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Abstract 

Cell penetrating peptides (CPP) are short amino acid sequences with the potential to be 
used as vectors for delivering macromolecular therapeutics into cells. Five CPPs [R8, FFR8, 
(RXR)4, TP10 and PFV] were studied in primary human chronic lymphocytic leukaemia 
(CLL) cells using fluorescence-labelled CPPs. Uptake, sub-cellular localisation and toxicity 
were studied by confocal microscopy and flow cytometry. Two of the CPPs were selected, 
based on their cellular uptake and intracellular distribution characteristics, and used as 
delivery vectors for peptide-based NF-κB inhibitors.  

Four novel NF-κB inhibitory CPPs directed against p50 and p65 subunits were tested in 
primary CLL cells. Apoptosis was measured using AnnexinV/PI labelling and a caspase-3 
activity assay by flow cytometry. Apoptosis was evident after one hour in cells treated with 
TP10-p50i and TP10-p65i and the LC50 of TP10-p50i and TP10-p65i was 6 μM and 10 μM 
respectively at 24 hours. This represents a ten-fold increase in toxicity when compared to 
the commercially available CPP NF-κB-inhibitors.  

Western blot analysis of NF-κB subunit translocation revealed NF-κB inhibition in some of 
the samples treated with TP10-p50i. However, the effects of the peptide varied from 
sample to sample. Studies using EMSA to measure NF-κB DNA binding revealed similar 
inconsistencies, even when CLL cells were stimulated with CD40L or CpG.  

Flow cytometic analysis of cell surface makers in CLL cells demonstrated that TP10-p50i 
did not alter the expression of CD69, a cell surface molecule regulated by NF-κB, indicating 
that the variations seen previously by EMSA and western blotting did not result from direct 
NF- κB inhibition. Although the exact mechanism of action of TP10-p50i was not 
determined, the cytotoxic effects observed with TP10-p50i are not likely to be related to a 
modulation of NF-κB activity.  
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Ó mar salgado, quanto do teu sal  
São lágrimas de Portugal!  

Por te cruzarmos, quantas mães choraram,  
Quantos filhos em vão rezaram!  

Quantas noivas ficaram por casar  
Para que fosses nosso, ó mar!  

 

Valeu a pena? Tudo vale a pena  
Se a alma não é pequena.  

Quem quer passar além do Bojador  
Tem que passar além da dor.  

Deus ao mar o perigo e o abismo deu,  
Mas nele é que espelhou o céu. 

 
 

Oh salty sea, how much of your salt 
are tears of Portugal! 

For crossing you, how many mothers cried, 

how many sons in vain prayed! 
How many brides stayed unmarried 

to make you ours, oh sea! 
 

Was it worth it? Everything is worth it 
if the soul is not small. 

Who wants to pass beyond the Bojador 
has to pass beyond the pain. 

God gave to the sea the peril and abyss, 

but in it mirrored the sky. 
 

Fernando Pessoa 
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Chapter 1- Introduction 

 

1.1. Chronic Lymphocytic Leukaemia  

Chronic lymphocytic leukaemia (CLL) is a lymphoid malignancy characterised by the 
expansion of CD19+/CD5+ B lymphocytes (B-cells) in the peripheral blood, bone 

marrow and lymph nodes (Deaglio et al., 2008; Lobetti-Bodoni et al., 2013). The view 

of CLL is that there is a dynamic balance between cells circulating in the blood and 
cells located in niches in lymphoid organs (Zenz et al., 2010). The circulating 

lymphocytes resemble mature B-cells and are relatively resistant to apoptosis, whereas 
the lymphocytes in the lymphoid organs either undergo proliferation or apoptosis 

according to the microenvironment signals (Chiorazzi et al., 2005). 

In the United Kingdom, around 3,800 people are diagnosed with CLL every year; this 

represents 35% of all leukaemia cases and it makes it the most common leukaemia in 
the Western world (Haematological Malignancy Research Network, 2012). The 

incidence of CLL in the UK is approximately seven new cases per 100,000 persons, 
with a male to female ratio of 1.7:1 (Haematological Malignancy Research Network, 

2012). The diagnosis often occurs at an early stage of the disease following a routine 

blood analysis and around 75% of the diagnosed individuals are over the age of 60 
(Lobetti-Bodoni et al., 2013).  

The diagnosis of CLL is defined by an absolute lymphocyte count of at least 5x109 B-
cells/L persistent for at least 3 months, expressing the characteristic phenotypic profile 

of CLL cells (CD5 and CD23 positive B-cells) (Lobetti-Bodoni et al., 2013). Upon 
confirmation of the diagnosis of CLL the clinical staging is assessed. There are two 

staging systems in place, the Rai and Binet systems (Binet et al., 1981; Rai et al., 
1975). The Rai system is based on the concept that CLL is a gradual disease and it 

can be categorised according to the symptoms presented (i.e. lymphocytosis, 

lymphadenopathy, splenomegaly, hepatomegaly, anaemia and thrombocytopenia) (Rai 
et al., 1975). The Binet system takes into account the number of enlarged lymphoid 

tissues and the presence of anaemia and/or thrombocytopenia (Binet et al., 1981). 
Both systems are in wide use, but the International Workshop Group in CLL 

recommends that in practice, they should be used in one integrated system where 
each Binet stage is further identified by the Rai stage (i.e. A0, AI, AII, BI, BII, CIII, CIV) 
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(International Workshop on Chronic Lymphocytic Leukemia, 1989). However, this has 
not been widely implemented, and the majority of clinicians use either the Rai or Binet 

systems (International Workshop on Chronic Lymphocytic Leukemia, 1989). The 
staging systems remain the most useful clinical tools for the assessment of CLL, as 

they only require a physical examination and standard laboratory tests (Hallek, 2013; 

Lobetti-Bodoni et al., 2013). Staging is used to determine the clinical management of 
individual patients; patients with advanced stage disease often require immediate 

treatment whilst patients with early stage disease are usually monitored by a watchful 
waiting strategy (Lobetti-Bodoni et al., 2013). 

The evaluation of additional prognostic factors, such as serum markers (i.e. lactate 
dehydrogenase and β2-microglobulin), cytogenetic analysis by fluorescence in situ 

hybridisation (FISH; del11q, del13q, trisomy 12 and del17) and cellular markers (i.e. 
IGHV mutational status, ZAP-70 and CD38) contributes to determine the tumour 

burden and to more accurately determine the prognosis of the disease (Lobetti-Bodoni 
et al., 2013).  

 

Table 1.1 - CLL Staging Systems. Adapted from (Binet et al., 1981; Rai et al., 1975). 

Staging 
System Stage Clinical manifestations Disease Stage 

Rai 

0 Lymphocytosis only Early 
I Lymphocytosis and lymphadenopathy Intermediate 

II 
Lymphocytosis, splenomegaly and/or 
hepatomegaly, with/without 
lymphadenopathy 

III Lymphocytosis and anaemia, 
with/without organomegaly 

Advanced 

IV Lymphocytosis and thrombocytopenia, 
with/without anaemia and organomegaly 

Binet 

A Fewer than 3 areas of enlarged lymphoid 
tissue 

Early 

B More than 3 areas of enlarged lymphoid 
tissue 

Intermediate 

C Anaemia and thrombocytopenia Advanced 
 

1.1.1. Cytogenetic markers 

A set of specific genetic abnormalities has been identified as having predictive value for 

CLL outcome: deletion at 13q14, trisomy 12, deletion at 11q22-23 and 17p deletion 
(Döhner et al., 2000). 
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The most common genetic abnormality in CLL is the deletion at 13q14 (Döhner et al., 
2000). Calin et al. (2002) identified a locus in the gene DLEU2 that codes for two 

microRNAs (also known as miRNA or miR), miR15a and miR16-1 that was lost in the 
majority of CLL cases. MicroRNAs are small RNA molecules that regulate protein 

expression by degrading mRNA or by inhibiting translation to protein (Calin et al., 

2002). miRNAs usually have a large number of targets, but miR15a and miR16-1 have 
been shown to induce apoptosis by regulating BCL2 (Cimmino et al., 2005). The 

deletion of this cluster could affect survival of CLL cells. Mice with a knockout in the 
miR15a/16-1 cluster of DLEU2 have been shown to develop CD5+ leukaemias similar 

to CLL (Klein et al., 2010; Lia et al., 2012). 

Approximately 15% of CLL patients present with trisomy 12, and they have a shorter 

survival time than patients with a normal FISH panel analysis (Chiorazzi, 2012). An 
association between trisomy 12 and the presence of mutations in the NOTCH1 gene 

has been postulated (Chiorazzi, 2012). Patients with NOTCH1 mutations have shorter 
time to first treatment (TTFT) and overall survival (OS) (Fabbri et al., 2011; Lopez-

Guerra et al., 2012), but when combined with trisomy 12 both TTFT and OS are even 

shorter (Balatti et al., 2012).  

Another cytogenetic marker is the 11q22-23 deletion, found in approximately 15% of 

CLL patients. These patients often present with bulky lymphadenopathy, an unusual 
feature in CLL, and have a more aggressive disease with shorter survival (Döhner et al., 

2000). This deletion occurs more frequently in unmutated CLL (U-CLL) patients, which 
could explain the adverse clinical outcome (Damle et al., 1999; Hamblin et al., 2002). 

The 11q22-23 deletion often involves the Radixin (RDX) and Ataxia telangiectasia 
mutated (ATM) genes (Stilgenbauer et al., 2002). The ATM gene is involved in DNA 

repair, therefore the deletion of this gene can lead to enhanced clonal aggressiveness 
and evolution due to the acquisition of novel genomic variants (Braggio et al., 2012; 

Gunnarsson et al., 2011; Knight et al., 2012). 

Approximately 7% of CLL patients have a 17p deletion, with an adverse clinical course 
possibly caused by TP53 loss (Döhner et al., 2000). This deletion facilitates the 

expansion of a more aggressive clone and it is often associated with a poor response 
to therapy or relapse (Lozanski et al., 2004). Abnormalities with TP53 seem to be 

related to low levels of miR34a (Zenz et al., 2009), which reinforces that miRNA levels 
play an important role in CLL (Chiorazzi, 2012). 
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1.1.2. Therapy 

CLL is predominantly a leukaemia of the elderly, due to the majority of patients being 

diagnosed over the age of 60. Although the majority of patients do not require initial 
treatment and a “watch and wait” approach is put in place, when treatment is required it 

needs to be tailored individually according to disease staging and ability of the patient 

to tolerate toxic agents (Hallek, 2013). The initial therapy of newly diagnosed fit and 
relatively healthy patients is usually a combination of fludarabine with 

cyclophosphamide and rituximab (FCR) or fludarabine and rituximab (FR), which have 
shown high response rates (Wu et al., 2013). With an overall response rate of 

approximately 90% and a complete remission between 30 and 75%, it has been shown 
to be the ideal therapy for young patients (<65 years). Therapy for elderly and unfit 

patients is the use of single agent chlorambucil (Hallek, 2013). Its low toxicity, low cost 
and convenience of being an oral drug are the main advantages (Hallek, 2013). The 

disadvantages of this agent are the low to non-existent complete remission rate and 
side effects that occur from prolonged use, such as cytopenia, myelodysplasia and 

secondary acute leukaemia (Hallek, 2013).  

The introduction of monoclonal antibodies into CLL therapy has improved the treatment 
of this disease. CD20 is expressed by mature B-cells and the majority of B-cell 

malignancies, therefore it became a very attractive target (Hallek, 2013). Rituximab is 
an anti-CD20 antibody less effective as a single agent, but highly effective when used 

in combination with other agents (Hallek, 2013). Nevertheless, fludarabine- and 
pentostatin-based therapies induce grade 3 and 4 neutropenia, as well as suppression 

of T-cell mediated immunity (Danilov, 2013). To overcome this, other anti-CD20 
antibodies have been designed that challenge the efficiency of Rituximab, such as 

Ofatumumab and Obinutuzumab (GA101) (Hallek, 2013). Another monoclonal antibody 
used for CLL therapy is Alemtuzumab, an anti-CD52 agent (Hallek, 2013). This 

antibody showed response rates of 33 to 53% in patients with advanced CLL (Hallek, 

2013). It also showed improved efficiency in patients with high-risk genetic markers 
such as del11q, del17p and TP53 mutations (Hallek, 2013). 

New agents have been introduced to CLL therapy in the past few years, such as 
lenalidomide. Lenalidomide is classed as an immunomodulatory drug and is derived 

from thalidomide but its mechanism of action is currently unknown (Ferrajoli et al., 
2008). However, it is known to inhibit tumour necrosis factor alpha (TNF-α) and 

stimulate T-cell proliferation and activation of natural killer (NK) cells (Ferrajoli et al., 
2008). Lenolidomide has shown promising results in patients with relapsed/refractory 
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CLL (Wu et al., 2013). Bendamustine is a unique alkylating agent, with several 
mechanisms of actions, that has been shown to induce and overall response rate of 

59% in previously untreated CLL patients (Wu et al., 2013). Ibrutinib is a BTK inhibitor, 
targeting the B-cell recptor (BCR) signalling in CLL, and it has been shown to be well 

tolerated in CLL patients, producing a response rate of 60% and being particularly 

active in relapsed/refractory CLL patients (Advani et al., 2013). Idelalisib, also known 
as GS-1101 and CAL-101 is a specific inhibitor of PI3K that produces potent responses 

in CLL (Wu et al., 2013). It has been shown to be a good agent for relapsed/refractory 
CLL patients and recent studies showed overall response rates higher than 70% for 

combination therapies with Rituximab and/or Bendamustine (Wu et al., 2013). 
Navitoclax, also known as ABT-263, is an inhibitor of the pro-survival Bcl-2 protein 

family. It mimics the BH3 domain found in this family of proteins (Wu et al., 2013). 
Although it produces favourable responses in relapsed/refractory CLL patients and also 

treatment-naive patients it has recently been replaced by ABT-199 that overcomes the 
platelet inhibition problems encountered with ABT-263 (Wu et al., 2013) 

 

1.1.3. The biology of CLL 

1.1.3.1. IGHV mutational status 

Normal B-cells and CLL cells express a BCR on their membrane, which is composed of 
a surface membrane immunoglobulin (smIg) homodimer and a non-covalently bound 

heterodimer Igα/Igβ (CD79a/CD79b; Figure 1.1). However, CLL cells have low 
expression of immunoglobulins (Ig), which is a hallmark of the disease (Vuillier et al., 

2005). The majority of CLL cells express CD5 and IgM/IgD, which is the phenotype of 
mantle zone naive cells, which under normal conditions express unmutated IGHV 

genes (Dighiero & Hamblin, 2008). Each normal and malignant B-cell displays a 
distinct BCR that results from the recombination of the V (variable), D (diverse) and J 

(joining) segments for the Ig heavy chain and V and J for the Ig light chain (Zenz et al., 

2010). To increase the BCR repertoire, B-cells undergo a process called somatic 
hypermutation (Klein & Dalla-Favera, 2008). Naive B-cells are recruited to the T-cell 

rich area of peripheral lymphoid tissue were they become activated by CD4+ T-cells 
(Klein & Dalla-Favera, 2008). Activated B-cells differentiate into centroblasts that 

undergo clonal expansion in the germinal centre (B-cell rich area in lymphoid tissue) 
and during proliferation the process of somatic hypermutation introduces base-pair 

changes into the variable region of the rearranged IGHV genes that results in the 
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production of a wide range of BCRs (Klein & Dalla-Favera, 2008). Centroblasts 
become centrocytes and move to the light zone were helper T-cells and follicular 

dendritic cells select the centrocytes with improved binding capability to the antigen 
that initiated the immune response (Klein & Dalla-Favera, 2008). B-cells with reduced 

binding capacity undergo apoptosis and B-cells with increased binding capacity either 

become memory B-cells or undergo class switching and become plasma cells (Klein & 
Dalla-Favera, 2008). 

Research into the IGHV mutational status of CLL patients helped divide the disease 
into two subgroups, the mutated (M-CLL) and U-CLL. The two groups follow different 

clinical courses, with U-CLL being the more aggressive form with a shorter survival 
time (Damle et al., 1999; Hamblin et al., 1999). These differences led to the theory that 

CLL arises from two distinct cellular origins and therefore represents two different 
diseases (Chiorazzi & Ferrarini, 2011). However, gene expression profiling of U-CLL 

and M-CLL showed that the profiles were very similar to each other whilst being highly 
different from normal B-cells (Klein et al., 2001; Rosenwald et al., 2001). This indicated 

that probably both U-CLL and M-CLL have the same cellular origin (Chiorazzi & 

Ferrarini, 2011). Recently, Seifert et al. (2012) showed that both U-CLL and M-CLL 
originate from mature CD5+ B-cells. U-CLL is derived from unmutated CD5+CD27- B-

cells whereas M-CLL is derived from mutated CD5+CD27+ B-cells (Seifert et al., 2012). 
Furthermore, both normal mutated CD5+CD27+ B-cells and M-CLL cells show 

mutations in the BCL6 gene, a trait of germinal centre somatic hypermutation (Seifert et 
al., 2012). It is also important to know that although U-CLL cells derive from CD27 

negative cells, during the course of the disease, CLL cells can upregulate CD27 
expression following T-cell independent activation (Seifert et al., 2012). 

Differences in the clinical course of U-CLL and M-CLL are likely to be due to external 
signals and subsequent responsiveness, such as BCR signalling (Chiorazzi & Burger, 

2013). M-CLL cells respond to a specific subset of antigens that occur infrequently and 

consequently the clone either remains stable or expands at a slower rate. U-CLL cells 
express polyreactive and low-affinity BCRs that react to a wider range of antigens 

(Chiorazzi & Burger, 2013). Consequently, U-CLL react more frequently, which can 
lead to increased BCR signalling and increased expression of molecules such as zeta-

associated-70 (ZAP-70) and CD38 (Chiorazzi & Burger, 2013; Dighiero & Hamblin, 
2008; Zenz et al., 2010). 
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Figure 1.1 – The B-cell receptor and other CLL prognostic markers. 
The BCR is composed of two Ig heavy and light chains (variable and constant regions), and Igα/Igβ 
(CD79a and CD79b), which contain an intracellular activation motif that transmits signals to intracellular 
tyrosine kinases, such as Syk and Lyn. Adapted from (Chiorazzi & Burger, 2013; Dighiero & Hamblin, 
2008; Zenz et al., 2010). 
 

1.1.3.2. ZAP-70 

ZAP-70 is a cytoplasmic tyrosine kinase, initially identified in T-cells and subsequently 

identified in B-cells at various differentiation stages (Chen et al., 2002; Elder et al., 
1994; Iwashima et al., 1994). It has a central role in T-cell biology and it is involved in 

cell migration, apoptosis, T-cell receptor signalling and cell activation (Iwashima et al., 
1994). Both normal and malignant B-cells express this molecule, where it plays a role 

in BCR signalling, upon antigen activation (Figure 1.1) (Chen et al., 2002). 

Conflicting results regarding the independent prognostic value of ZAP-70 in CLL have 
been published. The CLL Research Consortium performed a large study involving 307 

CLL patients, where ZAP-70 values were measured alongside the mutational status of 
IGHV (Rassenti et al., 2004). This study showed that in patients with levels of ZAP-70 

above a certain threshold, the TTFT was not significantly different between M-CLL and 
U-CLL. However, for patients considered to be ZAP-70 negative the TTFT was 

significantly longer (Rassenti et al., 2004). The group concluded then that “ZAP-70 is a 
stronger predictor of the need for treatment in B-cell CLL” (Rassenti et al., 2004). In 

2012, Pepper et al. published a study of prognostic markers in Binet stage A CLL 

patients, which included 1154 patients. In this study it was demonstrated that ZAP-70 
had no independent value as a prognostic marker for stage A CLL patients (Pepper et 

al., 2012). The most obvious difference between the two studies was that Rassenti et 
al. (2004) did not take into account the disease stage of the patients when comparing 

ZAP-70 levels but their cohort contained a significant number of advanced stage 

CLL cell

CD38

Antigen

smIgIgα/Igβ

Lyn
Syk ZAP-70

CD49d
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patients. It has been shown previously that ZAP-70 can change over the course of the 
disease (Smolej et al., 2008; Vroblova et al., 2010), so it is possible that ZAP-70 has 

limited clinical relevance at early stages of the disease but its expression increases as 
the disease progresses. 

The association of an increase in ZAP-70 with a more adverse clinical course is 

thought to be related to increased BCR signalling and is not associated with the kinase 
activity of this molecule (Gobessi et al., 2007). ZAP-70 has been shown to delay the 

internalisation of IgM and CD79b from the cellular membrane and this, in turn, allows 
for prolonged BCR signalling (Chen et al., 2008). ZAP-70 positive CLL cells are also 

more likely to express molecules such as CD49d and chemokine receptors such as 
CCR7, promoting migration and apoptosis inhibition (Calpe et al., 2011). This indicates 

that ZAP-70 might induce cell migration to solid tissues where further BCR and 
chemokine signalling are stimulated, resulting in prolonged survival and proliferation of 

CLL cells (Chiorazzi, 2012). 

 

1.1.3.3. CD38 

CD38 is a transmembrane glycoprotein expressed on a variety of lymphoid and non-
lymphoid cells (Deaglio et al., 2008; Malavasi et al., 2011; Rosenquist et al., 2013). The 

level of expression on lymphoid cells varies according to their differentiation status. It is 
initially expressed in immature haematopoietic cells, but it is down regulated on mature 

cells. Upon activation of B- and T-cells the levels increase greatly (Funaro et al., 1990). 
CD38 can act both as a receptor and as an enzyme (Malavasi et al., 1994). The 

extracellular domain of CD38 has an enzymatic site used to regulate intracellular levels 
of calcium (Howard et al., 1993). Upon CD38 ligation with its non-substrate ligand 

CD31, a signalling cascade is induced that involves tyrosine phosphorylation of a 
series of targets and an increase in intracellular calcium (Deaglio et al., 2000). Both the 

enzymatic and receptor capabilities of this molecule result in profound changes in the 

cell prompting activation, proliferation, differentiation and migration, depending on the 
cell lineage (Deaglio et al., 2008). 

In CLL, CD38 is used as an independent prognosis marker and much like IGHV 
mutational status, it is used to divide the disease into two subgroups with distinct 

clinical outcomes (Chiorazzi, 2012; Deaglio et al., 2010; Malavasi et al., 2011; Pepper 
et al., 2012). CD38 is measured by flow cytometry and the optimal cut-off value for the 
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expression of this molecule varies from study to study, ranging from 5 to 30% 
(Rosenquist et al., 2013). CD38 expression above the cut-off point is associated with 

shorter survival, shorter TTFT and higher absolute lymphocyte count (Damle et al., 
1999). CD38 positivity, however has a few downsides when used as a prognostic 

marker: the expression of this molecule can vary during the course of the disease, 

there is heterogeneity regarding CD38 expression in a blood sample and the lack of a 
clearly defined cut-off value creates difficulty when comparing studies (Ghia et al., 

2003; Hamblin et al., 2002). However, it is an easily assessed prognostic marker and 
its link to CLL pathogenesis and disease evolution is still being studied (Deaglio et al., 

2008). The disease aggressiveness linked to CD38 positivity seems to be due to its 
ability to induce migration and take advantage of the signals from the 

microenvironment (Chiorazzi, 2012). 

 

1.1.3.4. CD49d 

CD49d has been determined to be a good indicator of CLL outcome in several 

occasions (Bulian et al., 2014; Gattei et al., 2008; Nückel et al., 2009; Shanafelt et al., 

2008). This molecule is an α-integrin subunit (α4) that can pair with CD29 (the β1 
subunit) to form a complete integrin (α4β1) (Rose et al., 2002). CD49d functions as an 

adhesion molecule that mediates cell-to-cell and cell-to-extracellular matrix interactions 
through binding with vascular cell adhesion molecule-1 (VCAM-1) and fibronectin 

respectively (Gattei et al., 2008; Rossi et al., 2008). The adhesion of cells to tissues 
can induce survival, migration and activation signals (Rose et al., 2002). The 

simultaneous high expression of CD49d and CD38 has been linked to a group of 
patients with poorer outcome (Pittner et al., 2005; Zucchetto et al., 2009). A large 

macromolecular complex involving CD49d, CD38, CD44v and MMP-9 has been 
identified in U-CLL clones (Buggins et al., 2011) and another study has shown CD49d 

and CD38 to be physically and functionally linked in CLL (Del Poeta et al., 2012b). A 

recent study showed the independent prognostic value of CD49d in CLL, with CD49d 
high patients having a shorter TTFT and lower OS (Majid et al., 2011). When combined 

with other prognostic markers such as IGHV status and CD38, CD49d improves the 
ability to determine TTFT and OS (Majid et al., 2011). The authors suggest that this 

marker should be routinely used as part of the immunophenotyping panels for CLL 
(Bulian et al., 2014; Majid et al., 2011). 
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1.1.4. The CLL Microenvironment  

The importance of the microenvironment for the survival of CLL cells is clear. When 

primary CLL cells are cultured in vitro they undergo spontaneous apoptosis unless they 
are cultured with cytokines or in a co-culture system with adherent cell types such as 

stromal cells (Lagneaux et al., 1998). In vivo, the microenvironment consists of T-cells, 

monocyte-derived nurse-like cells (NLCs), stromal cells, follicular dendritic cells and 
soluble factors (Caligaris-Cappio, 2003). 

Stromal cells in the bone marrow provide attachment sites and growth factors to 
haematopoietic cells. In CLL, stromal cells have similar functions and they are capable 

of protecting CLL cells from cytotoxic agents (Burger, 2011). In vitro co-culture with 
stromal cells induces a rapid migration of CLL cells that is dependent on the expression 

of CXCR4 and VLA-4 on leukaemic cells (Burger et al., 1999). Stromal cells in other 
lymphatic tissues have similar protective effects on CLL cells and it is thought that the 

CXCR4-CXCL12 axis plays an important role by attracting the cell to environments that 
confer cytoprotection (Burger, 2011). NLCs differentiate from monocytes into large 

adherent cells and also exert a protective effect on CLL cells, and they are found in the 

spleen and secondary lymphoid tissues (Bürkle et al., 2007; Tsukada et al., 2002). 
Cells co-cultured with NLCs manifest increased signaling capacity through the BCR 

and higher expression of NF-κB and BCR target genes such as CCL3 and CCL4 
(Burger et al., 2009; Herishanu et al., 2011). The role of T-cells in the lymph nodes of 

CLL patients generates controversy. In untreated CLL patients the numbers of T-cells 
are increased, but it is not known if this results from interactions with CLL cells, with 

microbial agents that are more prevalent in CLL patients or other reasons (Ramsay et 
al., 2008). T-cells are also able to supress or stimulate proliferation of CLL cells. In the 

lymph node, anti-apoptotic and proliferative stimuli are delivered to CLL cells and this 
results in the formation of proliferation centres, called pseudofollicles, of CLL cells 

(Bagnara et al., 2011). In these areas CD4+ T-cells co-localise with CD38+ CLL cells, 

suggesting that these interactions contribute to the expansion of the CLL clone 
(Buggins et al., 2008). 

Several chemokines and receptors contribute to the migration of CLL cells into 
environments that contribute to the extended survival and proliferation of the cells 

(Deaglio & Malavasi, 2009). NLCs constitutively secrete CXCL12, which is the ligand 
for CXCR4 expressed on the majority of circulating CLL cells. This is thought to 

contribute to the recruitment of CLL cells into the bone marrow and other growth-
favourable environments (Burger & Kipps, 2006). However, the responses following 
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CXCR4 ligation are highly variable in CLL patients and appear dependent on CD38 and 
ZAP-70 expression (Richardson et al., 2006). A similar situation occurs with CXCR5, 

which is expressed by CLL cells, and CXCL13 expressed by NLCs (Bürkle et al., 
2007). CLL cells also express CXCR3 at variable levels and CCR7 at high levels (Till et 

al., 2002). They also have increased sensitivity to CCL19 and CCL21, expressed be 

high endothelial venules in the lymph node, which effectively recruit cells from blood 
into lymph nodes (Till et al., 2002). 

The presence of antigens and other stimuli found in the spleen, bone marrow and 
lymph nodes, make these the appropriate niches for CLL cells to proliferate (Deaglio & 

Malavasi, 2009). The best known example is CD40 ligand (CD40L), expressed by T-
cells in pseudofollicles, which contributes to the proliferation of CD40+ CLL cells 

(Bergwelt-Baildon et al., 2004). This stimulus synergises with the BCR signalling and 
several anti-apoptotic pathways are induced, including the caspase inhibitor survivin 

(also known as BIRC5), highly expressed at the proliferative centres (Ramsay & 
Rodriguez-Justo, 2013; Zenz et al., 2010). CLL cells are also known to induce 

phenotypic changes in T-cells, such as a defective formation of the immunological 

synapse (Ramsay et al., 2008). NLCs express CD31, a known ligand of CD38 (Deaglio 
& Malavasi, 2009). These interaction are capable of sustaining CLL viability in vitro 

(Deaglio & Malavasi, 2009). 

 

1.1.5. BCR signalling in CLL 

CLL cells are characterised by low levels of IgM expression, variable response to 

antigen activation and non-antigen dependent activation of anti-apoptotic signalling 
pathways (Woyach et al., 2012). As mentioned previously, CLL cells present the gene 

profiles of activated B-cells, and around 50% of the CLL cases present somatic 
mutations of the IGHV genes, indicating that BCR signalling (and response to antigen) 

has an important role in disease pathogenesis (Chiorazzi & Burger, 2013; Woyach et 

al., 2012). Deregulation of BCR signalling in CLL is characterised by constitutive 
phosphorylation of certain kinases, such as Lyn and Syk and the activity of these two 

kinases has been shown to be higher in CLL when compared to normal B-cells 
(Woyach et al., 2012). Pharmacological inhibition of Syk induced apoptosis of CLL cells 

and reduced the downstream signalling of the BCR (Baudot et al., 2009; Quiroga et al., 
2009). Inhibition of Lyn also promoted apoptosis in CLL cells (Contri et al., 2005). PI3K 

has also been shown to be constitutively active in CLL and its inhibition led to 
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apoptosis of the cells, inhibition of Akt activation, decreased Mcl-1 and XIAP 
expression, two anti-apoptotic proteins (Herman et al., 2011; Ringshausen et al., 

2002). The BTK pathway is also up regulated in CLL, at the protein and gene levels. Its 
inhibition induced apoptosis in a caspase-dependent manner and inhibited the 

phosphorylation of Akt, ERK and NF-κB (Herman et al., 2011). CLL cells often manifest 

constitutive activation of NF-κB and have exaggerated NF-κB responses to CD40L 
stimulation, including prolonged cell survival (Furman et al., 2000). 

 

 

 

 
Figure 1.2 – BCR Signalling. 
BCR activation by an antigen leads to sustained downstream signalling that is controlled by the 
signalosome. The downstream signalling pathways lead to changes in proliferation, activation, 
differentiation and cell death of B-cells. Adapted from (Ramsay & Rodriguez-Justo, 2013; Zenz et al., 
2010). 
BLNK – B-cell linker; BTK – Burton’s tyrosine kinase; ERK – Extracellular signal-regulated kinase; NFAT – 
Nuclear factor of activated T-cells; PI3K - Phosphatidyl 3-kinase; PKC – Protein kinase C; PLCγ2 - 
Phospholipase-Cγ2; ZAP-70 – Zeta-chain associated protein 70. 
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1.2. The transcription factor Nuclear Factor kappa B (NF-κB) 

NF-κB is a family of transcription factors, normally found in the cytoplasm in the form of 

homo- or heterodimers. It was first identified by Sen & Baltimore in 1986, as an 
enhancer of transcription of the kappa light chain gene in B-cells (Sen & Baltimore, 

1986a). Further research showed that NF-κB played an important role in adaptive 

immunity and inflammation responses (Bonizzi & Karin, 2004; Ruland & Mak, 2003) 
and since then it has been shown to regulate gene expression that impacts on cell 

differentiation, proliferation and survival (Hayden & Ghosh, 2008). NF-κB has been 
found to be persistently active in a variety of diseases, such as cancer, ageing, arthritis, 

neurodegenerative diseases and heart disease (Balistreri et al., 2013; Karin & Ben-
Neriah, 2011; Mogi et al., 2007; Roman-Blas & Jimenez, 2006; Valen et al., 2001). 

 

1.2.1. The NF-κB family 

The NF-κB transcription factors bind to DNA as dimers. This family consists of five 
members, p50, p52, p65 (RelA), RelB and c-Rel. p50 and p52 are short versions of 

their precursor proteins p105 and p100, also known as NF-κB1 and NF-κB2 

respectively (Hayden & Ghosh, 2012). There are 15 possible combinations of dimers 
using the 5 members of the NF-κB family. However, not all combinations have been 

proved to exist physiologically (Table 1.3 lists all the combinations found). The p50-p65 
dimer is the most commonly found, having been identified in almost all cell types 

(Oeckinghaus & Ghosh, 2009). Interestingly, RelB is the only subunit that complexes 
with p50 and p52 (Dobrzanski et al., 1994; Ryseck et al., 1992). The diversity 

generated by the combination of NF-κB subunits, allows the different homo- and 
heterodimers to bind to a variety of κB sites and regulate a great number of genes 

(Hayden & Ghosh, 2008). 

 

Table 1.2 – Possible homo- and heterodimers of NF-κB found physiologically. 

p65 – p65 p65 – p52 p52 – c-Rel p50 – p50 RelB – p52 

p65 – c-Rel c-Rel – c-Rel p50 – c-Rel RelB – p50  
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All of the members are characterised by the presence of a 300 amino acid long N-
terminal Rel homology domain (RHD), highly conserved, it is involved in sequence-

specific DNA binding and homo- and heterodimerisation (Figure 1.4) (Baltimore & Beg, 
1995; Müller et al., 1996)). Crystal structures of p50-p50 and p50-p65, showed that the 

N-terminal of the RHD is responsible for binding to κB sites that possess a consensus 

sequence (5’ GGGPuNWPyPyCC 3’; Pu – purine; N – any base; W – adenine or 
thymine; Py - pyrimidine), while the C-terminal is mostly responsible for dimerisation 

and IκB interactions (Chen et al., 1998; Ghosh et al., 1995; Müller et al., 1995). 

p65, RelB and c-Rel all contain a transactivation domain (TAD) at the C-terminal, which 

is responsible for an increase in gene expression (Huxford & Ghosh, 2009). p50 and 
p52 lack this domain, however they can positively regulate transcription by dimerization 

with NF-κB subunits that possess this domain (Hayden & Ghosh, 2012). Due to the 
lack of TAD, p50 and p52 homodimers have been associated with transcriptional 

repression (Plaksin et al., 1993; Schmitz et al., 1991; Udalova et al., 2000). However, 
association of p50 homodimers with non-Rel proteins that possess transactivation 

capabilities such as Bcl-3 or CREB-binding protein, has been reported to have a 

positive transcription effect (Cao et al., 2006; Franzoso et al., 1993; Fujita et al., 1993). 

RelB possesses a leucine zipper region in addition to its TAD, which is required for the 

subunit to be fully active (Dobrzanski et al., 1993). p50 and p52 are generated by the 
processing of their precursor proteins p105 and p100, respectively, which have a 

glycine-rich region following the RHD and multiple ankyrin repeats that are 
characteristic for the IκB family (discussed in more detail later) (Huxford & Ghosh, 

2009). 
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Figure 1.3 - NF-κB family members. 
Representation of the different domains of the NF-κB family members. RHD – Rel homology domain; 
TAD- transactivation domain; LZ – leucine zipper domain; GRR – glycine-rich region; ANK – Ankyrin 
repeats; DD – death domain; P – phosphorylation sites. Adapted from {Hayden:2008fh, 
Vallabhapurapu:2009ib, Betts:1996th}. 
 

 

1.2.2. NF-κB pathway 

1.2.2.1. NF-κB inhibition 

In their inactive form, NF-κB dimers are found in the cytoplasm bound to an inhibiting 

protein. The classic inhibiting proteins are IκBα, IκBβ and IκBε, belonging to the IκB 
family, or the precursor proteins p100 and p105 (Baeuerle & Baltimore, 1988; Huxford 

& Ghosh, 2009; Li & Nabel, 1997; Thompson et al., 1995). Two other atypical proteins 
have been found to regulate the activity of NF-κB dimers in the nucleus, Bcl-3 and 

IκBζ, and an alternative transcript of the p105 gene named IκBγ, only expressed in 
murine lymphoid cells, but its function still remains undetermined (Inoue et al., 1992; 

Oeckinghaus & Ghosh, 2009). 

