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Converging findings from behavioral, neurophysiological, and neuroimaging studies sug-
gest an integration-to-boundary mechanism governing decision formation and choice
selection. This mechanism is supported by sequential sampling models of choice deci-
sions, which can implement statistically optimal decision strategies for selecting between
multiple alternative options on the basis of sensory evidence. This review focuses on
recent developments in understanding the evidence boundary, an important component of
decision-making raised by experimental findings and models. The article starts by review-
ing the neurobiology of perceptual decisions and several influential sequential sampling
models, in particular the drift-diffusion model, the Ornstein–Uhlenbeck model and the leaky-
competing-accumulator model. In the second part, the article examines how the boundary
may affect a model’s dynamics and performance and to what extent it may improve a
model’s fits to experimental data. In the third part, the article examines recent findings
that support the presence and site of boundaries in the brain. The article considers two
questions: (1) whether the boundary is a spontaneous property of neural integrators, or
is controlled by dedicated neural circuits; (2) if the boundary is variable, what could be
the driving factors behind boundary changes? The review brings together studies using
different experimental methods in seeking answers to these questions, highlights psycho-
logical and physiological factors that may be associated with the boundary and its changes,
and further considers the evidence boundary as a generic mechanism to guide complex
behavior.
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NEURAL MECHANISMS OF PERCEPTUAL DECISIONS
Making decisions on the basis of sensory information is a fre-
quent and critical element of human lives. Imagine you are driving
toward a traffic light in clear weather. You can easily decide to stop
or accelerate depending on the color of the traffic light ahead.
When driving in foggy weather, however, since the scene is less vis-
ible, it is more difficult to distinguish between the red and green
light. You may need longer to make the correct decision, and may
sometimes even make a mistake.

This type of process is often referred to as perceptual decision-
making (Newsome et al., 1989; Gold and Shadlen, 2001, 2007;
Heekeren et al., 2008), which requires one to discriminate sen-
sory attributes from either stationary or dynamic stimuli – such
as an illumination with different colors (Yellott, 1971), a geomet-
ric shape with different orientations (Swensson, 1972), or a pixel
array with different brightness (Ratcliff and Rouder, 1998) – and
map the subjective perception onto multiple alternative responses.
Laboratory studies of the decision process often employ one of two
forced-choice paradigms. In the time-controlled (TC) paradigm,
subjects are required to give their response immediately after a
decision time set by the experimenter (Yellott, 1971; Swensson,
1972; Dosher, 1976, 1984). In the information-controlled (IC)
paradigm, subjects are allowed to respond freely whenever they
feel confident, from which subjects’ response times (RTs) can be

measured as a second dependent variable (Luce, 1986). The neural
mechanisms of perceptual decisions have been extensively studied
using a prototypical random dot motion (RDM) discrimination
task (Britten et al., 1993; Shadlen and Newsome, 2001; Roitman
and Shadlen, 2002; Palmer et al., 2005; Churchland et al., 2008;
Kiani et al., 2008). The RDM stimulus consists of a dynamic field
of moving dots, a proportion of which move coherently in one
direction, while the other dots move randomly (Figure 1). The
task is to decide the direction of coherent motion and respond
with an eye movement or a button press. Its difficulty can be
manipulated by varying the strength of motion coherence.

Single-unit recordings in trained monkeys performing the
RDM task indicate that the formation of perceptual decisions
involve distinct neural processes across different brain regions.
First, neuronal activity in motion sensitive areas (MT/V5; Maun-
sell and Van Essen, 1983; Born and Bradley, 2005; Zeki, 2007)
are closely related to the statistics of the RDM stimulus (i.e., the
motion coherence; Newsome and Pare, 1988; Salzman et al., 1990,
1992; Ditterich et al., 2003), but only weakly correlate with behav-
ioral responses (Britten et al., 1992, 1993, 1996), suggesting that
sensory neurons encode noisy, transient, and stimulus dependent
evidence to support an alternative (Gold and Shadlen, 2001, 2007).
Second,neurons in the lateral intraparietal (LIP) area respond with
ramp-like changes, and the rate of change depends on the level of
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FIGURE 1 | Schematic diagram of the RDM stimulus with different
motion coherence levels. In each frame a proportion of the dots (solid
dots) are repositioned with fixed spatial offset, indicating the coherent
motion direction, and the rest of the dots (open dots) are repositioned
randomly. More detailed specification of the stimulus is available in Britten
et al. (1992).

motion coherence (Shadlen and Newsome, 2001; Roitman and
Shadlen, 2002). Unlike the MT neurons that respond transiently
to visual stimuli, the LIP neurons gradually build up or attenu-
ate their activity even if the visual stimuli remain ambiguous (i.e.,
0% coherence). This activity pattern starts shortly after the stimu-
lus onset and terminates before a saccadic response. Importantly,
around ∼80 ms before a response, there is no obvious variability
in firing rates of LIP neurons when responses are made under dif-
ferent motion coherence levels, and neural activity correlates only
with the direction of eye movement (i.e., the decision). These find-
ings suggest that LIP neurons integrate sensory evidence up to a
decision boundary1 prior to a response (Mazurek et al., 2003; Huk
and Shadlen, 2005; Hanks et al., 2006). Similar activity patterns
have also been observed in other brain regions, including frontal
eye fields (FEF; Schall, 2002), superior colliculus (SC; Basso and
Wurtz, 1998), and dorsolateral prefrontal cortex (DLPFC; Kim
and Shadlen, 1999). Taken together, these studies suggest a generic
integration-to-boundary mechanism manifested in different brain
regions for perceptual decisions. That is, certain neuronal popu-
lations integrate sensory information over time, and a response is
committed to when the accumulated evidence reaches a decision
boundary (Schall and Thompson, 1999; Gold and Shadlen, 2001,
2007; Heekeren et al., 2008).

The integration-to-boundary mechanism receives further sup-
port from psychological models of choice decisions that have been
developed over the last half-century, namely sequential sampling
models (Wald, 1947; Lehmann, 1959; Stone, 1960; Link, 1975; Link
and Heath, 1975; Townsend and Ashby, 1983; Luce, 1986; Ratcliff
and Smith, 2004; Smith and Ratcliff, 2004; Bogacz et al., 2006;
Barnard, 2007). Sequential sampling models assume that evidence
supporting alternatives are represented by a sequence of noisy
observations over time. A process essential to reduce the noise in
evidence is to integrate momentary observations over time and
make a decision on the basis of the accumulated evidence. The

1The term “decision boundary” is referred to the type of evidence boundary that
directly affects the termination of the decision. The tem “evidence boundary” is
referred to all types of boundaries that limit the accumulation process. See Section
“Theoretical Considerations of Evidence Boundaries” for a detailed discussion.

sequential sampling models provide a detailed account of behav-
ioral performance on choice tasks, including RT distributions,
response accuracy, and relationships between the two (e.g., the
speed–accuracy tradeoff). These models have been widely used as
a mechanistic framework for isolating the decision process from
sensory inputs or motor outputs.

A key prediction of almost all sequential sampling models is the
presence of evidence boundaries, which limit the quantity of evi-
dence available for making a decision. This article reviews recent
theoretical and experimental developments in understanding the
functions and mechanisms of the evidence boundary. The focus
on the boundary mechanisms in general, rather than on partic-
ular decision models, is primarily due to its empirical relevance
and importance. First, both experimental data and psychological
models imply that the evidence boundary does not depend solely
on sensory evidence, but can be internally set and controlled by a
decision-maker. This unique characteristic of the boundary raises
two important questions: (1) how can the evidence boundary
influence decision performance? (2) How is the boundary imple-
mented and adapted in neural circuits? Answers to such questions
may provide insight into high-level cognitive control that sub-
serves decision-making processes. Second, although the presence
of the boundary is consistently supported by the neurophysiolog-
ical (Mazurek et al., 2003; Huk and Shadlen, 2005; Hanks et al.,
2006; Kiani et al., 2008) and neuroimaging (Ploran et al., 2007;
Heekeren et al., 2008; Kayser et al., 2010a,b) data, only recently
have researchers begun to investigate the function and effects of the
evidence boundary. The understanding of its neural mechanisms
is still insufficient.

The article is organized as follows: Section“Models of Decision-
Making” reviews the decision-making problem and three repre-
sentative sequential sampling models: the drift-diffusion model
(DDM; Ratcliff, 1978), the Ornstein–Uhlenbeck (OU) model
(Busemeyer and Townsend, 1993), and the leaky-competing-
accumulator (LCA) model (Usher and McClelland, 2001). Section
“Theoretical Considerations of Evidence Boundaries” examines
the effects of the evidence boundary on the three models. This
section discusses how the boundary may affect the models’dynam-
ics and fits to experimental data, and to what extent the boundary
may affect the performance of these models. Section “Neural
Implementation of Decision Boundary” and “Effects of Boundary
Changes” review recent experimental findings that reveal possible
neural underpinnings and behavioral influences on the decision
boundary. Finally, Section “Discussion” offers some concluding
remarks.

MODELS OF DECISION-MAKING
THE DECISION PROBLEM AND THE OPTIMAL DECISION-MAKING
THEORIES
Perceptual decision-making can be formalized as a problem of sta-
tistical inference (Gold and Shadlen, 2001, 2007). Let us consider
a decision task with a choice between N (N≥ 2) alternatives, each
supported by a population of sensory neurons exclusively selective
to a choice (e.g., motion sensitive neurons in area MT/V5). Stim-
uli drive the N populations of sensory neurons to generate noisy
evidence streams Ii(t ) at time t, with mean µi and variance σ2

i
(i= 1, 2, 3, . . ., N ). The goal of the decision process (e.g., reflected
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in activity of LIP neurons) is to identify which sensory population
has the highest mean activity based on the evidence Ii(t ). This
article mainly considers three representative models under this
framework, as a more complete survey on sequential sampling
models is available elsewhere (Ratcliff and Smith, 2004; Smith and
Ratcliff, 2004; Bogacz et al., 2006).

Statistically optimal strategies exit for solving the decision
problem with two alternatives (N= 2), which would achieve the
lowest error rates (ER; the probability of making an incorrect
choice in a block of trials) and the shortest RT compared with
all other decision-making strategies. This optimality criterion can
be divided into two sub-criteria (Bogacz et al., 2006): (1) the strat-
egy yielding the lowest ER for any fixed amount of evidence, and
(2) the strategy yielding the fastest response for any given ER.
The two criteria correspond with the optimal conditions of the
TC and IC paradigms, respectively. The optimal strategy for the
TC paradigm, i.e., the lowest ER for fixed RT, is provided by the
Neyman–Pearson test (NPT; Neyman and Pearson, 1933). The
optimal strategy for the IC paradigm, i.e., the fastest RT for a given
ER, is provided by the sequential probability ratio test (SPRT;Wald,
1947; Wald and Wolfowitz, 1948; Barnard, 2007). For multiple
alternative decision tasks (N > 2), asymptotically optimal strate-
gies are also available for the TC (Mcmillen and Holmes, 2006)
and IC paradigms (Draglia et al., 1999; Dragalin et al., 2000).

Decision strategies that meet the optimal criteria above require
linear integration of evidence over time, which, as reviewed below,
can be implemented by many accumulator models on different
level of abstraction (the implementation of optimal strategies
for multiple alternative decisions requires models with additional
complexity to those discussed here, see Bogacz and Gurney, 2007;
Zhang and Bogacz, 2010b). Models that can accomplish optimal
strategies have been shown to provide better explanations of exper-
imental data than other, non-optimal, models (Ratcliff and Smith,
2004). This leads us to an ecologically motivated assumption that
the brain may implement strategies for optimizing the speed and
accuracy of decision-making, and hence optimal decision theories
may offer a normative benchmark to generate experimental pre-
dictions and link behaviors to neural circuits for decision-making
(Bogacz, 2007).

The perspective that the brain implements optimal decision-
making relies on precise and circumspect definitions of the deci-
sion problem and criteria for optimality per se. For the simple
decision problem with time-invariant evidence, linear integration
is the optimal strategy in the sense of its speed and accuracy (see
van Ravenzwaaij et al., 2012 for a discussion on other possible defi-
nitions of optimality). For tasks with time-varying signal-to-noise
ratio within each trial (Huk and Shadlen, 2005; Tsetsos et al., 2011),
linear integration may no longer be optimal. Intuitively, if the sta-
tistics and regularities of the time-varying evidence (i.e., when
more reliable evidence arrives) are known, a decision strategy that
exploits such knowledge and gives greater weight to more reliable
evidence would have better performance than linear integration
strategy (Papoulis, 1977). Whether humans are biased toward early
or late evidence, or if their weights of evidence vary with practice
(Brown and Heathcote, 2005b), or if their decision strategies are
flexibly adapted (Brown et al., 2005), is still not fully understood
and merits further investigation.

DRIFT-DIFFUSION MODEL
The DDM was proposed for two-alternative forced-choice (2AFC)
tasks (Stone, 1960; Ratcliff, 1978). Mathematically, the DDM can
be thought of as a standard Wiener process with external drift
(Wiener, 1923), and is equivalent to a continuous limit of the ran-
dom walk models (Estes, 1955; Laming, 1968; Link, 1975; Link
and Heath, 1975; Luce, 1986). The model implies a single integra-
tor that integrates the momentary difference between two sensory
streams [I 1(t )− I 2(t )] supporting two alternatives (Figure 2A).
The dynamics of the DDM can be characterized by a stochastic
differential equation:

dX (t ) = µdt + σdW (t ) . (1)

Here dX(t ) denotes the increment of the accumulated evidence
X(t ) over a small unit of time dt. The sign of dX(t ) implies that
the momentary evidence at time t supports the first [dX(t ) > 0]
or the second [dX(t ) < 0] alternative. µ is the drift rate of inte-
gration, representing the mean evidence difference (µ1 – µ2) per
unit of time. If σ1= σ2. The magnitude of µ is determined by the
quality of the stimulus (the drift rate may be also determined by
the allocation of attention, see Schmiedek et al., 2007). For exam-
ple, for the RDM task, µ would represent the coherence level of
the RDM stimulus: a large µ implies high motion coherence and
an easy task, while a small µ implies low motion coherence and
a high-level of difficulty in distinguishing between two coherent
motion directions. The second term σdW (t ) denotes Gaussian
noise with mean 0 and variance σ2dt. The DDM can be applied to
either IC or TC paradigms. In the IC paradigm, decision time is
unrestricted and two decision boundaries are introduced to indi-
cate termination states (see Boundary Mechanisms). Once X(t )
reaches a boundary, a corresponding choice is made. The predicted
RT is equal to the duration of the integration, plus a non-decision
time, corresponding to other cognitive processes unrelated to evi-
dence integration (e.g., sensory encoding or response execution).

