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Figure 2. Continued.

previously reported (O’Sullivan et al., 2013; Fig. S1, Supporting
Information). In summary, sediment temperatures in October
2005 were slightly higher at HY (15◦C) than at AR or BR (∼14◦C),
and VFAs (acetate, lactate and formate) concentrations were
consistently low (<43 μM) at all sediment depths, with the
highest concentrations of VFAs being measured at AR (Fig. S1,
Supporting Information). Rates of methanogenesis (O’Sullivan
et al., 2013) were generally low at BR and AR at all depths an-
alyzed (e.g. 20.8 and 2.3 pmol cm−3 d−1, respectively at 2 cm),
whereas at HY rates were low at the surface 2 cm (2.9 pmol cm−3

d−1) and then increased with depth (e.g. 104 pmol cm−3 d−1 at 30
cm depth), consistent with the high methane concentrations at
HY (Fig. 2c). However, the rates in the study by O’Sullivan et al.
(2013) were 100 to 1000-fold lower than those previously esti-
mated for the Colne Estuary using sediment methane produc-
tion (Purdy et al., 2002; Nedwell, Embley and Purdy 2004), but are
comparable with earlier 14C-tracer experiments at Colne Point
salt marsh (Senior et al., 1982). Previous studies also show that
Colne Estuary sediments decrease in concentration of dissolved
organic nitrogen, ammonium and organic carbon as salinity in-
creases towards the estuary mouth (Dong et al., 2000), ranging
from ∼0.3 to >0.1 mM, ∼1 to 0.05 mM and ∼4 to 1%, respectively
(Thornton et al., 2002; Agedah et al., 2009).

Total prokaryotic cell counts, Bacteria and Archaea 16S
rRNA gene copy numbers

Cell counts (AODC) at all sites decreased with depth and fol-
lowed the global trend (Parkes, Cragg and Wellsbury 2000) for
marine sediments; cell counts at HY (brackish sediment) were
substantially higher (Fig. 2) than BR and AR, possibly due to high
nutrient input at the estuary head (Dong et al., 2000). qPCR of
DNA copy numbers of total prokaryotic 16S rRNA genes (sum of
bacterial and archaeal 16S rRNA gene qPCR counts) were gener-

ally lower (∼5–10 fold) than the AODC (Fig. 2), with the excep-
tion of all surface sediments, which only differed slightly (∼2
fold). However, despite this, at all three sites AODC and prokary-
otic 16S rRNA gene copy number were in good agreement, with
an overall decrease in cell/copy numbers with depth, as well as
higher numbers of prokaryotic 16S rRNA genes being detected
at HY than at BR or AR. Such discrepancies in cell numbers be-
tween qPCR and AODC data have been reported previously and
using a meta-analysis of several data sets Lloyd et al. (2013a)
demonstrated that in sediments qPCRmeasurements are poorly
predicted by total cell counts, even after accounting for vari-
ations in 16S rRNA gene copy number per genome. However,
qPCR measurements were relative to other qPCR data from the
same samples and it was concluded that qPCR was a reliable
relative quantification method (Lloyd et al., 2013a). Similarly, in
our study both archaeal and bacterial 16S rRNA gene copy num-
bers generally decreased with depth, and Bacteriawere the dom-
inant prokaryotic group at all sites and depths (86–99% of total
prokaryotes; Fig. 2).

Despite the apparent bacterial dominance, Archaea consti-
tuted a substantial part of the Colne Estuary sediment commu-
nity. Total archaeal 16S rRNA gene abundance in sediments was
distinctly higher in the low-salinity brackish sediments fromHY
(ranging from 2–8 × 107 16S rRNA gene copies cm−3) than the
high-salinity marine sites at BR (2 × 104–2 × 107 16S rRNA gene
copies cm−3) and AR (4× 106–2× 107 16S rRNA gene copies cm−3;
Fig. 2). However, the proportions of Archaea increased with sed-
iment depth from ∼1% at the sediment surface of all sites to
14.1, 7.5 and 2.3% of total prokaryotes at BR, AR and HY, respec-
tively, suggesting that Archaea at the marine site BR, although
having a lower abundance, were a larger fraction of the prokary-
otic community (Fig. 2). This is consistent with findings reported
for other estuarine and tidal flat sediments (Wilms et al., 2007;
Jiang et al., 2011; Kubo et al., 2012; Xie et al., 2014).
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Archaea diversity in Colne Estuary sediments

