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Abstract—A recent class of sequential matrix diagonalisation
(SMD) algorithms has been demonstrated to provide a fast
converging solution to iteratively approximating the polynomial
eigenvalue decomposition of a parahermitian matrix. However,
the calculation of an EVD, and the application of a full unitary
matrix to every time lag of the parahermitian matrix in the
SMD algorithm results in a high numerical cost. In this paper,
we replace the EVD with a limited number of Givens rotations
forming a cyclic-by-row Jacobi sweep. Simulations indicate that a
considerable reduction in computational complexity compared to
SMD can be achieved with a negligible sacrifice in diagonalisation
performance, such that the benefits in applying the SMD are
maintained.

I. INTRODUCTION

For many signal processing and in particular array problems,

the eigenvalue decomposition of that the data’s covariance

matrix is an essential tool, as it permits e.g. subspace decom-

positions or the construction of optimum linear processing of

MIMO system. For the broadband case with a multichannel

data vector x[n], the consideration of narrowband phase shifts

is insufficient, and time delays have to be properly addressed.

The space-time covariance matrix R[τ ] = E
{
x[n]xH[n− τ ]

}
,

where E{·} is the expectation operator and {·}H denotes

the Hermitian transpose, arises. Its z-transform is the cross-

spectral density (CSD) matrix R(z) =
∑

τ R[τ ]z−τ , which

is a polynomial matrix that cannot be decomposed by the

narrowband EVD.

A polynomial EVD (PEVD) was defined in the context of

subband coding [2], which is applied to the parahermitian

R(z) = R̃(z) such that

R(z) ≈ H(z)D(z)H̃(z) , (1)

with the parahermitian operator R̃(z) = R
H(z−1). The factors

on the l.h.s. of (1) include the paraunitary matrix H(z) such

that H(z)H̃(z) = H̃(z)H(z) = I, and the parahermitian

D(z), which is diagonal

D(z) = diag{D0(z) D1(z) . . . DM−1(z)} (2)

and spectrally majorised, such that the power spectral den-

sities Dm(ejΩ) = Dm(z)|z=ejΩ satisfy Dm+1(e
jΩ) ≥

Dm(ejΩ) ∀ Ω ,m = 0 . . . (M − 1). In [2], (1) is stated

with equality for the optimum subband coder, even though the

existence of an exact PEVD with FIR paraunitary matrices is

not guaranteed [3]. However, the close approximation in (1)

is supported in [4].

To calculate the PEVD, a number of iterative algorithms

have been developed. The second order sequential best rotation

(SBR2) algorithm [3] is a generalisation of Jacobi whereby

in every step the maximum off-diagonal element of R(z) is

eliminated by an elementary paraunitary operation. In this

operation, a shift operation brings this largest off-diagonal

element into the zero lag matrix, where its energy is transfered

onto the diagonal by a Givens rotation. An alternative approach

in [5] uses a fixed order with a lower computational complexity

than SBR2, but unlike SBR2 is not guaranteed to converge. A

modified SBR2 version, optimised for the coding gain prob-

lem, was proposed in [6], which identifies and eliminates the

maximum normalised off-diagonal element at every iteration

step.

A new family of algorithms, termed sequential matrix

diagonalisation (SMD), has been introduced in [7]–[9]. Dif-

ferent from SBR2, these algorithm do not only transfer the

maximum element, but eliminate all off-diagonal elements in

the zero lag plane by means of an EVD. SMD algorithms

have been demonstrated to diagonalise a parahermitian matrix

in fewer iterations, with higher precision, and with a lower

order paraunitary matrix than SBR2, which makes SMD very

attractive for applications that e.g. require accurate broadband

subspace decomposition [10]. A number of SMD algorithms

will be review later in this paper; while their application

is attractive, the computational complexity of computing the

actual decomposition is significantly higher than SBR2.

Therefore, this paper proposes a low cost approximation

of SMD algorithms. Based on a review of iterative PEVD

algorithms in Sec. II, Sec. III outlines the proposed approach,

which replaced the EVD at every iteration by a single Jacobi

sweep implemented by a fixed number of Given rotations in

a cyclic-by-row arrangement [11], [12]. Simulation results are

presented in Sec. IV to hightlight the performance of cyclic-

by-row approximations of the SMD benchmarked against

state-of-the-art algorithms. Finally , conclusions are drawn in

Sec. V.