The main function of IκB proteins is to inhibit NF-κB by blocking its translocation into 

the nucleus (Hayden & Ghosh, 2008).  All IκB proteins share a common ankyrin repeat 
domain that mediates their interaction with the RHD and interferes with the nuclear 

localisation signal (NLS) found on NF-κB dimers (Figure 1.5). Although IκB proteins 
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have similar structures they usually bind to specific NF-κB dimers and are subjected to 
different transcriptional regulation (Whiteside & Israël, 1997). The p65-p50 dimer is 

mostly inhibited by IκBα (Vallabhapurapu & Karin, 2009), while IκBβ has been found to 
bind to this dimer when it is bound to κB sites for nuclear regulation (Rao et al., 2010; 

Suyang et al., 1996; Thompson et al., 1995). The crystal structure of IκBα bound to the 

p65-p50 dimers, reveals that this protein masks only the NLS of p65 leaving p50’s NLS 
uncovered (Ghosh et al., 2001). This exposure coupled with the nuclear export signal 

(NES) found on IκBα, means that there is a constant shuttling of this complex in and 
out of the nucleus (Arenzana-Seisdedos et al., 1995; Rodriguez et al., 1999). However, 

the default location for this complex is the cytoplasm probably due to the additional 
NES found on p65 (Harhaj & Sun, 1999). 

The ankyrin repeats found on p105 allow this protein to function as an IκB (Dobrzanski 
et al., 1995; Liou et al., 1992) and selectively bind to p50, p65 and c-Rel maintaining 

them in the cytoplasm (Capobianco et al., 1992; Mercurio et al., 1993). Proteasomal 
processing of p105 into p50 is constitutively active in unstimulated cells (Beinke & Ley, 

2004; Palombella et al., 1994). Upon stimulation, p105 is rapidly degraded without 

generation of p50, which results in the release of the p105-bound NF-κB dimers 
(Heissmeyer et al., 2001; Lang et al., 2003). p100, the precursor of p52, binds 

favourably to RelB to retain it in the cytoplasm, but in the absence of all other IκB 
proteins most NF-κB subunits stay in the cytoplasm, suggesting p100 can also regulate 

other subunits (Tergaonkar et al., 2005; Vallabhapurapu & Karin, 2009). 
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Figure 1.4 – IκB family members. 
Representation of the different domains of the IκB family members. ANK – Ankyrin repeats; PEST – 
Proline (P), glutamic acid (E), serine (S), threonine (T) domains; DD – death domain; P – phosphorylation 
sites. Adapted from (Hayden & Ghosh, 2008; Vallabhapurapu & Karin, 2009). 
 

1.2.2.2. Activation of NF-κB 

Activation of NF-κB can be induced via two pathways, the canonical and the non-

canonical (or alternative) pathways (Vallabhapurapu & Karin, 2009). The majority of 
stimuli activate the canonical pathway, which regulates mainly p65-p50 and c-Rel-p50 
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dimers (Karin & Ben-Neriah, 2000). This exposes the NLS found on p65 and leads to 
nuclear import of the dimer. The IKK complex also leads to the release of dimers bound 

to IκBβ and IκBε, as both are also targets of this complex (Scheidereit, 2006). The 
canonical pathway regulates survival, proliferation, inflammation and immune 

regulation (Vallabhapurapu & Karin, 2009). In the non-canonical pathway, the NF-κB 

inducing kinase (NIK) plays an important role by phosphorylating IKKα homodimer, 
lacking IKKβ and IKKγ. This leads to ubiquitination and proteasomal processing of the 

complex p100-RelB into p52-RelB (Scheidereit, 2006). The non-canonical pathway is 
involved in lymphogenesis and B-cell maturation (Vallabhapurapu & Karin, 2009). 

 

 

Figure 1.5 – The canonical and non-canonical NF-κB pathways. 
Induction of the canonical pathway by stimuli such as TNFα, IL-1 or LPS, results in IKK activity and 
consequent phosphorylation of IκB. This releases the NF-κB dimer (e.g. p50-p65), which then translocates 
into the nucleus and induces transcription of target genes. Induction of the non-canonical pathway 
depends on NIK, which is responsible for activation of IKKα. IKKα consequently phosphorylates p100, 
leading to proteosomal processing of p100 to p52. This results in nuclear translocation of p52-RelB and 
transcription of target genes. Adapted from (Oeckinghaus & Ghosh, 2009)). 
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1.2.2.3. Gene transcription induced by NF-κB 

Following nuclear translocation of NF-κB dimers through the classical nuclear import 

pathway, the homo- and heterodimers bind to the respective κB sites that possess the 
previously described consensus sequence. These κB sites are widely dispersed 

through the genome, but NF-κB activation under specific conditions leads to the 

transcription of a small number of genes. This indicates that other mechanisms might 
contribute to the regulation of gene transcription by NF-κB (Hoffmann et al., 2006). 

The first factor contributing to the wide range of NF-κB target genes is NF-κB 
dimerization. The combination of NF-κB subunits into homo- and heterodimers confers 

them different DNA-binding specificity. Therefore, in a certain cell type certain types of 
dimers can have an increased expression when compared to others and therefore 

induce transcription of a specific subset of genes (Smale, 2011).  

Certain NF-κB-inducing stimuli may also induce activation of other pathways that 

culminate in the induction of post-translation modifications (PTMs). Events such as 
phosphorylation, ubiquitinylation, acetylation and other PTMs can alter the capability of 

NF-κB to bind to DNA or co-regulator proteins and therefore affect which genes get 

transcribed (Smale, 2011).  

Another factor that may contribute to the gene expression variability is the recruitment 

of heterologous transcription factors. It has long been shown that NF-κB transcriptional 
activation requires interactions with transcriptional co-activators. The CREB-binding 

protein and p300, are some of the best described co-activators of NF-κB (Smale, 
2011). 

The list of NF-κB target genes is long and it affects, as described before, a wide variety 
of cell functions. Table 1.3 shows some of the target genes. 
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Table 1.3 – A selection of NF-κB target genes. Source: Gilmore (2008). 

NF-κB target genes Reference 

Cytokines/chemokines 
and their modulators 

BAFF (Moon & Park, 2007) 
IL-10 (Xu & Shu, 2002) 
β-interferon (Hiscott et al., 1989) 
TNF-α (Shakhov et al., 1990) 

Immunoreceptors 

CCR5 (Liu et al., 1998) 
CD154 (Srahna et al., 2001) 
CD38 (Kang et al., 2006) 
IL-2 receptor α-chain (Ballard et al., 1988) 

MHC Class I (Israel et al., 1989; Johnson & Pober, 
1994) 

TLR2 (Wang et al., 2001) 
Proteins involved in 
antigen presentation 

Complement factor B (Huang et al., 2002) 
Complement receptor 2 (Tolnay et al., 2002) 

Cell adhesion 
molecules 

CD44 (Hinz et al., 2002) 
Fibronectin (Lee et al., 2002) 
VCAM-1 (Iademarco et al., 1992) 

Acute phase proteins C-reactive protein (Zhang et al., 1995) 
Hepcidin (Liao et al., 2006) 

Stress response 
genes 

COX-2 (Yamamoto et al., 1995) 
12-Lipoxygenase (Arakawa et al., 1995) 

Cell surface receptors CD69 (Lopez-Cabrera et al., 1995) 
Oxytocin receptor (Terzidou et al., 2006) 

Regulators of 
apoptosis 

Bax (Grimm et al., 2005) 
Bcl-2 (Catz & Johnson, 2001) 
IAPs (You et al., 1997) 

Growth factors, 
ligands and their 
modulators 

BLINK (Gupta et al., 2008) 
Prolactin (Friedrichsen et al., 2006) 
Stem cell factor (Da Silva et al., 2003) 

Transcription factors 
and their modulators 

ABIN-3 (Verstrepen et al., 2008) 
Bcl-3 (Brocke-Heidrich et al., 2006) 
c-myc (Duyao et al., 1990) 

Enzymes 
AID (Gourzi et al., 2007) 
Cdk6 (Iwanaga et al., 2008) 
PIK3CA (Yang et al., 2008) 

Others 

Apolipoprotein D (Do Carmo et al., 2007) 
BRCA2 (Wu et al., 2000) 
Cyclin D1 (Guttridge et al., 1999) 
NLF1 (Warton et al., 2004) 
Prodynorphin (Bakalkin et al., 1994) 
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1.2.2.4. Downregulation of NF-κB activity  

Once the activity of NF-κB is no longer required, the cell needs to be able to shutdown 

this pathway to avoid uncontrolled tissue damage or induction of disease (Staudt, 
2010). Upon activation of the NF-κB pathway, IκBs are degraded by the proteasome so 

they no longer can inhibit NF-κB dimers in the cytosol (Karin & Ben-Neriah, 2000). 

However, IκBα and IκBε genes are regulated by NF-κB and this leads to de novo 
synthesis of these inhibitors, creating a negative feedback loop (Kearns et al., 2006; Le 

Bail et al., 1993; Sun et al., 1993). IκBα has a nuclear localisation signal, so following 
synthesis it is translocated into the nucleus where it binds to NF-κB dimers and 

transports them to the cytoplasm due to its NES (Arenzana-Seisdedos et al., 1995; 
1997). However, IκBα can be prevented from binding to NF-κB dimers containing p65 

and c-Rel in the nucleus by IκBβ (Rao et al., 2010). IκBβ does not contain a NES, so it 
prolongs the expression of certain genes such as TNFα and IL-1β (Rao et al., 2010; 

Scheibel et al., 2010). Complexes containing the CREB-binding protein can acetylate 
p65 and also prevent binding of IκBα (Lf et al., 2001). Although IκBε expression is 

considerably delayed compared to IκBα, it can also translocate to the nucleus, bind to 

NF-κB dimers and translocate them to cytoplasm (Kearns et al., 2006).  

The IκBs negative feedback loop is one of the best described methods of NF-κB 

dowregulation, but other mechanisms are also important for this regulation.For 
example, deubiquitinases upstream of IKK such as A20, which gene expression is also 

regulated by NF-κB, provides an alternate negative feedback loop for NF-κB regulation 
(Hymowitz & Wertz, 2010). The deubiquitinase activity of A20 targets IKK activators 

such as RIP1, TRAF6, IKKγ, RIP2 and MALT1 (Hymowitz & Wertz, 2010). Other 
deubiquitinases known to down regulate NF-κB are the A20 family member Cezanne 

(Enesa et al., 2008) and cylindromatosis (CYLD) (Kovalenko et al., 2003). 

Another mechanism reported to stop the NF-κB signalling pathway involves 

dissociation of signalling complexes, such as the MyD88 interference in LPS-induced 

TLR activation (Burns et al., 2003). MyD88 interacts with IRAK4 to activate IKK, which 
leads to NF-κB activation and consequent de novo synthesis of a shorter version of 

MyD88 (Burns et al., 2003). This version is capable of interfering with the MyD88-
IRAK4 complex and arrest NF-κB activation (Burns et al., 2003). 
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1.2.3. NF-κB in CLL 

1.2.3.1. NF-κB pathway in CLL 

In CLL, constitutive activation of NF-κB has been shown (Cuní et al., 2004; Furman et 
al., 2000; Hewamana et al., 2008a). Three subunits have been shown to be over 

expressed compared to normal B-cells, these were p50, p65 and c-Rel (Cuní et al., 

2004; Furman et al., 2000; Hewamana et al., 2008a). However, there is heterogeneity 
in NF-κB expression between patients (Hewamana et al., 2008a). Since CLL cell 

survival is so dependent on the microenvironment (Ramsay & Rodriguez-Justo, 2013) it 
is likely that heterogeneity in NF-κB expression is due to different exposures to these 

stimuli (Pepper et al., 2009).  

Several cytokines and cells present in the in vivo microenvironment increase CLL cell 

survival in vitro in a NF-κB dependent manner. Romano and colleagues, showed that 
the use of a stimulating CD40 monoclonal antibody increased the levels of NF-κB 

expression and that it was capable of reversing the apoptotic effects of the drug 
fludarabine (Romano et al., 1998). Later, Bernal and colleagues showed that NF-κB 

was reduced following 4 hours in culture without any additional stimuli, revealing the 

importance of the microenvironment in NF-κB activation (Bernal et al., 2001). In the 
same study, Bernal showed that BCR and CD40 engagement were capable of 

activating NF-κB (Bernal et al., 2001). However, Hewamana et al. showed that BCR 
engagement could either lead to activation of NF-κB or its inhibition (Hewamana et al., 

2008a).  

Another molecule shown to be important for sustained NF-κB activation in CLL is the 

vascular endothelial growth factor (VEGF) (Farahani et al., 2005). CLL cells produce 
high levels of VEGF, and its levels have been shown to be high in the serum of CLL 

patients (Chen et al., 2000). This production is dependent on CD40 ligation and NF-κB 
activation (Farahani et al., 2005). The same study also showed that VEGF had an 

autocrine effect, by inducing indirect translocation of NF-κB into the nucleus through 

ligation to the two VEGF receptors (Farahani et al., 2005). BAFF and a proliferation-
inducing ligand (APRIL), produced by nurse-like cells and CLL cells, have also been 

shown to induce NF-κB activation (Endo et al., 2007; Kern et al., 2004). 

Given the high levels of NF-κB expression in CLL and the heterogeneity found in 

patients, Hewamana and colleagues set out to determine if p65 had any prognostic 
value (Hewamana et al., 2009). p65 DNA-binding activity was strongly associated with 
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advanced Binet stage, but not CD38 expression, IGHV mutational status or ZAP-70 
expression (Hewamana et al., 2009). p65 was also predictive of TTFT and time to 

subsequent treatment (TTST) (Hewamana et al., 2009). This identified p65 as an 
independent prognostic factor, and one with the ability to predict the duration of 

response to treatment (Hewamana et al., 2009). NF-κB is therefore, a very appealing 

target for the treatment of CLL, as its inhibition should improve the apoptotic 
capabilities of existing drugs. 

 

1.2.3.2. Modulation of NF-κB signalling cascade in CLL 

There are currently a number of NF-κB inhibitors available that have proven to be 
efficient within the field of CLL research. They can be grouped according to their target 

in the NF-κB pathway: IKK inhibitors, proteasome inhibitors that block IκB degradation, 
inhibitors of nuclear translocation and suppressors of NF-κB DNA binding. 

Several IKK inhibitors have been developed to target IKKβ, which were later proven to 
also target IKKα (Nakanishi & Toi, 2005). Bay 11-7082 was one of the first IKKβ 

inhibitors developed, and it acts by inhibiting phosphorylation of IκBα which stops 

proteasomal degradation and consequent NF-κB translocation into the nucleus (Pierce 
et al., 1997). In CLL cells, this compound induced caspase-3 and caspase-9-

dependent apoptosis in 70% of the cases (Pickering et al., 2007). The efficiency of this 
inhibitor was not correlated with any CLL prognostic markers and normal B-cells were 

not susceptible to its effects (Pickering et al., 2007). Another IKKβ inhibitor is the 5-(4-
fluorophenyl)-2-ureido-thiophene-3 carboxylic acid amide (UTC) (Endo et al., 2007). 

UTC acts only on the canonical pathway and was capable of reducing cell viability of 
CLL cells, but not the viability of normal B-cells (Endo et al., 2007).  

BMS-345541 is an inhibitor of the IKK catalytic subunits IKKα and IKKβ, through 
binding to an allosteric site (Burke et al., 2003). BMS-345541 induces apoptosis in CLL 

cells, where CD38hi and ZAP-70hi cells showed more sensitivity to the compound than 

CD38lo and ZAP-70lo cells (Lopez-Guerra et al., 2009). Apoptosis in CLL cells was 
accompanied with the down regulation of NF-κB target genes such as BCL2 (Lopez-

Guerra et al., 2009). 

Curcumin is an active ingredient in the spice turmeric, that has been shown to 

suppress proliferation, angiogenesis and metastasis, by inhibiting IKK and Akt 
(Aggarwal et al., 2006). In CLL cells, curcumin was able to induce apoptosis at doses 
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in the low micromolar range and was able to suppress anti-apoptotic proteins such as 
Mcl-1 (Everett et al., 2007; Ghosh et al., 2009). 

Sesquiterpene lactone parthenolide, is normally used in traditional medicine for the 
treatment of inflammation (Kwok et al., 2001). This compound acts by inhibiting the 

catalytic subunit IKKβ (Kwok et al., 2001) and it has been shown to be able to induce 

caspase-dependent apoptosis in CLL cells (Steele et al., 2006). LC-1, also called 
dimethylamino-parthenolide (DMATP) is an analogue of parthenolide that has also 

proved to be highly effective in CLL cells (Hewamana et al., 2008b). LC-1 is capable of 
overcoming the cytoprotective effects of co-culture with CD40L-expressing fibroblasts 

and IL-4, and its efficiency is correlated with NF-κB levels (Hewamana et al., 2008b). A 
clinical trial of this drug was initiated in 2009 for CLL patients, however no results have 

been published yet. 

Deguelin, is a plant derivative shown to inhibit IKK activation (Nair et al., 2006). In CLL, 

deguelin is capable of inducing higher degrees of apoptosis than in normal B-cells 
(Geeraerts et al., 2007). This apoptosis is dependent on caspase-3 and caspase-9 and 

(Geeraerts et al., 2007). Parallel to apoptosis, deguelin was capable of inducing the 

down regulation of Mcl-1 (Geeraerts et al., 2007).  

Another approach to target NF-κB is the use of proteasome inhibitors, such as 

bortezomib, that stop IκB degradation and lead to NF-κB inhibition. Bortezomib is 
capable of inducing apoptosis in CLL cells in vitro (Perez-Galan et al., 2008), however 

in a phase II clinical trial it was shown to induce a poor response in patients (Faderl et 
al., 2006). Moreover, it is still unclear if apoptosis induced by bortezomib is due to NF-

κB inhibition or activation of the pro-apoptotic protein NOXA (Pérez-Galán et al., 2006). 

DHMEQ, is a compound derived from epoxyquinomicin C, an anti-inflammatory agent 

(Matsumoto et al., 2000). In CLL, DHMEQ was capable of inhibiting translocation of 
NF-κB into the nucleus and induce apoptosis of the cells in vitro (Horie et al., 2006). 

Apoptosis was accompanied by the down regulation of anti-apoptotic genes such as 

Bcl-xl, c-IAP, c-FLIP and Bfl-1 (Horie et al., 2006). 

The previously mentioned NF-κB inhibitors demonstrate the importance of this pathway 

for the survival of CLL. More importantly, some of these inhibitors are more cytotoxic to 
CLL cells than normal B-cells, reinforcing the importance of NF-κB in maintaining cell 

viability.  
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1.3. Cell Penetrating Peptides  

Cell penetrating peptides (CPP) are a class of peptides, typically comprising 5 to 30 

amino acids that are capable of penetrating the cellular membrane. Frankel and Pablo 
first discovered these capabilities in 1988, while studying the transcription trans-

activating (Tat) protein of the human immunodeficiency virus 1 (HIV-1). They found the 

protein was capable of entering cells and penetrating the nucleus (Frankel & Pabo, 
1988). Later, Joliot et al. (1991) found that the Drosophila Antennapedia homeodomain 

peptide (AntP) was also capable of penetrating the cellular membrane of cultured 
neurons, entering the nucleus and inducing further cellular morphological differentiation 

(Joliot et al., 1991). The first CPP discovered was based on Joliot and colleagues’ work 
on the 60 amino acid long AntP peptide. Derossi and colleagues found that the third 

helix of the AntP peptide (see Table 1.5 for sequence), was responsible for the 
translocation into the cells (Derossi et al., 1996). They named the peptide penetratin, 

and it is still used today as a delivery vector for a variety of cargoes (Derossi et al., 
1996). Vives et al. discovered the amino acid sequence responsible for the 

penentrating capabilities of Tat in 1997 (see Table 1.4 for sequence) (Vives et al., 

1997).  

CPPs presented a new and exciting possibility: the delivery of macromolecules into 

cells and the possibility of using CPPs to deliver different types of cargo in vivo (Heitz 
et al., 2009; Sebbage, 2009). According to Heitz et al. (2009), the minimum 

requirements to be satisfied by newly developed CPPs should be the following: delivery 
efficiency in different and challenging cell lines, rapid endosomal release, ability to 

reach the target, activity at low doses, lack of toxicity and facility of therapeutic 
application (Heitz et al., 2009). 

Schwarze and colleagues demonstrated in 1997 the first in vivo application of the 
penetrating abilities of this type of peptide. The β-galactosidase protein was fused with 

the protein transduction domain of Tat and was successfully delivered into all tissues of 

mice, including the brain (Schwarze et al., 1999). At the same time, Pooga and 
colleagues linked peptide nucleic acids (PNA) complementary to the human galanin 

receptor type 1 to transportan and penetratin peptides. These were successfully taken 
up by Bowes cells and were capable of blocking the expression of galanin receptors 

(Pooga et al., 1998b). Suppression of the expression of these receptors was also 
demonstrated in rats (Pooga et al., 1998b). Since then, a variety of other CPPs have 
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been discovered and synthetically developed to deliver a wide variety of cargoes 
(Copolovici et al., 2014). 

1.3.1. Classes of CPPs 

There is a great sequence variety in CPPs and they can be classified using different 

criteria. One of the most common criteria is the classification based on their physico-

chemical properties and this identifies three classes: cationic, amphipathic and 
hydrophobic (Milletti, 2012; Stalmans et al., 2013). Milleti (2012) provides an overview 

of the current CPP landscape, looking at around 100 CPPs and determining the 
category to which they belong. The largest class is the amphipathic CPPs representing 

44% of the studied CPPs, then the cationic peptides (41%) and the hydrophobic CPPs 
with 15% (Milletti, 2012). 

Amphipathic CPPs comprise peptides with both hydrophobic and hydrophilic residues 
that can be positively and/or negatively charged (Milletti, 2012; Shin et al., 2014). They 

can be sub-divided into primary amphipathic, secondary amphipathic α-helical, β-sheet 
amphipathic and proline-rich amphipathic (Milletti, 2012; Shin et al., 2014). pVEC is an 

example of a primary amphipathic CPP (Elmquist et al., 2001). Some CPPs are known 

to form α-helixes, in which hydrophobic and hydrophilic residues are grouped in 
different sides of the helix. One side has the hydrophobic residues while the other has 

cationic, anionic or polar residues (Dunkin et al., 2011; Yang et al., 2014). The model 
amphipathic peptide (MAP) is an example of a secondary α-helical CPP (Oehlke et al., 

1998). Some CPPs, such as VT5 are know to form a β-sheet which is crucial for 
cellular uptake (Oehlke et al., 1997). Proline-rich amphipathic CPPs contain a high 

number of proline residues that confers on them a unique helix structure, due to the 
rigidity of the proline residues. Bactenicin-7 (Bac7) is an example of a proline-rich 

amphipathic CPP (Sadler et al., 2002). 

CPPs are categorised as cationic if they have a section of positive charges considered 

crucial for their uptake and if their three dimensional structure does not generate an 

amphipathic α-helix (Fei et al., 2011). Anionic CPPs (mainly negative charges) do not 
make up a class of their own, instead they are normally analysed on a case-by-case 

basis and assigned to one of the three categories (Milletti, 2012). Cationic peptides are 
normally rich in arginine and lysine. The most common cationic CPPs are polyarginines 

(R8, R9, R10 and R12), Tat and penetratin (Schmidt et al., 2010). 
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CPPs are considered hydrophobic if they only contain apolar residues, have a low net 
charge or have a hydrophobic motif that is crucial for their uptake regardless of the rest 

of the sequence (Stalmans et al., 2013). Some examples of hydrophobic CPPs are the 
C105Y and the shorter version of this CPP, PFVYLI, and Pep-7 (Gao et al., 2002; Rhee 

& Davis, 2006). 

Other classification systems rely on the origin of CPPs. This classification organises 
CPPs into three groups: protein-derived, chimeric and synthetic peptides (Lindgren & 

Langel, 2011; Madani et al., 2011). The protein-derived CPPs are also termed protein 
transduction domains (PTDs) and are based on naturally occurring peptides with cell 

penetrating properties. Two examples of these peptides are Tat and penetratin 
(Derossi et al., 1996; Green et al., 1989). Chimeric CPPs have their sequences derived 

from one or more CPPs (Madani et al., 2011). Transportan, which derives from the 
sequences of mastoparan and galanin, and also its shorter analogue TP10, are two 

examples of chimeric CPPs (Pooga et al., 1998a; Soomets et al., 2000). Synthetic 
CPPs are specifically designed to have cell penetrating properties, such as the 

oligoarginine family of CPPs (R8, R9, R10 and R12) (Tünnemann et al., 2008). 

 

Table 1.4 – Examples of CPPs in each of the categories. 
Class of CPP Sequence Reference 

Amphipathic 
  

 Primary amphipathic   
 pVEC LLIILRRRIRKQAHAHSK (Elmquist et al., 2001) 
 TP10 AGYLLGKINLKALAALAKKIL (Soomets et al., 2000) 
 Secondary amphipathic   
 α-helix   
 MAP KLALKLALKALKAALKLA (Oehlke et al., 1998) 
 β-sheet   
 VT5 DPKGDPKGVTVTVTVTVTG

KGDPKPD 
(Oehlke et al., 1997) 

 Proline-rich amphipathic   
 Bac7 RRIRPRPPRLPRPRPRPLPF

PRPGPRPIPRPLPFP 
(Sadler et al., 2002) 

Cationic   
 Tat GRKKRRQRRRPPQ (Vives et al., 1997) 
 Penetratin RQIKIWFQNRRMKWKK (Derossi et al., 1996) 
 Polyarginines Rn (n=8,9) (Futaki et al., 2001) 
 (RXR)4 RXRRXRRXRRXR (Rothbard et al., 2002) 

Hydrophobic  
 

 Pep-7 SDLWEMMMVSLACQY (Gao et al., 2002) 
 C105Y CSIPPEVKFNKPFVYLI (Rhee & Davis, 2006) 
 PFVYLI PFVYLI {Rhee:2006ew} 
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1.3.2. Mechanism of CPP entry 

Although CPPs have been categorised according to their physico-chemical properties 

and origin, the mechanism of entry is not the same within CPP families or classes. In 
earlier studies it was evident that direct translocation was responsible for the uptake of 

CPPs, due to peptide entry being possible at 4˚C demonstrating an energy-

independent route (Richard et al., 2002). However, a re-evaluation of these 
mechanisms demonstrated that the use of methanol and formaldehyde to fix the cells 

for confocal microscopy created artefacts that allow CPP entry into the cells (Lundberg 
& Johansson, 2002; Richard et al., 2002). The use of live (unfixed) cells in subsequent 

studies eliminated these artefacts. Now, it is generally accepted that the mechanism is 
dependent on the amino acid sequence and experimental conditions, as the same CPP 

has been shown to translocate through the membrane using different mechanisms 
(Fretz et al., 2007). Figure 1.6 shows an overview of the mechanisms of entry used by 

CPPs, divided into two main categories: endocytosis and direct translocation. 

As mentioned, differences in experimental conditions can determine the mechanism of 

uptake of CPPs. Taking the CPP Tat as an example, several pinocytic mechanisms 

have been associated with the uptake of the peptide. Unconjugated Tat has been 
found to be internalised by clathrin-mediated endocytosis (Richard et al., 2005), while 

Tat and the fusion peptide Tat-HA2 have been described to use macropinocytosis 
(Gump et al., 2010; Kaplan et al., 2005; Nakase et al., 2004; Wadia et al., 2004). As for 

the uptake of GST-Tat-GFP, caveolae-mediated endocytosis has been implicated in its 
membrane translocation (Ferrari et al., 2003; Fittipaldi et al., 2003). In a study by 

Duchardt et al. (2007), the AntP peptide, Tat and R9 were studied in parallel to 
determine the mechanism of entry. The study revealed that all three CPPs used three 

endocytic pathways to penetrate the cells: macropinocytosis, clathrin-mediated and 
caveolae-dependent endocytosis (Duchardt et al., 2007). An endocytosis-independent 

mechanism of entry was also utilised by the AntP peptide above a certain 

concentration threshold (Duchardt et al., 2007). These studies showed the importance 
of experimental conditions when comparing the uptake of CPPs and that the 

mechanism used depends entirely on them (Trabulo et al., 2010). 
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Figure 1.6 – Mechanism of entry of cell penetrating peptides. 
The proposed mechanisms of entry of cell penetrating peptides can be devided into two categories: 
endocytosis and direct translocation. Within endocytosis, several mechanisms have been described, which 
include macropinocytosis, clathrin-dependent endocytosis, caveolae-mediated endocytosis and 
clathrin/caveolae independent endocytosis. Within direct translocation, four models have been described: 
the toroidal pore; barrel stave pore; inverted micelle; and carpet model. Source: Trabulo et al., 2010. 
 

1.3.2.1. Direct translocation 

Direct translocation is an energy-independent method that comprises other types of 
mechanisms such as pore formation, inverted micelle and the carpet model (Trabulo et 

al., 2010). The first step is common to all of these methods and it is due to the 
interaction of positively charged residues with the negative charge of phospholipids 

and/or heparan sulphate present in the cellular membrane. This process involves 

stable or transient destabilisation of the cellular membrane associated with folding of 
the peptide in the lipid membrane (Rothbard et al., 2004; Thorén et al., 2003; Wadia et 

al., 2004). The binding of the peptides to the membrane leads to temporary 
destabilisation and subsequent mechanisms are highly dependent on peptide 

concentration, sequence and lipid content of the cellular membrane (Madani et al., 
2011). 

The inverted micelle model was proposed by Derossi et al. (1996) when studying 
penetratin (Derossi et al., 1996). The positively charged residues are thought to interact 
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with the negatively charged phospholipids that would result in the reorganisation of the 
layer and shuttling of the membrane aided by the hydrophobic residues (Berlose et al., 

1996). This interaction would result in the formation of a hexagonal structure (inverted 
micelle) and the peptides would be trapped in a hydrophilic environment within the 

structure (Berlose et al., 1996). This structure would then move to the inner part of the 

lipid bilayer and its contents would be released into the cytosol (Berlose et al., 1996). 
This mechanism is thought to be dependent on the insertion of tryptophan residues in 

the hydrophobic region of lipid bilayer, which means that highly cationic CPPs such as 
Tat and polyarginines are unlikely to use this mechanism of entry (Tsai et al., 2009). 

The pore formation model depends on the interaction of the CPP with the membrane 
and the formation of a transient pore that allows translocation of the peptides and their 

conjugates through the membrane (Matsuzaki et al., 1996). Within the pore formation 
model, two types of mechanism have been described: the barrel stave model and 

toroidal pore model (Matsuzaki et al., 1996). In the barrel stave model, the peptides 
would form an amphipathic helix, where the hydrophobic face would interact with the 

lipid chains and the hydrophilic portion of the helix would form the central part of the 

pore (Matsuzaki et al., 1999; Pouny et al., 1992; Shai, 1999). The toroidal pore model 
is similar, except that there is a significant lipid rearrangement to allow interaction of 

the peptide exclusively with the lipid headgroup (polar groups) (Matsuzaki et al., 1996). 
The pore formation model is linked to concentrations of the peptide above a certain 

threshold that is dependent on the peptide (Matsuzaki et al., 1996). 

In the carpet model, highly cationic peptides interact with the negatively charged 

components of the cellular membrane. As the concentration passes a certain threshold, 
interaction of the peptide with the membrane results in transient lipid rearrangement 

that consequently allows for peptide translocation (Pouny et al., 1992). 

 

1.3.2.2. Endocytosis 

Endocytosis is a basic cellular process for the de novo production of internal 
membranes from the plasma membrane lipid bilayer. In doing so, it internalises 

membrane lipids, integral proteins and extracellular fluid (Doherty & McMahon, 2009). 
It can be divided into two major categories: phagocytosis and pinocytosis (Trabulo et 

al., 2010). Phagocytosis is a process used by a cell for the internalisation of a cargo, 
while pinocytosis is used for fluid phase uptake. Pinocytosis comprises 
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macropinocytosis, endocytosis dependent on clathrin or caveolin and endocytosis 
independent of clathrin and/or caveolin (Jones, 2007; Mayor & Pagano, 2007).  

Macropinocytosis can be described as the process used by the cell to internalise 
extracellular fluid and its contents (Jones, 2007). Signalling cascades induce actin 

polimerisation and originate membrane ruffles (i.e. protrusions in the membrane rich in 

filamentous actin) (Ridley, 1994). This process is very similar to phagocytosis, but the 
difference lies on the protrusions formed, that instead of engulfing the ligand-coated 

molecule, they collapse onto and fuse with the cellular membrane, generating the 
macropinosomes (large endocytic vesicles) containing extracellular fluid (Hacker et al., 

1997).  

Caveolae-mediated endocytosis relies on caveolae-coated invaginations of the cellular 

membrane. They are present in many cells, and tend to concentrate in regions called 
lipid rafts, rich in cholesterol, sphingolipids, signalling molecules and membrane 

transporters (Jasmin et al., 2012). The shape and structure of these invaginations is 
due to caveolin, a dimeric protein. This dimer binds to cholesterol and inserts a loop 

into the inner leaflet of the membrane, forming a caveolin coat all around the pocket (Li 

et al., 1996; Monier et al., 1996; Murata et al., 1995). 

Clathrin-mediated endocytosis is a process used by the cell for the uptake of essential 

nutrients such as low density lipoprotein (LDL) that binds to the LDL receptor and 
transferrin that binds to transferrin receptors (Brodsky et al., 2001; Schmid, 1997). 

Upon ligand binding onto the respective receptors, clathrin molecules associate with 
each other and form a hexagon-like mesh that coats the pits on the cytosolic side of the 

membrane. The pits are then internalised and the receptors are processed by the cell 
(McMahon & Boucrot, 2011). 

As previously mentioned, the number of CPPs that have been described is very large 
and there is not one consensus sequence that provides the penetrating abilities. For 

this reason is unlikely that one single mechanism of entry is used by different CPPs. 

 

1.3.3. CPPs as cargo delivery systems 

For optimal therapeutic effect, a drug should not only safely reach its target cell but 
also the appropriate location within the cell (Moghimi & Rajabi-Siahboomi, 2000). As 

described before, endocytic pathways provide a highly efficient route to introduce 
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macromolecules across the cellular membrane (Jones et al., 2003). However, it is 
highly likely that the majority of these will get recycled or end up being degraded in 

lysosomes. Drug delivery research has provided a number of strategies to overcome 
this problem, one of them was the application of CPPs to deliver a variety of cargoes 

ranging from classical molecular drugs to different types of oligonucleotides and 

proteins (Jones, 2007). 

Some CPPs have been found to have intrinsic biological activity (Copolovici et al., 

2014). Some examples are: the ARF(1-22) peptide, which mimics the activity of the 
tumour suppressive protein p14ARF and it is capable of reducing cell proliferation and 

induce apoptosis (Johansson et al., 2008); a stapled BIM BH3 peptide that targets Bcl-
2 proteins, inhibiting their anti-apoptotic activity and inducing cell death (LaBelle et al., 

2012); a CPP found within the human cytochrome c amino acids, Cyt c77–101, capable of 
inducing apoptosis (Jones et al., 2010); and a peptide that inhibits MK2, a kinase that 

is key to regulate inflammation (Brugnano et al., 2011). 

In the last two decades, a variety of CPPs have been linked to bioactive cargoes with 

the intention of being used to cure an array of diseases. Some examples are:  D-isomer 

p53 C-terminal peptide with riHA2, which reduces proliferation and induces apoptosis 
of bladder cancer cells, and increased survival of tumour-bearing mice to 50% (Araki et 

al., 2010); a muscle specific/arginine rich chimeric peptide, used to correct dystrophin-
deficiency in mice with Duchenne muscular dystrophy (Yin et al., 2010); or the D-JNKI1 

peptide, a c-Jun N-terminal kinase (JNK) inhibitor coupled with Tat, used to protect rats 
from ischemic stroke (Vaslin et al., 2011). 

 

1.3.3.1. CPPs targeting NF-κB 

Since NF-κB has been implicated in a variety of diseases, it presents as a very 
attractive target for CPP therapy. Several CPPs have been designed to target this 

pathway at different points, these include: receptor signalling, IKK activity, NF-κB 

activation and nuclear translocation (Orange & May, 2008). 

