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ABSTRACT

We discuss the influence of gravitational waves (GWs) upon the polarisation of the
Cosmic Microwave Background Radiation (CMBR). We show how to compute the rms
temperature anisotropy and polarisation of the CMBR induced by GWs of arbitrary
wavelength. We find that the ratio of polarisation, I, to anisotropy, A, can be as large
as ~ 40%, but is sensitively dependent upon the GW spectrum and the cosmological
ionisation history. We argue that CMBR polarisation measurements can provide useful
constraints on cosmological models.
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1 INTRODUCTION

The recent discovery by the COBE team of angular fluc-
tuations in the sky temperature of the Cosmic Microwave
Background Radiation (CMBR) is of profound importance
for theories of the origin of galaxies and large-scale struc-
tures in the Universe (Smoot et al. 1992). If the observed
temperature anisotropy is interpreted as being due to fluctu-
ations in the density of the Universe at early times then, to-
gether with measurements of present-day galaxy clustering,
it imposes strong constraints on the primordial fluctuation
spectrum and the nature of and dark matter (Efstathiou et
al. 1992; Taylor & Rowan-Robinson 1992). These constraints
will be further strengthened by measurements of tempera-
ture anisotropy on angular scales smaller than those probed
by COBE (Bond et al. 1991).

Compared to the enormous observational effort that has
been directed at the search for anisotropy in the temperature
of the CMBR on the sky, relatively little attention has been
paid to analogous fluctuations in its polarisation. Atmo-
spheric contributions to the sky temperature at microwave
frequencies are not polarised so it is possible to make mea-
surements of polarisation from the ground. To this extent at
least, the observational task is less problematic than trying
to detect temperature anisotropy (Partridge 1988), though
there are of course other problems of experimental design
(Caderni et al. 1978; Lubin & Smoot 1979; Nanos 1979;
Lubin et al. 1983; Partridge 1988). On the other hand, in
“standard” models of galaxy formation via gravitational in-
stability from primordial adiabatic density inhomogeneities,
the polarisation is expected to be much smaller than the
temperature anisotropy (Kaiser 1983; Bond & Efstathiou
1984; Ng & Ng 1993). There are situations, however, when

the ratio of polarisation to temperature fluctuations can be
non-negligible. Rees (1968) showed that an axisymmetric
anisotropic cosmological expansion should induce a signifi-
cant large-scale polarisation of the CMBR. This work was
subsequently extended (and corrected) by Basko & Polnarev
(1980), who obtained an exact solution to for the polarisa-
tion anisotropy produced in a flat triaxial anisotropic cos-
mological model; see also (Negroponte & Silk 1980; Tolman
& Matzner 1984; Tolman 1985). Polarisation fluctuations
are also induced if there exists a background of tensor per-
turbations in the metric (i.e. gravitational waves, hereafter
GW?’s) at the time of recombination. Indeed, one can regard
the triaxial cosmological model mentioned above (Basko &
Polnarev 1980) as being the superposition of an infinitely—
long wavelength GW on an homogeneous and isotropic back-
ground space—time; the axisymmetric case corresponds to a
scalar perturbation to a homogeneous and isotropic model.
Polnarev (1985) subsequently showed how to calculate the
polarisation anisotropy due to scattering of radiation by
electrons in the presence of a single GW and obtained some
analytic formulae for various limiting cases of gravitational
wavelength and recombination history.