II. ITERATIVE PEVD ALGORITHMS

A number of iterative PEVD algorithms have been discussed

in the literature, of which SBR2 [3], [6] is the most prominent



due to its simplicity and proven convergence. Here we will

not repeat the derivation of SBR2, but instead focus on the

recently derived class of sequential matrix diagonalisation

(SMD) algorithms [7], [9] and their characteristics.

A. General Iteration Approach

The SMD and SBR2 algorithm classes both perform a

sequence of paraunitary operations H
(i)(z), with iteration

index i, by which a parahermitian matrix R(z) is eventually

approximately diagonalised, such that the off-diagonal energy

of

S
(I)(z) = H̃(z)R(z)H(z) (3)

H(z) =

I∏

i=0

H
(i)(z) =

I∏

i=0

Λ(i)(z)Q(i) (4)

is minimised. Each iteration i consists of a delay operation

by a diagonal matrix Λ(i)(z), which creates an intermediate

parahermitian matrix

S
(i)′(z) = Λ̃

(i)
(z)S(i−1)(z)Λ(i)(z) , i = 1 . . . I , (5)

and a unitary operation Q(i) such that

S
(i)(z) = Q(i)H

S
(i)′(z)Q(i) (6)

completes the ith iteration.

The delay operation Λ(i)(z) is based on an elementary delay

Λ(i,j)(z) = diag{1 . . . 1
︸ ︷︷ ︸

k(i,j)−1

z−τ (i,j)

1 . . . 1
︸ ︷︷ ︸

M−k(i,j)

} , (7)

which delays the k(i,j)th column by τ (i,j) lags. In general,

at the ith iteration, a maximum of M − 1 columns could be

shifted, resulting in

Λ(i)(z) =

J∏

j=1

Λ(i,j)(z) (8)

with J ≤ M − 1. For the standard versions of SBR2 [3], [6]

and SMD as introduced in [9], only a single elementary delay

J = 1 is used.

Per iteration, the various iterative PEVD algorithms differ

in the selection of the parameters k(i,j), τ (i,j), and the con-

struction of the unitary matrix Q(i). This parameter selection

will be detailed below. The iteration stops when a threshold

for a norm on the off-diagonal elements is passed, whereby

the norm selection of specific to the particular iterative PEVD

method.

B. Second Order Sequential Best Rotation Algorithm

In the SBR2 algorithm, at every iteration the maximum

off-diagonal element is identified, transferred to the lag-zero

slice by a single elementary delay matrix, J = 1, and then

eliminated by a Givens rotation.

Based on a modified column vector ŝ
(i)
k [τ ] ∈ CM−1

containing all elements in the k(i)th column of S(i)[τ ] except

for the diagonal element, the optimum parameter set for (7)

is determined by

{k(i,1), τ (i,1)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖∞ , (9)

such that in the ith iteration the optimum off-diagonal element

will now lie in the lag zero matrix S(i)′[0].
The maximum element is then transfered onto the diagonal

of S(i)′[0] by means of a Givens rotation, such that

Q(i) =










I1

cosϕi . . . ejϑ
(i)

sinϕ(i)

... I2
...

−e−jϑ(i)

sinϕ(i) . . . cosϕ(i)

I3










(10)

where the rotation angles ϕ(i) and ϑ(i) are determined by

the maximum element identified by the search in (9). The

identity matrices Ij , j = 1, 2, 3, in (10) have dimen-

sions (min{m(i), k(i)} − 1), (|m(i) − k(i)| − 1) and (M −
max{m(i), k(i)}+1), respectively. The resulting unitary matrix

Q(i) has to be left- and right-multiplied to every lag matrix

S(i)′[τ ] according to (6); however, no full matrix multiplication

is required, due to the sparse structure of Q(i) only two rows

and columns in S
(i)′(z) will be affected.

The convergence of SBR2 has been proven in [3] by

showing that the paraunitary operations do not alter the total

energy in S
(i)′(z), while in every step the off-diagonal energy

is further minimised. The algorithm stops after I iterations,

once the maximum off-diagonal element

max
k,τ

‖ŝ
(I)
k [τ ]‖∞ < ρ (11)

falls below a predetermined threshold ρ.