A B C

FIGURE 2 |The sequential sampling models for 2AFC tasks: (A) the
DDM, (B) the OU model, (C) the LCA model. Arrows denote excitatory
connections. Dashed lines with solid circle end denote inhibitory
connections. For the OU model, the dashed line with an open circle end
denotes the effect of the growth-decay parameter. For each model, the
bottom nodes denote sensory evidence, and the top notes denote neural
integrators. Model parameters are defined in Eqs 1–3.
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For the TC paradigm, which requires subjects to respond at the
experimenter-determined decision time Tc, the model selects an
alternative by locating the ultimate integrator state X(Tc) and
selecting the first alternative if X(Tc) > 0, or the second alternative
if X(Tc) < 0.

Several extensions of the DDM have been proposed since its
original introduction, allowing model parameters to vary across
trials. First, between-trial variability in the starting point of the
integrator X(0) was introduced to account for premature sam-
pling (Laming, 1968), which predicts faster errors than correct
responses. Second, between-trial variability in the drift rate was
introduced to account for slower errors when compared to correct
responses (Ratcliff, 1978). The additional sources of parameter
viabilities have been shown to improve fits to experimental data
(Ratcliff et al., 1999).

The DDM have been applied to a number of cognitive tasks,
including memory retrieval (Ratcliff, 1978), lexical decisions (Rat-
cliff et al., 2004a; Wagenmakers et al., 2008), letter identification
(Ratcliff and Rouder, 2000), and visual discrimination includ-
ing the brightness discrimination (Ratcliff, 2002; Ratcliff et al.,
2003b) and the RDM task (Palmer et al., 2005). In all its applica-
tions, the model has successfully accounted for response accuracies
and RT distributions observed from individual subjects (Ratcliff
and Rouder, 1998; Ratcliff and Smith, 2004; Ratcliff and McKoon,
2008). More importantly, the simple DDM without between-trial
parameter variability has been shown to implement the statisti-
cally optimal strategies for choosing between two alternatives (the
NPT and the SPRT) in both TC and IC paradigms (Wald, 1947;
Edwards, 1965; Gold and Shadlen, 2001, 2007; Bogacz et al., 2006),
and hence the DDM is often used as a benchmark to compare the
performance of other decision models. For the extended version
of the DDM, previous studies suggest that the DDM with variable
drift rate may still be the optimal model in the TC paradigm but
the DDM with variable starting point is not optimal compared to
other models (Bogacz et al., 2006). However a strict proof of the
optimality of the DDM with between-trial visibilities is still not
available yet.

One limitation of the DDM is that it was initially designed for
binary choice tasks. Recent studies have attempted to extend the
DDM to account for N-alternative forced-choice (NAFC) tasks
(N > 2). One approach has been suggested by Niwa and Ditterich
(2008). For a RDM task with three alternatives (i.e., three possible
motion directions), Niwa and Ditterich (2008) modeled three inte-
grators supporting the three alternatives rather than using a single
integrator. The three integrators compete against each other in a
race toward a common decision boundary and a response is deter-
mined by the winning integrator. Crucially, each integrator not
only integrates sensory evidence supporting its preferred choice in
a diffusion process, but also receives weighted feed-forward inhi-
bition from evidence supporting the other two alternatives (Dit-
terich, 2010; see also Mazurek et al., 2003 for a similar approach).
Churchland et al. (2008) proposed a slightly different approach
for modeling a RDM task with four possible motion directions
orthogonal to each other. Their hypothesis was that discriminat-
ing between two opposite motion directions (e.g., upper-left and
lower-right) is independent of sensory evidence supporting the
other two orthogonal directions (e.g., lower-left and upper-right).

As a result, any sensory evidence supporting the two alternatives
neighboring the true alternative was assumed to have a zero mean.
The model nicely predicts a feature of their behavioral data that the
probability for choosing the alternative directly opposing the true
alternative is higher than that for the two alternatives neighboring
the true alternative (Churchland et al., 2008). Leite and Ratcliff
(2010) examined a family of models with multiple integrators
in NAFC tasks with different number of alternatives (N= 2, 3, 4).
Their results suggest that the models with independent integrators
(i.e., no mutual inhibition) and zero to moderate decay produce
qualitatively good fits to the RT distributions.

ORNSTEIN–UHLENBECK MODEL
Similar to the DDM, the OU model has been proposed for 2AFC
tasks (Busemeyer and Townsend, 1993), and has been applied to a
variety of choice tasks to account for response accuracies and RT
distributions (Heath, 1992; Diederich, 1995, 1997; Smith, 1995;
Busemeyer, 2002). The OU model is identical to the DDM except
that it includes a first-order filter that varies the change rate of
an integrator (Busemeyer et al., 2006; Figure 2B). More precisely,
the model is equivalent to a one-dimensional OU process (Uhlen-
beck and Ornstein, 1930) and its dynamics can be described by the
following differential equation:

dX (t ) = [µ+ λX (t )] dt + σdW (t ) . (2)

The drift rate µ and the noise term σdW (t ) have the same
definitions as in Eq. 1 (see “Drift-diffusion model” above). The
model contains a linear coefficient λ, a growth-decay parameter.
As a result the rate of change of X(t ) depends not only on the
mean drift rate, but also on the current state of the integrator.

The growth-decay parameter brings some interesting proper-
ties to the OU model. First, in the TC paradigm, the response
accuracy of the OU model reaches an asymptote for a large deci-
sion time Tc. Note that the same prediction can be made from
the DDM by introducing variability in drift rate across trials (Rat-
cliff et al., 1999), and that therefore theoretically the two models
can account for behavioral data equally well (but, see Ratcliff and
Smith, 2004). However, recent studies suggest that the two mod-
els are distinguishable by introducing temporal uncertainty to the
stimulus (Huk and Shadlen, 2005; Kiani et al., 2008; Zhou et al.,
2009). Second, the value of λ can account for the serial position
effects observed in decision-making tasks (Wallsten and Barton,
1982; Busemeyer and Townsend, 1993; Usher and McClelland,
2001). For λ < 0, the linear term λX(t ) inhibits the integrator
and the evolution of X(t ) tends toward a stable attractor −µ/λ.
Because evidence presented earlier in a trial decays over time, the
choice mainly depends on the evidence later in the trial (a recency
effect). In contrast, for λ > 0, the evolution of X(t ) is repelled
from the unstable fixed point −µ/λ, and the speed of repulsion
is proportional to the distance between the current stage X(t )
and −µ/λ. Therefore after X(t ) has been driven to one side or
other of the fixed point, subsequent evidence has little effect on
the final choice due to repulsion (a primacy effect). For λ= 0, the
OU model reduces to the DDM and hence implements the optimal
decision strategy.
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LEAKY-COMPETING-ACCUMULATOR MODEL
The LCA model was proposed by Usher and McClelland (2001).
Unlike the DDM and the OU model which integrate the rela-
tive evidence for one alternative compared with another, the LCA
model assumes that evidence supporting different alternatives is
integrated by separate integrators (Figure 2C). Therefore the LCA
model can be naturally extended to account for decision tasks with
multiple alternatives (Usher and McClelland, 2004; Mcmillen and
Holmes, 2006; Tsetsos et al., 2011). Each integrator in the LCA
model is leaky, as accumulated information continuously decays,
and receives mutual inhibition from other integrators. For 2AFC
tasks, the dynamics of the two integrators Y 1(t ) and Y 2(t ) can be
described by:{

dY1 (t ) =
(
µ1 − ky1 (t )− wy2 (t )

)
dt + σdW1 (t )

dY2 (t ) =
(
µ2 − ky2 (t )− wy1 (t )

)
dt + σdW2 (t )

. (3)

Here k (k≥ 0) denotes the rate of decay, and w (w≥ 0) denotes
the weight of mutual inhibition from the other integrator. In the
absence of sensory evidence (µ1=µ2= 0), the two integrators will
converge to zero due to the effect of decay. The additional mutual
inhibition means that the integrators are not independent, as each
integrator can access the evidence that supports other alternatives.
The LCA model can be applied to both IC and TC paradigms. In
the IC paradigm, the first integrator that reaches a decision bound-
ary renders its preferred choice. In the TC paradigm, the decision
is determined by identifying which integrator has higher activity at
a decision time Tc. The model in Eq. 3 is a simplified linear version
of the LCA model and the integrators’ values are unconstrained. In
their original publication, Usher and McClelland (2001) assumed
that the integrators’ stages are transformed by using a threshold-
linear activation function, which prevents any integrator having
negative values (Brown and Holmes, 2001; Brown et al., 2005).
This non-linearity is motivated by the fact that activities of neural
integrators can never be negative (see Boundary Mechanisms).

The LCA model is closely related to other sequential sampling
models. For w= k= 0 (no decay or inhibition), the LCA model is
equivalent to a model with independent integrators, which resem-
bles a continuous version of the accumulator or counter models
(Pike, 1966; Vickers, 1970). For 2AFC tasks, the LCA model can
be reduced to an OU model if both decay and inhibition are large
relative to the noise strength σ (Bogacz et al., 2006, 2007). The
relative difference between w and k determines the growth-decay
parameter λ in the reduced OU model (λ=w− k). That is, if the
inhibition is larger than the decay (w > k), the LCA model can
be reduced to an OU model with λ > 0. In contrast, if the inhi-
bition is smaller than the decay (w < k), the LCA model can be
reduced to the OU model with λ < 0. Therefore, similar to the
OU model with λ 6= 0, the LCA model with unbalanced inhibition
and decay (w 6= k) can account for primacy and recency effects
(Usher and McClelland, 2001). For balanced decay and inhibition
(w= k), the LCA model can be approximated by the DDM and
hence implements the optimal decision strategy.

Because the LCA model can mimic the DDM and the OU
model within a certain parameter range, the LCA model retains
the strength of the simpler models to account for detailed aspects
of behavioral data from 2AFC tasks. The LCA model has also

been successfully applied to perceptual decision tasks with multi-
ple alternatives (Usher and McClelland, 2001; Tsetsos et al., 2011),
and value-based decisions, in which the decisions are settled on
subjective preferences, rather than perceptual information (Usher
and McClelland, 2004; Usher et al., 2008).

DECISION-MAKING MODELS AT DIFFERENT LEVELS OF COMPLEXITY
The sequential sampling models do an excellent job of account-
ing for the variability of responses and RTs in various decision
tasks. Over decades researchers have tended to extend existing
models to account for more systematic effects (e.g., RT differ-
ences between correct and error responses) or more biologically
realistic constraints (e.g., the mutual inhibition and decay in the
LCA model). These attempts led to an increase of model complex-
ity and number of model parameters, which, in practice, makes
such models difficult to apply to experimental data. There are sev-
eral previous attempts to simplify existing models. For example,
Wagenmakers et al. (2007) proposed a simplified version of the
DDM by assuming that there is no between-trial variability, and a
further simplified DDM proposed by Grasman et al. (2009) addi-
tionally assumes the starting point of the integrator is not biased
toward any alternative. These simplified models can directly esti-
mate the DDM parameters from analytical solutions without a
parameter-fitting procedure.

More recently, Brown and Heathcote (2008) proposed a linear
ballistic accumulator (LBA) model of choice decisions (see Brown
and Heathcote, 2005a for a non-linear version of the model).
The LBA model has been applied to many choice tasks includ-
ing perceptual discrimination (Forstmann et al., 2008, 2010a,b;
Ho et al., 2009), absolute identification (Brown and Heathcote,
2008), lexical decisions (Donkin and Heathcote, 2009), and sac-
cadic eye movements (Ludwig et al., 2009; Farrell et al., 2010).
Similar to the LCA model, the LBA model assumes each integrator
integrates evidence supporting one alternative and hence can be
applied to NAFC tasks, but with two major simplifications. First,
the integrators are independent (no mutual inhibition) and have
no leakage (no decay). Second, the integration process within each
trial is linear and deterministic (i.e., ballistic), omitting the within-
trial variability in momentary evidence. These two assumptions
greatly simplify the model dynamics and hence the LBA model
has analytical solutions for RT distributions and response accu-
racies for NAFC tasks. This is a significant advantage in terms of
computational complexity as one can estimate the model parame-
ters without using Monte Carlo simulations. However, the strong
assumptions inevitably introduce limitations. Because the inte-
gration process is assumed to be linear and deterministic, the LBA
model cannot distinguish evidence arriving at different times over
a trial, and hence it is not straightforward to apply the LBA model
when accounting for primacy and recency effects, or any task par-
adigms that deliberately introduce temporal uncertainty within a
trial (Usher and McClelland, 2001; Huk and Shadlen, 2005; Tsetsos
et al., 2011).

Decision-making models can be used to isolate decision
components (e.g., boundary and drift rates), from which esti-
mated model parameters can infer experimental data collected
from different sources, such as fMRI or EEG/MEG signals. This
model-based approach provides an invaluable way of linking latent
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decision processes predicted by the accumulator models with their
implementations in large neural populations, and not surprisingly
has attracted increasing interest over the last few years (Philiastides
et al., 2006; Philiastides and Sajda, 2007; Forstmann et al., 2008,
2010b; Ho et al., 2009; Ratcliff et al., 2009; Kayser et al., 2010a,b;
Wenzlaff et al., 2011). It is worth noting that all models can be used
for this purpose, although simpler models are often employed due
to less computational complexity.