Archaeal 16S rRNA gene diversity assessed by PCR cloning
Surface sediment samples at 2 cm depth (BR2, AR2 and HY2)
were chosen for analysis of archaeal 16S rRNA gene diversity
because they reflect most closely the salinity changes along
the Colne Estuary (Figs 1 and 2). An additional sample at 30
cm was also analyzed from HY30, since this site had clear
depth changes in chemical gradients (sulphate and methane)
with a distinct methanogenic zone (Fig. 2c). Screening of Ar-
chaea 16S rRNA gene libraries by DNA hybridization with probe
P958 (DeLong 1992) revealed that the majority (98–99%) of 1536
clones (384 clones per library) contained 16S rRNA gene inserts
(Table 2). It should be noted that screening with probe P915
alone could have been misleading in that many clones (16–53%)
containing Archaea 16S rRNA genes would not have been de-
tected (Table 2). This highlights potential problems caused by
primer/probe bias when targeting uncultivated lineages of Ar-
chaea in sediment samples (Teske and Sørensen 2008).

Using P958-DNAhybridization as a guide, 50 cloneswere cho-
sen at random from each library, and after exclusion of poor

quality sequences, 39–47 clones from each sediment sample (to-
tal = 176 sequences) were used for estimating archaeal diver-
sity (Figs 3 and 4; Table S1, Supporting Information). The ar-
chaeal sediment community at the high-salinity/high-sulphate
estuary mouth (BR2) was dominated by the ‘marine’ group
I.1a Thaumarchaeota and the candidate phylum ‘Bathyarchaeota’
(MCG), and at the low-salinity/low-sulphate estuary head (HY2)
by methanogenic Euryarchaeota and MCG with fewer Thaumar-
chaeota. The archaeal community at AR2 seemed to reflect its lo-
cation along the River Colne Estuary; having a high frequency
of MCG, slightly lower numbers of Thaumarchaeota and fewer
methanogens. Interestingly, in deeper sediments at HY30, no
Thaumarchaeota-like sequences were found and the archaeal
community was dominated by MCG and methanogenic Eur-
yarchaeota.

Rarefaction curves, coverage estimates and estimators of
species richness (SChao1 and SACE) indicated that the archaeal 16S
rRNA gene libraries for each site were not sampled completely
to capture the total estimated species richness (Table 3; Fig.
S2, Supporting Information). However, all parameters suggest
that the estuary mouth surface sediment site, BR2, has fewer

Table 2. DNA hybridization of Colne Estuary sediment archaeal 16S rRNA gene libraries (n = 384) with Archaea- and methanogen-specific
oligonucleotide probes.

% Clones hybridizing to oligonucleotide probe

16S rRNA gene librarya P915-DIG Archaea P958-DIG Archaea P355-DIG Methanosarcinales/Methanomicrobiales

BR2 47 98 3
AR2 48 98 10
HY2 52 98 20
HY30 84 99 33

aBR2, BR 0–2 cm depth; AR2, AR 0–2 cm depth; HY2, HY 0–2 cm depth; HY30, HY 28–30 cm depth.
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Figure 3. Diversity of archaeal 16S rRNA gene sequences from Colne Estuary sediments derived by PCR cloning (BR2, AR2, HY2 and HY30), V4–V5-tag sequencing (BR2

and AR2) and V6-tag sequencing (HY2). Numbers of clones or reads in each gene library are shown in parentheses.
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 Mississippi River clone NO-10 (GQ906619) 
 Hythe 2cm clone D05-HY2-1 (HG001368) 
Fen soil clone MH1492_4A (EU155991) 
 Ruoergai Plateau wetland clone1PZ1.1 (FJ957949) 
 Hythe 30cm clone E08-HY30-1 (HG001393) (3 clones) 
 Siberian Laptev Sea permafrost clone SMPFLSS56m_9 (FJ982763) 

 Hythe 30cm clone C12-HY30-1 (HG001394) 
 Long Island Sound salt marsh clone SAS_3H10 (FJ655643) 
 Hythe 30cm clone E11-HY30-1 (HG001395) (4 clones) 

 Severn Estuary sediment slurry clone 12CSRZ-A20 (FN424304) 
 Contaminated soil clone ASC40 (AB161339) 

 Sea of Okhotsk sediment clone OHKA13.26 (AB094558) 
 Brightlingsea 2cm clone H09-BR2-2 (HG001325) (2 clones) 
 Pearl River Estuary sediment clone SMTZArch9 (EU681927) 
 Zuari Estuary sediment clone ZES-7 (EF367445) 
 Aarhus Bay sediment clone ArchSMTZ_12G (FR695321) 
 Hythe 2cm clone E09-HY2-1 (HG001369) 
 Severn Estuary sediment slurry clone 12CSRZ-A5 (FN424303) 
 Hythe 2cm clone D02-HY2-1 (HG001370) (3 clones) 
 East Sea sediment clone ED1-3 (EU332112) 