The possible existence of a cosmological (stochastic)
GW background has been discussed for some time (Burke
1975; Grishchuk 1975; Starobinsky 1979; Carr 1980). More
recently it has been realised that inflationary models of
the early Universe produce stochastic GWs with character-
istic spectra (Rubakov et al. 1982; Abbott & Wise 1984;
Starobinsky 1985; Lucchin & Matarrese 1985; Abbott &
Harari 1986; Allen 1988; Sahni 1990). Although these ten-
sor perturbation modes have no influence on the formation
of cosmic structures, they do generate anisotropies in the
CMBR temperature (Sachs & Wolfe 1967; Dautcourt 1969;
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Grishchuk & Zel’dovich 1978; Anile & Motta 1978). This
has led a number of authors recently to produce inflation-
ary models in which a significant fraction of the tempera-
ture anisotropy detected by COBE would be due to (tensor)
GWs rather than (scalar) density perturbations (Davis et al.
1992; Liddle & Lyth 1992; Lidsey & Coles 1992; Lucchin et
al. 1992; Salopek 1992; Crittenden et al. 1993a). If this is
the case then the constraints imposed by COBE upon mod-
els of structure formation are considerably altered. More-
over, there is a possibility that one might be able to use
the ratio of amplitudes of tensor and scalar modes to re-
construct the shape of the effective potential of the scalar
field responsible for driving inflation (Copeland et al. 1993a;
Copeland et al. 1993b). Measurements of the CMBR tem-
perature anisotropy at a single angular scale do not allow
one to discriminate between contributions from scalar and
tensor modes and, although the angular dependence of the
temperature anisotropy is different in the scalar and tensor
cases, there are problems in using information from smaller
angular scales than COBE because of the possibility that
reionisation might mask the behaviour of the primordial
fluctuations (Bond et al. 1991).

In this paper we shall argue that CMBR polarisation
measurements can supply important information about the
existence of a significant cosmological GW wave background
and also about the ionisation history of the Universe. We
shall concentrate on explaining the basic physics behind the
generation of polarisation; computations of detailed statisti-
cal properties will be deferred to a later paper. Throughout
this paper we shall assume that the background cosmology
is described by a flat metric:

ds® = —dt* + a(t)*dx* = a(n)? (fan + dx2) , (1)

where t is cosmological proper time, a is the scale factor
and 7 is conformal time (dn = dt/a(t)); the x are comoving
coordinates; the speed of light is unity.

2 RADIATIVE TRANSFER WITH GWS

The essence of our problem is to calculate the effect of grav-
itational radiation upon the transfer of electromagnetic ra-
diation through the period of hydrogen recombination and
photon decoupling. To proceed we therefore need to con-
sider the effect of Thomson-scattering upon the polarisation
of electromagnetic radiation. An unpolarised beam of radia-
tion picks up linear polarisation during Thomson scattering;
the maximum polarisation is 100 % for radiation scattered
perpendicular to the incident beam. If the incoming radia-
tion is isotropic in the rest frame of the scattering particle,
the scattered radiation is unpolarised. The same is true if the
radiation has a dipole anisotropy. If there is a quadrupole
anisotropy, however, there should be a net polarisation of the
scattered radiation. Such a quadrupole can be caused by a
density perturbation or, as we shall investigate in this paper,
a gravitational wave. We adopt the formalism suggested by
(Chandrasekhar 1960) and construct a vector n with compo-
nents n,, n; and n, related to the usual Stokes parameters.
Here n,+n; = n, the total photon occupation number. (The
polarisation tensor of the radiation, m;;, has off-diagonal el-
ements equal to n, /2 and diagonal elements equal to n; and
n, respectively.) In the presence of a single gravitational

wave, the components of n are functions of: (i) conformal
time 7; (ii) comoving spatial coordinates x; (iii) photon fre-
quency v; (iv) the polar angle, § = cos™* p, between § (a
unit vector in the direction of photon propagation) and k (a
unit vector in along the GW); (v) the azimuthal angle, ¢,
between the projection of q onto a plane perpendicular to k
and a unit vector perpendicular to k derived from the GW
polarisation tensor (Polnarev 1985).

The equation of radiative transfer can be written in
terms of the vector n, as follows:

on on on Ov
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or is the usual Thomson scattering cross-section, N, is
the comoving number-density of free electrons and P is
the scattering matrix which is described by (Chandrasekhar
1960), and is given explicitly in terms of these variables by
(Polnarev 1985). The important term in this context is the
effect of the gravitational wave in shifting the photon fre-
quencies via the first term on the right hand side of equation
(2).