However, models at a highly abstract level (e.g., the DDM
and the LBA model) are not sufficient to address some more
fundamental questions of decision-making, such as the neural
mechanism of slow ramping activity in LIP neurons during RDM
tasks, or the mechanisms of decay and inhibition in neural integra-
tors. The answers to these questions require more detailed models
at the level of single neurons (the LCA model provides a middle
ground in neural plausibility between single neuron models and
the DDM). Wang (2002) proposed a biophysically based spiking
neuron model for perceptual decision-making. For the RDM task
with two alternatives, the model assumes two LIP neural popula-
tions supporting each alternative. Instead of mutual inhibition in
the LCA model, all neurons from different populations project to
a common pool of inhibitory neurons, which then inhibits each
population via feedback inhibitory connections. Wang (2002) pro-
posed that evidence integration over a long timescale (on the order
of several hundred milliseconds to over 1 s), as assumed by most
sequential sampling models, could be realistically carried out by
neural populations with recurrent excitatory connections medi-
ated by NMDA receptors at a very short timescale (on the order of
less than 100 ms). This model has been demonstrated to success-
fully account for the activity of LIP neurons as well as behavioral
performance in the RDM tasks (Wong and Wang, 2006; Wong
et al., 2007), and has recently been applied to multiple alterna-
tive decision tasks (Furman and Wang, 2008). However, although
the biophysical model is important for understanding the neural
mechanisms of decision processes, due to the model complexity
and the large number of model parameters it could be difficult
to use such a specialized model as an exploratory tool for other
decision tasks, or to search through the parameter space to fit the
model to RT distributions. Smith and McKenzie (2011) recently
proposed a simplified version of Wang’s (2002) model that over-
comes these difficulties. In their minimal recurrent loop model,
evidence is represented by Poisson shot noise processes (Smith,
2010) and evidence integration for each alternative is represented
by the superposition of Poisson processes, resembling the essen-
tial statistical features of the reverberation loops in Wang’s model.
The model provides a theoretical account of how diffusive-like
evidence integration at an abstract level naturally emerges from
the spike densities in the recurrent loops. Further, at a cost of two
more free parameters, the minimal recurrent loop model can fit the
RT distributions and associated choice accuracies almost equally
well as the DDM (Smith and McKenzie, 2011), suggesting that the
model offers a promising balance between biological plausibility
and generality to predict experimental data. In summary, decision
models at different levels of complexity could be useful to capture
experimental data obtained from different modalities (Figure 3),
and empirical researchers should choose an appropriate model
that suits their research questions.

FIGURE 3 |The complexity and generality of the decision-making
models. All models are capable of capturing basic behavioral statistics such
as the RT and the response accuracy. The simple accumulator models and
the sequential sampling models are suitable to describe the congregate
activity of large neural populations (e.g., fMRI or EEG/MEG signals). The
most complex model (i.e., the spiking neural network) can be used to
account for dynamics of neural circuits.

THEORETICAL CONSIDERATIONS OF EVIDENCE
BOUNDARIES
BOUNDARY MECHANISMS
All the sequential sampling models discussed above describe a
diffusion-like evidence integration during the decision process
(Brown and Holmes, 2001; Brown et al., 2005). However they need
to be bundled with evidence boundaries that constrain accumu-
lation. This section examines evidence boundaries according to
two different but not mutually exclusive definitions: (1) evidence
boundaries that determine the amount of accumulated evidence
required to make a decision (i.e., the decision boundaries), and
(2) evidence boundaries that act as barriers to the amount of
accumulated evidence (Figure 4A).

The first type of evidence boundary, hereafter referred to as the
absorbing boundary, provides an evidence criterion or threshold
for the termination state of an integration process, and assumes
a decision is made once accumulated evidence supporting one
alternative reaches the boundary. The absorbing boundary is nec-
essary for modeling tasks that require subjects to implement a
self-initiated stopping rule (e.g., in the IC paradigm) and hence it
has been widely used by many models in the choice RT modeling
literature (Ratcliff, 1988, 2006; Gomez et al., 2007).

The second type of evidence boundary introduces biologically
inspired constraints that limit the amount of accumulated evi-
dence. Early decision models did not explicitly constrain activity of
integrators (Ratcliff, 1978), which raised theoretical and practical
concerns to the validity of the models. The theoretical concern is
that unconstrained integrators imply a possibility of an unlimited
amount of evidence being maintained by the model (Figure 4A).
For example, in the TC paradigm, the integrator state of the
DDM has infinite mean and variance as Tc approaches infinity
(see Eq. 1). For the LCA model, unconstrained integrators further
imply the possibility that model activation may become negative
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FIGURE 4 |Time course of the integrators of the DDM and LCA model
with boundaries. (A) Examples of trajectories of the absorbing (red),
reflecting (blue) and unbounded (gray) DDM.Two boundaries (±b) are indicated

by the gray dashed lines. (B) Examples of trajectories of the absorbing (left
panel) and reflecting (right panel) LCA models. The lower boundary (b−) and
the upper boundary (b+) boundaries are indicated by the gray dashed lines.

due to mutual inhibition. Unlimited or negative activations are
undesirable for a biologically plausible model, because neural inte-
grators cannot exceed certain values due to intrinsic limitations of
biological neurons. Their activity should also be non-negative.
These constraints need to be satisfied before attempting to extend
abstract models to qualitatively account for neural firing rate pat-
terns during the decision process (Usher and McClelland, 2001;
Ratcliff et al., 2003a; Huk and Shadlen, 2005; Ditterich, 2006;
Purcell et al., 2010).

The practical concern is that models with unconstrained inte-
grators may not fit experimental data well. In the TC paradigm, the
ER of the DDM with an unconstrained integrator diminishes to
zero for a large decision time Tc (without between-trial variability),
and hence the model predicts that subjects can achieve arbitrarily
small ER even for difficult tasks. Nevertheless, it is known that
humans cannot achieve 100% accuracy even for large Tc (Meyer
et al., 1988; Usher and McClelland, 2001). Furthermore, negative
activation in the LCA model may result in abnormal model pre-
dictions. Bogacz et al. (2007) showed that in a multi-alternative
decision task, if the inputs to an LCA model favor only a small sub-
set of possible alternatives, integrators favoring irrelevant choices
(i.e., those that do not receive inputs) would become negative and
send uninformative positive evidence via mutual inhibition to the
relevant competing integrators (i.e., those receiving inputs). As a
result the LCA model without truncation of negative activation
may select inferior alternatives in value-based decisions (Usher
and McClelland, 2004; Usher et al., 2008), and provide qualitatively
poorer fits to experimental data than the models with non-negative
evidence only (Leite and Ratcliff, 2010). The same problem also
exists in models with feed-forward inhibitory connections (van
Ravenzwaaij et al., 2012).

One way to introduce constraints is to transform the integra-
tor state through a non-linear activation function (Brown and
Holmes, 2001; Usher and McClelland, 2001; Brown et al., 2005),
or to assume high-level baseline activity for avoiding non-negative
activations (van Ravenzwaaij et al., 2012). A simpler approach,
without losing the explicit nature and tractability of a linear system
and yet offering a good approximation of the non-linear activation
functions, is to introduce explicit evidence boundaries to existing
models. This type of boundary is hereafter referred to as the reflect-
ing boundary (Diederich, 1995; Bogacz et al., 2007; Zhang et al.,

2009; Zhang and Bogacz, 2010a; Smith and McKenzie, 2011). The
reflecting boundary only constrains the maximum or minimum
amount of evidence that can be presented by an integrator (much
as a non-linear activation function provides cutoffs at high or
low activations), but unlike the absorbing boundary, reaching a
reflecting boundary does not terminate the integration process
(Figure 4A).

Both types of boundary mechanisms have been applied to var-
ious decision models (Ratcliff, 2006; Bogacz et al., 2007; Zhang
et al., 2009; Zhang and Bogacz, 2010a; Tsetsos et al., 2011; van
Ravenzwaaij et al., 2012). The decision models with boundaries are
hereafter referred to as bounded, and the models without a bound-
ary as unbounded. For the DDM and the OU model, when there
is no bias toward either alternative, two symmetric absorbing or
reflecting boundaries (±b) can be imposed to limit the integrator’s
activity (Figure 4A). For simplicity, the terms absorbing DDM and
absorbing OU model are used when the two absorbing boundaries
apply to the models, and the reflecting DDM and reflecting OU
model when referring to models with two reflecting boundaries.
For an LCA model with multiple integrators, if one assumes that
integrators cannot have arbitrarily large or negative values, then
two boundary conditions need to be applied to each integrator
(Figure 4B). First, each integrator requires one lower boundary
b− at zero to constrain the minimum activity to be non-negative
(Bogacz et al., 2007). This lower boundary needs to be a reflecting
boundary, since otherwise the model may not render a decision
(i.e., if the lower boundary is absorbing, activities of all integrators
could be fixed at the boundary). Second, each integrator requires
one upper boundary b+ (b+> 0) to limit the maximum activity.
The upper boundary b+ could be either absorbing or reflecting.
The LCA model with an absorbing boundary at b+ is referred to as
the absorbing LCA model, and the model with a reflecting bound-
ary at b+ as the reflecting LCA model. Table 1 summarizes the
bounded decision models discussed above and their properties.

It is worth noting that models with absorbing boundaries pro-
vide a unified account for both IC and TC paradigms (Ratcliff
and McKoon, 2008), because contact with absorbing boundaries
induces a decision. In contrast, models with pure reflecting bound-
aries require an external criterion to stop (e.g., decision deadline
Tc), and hence they are only for the TC paradigm but cannot
account for the IC paradigm. Although the pure reflecting model
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Table 1 | Properties of the sequential sampling models with and without boundaries.

Primacy Recency Optimality TC paradigm IC paradigm

DDM Unbound – – Optimal X X

Absorbing X – – X X

Reflecting – X – X –

OU Unbound λ > 0 λ < 0 λ=0 X X

Absorbing Various λ < 0 λ < 0 X X

Reflecting λ > 0 Various λ > 0 X –

LCA Unbound w > k w < k k=w X X

Lower-bound w > k w < k Unknown X X

Absorbing Unknown Unknown w < k X X

Reflecting Unknown Unknown w > k X –

The lower-bound LCA model refers to the LCA model that has only lower reflecting boundary at zero but no upper boundary.

may be criticized for its lack of generality, it is necessary to consider
the models with pure reflecting boundaries together alongside
models with absorbing boundaries in order to illustrate some
complementary properties of the two types of boundary. First,
absorbing boundaries, together with the reflecting boundaries,
provide a simple solution for primacy and recency effects in dif-
ferent models (see Primacy and Recency Effects). Second, the two
types of boundary could characterize different decision strategies
in the TC paradigm (Zhang and Bogacz, 2010a). The absorb-
ing boundary implies that subjects make their choice before the
response deadline (i.e., once the absorbing boundary is reached)
and withhold their decision. The reflecting boundary implies that
subjects continuously hesitate between the choices even when suf-
ficient evidence is available (i.e., when the reflecting boundary is
reached) and may change their decision later. Whether subjects
adopt one of the two strategies, or are able to switch between the
two (see Tsetsos et al., 2012), would be an interesting question for
future research.

PRIMACY AND RECENCY EFFECTS
The unbounded DDM integrates evidence independent of the cur-
rent integrator state (Eq. 1), and hence the model implies that
influence of sensory evidence on the final choice does not depend
on the timing of its occurrence (i.e., neither primacy nor recency).
One recent study suggests that the DDM can account for primacy
and recency effects by introducing the two types of boundaries
(Zhang et al., 2009). For the absorbing DDM, if a boundary is
reached before decision time, the preferred decision is determined
and only evidence occurring prior to the boundary hit contributes
to the integration process, indicating a primacy effect. For the
reflecting DDM, each boundary hit results in a partial loss of
evidence, since the integrator does not fully integrate momen-
tary evidence that would otherwise exceed the boundary. As a
result, the momentary evidence arriving earlier is partially lost
and on average a decision depends to a greater extent on later
evidence, indicating a recency effect (Figure 5A). A further study
indicates that the primacy/recency effects introduced by the two
types of boundaries can coincide and interact with the effects
introduced by the growth-decay parameter λ in a bounded OU
model (Zhang and Bogacz, 2010a). If the boundary and λ provide

the same effect, the joint primacy/recency effect of the bounded
OU model is maintained. On the contrary, the joint effect of
the bounded OU model is weakened or canceled if λ and the
boundary present opposite effects (Figures 5B,C). For example,
for λ > 0 (primacy effect), an OU model with absorbing bound-
aries (also the primacy effect) will also exhibit a strong primacy
effect, but an OU model with reflecting boundaries will show a
weaker effect. There is as yet no study systematically reporting
primacy and recency effects in the bounded LCA model. Given
the close relationship between LCA model and OU model, one
may expect that the primacy/recency effects of bounded LCA
model are jointly determined by the type of boundary and the
value of inhibition and decay parameters. Recent studies (Tsetsos
et al., 2011, 2012) demonstrates that the LCA model with only
lower reflecting boundary demonstrates a strong primacy effect
when the inhibition is large relative to the decay (w > k), and
a recency effect when the inhibition is small relative to the decay
(w < k), consistent with results obtained from the unbounded LCA
model.

This section has shown that primacy and recency effects can
be readily produced by evidence boundaries or their interactions
with other model parameters. Nevertheless, existing experimen-
tal data is insufficient to demonstrate the strength of these effects
in the way predicted by the models. An ideal paradigm to sys-
tematically investigate and differentiate these effects would be
a decision task using time-varying evidence, which favors one
alternative early in a trial and another alternative later in a trial.
However, the interpretation of results from such an experiment
would need to proceed cautiously in case of potential confounds.
First, if non-stationary stimuli extends for a long period of time
(as in the expanded judgment paradigm, see Pietsch and Vick-
ers, 1997), the observed primacy/recency effects may be to some
extent associated with additional attention or working memory
processes. Second, if non-stationarity in the evidence is apparent
to subjects, they may consciously change their decision strat-
egy. Several studies on rapid perceptual decisions avoided these
methodological problems by using carefully designed paradigms.
Brown and Heathcote (2005b) presented strong prime stimuli
for a very short time and used a metacontrast mask to ensure
subjects did not consciously aware the non-stationarity. They
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FIGURE 5 |The primacy and recency effects of the DDM and OU
model. (A) The bounded and unbounded DDM. (B) The bounded and
unbounded OU models with λ > 0. (C) The bounded and unbounded OU
model with λ < 0. All the models were simulated with µ=0.71 s−1,
σ=1 s−1, b=0.47, and Tc =1 s. The growth-decay parameter of the OU
models was set to λ=5.5 (B) and λ=−5.5 (C). In each panel, the model
was simulated for 10,000 trials, and the sensory evidence from all

correct trials was recorded and averaged. The data points show the
means and standard errors of the sensory evidence at every time step.
For µ > 0, a larger averaged input indicates that the sensory evidence at
that time point has, on average, a larger influence on the final choice, and
a smaller averaged input indicates that the choice depends to a lesser
extent on the evidence at that time. Figure modified from Zhang and
Bogacz (2010a).

showed that early evidence is weighted less in a perceptual deci-
sion task (i.e., the integration is leaky), but the leakage quickly
decreased with practice. In Usher and McClelland’s (2001) study,
primacy/recency effects were tested with fast visual streams of
alternating letters lasting for only 256 ms. They randomly mixed
shorter trials with non-stationary evidence and longer trials with
constant evidence. Such a design encouraged subjects to estimate
the entire sequence of the non-stationary evidence, because mak-
ing decisions on only a fraction of early evidence would result
in low performance on longer trials. Their results suggest a gen-
eral recency effect with strong individual differences, although the
source of the large between-subject variability has not yet been
identified.