CPPs designed to inhibit receptor signalling adaptor molecules upstream of the NF-κB 

pathway target either MyD88 or TRAF6. CPPs that target MyD88 include: AntP-TIRAP, 
a peptide that targets the Toll-interleukin 1 adaptor protein (TIRAP), blocking LPS-

induced NF-κB activation (Horng et al., 2001); ST2345 and ST2825, peptides modelled 
after the structure of MyD88 that are capable of inhibiting IL-1 signalling, including NF-
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κB activation (Loiarro et al., 2007; 2005). CPPs that target TRAF6 include L-T6DP-1 
and TRAF6BP (Mukundan et al., 2005; Ye et al., 2002). Both of these bind to TRAF6 

and inhibit downstream NF-κB signalling (Mukundan et al., 2005; Ye et al., 2002). 
Sequences can be found in Table 1.5. Targeting proteins that regulate upstream 

signalling of NF-κB is an unreliable approach, as it also affects other signalling 

pathways. Nonetheless, all of the described inhibitors were designed to interfere with 
multiple signalling mechanisms and allowed to determine the importance of the 

respective target molecules in a variety of signalling pathways (Orange & May, 2008). 

CPPs designed to inhibit IKK activity mainly target the IKKγ subunit (also known as 

NEMO). Yamaoka and colleagues demonstrated that NEMO binds to IKKβ through a 
six amino acid sequence (LDWSWL) (Yamaoka et al., 1998). This sequence was later 

identified in IKKα, and it is known as the NEMO binding domain (NBD) (May et al., 
2000). Since then several CPPs have been designed using the NBD as a cargo. These 

include the use of the AntP peptide (May et al., 2000), Tat (Choi et al., 2003) and PTD 
(Dave et al., 2007; Rehman et al., 2003). Other CPPs targeted NEMO oligomerisation, 

by interfering with the second coiled-coil (CC2) and leucine zipper (LZ) domain, both 

critical for oligomerisation (Orange & May, 2008). Two CPP were initially designed to 
target both of these regions, AntP-NEMO-CC2 and AntP-NEMO-LZ (Agou et al., 2004). 

Later on, a novel CPP was designed using R7 as the vehicle to deliver the same 
sequence that targets LZ (Carvalho et al., 2007). See Table 1.5 for amino acid 

sequence of CPPs. 

Another approach used to target NF-κB activity, was to interfere with phosphorylation 

of subunit p65, or to interfere with the nuclear translocation of subunit p50. Takada and 
colleagues developed a CPP composed of the PTD sequence fused with an amino acid 

sequence that mimics the phosphorylation sites required for nuclear translocation of 
p65 (Takada et al., 2004). SN50 was the first CPP developed to inhibit NF-κB activity, 

and it composed by the CPP MTS fused with the amino acid sequence corresponding 

to the NLS found in p50 (Lin et al., 1995). Since then, other CPPs have been 
developed to target nuclear localisation, such as BMS-205820, BMS-214572 and PN50 

(Fujihara et al., 2000; Letoha et al., 2005; Yamaoka et al., 1998). Table 1.5 shows the 
amino acid sequence of the CPP referred here. 
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Table 1.5 – CPPs targeting NF-κB. 

Ta
rg

et
 

CPP Sequence Reference 

Adaptor proteins inhibitors 

M
yD

88
 AntP-TIRAP RQIKIWFQNRRMKWKKSSSHCRVLLITPGF (Horng et al., 2001) 

ST2345 RQIKIWFQNRRMKWKKRDVLPGT (Loiarro et al., 2005) 

ST2825 See Patent No. WO 200606709 (Carminati et al., 2006; 
Loiarro et al., 2007) 

TR
AF

6 L-T6DP-1 AAVALLPAVLLALLAPRKIPTEDEYTDRPSQPST (Ye et al., 2002) 

TRAF6BP AAVALLPAVLLALLAPAPHPKQEPQEIDFPDD (Mukundan et al., 2005) 

IKK inhibitors 

NB
D 

AntP-NBD RQIKIWFQNRRMKWKKTALDWSWLQTE (May et al., 2000) 

Tat-NBD YGRLLRRQRRRTALDWSWLQTE (Choi et al., 2003) 

PTD-NBD RRQRRTSKLMKRGGTALDWSWLQTE (Rehman et al., 2003) 

NE
M

O
 

ol
ig

om
er

is
at

io
n AntP-NEMO-CC2 RQIKIWFQNRRMKWKKSKGMQLEDLRQQLQQA

EEALVAKQELIDKLKEEAEQHKIV (Agou et al., 2004) 

AntP-NEMO-LZ RQIKIWFQNRRMKWKKYKADFQAERHAREKLV
EKKEYLQEQLEQLQREFNKL (Agou et., 2004) 

R7-NEMO-LZ RRRRRRRYKADFQAERHAREKLVEKKEYLQEQ
LEQLQREFNKL (Carvalho et al., 2007) 

NF-κB activation inhibitors 

p6
5 AntP-p65-P1 RQIKIWFQNRRMKWKKQLRRPSDRELSE (Takada et al., 2004) 

Nuclear translocation inhibitors 

p5
0 

NL
S 

SN50 AAVALLPAVLLALLAPVQRKRQKLMP (Lin et al., 1995) 

BMS-205820 AAVALLPAVLLALLAPPKKKRKV (Fujihara et al., 2000) 

BMS-214572 AAVALLPAVLLALLAPAKRVKL (Yamaoka et al., 1998) 

PN50 RQIKIWFQNRRMKWKKVQRKRQKLMPC (Letoha et al., 2005) 

Note: Underlined sequences correspond to the inhibiting cargo. Non-underlined sequences correspond to the 
CPP. 
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1.3.4. Cell penetrating peptides used in this project 

As previously described, a great variety of sequences have been identified to have cell-

penetrating properties. These have been grouped into three classes: cationic, 
amphipathic and hydrophobic, based on their physico-chemical properties. The amino 

acid content and its place in a CPP sequence determine most of the cell penetrating 

properties of the peptide and it is also how its classification is determined. This means 
that each class of peptides interacts with the cell membrane in different ways, however 

variability can still be found within classes (Milletti, 2012). For this reason, all three 
classes of peptides are represented by at least one CPP in this project. The CPP used 

and the respective amino acid sequences can be found in Table 1.6. 

 

Table 1.6 – Amino acid sequence of CPPs used in this project. 
CPP Sequence Class 

(RXR)4 RXRRXRRXRRXR Cationic 
R8 RRRRRRRR Cationic 

FFR8 FFRRRRRRRR Cationic 
TP10 AGYLLGKINLKALAALAKKIIL Amphipathic 
PFV PFVYLI Hydrophobic 

Note: X is 6-aminohexanoic acid 

 

1.3.4.1. Cationic peptides: R8, FFR8 and (RXR)4 

Cationic peptides have a high number of positive charges and are mainly composed of 
arginine and/or lysine (Fei et al., 2011). The most commonly used cationic peptides are 

the Tat peptide, from the HIV transactivator protein Tat, Penetratin, a 16 amino acid 
domain from the AntP protein of Drosophila and oligoarginines (e.g. R8) (Schmidt et al., 

2010).  

Studies of the Tat 9-mer (RKKRRQRRR or Tat49-57) in Jurkat cells revealed the 

importance of the positive charge (Wender et al., 2000). Wender and colleagues 
replaced one amino acid at a time in the Tat 9-mer, which revealed that both lysine and 

arginine residues were crucial for the uptake of the peptide (Wender et al., 2000). 
Following these studies a CPP containing nine lysine residues and another CPP 

containing nine arginine residues were designed and tested in Jurkat cells. Both 9-

mers had higher uptake than the Tat 9-mer with the nona-arginine being more 
effectively taken up than the lysine 9-mer (Wender et al., 2000). Further studies with 
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oligoarginines helped determine that the optimal length required for an efficient uptake 
is between seven and nine residues, being eight the one with the highest uptake 

(Futaki et al., 2001). Furthermore, as the number of arginine residues increases or 
decreases the ability of the peptides to be taken up becomes compromised (Futaki et 

al., 2001).  

The internalisation mechanisms of cationic peptides is still not entirely understood, but 
it has been shown to be highly dependent on the incubation conditions (Duchardt et al., 

2007; Futaki et al., 2007). Both direct translocation and endocytosis have been 
implicated in the uptake of these peptides, with the majority of the peptides being 

internalised by endocytosis at low concentrations and at 37˚C, but being internalised by 
direct translocation at 4˚C and at high concentrations (Al-Taei et al., 2006; Fretz et al., 

2007; Futaki et al., 2007; Nakase et al., 2004; Watkins et al., 2009b).  

The guanidinium headgroups of arginine residues are thought to be a critical element 

for the successful intake of arginine-rich peptides. Studies with polyguanidine 
contributed to this understanding and also revealed the importance of length and side 

chain flexibility for the uptake of arginine-rich peptides. To further study how the 

spacing between arginines impacted the uptake of CPPs, Rothbard et al. (2002) 
synthesised a range of peptide analogues where non-α amino acids were introduced 

between arginine residues and their cellular uptake studied in Jurkat cells. The 
addiction of 6-aminohexanoic acid between arginine residues, also contributed to 

increase the resistance of the peptides to proteolysis improving the half-life of the 
peptide (Rothbard et al., 2002). This study led to the discovery of novel CPPs with 

enhanced capabilities of cellular uptake, the most commonly used of these peptides 
being (RXR)4 (Rothbard et al., 2002). 

(RXR)4 was used in this project and is also known as 6-aminohexanoic oligoarginine. It 
is composed of 8 arginine residues spaced by a residue of 6-aminohexanoic acid (See 

Table 1.6 for amino acid sequence). (RXR)4 has been widely used as a vector for the 

delivery of oligonucleotides in vitro in several infectious disease models (Burrer et al., 
2007; Lai et al., 2008; Lupfer et al., 2008), Duchenne muscular dystrophy (Fletcher et 

al., 2007; Jearawiriyapaisarn et al., 2008) and to prevent cardiac ischemia-reperfusion 
injuries (Boisguerin et al., 2011). (RXR)4 has also been used in the HeLa pLuc705 

splice-correction model (Abes et al., 2006) and it has also been tested in vivo as a 
delivery vector of morpholino oligomers that target c-myc (Amantana et al., 2007).  



 37 
 

 

R8 was the polyarginine chosen for this project, due to its previously proven efficacy to 
deliver pro-apoptotic peptides into leukaemic cell lines and primary human CLL cells 

(Bánóczi et al., 2010; Looi et al., 2011; Szabó et al., 2010; Watkins et al., 2011). R8 
has been used to deliver cargoes targeting a variety of diseases including cancer 

(Valero et al., 2011; Wang et al., 2013), malaria and tuberculosis (Sparr et al., 2013) 

and pulmonary arterial hypertension (Yin et al., 2013), to name a few. R8 has also 
been used to improve the delivery of liposomes packed with anti-tumour drugs (Chen et 

al., 2013; Nakamura et al., 2013). 

The choice to use FFR8 in this project was based on the studies by Kolluri et al. (2008) 

and Watkins et al. (2011). Kolluri and colleagues used a short peptide sequence 
(FSRSLHSLL and the D-isomer form fsrslhsll) attached to R8, which proved to have 

cytotoxic effects on MDA-MB435 (melanoma) cells (Kolluri et al., 2008). A mutant 
version of these peptides where the N-terminal phenylalanine and the C-terminal 

leucine were replaced by an alanine residue showed to have no cytotoxic effect on the 
same cells cultured in the same conditions (Kolluri et al., 2008). This suggested that 

the phenylalanine residue in the N-terminal and/or the leucine residue in the C-terminal 

could be determinant for the cytotoxic effects caused by the peptide (Kolluri et al., 
2008). The enhanced uptake caused by phenylalanine residues has been observed 

previously (Mason et al., 2009; Moulton et al., 2004; Takayama et al., 2009). However, 
it was only when Watkins and colleagues set out to test the D-NuBCP-9-r8 peptide, 

used by Kolluri and colleagues, that the crucial role of the phenylalanine residue was 
determined (Watkins et al., 2011). The study combined the use of live confocal 

microscopy and viability assays, in leukaemia cells lines and primary human CLL cells 
(Watkins et al., 2011). The study showed that the N-terminal phenylalanine was crucial 

for the enhanced ability of the peptide to penetrate the cellular membrane and induce 
cell death (Watkins et al., 2011). For this reason, the incorporation of two phenylalanine 

residues into the N-terminal of R8 seemed to have the potential to increase the 

permeability properties of R8. 

 

1.3.4.2. Amphipathic peptide: TP10 

Amphipathic CPPs are characterised by possessing both hydrophobic and hydrophilic 

residues (Milletti, 2012; Shin et al., 2014). They are distinguished from cationic CPPs 
as they lack (or have very few) arginine residues (Milletti, 2012; Shin et al., 2014). 

Amphipathicity and lysine residues are thought to play an important role in penetrating 
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capabilities of these peptides (Milletti, 2012; Shin et al., 2014). A few of the most 
commonly used amphipathic CPPs are transportan (Pooga et al., 1998a) and its 

shorter analogue TP10 (Soomets et al., 2000), MPG (Morris et al., 1997), Pep-1 (Morris 
et al., 2001) and MAP (Oehlke et al., 1998). 

Transportan is a 27-residues long chimeric CPP (GWTLNSAGYLLGKINLKALAA-

LAKKIL) that contains the first 12 amino acids of the amino-terminal part of the 
neuropeptide galanin and 14 amino acids from mastoparan (wasp venom peptide), 

connected by a lysine residue (Pooga et al., 1998a). Transportan contains the N-
terminal part of galanin and therefore it is recognised by galanin receptors, and the 

mastoparan portion of the sequence induces GTPase activity (Soomets et al., 2000). 
Both of these affect the permeable capabilities of the peptide (Soomets et al., 2000). 

To minimise these effects and to determine which portion of the sequence is 
responsible for the membrane translocation properties, Soomets and colleagues 

synthesised nine truncated versions of transportan (Soomets et al., 2000). One of the 
analogues proved to have improved membrane translocation, did not induce GTPase 

activity and was not recognised by galanin receptors (Soomets et al., 2000). This new 

CPP was named TP10 (Soomets et al., 2000).  

TP10 has a 21-amino acid sequence, AGYLLGKINLKALAALAKKIL (Soomets et al., 

2000). It forms an α-helical secondary structure and it penetrates the cellular 
membrane through interactions between the lysine residues and the phospholipids in 

the bilayer (Dunkin et al., 2011; Song et al., 2011; Yandek et al., 2007). TP10 has been 
used to target intracellular proteins involved in cell signalling and membrane fusion of 

basophilic leukaemia (Howl et al., 2003), for the delivery of antisense PNAs in cortical 
neurons to identify RNA-binding proteins (Zielinski et al., 2006), to target Plasmodium 

falciparum the parasite of malaria (Arrighi et al., 2008), as a delivery system for zinc 
finger recombinant proteins (Wang et al., 2010), a myc double stranded 

oligodeoxynucleotide decoy into neuroblastoma and breast cancer cell lines (El-

Andaloussi et al., 2005) or a NF-κB PNA decoy in a insulinoma cell line (Fisher et al., 
2004). 

 

1.3.4.3. Hydrophobic peptide: PFVLY 

Hydrophobic CPPs are considered to have only non-polar residues, have a low net 
charge or have a hydrophobic motif that is crucial for the uptake of the peptide (Milletti, 
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2012). A few of the most commonly used hydrophobic peptides are Pep-7 (Gao et al., 
2002) and PFVLY or C105Y (Lin et al., 1995; Rhee & Davis, 2006). In this project, 

PFVLY (from now on named PFV) represents the hydrophobic peptides class. PFV is a 
shorter analogue of C105Y (CSIPPEVKFNKPFVYLI) and it corresponds to the portion 

of C105Y responsible for membrane translocation (PFVLY (Rhee & Davis, 2006). 

C105Y is a synthetic peptide that corresponds to the amino acid sequence between 
residues 359-374 of α1-antitrypsin (Rhee & Davis, 2006). Watkins et al. (2009a) 

studied the cellular uptake, distribution and cytotoxicity of PFV coupled with a pro-
apoptotic domain (PAD) in adherent and leukaemic cell lines, as well as primary CLL 

cells. This CPP induced cell toxicity in all cell lines tested within the micromolar 
concentration range, however this peptide was less effective than R8-PAD (Watkins et 

al., 2009a). 
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1.4. Aims and objectives 

The previously mentioned NF-κB inhibitors demonstrate the importance of this pathway 

for the survival of CLL. More importantly, some of these inhibitors are more cytotoxic to 
CLL cells than normal B-cells, reinforcing the importance of NF-κB in preferentially 

maintaining CLL cell viability. Although the introduction of drugs such as fludarabine 

and rituximab have improved greatly the response and survival of CLL patients, CLL 
still remains an incurable disease. The identification of relevant molecular targets 

represents an important step forward to tackle the most common form of leukaemia in 
the Western world. NF-κB is one of those targets. 

Since CPPs have been shown to be highly effective at delivering bioactive cargo into 
cells at doses in the low micromolar range, they are promising candidates to deliver a 

NF-κB targeting drug. Therefore, this thesis explored the use of CPPs in CLL. 

The main hypothesis was that apoptosis can be induced in primary CLL cells, by the 

use of a novel CPP targeting NF-κB subunits p50 and p65. To achieve this, the project 
was divided into three parts, representing three main objectives: 

1. To determine if five fluorescently-labelled CPPs [(RXR)4, R8, FFR8, TP10 and 

PFV] can penetrate the membrane of primary human CLL cells and establish 
their sub-cellular localisation using confocal microscopy. 

2. Based on the findings in 1., select a CPP or CPPs to carry a cargo that 
specifically targets the translocation into the nucleus of either NF-κB subunit 

p50 or p65 and measure their effects on the viability of primary CLL cells. 

3. To determine the LC50 values for the novel peptides and establish whether sub- 

LC50 concentrations of the peptides are capable of inhibiting translocation of the 
NF-κB subunits into the nucleus of primary CLL cells. 

Chapter 2- Material and Methods 

2.1. Fluorescent Labelling of Cell Penetrating Peptides  

The five different peptides were purchased as lyophilised powder with a GC-NH2 

(glycine-cystein-amide) modified end to allow fluorescent tagging (Watkins et al., 
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2009a). Lyophilised CPPs (EZBiolab) and Alexa Fluor 488 C5 maleimide (A-10254, 
Invitrogen) were diluted with methanol (CH3OH) to a concentration of 2mg/ml. A 50 µl 

aliquot of the unlabelled peptide was collected to be used as a control for HPLC 
peptide purification. The CPPs were then mixed with the Alexa Fluor 488 at a ratio of 

1.2 molecules of Alexa Fluor 488 to 1 molecule of CPP. The mixture was prepared and 
left overnight on a rotator to allow the reaction to reach completion. Two samples of 50 

µl of the reaction mixture were collected at 0 and 1 hour to assess the status of the 
reaction.  

 

2.1.1.  CPP Purification and Assessment 

To separate labelled peptide from unlabelled in the reaction mixture, reverse-phase 

HPLC was performed. The purification was performed using a C18 100Å 5 μm semi-
preparative column and deionised (dH2O) and filtered water with 0.1% trifluoroacetic 

acid (TFA; CF3COOH) as solvent A and acetonitrile (ACN) with 0.1% TFA as solvent B 
at a flow rate of 3ml/min and using a 100 μl injection loop. The gradients used to elute 

the labelled peptides are shown in Table 2.1. Due to the high polarity of the 
amphipathic and hydrophobic peptides (i.e. TP10 and PFV respectively), the gradient 

used for the arginine-rich peptides was not appropriate for the separation and discreet 
elution of these labelled and unlabelled peptides. Therefore, the gradients suggested 

by EZBiolabs were used to elute these peptides (see Table 2.1). 
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Table 2.1 – Eluting gradients for the five different peptides.  

Peptides Time 
(minutes) H2O ACN 

(RXR)4 
R8 
FFR8 

0 98% 2% 
5 80% 20% 
25 70% 30% 
30 5% 95% 
35 98% 2% 
35.1 STOP 

TP10 

0 75% 25% 
25 50% 50% 
30 0% 100% 
30.1 STOP 

PFV 

0 70% 30% 
25 45% 55% 
25.1 0% 100% 
30 STOP 

 

 

Before collecting the labelled peptide, test runs were performed to determine the 

different retention times of the labelled and unlabelled peptide. A sample with 50 µl of 
pure unlabelled peptide diluted in 50 µl of methanol was analysed first, followed by 

samples of the reaction mixture diluted with methanol at the same ratio at 0 and 1 hour. 
Figures 2.1 and 2.2 show two representative chromatographs of the unlabelled and 

labelled peptide. The fluorescent fractions were collected and a sample of the labelled 
peptides was saved to determine its mass by matrix-assisted laser 

desorption/ionisation – time of flight (MALDI-TOF) mass spectrometry (Figure 2.3); the 
rest was frozen at -20˚C.  
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Figure 2.1 – Chromatograph of unlabelled (RXR)4. 
Unlabelled (RXR)4 was run through a C18 100Å 5 μm semi-preparative column according to the gradient 
described in Table 2.1. Free (RXR)4 retention time: ≈ 10min. Light grey line represents the gradient of 
solvent B (ACN + 0.1% TFA), scaled on the right Y-axis. 

 
Figure 2.2 - Chromatograph of labelled (RXR)4.  
Labelled (RXR)4 was run through a C18 100Å 5 μm semi-preparative column according to the gradient 
described in Table 2.1. Free (RXR)4 retention time: ≈ 10min.; (RXR)4-Alexa Fluor 488 retention time: ≈ 
10.5min.; free Alexa Fluor 488 retention time: ≈ 16.5min. Light grey line represents the gradient of solvent 
B (ACN + 0.1% TFA), scaled on the right Y-axis. 

 
Figure 2.3 - Mass spectrometry trace of labelled (RXR)4. 
The labelled peptides were analysed by MALDI-TOF to confirm the presence of labelled peptide within the 
sample.  
(RXR)4 molecular weight (MW): 1880; Alexa Fluor 488 MW: 700; (RXR)4-Alexa Fluor 488 MW: 2580; 
[(RXR)4-Alexa Fluor 488]+2 MW: 1290. Each peak represents a fraction of the sample. 
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Samples were prepared using the ultra thin layer method (Fenyo et al., 2007). Stainless 

steel MALDI sample plates were rinsed alternately with methanol and distilled H2O 
(dH2O) and wiped with lens tissue to remove any previous sample or debris that could 

affect the analysis. The thin layer substrate solution was prepared by mixing one part of 
saturated α-cyano-4-hydroxycinnamic acid (CHCA; 2 parts of ACN plus 1 part of dH2O 

and 0.1%TFA) with three parts of isopropanol. Around 30 µl of the thin layer substrate 
were applied to the plate and with a help of a 200 µl tip the substrate was spread 

without causing any scratches, and the substrate left to air dry. Ghaith Al-Jayyoussi 
prepared the matrix solution by mixing 5mg/ml of CHCA with 1 part of dH2O and 1 part 

of ACN. The matrix solution was tested by applying 0.5 µl to the plate. If correctly 

prepared it shouldn’t take more than 20 seconds to crystalise. The samples were 
prepared by diluting them with the matrix solution (1:10) and 0.5 µl of this mixture was 

spotted onto the plate. After crystallisation of matrix/analyte occurred the excess liquid 
was removed by vacuum suction. Samples were then analysed by mass spectrometry. 

The frozen peptides were then lyophilised and dissolved in dH2O and using 
spectrophotometry, a wavelength scan was performed to ensure the highest peak 

obtain was at Alexa Fluor 488 excitation maximum (519nm). The concentration of each 
peptide was calculated and the peptides were lyophilised again and dissolved in dH2O 

to obtain a concentration of 1mM. The peptides were aliquoted and stored at -80˚C. 

 

 

Figure 2.4 – Representative spectrophotometry wavelength scan.  
Following elution of the labelled peptides, a spectrophotometry wavelength scan was performed for 
each of the peptides. Alexa Fluor 488 excitation maximum: 495nm.  
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2.2.  Isolation of mononuclear cells from peripheral blood 

Peripheral blood mononuclear cells (PBMC) were isolated by centrifugation using an 

isosmotic solution, Lymphoprep (Axis-Shield). Peripheral blood was layered on top of 
Lymphoprep and centrifuged at 300xg for 20 minutes with the centrifuge brake turned 

off. Following centrifugation, the buffy coat (i.e. layer containing PBMCs) was collected 
and placed in a new sterile tube, washed with PBS and centrifuged at 300xg for 5min. 

The supernatant was discarded and dH2O was added to carefully lyse any 
erythrocytes. The sample was then centrifuged at 300xg for 5min. The resulting 

supernatant was discarded and PBS was added to the pellet. Samples were 
centrifuged at 300xg for 5min. PBS was used to resuspend the cells. Cells were then 

counted. 

2.2.1. Patient samples and ethical approval 

Primary CLL cells were collected from CLL patients from the University Hospital of 

Wales Cardiff and Birmingham Heartlands hospital. The patients' informed consent was 
obtained in accordance with the ethical approval granted by the South East Wales 

Research Ethics Committee in accordance with the Declaration of Helsinki.  

 

2.2.2. Cell counting on the Beckman-Coulter Vi-cell XR 

Cells were counted using a Vi-cell XR (Beckman-Coulter) cell counter by diluting 50 µl 

of each sample into 450 µl of PBS (1 in 10 dilution) in a Vi-cell sample cup. Settings 

could be set for different types of cells (i.e. CLL cells, fibroblasts) and the dilution factor 
could also be adjusted. The Vi-cell XR uses the trypan blue exclusion method to count 

the number of viable cells. This method relies on the fact that non-viable cells take up 
trypan blue, whereas viable cells exclude it. 

 

2.2.3. Cell counting using the Neubauer Haemocytometer 

Alternatively, cells were counted using a Neubauer haemocytometer. A small amount 
of cells (approximately 10 µl depending on the turbidity of the cell suspension) were 

mixed with 10 µl of trypan blue to stain dead cells. Ten microliters of the mixture was 
inserted onto a well of a disposable Neubauer haemocytometer and placed under the 

microscope. The unstained cells in 3 of the small squares were counted, the average of 
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those counts was calculated and multiplied by 9 (to make up for the 9 squares) and 
then multiplied by 20,000 to give the number of cells per millilitre.  

 

2.3.  Cell culture 

2.3.1. Culture media  

In all types of culture, Dulbecco’s Modified Eagle’s Media (DMEM; 11965-092, 

Invitrogen) was used. In addition to the media 10% foetal calf serum, 2% 
penicillin/streptomycin and 1% pyruvate were added. 

 

2.3.2. Liquid culture of primary human PBMCs  

Liquid cultures of PBMCs derived from CLL patients were typically performed in 48-well 

plates at a cell density of 1x106 cells in 500 µl of DMEM media. These cultures were 
routinely supplemented with 5ng/ml of interleukin-4 (IL-4), unless stated otherwise. 

Incubation was performed at 37˚C in a humidified 5% carbon dioxide (CO2) 
atmosphere. If a larger number of cells were required, all volumes were adjusted to 

ensure the same density was maintained. Liquid culture of PBMCs from healthy donors 
was performed in 48-well plates at a density of 1x106 cells in 500 µl of DMEM media, 

with no other supplements. 

 

2.3.3. Culture of transfected and non-transfected mouse fibroblasts L cell lines 

The CD40 ligand (CD40L) mouse fibroblast L cells used in this study were a kind gift 
from Dr Aneela Majid (Leicester University). CD40L cells and non-transfected 

fibroblasts (NTL) were maintained in T75 flasks with 15ml of DMEM media. These cells 
have adherent properties, so when they reached confluence the media was discarded 

and cells left attached to the bottom of the flask. The serum contained in the culture 
media is known to inhibit the activity of trypsin, so in order to allow trypsin to detach the 

adherent cells, a washing step with 10ml of PBS was performed. Afterwards, 5ml of 
trypsin was added to the flask and incubated for 5 minutes at 37˚C and 5% CO2. To 

ensure all cells had detached from the plastic, the flask was examined under an 
inverted light microscope. Once the cells were observed to be floating, 10ml of DMEM 
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media was added to inactivate trypsin and all the contents of the flask were placed in a 
15ml tube and centrifuged at 300xg for 5 minutes. The supernatant was then discarded 

and 10ml of DMEM media was used to resuspend the cells. Between 0.5 and 3ml was 
placed in a new T75 flask, depending on the amount of cells needed in future 

experiments, and 15ml of DMEM media was added. The flask was then placed in an 
incubator at 37˚C with 5% of CO2 for 2 or 3 days. The rest of the cells were irradiated in 

readiness for co-culture with CLL cells. 

 

2.3.4. Preparation of transfected and non-transfected mouse fibroblasts L cells 
for co-culture 

Both transfected and non-transfected fibroblasts were used as feeder cells in a co-

culture system with CLL cells. These co-culture conditions are designed to mimic the in 
vivo environment experienced by CLL cells in the lymphoid tissues. The transfected 

mouse fibroblasts were genetically modified to express human CD40 ligand, which is 
known to activate CLL cells (Pepper et al., 2011; Willimott et al., 2007b). Both 

transfected and non-transfected fibroblasts were irradiated prior to seeding into the 
plates. Irradiation inhibits fibroblast growth but does not affect their viability or their 

biological activities, allowing the CLL cells to be maintained in culture for longer 
periods.  

The fibroblasts were irradiated with 75 Grays (28 minutes in the presence of Caesium-
137, γ emission). The cells were then counted and 1x106 feeder cells were plated into 

each well of a 6-well plate. The cell density was adjusted according to the experimental 

requirements, with a ratio of 1 CD40L cell to 10 CLL cells being optimal. Cells were left 
overnight to allow them to adhere to the plate at 37˚C with 5% CO2. The following day, 

the old media and any non-adherent cells were removed and replaced with fresh 
DMEM media and left in the incubator at 37˚C with 5% CO2, for a maximum of 4 days, 

until needed.  

 

2.3.5. Co-culture of CLL cells with transfected and non-transfected mouse 
fibroblasts L cells 

Survival of CLL cells is dependent of a variety of signals provided by the in vivo 

microenvironment (Bergwelt-Baildon et al., 2004; Deaglio & Malavasi, 2009; Farahani 
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et al., 2005). The lymphoid tissues are the main sites for CLL proliferation. Here, CLL 
cells are stimulated by T-cells and soluble cytokines, which results in their activation 

and proliferation. The stimulation of CD40, a molecule expressed on normal B-cells 
and CLL cells, is one of the main mechanisms responsible for B-cell activation. Its 

ligand, CD154 or CD40L is expressed in a variety of cells including T-cells (Bergwelt-
Baildon et al., 2004; Deaglio & Malavasi, 2009; Farahani et al., 2005). 

After preparation of the feeder layer of cells as previously described (section 2.3.4), 
1x107 CLL cells were added to each well. Cell density was adjusted according to 

experimental requirements, with an optimal ratio of 1 CD40L cell to 10 CLL cells. In 
addition, 5ng/ml of IL-4 was added. The co-cultures were then incubated at 37˚C with 

5% CO2 for the required amount of time ranging from 1 hour up to 5 days. Once the full 

incubation period was reached, CLL cells were carefully collected, trying to avoid 
removing any fibroblasts that could potentially interfere with downstream analysis. Cells 

were then washed with PBS and placed in liquid culture or analysed by flow cytometry, 
depending on the experimental protocol. 

 

2.4.  Flow Cytometry 

Cell surface expression of a variety of cell or activation markers was monitored by flow 
cytometry, as well as peptide fluorescence or apoptotic state. For the majority of 

experiments, a maximum of 3 fluorochromes were used. For these experiments a BD 

Accuri C6 was used. Phenotyping experiments that employed more than 4 
fluorochromes, such as the ones present in Chapter 5, samples were analysed using a 

BD FACSCanto II or a BD FACSAria. Data from the BD Accuri C6 was analysed using 
CFlow Plus software and data from the BD FACSCanto II or BD FACSAria was 

analysed using FlowJo version 10. 

 

2.4.1. CLL cell analysis – CD19 and CD38 expression 

As previously described, CLL is characterised by the accumulation of CD19+ CD5+ B 

lymphocytes. In order to determine the CLL population in a peripheral blood sample, 
CD19-expressing lymphocytes were quantified by flow cytometry. At the same time, the 

CD38 status of CLL patients was also assessed, as the expression of this molecule 

provides prognostic information and is the subject of several on-going research 
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projects within the lab. To perform this analysis, monoclonal antibodies against CD19 
(MHCD1905, Invitrogen) and CD38 (MHCD3804, Invitrogen) were used.  

Three hundred thousand (3x105) PBMCs were aliquoted for CD19 and CD38 staining. 
One control (no antibody) and one test sample were used for every patient sample. 

One hundred microliters of PBS was added to the controls and test samples, followed 
by 4 µl of anti-CD19 and -CD38 antibodies (added to test samples only). All samples 

were incubated at room temperature and in the dark for 10 minutes. Cells were then 
washed with 2ml of PBS and centrifuged at 300xg for 5 minutes. The supernatant was 

discarded and cells resuspended in 200 µl of PBS. Cells were analysed using an 
Accuri C6 flow cytometer. Representative dot plots and histograms are shown in Figure 

2.5. 
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Figure 2.5 –CD19 and CD38 expression of primary CLL cells.  
 
Primary CLL cells were incubated with anti-CD19 and anti-CD38 antibodies for a period of 10 minutes in 
the dark. Cells were then centrifuged and washed. Analysis was performed using the flow cytometer BD 
Accuri C6. P2 gates viable lymphocytes. M3 gates CD19- cells and M1 CD19+. M6 gates CD38+ cells. 
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2.4.2. Normal B and T cell analysis – CD19 and CD3 expression 

CD19 is expressed in B-cells throughout most stages of B-cell development (Otero et 

al., 2003) and it was used to positively identify B-cells from PBMCs obtained from 
healthy donors. CD3 is expressed on all T-cells (Guy & Vignali, 2009) and it was used 

to positively identify T-cells from PBMCs obtained from healthy donors. PBMCs were 
incubated under conditions dependent on the experimental procedure, and 

subsequently incubated with 4 µl of anti-CD19 (MHCD1905, Invitrogen) and 2.5 µl of 
anti-CD3 (12-0036-42, eBiosciences) antibodies for a period of 10 minutes, at room 

temperature and in the dark. Unbound antibody was washed with PBS and centrifuged 
at 300xg for 5 minutes and the pellet was resuspended in PBS. Antibody fluorescence 

was measured by flow cytometry.  

 

Forward and Side scatter CD3 :: CD19 

  

Figure 2.6 – CD3 and CD19 expression in primary CLL cells. 
 
Lymphocytes were gated in P2. Fluorescence of anti-CD3 and -CD19 antibodies was measured within the 
gate and plotted against each other. R1 gates CD3+/CD19- cells (T-cells) and R2 gates CD3-/CD19+ (B-
cells). Monitoring of other markers can be assessed within each of the cell populations. 

 
 

2.4.3. CPP fluorescence analysis – Alexa 488 fluorescence 

As previously described, some of the peptides used in this project were labelled with 
the fluorochrome Alexa Fluor 488. This allowed their detection within cells using certain 

techniques, such as flow cytometry. Cells were incubated under the conditions 
described in section 2.3, depending on the experimental procedure, with or without 

fluorescently tagged peptides. Cells were harvested and washed with PBS and 

29,762 3,000,0001,000,000 2,000,000

0
50

0,
00

0
20

0,
00

0
SS

C-
H

FSC-H

C01 NT - 20h
Gate: [No Gating]

P1
25.1%

P2
17.1%

P1
25.1%

P2
17.1%

10 1 10 7.210 2 10 3 10 4 10 5 10 6

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6
CD

3-
H

CD19-H

C01 NT - 20h
Gate: (P2 in all)

R1
64.9%

R2
9.4%

R1
64.9%

R2
9.4%



 51 
 

 

analysed by flow cytometry. Figure 2.7 shows the monitoring of peptide fluorescence in 
an untreated and peptide-treated sample. 
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Figure 2.7 – Alexa488 fluorescence in untreated primary CLL cells and cells treated with 2 µM of 
(RXR)4. 
 
Viable lymphocytes were gated in P1. Alexa488 fluorescence was measured within the viable lymphocyte 
gate. There’s a shift in fluorescence when compared to the untreated sample, which indicates that the cells 
have taken up the peptide. 

