window (Huettel et al.,
2002). Second, both recent and distant events could be important in a
dynamic environment, butwith different consequences for a current re-
sponse mediated by cognitive processes on the monitored past events.
The areas associated with TE over a longer time scale in our study
(i.e., striatum and TPJ) are implicated in cognitive processes that inte-
grate information and experience fromdistant past actions, such as sen-
sorimotor learning (Bischoff-Grethe et al., 2000, 2001), reward-based
learning (Gottfried et al., 2003; O'Doherty et al., 2004), habituation
(Graybiel, 2008; Yin and Knowlton, 2006), and the sense of agency
(Chambon et al., 2012; Farrer et al., 2008). Conversely, impairments of
the right angular gyrus have been associated with neglect of actions
(Mort et al., 2003).

In the current study, hippocampal activity did not correlate with
entropy or surprise. This is in line with recent studies showing that
hippocampus is not sensitive to entropy or uncertainty changes in tem-
porally extended event sequences (Nastase et al., 2014; Tobia et al.,
2012a). To the contrary, it is suggested that the hippocampus is in-
volved in uncertainty processing in statistical learning (Davis et al.,
2012) and serial choice tasks (Strange et al., 2005; Harrison et al.,
2006; but see Harrison et al., 2011). We think this apparent distinction
in the literature is at least partly due to different task features employed
in previous studies. Studies reporting the involvement of hippocampus
in the coding of entropy often required participants to choose or match
between targets and other items (e.g., Turk-Browne et al., 2009), which
actively engage the hippocampal episodic memory system.

In our paradigm, participants chose one of three permitted actions in
the chosen condition. Such ‘voluntary’ action selection has been shown
to involve the formation of internal intentions (Haggard, 2008; Libet
et al., 1983) and engage the frontoparietal network (Forstmann et al.,
2006; Haynes et al., 2007; Rowe et al., 2008, 2010; Soon et al., 2008;
Walton et al., 2004; Zhang et al., 2012). Because the actions were not
associated with differential outcomes in our task (i.e., there were no
correct or incorrect actions), participant's decisions were probably not
determined by differential expected rewards or sensory stimuli. Such
a design allows one to separately quantify the randomness in sequences
of actions and sequences of trial events. It also extends previous work
focusing only on the degree of order in the sensory inputs, in which
behavioral responses are either fully determined by sensory stimuli
(Bischoff-Grethe et al., 2000, 2001; Harrison et al., 2011; Strange et al.,
2005) or irrelevant to the stimulus sequence of interest (Nastase et al.,
2014; Tobia et al., 2012a,b).

It is also of interest that the same frontopolar cortical region is sensi-
tive to randomness in both action selections and trial events. This
accommodates a normative account of action and perception based on
the free-energy principle by which both action and perception mini-
mize the long-term averaged surprise (note that this function is not
the same as SUP as defined in this study) (Friston, 2010; Friston et al.,
2010). However, perception and action occur within a hierarchy of
beliefs, prediction and prediction errors. Layers of this hierarchy can
operate over different time scales, reflecting at one extreme an agent's
personality and psychological traits through to transient or local events
represented by the SUP function in the current study (Adams et al.,
2013; Edwards et al., 2012). Participants cannot act to alter SUP or TE,
which are determined by the experimenter, but they could nonetheless
alter their beliefs based on recent experience so as to minimize their
free-energy. A common region might subserve this operation by provid-
ing information (or beliefs) about recent actions and events (Schubotz,
2007). However, the voluntary actions are not completely independent
from trial events in our study (i.e., at least one out of four actions was
not permitted in each trial) and the chosen trials were intermixed with
specified trials. This could partly explain the lack of BOLD-randomness
relations to selection entropy at longer window: it is difficult to monitor
recent action selections in the presence of other actions specified by in-
tervening task stimuli. Future studies on endogenously generated action
sequences that are not constrained by task stimuli will complement our
findings here and provide further evidence on brain's response to action
regularities.

There are several limitations to the current study. First, we examined
three different randomnessmeasures. However, other types of random-
ness indices are available (e.g., Harrison et al., 2011; Kidd et al., 2012).
For example, TEwas defined as the frequency of the eight different stim-
uli, which relates to previous studies on the entropy of sensory inputs
(Tobia et al., 2012b). One can also study an entropy measure on the
relative frequency of chosen and specified trials. However, our current
design is underpowered for this analysis because the ratio of chosen
and specified trials had low variance across different windows. Future
study could systematically permute the distribution of different trial
types and examine how the brain responds to the randomness of trial
types (not trial stimuli).

Second, we conducted separate regression models at different
window lengths and used disjunction tests as a complementary anal-
ysis to the ROI analysis to estimate the temporal specific of BOLD-
randomness associations. However, disjunction tests only illustrate
regions that are activated in one contrast (e.g., 25-trial window) and
not by the other contrast (e.g., 50-trial window), but do not necessarily
support the hypothesis that the BOLD response between two window
lengths is different. An alternative approach is to include all entropy
measures from different window lengths into a single first-level
model. However, this single-model approach would be sub-optimal
for the current study, because the entropy measures from different
window lengths were estimated from the same event sequence and
correlated with each other.

Third, although the averaged activation across different windows
reached corrected significance in most ROIs, a few clusters only passed
amore lenient uncorrected cluster threshold k N 50 (i.e., FPC, cerebellum,
and MTG). Nevertheless, this is in line with several previous studies,
which showed smaller effects for the BOLD-randomness association
(Strange et al., 2005; Tobia et al., 2012b). The significant results at indi-
vidual window size (Table 1) suggest that the effects in these clusters
are more robust than assumed by the lenient threshold used to localize
the ROIs. A combination of uncorrected voxelwise and cluster threshold
produces a desire balance between type I and II error rates, in particular
for moderate effects (Lieberman and Cunningham, 2009). A future
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study should aim to replicate and extend our findings in an independent
dataset.

In summary, we investigated neural responses to regularity struc-
tures from past trial events and action sequences by using a parametric
sliding-window approach for fMRI. Our study reveals the brain regions
with differential sensitivity to statistical regularities in temporally
extended event sequences.We suggest that thesemultiple systems con-
currently monitor changes in external environment and internally gen-
erated responses, enabling adaptive behavior to be based on both recent
and distant information.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.12.021.
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