PERFORMANCE OF THE BOUNDED DECISION-MAKING MODELS
Several studies have reported significant improvements in model
fit by introducing evidence boundaries. Ratcliff (2006) fitted data
for the DDM and the LCA model from a categorization task in
which subjects were required to decide whether the number of dots
on the screen is large or small. The absorbing DDM and absorbing
LCA model provide much better fits than the unbounded models,
in particular for the TC paradigm with very short or long decision
times. Another study showed that for a shape discrimination task
(Usher and McClelland, 2001), the behavioral data is more likely to
have been fitted by the bounded DDM than by the unbounded OU
model (Zhang et al., 2009). Leite and Ratcliff (2010) showed that
the LCA model with zero reflecting boundary produced better fits
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to the RT distributions than the unbounded model in perceptual
decision tasks with different number of alternatives. Zhang et al.
(2009) observed that for a given set of model parameters, the ER
of the absorbing and reflecting DDM are identical at any decision
time. Therefore, although the two types of boundary influence
the model dynamics, and weight the order of the momentary
evidence in different ways, the two bounded DDMs can fit the
experimental data from the TC paradigm equally well. A similar
equality between absorbing and reflecting OU models has also
been observed (Zhang and Bogacz, 2010a).

The successful applications of the bounded models promote
us to consider how different types of evidence boundaries may
affect the models’ performance. For the IC paradigm, adding lower
reflecting boundaries at zero generally decreases mean RT of the
LCA model for a given ER, and this change is more significant
for decision tasks with multiple alternatives (Bogacz et al., 2007;
Leite and Ratcliff, 2010). Increasing the upper boundary in the
absorbing LCA model, or the distance between the two bound-
aries in the absorbing DDM and absorbing OU model, leads to

an increase in the mean and variance of RT distributions (Wagen-
makers et al., 2005) and a decrease of ER (i.e., trading speed for
accuracy, see Fast Boundary Modulation: Speed–Accuracy Trade-
off). For the TC paradigm, the bounded DDM has an asymptotic
accuracy as Tc increases, which is consistent with experimental
observations (Meyer et al., 1988; Usher and McClelland, 2001).
Increasing boundary separation in the bounded DDM monotoni-
cally decrease the ER for a given decision time, until the boundary
is sufficiently large that the integrator can barely reach the bound-
ary before Tc, and under this condition the bounded DDM model
is equivalent to the unbounded DDM (Zhang et al., 2009; Leite
and Ratcliff, 2010). Interestingly, the relationship between the evi-
dence boundary and the ER is not monotonic in the bounded
OU model (Zhang and Bogacz, 2010a). For the OU model with
a negative λ value, a finite absorbing boundary yields lower ER
than the unbounded OU model. In contrast, a finite reflecting
boundary lowers the ER for the OU model with a positive λ value
(Figure 6A). Simulation results suggested that as Tc increases, the
value of λ that yields the lowest ER decreases for the absorbing OU

A

B C

FIGURE 6 | Performance of the bounded models. (A) The error rates of
the absorbing (left) and reflecting (right) OU models in the TC paradigm. The
bounded OU models are simulated with the following parameters: λ in (−3,
3) with step 0.1, b in (0.1, 3) with step 0.1, µ= σ=1 s−1, and Tc =1 s. The
contour plots illustrate the mean error rates of the bounded OU models
estimated from 10,000 simulations for each possible parameter
combinations. Figure modified from Zhang and Bogacz (2010a). (B) The

estimated optimal λ values of the absorbing and reflecting OU models that
yield minimum error rate for different Tc varying from 0.5 to 5 s. Figure
modified from Zhang and Bogacz (2010a). (C) The error rates of the bounded
LCA model. The models were simulated with parameters: µ1 =5.41 s−1,
µ2 =4 s−1, σ=1 s−1, b+ =1.5, b− =0, and Tc =3 s. The sum of decay and
inhibition was fixed at w+ k=6, while their difference changed from −6
to 6.
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model and increases for the reflecting OU model (Figure 6B). This
relationship can be explained by the joint primacy/recency effects
from the boundary and the λ value of the bounded OU model
(see Primacy and Recency Effects). Recall that the optimal decision
strategy, as suggested by the SPRT and NPT, would be to equally
weight the momentary evidence received at different time points
(i.e., no primacy or recency effects). The bounded OU model
approximates to the optimal strategy when the primacy/recency
effects introduced by the boundary and λ are balanced. That is,
the absorbing OU model needs to be coupled with negative λ and
the reflecting OU model needs to be coupled with positive λ. The
relative strengths of the primacy/recency effects introduced by the
boundary and λ values deserve further research.

The findings from one-dimensional bounded models provide
clues to the understanding of performance of the bounded LCA
model. Recall that the unbounded LCA model implements the
optimal decision strategy when the decay and inhibition are bal-
anced (w= k), i.e., when the LCA model is reduced to the DDM.
Bogacz et al. (2007) showed that the balance of decay and inhi-
bition does not optimize the performance of the bounded LCA
model in the TC paradigm. Instead, by decreasing inhibition rela-
tive to decay (w < k) the absorbing LCA model can achieve lower
ER. Conversely, the reflecting LCA model has lower ER when inhi-
bition is larger than decay (w > k; Figure 6C). The symmetric
relationship between the absorbing and reflecting LCA models is
analogous to that of bounded OU models with positive and neg-
ative λ. Therefore it is possible that the bounded LCA model can
be reduced to the bounded OU model for certain parameters (cf.
van Ravenzwaaij et al., 2012). Bogacz et al. (2007) also suggest that
by limiting the integrator stages to be non-negative, the absorbing
LCA model can approximates the asymptotically optimal decision
strategy (Draglia et al., 1999; Dragalin et al., 2000) for multiple
alternative tasks (Bogacz and Gurney, 2007).

NEURAL IMPLEMENTATION OF DECISION BOUNDARY
How is the decision boundary realized in neural circuits? In the
minimal recurrent loop model by Smith and McKenzie (2011),
the decision boundary is implemented by an interaction between
the recurrent loops and separate decision neurons. The decision
neurons receive spiking inputs from the recurrent loops that rep-
resent the accumulated evidence. A decision is rendered as soon
as the membrane potential of one decision neuron reaches a
threshold. This mechanism predicts a causal link between the
firing of decision neurons and overt actions. But an important
question remains: where in the brain is the decision boundary
implemented?

One possibility is that the decision boundary is implemented
within neural integrators, namely the local hypothesis. Wong and
Wang (2006) studied a simplified version of the biologically based
model of Wang (2002) by using mean-field theory. Their analysis
showed that if neural integrators are mediated by recurrent excita-
tory connections between spiking neurons, the dynamics of neural
integrators may contain multiple stable attractor states, which act
as implicit decision boundaries to terminate integration processes.
This model successfully accounts for psychophysical data and LIP
neural activity in RDM tasks (Wong and Wang, 2006; Wong et al.,
2007). However, previous studies using the RDM task or other

visual discrimination tasks have identified putative neural inte-
grators in the FEF (Hanes and Schall, 1996; Schall and Thompson,
1999; Schall, 2002), the SC (Basso and Wurtz, 1998; Ratcliff et al.,
2003a), and the DLPFC (Kim and Shadlen, 1999; Domenech and
Dreher, 2010), which exhibit activity patterns similar to LIP neu-
rons. A recent study showed that the inferior frontal sulcus is
also likely to integrate evidence from multiple sensory modalities
(Noppeney et al., 2010). Therefore, multiple neural integrators
may coexist in different brain regions and may be simultaneously
functioning during a decision process, though we do not know
whether the neural integrators across different regions are inde-
pendent or are more likely to interact with each other. If the local
hypothesis is correct, it is yet not clear whether observed boundary
crossing in one integrator region has a causal role in rendering a
decision, or could merely reflect terminal integration in other inte-
grator regions. Further experiments testing the activity of neural
integrators in predefined regions under different decision tasks are
necessary to confirm this hypothesis.

An alternative possibility, the central hypothesis, proposes that
detection of boundary crossing is implemented by a central neural
circuit outside integrator regions, rather than an intrinsic property
of neural integrators. This hypothesis predicts that a central cir-
cuit is capable of detecting boundary crossing in integrators within
different regions. One potential component of the central circuit
is the basal ganglia (BG) because of its unique anatomy. First, the
two BG input nuclei, the striatum and the subthalamic nucleus,
receive direct inputs from multiple cortical regions including the
LIP, FEF, and DLPFC (Smith et al., 1998; Hikosaka et al., 2000;
Nakano et al., 2000). Second, most BG nuclei are organized in
separate somatotopic areas representing different body parts, and
each broad somatotopic area is further subdivided into function-
ally defined parallel channels, based upon specific movements of
an individual body part (Alexander et al., 1986, 1990; Parent and
Hazrati, 1995). Therefore the BG can access a number of informa-
tion sources from the cortex and control complex motor responses,
which make the BG important loci of action selection, reinforce-
ment learning, and motor control (Karabelas and Moschovakis,
1985; Graybiel et al., 1994; Gurney et al., 2001a,b; Frank et al.,
2004; Samejima et al., 2005). Lo and Wang (2006) proposed that
detection of boundary crossing is implemented through a BG-SC
pathway. By default the BG output nuclei send tonic inhibition
(Hopkins and Niessen, 1976; Francois et al., 1984; Karabelas and
Moschovakis, 1985) to downstream motor areas (e.g., the SC) to
suppress any saccadic response. When the activity of a neural inte-
grator (e.g., LIP neurons) is large enough, the striatum inhibits
BG output nuclei and hence releases inhibition to the SC. The
boundary crossing is then detected by burst neurons (Munoz and
Wurtz, 1995) in the SC by an all-or-nothing burst signal. Bogacz
and Gurney (2007) showed that the BG is necessary for the brain
to implement asymptotically optimal decision strategy for NAFC
tasks. Nevertheless, although Lo and Wang (2006) demonstrated
that the central hypothesis can be implemented by the BG-SC
circuit, the model relies on the unique burst property of the SC
neurons to detect boundary crossing, which is primarily associated
with eye movements. It is not clear whether the same mecha-
nism can be applied to decision tasks requiring other response
modalities (e.g., Ho et al., 2009), or tasks which require subjects
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to withhold their responses before a response signal (i.e., the TC
paradigm).

Taken together, although convincing data exists for the presence
of neural integrators in the cortex, current findings are inconclu-
sive regarding the neural implementation of decision boundaries.
Part of the difficulty in investigating the boundary mechanism
is that decision neurons may exhibit task-modulated ramping
activity that is similar to neural integrators, if there exists posi-
tive feedback connections between the decision neurons and the
integrators (Simen, 2012). As a result the two processes may be
indistinguishable solely by the observation of ramping activity
from neural recording data.

EFFECTS OF BOUNDARY CHANGES
The decision boundary is usually assumed to be under subjective
control. On one hand, the decision boundary should be stable in
regards to sensory evidence, enabling subjects to respond consis-
tently when faced with similar environments or goals. The stability
of the decision boundary is evident from the fact that in both
IC and TC versions of the RDM tasks, LIP neurons attain the
same level of activity before saccadic responses, independent of
motion coherence (Shadlen and Newsome, 2001; Roitman and
Shadlen, 2002). On the other hand, the decision boundary may
also exhibit a certain degree of flexibility, allowing subjects to tai-
lor their responses on demand, or accounting for changes in some
internally driven factors. This section reviews psychological and
physiological factors that could be modulated by changes in the
decision boundary at different time scales.

FAST BOUNDARY MODULATION: SPEED–ACCURACY TRADEOFF
The change in decision boundary provides a straightforward
account of the speed–accuracy tradeoff (SAT) effect that is often
observed in decision-making tasks (Schouten and Bekker, 1967;
Wickelgren, 1977; Luce, 1986; Franks et al., 2003; Chittka et al.,
2009). For the DDM and the OU model (Figure 7A), decreas-
ing the distance between two decision boundaries reduces the
amount of accumulated evidence prior to a decision, leading to
fast but error-prone responses. Conversely, increasing the distance
between boundaries leads to slow but accurate decisions. For the
LCA model or other models that have multiple integrators (e.g., the

LBA model), the SAT can be manipulated by changing either the
upper boundary (Figure 7B) or the lower baseline activity at the
beginning of the trial (Figure 7C) (Bogacz et al., 2010b). Behav-
ioral studies suggest that subjects can effectively trade speed for
accuracy when instructed to respond as accurately as possible, or
vice versa when instructed to respond as quickly as possible, and
the behavioral differences between speed and accuracy instruc-
tions can be explained by a change of decision boundaries in the
DDM (Palmer et al., 2005; Ratcliff, 2006; Ratcliff and McKoon,
2008). In a similar attempt to study SAT using the LBA model,
Forstmann et al. (2008) observed that SAT in the RDM task can
be best accounted for by a change in the decision boundary, not
by changes of the drift rate or other model parameters. It has been
suggested that humans can set the SAT to maximize the reward
rate (producing the most correct decisions in a given period of
time) by learning the optimal decision boundaries through feed-
back (Simen et al., 2006, 2009; Bogacz et al., 2010a; Starns and
Ratcliff, 2010; Balci et al., 2011). Furthermore, impairments in the
optimization of the SAT in neuropsychiatric patients with impul-
sive behaviors, such as attention-deficit hyperactivity disorder,
has been associated with maladaptive regulation of the decision
boundary in perceptual tasks (Mulder et al., 2010).