 

 

2.4.4. Apoptosis detection - Annexin V & propidium iodide staining 

Apoptosis is a form of programmed cell death. In viable cells, phosphatidylserine (PS) 
is located in the inner leaflet of the cellular membrane. When a cell enters the apoptotic 

process, PS is translocated to the external leaflet of the cell membrane (Boersma et al., 
2005). Annexin V is a molecule naturally found in the body that binds to PS; this 

property has been exploited as a diagnostic tool for the quantification of apoptosis. By 

attaching a fluorochrome to Annexin V it is possible to detect it using flow cytometry or 
confocal microscopy. In order to distinguish apoptotic cells from necrotic cells, 

propidium iodide (PI) was used in conjunction with Annnexin V. In necrotic and late 
apoptotic cells, the cellular membrane integrity is compromised and therefore PI is able 

to enter cells and bind to DNA and RNA. The combination of Annexin V and PI enables 
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the discrimination between viable, early apoptotic and necrotic/late apoptotic cells 
(Boersma et al., 2005). 

Following the appropriate experimental protocols, cells were washed with 500 µl of 
binding buffer (88-8007-74, eBioscience) and centrifuged at 300xg for 5 minutes. The 

binding buffer contains an optimal concentration of calcium that is crucial for the 
binding of Annexin V to PS. After centrifugation, the supernatant was discarded and the 

cells resuspended in 195 µl of binding buffer and 5 µl of APC-conjugated Annexin V 
(88-8007-74, eBioscience). The cells were incubated for 10 minutes at room 

temperature in the dark in order to avoid photobleaching of the fluorochrome. Cells 
were then centrifuged at 300xg for 5 minutes and the supernatant was discarded. Cells 

were resuspended in 200 µl of binding buffer and 5 µl of PI (88-8007-74, eBioscience) 

was added. Cells were then analysed by flow cytometry. Figure 2.8 shows primary CLL 
cells untreated and treated with an NF-κB inhibitory peptide. 

 

 
Forward and Side scatter Annexin V/PI 

Un
tre

at
ed

 s
am

pl
e 

  

Tr
ea

te
d 

sa
m

pl
e 

  



 53 
 

 

Figure 2.8 – Annexin-V and PI fluorescence of untreated primary CLL cells and TP10-p50i treated 
cells. 
Primary CLL cells were washed with Binding Buffer and posteriorly incubated with Annexin-V for a period 
of 10 minutes. Cells were then centrifuged and resuspended in binding buffer. Flow cytometry analysis 
was performed with BD Accuri C6. P1 gates the lymphocyte population. Annexin-V and PI fluorescence is 
measured within the lymphocyte population. Lower left quadrant, Q1-LL – viable cells (AnnexinV-/PI-); 
lower right quandrant, Q1-LR – early apoptotic cells (AnnexinV+/PI-); upper right quadrant, Q1-UR – late 
apoptotic cells (AnnexinV+/PI+). 

 

 

2.4.5. Apoptosis detection – Caspase-3 assay 

Caspases are cysteine-aspartic acid proteases that play an important role in apoptosis. 

Caspase-3 exists as an inactive proenzyme that is activated as part of a cascade that 

leads to apoptosis of the cells. Caspase-3 activity can therefore be used to monitor 
induction of apoptosis. To do this, the cell-permeable substrate PhiPhiLux G1D2 

(235430, Calbiochem) was used. The substrate contains two fluorochromes, separated 
by a quenching linking sequence, which upon cleavage by caspase-3 fluoresces green 

and can be quantified by flow cytometry or fluorescent microscopy. 

One million primary CLL cells were treated under the conditions specific for each 

experimental protocol, harvested and centrifuged at 300xg for 5 minutes. Cells were 
resuspended with the PhiPhiLux G1D2 substrate at a concentration of 10 µM. Cells 

were incubated at 37˚C with 5% CO2 for 1 hour, with the lid of the tube open. Cells 
were then washed with 1 ml of ice-cold flow cytometry dilution buffer provided with the 

assay kit (235430, Calbiochem) and resuspended with 200 µl of fresh ice-cold flow 

cytometry dilution buffer. Analysis was performed using the BD Accuri C6. Figure 2.9 
shows an example of the flow cytometry data obtained. 
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Figure 2.9 – Caspase-3 activity of untreated and treated primary CLL cells. 
Primary CLL cells were incubated with PhiPhiLux G1D2 substrate for a period of 1 hour. Cells were then 
centrifuged and resuspended in flow cytometry dilution buffer. Flow cytometry analysis was performed with 
BD Accuri C6. The lymphocyte population was gated in P1. The substrate fluorescence was measured 
within the P1 gate. The M1 gate corresponds to caspase-3 activity. 
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2.5. Confocal microscopy 

In order to determine the intracellular localisation of the different peptides, confocal 

microscopy experiments were performed. One million primary CLL cells were cultured 
with 4 µM of the fluorescently tagged peptides, in 500 µl of DMEM media, at 37˚C for a 

determined period of time (1 or 20 hours). Following the incubation period, cells were 
harvested and washed with PBS. To maintain optimal conditions, cells were 

resuspended in 30 µl of phenol red-free media (21063-029, Life Technologies) and 
transferred to a glass-bottomed imaging plate. Five microliters of DRAQ5 (DR50050, 

Biostatus) were added to cells to allow localisation of the nucleus. Since most nuclear 
dyes are blue, the colour representing DRAQ5 was artificially altered using the confocal 

microscopy software from red to blue. Images were taken using a Leica TCS SP5 

confocal microscope. 

 

2.6. Molecular Biology 

2.6.1. Preparation of cytosolic and nuclear extracts 

To assess the translocation inhibition of NF-κB subunits into the nucleus of primary 
CLL cells, nuclear and cytosolic extracts were generated after incubation with the cell 

penetrating NF-κB inhibiting peptides, using a protocol based on a previously 
described method (Brennan & O'Neill, 1995).  

In order to generate detectable and comparable bands in western blotting experiments, 

samples were normalised by cell number. Numbers of cells ranging from 1x106 to 
1x107 cells were used to determine the minimum cell number required to generate 

detectable bands for all of the proteins of interest. 5x106 cells/condition was assessed 
as the minimum required for these experiments. Therefore the incubation conditions 

were adjusted in order to maintain the same cell to peptide ratio. Following incubation 
under conditions specific to the each experimental protocol, cells were harvested into 

1.5 ml tubes, washed and resuspended with PBS, or the pellet frozen at -80˚C for later 
use. Samples were kept on ice for the entire extraction protocol, as well as all buffers 

used. Samples were centrifuged at 200xg for 5 minutes at 4˚C (Heraeus Biofuge 
Fresco). In the meantime, the low salt buffer was prepared by adding 10 µl of NP40 

and 10 µl of phenylmethanesulfonylfluoride (PMSF) to 1 ml of the buffer (full contents of 

buffer can be found on Table 2.2). Following centrifugation, the supernatant was 
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discarded and the samples gently resuspended in 25 µl of the low salt buffer and kept 
on ice for 5 minutes. The volume of buffer used was determined according to the 

number of cells in the sample; a 25 µl volume was used for 5x106 cells. The 
supernatant was transferred to a new tube as it contains the cytosolic fraction. The 

pellet contains the nuclear fraction and it was resuspended in 25 µl of the high salt 
buffer, supplemented with PMSF (10 µl of PMSF into 1 ml of high salt buffer). Samples 

were left on ice for 15 minutes. Following incubation, samples were centrifuged at 
200xg for 5 minutes at 4˚C. The supernatant, containing the nuclear fraction was 

transferred to a new tube. Samples were stored at -20˚C for short periods of time or -
80˚C if they were being stored for longer. 

      Table 2.2 – Extraction buffers. 
Low salt buffer – Buffer A High salt buffer – Buffer C 

10mM Hepes pH 7.9 
1.5mM MgCl2 
10mM KCl 
1µM PMSF 
0.1% NP40 

25% Glycerol 
20mM Hepes 7.9 
420mM NaCl 
1.5mM MgCl2 
0.2mM EDTA 

 

2.6.2. Protein quantification 

The total protein content of the samples was measured using the Bio-Rad Protein 
Assay (500-006, Bio-Rad). This assay is based on the Bradford method, which uses 

Coomasie Brilliant Blue G-250 dye, for which the absorbance shifts from 465 nm to 595 
nm when it binds to protein (Bradford, 1976).  

The protein standards were prepared using a bovine serum albumin (BSA) solution of 

1mg/ml. Standard samples were prepared in duplicates, ranging from 0 to 6 µg of BSA. 
A sample standard curve is shown in Figure 2.10. The standards were freshly prepared 

for each protein quantification experiment. For the nuclear and cytosolic extracts, 25 µl 
of sample were placed on a 96-well plate. Samples were tested as duplicates, 

whenever possible. The dye reagent was prepared by mixing 1 part of concentrated 
dye with 4 parts of dH2O, and 200 µl of the diluted dye was added to test samples and 

standards. The plate was incubated at room temperature for 5 minutes and the 
absorbance was read at 595 nm using a 96-well spectrophotometer. The standard 

curve was plotted using Microsoft Excel software. From the curve a polynomial trend 
line was drawn as well as the respective equation and R-squared value. The equation 

was used to calculate the protein concentration of the test samples. 
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Figure 2.10 – Sample standard curve used to quantify total amount of protein in nuclear and 
cytosolic extracts. 
Duplicates of BSA ranging from 1 to 6 µg of protein were used to create the standard curve. The trendline, 
respective equation and R2 were obtained with Microsoft Excel. 

 

 

2.6.3. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-
PAGE) and western blot analysis 

2.6.3.1. Sample preparation 

SDS-PAGE is a technique used to separate proteins based on the length of their 

polypeptide chains or molecular weight. This is based on the use of SDS detergent to 
remove secondary and tertiary protein structures and maintain the proteins as 

polypeptide chains. Therefore, the first step in sample preparation is the denaturing of 
the proteins by reducing the disulphide bonds under slightly alkaline pH conditions. 

This was achieved by the addition of NuPAGE Sample Reducing Agent (NP0009, 
Invitrogen), containing dithiothreitol (DTT) and by the addition of NuPAGE lithium 

dodecyl sulphate (LDS) Sample Buffer (NP0008, Invitrogen) to maintain the pH at an 
optimal level. The LDS sample buffer also contained Coomasie G250, phenol red and 

bromophenol blue that allowed the samples to be tracked through the gel. Samples 
were kept on ice, and 50 µl were transferred to a new 1.5 ml tube. 20 µl of the LDS 

sample buffer and 8 µl of the sample reducing agent were added to each sample. 
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Tubes were closed and placed on a heating block, previously heated to 80˚C and left 
for 10 minutes. 

2.6.3.2. SDS-PAGE 

Samples were separated using a Novex 4-12% Bis-Tris protein pre-cast 

polyacrylamide gel (NP321, Invitrogen). Gels were previously removed from package, 
the insulating tape and well comb were removed and the gel rinsed with dH2O. Gels 

were placed in the XCell SureLock Mini-Cell (EI0001, Invitrogen) apparatus. The 
running buffer was prepared by diluting 25 ml of NuPAGE® MOPS SDS Running Buffer 

(NP0001, Invitrogen) into 475 ml of dH2O. The buffer chamber of the apparatus was 
filled with the diluted running buffer and samples were loaded onto the gel. The first 

lane was loaded with 7 µl of the molecular marker SeeBlue Plus2 (LC5925, Invitrogen) 

and the following lanes were loaded with 30 µl of the samples previously prepared. The 
gel apparatus was closed and plugged to the PowerEase® 500 Power Supply (378723-

007, Invitrogen). The power pack was set to run at 200V for 60 minutes. These settings 
were optimal to allow the gel front to reach the end of the gel and separate proteins. 

 

2.6.3.3. Western blotting 

While SDS-PAGE is running, the reagents and material for western blotting were 
prepared. One litre of transfer buffer was prepared by diluting 50 ml of NuPAGE 

Transfer Buffer (NP0006-1, Invitrogen) in 750 ml of dH2O and 200 ml of methanol 
(Fisher Scientific). The blotting pads were soaked in transfer buffer, as well as the 

nitrocellulose membrane (BRD-100-540T, Fisher Scientific) and filter paper previously 

cut to 8.5cm x 7cm. 

When the gel front reached the end of the gel, the SDS-PAGE was terminated. The 

system was dismantled and the XCell II™ Blot Module (EI9051, Invitrogen) was 
assembled according to the diagram shown in Figure 2.11. The blot module was 

placed into XCell SureLock Mini-Cell (EI0001, Invitrogen) apparatus, and the buffer 
chamber was filled with transfer buffer. The module was closed and the assembled 

system was plugged into the power pack and set to run at 50V, 350 mA for 2 hours. 
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Figure 2.11 – Western blot assembly order. 
 
Two blotting pads are placed in the cathode core, followed by the pre-assembled filter 
paper/gel/membrane/filter paper sandwich. A blotting pad is placed between the first and second 
sandwich. Two additional blotting pads are placed between the second sandwich and the anode core, to 
ensure the system is tightly closed within the cassette, and that the current is able to reach both 
sandwiches. 

 

2.6.3.4. Immunodetection 

To detect the target proteins, specific antibodies are used. The immunodetection can 

be divided into three stages: blocking, incubation with antibody and detection. 

To prevent non-specific binding of primary and/or secondary antibodies to the 
membrane, a blocking agent is used. Therefore, following blotting, the membrane was 

placed in 10ml of previously prepared blocking solution for one hour at room 
temperature. The solution was prepared by placing 10 phosphate buffered saline (PBS) 

tablets (BPE9739-1, Fisher Scientific), adding dH2O up to 1L and 1ml of Tween-20 
(P7949, Sigma-Aldrich). The PBS-Tween solution was pre-heated to 80˚C, point at 

which 2g of I-Block™ solution (T2015, Invitrogen) was added and thoroughly mixed. 
The solution was left to cool down. 4g of sodium azide were added as a preservative 

and the solution was stored at 4˚C. 

Following blocking, the membrane was probed with 10µl of primary antibody diluted in 
10ml of blocking solution (1/1000). Depending on the primary antibody, the incubation 

period could vary from 1 hour at room temperature to overnight at 4˚C. Following 
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incubation, the membrane was washed three times with 10ml of PBS-Tween (10 PBS 
tablets, 2ml of Tween-20 in 1L of dH2O) for periods of 10 minutes on a rocking platform 

at room temperature. The secondary antibody was diluted in blocking solution at a ratio 
of 1/10000 (1µl of antibody in 10ml of blocking solution), and the membrane incubated 

for a minimum of 1 hour at room temperature. The membrane was then washed three 
times with PBS-Tween for periods of 10 minutes on a rocking platform at room 

temperature. 

Table 2.3 – Primary antibodies used. 

Target Protein Source 

PARP (46D11) 9532S, Cell Signaling 
NF-κB p65 (D14E12) XP 8242S, Cell Signaling 
Phospho-NF-κB p65 (Ser536) (7F1) 3036S, Cell Signaling 
NF-κB1 p105/p50 3035S, Cell Signaling 
β-Actin (8H10D10) 3700S, Cell Signaling 
β-tubulin (9F3) 2128S, Cell Signaling 
HSP90 (C45G5) 4877S, Cell Signaling 
 

Table 2.4 – Secondary antibodies used. 

Secondary antibody 
conjugate 

Target 
Species Detection method Source 

IgG-AP  Mouse Chemiluminescence 170-6520, Bio-Rad 
IgG-AP  Rabbit Chemiluminescence 170-6518, Bio-Rad 
IgG-AlexaFluor680  Mouse Infrared A-21057, Life Technologies 

IgG-IRDye800 Rabbit Infrared 611-132-122, Lorne 
Laboratories Lmt 

AP – Alkaline phosphatase 

 

As for the detection step, two methods were used: chemiluminescence and far red 

detection. For the chemiluminescence detection method, the membrane was incubated 
with 10ml of alkaline phosphatase buffer (T2187, Applied Biosystems) for 3 minutes. 

The membrane was then placed in a plastic pouch and 600µl of the substrate Tropix 
CDP Star (T2146, Applied Biosystems) was added and incubated for 5 minutes. The 

excess reagent was removed and the membrane in the plastic pouch was placed in a 

cassette. In a darkroom, a sheet of Kodak X-Omat™ Blue (XB) film (NEF586001EA, 
Perkin Elmer) was placed on top of the membrane and left to be exposed in the dark 

for a period of 1 minute up to overnight (depending on the intensity of the bands 
obtained). The film was developed using an X-ray film developer machine. As for the 
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infrared detection, following incubation with the secondary antibody and a wash step 
with PBS-Tween, the membranes were scanned with an Odyssey® Infrared Imaging 

System (LI-COR). 

 

2.6.4. Electrophoretic mobility shift assay (EMSA) 

The EMSA is a method used to detect protein-nucleic acid interactions in a relatively 

rapid and sensitive manner (Hellman & Fried, 2007). The assay is based on the 
principle that proteins bound to a nuclei acid have a reduced mobility when compared 

with a free nucleic acid. Using radioactive labelled nucleic acids it is possible to 
observe this shift in a native acrylamide gel. 

Due to the radioactive component of EMSAs, handling of phosphorus-32 (32P) was 

carried out in a designated lab room, over plastic spill trays and behind perspex 
shielding. Other precautions, such as the use of a designated lab coat, two pairs of 

gloves, including the use of a ring with a radiation dosimeter to monitor exposure to 
radiation, use of Geiger-Mueller detectors, and disposal of contaminated material into 

appropriately labelled and shielded containers, were also routinely employed. 

 

2.6.4.1. Labelling NF-κB oligonucleotides with 32P 

NF-κB oligonucleotides, with the NF-κB consensus sequence 5'-GGGACTTTCC-3', 

were labelled with γ-32P. The labelling occurs at the 5’ end of the oligonucleotides, as 
labelling incorporated into DNA would interfere in the DNA-protein complex formation. 

The first step of the labelling was the preparation of the reaction mix. The mix was 

prepared according to Table 2.5 and left to incubate for 30 minutes at 37˚C. Following 
incubation, 1µl of 0.5M EDTA and 20µl of Phenol:Chlorophorm:Isoamyl Alcohol 

(25:24:1) were added. The mix was vortexed and centrifuged at 13,400xg for 2 
minutes. The aqueous top layer was removed to a clean tube, and 1µl of 5M NaCl was 

added followed by 40 µl of ice-cold ethanol. The reaction mix was placed in the freezer, 
at -20˚C for 30 minutes. Following this period, the mix was centrifuged for 5 minutes at 

13,400xg. The ethanol was removed and the tube was left with an open lid at room 
temperature until all ethanol had evaporated. The pellet was resuspended in 50 µl of 

Tris-EDTA (TE). The stock solution was frozen at -20˚C. 
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Table 2.5 – Reaction mix components. 

Reaction Mix (total volume: 20µl) Source 

10µl dH2O  

2µl 10x Kinase Buffer M4101, Promega 

2µl NF-κB Consensus Oligonucleotide E3292, Promega 

1µl T4 Polynucleotide Kinase M4101, Promega 

5µl ATP [γ-32P] NEG002A250UC, PerkinElmer 

 

2.6.4.2. Electrophoretic mobility shift assay (EMSA) 

Initially, 4% native acrylamide gels were prepared following the recipe in Table 2.6. The 

mix was prepared and poured into the gel cast. The gel was left to polymerise for 2 to 3 

hours. To eliminate variability caused by the preparation of gels, 6% native acrylamide 
gels were purchased (EC6365BOX, Life Technologies).  

 

Table 2.6 – Gel components. 

4% Native acrylamide gel  
(total volume: 40ml) Source 

4ml 40% Acrylamide/bis-acrylamide A7168, Sigma 

4ml 10x Tris-Borate-EDTA (TBE) B52, Thermo Scientific 

32ml dH2O  

 Pour the mix in the cast immediately after 
adding the last two components  

200µl 10% Ammonium persulfate (APS) A3678-25G, Sigma 

30µl Tetramethylethylenediamine (TEMED) T9281, Sigma 
 

The binding reaction mix was prepared by mixing 2µg of sample nuclear extract with 

2.5µl of 10x DNA binding buffer, 2µl of 1µg/µl Poly dI-dC (P4929, Sigma) and 1µl of 
labelled oligonucleotides. The stock solution of 10x DNA binding buffer was prepared 

according to the mix resented in Table 2.7. This solution was aliquoted and stored at     
-20˚C. Samples were incubated at room temperature for 30 minutes to allow formation 

of DNA-protein complexes. Following incubation 2µl of Bromophenol Blue (B3269, 

Sigma) was added to the binding reaction mix. Samples were loaded onto the gel. The 
electrophoresis apparatus was assembled and the parameters were set to 75V for 2 
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hours. Following electrophoresis, gels were removed from the cast and placed onto 
filter paper, covered with cling film and placed onto a gel drier (165-1746, Bio-Rad) for 

30 minutes to one hour. The dried gel was placed onto a cassette, and a phosphor 
screen placed on top of it. The cassette was closed and left for 1 to 3 days. The screen 

was then scanned using the Typhoon 9400 laser scanner (Amersham), which is 
sensitive to radioisotopes. 

 

Table 2.7 – 10x DNA Binding buffer components. 

10x DNA Binding buffer (total volume: 870µl) Source 

400µl Glycerol G5516, Sigma 

100µl 1mg/ml Nuclease free BSA B2518, Sigma 

20µl 0.5M EDTA V4231, Promega 

50µl 1M DTT 43816, Sigma 

200µl 5M NaCl S3014, Sigma 

100µl 1M Tris pH 7.5 93362, Sigma 
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Chapter 3 - Investigating CPP entry in primary CLL cells 

3.1. Introduction 

The aim of this chapter was to characterise the entry of five CPPs into primary human 

CLL cells. A limited number of comparative studies have been performed to assess the 
cellular uptake of different CPPs (Mueller et al., 2008), and the majority of these 

employed cell lines. Mueller et al. (2008) performed a large-scale study to compare the 
cellular uptake of 22 CPPs, using 4 different cell lines (Mueller et al., 2008). One of the 

conclusions of this study was that, under the same conditions, CPP uptake rate was 
dependent on the cell line used (Mueller et al., 2008). In this study, they determined 

that some of the CPPs with the highest uptake rates were penetratin, transportan, R7 

and R9; some of the most frequently used CPPs (Mueller et al., 2008). Other studies 
have employed the use of primary cells, such as Marshall et al. (2007), where R9F2, 

Tat, penetratin, (RXR)4 and His1 were used to deliver PMOs into murine leukocytes. 
Out of the five tested CPPs, (RXR)4 was able to deliver a functional cargo and was the 

CPP with the highest uptake rate (Marshall et al., 2007). Although both of these studies 
used penetratin, the results obtained were divergent. This is likely due to the 

differences in the experimental conditions in which the peptides were studied. 
Conditions such as cell type, peptide concentration, type of cargo, type of fluorescent 

tag, temperature, trypsinisation and others, make it difficult to compare between 
studies and reach general conclusions (Mueller et al., 2008). 

Until now there has been no study comparing the cellular uptake of CPPs in primary 

human lymphocytes. However, a few studies have employed CPPs to deliver bioactive 
cargos into human primary CLL cells. Watkins et al. (2009a), used KG1a, HeLa and 

primary CLL cells to test the uptake of R8 and PFV coupled with a PAD peptide with 
the following sequence: (KLAKLAK)2. The different cell types used showed different 

sensitivity to the CPPs (Watkins et al., 2009a). In primary CLL cells, both R8-PAD and 
PFV-PAD were able to decrease viability, with LC50 values lower than 10 µM (Watkins 

et al., 2009a). Hewamana et al. (2008) used a commercial CPP to induce apoptosis of 
primary CLL cells. The CPP comprised the penetratin sequence with an aspartic acid 

residue at the C-terminal (i.e. DRQIKIWFQNRRMKWKK) coupled with a NF-κB p65 
subunit inhibiting sequence (Hewamana et al., 2008b; Takada et al., 2004). The NF-κB 

inhibiting CPP was capable of inducing apoptosis in 70% of the cells at 50 µM 

(Hewamana et al., 2008b). These studies show that CPPs can effectively penetrate 
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primary human CLL cells and deliver a cytotoxic cargo. A comparative study, like the 
one presented in this chapter, provides a better understanding of the uptake of CPPs 

by primary CLL cells and can lead to the development of novel CPPs with improved 
therapeutic potential. 

In order to characterise the uptake of the five CPPs using flow cytometry and confocal 
microscopy, the fluorochrome Alexa488 was covalently liked to the N-terminal of the 

five CPPs (see section 2.1 for detailed protocol). A small number of fluorochromes 
have been used to label CPPs, such as the Alexa Fluor dyes (i.e. 405, 488, 568, 647), 

fluorescein (FITC), rhodamine 6G, oregon green, tetramethyl rhodamine and texas red 
(Jones & Sayers, 2012). Their structures differ greatly, and they probably influence 

CPP uptake both positively and negatively (Jones & Sayers, 2012). Therefore, the 

choice of fluorochrome needs to be considered carefully. The most commonly used 
fluorochromes for the study of cellular uptake of CPPs are Alexa488 and FITC (Palm-

Apergi et al., 2012). Previous studies have shown that the fluorescent signal of FITC-
labelled CPPs is inhibited by 70% at lysosomal pH, limiting its use as a reporter of 

CPPs that do not utilise an endosomal mechanism of entry (Jones & Sayers, 2012). 
However, as some of the CPPs used in this project had not been previously tested in 

primary CLL cells, it was not possible to know if they utilised an endocytic route to 
penetrate the cell membrane. To avoid potential loss of fluorescent signal, the 

fluorochrome Alexa488 was chosen over FITC. The linker between the CPP and 
Alexa488 used was maleimide, since it provides a longer spacing between the peptide 

and fluorophore (Jones & Sayers, 2012). The space between the CPP and the reporter 

is important to ensure that the fluorochrome does not interfere with the penetrating 
capabilities of the CPP (Jones & Sayers, 2012).  

This chapter set out to characterise the uptake of five CPPs, (RXR)4, R8, FFR8, TP10 
and PFV, representing all three classes of CPPs, in primary human normal and 

malignant lymphocytes. The amino acid sequences of the peptides studied are shown 
in Table 3.1. This study aimed to determine the uptake rate of the five CPPs, their 

intracellular distribution when taken up by the cells, if the dose administered was 
proportional to the levels of fluorescence delivered and if the CPPs affect cell viability. 

This study also aimed to determine if the peptides behave in a similar manner with 

normal B- and T-cells. This was achieved with the use fluorescently-tagged CPPs in 
combination with flow cytometry and confocal microscopy. 
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Table 3.1 – Amino acid sequence of the CPPs used in this project. 
CPP Sequence 

(RXR)4 RXRRXRRXRRXR-Alexa488 
R8 RRRRRRRR-Alexa488 

FFR8 FFRRRRRRRR-Alexa488 
TP10 AGYLLGKINLKALAALAKKIL-Alexa488 
PFV PFVYLI-Alexa488 

 

3.2. All CPPs are able to penetrate primary CLL cells and deliver 
different levels of fluorescence 

The first step in this study was to characterise the ability of five different CPPs to 

deliver a fluorescent cargo into primary CLL cells. Flow cytometry was employed to 

allow a quantitative comparison of peptide entry, and the simultaneous investigation of 
cell viability as determined by forward and side scatter. Primary CLL cells were first 

separated from whole blood and washed with PBS. Cells were placed into liquid culture 
and Alexa488-conjugated peptides (2 µM) were added to the media. After 1 and 20 

hours of incubation, cells were harvested and the fluorescence emitted by Alexa488 
was measured by flow cytometry. Figure 3.1 shows flow cytometry data from cells from 

a single CLL patient cultured with the five CPPs. Viable cells were gated (P1) in the 
forward and side scatter and the mean fluorescence intensity (MFI) of the cells in 

channel FL1, within the viable lymphocyte (P1) gate, was measured. The black 
histogram represents the fluorescence of cells at 1 hour and the red histogram 

represents the fluorescence of cells at 20 hours. Data from 19 CLL patient samples 

was collected and a compilation of that data can be found in Figure 3.2 and 3.3. Data 
from the 19 patients was also plotted in Figure 3.4 with MFI values of 1 hour linked to 

respective MFI values at 20 hours.  

Primary CLL cells were able to take up all the tested CPPs at the 2 µM concentration 

under one hour, as seen in Figures 3.1 to 3.3. The levels of fluorescence within the 
cells varied greatly between CPPs; the CPP capable of delivering the highest levels of 

fluorescence was FFR8, with MFI values at 1 hour of 99,498 (±59,077). The lowest MFI 
values at 1 hour were associated with PFV-treated cells, with MFI values of 3,666 

(±2,510).  

Regarding the fluorescence histograms in Figure 3.1, the peptides can be assigned 

into one of three categories. The first encompassed (RXR)4, R8 and PFV, where two 
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distinct peaks present different levels of fluorescence after 20 hours. This implies that 
the peptide was not distributed uniformly within all of the cells but was preferentially 

taken up (or retained) in a subset of cells. There was a significant increase in MFI 
following 20 hours for all peptides with the exception of FFR8, suggesting that peptide 

entry was time dependent. The second category comprised FFR8. Cells incubated with 
this peptide showed no time-dependent increase in fluorescence. However, the 

distribution of this peptide within the cell population became more consistent after 20 
hours as evidenced by a reduction in the standard deviation of the fluorescence 

histogram. The third category consisted of TP10. This peptide showed little evidence of 
differential uptake within the cell population at 1 hour and 20 hours but there was a log 

increase in fluorescence at 20 hours suggesting that this peptide accumulated in the 

cells over the timeframe of the assay.   

Following one hour of incubation, the order by which the peptides were able to deliver 

fluorescence into the cells, from the highest to the lowest was as follows: FFR8, 
(RXR)4, R8, TP10 and PFV. Regarding distribution of fluorescence, FFR8 has the 

highest standard deviation (SD=59,077), while PFV has the lowest (SD=2,510). After 
20 hours of incubation, the order by which the peptides were able to deliver 

fluorescence into the cells, from the highest to the lowest was the following: FFR8, 
(RXR)4, TP10, R8 and PFV. Regarding distribution of fluorescence, FFR8 continued to 

have the highest standard deviation (SD=23,168), and (RXR)4 had the lowest 
(SD=4,116). 

Comparing MFI values at 1 hour with the respective values at 20 hours (Figure 3.4), 

showed that the only peptides for which the fluorescence values do not significantly 
change were (RXR)4 (p=0.50) and R8 (p=0.06). For cells incubated with FFR8, there 

was a significant decrease in fluorescence (p<0.001) between 1 hour and 20 hours. For 
cells incubated with TP10 and PFV there is a significant increase in fluorescence after 

20 hours of incubation (TP10 p<0.001 and PFV p<0.0001). The peptides can therefore 
be divided into three categories: the first includes (RXR)4 and R8, where the changes 

in fluorescence are not significant; the second includes FFR8, where the mean 
fluorescence values decrease after 20 hours; and the last category that includes TP10 

and PFV, for which the mean fluorescence increases. 

  



 68 
 

 

 Fi
gu

re
 3

.1
 –

 F
lo

w
 c

yt
om

et
ry

 d
at

a 
of

 p
rim

ar
y 

CL
L 

ce
lls

 in
cu

ba
te

d 
w

ith
 (R

XR
)4

, R
8,

 F
FR

8,
 T

P1
0,

 P
FV

 a
nd

 n
o 

pe
pt

id
e 

fo
r a

 p
er

io
d 

of
 1

 a
nd

 2
0 

ho
ur

s.
 

Pr
im

ar
y 

CL
L 

ce
lls

 w
er

e 
in

cu
ba

te
d 

wi
th

 2
 µ

M
 o

f (
RX

R)
4,

 R
8,

 F
FR

8,
 T

P1
0 

an
d 

PF
V 

fo
r a

 p
er

io
d 

of
 2

0 
ho

ur
s.

 C
el

ls
 w

er
e 

co
lle

ct
ed

 a
t 1

 a
nd

 2
0 

ho
ur

s 
an

d 
wa

sh
ed

 w
ith

 P
BS

. V
ia

bl
e 

ce
lls

 w
er

e 
ga

te
d 

in
 P

1 
an

d 
Al

ex
a4

88
 fl

uo
re

sc
en

ce
 a

na
lys

ed
 b

y 
flo

w 
cy

to
m

et
ry

 in
 F

L1
. T

he
 re

d 
ve

rti
ca

l l
in

e 
se

pa
ra

te
s 

ba
sa

l f
lu

or
es

ce
nc

e 
fro

m
 p

ep
tid

e 
flu

or
es

ce
nc

e,
 s

et
 u

sin
g 

th
e 

un
tre

at
ed

 s
am

pl
e 

as
 re

fe
re

nc
e.

 B
la

ck
 h

is
to

gr
am

 re
pr

es
en

ts
 c

el
ls

 c
ol

le
ct

ed
 a

t 1
 h

ou
r. 

Re
d 

hi
st

og
ra

m
 re

pr
es

en
ts

 c
el

ls
 c

ol
le

ct
ed

 a
t 2

0 
ho

ur
s.

 D
at

a 
fro

m
 o

ne
 p

at
ie

nt
 s

am
pl

e.
 

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

G
01

 B
S 

- n
t -

 1
h

G
at

e:
 [N

o 
G

at
in

g]

P1 85
.4
%

P1 85
.4
%

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

G
02

 B
S 

- R
XR

 - 
1h

G
at

e:
 [N

o 
G

at
in

g]

P1 82
.9
%

P1 82
.9
%

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

G
03

G
at

e:
 [N

o 
G

at
in

g]

P1 85
.9
%

P1 85
.9
%

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

G
04

 B
S 

- F
FR

8 
- 1

h
G

at
e:

 [N
o 

G
at

in
g]

P1 84
.9
%

P1 84
.9
%

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

G
05

 B
S 

- T
P1

0 
- 1

h
G

at
e:

 [N
o 

G
at

in
g]

P1 84
.1
%

P1 84
.1
%

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

G
06

 B
S 

- P
FV

 - 
1h

G
at

e:
 [N

o 
G

at
in

g]

P1 87
.7
%

P1 87
.7
%

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

01,600 5001,000
Count

FL
1-

H

G
01

 B
S 

- n
t -

 1
h

G
at

e:
 (P

1 
in

 a
ll)

V1
-L

V1
-R

V1
-L

V1
-R

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

01,600 5001,000
Count

FL
1-

H

G
02

 B
S 

- R
XR

 - 
1h

G
at

e:
 (P

1 
in

 a
ll)

V1
-L

V1
-R

V1
-L

V1
-R

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

01,600 5001,000
Count

FL
1-

H

G
03

G
at

e:
 (P

1 
in

 a
ll)

V1
-L

V1
-R

V1
-L

V1
-R

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

01,600 5001,000
Count

FL
1-

H

G
04

 B
S 

- F
FR

8 
- 1

h
G

at
e:

 (P
1 

in
 a

ll)

V1
-L

V1
-R

V1
-L

V1
-R

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

01,600 5001,000
Count

FL
1-

H

G
05

 B
S 

- T
P1

0 
- 1

h
G

at
e:

 (P
1 

in
 a

ll)

V1
-L

V1
-R

V1
-L

V1
-R

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

01,600 5001,000
Count

FL
1-

H

G
06

 B
S 

- P
FV

 - 
1h

G
at

e:
 (P

1 
in

 a
ll)

V1
-L

V1
-R

V1
-L

V1
-R

N
o 

tr
ea

tm
en

t!
(R

XR
)4
!

R
8!

FF
R

8!
TP

10
!

PF
V!

Forward and!
side scatter! Count!

A
le

xa
48

8!
– 

1 
ho

ur
  –

 2
0 

ho
ur

s 
!



 69 
 

 

 

Figure 3.2 - MFI of primary CLL cells after incubation for 1 hour with (RXR)4, R8, FFR8, TP10, PFV 
and without any treatment. 
Primary CLL cells were incubated with 2 µM of (RXR)4, R8, FFR8, TP10, PFV or no peptide for a period of 
20 hours. Cells were collect at 1 and 20 hours, washed and analysed by flow cytometry. MFI levels 
(measured in FL1) correspond to the fluorescence emitted by the fluorochrome Alexa488. Data from 19 
CLL patient samples.  