If the Universe is flat and filled with pressureless matter
the appropriate linearised Einstein equations admit a solu-
tion for tensor metric perturbations h? which, for a single
wave, can be written in the form:

RS = hel exp[—ik - x + iw(k)n). (4)

The wavenumber k is defined such that the physical wave-
length A = 2ma/k and, because ¢ = 1, we have w(k) = k; €2
is the GW polarisation tensor. The geodesic equation in the
perturbed metric yields

dv v

a9 (1 — e ™ cos 2(;3(% (helk") . (5)
In the unperturbed case (h = 0), the solution to (2) is sim-
ply n = no(1,1,0). To obtain the solution to first order in
h it proves convenient (Basko & Polnarev 1980; Polnarev
1985) to transform to an alternative set of symbolic vec-
tors which reduces (2) to a system of integro-differential
equations which has an exact analytical solution in the
limit & — 0. The procedure for doing this will not be de-
scribed here; see (Polnarev 1985). In terms of new variables

a(n,v, 1), B(n,v,u) and £ = a+ B we obtain
b+lg—ikplf=F (6)
£+ g —ikpl¢ = H, (7)
where ¢ = o7 Nea and

+1
F(n):i—g/ [(1"‘#,2)25—%5 (1_//2)2} il (8)

—1

_C(k) 0 (1 0 sinkn
H(n) = s 877(77377 0 > 9)

Note that we use a different definition of h compared
to Polnarev (1985); C(k) is related to the GW spectrum
(Starobinsky 1985). We shall concentrate in this paper on
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the evaluation of the rms polarisation and anisotropy in-
duced by GWs of a given wavenumber in stochastic super-

position:
+1 1/2
{/ ﬂFu+ﬁfm] ; (10)
1

41 1/2
A = (ADY? = [/ €% (1~ N2)2d#] ~ (11)

M, = <H2>1/2

Before displaying our results, it is useful to re-cap the
analytical results (Polnarev 1985). One can find a solution to
the stationary case with H = H = const. and ¢ = § = const.
Here II; and Ay are of the same order, at least for small
angular scales 8 < (2¢/k)*/2. This solution corresponds to
the case prior to recombination. To go further one can as-
sume an instantaneous recombination such that the station-
ary solution applies until = 7, and thereafter ¢ = 0.
Since there is no more scattering after 7, the polarisation
remains unchanged between 7, and the present epoch. The
anisotropy, however, grows because of the Sachs-Wolfe effect
which does not involve scattering. The ratio of polarisation
to anisotropy is therefore expected to be small in such a sit-
uation. However, in realistic cosmological models, we do not
expect recombination to be instantaneous. If there is an ex-
tended period of ionisation then scattering can, in principle,
generate an interestingly large value of Ilk.

3 RESULTS

The solution of the equations (6)—(9) can be expressed for-
mally as

B\ _ r+ikun T F0) —7(n")—ikun’
(&) Lo () ) W

where the optical depth, 7 = fnl q(n")dn', so that 7 = 0
when n = 1. To find solutions for the present mean square
anisotropy and polarisation, one simply evaluates (10) &
(11) at n = 1. The results can thus be expressed as integrals
over 7:

1 72 (n)e—27(n) r
ity =3 [ a0 [anrane s

1
() =2 [ antte ™ Ry, (1)
0
where F(n) = F(n)e™ ™. The function Fy(n) is given by
n ’
Fo= [ a0 K- ) (15)
0

and F'(n) must be obtained by solving the integral equation

_ . 3q . m_ 1
F= Tge o {/ F(n") K+ (n,n")dn’ — 2Fo(n')dn’}- (16)
0

The function K+ used in these expressions is just

—+1
Ki(n,n) :/ dp (1% p?)* M=), (17)
—1

Performing the integrals over y first allows us to extend the
work of (Polnarev 1985) to arbitrary g and k whilst keeping