 Hythe 30cm clone C07-HY30-1 (HG001396) (2 clones) 
 Alresford 2cm clone B05-AR2-1 (HG001344) (4 clones) 
 Sea of Okhotsk sediment clone 30H-0S-7 (GU270138) 
 Ulleung Basin sediment clone M2-1Ar03 (HM998444) 
 Brightlingsea 2cm clone A06-BR2-1 (HG001326) (2 clones) 

 Cascadia Margin sediment clone ODP1251A17.13 (AB177274) 
 Brightlingsea 2cm clone H07-BR2-2 (HG001327) 
 Hythe 2cm clone B07-HY2-1 (HG001371) 

 Amsterdam MV sediment clone AMSMV-S1-A36 (FJ649525) 
 Cascadia Margin sediment clone ODP1251A25.1 (AB177279) 

 Mandovi Estuary sediment clone MES-90 (DQ641806) 
 Brightlingsea 2cm clone F03-BR2-1 (HG001328) 
 Limestone rock microbial mat clone LPROCKA51 (FJ902278) 

 Santa Barbara Basin sediment clone A050D04 (FJ455926) 
 Gulf of Mexico sediment clone IODP1320A2.29 (AB433019) 
 Pearl River Estuary sediment clone MidArch27 (EF680211) 
 Brightlingsea 2cm clone D01-BR2-1 (HG001329) 

 Alresford 2cm clone E12-AR2-1 (HG001345) (4 clones) 
 Zuari Estuary sediment clone ZES-73 (EF367510) 

 Nankai Forearc Basin clone MA-C1-3 (AY093450) 
 Alresford 2cm clone G05-AR2-1 (HG001346) (2 clones) 
 Hythe 2cm clone H04-HY2-2 (HG001372) (2 clones) 
 Zeebrugge Port sediment clone Zeebrugge_A35 (HM598494) 
 Cascadia Margin sediment clone ODP1251A3.21 (AB177283) 
 Hythe 30cm clone C11-HY30-1 (HG001397) (7 clones) 
 Severn Estuary sediment clone 12CSRZ-A3 (FN424302) 
 Long Island Sound salt marsh clone SAT_3G1 (FJ655687) 
 Long Island Sound salt marsh clone SAT_3A2 (FJ655647) 
 Alresford 2cm clone C11-AR2-1 (HG001347) 
 Hythe 2cm clone H08-HY2-2 (HG001373) 

 Aarhus Bay sediment clone ArchSMTZ_2C (FR695322) 
 Sea of Okhotsk sediment clone aOHTK-29 (FJ873217) 
 Brightlingsea 2cm clone D06-BR2-1 (HG001330) 
 Alresford 2cm clone F03-AR2-1 (HG001348) 
 Mangrove soil clone MKCST-E1 (DQ363815) 

 Qinghai Lake sediment clone QLS458-A50 (EU110047) 
 Hythe 2cm clone C05-HY2-1 (HG001374) 
 Hythe 2cm clone C01-HY2-1 (HG001375) 

 Mangrove soil clone MKCST-ax7 (DQ363801) 
 Hythe 30cm clone C09-HY30-1 (HG001398) (8 clones) 

 Aarhus Bay sediment clone ArchSMTZ_11D (FR695318) 
 Santos-Sao Vicente Estuary clone EI_A09 (AY454584) 
 Alresford 2cm clone D05-AR2-1 (HG001349) 
 Brightlingsea 2cm clone A09-BR2-1 (HG001331) 
 Severn Estuary sediment slurry clone 12CSRZ-A11 (FN424309) 
 Alresford 2cm clone C05-AR2-1 (HG001350) 
 Nankai Trough sediment clone NANKA72 (AY436510) 

 Aarhus Bay sediment clone ArchSMTZ_3B (FR695323) 
 Alresford 2cm clone H01-AR2-1 (HG001351) 
 Alresford 2cm clone H10-AR2-1 (HG001352) 
 Aarhus Bay sediment clone ArchSMTZ_12F (FR695320) 
 Sea of Okhotsk sediment clone 40H-0S-14 (EU713913) 
 East Sea sediment clone ED1-39 (EU332080) 
 Marennes-Oleron Bay sediment clone MOBA48 (AM942161) 
 Brightlingsea 2cm clone C02-BR2-1 (HG001332) 
 Peru Margin sediment clone ODP1230A33.09 (AB177118) 
 Zeebrugge Port sediment clone Zeebrugge_A95 (HM598544) 
 Alresford 2cm clone B07-AR2-1 (HG001353) 
 Brightlingsea 2cm clone F06-BR2-1 (HG001333) (2 clones) 