 
Figure 3.3 - MFI of primary CLL cells after incubation for 20 hours with (RXR)4, R8, FFR8, TP10, 
PFV and without any treatment. 
Primary CLL cells were incubated with 2 µM of (RXR)4, R8, FFR8, TP10, PFV or no peptide for a period of 
20 hours. Cells were collect at 1 and 20 hours, washed and analysed by flow cytometry. MFI levels 
(measured in FL1) correspond to the fluorescence emitted by the fluorochrome Alexa488 inside the CLL 
cells. Data from 19 CLL patient samples. 
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(RXR)4 R8 

  

FFR8 TP10 

  
PFV 

 
Figure 3.4 – Correlation between MFI levels of 1 and 20 hours of primary CLL samples incubated 
with the five CPPs. 
MFI values of primary CLL cells at one hour were linked to levels at 20 hours. A t test was performed using 
the Graphpad Prism 6 software to obtain the statistical significance value between 1 and 20 hours. Paired 
t-test applied using the software Graphpad Prism 6. ** - Statistically significant data. Data from 19 patient 
samples. 
  

1h 20h
0

10,000

20,000

30,000

40,000

Incubation period

Fl
uo

re
sc

en
ce

 (M
FI

)

p=0.50

1h 20h
0

10,000

20,000

30,000

40,000

50,000

Incubation period

Fl
uo

re
sc

en
ce

 (M
FI

)

p=0.06

FFR8 FFR8
0

50,000

100,000

150,000

200,000

250,000

Incubation period

Fl
uo

re
sc

en
ce

 (M
FI

)

p<0.001 ***

1h 20h
0

20,000

40,000

60,000

80,000

Incubation period

Fl
uo

re
sc

en
ce

 (M
FI

)

p<0.001 ***

1h 20h
0

5,000

10,000

15,000

20,000

25,000

Incubation period

Fl
uo

re
sc

en
ce

 (M
FI

)

p<0.0001****



 71 
 

 

3.3. Fluorescence was proportional to the concentration of peptide 

The concentration of CPP used has been reported to affect the way peptides penetrate 

cells (Jones & Sayers, 2012). To determine if the dose administrated was proportional 
to the fluorescence measured in the cells, primary CLL cells were cultured with a range 

of concentrations of the three peptides that delivered the highest levels of fluorescence 
(RXR)4, R8 and FFR8.  

Primary CLL cells were cultured with a range of concentrations (0.25, 0.5, 1, 2 and 4 
µM) of (RXR)4, R8 and FFR8. Cells were cultured in DMEM media for up to 20 hours, 

and were collected after 1 and 20 hours of incubation. They were washed with PBS 
and Alexa488 fluorescence was measured by flow cytometry. Figure 3.5 shows flow 

cytometry data of primary CLL cells from one patient cultured with 5 concentrations of 

(RXR)4 and FFR8 and without any treatment. Figure 3.6 shows a compilation of data 
from 3 patients. Primary CLL cells showed a concentration-dependent increase in 

fluorescence when incubated with Alex488-labelled (RXR)4 and R8 (Figure 3.5). FFR8 
behaved in the same way with a proportional increase in fluorescence at 

concentrations ranging from 0 to 2 µM. However, the highest concentration of peptide 
(4 µM) caused an almost 20-fold increase in fluorescence (Figure 3.6). 
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Figure 3.6 – MFI of primary CLL cells after incubation for 1 and 20 hours with different 
concentrations (0.25, 0.5, 1, 2 and 4 µM) of (RXR)4, R8, FFR8 and without any treatment.  
Primary CLL cells were cultured with a range of concentrations (0.25, 0.5, 1, 2 and 4 µM) of (RXR)4, R8 
and FFR8 for a period of 20 hours. Cells were collected at 1 and 20 hours, washed and Alexa488 
fluorescence analysed by flow cytometry. The Y-axis for FFR8 has been divided into two segments, with a 
break from 60,000 to 400,000 MFI. Data from 3 patient samples. 
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3.4. CPPs do not affect CLL viability  

In order to investigate if the CPPs caused cytotoxic effects in CLL cells, cell viability 

was measured after incubation with the peptides. To do so, viability tests using Annexin 
V and propidium iodide were performed as described previously. Primary CLL cells 

were incubated with a range of doses (0.25, 0.5, 1, 2 and 4 µM) of the three peptides 
able to deliver the highest levels of fluorescence, (RXR)4, R8 and FFR8 for a period of 

20 hours. Cells were collected at 1 and 20 hours and the viability tests were performed 
alongside the peptide fluorescence measurements by flow cytometry. Figures 3.6 and 

3.7 show the flow cytometry data derived from one patient sample incubated with 
(RXR)4 and FFR8 for 1 hour. Cells in Q1-LL are Annexin-V and PI negative, consistent 

with them being viable. Cells in Q1-LR are Annexin-V positive and PI negative, 

indicative of cells in early apoptosis. Cells in Q1-UR are Annexin-V and PI positive, 
signifying cells in late apoptosis. An unusual feature of these experiments was the 

appearance of cells in Q1-UL following incubation with CPPs. These cells were not 
classically apoptotic as they were Annexin-V negative but they failed to exclude PI. 

Given that these cells were only evident in CPP-treated cultures it is possible that the 
CPP causes perturbations in the cytoplasmic membrane resulting in them becoming 

permeable to PI. Figure 3.9 shows the percentage of cells in apoptosis (early and late 
apoptosis: Q1-LR + Q1-UR). 

Cells incubated with (RXR)4 and R8 showed no increase in apoptosis at 1 and 20 

hours, when compared to untreated cells. Cells incubated with FFR8 showed no 
increase in apoptosis from doses of 0.25 up to 2 µM. At 4 µM, the percentage of cells 

positive for both Annexin-V and PI or positive solely for Annexin-V increases to 40%. At 
20 hours the levels of apoptosis of cells incubated with FFR8 show no increase when 

compared to untreated cells. 

In Figure 3.9, the effect that both (RXR)4 and FFR8 have on the cellular membrane is 

visible as the cell population shifts upwards on the PI fluorescence scale. This indicates 
that both peptides interact with the cellular membrane in a way that allows PI to enter 

the cell, without inducing apoptosis, as there is no expression of PS (cells are Annexin-
V negative).  
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Figure 3.9 - Viability of primary CLL cells incubated with different concentrations (0.25, 0.5, 1, 2 
and 4 µM) of (RXR)4, R8 and FFR8. 
Primary CLL cells were cultured with a range of concentrations (0.25, 0.5, 1, 2 and 4 µM) of (RXR)4, R8 
and FFR8 for a period of 20 hours. Cells were collected at 1 and 20 hours, washed and stained with 
propidium iodide and Annexin-V and analysed by flow cytometry. Percentage of apoptosis refers to cells 
double positive for Annexin-V and PI (Q1-UR of Figure 3.7 and 3.8) and cells positive for Annexin-V but 
negative for PI (Q1-LR of Figure 3.7 and 3.8).  
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3.5. Differential intracellular localisation of CPPs in primary CLL 
cells 

The next step was to determine the intracellular distribution of the Alexa488-tagged 
CPPs using confocal microscopy. Primary CLL cells were cultured with 4 µM of 

Alexa488 labelled CPPs for a period of 20 hours. Cells were collected at 1 and 20 
hours and stained with DRAQ5, a far-red emitting fluorescent DNA dye, which binds 

stoichiometrically into DNA. Cells were washed and incubated with RPMI with no 
phenol red, to allow visualisation by confocal microscopy. Cells were imaged while still 

alive; no fixation method was employed. 

Figures 3.10 to 3.14 show primary CLL cells incubated with the five CPPs for 1 and 20 

hours. Low power and high power fields are shown, with DRAQ5 and Alexa488 

fluorescence overlaid (achieved using the software Photoshop CS6). A zoomed field of 
only the green channel (Alexa488 fluorescence) is also shown. To be consistent with 

other commonly used DNA dyes, the DRAQ5 labelling employed here was falsely 
coloured blue. All the confocal pictures were taken using live and unfixed cells to 

eliminate the potential for fixation artefacts. Figure 3.15 shows images of single CLL 
cells incubated for 1 hour with the five CPPs. Single cells were cut from Figures 3.10 to 

3.14 and assembled in a black background using Photoshop CS6. The images 
presented in this chapter were not colour enhanced during the assembly process. 
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Figure 3.10 – Confocal microscopy images of the uptake of (RXR)4-Alexa488 incubated for 1 
and 20 hours with primary CLL cells.  
Primary CLL cells were incubated with 4 µM of (RXR)4 for a period of 1 and 20 hours. Cells were 
stained with DRAQ5 and observed by confocal microscopy. Representative data from 1 patient 
sample. 

 

The majority of the cells incubated with (RXR)4-Alexa488 showed evidence of CPP 
loading i.e. they manifested green fluorescence (Figure 3.10). The fluorescence was 

homogenously distributed in the cytosol and the peptide was able to penetrate the 

nuclear membrane where it accumulated mainly in the inter-chromosomal space. The 
homogenous distribution of fluorescence in the cytosol indicated that the most probable 

mechanism of entry was not via endocytosis. At 20 hours the number of fluorescent 
cells had decreased and the intensity of the fluorescence within the cells had also 

diminished. This could be the result of fluorochrome degradation after being 
internalised or possibly equilibrative mechanisms that result in efflux of the CPP. 

However, it was not possible to determine if the peptide was degraded using this 
experimental approach. 
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Figure 3.11 – Confocal microscopy images of the uptake of R8-Alexa488 incubated for 1 and 
20 hours with primary CLL cells. 
Primary CLL cells were incubated with 4 µM of R8 for a period of 1 and 20 hours. Cells were stained 
with DRAQ5 and observed by confocal microscopy. Data from 1 patient sample. 

 

Figure 3.11 shows cells incubated with R8-Alexa488. The fluorescence distribution of 
R8 differed from that previously observed with (RXR)4. The cells presented with a 

punctate distribution of the fluorescent CPP, which is characteristic of an endocytic 

uptake of the peptide, with a small number of cells showing distribution in the cytosol. 
At 20 hours, some cells showed signs of the peptide being released into the cytosol, 

but the majority was still sequestered in vesicles. 
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Figure 3.12 – Confocal microscopy images of the uptake of FFR8-Alexa488 incubated for 1 
and 20 hours with primary CLL cells.  
Primary CLL cells were incubated with 4 µM of FFR8 for a period of 1 and 20 hours. Cells were 
stained with DRAQ5 and observed by confocal microscopy. Data from 1 patient sample. 

 

Figure 3.12 shows confocal microscopy images of primary CLL cells incubated for 1 

and 20 hours with 4 µM of FFR8-Alexa488. These cells presented with levels of 
fluorescence that exceeded any of the other CPPs used in this project, a finding that is 

consistent with the flow cytometry data. The intensity of fluorescence varied between 
cells, with some manifesting very high levels of fluorescence and others very low. The 

fluorescence was diffused in the cytosol and this pattern indicates direct translocation 

of the peptide through the cellular membrane. Subsequently, there was nuclear entry 
where the peptide accumulated in the inter-chromosomal space. At 20 hours, the high 

levels of fluorescence were maintained, but there was an increase in the number of 
dead cells. 
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Figure 3.13 – Confocal microscopy images of the uptake of TP10-Alexa488 incubated for 1 
and 20 hours with primary CLL cells.  
Primary CLL cells were incubated with 4 µM of TP10 for a period of 1 and 20 hours. Cells were 
stained with DRAQ5 and observed by confocal microscopy. Data from 1 patient sample. 

 

The confocal images taken of primary CLL cells incubated for one hour with 4 µM of 
TP10-Alexa488 (Figure 3.13) showed the fluorescence was enclosed in vesicles with a 

very low amount diffused in the cytosol. The number of vesicles varied between cells 
but there appeared to be more vesicles than when R8-Alexa488 peptides were loaded 

into primary CLL cells. At 20 hours the intracellular fluorescence was maintained and 
there was an increase in cytosolic distribution of fluorescence indicating its release 

from vesicles. 
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Figure 3.14 – Confocal microscopy images of the uptake of PFV-Alexa488 incubated for 1 and 
20 hours with primary CLL cells.  
Primary CLL cells were incubated with 4 µM of PFV for a period of 1 and 20 hours. Cells were 
stained with DRAQ5 and observed by confocal microscopy. Data from 1 patient sample. 

 

Figure 3.14 shows confocal images of cells incubated with 4 µM of PFV-Alexa488 for a 
period of 1 hour. The levels of Alexa-488 fluorescence within the cells were very low 

when compared to cells incubated with any of the other CPPs. The few cells that 
showed evidence of fluorescence contained three or less fluorescent vesicles after 1 

hour of incubation. After 20 hours, there was no increase in the fluorescence presented 

by the cells.  
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Figure 3.15 – Confocal microscopy image of a single CLL cell incubated with (RXR)4, R8, FFR8, 
TP10 and PFV for one hour. 
 

 

To aid the comparison between the 5 CPPs, single representative CLL cells were cut 

out of the previous images using Photoshop CS6 and placed side by side in Figure 
3.15. The CPPs can be grouped by their subcellular localisation: (RXR)4 and FFR8 

present a diffused labelling of the cytosol, characteristic of direct translocation through 
the membrane, with nuclear labelling particularly high in the inter chromosomal space; 

R8, TP10 and PFV showed distinct endosomal entrapment, with TP10 presenting the 
highest number of vesicles and with a subsequent release of the peptide into the 

cytosol after 20 hours.  
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3.6. The five CPPs behave similarly with B and T-cells, with the 
exception of FFR8 

In order to investigate if the five peptides were able to enter normal B- and T-
lymphocytes, peripheral blood of healthy donors was collected and processed following 

the same protocol for CLL samples to obtain mononuclear cells (section 2.2). These 
experiments were also designed to determine if the fluorescence and intracellular 

distribution profiles resembled those observed in primary CLL cells. Peripheral blood 
mononuclear cells were incubated with 2 µM of the five CPPs for a period of 20 hours. 

Cells were collected at 1 and 20 hours, washed and then stained with anti-CD19 (B-cell 
marker; Invitrogen) and anti-CD3 (T-cell marker; EBioscience) antibodies to positively 

identify B-cells and T-cells. Fluorescence of B-cells and T-cells was measured by flow 

cytometry. Figure 3.16 shows representative flow cytometry data of one sample. Figure 
3.17 shows a summary of the MFI values derived for 3 samples. The uptake of the five 

CPPs in normal B-cells and T-cells was very similar to the uptake by CLL cells. The 
main difference was in the uptake of (RXR)4 and FFR8 by T-cells that seemed to be 

more susceptible to the uptake/retention of these two CPPs, as cells incubated with 
these peptides present increased fluorescence when compared to CLL cells and 

normal B-cells. 
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Figure 3.16 – Representative flow cytometry data of primary normal B and T lymphocytes incubated for 1 hour 
with (RXR)4, FFR8 and no treatment. 
Primary PBMCs were incubated with 2 µM of the five peptides for 20 hours. Cells were collected at 1 and 
20 hours, washed and stained with anti-CD3 (T cell marker) and anti-CD19 (B cell marker). Viable PBMCs 
were gated in P2 in the forward and side scatter plot. Anti-CD3 was measured in FL3 and anti-CD19 was 
measured in FL4. R1 gates CD3 positive and CD19 negative cells, T cells. R2 gates CD3 negative and 
CD19 positive cells, B cells. Alexa488 fluorescence of cells gated in R1 and R2 was then plotted 
separately (MFI of B-cells and MFI of T-cells). 
 

  



 87 
 

 

 
 
 
 
 

  

  

 
Figure 3.17 – Alexa488 MFI of primary CLL cells and primary B and T lymphocytes cultured with 5 CPPs for 1 
and 20 hours.  
PBMCs were cultured with 2 µM of (RXR)4, R8, FFR8, TP10 and PFV for 20 hours. Cells were collected 
at 1 and 20 hours, washed and stained with anti-CD3 and ant-CD19. Fluorescence was measured by 
flow cytometry (see gating strategy in Figure 3.16). Data from 3 patient samples. 
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3.7. Discussion & Conclusion 

The key aim of this chapter was to compare the uptake of five CPPs in primary CLL 

cells. With this information, two of the five peptides were selected to be delivery vectors 
of a bioactive cargo described in the next chapter. The two CPPs selected were FFR8 

and TP10. Overall, FFR8 was the most effective peptide. It produced the highest levels 
of fluorescence in CLL cells, was distributed homogenously in the cytosol but was also 

able to penetrate the nucleus. Although the MFI values registered were high, uptake of 
this peptide did not induce cell toxicity at doses lower than 4 µM. For this reason, FFR8 

was the first peptide to be selected.  

The choice for the second peptide was not as straight forward as with FFR8. In terms 

of fluorescence, the two next best candidates were (RXR)4 and R8. However, both of 

these are cationic peptides and therefore very similar to FFR8. Furthermore, side-by-
side comparison of single CLL cells showed that the intracellular distribution of (RXR)4 

was very similar to FFR8 suggesting that the two peptides were likely to behave in a 
very similar fashion. (RXR)4 was therefore eliminated as a contender. The three 

remaining peptides all showed endosomal entrapment, but the low level of 
fluorescence and the low numbers of vesicles observed in PFV-treated cells resulted in 

the rejection of this CPP as a potential vehicle for the bioactive cargo. As a result, the 
choice was then left between R8 and TP10. TP10 was the only peptide that showed 

initial sequestration within vesicles that that was subsequent released into the cytosol. 

Although the fluorescence levels achieved with R8 were much higher at one hour than 
TP10, the apparent retention of the CPP within endosomes led to concerns over the 

ability of the CPP to deliver the bioactive cargo. For this reason, TP10 was the second 
choice for a delivery vector of a bioactive cargo. The slower uptake and release of the 

TP10 CPP was considered to be an interesting comparison to the quick and intense 
uptake of FFR8 in the next phase of this project.  

This chapter also provided new insight into the way (RXR)4, R8, FFR8, TP10 and PFV 
are taken up by malignant primary B-cells. All five CPPs were able to penetrate primary 

human CLL cells and deliver a fluorescent tag. However, the level of delivery varied 
between the five peptides. The CPPs were ranked by order of decreasing MFI as 

follows: FFR8, (RXR), R8, TP10 and finally PFV (ranking based on MFI values at 1 

hour). The top three peptides are all cationic peptides, the most commonly used 
(Nakase et al., 2013). Arginine-rich peptides like (RXR)4, R8 and Tat are the most 

commonly used CPPs because of their higher aptitude for being internalised by the 
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cells (Nakase et al., 2013). This superiority seems to be due to the potential of the 
guanidinium functional groups, in arginine residues, to form hydrogen bonds with cell 

surface groups with a complementary charge such as phospholipids, fatty acid salts 
and sulphates (Nakase et al., 2008; Rothbard et al., 2004). 

One of the striking conclusions of this study was the importance of the amino acid 
content of the CPP on cellular uptake. The effective uptake of CPPs has been shown to 

be dependent on delivery conditions, and one of those conditions is the CPP sequence 
(Jones & Sayers, 2012). The first evidence of these effects in this study was the 

striking superiority of FFR8 over R8. The addition of two phenylalanine residues at the 
C-terminal of R8 resulted in a 100-fold increase in MFI after 1 hour of incubation 

(Figure 3.2); a recent study by Watkins, et al. (2009b) showed a similar effect. The 

phenylalanine residue at the N-terminal of the commercially available D-NuBCP-9-R8 
CPP, acted in synergy with R8 to enhance cell membrane penetration (Watkins et al., 

2011). Although the delivery effectiveness of R8 can be improved with the addition of 
one or two phenylalanine residues, the mechanisms by which this happens are still 

unknown. 

The differences between (RXR)4 and R8 were not as remarkable, and considering MFI 

values, both CPPs showed a not significant difference (p=0.567). The distribution of 
MFI values of (RXR)4 (SD=8,441) and R8 (SD=18,450) at one hour indicates that, 

although they deliver very similar levels of fluorescence, the variation between patient 
samples was far greater for R8 than (RXR)4. Studies comparing (RXR)4 and 

polyarginines in Jurkats cells, such as the one performed by Rothbard et al. (2002), 

showed that (RXR)4 was highly superior to R7 but not R10. This is consistent with the 
observation that as the number of arginines increases, so does the cell penetrating 

ability of these CPPs (Futaki et al., 2001). And while (RXR)4 was superior to some of 
the polyarginines, it did not outperform CPPs such as R8 and R10 (Rothbard et al., 

2002). 

Regarding cytotoxicity, (RXR)4 and R8 did not induced apoptosis at concentrations 

lower than 4 µM. FFR8, also does not induce cell apoptosis at doses lower than 2 µM. 
However, at 4 µM the number of cells staining positively for Annexin-V and PI 

increases (Figure 3.8 and 3.9). Considering the distribution of fluorescence of cells 

incubated with 4 µM of FFR8 (Figure 3.8), 44.3% were positive for Annexin-V and PI 
and 47.4% for PI only, which meant that 91.7% of cells were positive for an apoptosis 

marker. The forward and side scatter plot, however, contradicted this finding as the 
characteristic decrease in forward scatter and increase in side scatter (Dive et al., 
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1992) were not present. There are a few possible explanations for this finding. The first 
possibility is that the single PI staining is real and that the cells were in a necrotic/late 

apoptotic state that happen too quickly to allow the translocation of PS to the outside of 
the membrane (i.e. Annexin-V negative), and this event did not alter the forward and 

side scatter profile of the cells. The second explanation is that FFR8 at 4 µM disturbed 
the membrane greatly and allowed for PI leakage into the cell in a manner that did not 

induce apoptosis. The third explanation is that the fluorescence generated by the 
Alexa488-tagged-FFR8 was so intense that it overlapped with the PI fluorescence in 

FL2. The first option is highly unlikely as no such event as ever been described in the 
literature and at 20 hours the number of viable cells is the same as any other 

concentration used and the same as untreated cells. The more likely explanations are 

therefore the second and third, or a combination of both. 

All CPPs showed a proportional response to the dose of peptide administrated. FFR8, 

however has a proportional increase in fluorescence up to 2 µM, point at which the 
fluorescence increases 20-fold. As observed by Fretz et al. (2007), up to a certain 

concentration, endocytosis is the used mechanism of entry. However, at higher 
concentrations the fluorescence appears diffused in the cytosol with a small number of 

vesicles (Fretz et al., 2007). Due to the short period of incubations (10 minutes) it is 
highly unlikely that the cause of the diffused staining was the release from endosomal 

vesicles (Fretz et al., 2007). It seems more plausible that the presence of fluorescence 
in the cytosol was due to a different mechanism of entry, such as direct translocation 

(Fretz et al., 2007; Nakase et al., 2008). With this mechanism and  membrane damage, 

cytotoxicity would be expected, but as shown by Fretz et al. (2007) and the results 
presented on Figure 3.7, cell viability was maintained. 

The number of studies that have utilised primary cells to study CPPs is very low. Out of 
these, none used primary human lymphoid cells. In this study, in addition to using 

primary CLL cells, B-cells and T-cells from healthy individuals were obtained and 
incubated with the five CPPs. Normal B-cells were shown to take up the peptides in a 

similar fashion to malignant B-cells, with the exception of FFR8 and TP10. Levels of 
FFR8 taken up by normal B-cells were still the highest of all the peptides, with an MFI 

of approximately 50,000. As for normal B-cells incubated with TP10, MFI levels at 1 

hour were similar to CLL cells, but after 20 hours of incubation these did not increase, 
possibly indicating a different mechanism of action. As for normal T-cells, they behaved 

similarly to CLL cells, with the exception of (RXR)4, FFR8 and in part TP10. Levels of 
(RXR)4 were much higher in T-cells than in CLL cells. The same pattern was found 
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with FFR8. As for TP10, the MFI levels at 1 hour are lower than in CLL cells, but unlike 
in B-cells, there was an increase in fluorescence at 20 hours. 

The differences in CPP uptake between CLL cells, normal B-cells and T-cells is likely 
to be due to the different collection of membrane lipids, proteins and carbohydrates 

(Fretz et al., 2007). A study by Marshall et al. (2007), using murine T-cells showed the 
activation status of T-cells has an effect on how well the peptides were taken up. In this 

study, the uptake of Tat, penetratin, (RXR)4 and R9F2 (nona-arginine with two 
phenylalanine residues on the C-terminal) was studied in resting and anti-CD3 

activated murine primary T-cells (Marshall et al., 2007). Activation enhanced the uptake 
of all CPPs tested. In most cases it doubled the MFI levels, but for (RXR)4 the increase 

was 22-fold in CD4+ cells (Marshall et al., 2007). For this project, the activation status 

of B-cells and T-cells was not measured. In retrospect, the activation status could have 
been measured simply using activation markers such as CD69 (Caruso et al., 1997) or 

a separate experiment could have been set up to activate B-cells and T-cells. 
Unfortunately, the current data does not provide mechanistic insights for the differential 

uptake by T-cells. 

This chapter has shown that primary human CLL cells are able to take up (RXR)4, R8, 

FFR8, TP10 and PFV, and that the uptake varied between peptides. A dose-response 
study combined with viability assays showed that the fluorescence within the cells is 

proportional to the increase in dose, up to 4 µM, and that these doses do not induce 
cell toxicity in primary CLL cells. Live cell imaging was crucial to determine the 

intracellular localisation of the peptides and it also provided an insight into the way the 

CLL cells internalised the peptides. The five CPPs were also incubated with primary B-
cells and T-cells from healthy donors and the only significant difference when 

compared with CLL cells was the uptake of (RXR)4 and FFR8 by T-cells, which proved 
to be higher than any other peptide. This study enable the choice of two CPPs, FFR8 

and TP10, to be used as delivery vectors of a bioactive cargo into primary CLL cells. 
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Chapter 4 - Characterising cellular toxicity of four novel NF-κB 
inhibiting CPPs in primary CLL cells 

 

4.1. Introduction 

The aim of this chapter was to assess the cytotoxic effects of the novel NF-κB inhibiting 
CPPs in primary human CLL cells. The NF-κB pathway is an attractive therapeutic 

target as it is a key regulator of apoptosis resistance due to its transcriptional activation 
of a number of BCL2 family genes, IAPs and CFLAR (Banno et al., 2005; Chu et al., 

1997; Grossmann et al., 2000; Karin & Lin, 2002; Wang et al., 1998). NF-κB has been 

shown to be constitutively active in several lymphoid malignancies, including CLL (Cuní 
et al., 2004; Furman et al., 2000; Guzman et al., 2001; Hewamana et al., 2008a; 

Kirchner et al., 2003; Ni et al., 2001). The constitutive activation of NF-κB in 
haematological malignancies has important implications, as NF-κB regulates around 

300 genes that encode cell cycle regulators, survival factors, cytokines, inflammatory, 
immuneregulatory and cell adhesion molecules, signalling molecules, transcription 

factors, enzymes and others (Fuchs, 2010). In CLL, constitutive activation of NF-κB 
has been shown to up regulate anti-apoptotic genes and promote CLL survival (Horie 

et al., 2006). Due to its crucial role in cell physiology, NF-κB represents a very 
attractive target in CLL and other lymphoid malignancies, hence several inhibitors have 

been used to target the NF-κB pathway in CLL research (Lopez-Guerra & Colomer, 

2010). Table 4.1 shows some of the published inhibitors.  

The four novel NF-κB inhibitors used in this chapter are composed of a CPP, either 

TP10 or FFR8, linked to an NF-κB inhibiting sequence (See Table 4.1). The choice of 
CPPs was based on results discussed in Chapter 3. A number of CPPs that target the 

NF-κB pathway have already been developed, however none of these employ an 
amphipathic CPP such as TP10 or a polyarginine such as FFR8 (Orange & May, 

2008). The choice of inhibiting sequences was based on previous literature 
(Hewamana et al., 2008b; Lin et al., 1995; Takada et al., 2004) and commercially 

available inhibitors (IMG-2001 and IMG-2004, Imgenex). Both NF-κB inhibiting 
sequences function as competitors for nuclear translocation of subunits p50 and p65.  
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Post-translation modifications of the p65 NF-κB subnunit are required to induce nuclear 
translocation. Takada et al. (2004) devised two p65 inhibiting CPPs designed to mimic 

three phosphorylation sites of the p65 subunit. The CPP used to deliver the inhibiting 
sequence into the cells was penetratin and the phosphorylation sites mimicked were 

Ser276, and a combination of Ser529 and Ser536 (Takada et al., 2004). Both peptides 
were able to penetrate the KBM-5 cells (myelogenous leukaemia cell line) and inhibit 

translocation of p65 into the nucleus (Takada et al., 2004). However, the effects of the 
peptide mimicking the Ser276 phosphorylation site were far greater than the peptide 

mimicking the Ser529 and Ser536 phosphorylation sites (Takada et al., 2004). 
Therefore, the p65 inhibiting sequence used in this chapter corresponded to the Ser276 

phosphorylation site-directed peptide used by Takada et al. (2004)(see Table 4.1). The 

inhibitory effects of the penetratin-linked peptide were first reported in primary human 
CLL cells by Hewamana et al. (2008). This peptide set, which included the NF-κB p65 

(Ser276) inhibitory peptide (i.e. penetratin plus the p65 inhibitory sequence) and the 
control peptide (i.e. penetratin), were purchased from Imgenex and incubated at a 50 

µM dose for a period of 24 hours with primary human CLL cells (Hewamana et al., 
2008b). 

The NF-κB p50 subunit has a NLS located at the end of the RHD (Schmitz et al., 
1991). Lin et al. (1995) showed that the amino acid sequence VQRKRQKLM, when 

coupled with a cell penetrating peptide (i.e. AAVALLPAVLLALLAP), inhibited 
translocation of NF-κB into the nucleus in a concentration-dependent manner (Lin et 

al., 1995). The p50 inhibiting sequence used in this chapter was the same as the one 

used by Lin et al. (1995). 

 

Table 4.1 NF-κB inhibitors used in CLL. 
Target Inhibitor Reference 

IKK 

BAY-110782 
UTC 
BMS-345541 
NSAIDs 
Curcumin 
Parthenolide 
LC-1 
Deguelin 

(Pickering et al., 2007; Pierce et al., 1997)  
(Endo et al., 2007) 
(Burke et al., 2003) 
(Lindhagen et al., 2007) 
(Everett et al., 2007) 
(Steele et al., 2006) 
(Hewamana et al., 2008b) 
(Geeraerts et al., 2007; Nair et al., 2006) 

Nuclear 
Translocation 

DHMEQ 
NF-κB p65 (Ser276) 

(Horie et al., 2006) 
(Hewamana et al., 2008b; Takada et al., 
2004) 
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Table 4.2 – Amino acid sequences of the NF-κB inhibiting CPPs. 
Name Sequence 

FFR8 
TP10 
p50 inhibiting sequence 
p65 inhibiting sequence 

FFRRRRRRRR 
AGYLLGKINLKALAALAKKIL 
359VQRKRQKLM366 
270QLRRPSDRELSE282 

Note: highlighted residues correspond to NLS for p50 and phosphorylation site for p65. 

FFR8-p50i 
FFR8-p65i 
TP10-p50i 
TP10-p65i 

FFRRRRRRRRVQRKRQKLM 
FFRRRRRRRRQLRRPSDRELSE 
AGYLLGKINLKALAALAKKILVQRKRQKLM 
AGYLLGKINLKALAALAKKILQLRRPSDRELSE 

Note: The highlighted amino acids correspond to the p50/p65 inhibiting sequences. 
 

4.2. Study of the effect of peptide concentration in cell viability 

The novel NF-κB inhibiting CPPs were designed with the intention of targeting the 

translocation of p50 and p65 subunits of NF-κB, with the supposition that this would 
induce apoptosis in primary CLL cells. To assess the effects of the peptides on cell 

viability, 1x106 primary CLL cells were incubated with different concentrations (0, 2, 4, 
8, 12, 40 and 200 μM) of FFR8-p50i, FFR8-p65i, TP10-p50i and TP10-p65i for a period 

of 48 hours in 500μl of DMEM supplemented media. Cells were harvested at 24 and 48 
hours, resuspended in calcium containing buffer and dual-labelled with Annexin V-APC 

and propidium iodide. Fluorescence was subsequently measured by flow cytometry 
(Figure 4.1). Figure 4.2 shows the percentage of viable cells (Annexin V and PI 

negative) for each concentration.  

The choice of plotting viability opposed to apoptosis arose when it was evident that 

some cells where often found in the upper left quadrant (PI positive). Cells in this 

quadrant are not normally accounted as apoptotic cells, as the membrane 
permeabilisation to PI in the apoptotic process does not occur without PS 

externalization (i.e. Annexin-V positivity). To avoid these cells being counted as viable, 
a choice was made to plot viability instead of apoptosis. The percentages presented in 

the figures that follow were retrieved from the lower left quadrant of the Annexin-V/PI 
plots. The viability curves, or concentration-response curves were generated using the 

Graphpad Prism 6 software. The program transformed the concentrations used into 
logarithms and plotted them on the x-axis while the response (i.e. viability) was plotted 

on the y-axis. To generate the curves presented and to be able to interpolate values 
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(i.e. LC50) from the data, a non-linear regression was applied. In this situation the 
software tries to create a sigmoidal curve that best fits the data using the least-squares 

approach. This approach finds the curve that minimizes the sum of the squares of the 
vertical distances of the points from the curve, ensuring that the interpolated data is as 

closest to the real values as possible. The LC50 presented in this chapter were all 
interpolated using the Graphpad Prism 6 software. By transforming the concentrations 

used into logarithms, the untreated samples were excluded from the viability curves. 
However, for every sample tested, there was no change in viability in samples cultured 

with 1 µM of the peptides. The reason why all viability curves start with less than 90% 
of viable cells is due to the nature of primary CLL cells that are highly dependent on the 

in vivo microenvironment, and when deprived of those stimuli undergo apoptosis 

(Ramsay & Rodriguez-Justo, 2013; Willimott et al., 2007a).  

From both Figure 4.1 and 4.2, it was evident that both TP10 peptides reduced CLL cell 

viability at doses lower than 40 µM. In contrast, the FFR8 peptides did not induce 
apoptosis at those concentrations. For this reason, concentrations used were adjusted 

to ensure an even coverage below 40 µM. Since one of the aims in this chapter is to 
compare the four novel NF-κB inhibiting CPPs with commercially available NF-κB 

inhibitors that work at ranges higher than 50 µM, the doses were adjusted to include 
this concentration. Therefore, cells were cultured with 0, 1, 2.5, 5, 10, 25 and 50 µM of 

FFR8-p50i, FFR8-p65i, TP10-p50i and TP10-p65i. Figures 4.3 to 4.5 show the forward 
and side scatter plots, and the Annexin V/PI fluorescence for cells incubated with 

FFR8-p50i, TP10-p50i and TP10-p65i for some of the concentrations administrated. 

Figure 4.6 shows the percentage of viable cells (Annexin V and PI negative) for each 
concentration. Table 4.3 shows the LC50 values of the 4 CPPs, which corresponds to 

the concentration required to kill 50% of the cells in culture. 

Of the four CPPs tested, only two affected CLL viability. Those peptides were TP10-

p50i and TP10-p65i, presenting an LC50 of 5.28 (4.03 - 6.50 µM) and 9.95 µM (7.44 - 
13.45 µM) respectively. Both FFR8 peptides induced a decrease in the percentage of 

viable cells at 25 µM, but this did not decrease further at 50 µM. In all four CPPs, the 
effects were observed after 24 hours of incubation, and similar viability was maintained 

after 48 hours. 
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Figure 4.2 - Viability of primary CLL cells incubated with FFR8-p50i, FFR8-p65i, TP10-p50i and 
TP10- p65i for a period of 24 and 48 hours. 
Primary CLL cells were incubated with 0, 2, 4, 8, 12, 40 and 200 μM of FFR8-p50i, FFR8-p65i, TP10-p50i 
and TP10-p65i for a period of 24 and 48 hours. Viability measured by Annexin-V and PI. Percentage of 
viable cells corresponds to cells Annexin-V and PI negative. The viability curves were generated using 
Prism 6 software. Data shown for one patient. 
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Figure 4.6 - Viability of primary CLL cells incubated with FFR8-p50i, FFR8-p65i, TP10-p50i and 
TP10- p65i for a period of 24 and 48 hours. 
Primary CLL cells were incubated with 0, 1, 2.5, 5, 10, 25 and 50 μM of FFR8-p50i, FFR8-p65i, TP10-p50i 
and TP10-p65i for a period of 24 and 48 hours. Viability measured by Annexin-V and PI. Percentage of 
viable cells corresponds to cells Annexin-V and PI negative. The viability curves were generated using 
Prism 6 software. Data is present as mean (+/- SD) for 8 individual patient samples. 
 

 

Table 4.3 - NF-κB inhibiting CPPs LC50 at 24 hours. 