Figure 1. Anisotropy as a function of k for different models of
the ionisation history. Models are shown with: 1, = ns, A = Ag
(standard); nr = 2ns, A = Ag; nr = ns, A =505 nr =Ny, A =
100As. A model with no recombination is shown for comparison.

the number of numerical integrations required to a mini-
mum. A convenient parametrisation is ¢(n) = g -x(n)n~*
where x is the fractional ionisation; go =~ 0.14Qh, where h
is the Hubble parameter in units of 100 km s~ Mpc™*. For
small 7, x = 1; we adopt the following flexible illustrative
model for the variation of x through recombination:

Y]
1 2ol n<me+ 3

X =9 xo+ 20280 p 4 S <p<n+A  (18)
Xo n> 1+ A

Here A parametrises the duration of recombination and
Xo is the residual ionisation. The standard picture of re-
combination has 1, = ns ~ 0.026, A = A; ~ 0.05 and
Xo =~ 3 x 107°(Q0/Wh); standard cosmological nucleosyn-
thesis requires 0.010 < Q,h < 0.032 (Olive et al. 1990);
we take Qg to be unity throughout these calculations. The
advantage of the simple model (18) is that it is easy to in-
tegrate and allows us simply to assess the effect upon the
level of polarisation of changes in the parameters xo, A and
1. To reduce the parameter space somewhat, we fix the op-
tical depth at the end of recombination n = 7, + A to be
equal for all the models we consider; the standard value is
7 = 0.07. In this way have only two independent parameters
which we take to be A and 7,. As an extreme example we
also consider the case of no recombination at all, x(n) = 1.

We shall look at IIx and A as functions of k in the fol-
lowing series of figures. In Figure 1 we study the anisotropy
produced as a function of k for different models of the ionisa-
tion history. The GWs all have an arbitrary initial amplitude
independent of k for this and the subsequent figures. The
trend with recombination model is straightforward: the more
extended the period of ionisation, the smaller the anisotropy
produced at large k. This is due to the blurring effect of the
finite width of the last scattering surface. In the extreme
case of no-recombination, there is severe suppression of the
small-scale anisotropy.

Figure 2 shows the polarisation for the same set of
models as Fig. 1. The most important point here is that
the maximum polarisation shows the opposite trend to the
anisotropy: the longer the period of ionisation, the higher is
the peak polarisation. The peak wavelength also increases
as the width of the last scattering surfaces increases: scat-
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Figure 2. As Figure 1, but showing the polarisation as a function
of k for the different models.

tering can occur later, when the horizon size is larger. The
oscillations in polarisation for large k are caused by reso-
nances between the GW wavelength and the width of the
last scattering surface.

Figures 1 and 2 show very clearly the basic physics in
operation during the production of a polarised CMBR. Be-
cause of the arbitrary scaling, however, they do not represent
quantities that can be compared to observation. For this, we
need to look at the ratio of polarisation to anisotropy. This
poses some problems. The ratio IIx/A, would correspond
to the ratio of polarisation to anisotropy observed for a d—
function spectrum. For broader spectra — particularly the
very flat spectra typically predicted in inflation (Rubakov
et al. 1982; Abbott & Wise 1984; Starobinsky 1985; Lucchin
& Matarrese 1985; Abbott & Harari 1986; Allen 1988; Sahni
1990) — a more relevant characterisation would be the ratio
of total polarisation IT = (f(Hi)dk/k)l/2 to total anisotropy

A= (f(Ai)dk/k)l/Q, which would generally be smaller than
I1; / Ak evaluated at a single point. Furthermore, any given
experiment will observe some particular angular scale on
the sky which would correspond to a weighted sum of con-
tributions from all k. To explore systematically the space
of beam-widths and GW spectra is beyond the scope of this
paper; we shall restrict ourselves to showing Il /Ay, for a few
examples to show when this ratio can be large (see Figure
3). The ratio Il /Ay has a maximum value of around 10%
for the standard model, increasing to over 40% for the no
recombination case. Note, however, that the ratio of total
polarisation to total anisotropy (integrated over a flat spec-
trum) is indeed very much smaller than this: II/A ~ 0.3%
for standard recombination and II/A ~ 3.7% for no recom-
bination. Clearly the superposition of GWs with different
wavelengths leads to a large reduction in the observable po-
larisation compared to the § function case.