Can we consider the SAT as a signature for identifying neural
correlates of decision boundaries? Several recent fMRI studies
reveal brain regions associated with the SAT, including the SMA,
the pre-SMA, the anterior cingulate cortex, the striatum, and the
DLPFC (Forstmann et al., 2008; Ivanoff et al., 2008; van Veen et al.,
2008; Blumen et al., 2011; van Maanen et al., 2011; for review, see
Bogacz et al., 2010b; Figure 8A). Using a model-based fMRI analy-
sis, Forstmann et al. (2008) showed that the extent of response
facilitation for the speed condition in the RDM task, as quantified
by a decrease of the decision boundary in the LBA model, corre-
lated with BOLD response increase in the pre-SMA and striatum
between the speed and the accuracy conditions (Figure 8B). Fur-
ther studies suggest that the strength of structural connectivity
between the two regions predicts the amount of boundary change
in individual subjects (Forstmann et al., 2010a, 2011; Figure 8C).
These results support the central hypothesis that the BG circuit
is involved in controlling the decision boundary (Lo and Wang,
2006; Bogacz et al., 2010b).

A B C

FIGURE 7 |The sequential sampling models account for SAT.
(A) For the models with a single integrator (e.g., the DDM and the
OU model), increasing the distance between two boundaries
(blue boundaries ±b) leads to slow but accurate decisions, while
decreasing the boundary distance (red boundaries ±b’) leads to

fast but risky decisions. (B) For the models with multiple
integrator (e.g., the LCA model), the SAT can be accounted for by
changes in the upper boundary (b+ and b’+). (C) The SAT can also
be accounted for by changes in the lower baseline activity (b− and
b ′
−
).
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A

B
C

FIGURE 8 |The neural correlates of SAT. (A) Brain regions associated with
the SAT are projected onto a cortical surface using Caret software (Van Essen
et al., 2001). The foci represent the coordinates of the peak voxels reported by
four fMRI studies (Forstmann et al., 2008; Ivanoff et al., 2008; van Veen et al.,
2008; van Maanen et al., 2011). All the studies manipulated the SAT of
perceptual decision tasks by speed emphasis or accuracy emphasis. The red
foci illustrate increased BOLD response with speed emphasis and the blue
foci illustrate increased BOLD response with accuracy emphasis. (B) In the

RDM task, the BOLD response increases in the right Pre-SMA and the right
Striatum in the speed versus the accuracy condition. These BOLD response
changes are associated with decreases in the response caution parameter,
which is quantified by boundary changes in the LBA model. Figure modified
from Forstmann et al. (2008). (C) The strength of structural connections
between the Pre-SMA and the Striatum in individual subjects correlate with
the changes of the LBA decision boundary between the speed and the
accuracy condition. Figure modified from Forstmann et al. (2010a).

Nevertheless, some concerns remain regarding the causal role
of decision boundary in SAT. First, an emphasis on speed may
be associated with other cognitive processes (Rinkenauer et al.,
2004). For example, some studies have proposed that the integra-
tion process is coupled with an urgency signal that increases as
a function of time (Churchland et al., 2008; Cisek et al., 2009).
The urgency signal effectively lowers the decision boundary as
time elapses (Ditterich, 2006), and the SAT can be attributed to
a change in strength of the urgency signal. Second, some mod-
els predict that SAT is in fact controlled by the distance between
the boundary and baseline (Figure 7C). Hence emphasizing speed
or accuracy may modulate the decision boundary, baseline, or a
combination of the two (Bogacz et al., 2010b; Simen, 2012). In par-
ticular, decreasing decision boundary is equivalent to increasing
baseline activations in the LBA model. Recent fMRI studies sug-
gest that the SAT is more likely to modulate baseline activity in the
medial frontal cortex (pre-SMA and SMA), as these regions exhibit
a greater BOLD response in the speed instruction compared to the
accuracy instruction. Other studies suggest that SAT may mod-
ulate a decision boundary in the lateral PFC, where the speed
instruction is associated with decreased BOLD responses (Ivanoff
et al., 2008; Wenzlaff et al., 2011). However, it is possible that the
aforementioned cortical areas do not directly change the decision
boundary or baseline, but provide a control signal that modulates
striatal activity (Bogacz et al., 2010b). In a recent neurophysiolog-
ical study (Heitz and Schall, 2011), monkeys were trained to trade
accuracy for speed in a visual search task. Fitting the behavioral
data with the LBA model showed that the speed instruction can

be accounted for by a decrease in the decision boundary. Interest-
ingly, speed instruction led to an increased baseline activity as well
as an increased presaccadic activity in the FEF, suggesting that the
neural implementation of SAT likely involves multiple processes,
rather than a single boundary or baseline change predicted by
psychological models.

SLOW BOUNDARY MODULATION: PERCEPTUAL LEARNING AND AGING
It is well-known that practice can improve performance in many
perceptual tasks, resulting in higher accuracy and shorter RTs
(Logan, 1992; Heathcote et al., 2000). Traditional approaches usu-
ally quantify learning effects as changes in the mean accuracy or
RT. Several recent studies have attempted to decompose compo-
nent processes mediating perceptual learning by using sequential
sampling models. Petrov et al. (2011) fitted the DDM to behav-
ioral data from a fine motion-discrimination task and showed
that learning effects across multiple training sessions are mainly
associated with an increase in drift rate and a decrease in non-
decision time (see also Dutilh et al., 2009). This result is consistent
with previous findings that learning facilitates neural represen-
tation of task-relevant features by tuning neural selectivity in
the sensory areas (Gilbert et al., 2001; Yang and Maunsell, 2004;
Kourtzi and DiCarlo, 2006; Raiguel et al., 2006; Kourtzi, 2010;
Zhang et al., 2010). Other studies suggest that extensive train-
ing also leads to a significant reduction in the boundary distance
in the DDM (Ratcliff et al., 2006; Dutilh et al., 2009; Liu and
Watanabe, 2011). Using the RDM task, Liu and Watanabe (2011)
investigated the learning effect across different days and showed
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that training without feedback decreases the decision boundary in
the DDM and also increases drift rate. Dutilh et al. (2009) pro-
posed that a dual process (changes in both boundary and drift
rate) is necessary to account for the noticeable decrease in RT even
after the improvement in accuracy saturates during training. The
involvement of boundary reduction in perceptual learning is sup-
ported by experimental findings that perceptual learning may not
only change sensory representation, but also enhance the decision
process in intraparietal regions (Law and Gold, 2008; Zhang and
Kourtzi, 2010). Further research combining a modeling approach
with multiple imaging sessions over the course of training may
reveal how learning and feedback modulate sensory representation
and decision processes during perceptual decisions.

While training may improve the ability of subjects to make
faster decisions in perceptual decision tasks and result in a lower
decision boundary, one primary finding in aging is that RTs in cog-
nitive tasks increase as people age, and this generalized slowing is
sometimes coupled with impairments in accuracy (Cerella, 1985,
1991; Fisk and Warr, 1996; Salthouse, 1996). Recent studies have
employed the DDM with behavioral data to identify the effects
of aging in a number of choice tasks (Ratcliff et al., 2001, 2003b,
2004b, 2007; Thapar et al., 2003; Spaniol et al., 2006). A consistent
observation is that slowing in older adults can be explained by two
factors: an increase in the decision boundary and a prolongation
of non-decision time. The decision boundary increase in aging
suggests that older subjects are more cautious in making deci-
sions compared with younger subjects (Ratcliff et al., 2006; Starns
and Ratcliff, 2010). This age-dependent change in the decision
boundary may be due to structural limits in pre-SMA and striatal
connectivity (Forstmann et al., 2011) or functional impairments
in the striatum (Kühn et al., 2011) in the aging brain. These find-
ings are consistent with the central hypothesis that the striatum is
involved in modulating decision boundaries.

DISCUSSION
This article has reviewed recent developments that shed light on
the effects and mechanisms of evidence boundaries. Theoreti-
cally, boundaries shape the dynamics of decision processes in two
aspects. First, the evidence boundary provides an ecological func-
tion to constrain the evidence needed for rendering a decision,
since the nervous system cannot process an unlimited amount of
information. Second, the evidence boundary provides a mecha-
nistic function to determine the termination of a decision process.
The necessity of the evidence boundary is not limited to a specific
model,but is a common feature shared by different sequential sam-
pling models and other accumulator models (e.g., the LBA model),
independent of the model structures. Empirically, the presence of
evidence boundary is evident from behavioral, neurophysiological
and neuroimaging data. Existing findings suggest that evidence
boundaries remains stable to changes in the external environ-
ment (e.g., sensory information), but may vary systematically with
some internal factors (e.g., speed or accuracy emphasis, practice,
or aging). Whether acting on its own, or interacting with other
decision-related processes, boundaries play a crucial role in the
formation of decisions. Therefore boundary mechanisms provide
a window into understanding the cognitive processes associated
with choice behavior.

Despite the increasing number of recent studies examining the
evidence boundary, we are still far from a complete picture of
its functions and neural implementations. Here I suggest several
directions that merit further investigation. First, among decision
models that implement the integration-to-boundary mechanism,
it is not clear to what extent the effect of a boundary depend on
the specific structure of the models. For example, if for a given
dataset the DDM predicts a change in the boundary between
two experimental conditions, or a correlation between the esti-
mated boundary and cognitive assessment scores (e.g., Ratcliff
et al., 2008), would we reach the same conclusion if using the LCA
model or the LBA model? van Ravenzwaaij and Oberauer (2009)
suggested that boundaries estimated from different sequential
sampling models are generally consistent, but do not necessarily
correspond with those estimated from the LBA model (cf. Donkin
et al., 2011). Such discrepancies between models need be con-
sidered if researchers plan to estimate boundary changes from
experimental data, or use estimated model parameters to guide
subsequent neuroimaging analysis.

Psychological models conceptualize the evidence boundary as
a unitary representation. The neural implementation of evidence
boundaries is likely to be more sophisticated and remains to be
determined (see Simen et al., 2011; Smith and McKenzie, 2011 for
recent attempts to bridge the gap between the two). The existing
findings favor the central hypothesis over the local hypothesis, but
we do not yet fully understand the causal relationship between the
activity of the BG nuclei and the changes of the boundary. Studies
discussed in this article suggests that boundary changes can occur
at different time scales, ranging from a few seconds during which
the SAT can be effectively adapted, to a few days during which it
is necessary to modulate the boundary through extensive training
and feedback. Hence if a central neural circuit exists for the detec-
tion of boundary crossing, this system is likely to be affected by
different underlying control signals, but we do not know how and
where in the brain the control signals for boundary changes are
encoded. A related question is how the evidence boundary may
be affected by aging or neurodegenerative diseases. Could these
long-term factors alter control signals that modulate the bound-
ary, or directly act upon the neural circuits that implement the
boundary? Answering these questions will require researchers to
combine established modeling approaches with comprehensive
neuroimaging protocols.

Finally, existing findings suggest that the integration-to-
boundary process governs a broad range of cognitive tasks (Gold
and Shadlen, 2007). An important direction for future research
is to investigate the effects of boundaries in choice tasks other
than perceptual decisions. One example is interval timing esti-
mation, in which subjects produce or estimate a specific duration
(Church and Deluty, 1977; Roberts, 1981; Rakitin et al., 1998;
Macar et al., 1999; Allan and Gerhardt, 2001). A variant of the
DDM has recently been proposed for interval timing (Simen et al.,
2011). The model assumes a single integrator with variable drift
rate representing elapsed time at different durations and a con-
stant decision boundary. A fixed boundary predicted by the model
is supported by experimental findings that slow cortical poten-
tials measured in the pre-SMA/SMA, which have been interpreted
as a signature of time accumulation process, show no amplitude
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difference between different interval times (Elbert et al., 1991;
Pfeuty et al., 2005; Kononowicz and van Rijn, 2011; Ng et al., 2011).
Another example is voluntary action decision, which require sub-
jects to make selections between actions that have no differential
sensory attributes or action outcomes (Brass and Haggard, 2008;
Haggard, 2008; Soon et al., 2008; Andersen and Cui, 2009; Roskies,
2010). Recent studies propose that during the formation of vol-
untary decisions the intention of selecting each action gradually
builds up in independent integrators until the winning integra-
tors reaches the boundary and renders the decision (Zhang et al.,
2012). This hypothesis is supported by observations of a progres-
sive rise in the readiness potential and neural activity in the medial
prefrontal cortex before consciously aware of voluntary actions
(Libet, 1985; Sirigu et al., 2004; Fried et al., 2011). These find-
ings from different types of cognitive tasks suggest that the brain

may encode the evidence boundary as a common currency for per-
ceptual information, subjective intention, or individual preference
(e.g., Chib et al., 2009; Krajbich et al., 2010) to guide behavioral
responses, depending on the context of the task. An intriguing
possibility is that evidence boundaries associated with different
cognitive tasks may be mediated by the same neural implemen-
tation. This generic implementation provides a potential bridge
between behavioral and neural data to regulate the formation and
initiation of complex behavior.

ACKNOWLEDGMENTS
This work was supported by Medical Research Council intramural
program MC_A060_5PQ30. The author thanks Laura Hughes,
Anna McCarrey, Charlotte Rae, and Timothy Rittman for reading
the previous version of the manuscript and useful comments.

REFERENCES
Alexander, G. E., Crutcher, M. D., and

DeLong, M. R. (1990). Basal ganglia-
thalamocortical circuits: parallel
substrates for motor, oculomotor,
“prefrontal” and “limbic” functions.
Prog. Brain Res. 85, 119–146.

Alexander, G. E., DeLong, M. R., and
Strick, P. L. (1986). Parallel organi-
zation of functionally segregated cir-
cuits linking basal ganglia and cor-
tex. Annu. Rev. Neurosci. 9, 357–381.

Allan, L. G., and Gerhardt, K. (2001).
Temporal bisection with trial ref-
erents. Percept. Psychophys. 63,
524–540.

Andersen, R. A., and Cui, H. (2009).
Intention, action planning, and deci-
sion making in parietal-frontal cir-
cuits. Neuron 63, 568–583.

Balci, F., Simen, P., Niyogi, R., Saxe, A.,
Hughes, J. A., Holmes, P., and Cohen,
J. D. (2011). Acquisition of decision
making criteria: reward rate ulti-
mately beats accuracy. Atten. Percept.
Psychophys. 73, 640–657.

Barnard, G. A. (2007). Sequential tests
in industrial statistics. J. R. Stat. Soc.
8, 1–26.