NF-κB inhibiting CPP LC50 
95% 

Confidence Interval 

FFR8-p50i 
FFR8-p65i 
TP10-p50i 
TP10-p65i 

> 50 µM 
> 50 µM 
5.28 µM 
9.95 µM 

Und. 
Und. 

4.03 – 6.50 
7.44 – 13.45 

Note: The LC50 values were interpolated using Prism 6 software from the 
viability curves shown in Figure 4.6. 
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Table 4.4 - NF-κB inhibiting CPPs LC50 at 24 hours for each of the samples tested. 

Patient Sample 
TP10-p50i TP10-p65i 

LC50 95% Confidence interval LC50 95% Confidence interval 

1 3.90 2.71 - 4.98 9.95 Und. 

2 7.69 5.42 - 9.26 10.96 Und. 

3 8.81 8.64 - 8.97 7.16 5.09 - 9.86 

4 3.57 Und. - 5.84 7.92 5.92 - 10.18 

5 3.35 Und. - 7.55 4.34 Und. 

6 5.47 4.33 - 6.62 7.27 5.49 - 9.20 

7 6.19 4.32 - 8.10 9.05 4.97 - 15.63 

8 10.09 4.76 - 22.18 49.20 Und. 

Mean 5.28 4.03 - 6.50 9.95 7.44 - 13.45 

Note: All values were calculated using Prism 6 software.  
Und. – The software could not calculate the values.  
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4.3. The fluorescent tag Alexa488 caused cell toxicity at high 
concentrations 

As mentioned previously, the addition of cargo, whether it be an inhibitor, fluorochrome 
or other, can alter dramatically the cell penetrating abilities of CPPs (Jones & Sayers, 

2012). Choosing an appropriate control therefore can be challenging. Possible options 
would be the use of the CPP in the absence of cargo (i.e. TP10), the CPP with a 

scrambled version of the inhibiting sequence, the inhibiting sequence in the absence of 
the CPP or labelled CPP/ NF-κB inhibiting peptide. Due to the availability of labelled 

CPP, this was used as control in the following experiments. 

Primary CLL cells were incubated with a range of concentrations (0, 1, 2.5, 5, 10, 25 

and 50 µM) of FFR8-Alexa488, FFR8-p50i, FFR8-p65i, TP10-Alexa488, TP10-p50i and 

TP10-p65i. Cells were cultured for a period of 48 hours, and collected at 24 and 48 
hours. The previously described viability tests with Annexin V and PI were performed. 

Figure 4.7 and 4.8 show the forward and side scatter, and the Annexin V and PI 
distribution of one patient sample. Figure 4.9 shows a compilation of data from 3 

patient samples.  

The addition of FFR8-Alexa488 and TP10-Alexa488 to culture induced a shift upwards 

of the CLL cell population along the PI fluorescence scale. This shift was not 
accompanied by the characteristic apoptotic features (i.e. decrease in the forward 

scatter and increase in side scatter) until cells were exposed to higher concentrations 

of the peptides (eg. 50 µM). The shift of the CLL population meant that those cells 
would no longer be counted as viable and lead to the misinterpretation of cells being 

apoptotic. As mentioned in chapter 4.2, PI positivity is always preceded by Annexin-V 
positivity, which is the reason why cells in the top left quadrant are not counted as 

apoptotic. The single PI positivity observed in Figures 4.7 and 4.8 is an artifact caused 
by the fluorescently-tagged peptides. For this reason, for the experiments with 

Alexa488-tagged peptides, a choice was made to plot apoptotic cells (i.e. upper right 
and lower right quadrants) instead of viable cells. 

Twenty-four hours of incubation with FFR8-Alexa488 primary CLL cells showed 
reduced viability when cultured with concentrations greater than 10 µM (Figure 4.9). 

FFR8-Alexa488 had a LC50 of 27.2 µM (24.1 – 30.83) and both FFR8-p50i and FFR8-

p65i had an LC50 higher than 50 µM at 24 hours. After 48 hours the LC50 values for 
FFR8-p65i were lower but remained higher than 30 µM.  



 104 
 

 

In contrast to the FFR8-Alexa488 peptide, cells incubated with TP10-Alexa488 did not 
show signs of apoptosis after 24 and 48 hours. The LC50 for the fluorescence-tagged 

TP10 peptide was greater than 50 µM. Although, the mean apoptosis values of the 
three samples tested did not show an increase with concentrations up to 50 µM, the 

sample shown in Figure 4.8 exhibited the characteristic apoptotic profile (i.e. decrease 
in forward scatter and increase in side scatter) when incubated with 50 µM of the TP10-

Alexa488, indicating that doses this high can sometimes have an effect on cell viability. 
In contrast, the TP10-p50i and TP10-p65i peptides manifested LC50 values <10 µM. 

Out of the two NF-κB inhibiting CPPs, TP10-p50i had the lowest LC50 8.70 µM (8.43 – 
8.95).  
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Figure 4.9 - Apoptosis of primary CLL cells incubated with FFR8-Alexa488, FFR8-p50i, FFR8-p65i, 
TP10-Alexa488, TP10-p50i and TP10- p65i for a period of 24 and 48 hours. 
Primary CLL cells were incubated with 0, 1, 2.5, 5, 10, 25 and 50 μM of FFR8-p50i, FFR8-p65i, TP10-p50i 
and TP10-p65i for a period of 24 and 48 hours. Viability was measured by Annexin-V and PI labelling. The 
percentage of viable cells was calculated from the Annexin-V and PI negative cell population. The 
apoptosis curves were generated using Prism 6 software. Data presented are the mean (+/- SD) for the 
three patient samples analysed. 
 

Table 4.5 – Alexa-lablled and NF-κB inhibiting CPPs LC50. 

NF-κB 
inhibiting CPP 

24 hours 48 hours 

LC50 
95% 

Confidence Interval LC50 
95% 

Confidence Interval 

FFR8-Alexa488 
FFR8-p50i 
FFR8-p65i 

27.2 µM 
> 50 µM 
> 50 µM 

24.1 – 30.83 
Und. 
Und. 

> 50 µM 
> 50 µM 
37.0 µM 

Und. 
Und. 

13.2 – Und. 

TP10-Alexa488 
TP10-p50i 
TP10-p65i 

> 50 µM 
8.70 µM 
9.18 µM 

Und. 
8.43 – 8.95 

6.32 – 13.83 

> 50 µM 
7.41 µM 
7.55 µM 

Und. 
6.03 – 8.93 

3.68 – 15.66 

Note: The LC50 values were interpolated using Prism 6 software from the apoptosis curves 
shown in Figure 4.9. 
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4.4. IL-4 did not affect the cytotoxic effects of the TP10 NF-κB 
inhibiting CPPs 

The cytokine IL-4 is known to confer cytoprotection to CLL cells (Willimott et al., 
2007a). Stimulation of B-cells with IL-4 has been shown to increase NF-κB binding 

activity (Thieu et al., 2007), and pharmacological inhibition of NF-κB has been shown 
to abrogate the cytoprotective effects of IL-4 (Zamorano et al., 2001). To determine if 

stimulation with IL-4 would alter the NF-κB cytotoxic effects of TP10-p50i and TP10-
p65i, CLL cells were incubated with 0, 1, 2.5, 5, 10, 25 and 50 µM of TP10-p50i and 

TP10-p65i with and without 5ng/ml of IL-4 for a period of 24 and 48 hours. Following 
incubation, cells were labelled with Annexin-V and PI, and analysed by flow cytometry. 

Figure 4.10 shows the flow cytometry profile of primary CLL cells from one patient 

sample incubated with TP10-p50i and Figure 4.11 shows the flow cytometry profile of 
primary CLL cells from the same patient incubated with TP10-p50i in the presence of 

5ng/ml of IL-4. Figure 4.12 shows the compilation of the viability of primary CLL cells 
from four patients following incubation with TP10-p50i and TP10-p65i with and without 

5ng/ml of IL-4 for a period of 24 and 48 hours. 

Addition of 5ng/ml of IL-4 to primary CLL cells did not alter the cytotoxic effects of these 

peptides, as LC50 values showed no significant difference at 24 hours (TP10-p50i 
p=0.46 and TP10-p65i p=0.42) and 48 hours (TP10-p50i p=0.55 and TP10-p65i 

p=0.99). However, in untreated cells the percentage of viable cells (Figure 4.11) 

increased showing that IL-4 has the capacity to improve cell viability. Regarding the 
forward and side scatter profile of cells treated with IL-4 and the TP10-p50i peptide 

(Figures 4.10 and 4.11) differences were apparent. Cells incubated with TP10-p50i 
without IL-4 showed a decrease in forward scatter and increase in side scatter at 10 

µM and 50 µM. The addition of IL-4 to cells incubated with 50 µM of TP10-p50i, 
although not altering the absolute values of viable cells plotted in Figure 4.12, had an 

effect on the flow cytometry profile of the cells. At 10 µM 20.7% of the cells incubated 
with TP10-p50i and IL-4 show positivity for PI only, rivaled to 3.6% of cells positive for 

PI only when incubated with TP10-p50i. At 50 µM these values are maintained (i.e. 
26.1% for TP10-p50i + IL-4 and 1.5% for TP10-p50i only). The increase in PI positivity 

in cells incubated with IL-4 was accompanied with a decrease in forward scatter a 

small increase in side scatter. However, the increase in side scatter was not as high as 
the increase in cells incubated with TP10-p50i only.  
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Figure 4.12 - Viability of primary CLL cells incubated with TP10-p50i and TP10- p65i with and 
without 5ng/ml of IL-4 for a period of 24 and 48 hours. 
Primary CLL cells were incubated with 0, 1, 2.5, 5, 10, 25 and 50 μM of TP10-p50i and TP10-p65i with an 
without 5ng/ml of IL-4 for a period of 24 and 48 hours. Viability measured by Annexin-V and PI. 
Percentage of viable cells corresponds to cells Annexin-V and PI negative. The viability curves were 
generated using Prism 6 software. Data are presented as the mean (+/- SD) for four patient samples. 
 
 

Table 4.6 - NF-κB inhibiting CPPs LC50 with and without IL-4. 

NF-κB inhibiting 
CPP 

24 hours 48 hours 

LC50 
95% 

Confidence Interval LC50 
95% 

Confidence Interval 

TP10-p50i 
TP10-p50i +IL-4 

7.85 µM 
8.14 µM 

7.01 – 8.51 
7.46 – 8.77 

6.66 µM 
6.79 µM 

6.15 – 7.14 
6.30 – 7.24 

TP10-p65i 
TP10-p65i +IL-4 

8.89 µM 
9.20 µM 

7.87 – 9.48 
8.53 – 9.81 

8.62 µM 
8.45 µM 

5.78 – 11.22 
5.90 – 10.51 

Note: The LC50 values were interpolated using Prism 6 software from the viability curves shown 
in Figure 4.12. 
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4.5. The cytotoxic effects of the TP10 NF-κB inhibiting CPPs were 
apparent in less than one hour 

In order to determine if the kinetics of the cytotoxic effects of TP10-p50i and TP10-p65i 
occurred under 24 hours, cells were cultured for a period of 48 hours and viability was 

measured at 1, 24 and 48 hours. Primary CLL cells were incubated with 0,1, 2.5, 5 and 
10 µM of TP10-p50i and TP10-p65i. At the time points, cells were harvested and 

labelled with PI and Annexin-V and analysed by flow cytometry. Figure 4.13 shows the 
flow cytometry profile of primary CLL cells of one patient incubated with TP10-p50i for a 

period of one hour and Figure 4.14 shows the same patient sample after 24 hours of 
incubation. Figure 4.15 shows the average viability of 4 CLL patient samples. The 

cytotoxic effects of both TP10-p50i and TP10-p65i occurred under one hour. The LC50 

of TP10-p50i increased by 22% from 1 to 48 hours. The LC50 of TP10-p65i at 1 hour 
could not be calculated as the average viability did not decrease below 60%, and 

therefore it was determined to be higher than 10 µM.  
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Figure 4.15 - Viability of primary CLL cells incubated with TP10-p50i and TP10- p65i for a period of 
1, 24 and 48 hours. 
Primary CLL cells were incubated with 0, 1, 2.5, 5, 10, 25 and 50 μM of TP10-p50i and TP10-p65i with an 
without 5ng/ml of IL-4 for a period of 1, 24 and 48 hours. Viability measured by Annexin-V and PI. 
Percentage of viable cells corresponds to cells Annexin-V and PI negative. The viability curves were 
generated using Prism 6 software. Data are presented as the mean (+/- SD) for four patient samples. 
 

 

 

Table 4.7 - NF-κB inhibiting CPPs LC50 at 1, 24 and 48 hours. 

NF-κB 
inhibiting 

CPP 

1 hour 24 hours 48 hours 

LC50 
95% 

Confidence 
Interval 

LC50 
95% 

Confidence 
Interval 

LC50 
95% 

Confidence 
Interval 

TP10-p50i 4.59 µM Und. 5.74 µM 5.32 – 6.30 5.83 µM 5.05 – 8.57 

TP10-p65i > 10 µM Und. 8.47 µM Und. 8.51 µM Und. 

Note: The LC50 values were interpolated using Prism 6 software from the viability curves 
shown in Figure 4.15. 
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4.6. TP10-p50i induced Caspase-3 activation 

Apoptosis can be induced by a variety of stimuli (Kurokawa & Kornbluth, 2009). These 

stimuli activate initiator caspases (caspase-2, -8, -9 and 10) and effector caspases 
(caspase-3, -6 and -7) that culminate in the packaging of the dying cell and subsequent 

engulfment by neighbouring cells or professional phagocytes (Kurokawa & Kornbluth, 
2009). Measuring the activity of caspases can therefore be used as evidence of 

apoptosis induction (Martin & Lenardo, 2001; Muppidi et al., 2004; Rodriguez & 
Schaper, 2005). For the purpose of this project, caspase-3 activity was measured using 

the PhiPhiLux® G1D2 (235430, Calbiochem) substrate that is cleaved by caspase-3 
and that emits fluorescence when in the cleaved form. Primary CLL cells were 

incubated with TP10-p50i and TP10-p65i for 24 hours at the following concentrations: 

0, 1, 2.5, 5 and 10 µM. Cells were collected at 1 and 24 hours, washed and incubated 
for 1 hour with the PhiPhiLux® G1D2 substrate at 37˚C. Cells were then analysed by 

flow cytometry. Figure 4.15 shows the flow cytometry profile of one patient sample 
incubated with TP10-p50i for one hour. Figure 4.16 shows the caspase-3 activity data 

for 3 patients incubated with TP10-p50i and TP10-p65i for 1 and 24 hours.  

Of the two NF-κB inhibiting CPPs, only TP10-p50i induced caspase-3 activity in the 

first hour of incubation at 5 and 10 µM. The levels of caspase-3 activity induced were 
proportional to the dose administrated and they were also maintained after 24 hours of 

incubation. Primary CLL cells undergo apoptosis when cultured in liquid culture as 

demonstrated by the increase in caspase-3 activity in untreated samples, 
concentrations up to 2.5 µM of TP10-p50i and all concentrations of TP10-p65i.  
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TP10-p50i TP10-p65i 

  

Figure 4.17 – Caspase-3 activity of primary CLL cells incubated with TP10-p50i and TP10-p65i for 1 
and 24 hours. 
Primary CLL cells were incubated with 0, 1, 2.5, 5 and 10 μM of TP10-p50i and TP10-p65i for a period of 1 
and 24 hours. Cells were washed and incubated with the PhiPhiLux G1D2 substrate for one hour. The 
fluorescence of the cleaved substrate was measured by flow cytometry. Data are presented as the mean 
(+/- SD) for three patient samples. 
 

 
  

NT 1 2.5 5 10 NT 1 2.5 5 10
0

20

40

60

80

100

Peptide Concentration (µM)

C
as

pa
se

-3
 A

ct
iv

ity
 (%

)

Caspase-3 - TP10-p50i

1 hour 24 hours

NT 1 2.5 5 10 NT 1 2.5 5 10
0

20

40

60

80

100

Peptide Concentration (µM)

C
as

pa
se

-3
 A

ct
iv

ity
 (%

)

Caspase-3 - TP10-p65i

1 hour 24 hours



 119 
 

 

4.7. TP10 NF-κB inhibitory CPPs were more cytotoxic than 
commercially available NF-κB inhibitory peptides 

To compare the novel TP10 NF-κB inhibiting CPPs to the commercially available 
peptides, primary CLL cells from the same patient were incubated with a range of 

doses (0, 1, 2.5, 5, 10, 25 and 50 µM) of the following CPPs: 

 

Table 4.8 - NF-κB inhibiting CPPs sequences used. 

CPP Catalogue 
Number Sequences 

TP10-p50i  AGYLLGKINLKALAALAKKILVQRKRQKLM 

TP10-p65i  AGYLLGKINLKALAALAKKILQLRRPSDRELSE 

Imgenex-Ctrl IMG-2009 DRQIKIWFQNRRMKWKK 

Imgenex-p50 IMG-2004 DRQIKIWFQNRRMKWKKVQRKRQKLM 

Imgenex-p65 IMG-2001 DRQIKIWFQNRRMKWKKQLRRPSDRELSE 

Note: The highlighted amino acids correspond to the p50/p65 inhibiting sequences. 
 

 

Cells were incubated for a period of 24 hours and harvested at 1 and 24 hours. Cells 
were washed and stained with PI and Annexin-V and analysed by flow cytometry. 

Figure 4.17 shows the flow cytometry profile of one patient’s CLL cells incubated with 

Imgenex-p50 for 1 hour. Figure 4.18 shows the flow cytometry profile of the same 
patient’s CLL cells incubated with TP10-p50i for 1 hour. Figure 4.19 shows the viability 

data of 3 CLL samples incubated under the same conditions for 1 and 24 hours. 

Following one hour of incubation, TP10-p50i and TP10-p65i induced cell death of the 

samples tested, with LC50 of 6.13 µM (4.37 – 7.99) and 14.4 µM (6.39 – 30.61), 
respectively. The Imgenex CPPs did not alter cell viability following one or 24 hours of 

incubation at concentrations lower than 50 µM, therefore LC50 could not be calculated. 

 



 120 
 

 

 

Fi
gu

re
 4

.1
8 

– 
Fl

ow
 c

yt
om

et
ry

 d
at

a 
of

 p
rim

ar
y 

CL
L 

ce
lls

 in
cu

ba
te

d 
fo

r 1
 h

ou
r w

ith
 Im

ge
ne

x-
p5

0 
Pr

im
ar

y 
CL

L 
ce

lls
 w

er
e 

in
cu

ba
te

d 
wi

th
 0

,1
, 2

.5
, 5

 a
nd

 1
0 

µM
 o

f I
m

ge
ne

x-
p5

0 
fo

r a
 p

er
io

d 
of

 1
 h

ou
r. 

Ce
lls

 w
er

e 
co

lle
ct

ed
 a

nd
 w

as
he

d 
wi

th
 P

BS
. C

el
ls 

we
re

 s
ta

in
ed

 fo
r A

nn
ex

in
-V

 
an

d 
PI

. V
ia

bl
e 

lym
ph

oc
yt

es
 w

er
e 

ga
te

d 
in

 th
e 

fo
rw

ar
d 

an
d 

si
de

 s
ca

tte
r p

lo
t w

ith
in

 P
1.

 C
el

ls
 g

at
ed

 in
 P

1 
we

re
 p

lo
tte

d 
ac

co
rd

in
g 

to
 th

ei
r f

lu
or

es
ce

nc
e 

in
 F

L2
 (p

ro
pi

di
um

 io
di

de
) a

nd
 

FL
4 

(A
nn

ex
in

-V
). 

Ce
lls

 in
 th

e 
lo

we
r l

ef
t q

ua
dr

an
t (

Q
1-

LL
) a

re
 v

ia
bl

e 
ce

lls
. C

el
ls

 in
 th

e 
lo

we
r r

ig
ht

 q
ua

dr
an

t (
Q

1-
LR

) a
re

 in
 a

n 
ea

rly
 a

po
pt

os
is

 s
ta

te
. C

el
ls

 in
 th

e 
up

pe
r r

ig
ht

 q
ua

dr
an

t 
(Q

1-
UR

) a
re

 in
 a

 la
te

 a
po

pt
os

is
 s

ta
te

. 

N
o 

tr
ea

tm
en

t!
1 

µM
 !

5 
µM

 !
10

 µ
M

 !
50

 µ
M

 !

An
ne

xi
n-

V!

Fo
rw

ar
d 

sc
at

te
r!

Side!
scatter!

Propidium!
Iodide!

Im
ge

ne
x-

p5
0!

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

B0
1 

Im
g-

p5
0 

- n
t -

 1
h

G
at

e:
 [N

o 
G

at
in

g]

P1 96
.5
%

P1 96
.5
%

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

B0
2 

Im
g-

p5
0 

- 1
uM

 - 
1h

G
at

e:
 [N

o 
G

at
in

g]

P1 96
.4
%

P1 96
.4
%

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

B0
4 

Im
g-

p5
0 

- 5
uM

 - 
1h

G
at

e:
 [N

o 
G

at
in

g]

P1 95
.0
%

P1 95
.0
%

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

B0
5 

Im
g-

p5
0 

- 1
0u

M
 - 

1h
G

at
e:

 [N
o 

G
at

in
g]

P1 90
.8
%

P1 90
.8
%

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

B0
7 

Im
g-

p5
0 

- 5
0u

M
 - 

1h
G

at
e:

 [N
o 

G
at

in
g]

P1 87
.5
%

P1 87
.5
%

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

101107.2 102103104105106
Propidium Iodide-H

An
ne

xi
n-

V-
H

B0
1 

Im
g-

p5
0 

- n
t -

 1
h

G
at

e:
 (P

1 
in

 a
ll)

Q
1-
U
L

1.
7%

Q
1-
U
R

3.
6%

Q
1-
LL

90
.0
%

Q
1-
LR

4 .
7%

Q
1-
U
L

1.
7%

Q
1-
U
R

3.
6%

Q
1-
LL

90
.0
%

Q
1-
LR

4 .
7%

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

101107.2 102103104105106
Propidium Iodide-H

An
ne

xi
n-

V-
H

B0
2 

Im
g-

p5
0 

- 1
uM

 - 
1h

G
at

e:
 (P

1 
in

 a
ll)

Q
1-
U
L

1.
6%

Q
1-
U
R

2.
1%

Q
1-
LL

91
.6
%

Q
1-
LR

4 .
7%

Q
1-
U
L

1.
6%

Q
1-
U
R

2.
1%

Q
1-
LL

91
.6
%

Q
1-
LR

4 .
7%

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

101107.2 102103104105106
Propidium Iodide-H

An
ne

xi
n-

V-
H

B0
4 

Im
g-

p5
0 

- 5
uM

 - 
1h

G
at

e:
 (P

1 
in

 a
ll)

Q
1-
U
L

4.
5%

Q
1-
U
R

4.
3%

Q
1-
LL

86
.5
%

Q
1-
LR

4 .
6%

Q
1-
U
L

4.
5%

Q
1-
U
R

4.
3%

Q
1-
LL

86
.5
%

Q
1-
LR

4 .
6%

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

101107.2 102103104105106
Propidium Iodide-H

An
ne

xi
n-

V-
H

B0
5 

Im
g-

p5
0 

- 1
0u

M
 - 

1h
G

at
e:

 (P
1 

in
 a

ll)

Q
1-
U
L

4.
1%

Q
1-
U
R

5.
5%

Q
1-
LL

84
.7
%

Q
1-
LR

5.
7%

Q
1-
U
L

4.
1%

Q
1-
U
R

5.
5%

Q
1-
LL

84
.7
%

Q
1-
LR

5.
7%

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

101107.2 102103104105106
Propidium Iodide-H

An
ne

xi
n-

V-
H

B0
7 

Im
g-

p5
0 

- 5
0u

M
 - 

1h
G

at
e:

 (P
1 

in
 a

ll)

Q
1-
U
L

9.
3%

Q
1-
U
R

17
.4
%

Q
1-
LL

66
.6
%

Q
1-
LR

6.
7%

Q
1-
U
L

9.
3%

Q
1-
U
R

17
.4
%

Q
1-
LL

66
.6
%

Q
1-
LR

6.
7%



 121 
 

 

 

Fi
gu

re
 4

.1
9 

– 
Fl

ow
 c

yt
om

et
ry

 d
at

a 
of

 p
rim

ar
y 

CL
L 

ce
lls

 in
cu

ba
te

d 
fo

r 1
 h

ou
r w

ith
 T

P1
0-

p5
0i

. 
Pr

im
ar

y 
CL

L 
ce

lls
 w

er
e 

in
cu

ba
te

d 
wi

th
 0

,1
, 2

.5
, 5

 a
nd

 1
0 

µM
 o

f T
P1

0-
p5

0i
 fo

r a
 p

er
io

d 
of

 1
 h

ou
r. 

Ce
lls

 w
er

e 
co

lle
ct

ed
 a

nd
 w

as
he

d 
wi

th
 P

BS
. C

el
ls

 w
er

e 
st

ai
ne

d 
fo

r A
nn

ex
in

-V
 a

nd
 

PI
. V

ia
bl

e 
lym

ph
oc

yt
es

 w
er

e 
ga

te
d 

in
 th

e 
fo

rw
ar

d 
an

d 
si

de
 s

ca
tte

r p
lo

t w
ith

in
 P

1.
 C

el
ls

 g
at

ed
 in

 P
1 

we
re

 p
lo

tte
d 

ac
co

rd
in

g 
to

 th
ei

r f
lu

or
es

ce
nc

e 
in

 F
L2

 (p
ro

pi
di

um
 io

di
de

) a
nd

 F
L4

 
(A

nn
ex

in
-V

). 
Ce

lls
 in

 th
e 

lo
we

r l
ef

t q
ua

dr
an

t (
Q

1-
LL

) a
re

 v
ia

bl
e 

ce
lls

. C
el

ls
 in

 th
e 

lo
we

r r
ig

ht
 q

ua
dr

an
t (

Q
1-

LR
) a

re
 in

 a
n 

ea
rly

 a
po

pt
os

is
 s

ta
te

. C
el

ls
 in

 th
e 

up
pe

r r
ig

ht
 q

ua
dr

an
t (

Q
1-

UR
) a

re
 in

 a
 la

te
 a

po
pt

os
is

 s
ta

te
. 

N
o 

tr
ea

tm
en

t!
1 

µM
 !

5 
µM

 !
10

 µ
M

 !
50

 µ
M

 !

An
ne

xi
n-

V!

Fo
rw

ar
d 

sc
at

te
r!

Side!
scatter!

Propidium!
Iodide!

TP
10

-p
50

i!

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

E0
1 

TP
10

-p
50

 - 
nt

 - 
1h

G
at

e:
 [N

o 
G

at
in

g]

P1 93
.9
%

P1 93
.9
%

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

E0
2 

TP
10

-p
50

 - 
1u

M
 - 

1h
G

at
e:

 [N
o 

G
at

in
g]

P1 95
.8
%

P1 95
.8
%

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

E0
4 

TP
10

-p
50

 - 
5u

M
 - 

1h
G

at
e:

 [N
o 

G
at

in
g]

P1 94
.2
%

P1 94
.2
%

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

E0
5 

TP
10

-p
50

 - 
10

uM
 - 

1h
G

at
e:

 [N
o 

G
at

in
g]

P1 93
.8
%

P1 93
.8
%

0
3,

00
0,

00
0

1,
00

0,
00

0
2,

00
0,

00
0

0500,000 200,000
SSC-H

FS
C-

H

E0
7

G
at

e:
 [N

o 
G

at
in

g]

P1 92
.2
%

P1 92
.2
%

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

101107.2 102103104105106
Propidium Iodide-H

An
ne

xi
n-

V-
H

E0
1 

TP
10

-p
50

 - 
nt

 - 
1h

G
at

e:
 (P

1 
in

 a
ll)

Q
1-
U
L

0.
6%

Q
1-
U
R

1.
6%

Q
1-
LL

90
.9
%

Q
1-
LR

7 .
0%

Q
1-
U
L

0.
6%

Q
1-
U
R

1.
6%

Q
1-
LL

90
.9
%

Q
1-
LR

7 .
0%

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

101107.2 102103104105106
Propidium Iodide-H

An
ne

xi
n-

V-
H

E0
2 

TP
10

-p
50

 - 
1u

M
 - 

1h
G

at
e:

 (P
1 

in
 a

ll)

Q
1-
U
L

1.
0%

Q
1-
U
R

2.
6%

Q
1-
LL

86
.6
%

Q
1-
LR

9.
8%

Q
1-
U
L

1.
0%

Q
1-
U
R

2.
6%

Q
1-
LL

86
.6
%

Q
1-
LR

9.
8%

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

101107.2 102103104105106
Propidium Iodide-H

An
ne

xi
n-

V-
H

E0
4 

TP
10

-p
50

 - 
5u

M
 - 

1h
G

at
e:

 (P
1 

in
 a

ll)

Q
1-
U
L

1.
5%

Q
1-
U
R

21
.6
%

Q
1-
LL

68
.4
%

Q
1-
LR

8.
5%

Q
1-
U
L

1.
5%

Q
1-
U
R

21
.6
%

Q
1-
LL

68
.4
%

Q
1-
LR

8.
5%

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

101107.2 102103104105106
Propidium Iodide-H

An
ne

xi
n-

V-
H

E0
5 

TP
10

-p
50

 - 
10

uM
 - 

1h
G

at
e:

 (P
1 

in
 a

ll)

Q
1-
U
L

1.
0%

Q
1-
U
R

33
.2
%

Q
1-
LL

54
.0
%

Q
1-
LR

11
.8
%

Q
1-
U
L

1.
0%

Q
1-
U
R

33
.2
%

Q
1-
LL

54
.0
%

Q
1-
LR

11
.8
%

10
1

10
7.

2
10

2
10

3
10

4
10

5
10

6

101107.2 102103104105106
Propidium Iodide-H

An
ne

xi
n-

V-
H

E0
7

G
at

e:
 (P

1 
in

 a
ll)

Q
1-
U
L

10
.5
%

Q
1-
U
R

85
.8
%

Q
1-
LL

3.
0%

Q
1-
LR

0.
7%

Q
1-
U
L

10
.5
%

Q
1-
U
R

85
.8
%

Q
1-
LL

3.
0%

Q
1-
LR

0.
7%



 122 
 

 

 

 CPPs targeting p50 CPPs targeting p65 
1 

ho
ur

 

  

 

CPPs targeting p50 CPPs targeting p65 

24
 h

ou
rs

 

  

Figure 4.20 - Viability of primary CLL cells incubated with Imgenex-Ctrl, Imgenex-p50, Imgenex-
p65, TP10-p50i and TP10- p65i for a period of 1 and 24 hours.  
Primary CLL cells were incubated with 0, 1, 2.5, 5 and 10 μM of Imgenex-Ctrl, Imgenex-p50, Imgenex-p65, 
TP10-p50i and TP10- p65i for a period of 1 and 24 hours. Viability measured by Annexin-V and PI. 
Percentage of viable cells corresponds to cells Annexin-V and PI negative. The viability curves were 
generated using Prism 6 software. Data are presented as the mean (+/- SD) for three patient samples. 
 
 

Table 4.9 - NF-κB inhibiting CPPs LC50. 

NF-κB 
inhibiting CPP 

1 hour 24 hours 

LC50 
95% 

Confidence Interval LC50 
95% 

Confidence Interval 

Imgenex-Ctrl 
Imgenex-p50 
Imgenex-p65 

> 50 µM 
> 50 µM 
> 50 µM 

Und. 
Und. 
Und. 

> 50 µM 
> 50 µM 
> 50 µM 

Und. 
Und. 
Und. 

TP10-p50i 
TP10-p65i 

6.13 µM 
14.4 µM 

4.37 – 7.99 
6.39 – 30.61 

5.16 µM 
7.20 µM 

4.81 – 5.55 
5.97 – 8.47 

Note: The LC50 values were interpolated using the Prism 6 software from the viability curves 
shown in Figure 4.19. 
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4.8. TP10 NF-κB inhibitory CPPs induced cell death in normal B- 
and T-cells 

To assess the effects of the TP10 NF-κB inhibitory CPPs, PBMCs from healthy donors 
were obtained and cultured with 0, 1, 2.5, 5, 10, 25 and 50 µM of TP10-p50i and TP10-

p65i for a period of 1 hour. Cells were harvested and labelled with anti-CD3 to identify 
T-cells, anti-CD19 to identify B-cells and PI to identify apoptotic cells. The analysis was 

performed by flow cytometry. Figure 4.20 and 4.21 show the flow cytometry data of one 
sample cultured with TP10-p50i for one hour. Following the analysis of the flow 

cytometry data it was clear that measuring viability of B- and T-cells separately was not 
possible using this strategy, as apoptotic cells did not stain for either CD19 or CD3. A 

second attempt of determining the percentage of viable lymphocytes gated in the 

forward and side scatter also proved not ideal as it did not take into account the 
absolute number of cells present in the gate. Therefore, the strategy chosen to present 

the data in Figure 4.22 was to show the number of cells within the viable lymphocytes 
gate (P3) shown in Figure 4.21. Figure 4.22 shows that TP10-p50i induced a decrease 

in the total numbers from the concentration of 1 µM. This increase was gradual up to 
10 µM, where a sudden drop in numbers was observed. These continued to decrease 

till they reached 0 at 50 µM. TP10-p65i had a similar effect as TP10-p50i with the 
difference being that the gradual decrease starts at 2.5 µM and goes down with 

concentrations up to 25 µM, point at which the numbers drop suddenly and reach 0 at 

50 µM. This data shows that both TP10-p50i and TP10-p65i do not have specificity for 
a type of cell; they affected CLL cells, B-cells and T-cells . 
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Figure 4.23 – Number of viable normal lymphocytes following 1 hour of incubation with TP10-p50i 
and TP10-p65i. 
Primary PBMCs from healthy donors were incubated with 0, 1, 2.5, 5 and 10 μM of TP10-p50i and TP10- 
p65i for a period of 1 hour. Cells were stained with anti-CD3, anti-CD19 and Annexin-V FITC. The number 
of viable lymphocytes within gate P3 from Figure 4.20 were plotted and presented here. Data are 
presented as the mean (+/- SD) for two samples. 
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4.9. Jurkat cells were more sensitive than CLL cells to TP10-p50i 
and TP10-p65i 

To assess the effect of the NF-κB inhibiting CPPs in other cell types, Jurkat cells (i.e. a 
leukaemic T-cell line) were incubated with a range of concentrations (0,1, 2.5, 5, 10, 25 

and 50 µM) of TP10-p50i and TP10-p65i for a period of 24 hours. Cells were harvested 
at 1 and 24 hours, washed and labelled with Annexin-V and PI. The cells were then 

analysed by flow cytometry. Figure 4.20 shows the flow cytometry profile of Jurkat cells 
incubated with TP10-p50i for 1 hour. Figure 4.21 shows the flow cytometry profile of 

primary CLL cells incubated with TP10-p50i. Figure 4.22 shows the data from 3 primary 
CLL patient cells and 3 Jurkat cell replicates. 

Following one hour of incubation, Jurkat cells were more sensitive to both TP10-p50i 

and TP10-p65i, as the LC50 were lower for Jurkat cells than CLL cells (See Table 4.9). 
However, only LC50 of TP10-p50i were significantly different between CLL and Jurkat 

cells (p<0.05). As with CLL cells, the LC50 for TP10-p50i was lower than the LC50 of 
TP10-p65i. Following 24 hours of incubation, the LC50 doses were higher in Jurkat cells 

for both TP10-p50i and TP10-p65i and lower for CLL cells. Regarding the flow 
cytometry profile, there were two distinct populations of Jurkat cells. One presented the 

characteristic lymphocyte profile (i.e. high forward scatter and low side scatter) and the 
other population presented the characteristic apoptotic profile (i.e. low forward scatter 

and high side scatter). Of all the events recorded within P1, 21% were Annexin-V and 

PI positive, in concordance with the apoptotic population found in the forward and side 
scatter. As the concentrations increase, so does the percentage of Annexin-V and PI 

positive cells. 
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Figure 4.26 - Viability of primary CLL cells and Jurkat cells incubated with TP10-p50i and TP10- 
p65i for a period of 1 and 24 hours.  
Primary CLL cells were incubated with 0, 1, 2.5, 5, 10, 25 and 50 μM of TP10-p50i and TP10- p65i for a 
period of 1 and 24 hours. Viability measured by Annexin-V and PI. Percentage of viable cells corresponds 
to cells Annexin-V and PI negative. The viability curves were generated using Prism 6 software. Data are 
the mean (+/- SD) for three individual CLL patients. Apoptosis in the Jurkat cells was measured in 
triplicate. 
 