4 DISCUSSION AND CONCLUSIONS

We have seen that, in certain conditions, a stochastic GW
background can lead to a significant polarisation of the
CMBR. The level of polarisation is strongly dependent upon
the GW spectrum: it is high for a —function, but much lower
for a flat spectrum. Whether the level is high enough to be
observed would depend on the GW spectrum, the ionisation
history and the experimental beamwidth. We shall explore

Figure 3. As Figure 3, but showing the ratio of polarisation to
anisotropy as a function of k for the different models.

this parameter space more systematically in a forthcoming
paper; preliminary analysis suggests that experiments capa-
ble of detecting II/A < 10% would be needed to provide
useful data.

In the inflationary models there will be both scalar and
tensor contributions to both polarisation and anisotropy.
The values we have obtained for the tensor perturbations are
larger than those usually quoted for scalar modes (Kaiser
1983; Bond & Efstathiou 1984; Ng & Ng 1993) on large
scales, but scalar perturbations have means other than the
Sachs—Wolfe effect for inducing anisotropy and polarisation
(e.g. streaming motions and the Silk effect). These mech-
anisms depend sensitively upon the dark matter and nor-
malisation of the density fluctuations, which makes a full
calculation of the contribution to the polarisation from both
modes difficult. Suppose that the total anisotropy A and po-
larisation II includes both scalar and tensor contributions:
A= Ar + As and II = It + IIs. Now if tensor modes con-
tribute a fraction f of the total anisotropy then the overall
ratio of polarisation to anisotropy is just

(3)=7(%).+a-n(3), (19)

(assuming tensor and scalar modes add independently, as
they should in linear theory). Only if f is significant and
the ionisation history is such that (II/A)r is large can one
expect there to be a significant alteration in the overall ratio
of polarisation to anisotropy compared to the standard case.
In the models discussed by Crittenden et al. (1993b) the po-
larisation induced by the tensor modes is usually smaller
than the scalar contribution: at best it is comparable. If
one does not know a priori how much of the anisotropy is
produced by tensor modes, it would be very difficult to use
polarisation measurements to disentangle the contribution
in such models. However, these authors considered only a
small subset of inflationary models. Models can be produced
which yield a much larger value of f than they considered:
it is possible to have f ~ 0.5 without violating constraints
on the fluctuation power spectrum (Davis et al. 1992; Liddle
& Lyth 1992; Lidsey & Coles 1992; Lucchin et al. 1992; Sa-
lopek 1992). We shall give specific predictions for particular
inflationary spectra in a forthcoming paper.

It is worth mentioning, however, that even if the scalar
and tensor contributions to the total polarisation are compa-
rable in terms of their rms values, one might still be able to
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discriminate between them. For a start, the autocorrelation
functions of the temperature pattern (not calculated in this
paper) will be different in the two cases, because the correla-
tion angle is determined by physical length scales which are
different for scalar and tensor modes, as can be seen from
Figs 1 & 2. Recently, Naselsky & Novikov (1993) have argued
that oscillatory features (similar to ‘Sakharov’ oscillations)
in the power spectrum of fluctuations produced by adia-
batic scalar fluctuations could be a powerful cosmological
probe. The detailed spatial distribution of polarisation and
anisotropy could also be a sensitive discriminant. For exam-
ple, the relative positions of ‘hotspots’ of temperature and
polarisation are different in the tensor and scalar case. The
simplest way to characterise this would be to calculate the
cross-correlation between polarisation and anisotropy maps.
We shall return to these ideas in future work.
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