C. Sequential Matrix Diagonalisation Algorithm

Different from SBR2, in the ith iteration the SMD approach

will not just eliminate the largest off-diagonal element but

diagonalises S(i)[0]. Based on the initialisation

S(0)[0] = Q(0)HR[0]Q(0) , (12)

with Q(0) the modal matrix obtained from the EVD of R[0],
every subsequent iteration brings on row and column to

S(i)′[0], whose energy is then transferred onto the diagonal

by an EVD.

To maximise the diagonalisation, the SMD parameter selec-

tion in the ith iteration is

{k(i,1), τ (i,1)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖2 , (13)

which differs from (9) in the use of the l2 instead of the l∞
norm. To achieve complete diagonalisation of S(i)[0], Q(i) is

the modal matrix obtained by the EVD of S(i)′[0].
The convergence of SMD is proven in [9], with a stopping

criterion similar to (11) but based on the l2 norm according

to (13). SMD has been shown to provide a much faster

diagonalisation than SBR2 with a lower number of iterations,



because more energy is transferred from off-diagonal to on-

diagonal elements. However, an EVD has to be calculated at

every iteration, and the modal matrix Q(i) has no longer the

sparse structure of the Givens rotation in (10), requiring a full

matrix multiplication at every lag τ .

While the EVD and full matrix multiplications makes the

SMD algorithm much more costly to calculate compared to

SBR2, two benefits can be noted:

• SMD can reach levels of diagonalisation that SBR2

cannot achieve;

• SMD generally leads to lower-order paraunitary matri-

ces H(z), which have a lower cost compared to those

obtainable by SBR2.

Therefore, for applications such as those requiring broadband

signal subspace decompositions, SMD permits better perfor-

mance with lower order paraunitary filter banks compared to

SBR2.

D. Multiple Shift Maximum Element SMD Algorithm

To simplify the search of the SMD algorithm and avoid

the calculation of modified column norms at every iteration, a

maximum element SMD (ME-SMD) algorithm has been pro-

posed in [9]. Replacing the l2 norm in (13) by the l∞ norm, the

parameter search and delay operation within a single iteration

is identical to SBR2. However, the zero-lag slice S(i)[0] is still

diagonalised at every step, such that from iteration to iteration

step, ME-SMD differs from SBR2. The ME-SMD algorithm

has a very similar behaviour to the standard SMD algorithm,

in terms of convergence, but also in terms of complexity,

which is dominated by the EVD calculation and modal matrix

application, rather than the parameter search.

Realising that the main advantage of SMD over SBR2

comes from the enhanced reduction in off-diaginal energy at

every iteration, a multiple shift ME-SMD algorithm has been

proposed [7], which shifts not one but several columns with

elements onto the lag zero slice. As a column operation will

partially undo previous row operations and vice versa, the

sequence of these shifts is important. This sequence is guided

by the definition of search spaces S(i,j) to which the parameter

search is limited during the jth step of the ith iteration [7],

[8], with S(i,j) being a function of both S(i,j−1) and k(i,j−1)q.

Based on S(i,j), the identified parameter set will be

{k(i,j), τ (i,j)} = arg max
k∈S(i,j) ,τ

‖ŝ
(i−1)
k [τ ]‖2 , (14)

Different search spaces have been defined to ensure that a

total of J = M − 1 maximal can be brought onto the zero lag

matrix [7], [8]. All have in common a considerably enhanced

diagonalisation over SMD as discussed in Sec. II-C.

III. CYCLIC-BY-ROW ITERATIVE PEVD

Sec. II-C identified the computational cost to compute an

approximate PEVD via SMD algorithms as a potential obsta-

cle. In experiments using Matlab’s profiler, the calculation of

an EVD per iteration step was singled out as the major con-

tributor to this high cost. Therefore, this section proposes an

1 2 3 4

5 6 7

8 9

10

Fig. 1. Cyclic-by-row execution of Givens rotations implementing one Jabobi
sweep, exemplified for a 5× 5 matrix with start • and end point ◦.

inexpensive numerical approximation of the EVD by a Jacobi

sweep consisting of a limited number of Givens rotations in a

cyclic-by-row approach [12]. Below, Sec. III-A motivates the

approach and Sec. III-B outlines the general procedure, which

is then applied to a number of SMD algorithms in Sec. III-C.