 

Table 4.10 - NF-κB inhibiting CPPs LC50 in Jurkat and CLL cells. 

Cell 
type 

NF-κB 
inhibiting CPP 

1 hour 24 hours 

LC50 (µM) 95% Confidence 
Interval LC50 (µM) 95% Confidence 

Interval 

Jurkat TP10-p50i 
TP10-p65i 

3.15 
5.47  

1.08 – 4.36 
3.72 – 7.55 

4.10 
8.70  

3.31 – 4.87 
5.91 – 12.70 

CLL TP10-p50i 
TP10-p65i 

6.91 
9.50 

6.15 – 7.60 
6.56 – 14.48 

6.05  
9.16  

5.43 – 6.71 
6.83 – 11.96 

Note: The LC50 values were interpolated using Prism 6 software from the viability curves shown 
in Figure 4.22. 
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4.10. Discussion & Conclusion 

In the previous chapter TP10 and FFR8 were selected to be the delivery vehicles of 

two NF-κB inhibiting cargos. The aim of this chapter was to determine if the four novel 
NF-κB inhibiting CPPs were capable of inducing cell death. In all the samples tested, 

only two of the four CPPs were capable of inducing cell death at doses lower than 50 
µM; TP10-p50i and TP10-p65i. The LC50 for TP10-p50i was 5.28 µM (4.03 – 6.50) at 

24 hours, making it the CPP with the lowest LC50, and TP10-p65i had a LC50 of 9.95 
µM (7.44 – 13.45) at 24 hours. The LC50 values for FFR8-p50i and FFR8-p65i were 

greater than 50 µM.  

Both TP10-p50i and TP10-p65i were capable of inducing cell toxicity under 1 hour. 

However, the cytotoxic effects did not increase following 24 or 48 hours of incubation 

indicating a rapid mechanism of action. Of the NF-κB inhibitors previously reported in 
the CLL literature only two target translocation into the nucleus, DHMEQ (Horie et al., 

2006) and IMG-2004 (Hewamana et al., 2008b). Studies with CLL cells showed that 
the cytotoxic effects of these two inhibitors were induced in the first 24 hours of 

incubation (Hewamana et al., 2008b; Horie et al., 2006), indicating that TP10-p50i and 
TP10-p65i act faster than DHMEQ and IMG-2004. 

In the previous chapter the flow cytometry and confocal microscopy data showed the 
superior penetrating capabilities of FFR8 compared to all other CPPs tested. However, 

in this chapter, despite carrying the same cargo, FFR8 peptides were incapable of 

affecting CLL viability, while both TP10 peptides presented LC50 values less than 10 
µM. In an attempt to determine if the cause of cell toxicity exhibited by the TP10 

peptides was due to the CPPs and not the cargo (i.e. the only difference between the 
TP10 and FFR8 NF-κB inhibiting CPPs), FFR8-Alexa488 and TP10-Alexa488 were 

incubated under the same conditions as the four novel CPPs. Unexpectedly, FFR8-
Alexa488 caused more cell toxicity than FFR8-p50i and FFR8-p65i, while TP10-

Alexa488 did not cause cell toxicity of CLL cells at doses lower than 50µM. As 
previously mentioned, the fluorescent tag can alter dramatically either positively or 

negatively the penetrating abilities of CPPs (Jones & Sayers, 2012). What was initially 
an attempt to determine if the delivery vehicle was causing cell toxicity became an 

interesting observation on the effects a cargo can have on cell viability and how 

complex the appropriate choice of control can become. In a way, TP10-Alexa488, 
FFR8-p50i and FFR8-p65i proved to be good negative controls for the TP10 peptides 

as they showed that TP10 with a fluorescent tag does not cause cell toxicity and that 
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the p50 and p65 inhibiting sequences when attached to another CPP also did not 
cause cell toxicity. This indicates that the toxicity induced by TP10-p50i and TP10-p65i 

is caused by the combination of TP10 and the inhibiting sequences. 

CLL cell survival in vivo has been shown to be dependant on stimuli from the 

microenvironment (Caligaris-Cappio, 2003; Ramsay & Rodriguez-Justo, 2013). IL-4 is 
one of the reported stimuli that confers protection to CLL cells in vitro (Banchereau & 

Rousset, 1991; Banchereau et al., 1991; Thieu et al., 2007). In order to determine if the 
cytotoxic effects produced by TP10-p50i and TP10-p65i would be inhibited by IL-4, this 

cytokine was added to cultures. Although IL-4 was capable of increasing the number of 
viable cells in the untreated samples even at concentrations lower than 2.5 µM, it did 

not effectively abrogate the cytotoxic effects of TP10-p50i and TP10-p65i. Hewamana 

et al. (2008b) showed a similar effect, where IL-4 did not protect primary CLL cells from 
the cytotoxic effect of LC-1, an IKK inhibitor. This data indicates that NF-κB inhibition 

can potentially overcome the in vivo pro-survival signals induced by IL-4 and possibly 
other molecules. 

In order to determine if the cytotoxic effects of TP10-p50i and TP10-p65i measured by 
Annexin-V and PI staining were indeed a result of apoptosis induction, caspase-3 

activity was measured using a fluorescence producing substrate. Unexpectedly, only 
TP10-p50i induced activation of caspase-3 at 1 and 24 hours. Studies on caspase-3 

activation by SN50 (a CPP linked to the same p50 inhibiting sequence as TP10-p50i) 
show contrasting results. Kolenko and colleagues measured caspase-3 activity in 

primary T-cells, following incubation with SN50 for 6 and 24 hours, using fluorometric 

tetrapetide substrates and detected no activity (Kolenko et al., 1999). Poulaki and 
colleagues measured caspase-3 activity in Y79 and WERI-Rb1 cells (two 

retinoblastoma cell lines), following incubation with SN50 for 8 and 16 hours, using the 
PhiPhiLux substrate and also detected no caspase-3 activity (Poulaki et al., 2002). 

Mitsiades and colleagues measured caspase-3 activity in MM.1S cells (multiple 
myeloma cell line), following incubation with SN50 for 4, 8 and 16 hours, performing 

immunoblot analysis of caspase-3 cleaved products and detected caspase-3 activity 
(Mitsiades et al., 2002). It is difficult to ascertain the cause of the conflicting results in 

the studies presented and those observed between TP10-p50i and TP10-p65. 

Although the inhibiting sequences are different the putative mechanism of action is 
similar and the presumed result is the same i.e. inhibition of NF-κB nuclear 

translocation that culminating in the induction of apoptosis. Perhaps TP10-p65i is not 
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truly inhibiting NF-κB nuclear translocation and/or cell death is caused by the other 
means that do not require caspase-3 activation.  

Comparison studies using the Imgenex peptide and the two novel TP10 CPPs, 
demonstrated the ability of TP10-p50i and TP10-p65i to induce cell death at doses 

lower than 10 µM. The commercially available peptides Imgenex-p50 (IMG-2004, 
Imgenex) and Imgenex-p65 (IMG-2001, Imgenex) have demonstrated to inhibit 

translocation of NF-κB subunits p50 and p65 in a variety of cell types (Poylin et al., 
2008; Takada et al., 2004; Zou & Crews, 2005), including primary CLL cells (Buggins et 

al., 2010; Hewamana et al., 2008b). The doses required to achieve NF-κB inhibition or 
cell death vary between 50 µM and 100 µM (Buggins et al., 2010; Hewamana et al., 

2008b; Poylin et al., 2008; Takada et al., 2004; Zou & Crews, 2005). Considering that 

both TP10 peptides and the Imgenex peptides possess the same inhibiting sequences, 
the reduction in LC50 can be attributed to the combination of TP10 and p50i or p65i. 

These novel CPPs represent a potential new tool to target NF-κB as they induced 
cytotoxicity at significantly lower concentrations than the commercially available NF-κB 

inhibitory peptides.  

TP10 peptides have been shown to penetrate a wide range of cell types, with or 

without cargo, which shows their lack of specificity. However, CPPs tend to behave 
differently with different cell types (Fretz et al., 2007). To assess the effects of the TP10 

NF-κB inhibiting peptides in T-cells, Jurkat cells were used. The LC50 of the peptides 
with Jurkat cells revealed an increased sensitivity to TP10-p50i and TP10-p65i. The 

causes for this increased sensitivity were not tested in this study, however it is possible 

that these differences were due to the different collection of membrane lipids, proteins 
and carbohydrates found on these cell types (Fretz et al., 2007). 

In summary, out of the four novel NF-κB inhibiting CPPs, TP10-p50i and TP10-p65i 
were capable of inducing apoptosis in primary CLL cells at doses lower than 10 µM 

under 1 hour. The LC50 of the TP10 peptides was 10 times lower than the LC50 of 
commercially available peptides that carry the same inhibiting sequence. The cytotoxic 

effects induced by the TP10 peptides were not abolished by the cytoprotective cytokine 
IL-4, and at least one of the peptides was capable of inducing caspase-3 activity. The 

cytotoxic effects of the peptides were not exclusive to primary CLL cells, in fact they 

induced cell death in Jurkat cells at doses lower than in CLL cells. The next step of this 
study was to investigate if the mechanism by which the peptides induced apoptosis 

was a result of NF-κB nuclear translocation inhibition. 
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Chapter 5 - Characterising the effects of TP10-p50i and TP10-
p65i on NF-κB expression in primary CLL cells 

 

5.1. Introduction 

In the previous chapter, four novel NF-κB inhibiting CPPs were developed and their 
cytotoxic effects were studied in primary CLL cells. The CPPs carried amino acid 

sequences that mimicked the NLS of p50 or a phosphorylation sites of p65; sequences 
required for the translocation of these subunits into the nucleus. The hypothesis was 

that the inhibitory sequences function as decoys for the nuclear translocation of p50 

and p65; as such they should target the de novo translocation of NF-κB subunits and 
may not inhibit NF-κB that is already in the nucleus. NF-κB is a transcription factor 

known to regulate a variety of genes involved in apoptosis, survival, cell proliferation 
and immune and inflammatory responses (Hayden & Ghosh, 2008). NF-κB has been 

shown to be constitutively active in CLL and therefore represents a very attractive 
target (Furman et al., 2000; Hewamana et al., 2008a). Furthermore, the in vitro use of 

NF-κB inhibitors resulted in CLL cell apoptosis validating the importance of this 
pathway in CLL survival (Hewamana et al., 2009; Lopez-Guerra & Colomer, 2010). Of 

the four novel CPPs evaluated in the previous chapter, only TP10-p50i and TP10-p65i 
were capable of inducing cell toxicity. Therefore the aim of this chapter was to 

investigate whether this cytotoxicity was associated with the inhibition of NF-κB in 

primary CLL cells. 

Previous studies using identical NF-κB inhibiting sequences (but not tagged to the 

current CPPs) showed a significant reduction in the amount of NF-κB subunits found in 
the nucleus following stimulation (Lin et al., 1995; Takada et al., 2004). Lin et al. 

(1995), induced NF-κB activation with LPS in endothelial LE-II cells, and showed that 
SN50 (a different CPP attached to the same p50 inhibiting sequence used in this study) 

could partially inhibit the translocation of NF-κB into the nucleus. Takada et al. (2004) 
stimulated NF-κB activation using TNF and showed that the same p65 inhibitory 

peptide decreased NF-κB DNA binding in KBM-5 chronic myelogenous leukaemia 
cells.  

To study the effects of TP10-p50i and TP10-p65i, three aspects of the NF-κB pathway 

were assessed: translocation of the subunits into the nucleus, which was assessed by 
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SDS-PAGE and western blotting; NF-κB DNA binding activity, assessed by EMSA; and 
the expression of proteins regulated by NF-κB, assessed by flow cytometric 

quantification in CLL cells. 

The constitutive NF-κB activation observed in CLL seems to be closely linked to the 

interaction of CLL cells with their in vivo microenvironment (Lopez-Guerra & Colomer, 
2010). Several mechanisms have been reported to induce NF-κB activation in CLL 

cells, including interaction with stromal cells (Edelmann et al., 2008), activation of the 
tumour necrosis factor receptor (TNFR) family members (Endo et al., 2007; Munzert et 

al., 2002), activation of the cell surface receptor CD40 by its ligand CD154 (Furman et 
al., 2000), activation of the BCR (Caligaris-Cappio et al., 2009) and activation of TLRs 

(Arvaniti et al., 2011; Caligaris-Cappio et al., 2009). In this chapter, two NF-κB 

activation mechanisms were employed: incubation with CD40L-expressing fibroblasts 
and incubation with CpG ODN2006 oligonucleotides. Co-culture of CLL cells with 

CD40L-expressing fibroblasts mimics the interactions of CLL cells with activated T-cells 
in the bone marrow and neoplastic follicles (Kaileh & Sen, 2012; Lopez-Guerra & 

Colomer, 2010). CpG ODN2006 oligonucleotides, are short single-stranded 
unmethylated DNA molecules designed to mimic pathogenic DNA, which are 

recognised by TLR9, which is highly expressed in CLL cells (Caligaris-Cappio et al., 
2009; Rozková et al., 2010). CpGs enter B-cells by endocytosis and activate TLR9 

located in the cytoplasm (Efremov et al., 2013). Both CD40/CD40L interaction and 
TLR9 activation culminate in the induction of the NF-κB canonical pathway (Furman et 

al., 2000; Kaileh & Sen, 2012; Ozato et al., 2002). 

In addition to measuring nuclear NF-κB binding, the effect of the NF-κB inhibiting CPPs 
was also assessed by measuring the surface expression of four cellular activation 

markers. The activation markers were CD38, CD69, CD49d and CD25; all of which 
have been shown to be transcriptionally regulated by NF-κB (Ballard et al., 1988; 

Buggins et al., 2010; Fu et al., 2013; Hideshima et al., 2001; Kang et al., 2006; Lopez-
Cabrera et al., 1995; Tirumurugaan et al., 2008). CD38 is a cell surface 

enzyme/receptor found on a variety of cells, including CLL cells (Deaglio et al., 2008). It 
has been linked to CLL pathogenesis and its expression is associated with the 

aggressive form of the disease (Deaglio et al., 2008). CD69 is a type II integral 

membrane protein, that is overexpressed in CLL cells (Del Poeta et al., 2012a). It is an 
activation marker that is rapidly expressed upon cell stimulation and it has been shown 

to have prognostic value in CLL (Del Poeta et al., 2012a). CD49d is variably expressed 
in CLL and it has been shown to act as an adhesion structure for extracellular matrix 
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components or to mediate cell to cell interactions by binding to fibronectin or VCAM-1 
(Gattei et al., 2008). It has been shown to be an independent predictor of OS in CLL 

(Bulian et al., 2014; Gattei et al., 2008; Shanafelt et al., 2008). CD25 is the alpha chain 
of the IL-2 receptor and it is a classical activation marker (Chiorazzi et al., 2002; Fu et 

al., 2013). It is variably expressed in CLL patients and it has been shown to hold a 
prognostic value in CLL, although this is still controversial (Shvidel et al., 2012; Sulda et 

al., 2012).  

 

5.2. Effects of TP10-p50i and TP10-p65i on the translocation of NF-
κB into the nucleus 

5.2.1. Assessment of NF-κB in the nuclear and cytosolic fractions of untreated 
primary CLL cells 

To assess the levels of NF-κB in the different compartments of untreated ex vivo 

primary CLL cells, nuclear and cytosolic fractions were prepared as previously 
described (Section 2.6.1). The fractions were analysed by SDS-PAGE, followed by 

western blot analysis using antibodies against p105/p50, p65 and HSP90. Figure 5.1 
shows the levels of the different proteins in eight CLL patient samples. To permit some 

analysis of patient-to-patient variation, densitometry was used to assess the intensity of 
individual bands. Values were normalised to HSP90 to allow comparison between 

patients. p105, the precursor of p50, was only found in the cytosolic fractions, with the 

exception of two samples (i.e. 3340 and 4130). p65 was also predominantly found in 
the cytosolic fractions, while p50 was evident in both compartments and appeared to 

be more readily detected than p65. Although levels of p50 in the cytosol were similar 
between samples, there was variation in the p50 expression found in the nuclear 

fractions.  

A common nuclear extraction control is tubulin, which is confined to the cytosolic 

fraction. However, its molecular weight is approximately 50 kDa, which is the same 
molecular weight as the NF-κB subunit p50. Therefore, HSP90 was proposed as a 

control for the nuclear extraction as it is considered to be a cytosolic protein (UniProt 
Consortium, 2014). Expression of HSP90 was relatively constant in the cytosolic 

fractions, however it was also present in varying amounts in the nuclear fraction of all 

samples tested. Equivalent numbers of cells from each patient were extracted and the 
same sample volume was loaded into the gel for each sample. However, the variable 
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detection of HSP90 indicated that the amount of protein in each sample was not 
equivalent. Variable expression could be caused by biological or technical factors, such 

as a naturally occurring variable expression of HSP90 in the nucleus, or inconsistent 
loss of protein during the extraction protocol. It is likely that the variation was caused by 

a combination of both technical and biological causes, therefore another protein was 
chosen as a control. In addition, the amount of total protein in the nuclear/cytosolic 

fractions was quantified and 2 µg of each sample was loaded into the gels. 

Figure 5.2 shows the nuclear fraction of another eight CLL patient samples. Poly-ADP 

ribose polymerase (PARP), which is restricted to the nuclear fraction, was used as a 
control and a total of 2 µg of protein were loaded into the gel. p50 expression in the 

nuclear fraction of the untreated samples was variable, as seen in Figure 5.1. However, 

the levels of PARP were also variable despite an attempt to ensure equivalent loading 
by assaying total protein. It appears that variation in PARP is not sufficient to explain 

the variation in p50 levels, as differences in p50 were still observable in samples where 
PARP expression was very similar. Examples of this are the fourth and eight lanes of 

Figure 5.2. Densitometry where the levels of p50 are compared to the levels of PARP 
makes this variation more obvious. In contrast to p50, basal levels of p65 were almost 

undetectable in all samples tested making interpretation of the levels of p65 very 
challenging.  

   



 138 
 

 

 

 

Figure 5.1 – p105/p50 and p65 in the nuclear and cytosolic fractions of primary CLL cells of 8 
patients’ samples. 
Nuclear extracts from 5x106 primary CLL cells were prepared as previously described in section 2.6.1. 20µl 
of each fraction was analysed by SDS-PAGE and western blotting analysis. Blots were incubated with the 
following antibodies: NF-κB p105/p50 (3035S, Cell Signaling), NF-κB p65 (D14E12) XP (8242S, Cell 
Signaling), HSP90 (4877S, Cell Signaling). Detection was performed by chemiluminescence. Densitometry 
was performed using ImageJ software. Values are presented as a ratio, normalised to HSP90.  

 

 

 

Figure 5.2 – p50 and p65 in the nuclear fraction of primary CLL cells of 8 patients’ samples. 
Nuclear extracts from 5x106 primary CLL cells were prepared as previously described in section 2.6.1. 
The volume equivalent to 2µg of total protein was analysed by SDS-PAGE and western blotting. Blots 
were incubated with the following antibodies: NF-κB p105/p50 (3035S, Cell Signaling), NF-κB p65 
(D14E12) XP (8242S, Cell Signaling), PARP (9532S, Cell Signaling). Densitometry was performed using 
ImageJ software. Values are presented as a ratio, normalised to PARP. Molecular weight of proteins of 
interest: p50 – 50 kDa, p65 – 65 kDa, PARP – 116 kDa. 
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5.2.2. Assessment of NF-κB in the nuclear fraction of primary CLL cells treated 
with TP10-p65i and TP10-p50i 

Despite the challenges associated with analysing the levels of p50 and p65, one further 
set of experiments was performed with TP10-p50i and TP10-p65i on NF-κB in CLL 

cells. The goal was to determine if clear changes in p50 expression in the nuclear 
fraction of treated CLL cells could be observed. 5x106 primary cells were cultured with 

0, 1, 2.5 or 5 µM of TP10-p50i or TP10-p65i for a period of one hour, at 37˚C with 5% 
CO2. Cells were then harvested and cytosolic and nuclear extracts were prepared. 

Nuclear extracts were analysed by SDS-PAGE and western blotting.  

The TP10-p50i peptide caused a reduction in the levels of p50 detectable in cells 

treated with the TP10-p50i peptide (Figure 5.3). Densitometry was performed to allow 

comparison between the different peptide treatment conditions, with untreated cells 
used as a reference. In all three cases, the highest concentration of peptide (5 µM) 

showed a reduction in the amount of p50 detected in the nuclear fraction of CLL cells. 

As previously observed in Figures 5.1 and 5.2, levels of p65 were undetectable in the 

nuclear fraction of all the samples tested (Figures 5.3 and 5.4). This prevented a 
meaningful analysis of effect of TP10-p65i on the levels of nuclear p65. However, 

TP10-p65i did not cause any significant change in the p50 levels (Figure 5.4). For 
these two reasons, a decision was made not to study TP10-p65i further but rather to 

focus on TP10-p50i. This decision was further justified by the previous results showing 
that TP10-p50i was more cytotoxic than TP10-p65i (Section 4.2).  
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Figure 5.3 – p50 and p65 of primary CLL cells incubated with TP10-p50i. 
5x106 primary CLL cells were incubated with 0, 1, 2.5 and 5 µM of TP10-p50i for a period of 1 hour. Cells 
were harvested and nuclear extracts were prepared as previously described. Samples were analysed by 
SDS-PAGE and western blotting. Blots were incubated with the following antibodies: NF-κB p105/p50 
(3035S, Cell Signaling), NF-κB p65 (D14E12) XP (8242S, Cell Signaling). Densitometry was performed 
using ImageJ software. Bands were normalised to the untreated sample (0 µM of TP10-p50i). 
 

 

 

 

Figure 5.4 - p50 and p65 of primary CLL cells incubated with TP10-p65i. 
5x106 primary CLL cells were incubated with 0, 1, 2.5 and 5 µM of TP10-p65i for a period of 1 hour. 
Cells were harvested and nuclear extracts were prepared as previously described. Samples were 
analysed by SDS-PAGE and western blotting. Blots were incubated with the following antibodies: NF-κB 
p105/p50 (3035S, Cell Signaling), NF-κB p65 (D14E12) XP (8242S, Cell Signaling). Bands were 
normalised to the untreated sample (0 µM of TP10-p50i). 
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5.3. Effects of TP10-p50i on DNA binding of NF-κB  

5.3.1. Assessment of NF-κB binding activity in untreated primary CLL cells  

The analysis of p50 protein levels in the nuclear fraction of CLL cells treated with TP10-
p50i led to the decision to investigate the effects of this peptide on NF-κB activity, as 

determined by electrophoretic mobility shift assay (EMSA). To assess the basal DNA 
binding activity of NF-κB, nuclear fractions of primary untreated CLL cells were 

prepared. The amount of protein was measured in each sample, and 2 µg of protein 
from the nuclear extract was incubated with a radioactive-labelled oligonucleotide 

consisting of the NF-κB consensus sequence. Samples were run in a non-denaturing 
acrylamide gel, under conditions previously described (Section 2.6.4). Figure 5.5 

shows a positive control, Jurkat cells stimulated with the pro-inflammatory cytokine 

TNF-� for one hour, and samples from ten CLL patient samples. Levels of NF-κB DNA 

binding in the nuclear fraction of CLL cells varied between patient samples; 

densitometry was performed to quantify the variation. NF-κB in CLL cell samples 
seemed to run as two bands. These could represent two different homo/heterodimers. 

The variation in the levels of NF-κB was in agreement with previously published data 
(Hewamana et al, 2008).  

 
Figure 5.5 - NF-κB in the nuclear fraction of primary CLL cells. 
Nuclear extracts of 5x106 untreated and unstimulated primary CLL cells were prepared for EMSA to 
assess the levels of NF-κB binding in the nucleus. 2 µg of protein were loaded into each well. Positive 
control consists of Jurkat cells stimulated with 100 µg/µl of TNF. Densitometry was performed using 
ImageJ software, and bands were normalised to the first sample in the gel (i.e. 2567Y and 1410M). 
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5.3.2. Assessment of NF-κB binding activity in primary CLL cells treated with 
TP10-p50i 

To further assess the effects of TP10-p50i on NF-κB, primary CLL cells were cultured 
with 0, 1, 2.5 and 5 µM of TP10-p50i for a period of one hour. Cells were then 

harvested and nuclear fractions were extracted. An EMSA was performed and Figure 
5.6 shows the level of NF-κB binding activity in six CLL patient samples following 

incubation with TP10-p50i. 

Different patient samples showed a different effect on NF-κB binding activity following 

treatment with the TP1-p50i peptide. A reduction in nuclear NF-κB binding following 
treatment with TP10-p50i was evident in three of the six samples tested (i.e. 9687, 

1272 and 5948). The three other samples, showed relatively little change in the amount 

of NF-κB capable of binding to the consensus oligonucleotide. Densitometry was 
performed to inform the analysis. This showed that only two patient samples 

demonstrated a concentration-dependent inhibition of NF-κB. This was observable in 
sample 9687, but most obviously in sample 5948.  Sample 1272 seemed to be more 

sensitive to low concentrations of TP10-p50i than the other samples, while 9687 
showed higher sensitivity at 5 µM. Although the decrease in NF-κB binding activity was 

not as pronounced for sample 1228 than other samples, a small reduction was still 
visible. The lack of a reproducible inhibition of NF-κB contrasts with the data obtained 

in section 4.2, where all samples were equally susceptible to the cytotoxic effects of the 
peptide. This suggests the peptide-induced apoptosis may not relate to NF-κB 

inhibition. 
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Figure 5.6 - NF-κB in the nuclear fraction of primary CLL cells treated with TP10-p50i for 1 hour. 
5x106 primary CLL cells were incubated with 0, 1, 2.5 and 5 µM of TP10-p50i for a period of 1 hour. 
Cells were harvested and nuclear extracts were prepared. Samples were analysed by EMSA. 2 µg of 
protein were loaded into each well. Densitometry was performed using ImageJ software, and bands 
were normalised to the respective untreated sample (i.e. first lane). 
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5.3.3. Assessment of NF-κB binding activity in primary CLL cells following co-
culture with CD40L 

The variable effect of TP10-p50i on NF-κB DNA binding could be due to the lack of NF-
κB activation by external stimuli during the course of peptide treatment. To understand 

whether TP10-p50i could inhibit NF-κB activation in primary CLL cells, cells were co-
cultured with CD40L-expressing fibroblasts, which has been shown to induce activation 

of NF-κB (Furman et al., 2000). An initial assessment of this activation was performed, 
by culturing primary CLL cells with CD40L-expressing fibroblasts or non-transfected 

cells (NTL) as a control, for a period of 1, 24 or 48 hours. Cells were harvested, 
washed and cytosolic and nuclear extracts were prepared. Figure 5.7 shows an EMSA 

of nuclear extracts derived from a CLL sample following co-culture with NTL and 

CD40L. CD40L-expressing co-culture induced NF-κB activation within one hour and 
levels of NF-κB continued to increase after 24 and 48 hours of co-culture. Based on 

this assessment, the incubation period with CD40L-expressing fibroblasts was set at 
one hour. 

 

 

Figure 5.7 - NF-κB in the nuclear extracts of CD40L stimulated and unstimulated primary CLL cells. 
5x106 primary CLL cells were incubated with 1x106 CD40L-expressing fibroblasts or non-transfected 
fibroblasts (NTL) for a period of 1, 24 or 48 hours. Cells were washed and the nuclear and cytosolic 
extracts prepared for analysis by EMSA. 2 µg of protein were loaded into each well. Densitometry was 
performed using ImageJ software, and bands were normalised to the sample incubated with NTL cells for 
one hour. 
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5.3.4. Assessment of NF-κB binding activity in primary CLL cells following co-
culture with CD40L and pre-treatment with TP10-p50i 

Primary CLL cells were then pre-incubated with 0, 1, 2.5 and 5 µM of TP10-p50i for 
one hour, and then transferred onto co-culture with CD40L cells. The aim was to 

assess if TP10-p50i was capable of preventing NF-κB activation via CD40 ligation. 
BAY 11-7082, an established NF-κB inhibitor (Pickering et al., 2007), was used as a 

positive control for NF-κB inhibition. Cells were cultured under the same conditions as 
described for treatment with TP10-p50i, with BAY 11-7082 used at concentrations of 

2.5 µM and/or 5 µM. Figure 5.8 and 5.9 show five CLL patient samples treated under 
the conditions described.  

Co-culture for one hour with CD40L cells induced an increase in NF-κB binding activity 

in all the samples tested. In CLL cells treated with BAY 11-7082, the levels of NF-κB 
binding activity were reduced to the levels found in unstimulated cells (i.e. NTL), at both 

concentrations tested. In contrast to BAY 11-7082, the data with TP10-p50i was more 
variable. Four of the five patient samples showed a reduction in NF-κB DNA binding at 

the highest concentration of peptide (5 µM). However, the reduction was relatively 
modest, particularly in comparison with that observed following incubation with BAY 11-

7082. Even when an effect of TP10-p50i was observed, the samples did not show a 
concentration-dependent inhibition. Samples 275T and 838X show lower NF-κB 

binding activity following treatment with 2.5 µM when compared with 5 µM, implying 
less inhibition at higher doses of the peptide. As for samples 2450 and 9284, higher 

levels of NF-κB bound to the consensus oligonucleotide were found in samples treated 

with 2.5 µM. This variability may be due to technical issues, such as uneven loading of 
samples into the gel, even though the total amount of protein was quantified in a 

previous step and a set amount of 2 µg was then loaded into the gel, to specifically 
avoid this problem. It is also conceivable that it may be caused by differential uptake 

and/or processing of the peptide by specific CLL samples. 
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Figure 5.8 - NF-κB in the nuclear fraction of CD40L stimulated primary CLL cells pre-treated with 
TP10-p50i and BAY 11-7082. 
5x106 primary CLL cells were pre-treated with 0, 2.5, and 5 µM TP10-p50i or 2.5 and 5 µM of BAY 11-
7082 for 1 hour. Cells were harvested and incubated with 1x106 CD40L-expressing fibroblasts or non-
transfected fibroblasts (NTL) for one hour. Cells were harvested and the nuclear extracts prepared for 
analysis by EMSA. 2 µg of protein were loaded into each well. Densitometry was performed using 
ImageJ software, and bands normalised to cells cultured with NTL cells.  
 

 

 
Figure 5.9 - NF-κB in the nuclear fraction of CD40L-stimulated primary CLL cells pre-treated with 
TP10-p50i and BAY 11-7082. 
5x106 primary CLL cells were pre-treated with 0, 1, 2.5, and 5 µM TP10-p50i and 5 µM of BAY 11-7082 
for 1 hour. Cells were harvested and incubated with 1x106 CD40L-expressing fibroblasts or non-
transfected fibroblasts (NTL) for one hour. Cells were harvested and the nuclear extracts prepared for 
analysis by EMSA. 2 µg of protein were loaded into each well. Densitometry was performed using 
ImageJ software, and bands normalised to cells cultured with NTL cells. 
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5.3.5. Assessment of NF-κB binding activity in primary CLL cells pre-treated 
with TP10-p50i and stimulated with CpG 

In parallel to the assessment previously described in section 5.3.4, the effects of pre-
treatment with TP10-p50i followed by stimulation with another NF-κB activator, CpG 

oligonucleotides, was measured by EMSA. Primary CLL cells were treated with 0, 1, 
2.5 and 5 µM of TP10-p50i for a period of one hour, and then treated for a further hour 

with 500 nM of CpG ODN2006. BAY 11-7082 was again used as a control for NF-κB 
inhibition, at the concentration of 5 µM. Cells were harvested, nuclear extracts were 

prepared and the nuclear fractions were analysed by EMSA.  

Figure 5.10 shows data from four CLL patient samples. Stimulation with CpG ODN2006 

was capable of inducing an increase in NF-κB binding. TP10-p50i showed a convincing 

inhibition of CpG-induced NF-κB binding activity in two of the four samples tested (i.e. 
4665F and 9284). However, NF-κB inhibition was concentration-dependent in only one 

of the samples tested (i.e. 4665F). Sample 9284 showed a reduction of NF-κB at all the 
TP10-p50i concentrations used, with an unusual reduced sensitivity at 2.5 µM, perhaps 

suggesting a technical failure related to the processing of this sample for EMSA. In 
contrast, cells treated with BAY 11-7082 showed a consistent repression of CpG-

induced NF-κB binding activity to similar or lower levels than unstimulated cells. 
Comparing the results of TP10-p50i on both CD40L stimulation and CpG stimulation, 

the data show that the inhibition of NF-κB was variable and was patient sample 
dependent. Furthermore, the inhibition was modest relative to pharmacological 

inhibition with BAY 11-7082. The next step was to investigate cell surface markers 

following CD40L stimulation, to assess whether the variable effects of TP10-p50i on 
NF-κB would alter expression of cell proteins.   
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Figure 5.10 - NF-κB in the nuclear extracts of CpG-stimulated primary CLL cells pre-treated with 
TP10-p50i and BAY 11-7082. 
5x106 primary CLL cells were pre-treated with 1, 2.5, and 5 µM TP10-p50i, 5 µM of BAY 11-7082 or 
untreated for 1 hour. Cells were harvested and incubated in liquid culture with 500nM of CpG ODN2006 for 
one hour. Cells were harvested and the nuclear extracts prepared for analysis by EMSA. 2 µg of protein 
were loaded into each well. Densitometry was performed using ImageJ software, and bands normalised to 
the unstimulated (US) sample. 
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5.4. Effects of TP10-p50i on cell surface markers regulated by NF-
κB  

5.4.1. Assessment of viability of primary CLL cells pre-treated with TP10-p50i 
and Bay 11-7082, followed by stimulation with CD40L 

Although the TP10-p50i peptide was uniformly capable of inducing apoptosis in primary 
CLL samples, its ability to inhibit NF-κB appeared variable. To assess if the reduction 

in NF-κB activity in the nucleus translated into altered expression of proteins that are 
transcriptionally regulated by NF-κB, cell surface markers were quantified by flow 

cytometry in cells treated and untreated with TP10-p50i followed by co-culture with 
CD40L.  

Flow cytometry requires a careful gating strategy. The strategy used for the following 

experiments is shown in Figure 5.11 and consisted of four steps. The initial step 
involved drawing a gate that excluded cell debris from the analysis (box i). The second 

step used the forward and side scatter to identify viable cells (box ii). Dead cells 
become smaller and more granular, meaning they move to the left of the plot. A 

population of dead cells was visible in box ii (see arrow). Viable cells were then forward 
gated into a doublet discrimination gate (box iii), which excluded clumps of cells (box 

iii). The fourth step specifically identified CLL cells based on the co-expression of CD19 
and CD5 antigens. This final gate (v) allowed the analysis of the surface markers of 

interest in viable, discreet CLL cells.  

Figure 5.12 shows the “Live Lymphocyte” gates for one patient sample and the 
percentage of cells within the “Live Lymphocyte” gate for the 17 patient samples tested 

was plotted in Figure 5.13. Cells cultured with CD40L had a higher percentage of viable 
cells (76.1%) when compared to cell cultured with NTL (67.5%), indicating that CD40L 

stimulation confers cytoprotection to CLL cells in culture. Cells cultured with 2.5 (75%) 
and 5 µM (74.9%) of TP10-p50i showed no significant change in viability, while cells 

cultured with 10 µM (66.6%) showed a small but significant decrease in viability. Cells 
cultured with 5 µM of BAY 11-7082 (used as positive control for NF-κB inhibition) 

reduced the average percentage of viable cells to 14%, showing that BAY 11-7082 is a 
more potent cytotoxic agent (mol for mol) than TP10-p50i. 
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Figure 5.13 - Viability of primary CLL cells following co-culture with NTL and CD40L cells and pre-
treatment with 2.5, 5 and 10 µM of TP10-p50i and 5 µM of BAY 11-7082. 
Primary CLL cells were treated with 0, 2.5, 5 and 10 µM of TP10-p50i or 5 µM of BAY 11-7082 for one 
hour in liquid culture. Cells were then transferred onto co-culture with NTL or CD40L cells for a period of 24 
hours. Cell viability was measured using the gating strategy presented in Figure 5.11. Data from 17 patient 
samples, presented as individual percentage values, plus mean +/- SD. Statistical analysis was performed 
using the software GraphPad Prism 6. Repeated-measures one-way ANOVA was applied followed by a 
multiple-comparisons test. * - represents the level of statistical significance. 
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5.4.2. Assessment of cell surface markers regulated by NF-κB in primary CLL 
cells 

The effects of CD40L stimulation and treatment with BAY 11-7082 (i.e. positive control 
for NF-κB inhibition), on cell surface markers CD25, CD49d, CD38 and CD69 were 

analysed. Primary CLL cells were cultured with 5 µM BAY 11-7082 for one hour. Cells 
were then harvested and cultured for 24 hours with CD40L or NTL cells. Samples were 

analysed by flow cytometry. Cell surface markers CD25, CD49d, CD38 and CD69 were 
measured within the “CLL cell” gate. The effects of CD40L and BAY 11-7082 are 

shown for two samples (Figure 5.14 to 5.17). Using FlowJo software, the MFI of this 
population was obtained from 17 patient samples and is shown in the summary graphs 

(Figure 5.18 to 5.21). 