Basso, M. A., and Wurtz, R. H. (1998).
Modulation of neuronal activity in
superior colliculus by changes in
target probability. J. Neurosci. 18,
7519–7534.

Blumen, H. M., Gazes, Y., Habeck, C.,
Kumar, A., Steffener, J., Rakitin, B.
C., and Stern, Y. (2011). Neural net-
works associated with the speed-
accuracy tradeoff: evidence from
the response signal method. Behav.
Brain Res. 224, 397–402.

Bogacz, R. (2007). Optimal decision-
making theories: linking neurobiol-
ogy with behaviour. Trends Cogn. Sci.
(Regul. Ed.) 11, 118–125.

Bogacz, R., Brown, E., Moehlis, J.,
Holmes, P., and Cohen, J. D. (2006).
The physics of optimal decision

making: a formal analysis of models
of performance in two-alternative
forced-choice tasks. Psychol. Rev.
113, 700–765.

Bogacz, R., and Gurney, K. (2007). The
basal ganglia and cortex implement
optimal decision making between
alternative actions. Neural Comput.
19, 442–477.

Bogacz, R., Hu, P. T., Holmes, P. J., and
Cohen, J. D. (2010a). Do humans
produce the speed-accuracy trade-
off that maximizes reward rate? Q.
J. Exp. Psychol. (Hove) 63, 863–891.

Bogacz, R., Wagenmakers, E.-J.,
Forstmann, B. U., and Nieuwenhuis,
S. (2010b). The neural basis of the
speed-accuracy tradeoff. Trends
Neurosci. 33, 10–16.

Bogacz, R., Usher, M., Zhang, J., and
McClelland, J. L. (2007). Extend-
ing a biologically inspired model
of choice: multi-alternatives,nonlin-
earity and value-based multidimen-
sional choice. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 362, 1655–1670.

Born, R. T., and Bradley, D. C. (2005).
Structure and function of visual
area MT. Annu. Rev. Neurosci. 28,
157–189.

Brass, M., and Haggard, P. (2008).
The what, when, whether model of
intentional action. Neuroscientist 14,
319–325.

Britten, K., Shadlen, M., Newsome, W.,
and Movshon, J. (1992). The analy-
sis of visual motion: a compari-
son of neuronal and psychophys-
ical performance. J. Neurosci. 12,
4745–4765.

Britten, K. H., Newsome, W. T., Shadlen,
M. N., Celebrini, S., and Movshon,
J. A. (1996). A relationship between
behavioral choice and the visual
responses of neurons in macaque
MT. Vis. Neurosci. 13, 87–100.

Britten, K. H., Shadlen, M. N., New-
some, W. T., and Movshon, J. A.

(1993). Responses of neurons in
macaque MT to stochastic motion
signals. Vis. Neurosci. 10, 1157–1169.

Brown, E., Gao, J., Holmes, P., and
Bogacz, R. (2005). Simple neural
networks that optimize decisions.
Int. J. Bifurcat. Chaos 15, 803–826.

Brown, E., and Holmes, P. (2001). Mod-
elling a simple choice task: stochas-
tic dynamics of mutually inhibitory
neural groups. Stochast. Dynam. 1,
159–191.

Brown, S., and Heathcote, A. (2005a).
A ballistic model of choice response
time. Psychol. Rev. 112, 117–128.

Brown, S., and Heathcote, A. (2005b).
Practice increases the efficiency
of evidence accumulation in
perceptual choice. J. Exp. Psy-
chol. Hum. Percept. Perform. 31,
289–298.

Brown, S. D., and Heathcote, A. (2008).
The simplest complete model of
choice response time: linear ballis-
tic accumulation. Cogn. Psychol. 57,
153–178.

Busemeyer, J. (2002). Survey of deci-
sion field theory. Math. Soc. Sci. 43,
345–370.

Busemeyer, J. R., Jessup, R. K., John-
son, J. G., and Townsend, J. T.
(2006). Building bridges between
neural models and complex decision
making behaviour. Neural Netw. 19,
1047–1058.

Busemeyer, J. R., and Townsend, J.
T. (1993). Decision field theory:
a dynamic-cognitive approach to
decision making in an uncertain
environment. Psychol. Rev. 100,
432–459.

Cerella, J. (1985). Information process-
ing rates in the elderly. Psychol. Bull.
98, 67–83.

Cerella, J. (1991). Age effects may be
global, not local: comment on Fisk
and Rogers (1991). J. Exp. Psychol.
Gen. 120, 215–223.

Chib, V. S., Rangel, A., Shimojo, S., and
O’Doherty, J. P. (2009). Evidence for
a common representation of deci-
sion values for dissimilar goods in
human ventromedial prefrontal cor-
tex. J. Neurosci. 29, 12315–12320.

Chittka, L., Skorupski, P., and Raine, N.
E. (2009). Speed-accuracy tradeoffs
in animal decision making. Trends
Ecol. Evol. (Amst.) 24, 400–407.

Church, R. M., and Deluty, M. Z. (1977).
Bisection of temporal intervals. J.
Exp. Psychol. Anim. Behav. Process. 3,
216–228.

Churchland, A. K., Kiani, R., and
Shadlen, M. N. (2008). Decision-
making with multiple alternatives.
Nat. Neurosci. 11, 693–702.

Cisek, P., Puskas, G. A., and El-Murr, S.
(2009). Decisions in changing con-
ditions: the urgency-gating model. J.
Neurosci. 29, 11560–11571.

Diederich, A. (1995). Intersensory facil-
itation of reaction time: evaluation
of counter and diffusion coactiva-
tion models. J. Math. Psychol. 39,
197–215.

Diederich, A. (1997). Dynamic sto-
chastic models for decision mak-
ing under time constraints. J. Math.
Psychol. 41, 260–274.

Ditterich, J. (2006). Stochastic models
of decisions about motion direction:
behavior and physiology. Neural
Netw. 19, 981–1012.

Ditterich, J. (2010). A comparison
between mechanisms of multi-
alternative perceptual decision mak-
ing: ability to explain human behav-
ior, predictions for neurophysiol-
ogy, and relationship with deci-
sion theory. Front. Neurosci. 4:184.
doi:10.3389/fnins.2010.00184

Ditterich, J., Mazurek, M. E., and
Shadlen, M. N. (2003). Microstim-
ulation of visual cortex affects the
speed of perceptual decisions. Nat.
Neurosci. 6, 891–898.

www.frontiersin.org August 2012 | Volume 3 | Article 263 | 15

http://dx.doi.org/10.3389/fnins.2010.00184
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Zhang Evidence bounds on decision-making

Domenech, P., and Dreher, J.-C. (2010).
Decision threshold modulation in
the human brain. J. Neurosci. 30,
14305–14317.

Donkin, C., Brown, S., Heathcote, A.,
and Wagenmakers, E.-J. (2011). Dif-
fusion versus linear ballistic accu-
mulation: different models but the
same conclusions about psychologi-
cal processes? Psychon. Bull. Rev. 18,
61–69.

Donkin, C., and Heathcote, A. (2009).
“Non-decision time effects in the
lexical decision task,” in Proceedings
of the 31st Annual Conference of the
Cognitive Science Society, eds N. A.
Taatgen and H. van Rijn (Austin:
Cognitive Science Society), 2902–
2907.

Dosher, B. A. (1976). The retrieval of
sentences from memory: a speed-
accuracy study. Cogn. Psychol. 8,
291–310.

Dosher, B. A. (1984). Discriminating
preexperimental (semantic) from
learned (episodic) associations: a
speed-accuracy study. Cogn. Psychol.
16, 519–555.

Dragalin, V. P., Tartakovsky, A. G.,
and Veeravalli, V. V. (2000). Mul-
tihypothesis sequential probability
ratio tests. II. Accurate asymptotic
expansions for the expected sam-
ple size. IEEE Trans. Inf. Theory 46,
1366–1383.

Draglia, V. P., Tartakovsky, A. G., and
Veeravalli, V. V. (1999). Multihy-
pothesis sequential probability ratio
tests. I. Asymptotic optimality. IEEE
Trans. Inf. Theory 45, 2448–2461.

Dutilh, G., Vandekerckhove, J., Tuer-
linckx, F., and Wagenmakers, E.-J.
(2009). A diffusion model decompo-
sition of the practice effect. Psychon.
Bull. Rev. 16, 1026–1036.

Edwards, W. (1965). Optimal strategies
for seeking information: models for
statistics, choice reaction times, and
human information processing. J.
Math. Psychol. 2, 312–329.

Elbert, T., Ulrich, R., Rockstroh, B.,
and Lutzenberger, W. (1991). The
processing of temporal intervals
reflected by CNV-like brain poten-
tials. Psychophysiology 28, 648–655.

Estes, W. K. (1955). Statistical theory
of spontaneous recovery and regres-
sion. Psychol. Rev. 62, 145–154.

Farrell, S., Ludwig, C. J. H., Ellis, L. A.,
and Gilchrist, I. D. (2010). Influence
of environmental statistics on inhi-
bition of saccadic return. Proc. Natl.
Acad. Sci. U.S.A. 107, 929–934.

Fisk, J. E., and Warr, P. (1996). Age and
working memory: the role of per-
ceptual speed, the central executive,
and the phonological loop. Psychol.
Aging 11, 316–323.

Forstmann, B. U., Anwander, A.,
Schäfer, A., Neumann, J., Brown,
S., Wagenmakers, E.-J., Bogacz, R.,
and Turner, R. (2010a). Cortico-
striatal connections predict control
over speed and accuracy in per-
ceptual decision making. Proc. Natl.
Acad. Sci. U.S.A. 107, 15916–15920.

Forstmann, B. U., Brown, S., Dutilh,
G., Neumann, J., and Wagenmakers,
E.-J. (2010b). The neural substrate
of prior information in percep-
tual decision making: a model-based
analysis. Front. Hum. Neurosci. 4:40.
doi:10.3389/fnhum.2010.00040

Forstmann, B. U., Dutilh, G., Brown,
S., Neumann, J., von Cramon, D.
Y., Ridderinkhof, K. R., and Wagen-
makers, E.-J. (2008). Striatum and
pre-SMA facilitate decision-making
under time pressure. Proc. Natl.
Acad. Sci. U.S.A. 105, 17538–17542.

Forstmann, B. U., Tittgemeyer, M.,
Wagenmakers, E.-J., Derrfuss, J.,
Imperati, D., and Brown, S. (2011).
The speed-accuracy tradeoff in the
elderly brain: a structural model-
based approach. J. Neurosci. 31,
17242–17249.

Francois, C., Percheron, G., and Yelnik, J.
(1984). Localization of nigrostriatal,
nigrothalamic and nigrotectal neu-
rons in ventricular coordinates in
macaques. Neuroscience 13, 61–76.

Frank, M. J., Seeberger, L. C., and
O’Reilly, R. C. (2004). By carrot or by
stick: cognitive reinforcement learn-
ing in parkinsonism. Science 306,
1940–1943.

Franks, N. R., Dornhaus, A., Fitzsim-
mons, J. P., and Stevens, M. (2003).
Speed versus accuracy in collective
decision making. Proc. Biol. Sci. 270,
2457–2463.

Fried, I., Mukamel, R., and Kreiman, G.
(2011). Internally generated preacti-
vation of single neurons in human
medial frontal cortex predicts voli-
tion. Neuron 69, 548–562.

Furman, M., and Wang, X.-J. (2008).
Similarity effect and optimal control
of multiple-choice decision making.
Neuron 60, 1153–1168.

Gilbert, C. D., Sigman, M., and Crist,
R. E. (2001). The neural basis
of perceptual learning. Neuron 31,
681–697.

Gold, J. I., and Shadlen, M. N. (2001).
Neural computations that under-
lie decisions about sensory stim-
uli. Trends Cogn. Sci. (Regul. Ed.) 5,
10–16.

Gold, J. I., and Shadlen, M. N.
(2007). The neural basis of decision
making. Annu. Rev. Neurosci. 30,
535–574.

Gomez, P., Ratcliff, R., and Perea, M.
(2007). A model of the go/no-go

task. J. Exp. Psychol. Gen. 136,
389–413.

Grasman, R. P. P. P., Wagenmakers,
E.-J., and van der Maas, H. L. J.
(2009). On the mean and variance
of response times under the dif-
fusion model with an application
to parameter estimation. J. Math.
Psychol. 53, 55–68.

Graybiel, A., Aosaki, T., Flaherty, A.,
and Kimura, M. (1994). The basal
ganglia and adaptive motor control.
Science 265, 1826–1831.

Gurney, K., Prescott, T. J., and Redgrave,
P. (2001a). A computational model
of action selection in the basal gan-
glia. I. A new functional anatomy.
Biol. Cybern. 84, 401–410.

Gurney, K., Prescott, T. J., and Red-
grave, P. (2001b). A computational
model of action selection in the
basal ganglia. II. Analysis and simu-
lation of behaviour. Biol. Cybern. 84,
411–423.

Haggard, P. (2008). Human volition:
towards a neuroscience of will. Nat.
Rev. Neurosci. 9, 934–946.

Hanes, D. P., and Schall, J. D.
(1996). Neural control of voluntary
movement initiation. Science 274,
427–430.

Hanks, T. D., Ditterich, J., and Shadlen,
M. N. (2006). Microstimulation of
macaque area LIP affects decision-
making in a motion discrimination
task. Nat. Neurosci. 9, 682–689.

Heath, R. (1992). A general nonstation-
ary diffusion model for two-choice
decision-making. Math. Soc. Sci. 23,
283–309.

Heathcote, A., Brown, S., and Mewhort,
D. J. K. (2000). The power law
repealed: the case for an exponential
law of practice. Psychon. Bull. Rev. 7,
185–207.

Heekeren, H. R., Marrett, S., and Unger-
leider, L. G. (2008). The neural sys-
tems that mediate human perceptual
decision making. Nat. Rev. Neurosci.
9, 467–479.

Heitz, R. P., and Schall, J. D. (2011).
“Neural basis of speed-accuracy tra
de-off infrontaleyefield,”inAbstracts
of the Society for Neuroscience Annual
Meeting 2011 (Washington, DC:
Society for Neuroscience).

Hikosaka, O., Takikawa, Y., and Kawa-
goe, R. (2000). Role of the basal gan-
glia in the control of purposive sac-
cadic eye movements. Physiol. Rev.
80, 953–978.