A. EVD Approximation

A number of variations exist to implement the EVD of

a Hermitian matrix [11], [12]. An iterative approach to an

approximate EVD is the classical Jacobi algorithm [12], which

consists of a sequence of Givens rotation targetting the maxi-

mum off-diagonal element at each iteration step — note that

the SBR2 algorithm is a generalisation of this technique to the

parahermitian case [3]. A simpler alternative which does not

require a maximum search at every step is the cyclic-by-row

algorithm [11], [12], which is outlined below

The cyclic-by-row approach uses a sequence of so-called

Jacobi sweeps until off-diagonal elements are surpressed be-

low a given threshold or a predefined number of sweeps has

been executed. A Jacobi sweep for an M ×M matrix consists

of a fixed number of (M2 − M)/2 Givens rotations, which

are applied in a cyclic row approach as highlighted in Fig. 1.

Each Givens rotation as defined in (10) will transfer the energy

of an off-diagonal element onto the diagonal while undoing

some of the work of previous Givens rotations. However, over

the course of one Jacobi sweep, the off-diagonal energy is

reduced. The EVD approximation becomes more accurate the

more Jacobi sweeps are performed.

B. Cyclic-by-Row Algorithm

Iterative approximate PEVD algorithms such as SBR2 and

SMD minimise off-diagonal energy until a predefined thresh-

old ρ is reached, as described by (11). Therefore, within one

iteration step of SMD, a full EVD with a suppression of off-

diagonal energy to numerically zero appears to be an overkill,

and a lower precision with a limited number of Jacobi sweeps

will very likely suffice to achieve the task of reducing off-

diagonal energy below the value ρ.

Experimentation has shown that for the combination with

SMD algorithms detailed below, a single cyclic-by-row Ja-

cobi sweep proved sufficient and provided the best cost-

performance trade-off, as we will detail in Sec. IV. With this

approach, the unitary Jacobi rotation matrix Q(i) from SBR2



in (10) now becomes the product of N = (M2−M)/2 Givens

rotations,

Q(i) =
N∏

n=1

Q(i,n) , (15)

where Q(i,n) is the nth Givens rotation used in the ith iteration

of an iterative PEVD algorithm using the single sweep cyclic-

by-row approach.

C. Cyclic-by-Row SMD Algorithms

The cyclic-by-row single Jacobi sweep approximation of the

EVD can be embedded in all algorithms of the SMD family. It

may be argued that the term sequential matrix diagonalisation

is no longer appropriate, as the approximate EVD also results

in only an approximate diagonalisation, and algorithms will

therefore share some properties of SBR2, where only part of

the off-diagonal energy of the lag zero matrix is transfered onto

the diagonal. However, we assume that the approximation is

within the bound ρ for off-diagonal energy, and that therefore

the term diagonalisation is justified within the SMD family’s

limited, pre-defined accuracy of decomposition.

All SMD algorithms perform an initial diagonalisation by

an EVD according to (12), which in the cyclic-by-row ver-

sion is approximated by a single Jacobi sweep. The EVD

in subsequent iterations is also replaced by a single Jacobi

sweep, and the unitary matrix (15) as applied in (6) can be

implemented as a sequence of Givens rotations rather than a

full matrix multiplication. The specific SMD family versions

therefore consistently apply the single Jacobi sweep approach,

and only differ in the way columns and rows are identified for

transfer to the lag zero matrix using (5) at the ith iteration:

• SMD [9]: in its original form, the sequential matrix diago-

nalisation algorithm transfers the column with the largest

off-diagonal column norm onto the lag zero matrix;

• ME-SMD [9]: with a simplified search compared to

SMD, the column containing the maximum off-diagonal

element is transfered to the lag zero matrix;

• MSME-SMD [7]: this multiple-shift version transfers

(M − 1) colmns identified by their maximum elements;

• C-MSME-SMD [8]: a causally-constrained multiple-shift

version, with a more restricted search space for maxima

as compared to MSME-SMD.

The cyclic-by-row approximations of these algorithms will be

compared to their standard versions as well as to SBR2 in the

next section.