Of the four markers tested, CD25 and CD69 were up regulated by CD40L within 24 
hours. BAY 11-7082 was capable of inducing changes in three of the four markers 

tested: CD25, CD49d and CD69. However, only CD69 was down regulated. Figure 
5.18 shows that pre-treatment with BAY 11-7082 and co-culture with CD40L induced a 

significant increase in CD25 expression when compared with untreated co-culture with 
CD40L. This event was unexpected as CD25 is a cell surface marker regulated by NF-

κB (Fu et al., 2013). To further understand this increase, dot plots for the expression of 
CD25 and CD19 in two patient samples are presented in Figure 5.14. This Figure 

illustrates that untreated cells, when co-cultured with CD40L, show an increase in 
CD25 expression. However, cells pre-treated with BAY 11-7082 do not uniformly 

present an increased CD25 expression, as suggested by the summary MFI data 

presented in Figure 5.18. In fact two cell populations can be seen, one that expresses 
CD25 at the same level as cells cultured with NTL, indicating that BAY 11-7082 was 

capable of inhibiting the up-regulating effects of CD40L co-culture, and a smaller sub-
population of cells (i.e. 12.4% and 4.08%) in which pre-treatment with BAY 11-7082 

induced an up-regulation of CD25. A similar effect can be seen in Figure 5.19 and 5.15, 
for the expression of CD49d. The cause of increased expression of both CD25 and 

CD49d following treatment with BAY 11-7082 requires further investigation but may 
represent an escape mechanism from BAY 11-7082 induced apoptosis.  

CD69 was the only marker up-regulated by CD40L and down-regulated by BAY 11-

7082, within the timeframe of this study indicating that it was a good candidate for a 
directly regulated NF-κB protein. And for this reason, CD69 was selected for 

assessment in the context of TP10-p50i treatment (section 5.4.3).   
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Figure 5.14 – Expression of CD25 and CD19 of cell within the CLL cell gate. 
CD19 and CD25 dot plot of patient samples 4665 and 6984, incubated under the conditions described in 
Figure 5.11. Cells present in these dot plots were gated previously in the “CLL cell” gate as described in 
Figure 5.11. Dot plots obtained using the software FlowJo X. 
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Figure 5.15 – Expression of CD49d and CD19 of cell within the CLL cell gate. 
CD19 and CD49d dot plot of patient samples 4665 and 6984, incubated under the conditions described in 
Figure 5.11. Cells present in these dot plots were gated previously in the “CLL cell” gate as described in 
Figure 5.11. Dot plots obtained using the software FlowJo X. 
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Figure 5.16 – Expression of CD38 and CD19 of cell within the CLL cell gate. 
CD19 and CD38 dot plot of patient samples 4665 and 6984, incubated under the conditions described in 
Figure 5.11. Cells present in these dot plots were gated previously in the “CLL cell” gate as described in 
Figure 5.11. Dot plots obtained using the software FlowJo X. 
 

CD69 expression 
  CD40L 
 NTL Untreated 5 µM Bay 11-7082 

Sa
m

pl
e 

46
65

 

   

Sa
m

pl
e 

69
84

 

   

Figure 5.17 – Expression of CD69 and CD19 of cell within the CLL cell gate. 
CD19 and CD69 dot plot of patient samples 4665 and 6984, incubated under the conditions described in 
Figure 5.11. Cells present in these dot plots were gated previously in the “CLL cell” gate as described in 
Figure 5.11. Dot plots obtained using the software FlowJo X. 
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Figure 5.18 - Expression of CD25 on primary CLL cells pre-treated with BAY 11-7082, followed by 
co-culture with NTL and CD40L cells. 
Primary CLL were incubated in liquid culture without any treatment or with 5 µM of BAY 11-7082 for a 
period of 1 hour. Cells were harvested and transferred onto co-culture with NTL or CD40L for a period of 
24 hours. Cells were then harvested, washed and incubated with anti-CD25 antibody (560225, BD 
Pharmingen). The gating strategy used is presented in Figure 5.11. Data from 17 patient samples, 
presented as MFI values for each individual sample, plus mean and +/- SD. Statistical analysis was 
performed using GraphPad Prism 6 software. Repeated-measures one-way ANOVA was applied followed 
by a multiple-comparisons test. * - represents the level of statistical significance. 
 

 

 
Figure 5.19 - Expression of CD49d on primary CLL cells pre-treated with BAY 11-7082, followed by 
co-culture with NTL and CD40L cells. 
Primary CLL were cultured under the conditions described in Figure 5.12. Prior to flow cytometry, cells 
were incubated with anti-CD49d antibody (MCA2503F, AbD Serotec). The gating strategy used is 
presented in Figure 5.11. Data from 17 patient samples, presented as MFI values for each individual 
sample, plus mean and +/- SD. Statistical analysis was performed using GraphPad Prism 6 software. 
Repeated-measures one-way ANOVA was applied followed by a multiple-comparisons test. * - represents 
the level of statistical significance. 
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Figure 5.20 - Expression of CD38 on primary CLL cells pre-treated with BAY 11-7082, followed by 
co-culture with NTL and CD40L cells. 
Primary CLL were cultured under the conditions described in Figure 5.12. Prior to flow cytometry, cells 
were incubated with anti-CD38 antibody (MHCD3804, Invitrogen). The gating strategy used is presented in 
Figure 5.11. Data from 17 patient samples, presented as MFI values for each individual sample, plus mean 
and +/- SD. Statistical analysis was performed using GraphPad Prism 6 software. Repeated-measures 
one-way ANOVA was applied followed by a multiple-comparisons test. No statistically significant 
differences were found between the different conditions tested. 
 

 

 

Figure 5.21 - Expression of CD69 on primary CLL cells pre-treated with BAY 11-7082, followed by 
co-culture with NTL and CD40L cells. 
Primary CLL were cultured under the conditions described in Figure 5.12. Prior to flow cytometry, cells 
were incubated with anti-CD69 antibody (310912, Biolegend). The gating strategy used is presented in 
Figure 5.11. Data from 17 patient samples, presented as MFI values for each individual sample, plus mean 
and +/- SD. Statistical analysis was performed using GraphPad Prism 6 software. Repeated-measures 
one-way ANOVA was applied followed by a multiple-comparisons test. * - represents the level of statistical 
significance. 
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5.4.3. Assessment of CD69, a cell surface markers regulated by NF-κB in 
primary CLL cells pre-treated with TP10-p50i 

To assess the effects of TP10-p50i on CD69 expression, primary CLL cells were 
treated with 0, 2.5, 5 and 10 µM of TP10-p50i for 1 hour. Cells were harvested and 

cultured with CD40L cells for a period of 24 hours. Cells were collected and incubated 
with the multi-colour flow cytometry antibody panel described previously (section 5.4.2). 

Data from two patients is shown in Figure 5.22. A summary of the expression of CD69 
on CLL cells of 17 patient samples can be found in Figure 5.23. The expression of 

CD25, CD49d and CD38 was also measured in these experiments and the results of 
this analysis can be found in Appendix III. Figure 5.23 shows that MFI levels were not 

altered following treatment with 2.5, 5 or 10 µM of the TP10-p50i peptide.  
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Figure 5.22 - Expression of CD69 and CD19 of cell within the CLL cell gate for cells treated with 
TP10-p50i and untreated. 
CD19 and CD69 dot plot of patient samples 4665 and 6984, incubated under the conditions described in 
Figure 5.11. Cells present in these dot plots were gated previously in the “CLL cell” gate as described in 
Figure 5.11. Dot plots obtained using the software FlowJo X. 
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Figure 5.23 - Expression of CD69 on primary CLL cells pre-treated with TP10-p50i, followed by co-
culture with NTL and CD40L cells. 
Primary CLL were incubated in liquid culture without any treatment or with 2.5, 5 or 10 µM of TP10-p50i for 
a period of 1 hour. Cells were harvested and transferred onto co-culture with CD40L for a period of 24 
hours. Cells were then harvested, washed and incubated with anti-CD69 antibody (310912, Biolegend). 
The gating strategy used is presented in Figure 5.11. Data from 17 patient samples, presented as MFI 
values for each individual sample, plus mean and +/- SD. Statistical analysis was performed using 
GraphPad Prism 6 software. Repeated-measures one-way ANOVA was applied followed by a multiple-
comparisons test. No statistically significant differences were found between the different conditions 
tested. 
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5.5. Discussion & Conclusion 

In the previous Chapter, it was demonstrated that TP10-p50i and TP10-p65i induced 

apoptotic cell death of primary CLL cells in vitro. The aim of this chapter was to 
investigate the effect of these peptides on NF-κB. NF-κB expression and activation 

were assessed in three different ways: nuclear translocation of NF-κB subunits p50 
and p65; DNA binding activity of NF-κB; and the expression of cell surface markers 

regulated by NF-κB. 

The first key finding from this chapter was that TP10-p50i did not inhibit the 

translocation of NF-κB in all CLL patient samples. This conclusion reflects the variable 
effects of the peptide on NF-κB. TP10-p50i was capable of reducing translocation of 

p50 into the nucleus and inhibiting NF-κB DNA binding activity in some of the patient 

samples tested but other samples showed little or no sensitivity to the peptide. This 
differential responsiveness was not dependent on basal or inducible levels of NF-κB. 

Considering that no variation was observed on viability in Chapter 4, these data 
suggest that apoptosis caused by TP10-p50i may not be directly connected to NF-κB 

inhibition. This was supported by the lack of effect on the expression of CD69, a cell 
surface marker with a rapid turnover that is susceptible to BAY 11-7082, a well-studied 

NF-κB inhibitor. Therefore, even if TP10-p50i has an effect on NF-κB in some samples, 
it is not sufficient to alter the expression of proteins transcriptionally regulated by NF-

κB. 

A second key finding of this chapter, was the restoring effects of CD40L co-culture on 
viability of cells treated with TP10-p50i. As seen in the previous Chapter (section 4.2), 

culture with a concentration of approximately 5 µM of TP10-p50i was sufficient to 
induce apoptosis in 50% of primary CLL cells. However, if primary CLL cells were 

transferred onto co-culture for a period of 24 hours, the percentage of viable cells was 
restored to levels similar to untreated cultures. CD40-CD40L engagement has been 

previously shown to protect cells from apoptotic stimuli (Hayden et al., 2009; 2010; 
Kater et al., 2004; Vogler et al., 2009). In fact, it is clear when comparing viability 

between cells untreated co-cultured with NTL cells (67.5%) and cells untreated co-
cultured with CD40L cells (76.1%), that CD40-CD40L engagement provides an 

environment that decreases apoptosis of primary CLL cells. A few studies have also 

shown that CLL cells are protected from drug-induced apoptosis by co-culture with 
CD40L (Hayden et al., 2009; 2010; Kater et al., 2004; Kitada et al., 1999; Vogler et al., 

2009). The viability data presented in this Chapter suggests that CD40L co-culture 
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alters the effects caused by TP10-p50i. It is possible that TP10-p50i disturbs the 
cellular membrane in a way that is further aggravated by the processing of the sample 

for Annexin-V/PI measurement (i.e. centrifugation), leading to apoptosis induction and 
the reduced levels of viability presented in Chapter 4. In section 5.4.3, an extra step 

was introduced that included 24 hours of CD40L-expressing co-culture. It is possible 
that during this 24-hour period the cells are capable of reversing the effects of TP10-

p50i on the cellular membrane. This process may or may not be directly related to 
CD40L stimulation. 

Another key finding was the potential of using cell surface markers, as an indirect 
measure of NF-κB inhibition. As part of this Chapter, an analysis of the expression of 

CD25, CD49d, CD38 and CD69 in 17 CLL patient samples was performed. By treating 

primary CLL cells with 5 µM of BAY 11-7082, and then co-culturing them for a period of 
24 hours with CD40L-expressing fibroblasts, it was possible to determine the relative 

importance of NF-κB activation and inhibition on the expression of the four proteins.  

Of the four cell surface markers investigated, only CD69 showed increased expression 

following co-culture with CD40L and down-regulation when pre-treated with BAY 11-
7082 within 24 hours. In keeping with these findings, previous studies have shown 

increased expression of CD69 following co-culture with CD40L-expressing fibroblasts 
(Hamilton et al., 2012; Kitada et al., 1999). CLL cells pre-treated with BAY 11-7082 

showed the down regulation of CD69 expression to levels lower than unstimulated 
untreated cells. A rapid down regulation of CD69 expression has also been showed in 

invariant natural killer T-cells (iNKT) treated with 1 µM of BAY 11-7082 for a period of 

30 minutes, followed by culture with an activation stimuli for 24 hours (Lin et al., 2013). 
In fact, transcriptional down regulation of CD69 by treatment with BAY 11-7082 for one 

hour, has been shown previously in other cell types (Mori et al., 2011; Ottosson-
Wadlund et al., 2014).  This demonstrates that CD69 can be used as a readout to 

study NF-κB inhibition, due to its rapid expression and dependence on NF-κB activity. 
Furthermore, expression of CD69 proved to be valuable in showing that apoptosis 

caused by TP10-p50i was not linked to NF-κB inhibition, as it did not alter CD69 
expression. 

Similarly to CD69, CD25 also showed increased expression following co-culture with 

CD40L. The use of anti-CD40 antibodies has been previously described to up-regulate 
expression of CD25 in human tonsillar B-cells in a 24-hour culture system (Burlinson et 

al., 1996; 1995). A similar increase in CD25 expression has also been reported in CLL 
cells cultured with soluble CD40 for a period of 4 days (Ghamlouch et al., 2014). 
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However, both culture systems included soluble cytokines such as IL-4, which has 
been shown to up-regulate CD25 on its own (Burlinson et al., 1995; Butcher et al., 

1990; Ghamlouch et al., 2014). Data found in section 5.4.2 refers to cells cultured 
solely with CD40L-expressing fibroblasts, demonstrating that CD40 engagement is 

sufficient to induce an increased CD25 expression. DNA-binding studies showed that 
the CD25 gene possesses a κB site that acts as a promoter for transcription, so it is 

probable that NF-κB activation by CD40 engagement is responsible for the up-
regulation of this cell surface marker (Ballard et al., 1988; Lowenthal et al., 1989). 

However, BAY 11-7082, an NF-κB inhibitor, had no effect on the expression of this 
marker in the majority of the CLL samples analysed. A study performed by Lee and 

colleagues, showed that down-regulation of CD25 in iNKT by treatment with 10 µM 

BAY 11-7082 occurred within 3 hours (Lee et al., 2009). This indicates that a longer 
exposure to this compound, and possibly higher concentrations, would have been 

required to see an effect on this cell marker. It is very likely that no effects would be 
seen on CD25 expression in CLL cells treated with TP10-p50i, as BAY 11-7082 is a 

stronger and more consistent inhibitor of NF-κB. 

The other two cell surface markers tested were CD38 and CD49d. However, 

expression of these markers was not altered upon stimulation with CD40L for a period 
of 24 hours. Although their expression has been shown to be altered by co-culture with 

CD40L-expressing fibroblasts (Hamilton et al., 2012), in the study presented in section 
5.4.2, up-regulation seems to require longer exposure to CD40L stimulation than 24 

hours. A direct measure of gene expression, for example qPCR (quantitative 

polymerase chain reaction) could be used to determine transcriptional regulation of the 
cell surface markers with longer turnover periods, such as CD25, CD49d and CD38 

(Buggins et al., 2010). 

In conclusion, the work described in this Chapter has investigated the effects of TP10-

p50i on three distinct measures of NF-κB activity. The results generated and discussed 
here, do not support the hypothesis that CLL cell apoptosis caused by TP10-p50i is a 

direct consequence of NF-κB inhibition. 
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Chapter 6 - General discussion and conclusion 

 

Key Findings 

The following key findings were demonstrated in this thesis: 

1) All of the five CPPs studied entered primary CLL cells. Cationic peptides, in 

particular FFR8, showed the highest level of cell entry. Based on confocal 
microscopic evidence of intracellular distribution, the mechanisms of entry of 

the CPPs were distinct. For example, TP10 appeared to be taken up via the 
endocytic pathway but over time it demonstrated the ability to escape vesicles 

and allowed release of fluorescence within the cytosol.  

2) The NF-κB targeting peptides TP10-p50i and TP10-p65i induced the death of 
primary CLL cells, primary non-malignant lymphocytes and the Jurkat T-cell line 

at concentrations lower than 10 µM. 
3) Mechanistically, TP10-p50i and TP10-p65i were capable of inhibiting NF-κB in 

some CLL samples but not others. This appeared to be independent of basal or 
inducible NF-κB expression levels. 

4) The apoptotic cell death induced by TP10-p50i and TP10-p65i appeared to be 
independent of NF-κB inhibition. 

5) The reduced NF-κB binding activity did not translate into a decrease in 
expression of CD69, a protein induced by CD40L stimulation and inhibited by a 

pharmacological inhibitor of NF-κB (BAY 11-7082).  

 

Uptake comparison studies 

The initial step of this project was a comparative study of five CPPs, focusing on their 

uptake and intracellular distribution in primary CLL cells. To achieve this, the five CPPs 
were tagged with the fluorochrome Alexa488, and analysed by flow cytometry and 

confocal microscopy. The use of two techniques to assess CPP uptake provided two 

layers of information: quantitative evaluation of the uptake of each of the CPPs and an 
assessment of their intracellular localisation. The combined used of these two 

techniques overcame the fact that flow cytometry does not allow distinction between 
membrane-bound and internalised peptide. Whilst confocal microscopy provided 
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valuable information regarding the cellular localisation of the peptide, it did not allow 
discrimination between intact or degraded peptide. However, since the fluorescent 

cargo was successfully delivered to cells, the unknown condition of the peptide within 
the cell was not detrimental to the study and did not receive further attention. 

The most interesting finding of the comparison studies was the large difference in 
uptake when small changes in the CPP sequence were made. As is now widely known, 

altering the amino acid sequence of the peptide can have either a positive or negative 
impact on uptake. As seen by the data presented in Chapter 3, the addition of 

phenylalanine residues to the N-terminal of R8 increased the ability of the peptide to be 
taken up by cells. The use of a fluorochrome or other cargo can therefore also have a 

great impact, not only on the uptake pattern but also on entry route, as seen in other 

studies (Fischer et al., 2002). Performing comparative studies to aid the choice of CPP 
to carry a different a cargo may therefore not seem useful as the inhibiting CPPs have 

the potential to behave in a different manner. However, it is not possible to predict with 
certainty how they will behave under specific conditions and this is where comparison 

studies can provide an insight. The obvious choice of CPP to link with an NF-κB 
inhibitory peptide cargo after the flow cytometry analysis of fluorescence was FFR8. 

This CPP was able to deliver the highest amounts of fluorescence into the cells and so 
appeared to be taken up most readily by CLL cells. However, confocal microscopy 

revealed TP10’s most interesting characteristic: the capacity to overcome vesicle 
entrapment over time. This offered the potential for a slower, but more sustained, 

release of NF-κB inhibitory peptide, which may have therapeutic benefits. With the two 

best CPPs chosen, the next step was to determine if the novel CPPs were capable of 
inducing apoptosis (Chapter 4). Surprisingly, the most effective CPP to deliver 

fluorescence to CLL cells was not the most effective at inducing a pro-apoptotic 
response. This, however, does not invalidate the results obtained in the comparative 

studies. Instead, it highlighted the effects produced by the cargo on the uptake of a 
peptide. 

 

The effects of TP10-p50 on primary CLL cells  

Two novel CPPs were developed, TP10-p50i and TP10-p65i, which were capable of 

inducing the death of CLL cells at concentrations lower than 10 µM. The hypothesis 
was that these would cause CLL cell death by targeting the NF-κB pathway. Putting the 



 165 
 

 

work of this thesis together suggests that TP10-p50i causes cell death without targeting 
NF-κB. This conclusion is based on the following results: 

a. The cytotoxic effects were observed following one hour of peptide treatment. 
b. TP10-p50i caused the death of primary B and T-cells which lack detectable NF-

κB activity 
c. Variability in the effects of TP10p50i on NF-κB DNA binding was observed, 

while variation in susceptibility to cell death was not.  
d. The expression of CD69 was not altered, suggesting that TP10-p50i could not 

effectively to modulate NF-κB. 

It seems likely that cell death caused by TP10-p50i, and possibly by TP10-p65i, was 

caused by peptide-mediated membrane disruption. An indication of this was the ability 

of CLL cells to recover from the exposure to TP10-p50i when cultured with CD40L-
expressing fibroblasts (section 5.4.2). Although co-culture with CD40L has been shown 

to protect CLL cells from apoptosis when cultured in vitro, it was not capable of 
rescuing dead cells or cells in an advanced apoptotic state. It is known that as a result 

of membrane interactions between the CPP and the cellular membrane, non-specific 
cytotoxicity can be observed (Saar et al., 2005). It is possible that culture with TP10-

p50i induces conformation changes in the membrane as the amino acids of the peptide 
interact with the phospholipid bilayer. These changes might not be enough to induce 

non-specific cell death, but enough to destabilise the membrane. If cells are removed 
from culture and processed for apoptotic assays, such as Annexin-V that includes a 

centrifugation step, the membrane changes caused by TP10-p50i plus the stress 

caused by high speed centrifugation can possibly induce apoptosis. The nurturing 
environment provided by co-culture with CD40L-expressing fibroblasts could reverse 

the membrane disturbing effects of TP10-p50i and allow CLL cells to recover, an effect 
that may or may not be dependent on CD40 signalling.  

The combination of TP10 and p50i seemed to cause cell death by membrane 
disruption, an effect that was not evident with TP10-Alex488. A similar effect has 

previously been shown with the use of R8 and the pro-apoptotic domain (PAD) peptide, 
where the combination of the two sequences generated a peptide with non-specific 

cytotoxicity (Watkins et al., 2009a). As additional experiments, it would be interesting to 

measure apoptosis levels during the course of co-culture with NTL and CD40L-
expressing fibroblasts. This would help to understand if the cause of reduced viability 

was due to co-culture specifically with CD40L, and it would provide insight into how 
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long CLL cells require to overcome the membrane destabilisation induced by TP10-
p50i.  

 

NF-κB activation by CD40L and CpG  

An interesting finding of this project was the response of CLL cells, regarding NF-κB 
activation, to stimuli such as CD40L and CpG. Regardless of basal levels of NF-κB 

activity, culture with CpG or co-culture with CD40L-expressing fibroblasts, invariably 
resulted in increased NF-κB activity. Previous work has shown that NF-κB activation is 

closely linked to the microenvironment stimuli. Included in these stimuli are interactions 
with stromal cells (Edelmann et al., 2008), activation of the TNF receptor family 

members (Endo et al., 2007; Munzert et al., 2002), activation of the BCR (Caligaris-

Cappio et al., 2009), activation of the CD40 receptor (Furman et al., 2000) and 
activation of TLRs (Arvaniti et al., 2011; Caligaris-Cappio et al., 2009). The work 

presented here demonstrated that stimulation with CpG or CD40L for a period of one 
hour was sufficient to induce a clear increase in NF-κB binding activity. This 

demonstrated that although heterogeneous basal NF-κB expression was commonly 
observed, stimulation with CD40L or CpG can consistently increase NF-κB activity in 

CLL cells. 

 

Choosing adequate CPP controls 

The use of appropriate controls is a vital part of every experiment, as these are 

designed to minimise the effects of variables other then the test variable. Although in 

the majority of experiments choosing a control is a straight forward task, in the case of 
CPPs this requires careful thought and possibly a few extra experiments until the right 

control can be determined. As this work has shown in Chapter 3, altering the sequence 
of a CPP can have a strong impact on uptake. Ideally, the control peptide would have 

the same sequence as the parent peptide, with the exception of a functional residue or 
segment that would be mutated or inexistent. In the case of TP10-p50i, the p50i portion 

contained the NLS and therefore was the functional segment of the CPP. Using TP10 
on its own would then be the ideal control. Due to availability of TP10-Alexa488, this 

CPP was used as a control as seen in section 4.3. This peptide proved to be a good 

control, as it did not cause cell death up to a concentration of 50 µM. In the case of the 
FFR8 peptides, the FFR8-Alexa488 proved to be more toxic to CLL cells than FFR8-
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p50i and FFR8-p65i. This showed that one type of control might be perfect to validate 
the results of one CPP but it might not be suitable for others. Considering the 

knowledge obtained in the studies presented in Chapter 5, cell death induced by TP10-
p50i was non-specific, indicating that the combination of TP10 with the p50i sequence 

was lethal to CLL cells. It would be interesting to test a variety of CPPs with the same 
sequence as TP10-p50i, each with a mutation in a different residue of the p50i 

sequence. This would validate the data presented in Chapter 5, as the most likely 
outcome of this experiment would be that all control CPPs would cause non-specific 

cell death. However, such results are not possible to predict. In fact, it could potentially 
result in the discovery of a new CPP with better properties than the parent peptide, as 

seen in other studies (El-Andaloussi et al., 2007). 

 

The future of NF-κB targeting 

Constitutive activation of the NF-κB pathway continues to be a characteristic of CLL. 
And as a regulator of survival and proliferation pathways, it remains an attractive target 

for anti-tumoural therapy. Even though NF-κB expression in CLL is heterogeneous, this 
work confirmed that CLL cells respond well to environment stimuli such as CD40L and 

CpG, inducing increased NF-κB activity. This reinforced the importance of this pathway 
in the survival of CLL cells.  

However, the landscape in CLL treatment has recently changed as Gazyva, a third 
generation anti-CD20 monoclonal antibodies (also known as GA101 or Obinutuzumab), 

has been approved by the FDA to be used as therapy in previously untreated CLL (F. 

Hoffmann-La Roche Ltd, 2013). Other agents, such as Ibrutinib (Btk inhibitor) and 

Idelalisib (PI3Kδ inhibitor), have also entered clinical trials and shown promising results 

in the treatment of CLL (Byrd et al., 2013; Furman et al., 2014). Therefore, it is unlikely 
that a new NF-κB inhibitor will be used to target CLL. Nevertheless, NF-κB plays an 

important role in other B-cell malignancies, such as multiple myeloma (Demchenko & 
Kuehl, 2010). In such malignancies, a NF-κB inhibitor could be an efficient therapeutic 

approach. 

The potential of using CPPs as delivery vectors of a cargo targeting NF-κB should not 
be overlooked, as it remains a very attractive tool for targeted therapy. Although the 

CPPs developed in this work did not directly inhibited NF-κB, there are others that have 
succeeded (Lin et al., 1995; Takada et al., 2004; Wang et al., 2011). However, few of 
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these inhibitors present NF-κB specificity. Therefore, future work should focus on the 
development of NF-κB inhibiting CPPs with improved efficacy and specificity. In the 

context of CLL and other B-cell malignancies, it would be important to determine what 
stimuli contribute to the increased activity of NF-κB. Further understanding could lead 

to the development of NF-κB inhibitors with increased specificity and improve the 
therapeutic options. As NF-κB activation contributes to resistance to chemotherapy in 

some malignancies, the combination of CPPs targeting the NF-κB pathway with other 
agents presents as a promising therapeutic tool. 

As for CPP therapeutics beyond CLL and NF-κB, the BMI BH3 peptide that targets the 
anti-apoptotic protein Bcl-2 in acute myeloid leukaemia, has shown promising results 

(LaBelle et al., 2012). Beyond cancer treatment, a few CPPs have entered clinical 

trials. AZX100, a smooth muscle relaxer (Flynn et al., 2010); RT001 and RT002, a 
topical and injectable formulation of Botulinum Toxin (Revance Therapeutics, n.d.); 

KAI-9803, a protein kinase C inhibitor (Miyaji et al., 2011); and XG-102, a c-Jun N-
terminal kinase (JNK) inhibitor (Reinecke et al., 2012) are a few examples. These 

demonstrate the potential of CPPs as vectors of therapeutic agents. 
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Appendix I  

A primary study was performed were conditions applied in Section 4.2 were 
reproduced. An extra step was added that included co-culture of CLL cells pre-treated 

with TP10-p50i for one hour. CLL cells were kept in co-culture for one hour, and cell 
surface markers CD25, CD49d, CD38 and CD69 were measured by flow cytometry. 

Figures I to IV show the data collected for six patient samples. Based on the data 
presented here, it was determined that expression of the majority of the cell surface 

markers wasn’t significantly altered after one hour of co-culture. In subsequent 
experiments the co-culture period was extended to 24 hours. 

 

 

CD25 

CD40L CpG 

 

 

 

Figure XXIV – CD25 MFI of primary CLL cells pre-treated with TP10-p50i and Bay, and 
subsequently stimulated with CD40L and CpG. 
Primary CLL cells were pre-treated with 0, 1, 2.5, 5 µM of TP10-p50i and 5 µM of 
Bay for one hour. Cells were harvested and one set of cells was co-cultured with 

CD40L-expressing fibroblasts or NTL cells, the other was cultured with 500 nM of 
CpG for one hour. Cells were harvested and analysed by flow cytometry. Data is 

presented separately for each sample tested. Total of 3 patient samples. 
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Figure XXV – CD49d MFI of primary CLL cells pre-treated with TP10-p50i and Bay, and 
subsequently stimulated with CD40L and CpG. 
Primary CLL cells were pre-treated with 0, 1, 2.5, 5 µM of TP10-p50i and 5 µM of 

Bay for one hour. Cells were harvested and one set of cells was co-cultured with 
CD40L-expressing fibroblasts or NTL cells, the other was cultured with 500 nM of 

CpG for one hour. Cells were harvested and analysed by flow cytometry. Data is 
presented separately for each sample tested. Total of 3 patient samples. 
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Figure XXVI - CD38 MFI of primary CLL cells pre-treated with TP10-p50i and Bay, and 
subsequently stimulated with CD40L and CpG. 
Primary CLL cells were pre-treated with 0, 1, 2.5, 5 µM of TP10-p50i and 5 µM of 
Bay for one hour. Cells were harvested and one set of cells was co-cultured with 

CD40L-expressing fibroblasts or NTL cells, the other was cultured with 500 nM of 
CpG for one hour. Cells were harvested and analysed by flow cytometry. Data is 

presented separately for each sample tested. Total of 5 patient samples tested, 

where one was used in duplicate and stimulated with CD40L and CpG, separately. 
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Figure XXVII – CD69 MFI of primary CLL cells pre-treated with TP10-p50i and Bay, and 
subsequently stimulated with CD40L and CpG. 
Primary CLL cells were pre-treated with 0, 1, 2.5, 5 µM of TP10-p50i and 5 µM of 
Bay for one hour. Cells were harvested and one set of cells was co-cultured with 

CD40L-expressing fibroblasts or NTL cells, the other was cultured with 500 nM of 
CpG for one hour. Cells were harvested and analysed by flow cytometry. Data is 

presented separately for each sample tested. Total of 3 patient samples. 
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Appendix II  

To further understand the increase in CD25 expression caused by pre-treatment with 5 
µM of Bay 11-7082, dot plots of CD25 and CD19 expression are presented in the 

following Figures. Four patient samples were selected, that would represent all the 
variations found in CD25 expression (i.e. increased, decreased or maintained 

expression of CD25 following pre-treatment with Bay 11-7082). 

In the four samples shown, cells pre-treated with Bay 11-7082 can be divided into two 

populations, whilst cells incubated in other conditions only present one population. The 
largest population in the plot of cell pre-treated with Bay 11-7082, corresponds to CD25 

levels similar to the population found in the plot of untreated and co-cultured with NTL 

cells. However, the smallest population expresses CD25 at levels higher that the 
population found in untreated and co-cultured with CD40L cells. This indicates that Bay 

11-7082 actually induces upregulation of CD25 in a small number of cells. Determining 
the cause for this upregulation is unfortunately beyond the scope of this project. 
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Figure XXVIII - Expression of CD25 on primary CLL cells pre-treated with Bay 11-7082, followed by 
co-culture with NTL and CD40L cells. 
Primary CLL were incubated in liquid culture without any treatment or with 5 µM of Bay 

11-7082 for a period of 1 hour. Cells were harvested and transferred onto co-culture 

with NTL or CD40L for a period of 24 hours. Cells were then harvested, washed and 
incubated with anti-CD25 antibody (560225, BD Pharmogen). The gating strategy used 

is presented in Figure 5.11. Data from 17 patient samples, presented as MFI values for 
each individual sample, plus mean and +/- SD. Statistical analysis was performed using 

the software GraphPad Prism 6. Repeated-measures one-way ANOVA was applied 
followed by a multiple-comparisons test. * - represents the level of statistical 

significance. 
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Appendix III  

Expression of CD25, CD49d and CD38, following co-culture with CD40L and pre-
treatment with TP10-p50i 

To assess the effects of TP10-p50i in cell surface markers regulated by NF-κB, primary 
CLL cells were treated with 0, 2.5, 5 and 10 µM of TP10-p50i for 1 hour. Cells were 

harvested and cultured with CD40L cells for a period of 24 hours. Cells were harvested 
and incubated with anti-CD19, -CD5, -CD25, -CD49d, -CD38 and -CD69 antibodies. 

Cells were analysed by flow cytometry and a summary of the expression of CD69 on 
CLL cells of 17 patient samples can be found in Figure 5.16 (Chapter 5). Data for the 

other three cell surface markers analysed is presented here in Figures I to III. Two 

additional incubation conditions were tested, pre-treatment with BAY 11-7082 followed 
by CD40L co-culture and liquid culture of CLL cells without any treatment followed by 

co-culture with NTL cells.  

 

 

 
 

Figure XXXI - Expression of CD25 on primary CLL cells pre-treated with BAY 11-7082, followed by 
co-culture with NTL and CD40L cells. 
Primary CLL were cultured under the conditions described in Figure 5.16. Prior to flow cytometry, cells 
were incubated with anti-CD25 antibody (560225, BD Pharmogen). The gating strategy used is presented 
in Figure 5.11. Data from 17 patient samples, presented as MFI values for each individual sample, plus 
mean and +/- SD. Statistical analysis was performed using the software GraphPad Prism 6. Repeated-
measures one-way ANOVA was applied followed by a multiple-comparisons test. No statistically significant 
differences were found between the different conditions tested. 
 

0 2.5 5 10
0

250

500

750

1,000

1,250

1,500

TP10-p50i (µM) + CD40L

Fl
uo

re
sc

en
ce

 (M
FI

)

CD25



 213 
 

 

 

Figure XXXII - Expression of CD49d on primary CLL cells pre-treated with BAY 11-7082, followed 
by co-culture with NTL and CD40L cells. 
Primary CLL were cultured under the conditions described in Figure 5.16. Prior to flow cytometry, cells 
were incubated with anti-CD49d antibody (MCA2503F, AbD Serotec). The gating strategy used is 
presented in Figure 5.11. Data from 17 patient samples, presented as MFI values for each individual 
sample, plus mean and +/- SD. Statistical analysis was performed using the software GraphPad Prism 6. 
Repeated-measures one-way ANOVA was applied followed by a multiple-comparisons test. No statistically 
significant differences were found between the different conditions tested. 
 

 

Figure XXXIII - Expression of CD38 on primary CLL cells pre-treated with BAY 11-7082, followed by 
co-culture with NTL and CD40L cells. 
Primary CLL were cultured under the conditions described in Figure 5.16. Prior to flow cytometry, cells 
were incubated with anti-CD38 antibody (MHCD3804, Invitrogen). The gating strategy used is presented in 
Figure 5.11. Data from 17 patient samples, presented as MFI values for each individual sample, plus mean 
and +/- SD. Statistical analysis was performed using the software GraphPad Prism 6. Repeated-measures 
one-way ANOVA was applied followed by a multiple-comparisons test. No statistically significant 
differences were found between the different conditions tested. 
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