Ho, T. C., Brown, S., and Serences, J.
T. (2009). Domain general mecha-
nisms of perceptual decision mak-
ing in human cortex. J. Neurosci. 29,
8675–8687.

Hopkins, D. A., and Niessen, L. W.
(1976). Substantia nigra projections

to the reticular formation, superior
colliculus and central gray in the rat,
cat and monkey. Neurosci. Lett. 2,
253–259.

Huk, A. C., and Shadlen, M. N. (2005).
Neural activity in macaque parietal
cortex reflects temporal integration
of visual motion signals during per-
ceptual decision making. J. Neurosci.
25, 10420–10436.

Ivanoff, J., Branning, P., and Marois,
R. (2008). fMRI evidence for
a dual process account of the
speed-accuracy tradeoff in decision-
making. PLoS ONE 3, e2635.
doi:10.1371/journal.pone.0002635

Karabelas, A. B., and Moschovakis, A.
K. (1985). Nigral inhibitory termi-
nation on efferent neurons of the
superior colliculus: an intracellular
horseradish peroxidase study in the
cat. J. Comp. Neurol. 239, 309–329.

Kayser, A. S., Buchsbaum, B. R., Erick-
son, D. T., and D’Esposito, M.
(2010a). The functional anatomy
of a perceptual decision in the
human brain. J. Neurophysiol. 103,
1179–1194.

Kayser, A. S., Erickson, D. T., Buchs-
baum, B. R., and D’Esposito, M.
(2010b). Neural representations of
relevant and irrelevant features in
perceptual decision making. J. Neu-
rosci. 30, 15778–15789.

Kiani, R., Hanks, T. D., and Shadlen,
M. N. (2008). Bounded integration
in parietal cortex underlies deci-
sions even when viewing duration
is dictated by the environment. J.
Neurosci. 28, 3017–3029.

Kim, J. N., and Shadlen, M. N. (1999).
Neural correlates of a decision in the
dorsolateral prefrontal cortex of the
macaque. Nat. Neurosci. 2, 176–185.

Kononowicz, T. W., and van Rijn,
H. (2011). Slow potentials in
time estimation: the role of tem-
poral accumulation and habitua-
tion. Front. Integr. Neurosci. 5:10.
doi:10.3389/fnint.2011.00048

Kourtzi, Z. (2010). Visual learning for
perceptual and categorical decisions
in the human brain. Vision Res. 50,
433–440.

Kourtzi, Z., and DiCarlo, J. J. (2006).
Learning and neural plasticity in
visual object recognition. Curr.
Opin. Neurobiol. 16, 152–158.

Krajbich, I., Armel, C., and Rangel, A.
(2010).Visual fixations and the com-
putation and comparison of value
in simple choice. Nat. Neurosci. 13,
1292–1298.

Kühn, S., Schmiedek, F., Schott, B.,
Ratcliff, R., Heinze, H.-J., Düzel,
E., Lindenberger, U., and Lövden,
M. (2011). Brain areas consistently
linked to individual differences

Frontiers in Psychology | Cognitive Science August 2012 | Volume 3 | Article 263 | 16

http://dx.doi.org/10.3389/fnhum.2010.00040
http://dx.doi.org/10.1371/journal.pone.0002635
http://dx.doi.org/10.3389/fnint.2011.00048
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Cognitive_Science/archive


Zhang Evidence bounds on decision-making

in perceptual decision-making in
younger as well as older adults before
and after training. J. Cogn. Neurosci.
23, 2147–2158.

Laming, D. R. J. (1968). Information
Theory of Choice-Reaction Times.
Oxford: Academic Press.

Law, C.-T., and Gold, J. I. (2008). Neural
correlates of perceptual learning in
a sensory-motor, but not a sen-
sory, cortical area. Nat. Neurosci. 11,
505–513.

Lehmann, E. (1959). Testing Statistical
Hypotheses. New York: Wiley.

Leite, F. P., and Ratcliff, R. (2010).
Modeling reaction time and accu-
racy of multiple-alternative deci-
sions. Atten. Percept. Psychophys. 72,
246–273.

Libet, B. (1985). Unconscious cerebral
initiative and the role of conscious
will in voluntary action. Behav. Brain
Sci. 8, 529–539.

Link, S. W. (1975). The relative judg-
ment theory of two choice response
time. J. Math. Psychol. 12, 114–135.

Link, S. W., and Heath, R. A. (1975).
A sequential theory of psycholog-
ical discrimination. Psychometrika
40, 77–105.

Liu, C. C., and Watanabe, T. (2011).
Accounting for speed-accuracy
tradeoff in perceptual learning.
Vision Res. 61, 107–114.

Lo, C.-C., and Wang, X.-J. (2006).
Cortico-basal ganglia circuit mech-
anism for a decision threshold in
reaction time tasks. Nat. Neurosci. 9,
956–963.

Logan, G. D. (1992). Shapes of reaction-
time distributions and shapes of
learning curves: a test of the instance
theory of automaticity. J. Exp. Psy-
chol. Learn Mem. Cogn. 18, 883–914.

Luce, R. D. (1986). Response Times:
Their Role in Inferring Elementary
Mental Organization. New York:
Oxford University Press.

Ludwig, C. J. H., Farrell, S., Ellis, L.
A., and Gilchrist, I. D. (2009). The
mechanism underlying inhibition of
saccadic return. Cogn. Psychol. 59,
180–202.

Macar, F., Vidal, F., and Casini, L.
(1999). The supplementary motor
area in motor and sensory timing:
evidence from slow brain poten-
tial changes. Exp. Brain Res. 125,
271–280.

Maunsell, J. H., and Van Essen, D.
C. (1983). Functional properties of
neurons in middle temporal visual
area of the macaque monkey. I.
Selectivity for stimulus direction,
speed, and orientation. J. Neurophys-
iol. 49, 1127–1147.

Mazurek, M. E., Roitman, J. D., Dit-
terich, J., and Shadlen, M. N. (2003).

A role for neural integrators in per-
ceptual decision making. Cereb. Cor-
tex 13, 1257–1269.

Mcmillen, T., and Holmes, P. (2006).
The dynamics of choice among mul-
tiple alternatives. J. Math. Psychol.
50, 30–57.

Meyer, D. E., Irwin, D. E., Osman,
A. M., and Kounios, J. (1988).
The dynamics of cognition and
action: mental processes inferred
from speed-accuracy decomposi-
tion. Psychol. Rev. 95, 183–237.

Mulder, M. J., Bos, D., Weusten, J. M. H.,
van Belle, J., van Dijk, S. C., Simen,
P., van Engeland, H., and Durston,
S. (2010). Basic impairments in reg-
ulating the speed-accuracy trade-
off predict symptoms of attention-
deficit/hyperactivity disorder. Biol.
Psychiatry 68, 1114–1119.

Munoz, D. P., and Wurtz, R. H. (1995).
Saccade-related activity in monkey
superior colliculus. I. Characteris-
tics of burst and buildup cells. J.
Neurophysiol. 73, 2313–2333.

Nakano, K., Kayahara, T., Tsutsumi, T.,
and Ushiro, H. (2000). Neural cir-
cuits and functional organization of
the striatum. J. Neurol. 247,V1–V15.

Newsome, W., and Pare, E. (1988). A
selective impairment of motion per-
ception following lesions of the mid-
dle temporal visual area (MT). J.
Neurosci. 8, 2201–2211.

Newsome, W. T., Britten, K. H., and
Movshon, J. A. (1989). Neuronal
correlates of a perceptual decision.
Nature 341, 52–54.

Neyman, J., and Pearson, E. S. (1933).
On the problem of the most efficient
tests of statistical hypotheses. Philos.
Trans. R. Soc. Lond. A 231, 289–337.

Ng, K. K., Tobin, S., and Pen-
ney, T. B. (2011). Temporal accu-
mulation and decision processes
in the duration bisection task
revealed by contingent negative vari-
ation. Front. Integr. Neurosci. 5:77.
doi:10.3389/fnint.2011.00077

Niwa, M., and Ditterich, J. (2008). Per-
ceptual decisions between multiple
directions of visual motion. J. Neu-
rosci. 28, 4435–4445.

Noppeney, U., Ostwald, D., and Werner,
S. (2010). Perceptual decisions
formed by accumulation of audio-
visual evidence in prefrontal cortex.
J. Neurosci. 30, 7434–7446.

Palmer, J., Huk, A. C., and Shadlen, M.
N. (2005). The effect of stimulus
strength on the speed and accuracy
of a perceptual decision. J. Vis. 5,
376–404.

Papoulis, A. (1977). Signal Analysis.
New York: McGraw-Hill.

Parent, A., and Hazrati, L.-N. (1995).
Functional anatomy of the basal

ganglia. I. The cortico-basal ganglia-
thalamo-cortical loop. Brain Res.
Rev. 20, 91–127.

Petrov, A. A., Van Horn, N. M.,
and Ratcliff, R. (2011). Disso-
ciable perceptual-learning mecha-
nisms revealed by diffusion-model
analysis. Psychon. Bull. Rev. 18,
490–497.

Pfeuty, M., Ragot, R., and Pouthas, V.
(2005). Relationship between CNV
and timing of an upcoming event.
Neurosci. Lett. 382, 106–111.

Philiastides, M. G., Ratcliff, R., and
Sajda, P. (2006). Neural represen-
tation of task difficulty and deci-
sion making during perceptual cat-
egorization: a timing diagram. J.
Neurosci. 26, 8965–8975.

Philiastides, M. G., and Sajda, P. (2007).
EEG-informed fMRI reveals spa-
tiotemporal characteristics of per-
ceptual decision making. J. Neurosci.
27, 13082–13091.

Pietsch, A., and Vickers, D. (1997).
Memory capacity and intelligence:
novel techniques for evaluating
rival models of a fundamen-
tal information-processing mecha-
nism. J. Gen. Psychol. 124, 229–339.

Pike, A. R. (1966). Stochastic mod-
els of choice behaviour: response
probabilities and latencies of finite
Markov chain systems. Br. J. Math.
Stat. Psychol. 19, 15–32.

Ploran, E. J., Nelson, S. M., Velanova,
K., Donaldson, D. I., Petersen, S.
E., and Wheeler, M. E. (2007).
Evidence accumulation and the
moment of recognition: dis-
sociating perceptual recognition
processes using fMRI. J. Neurosci. 27,
11912–11924.

Purcell, B. A., Heitz, R. P., Cohen,
J. Y., Schall, J. D., Logan, G. D.,
and Palmeri, T. J. (2010). Neurally
constrained modeling of perceptual
decision making. Psychol. Rev. 117,
1113–1143.

Raiguel, S., Vogels, R., Mysore, S. G.,
and Orban, G. A. (2006). Learning
to see the difference specifically alters
the most informative V4 neurons. J.
Neurosci. 26, 6589–6602.

Rakitin, B. C., Gibbon, J., Penney, T.
B., Malapani, C., Hinton, S. C.,
and Meck, W. H. (1998). Scalar
expectancy theory and peak-interval
timing in humans. J. Exp. Psy-
chol. Anim. Behav. Process. 24,
15–33.

Ratcliff, R. (1978). A theory of memory
retrieval. Psychol. Rev. 85, 59–108.

Ratcliff, R. (1988). Continuous ver-
sus discrete information process-
ing modeling accumulation of par-
tial information. Psychol. Rev. 95,
238–255.

Ratcliff, R. (2002). A diffusion model
account of response time and accu-
racy in a brightness discrimination
task: fitting real data and failing to
fit fake but plausible data. Psychon.
Bull. Rev. 9, 278–291.

Ratcliff, R. (2006). Modeling response
signal and response time data. Cogn.
Psychol. 53, 195–237.

Ratcliff, R., Cherian, A., and Seg-
raves, M. (2003a). A comparison
of macaque behavior and supe-
rior colliculus neuronal activity to
predictions from models of two-
choice decisions. J. Neurophysiol. 90,
1392–1407.

Ratcliff, R., Thapar, A., and McKoon, G.
(2003b). A diffusion model analysis
of the effects of aging on brightness
discrimination. Percept. Psychophys.
65, 523–535.

Ratcliff, R., Gomez, P., and McKoon, G.
(2004a). A diffusion model account
of the lexical decision task. Psychol.
Rev. 111, 159–182.

Ratcliff, R., Thapar, A., and McKoon, G.
(2004b). A diffusion model analysis
of the effects of aging on recognition
memory. J. Mem. Lang. 50, 408–424.

Ratcliff, R., and McKoon, G. (2008). The
diffusion decision model: theory and
data for two-choice decision tasks.
Neural Comput. 20, 873–922.

Ratcliff, R., Philiastides, M. G., and
Sajda, P. (2009). Quality of evidence
for perceptual decision making is
indexed by trial-to-trial variability of
the EEG. Proc. Natl. Acad. Sci. U.S.A.
106, 6539–6544.

Ratcliff, R., and Rouder, J. N. (1998).
Modeling response times for two-
choice decisions. Psychol. Sci. 9,
347–356.

Ratcliff, R., and Rouder, J. N. (2000). A
diffusion model account of masking
in two-choice letter identification. J.
Exp. Psychol. Hum. Percept. Perform.
26, 127–140.

Ratcliff, R., Schmiedek, F., and McKoon,
G. (2008). A diffusion model expla-
nation of the worst performance rule
for reaction time and IQ. Intelligence
36, 10–17.

Ratcliff, R., and Smith, P. L. (2004). A
comparison of sequential sampling
models for two-choice reaction time.
Psychol. Rev. 111, 333–367.

Ratcliff, R., Thapar, A., and McKoon, G.
(2001). The effects of aging on reac-
tion time in a signal detection task.
Psychol. Aging 16, 323–341.

Ratcliff, R., Thapar, A., and McKoon, G.
(2006). Aging, practice, and percep-
tual tasks: a diffusion model analysis.
Psychol. Aging 21, 353–371.

Ratcliff, R., Thapar, A., and McKoon, G.
(2007). Application of the diffusion
model to two-choice tasks for adults

www.frontiersin.org August 2012 | Volume 3 | Article 263 | 17

http://dx.doi.org/10.3389/fnint.2011.00077
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Zhang Evidence bounds on decision-making

75–90 years old. Psychol. Aging 22,
56–66.

Ratcliff, R., Van Zandt, T., and McK-
oon, G. (1999). Connectionist and
diffusion models of reaction time.
Psychol. Rev. 106, 261–300.