IV. RESULTS

A. Simulation Set-Up and Performance Metrics

To assess the proposed iterative PEVD algorithms, we con-

sider the diagonalisation performance over an ensemble of 103

random 5× 5 parahermitian matrices R(z) of order 11. Each

ensemble probe is generated from a random polynomial matrix

A(z) ∈ C5×5 of order 6 with independent and identically

distributed zero mean unit variance complex Gaussian entries,

where R(z) = A(z)Ã(z).
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Fig. 2. Normalised remaining off-diagonal energy E
(i)
norm according to (16)

for various iterative PEVD algorithms versus iterations.

To measure diagonalisation, the remaining normalised off-

diagonal energy after i iterations,

E(i)
norm =

∑

τ

∑M

k=1 ‖ŝ
(i)
k [τ ]‖22

∑

τ ‖R[τ ]‖2F
, (16)

is considered, where ŝ
(i)
k [τ ] is the modified column vector

of (9) and ‖ · ‖F the Frobenius norm. The computational

complexity of various algorithms is measured by the execution

time in Matlab R2013a under Ubuntu 12.04 on a Dell Precision

T3610 with Intel R© Xeon R© E5-1607V2 3.00 GHz x 4 cores

and 7.7 GB RAM.

B. Convergence Speed

The diagonalisation performance versus iterations is shown

in Fig. 2 for the various algorithms. The SMD family con-

verges generally significantly faster than SBR2, as also high-

lighted in [7]–[9], with the multiple-shift versions performing

best. Interestingly, the cyclic-by row single Jacobi sweep

approximations of the EVD lead to no noticeable performance

degradation for the SMD family of algorithms, thereby con-

firming the single sweep selection in Sec. III-B.

C. Calculation Cost

The computation time required for i iterations of the differ-

ent iterative PVD algorithms is plotted in Fig. 3. Compared

to SBR2, the SMD algorithms require much more processing

time. However, a significant reduction in cost can be noticed

for the cyclic-by-row approximations of SMD algorithms.

These are still more costly than the SBR2 algorithm, which

only requires a single Givens rotation per iteration and there-

fore is guaranteed to have a lower complexity.

More interesting than the cost per iteration is the required

execution time to reach a specific diagonalisation. Fig. 4 shows

the normalised remaining off-diagonal energy in dependency

of the time taken to calculate this specific decomposition. This
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Fig. 4. Normalised remaining off-diagonal energy versus mean execution
time for various iterative PEVD algorithms.

graph is obtained by merging the information of Fig. 2 and

3 through eliminating the number of iterations. Using a full

EVD, the SMD family of algorithms are inferior to SBR2 is

only low diagonalisation is required. For high values of diago-

nalisation, SBR2 cannot provide the required diagonalisation,

and the computationally expensive SMD family is on the only

option, with particular benefit for multiple-shift versions as

established in [7], [8].

Using the cyclic-by-row approximation, the actual cost to

reach a specific level of diagonalisation is reduced below

even what is required for SBR2. Therefore, the cyclic-by-

row approximation of SMD algorithms does not only yield

lower application cost — as established in [7], [9], SMD

decompositions yield paraunitary H(z) of lower order — but

in terms of total cost per decomposition is also less expensive

to calculate than SBR2.

V. CONCLUSION

This paper has presented a cyclic-by-row approximation of

sequential matrix diagonalisation algorithms. Advantageous in

application because of their excellent diagonalisation perfor-

mance and lower order paraunitary filter banks compared to

sequential best rotation algorithms, the SMD family has been

previously computationally costly to calculate due an EVD

required at every iteration. This costly step has been replaced

by a single Jacobi sweep using a fixed number of Givens

rotations in a cyclic-by-row approach.

Simulation results indicate that the algorithm performance

is uncompromised by this approximation, such that SMD algo-

rithms retain their superior features for application. However,

the computational cost is reduced such that a significantly

lower complexity to calculate a decomposition compared to

standard SMD implementation is achieved. This holds also

for lower levels of diagonalisation, where SBR2 previously

retained an advantage in terms of calculation cost, such that

the proposed cyclic-by-row approximations of SMD algrithms

now globally offer the best cost-performance trade-off both in

terms of calculating and applying an iterative PEVD.
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