Rinkenauer, G., Osman, A., Ulrich, R.,
Muller-Gethmann, H., and Mattes,
S. (2004). On the locus of speed-
accuracy trade-off in reaction time:
inferences from the lateralized readi-
ness potential. J. Exp. Psychol. Gen.
133, 261–282.

Roberts, S. (1981). Isolation of an inter-
nal clock. J. Exp. Psychol. Anim.
Behav. Process. 7, 242–268.

Roitman, J. D., and Shadlen, M. N.
(2002). Response of neurons in
the lateral intraparietal area during
a combined visual discrimination
reaction time task. J. Neurosci. 22,
9475–9489.

Roskies, A. L. (2010). How does neu-
roscience affect our conception of
volition? Annu. Rev. Neurosci. 33,
109–130.

Salthouse, T. A. (1996). The processing-
speed theory of adult age differ-
ences in cognition. Psychol. Rev. 103,
403–428.

Salzman, C., Murasugi, C., Britten, K.,
and Newsome, W. (1992). Micros-
timulation in visual area MT: effects
on direction discrimination perfor-
mance. J. Neurosci. 12, 2331–2355.

Salzman, C. D., Britten, K. H., and
Newsome, W. T. (1990). Cortical
microstimulation influences percep-
tual judgements of motion direc-
tion. Nature 346, 174–177.

Samejima, K., Ueda, Y., Doya, K.,
and Kimura, M. (2005). Represen-
tation of action-specific reward val-
ues in the striatum. Science 310,
1337–1340.

Schall, J. D. (2002). The neural selection
and control of saccades by the frontal
eye field. Philos. Trans. R. Soc. Lond.
B Biol. Sci. 357, 1073–1082.

Schall, J. D., and Thompson, K. G.
(1999). Neural selection and control
of visually guided eye movements.
Annu. Rev. Neurosci. 22, 241–259.

Schmiedek, F., Oberauer, K., Wilhelm,
O., Süss, H.-M., and Wittmann, W.
W. (2007). Individual differences in
components of reaction time distri-
butions and their relations to work-
ing memory and intelligence. J. Exp.
Psychol. Gen. 136, 414–429.

Schouten, J. F., and Bekker, J. A. M.
(1967). Reaction time and accuracy.
Acta Psychol. (Amst.) 27, 143–153.

Shadlen, M. N., and Newsome, W. T.
(2001). Neural basis of a percep-
tual decision in the parietal cortex
(area LIP) of the rhesus monkey. J.
Neurophysiol. 86, 1916–1936.

Simen, P. (2012). Evidence accu-
mulator or decision threshold –
which cortical mechanism are we
observing? Front. Psychol. 3:183.
doi:10.3389/fpsyg.2012.00183

Simen, P., Balci, F., Desouza, L., Cohen,
J. D., and Holmes, P. (2011). A model
of interval timing by neural integra-
tion. J. Neurosci. 31, 9238–9253.

Simen, P., Cohen, J. D., and Holmes,
P. (2006). Rapid decision thresh-
old modulation by reward rate in
a neural network. Neural Netw. 19,
1013–1026.

Simen, P., Contreras, D., Buck, C., Hu, P.,
Holmes, P., and Cohen, J. D. (2009).
Reward rate optimization in two-
alternative decision making: empiri-
cal tests of theoretical predictions. J.
Exp. Psychol. Hum. Percept. Perform.
35, 1865–1897.

Sirigu, A., Daprati, E., Ciancia, S.,
Giraux, P., Nighoghossian, N.,
Posada, A., and Haggard, P. (2004).
Altered awareness of voluntary
action after damage to the parietal
cortex. Nature Neurosci. 7, 80–84.

Smith, P. L. (1995). Psychophysically
principled models of visual sim-
ple reaction time. Psychol. Rev. 102,
567–593.

Smith, P. L. (2010). From poisson shot
noise to the integrated Ornstein–
Uhlenbeck process: neurally princi-
pled models of information accu-
mulation in decision-making and
response time. J. Math. Psychol. 54,
266–283.

Smith, P. L., and McKenzie, C. R.
L. (2011). Diffusive information
accumulation by minimal recurrent
neural models of decision making.
Neural Comput. 23, 2000–2031.

Smith, P. L., and Ratcliff, R. (2004). Psy-
chology and neurobiology of sim-
ple decisions. Trends Neurosci. 27,
161–168.

Smith, Y., Bevan, M. D., Shink, E., and
Bolam, J. P. (1998). Microcircuitry
of the direct and indirect pathways
of the basal ganglia. Neuroscience 86,
353–387.

Soon, C. S., Brass, M., Heinze, H.-J.,
and Haynes, J.-D. (2008). Uncon-
scious determinants of free decisions
in the human brain. Nat. Neurosci.
11, 543–545.

Spaniol, J., Madden, D. J., and Voss, A.
(2006). A diffusion model analysis
of adult age differences in episodic
and semantic long-term memory
retrieval. J. Exp. Psychol. Learn Mem.
Cogn. 32, 101–117.

Starns, J. J., and Ratcliff, R. (2010).
The effects of aging on the speed-
accuracy compromise: boundary
optimality in the diffusion model.
Psychol. Aging 25, 377–390.

Stone, M. (1960). Models for choice-
reaction time. Psychometrika 25,
251–260.

Swensson, R. G. (1972). The elusive
tradeoff: speed vs accuracy in visual
discrimination tasks. Percept. Psy-
chophys. 12, 16–32.

Thapar, A., Ratcliff, R., and McKoon,
G. (2003). A diffusion model analy-
sis of the effects of aging on letter
discrimination. Psychol. Aging 18,
415–429.

Townsend, J. T., and Ashby, F. G. (1983).
The Stochastic Modeling of Elemen-
tary Psychological Processes. Cam-
bridge: Cambridge University Press.

Tsetsos, K., Gao, J., McClelland, J.
L., and Usher, M. (2012). Using
time-varying evidence to test mod-
els of decision dynamics: bounded
diffusion vs. the leaky competing
accumulator model. Front. Neurosci.
6:79. doi:10.3389/fnins.2012.00079

Tsetsos, K., Usher, M., and McClelland,
J. L. (2011). Testing multi-alternative
decision models with non-
stationary evidence. Front. Neurosci.
5:63. doi:10.3389/fnins.2011.00063

Uhlenbeck, G., and Ornstein, L. (1930).
On the theory of the brownian
motion. Phys. Rev. 36, 823–841.

Usher, M., Elhalal, A., and McClelland,
J. L. (2008). “The neurodynamics of
choice, value-based decisions, and
preference reversal,” in The Proba-
bilistic Mind: Prospects for Bayesian
Cognitive Science, eds N. Chater and
M. Oaksford (Oxford: Oxford Uni-
versity Press), 277–300.

Usher, M., and McClelland, J. L. (2001).
The time course of perceptual
choice: the leaky, competing accu-
mulator model. Psychol. Rev. 108,
550–592.

Usher, M., and McClelland, J. L. (2004).
Loss aversion and inhibition in
dynamical models of multialter-
native choice. Psychol. Rev. 111,
757–769.

Van Essen, D. C., Drury, H. A., Dick-
son, J., Harwell, J., Hanlon, D., and
Anderson, C. H. (2001). An inte-
grated software suite for surface-
based analyses of cerebral cor-
tex. J. Am. Med. Inform. Assoc. 8,
443–459.

van Maanen, L., Brown, S. D., Eichele,
T., Wagenmakers, E.-J., Ho, T.,
Serences, J., and Forstmann,
B. U. (2011). Neural correlates
of trial-to-trial fluctuations in
response caution. J. Neurosci. 31,
17488–17495.

van Ravenzwaaij, D., and Oberauer, K.
(2009). How to use the diffusion
model: parameter recovery of three
methods: EZ, fast-dm, and DMAT. J.
Math. Psychol. 53, 463–473.

van Ravenzwaaij, D., van der Maas, H.
L. J., and Wagenmakers, E.-J. (2012).
Optimal decision making in neural
inhibition models. Psychol. Rev. 119,
201–215.

van Veen, V., Krug, M. K., and Carter,
C. S. (2008). The neural and com-
putational basis of controlled speed-
accuracy tradeoff during task per-
formance. J. Cogn. Neurosci. 20,
1952–1965.

Vickers, D. (1970). Evidence for an
accumulator model of psychophys-
ical discrimination. Ergonomics 13,
37–58.

Wagenmakers, E.-J., Grasman, R. P. P.
P., and Molenaar, P. C. M. (2005).
On the relation between the mean
and the variance of a diffusion model
response time distribution. J. Math.
Psychol. 49, 195–204.

Wagenmakers, E.-J., Maas, H. L. J., and
Grasman, R. P. P. P. (2007). An EZ-
diffusion model for response time
and accuracy. Psychon. Bull. Rev. 14,
3–22.

Wagenmakers, E.-J., Ratcliff, R., Gomez,
P., and McKoon, G. (2008). A dif-
fusion model account of criterion
shifts in the lexical decision task. J.
Mem. Lang. 58, 140–159.

Wald, A. (1947). Sequential Analysis.
New York: Wiley.

Wald,A., and Wolfowitz, J. (1948). Opti-
mum character of the sequential
probability ratio test. Ann. Math.
Stat. 19, 326–339.

Wallsten, T. S., and Barton, C. (1982).
Processing probabilistic multidi-
mensional information for deci-
sions. J. Exp. Psychol. Learn. Mem.
Cogn. 8, 361–384.

Wang, X.-J. (2002). Probabilistic deci-
sion making by slow reverbera-
tion in cortical circuits. Neuron 36,
955–968.

Wenzlaff, H., Bauer, M., Maess, B., and
Heekeren, H. R. (2011). Neural
characterization of the speed-
accuracy tradeoff in a perceptual
decision-making task. J. Neurosci.
31, 1254–1266.

Wickelgren, W. A. (1977). Speed-
accuracy tradeoff and information
processing dynamics. Acta Psychol.
(Amst.) 41, 67–85.

Wiener, N. (1923). Differential space. J.
Math. Phys. 2, 131–174.

Wong, K.-F., Huk, A. C., Shadlen, M.
N., and Wang, X.-J. (2007). Neural
circuit dynamics underlying accu-
mulation of time-varying evidence
during perceptual decision mak-
ing. Front. Comput. Neurosci. 1:6.
doi:10.3389/neuro.10.006.2007

Wong, K.-F., and Wang, X.-J. (2006).
A recurrent network mecha-
nism of time integration in

Frontiers in Psychology | Cognitive Science August 2012 | Volume 3 | Article 263 | 18

http://dx.doi.org/10.3389/fpsyg.2012.00183
http://dx.doi.org/10.3389/fnins.2012.00079
http://dx.doi.org/10.3389/fnins.2011.00063
http://dx.doi.org/10.3389/neuro.10.006.2007
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Cognitive_Science/archive


Zhang Evidence bounds on decision-making

perceptual decisions. J. Neurosci. 26,
1314–1328.

Yang, T., and Maunsell, J. H. R. (2004).
The effect of perceptual learning on
neuronal responses in monkey visual
area V4. J. Neurosci. 24, 1617–1626.

Yellott, J. (1971). Correction for fast
guessing and the speed-accuracy
tradeoff in choice reaction time. J.
Math. Psychol. 8, 159–199.

Zeki, S. (2007). The response properties
of cells in the middle temporal area
(Area MT) of owl monkey visual cor-
tex. Proc. R. Soc. Lond. B Biol. Sci.
207, 239–248.

Zhang, J., and Bogacz, R. (2010a).
Bounded Ornstein–Uhlenbeck
models for two-choice time con-
trolled tasks. J. Math. Psychol. 54,
322–333.

Zhang, J., and Bogacz, R. (2010b).
Optimal decision making on the
basis of evidence represented in
spike trains. Neural Comput. 22,
1113–1148.

Zhang, J., Bogacz, R., and Holmes, P.
(2009). A comparison of bounded
diffusion models for choice in time
controlled tasks. J. Math. Psychol. 53,
231–241.

Zhang, J., Hughes, L. E., and Rowe, J.
B. (2012). Selection and inhibition
mechanisms for human voluntary
action decisions. NeuroImage. doi:
10.1016/j.neuroimage.2012.06.058

Zhang, J., and Kourtzi, Z. (2010).
Learning-dependent plasticity with
and without training in the human
brain. Proc. Natl. Acad. Sci. U.S.A.
107, 13503–13508.

Zhang, J., Meeson, A., Welchman, A.
E., and Kourtzi, Z. (2010). Learn-
ing alters the tuning of functional
magnetic resonance imaging pat-
terns for visual forms. J. Neurosci. 30,
14127–14133.

Zhou, X., Wong-Lin, K., and Philip, H.
(2009). Time-varying perturbations
can distinguish among integrate-
to-threshold models for perceptual
decision making in reaction
time tasks. Neural Comput. 21,
2336–2362.

Conflict of Interest Statement: The
author declares that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 24 January 2012; accepted: 08
July 2012; published online: 01 August
2012.
Citation: Zhang J (2012) The effects of
evidence bounds on decision-making:
theoretical and empirical develop-
ments. Front. Psychology 3:263. doi:
10.3389/fpsyg.2012.00263
This article was submitted to Frontiers in
Cognitive Science, a specialty of Frontiers
in Psychology.
Copyright © 2012 Zhang . This is an
open-access article distributed under the
terms of the Creative Commons Attribu-
tion License, which permits use, distrib-
ution and reproduction in other forums,
provided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

www.frontiersin.org August 2012 | Volume 3 | Article 263 | 19

http://dx.doi.org/10.3389/fpsyg.2012.00263
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

	The effects of evidence bounds on decision-making: theoretical and empirical developments
	Neural mechanisms of perceptual decisions
	Models of decision-making
	The decision problem and the optimal decision-making theories
	Drift-diffusion model
	Ornstein–Uhlenbeck model
	Leaky-competing-accumulator model
	Decision-making models at different levels of complexity

	Theoretical considerations of evidence boundaries
	Boundary mechanisms
	Primacy and recency effects
	Performance of the bounded decision-making models

	Neural implementation of decision boundary
	Effects of boundary changes
	Fast boundary modulation: speed–accuracy tradeoff
	Slow boundary modulation: perceptual learning and aging

	Discussion
	Acknowledgments
	References