 Alresford 2cm clone B06-AR2-1 (HG001354) (4 clones) 
 Hythe 2cm clone F01-HY2-1 (HG001376) (2 clones) 
 Yellow River Delta sediment clone HSZ-T43 (HQ267332) 
 Hythe 2cm clone G08-HY2-1 (HG001377) 

 Sea of Okhotsk sediment clone 40H-0S-15 (EU713914) 
 East Sea sediment clone ED1-29 (EU332090) 

 Sea of Okhotsk sediment clone OHKA1.28 (AB094525) 
 Severn Estuary sediment clone 12CSRZ-A4 (FN424313) 

 Hythe 2cm clone G09-HY2-1 (HG001378) 
 Cascadia Margin sediment clone ODP1244A2.3 (AB177229) 
 Hydrothermal vent clone pMC2A15 (AB019718) 

 Brightlingsea 2cm clone E07-BR2-1 (HG001334) 
 Hythe 2cm clone E02-HY2-1 (HG001379) 
 Skan Bay sediment clone SBAK-deep-04 (DQ522903) 

 Hythe 30cm clone H02-HY30-2 (HG001399) 
 Microbial mat clone GNA10C10 (EU731647) 

 Alresford 2cm clone C01-AR2-1 (HG001355) 
 Hythe 30cm clone F09-HY30-1 (HG001400) 

 East Sea sediment clone ED1-13 (EU332103) 
 Hythe 2cm clone D08-HY2-1 (HG001380) 
 Microbial mat clone GNA02E01 (EU732005) 

 Alresford 2cm clone F01-AR2-1 (HG001356) 
 Kazan MV sediment clone KZNMV-10-A9 (FJ712378) 

 Hythe 30cm clone E10-HY30-1 (HG001401) 
 Mangrove soil clone MNTSA-G11 (EF125503) 
 Hythe 2cm clone F12-HY2-1 (HG001381) 
 Mangrove soil clone MKCSB-D5 (DQ363763) 
 Cascadia Margin sediment clone ODP1251A1.1 (AB177259) 
 Cascadia Margin sediment clone ODP1251A1.17 (AB177262) 

 Sea of Okhotsk sediment clone OHKA2.14 (AB094531) 
 Hythe 30cm clone G10-HY30-1 (HG001402) 
 Atlantic Ocean sediment clone CRA8-27cm (AF119128) 
 Nankai Trough sediment clone NANKA3 (AY436513) 

 Cascadia Margin sediment clone ODP1251A41.4 (AB177286) 
 Brightlingsea 2cm clone D12-BR2-1 (HG001335) 
 North Sea sediment clone Tomm05_1274_3 Arc66 (FM179848) 

 Sulfolobus metallicus DSM6482 (X90479) 
 Thermoproteus tenax (NR044683) 

 Pyrodictium occultum (M21087) 
Staphylothermus marinus DSM3639 (X99560) 
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Figure 4. Phylogenetic trees showing the relationship of archaeal 16S rRNA gene sequences derived from Colne Estuary sediments to their nearest environmental

and pure culture sequences. (a) Crenarchaeota, ‘Bathyarchaeota’ and other deeply branching Archaea (b) Thaumarchaeota (c) Euryarchaeota; trees were constructed with
600, 855 and 475 bases, respectively, of aligned 16S rRNA gene sequences. All trees were obtained using Minimum Evolution and LogDet distance and representative
sequences of the Korarchaeota were used as out groups; clone SRI-306 (AF255604) and clone pJP27 (L25852). Bootstrap support values over 50% (1000 replicates) are

shown. Sequences retrieved in this study are shown in bold and colour coded according to 16S rRNA gene library: blue, BR2; red, AR2; green, HY2; light green, HY30.
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Eel River Basin sediment clone livecontrolA103 (FJ264793)
Yellow River Delta sediment clone HSZ-W46 (HQ267294)

Barents Sea sediment clone1_2A_30 (FJ800102)
Alresford 2cm clone F09-AR2-1 (HG001357) (5 clones)
Brightlingsea 2cm clone H08-BR2-1 (HG001336) (24 clones)
Antarctic sponge clone 2 (AY320199)
Gulf of Mexico seep clone GoM87_Arch258 FN421233)
Severn Estuary sediment slurry clone 12CSRZ-A14 (FN424311)

Saanich Inlet clone SI021806_10GA (FJ615091)
Nitrosopumilus maritimus (DQ085097)
Long Island Sound salt marsh clone SAT_3F4 (FJ655685)
Hythe 2cm clone F09-HY2-1 (HG001382) (7 clones)

Zuari Estuary sediment clone ZES-61 (EF367499)
Long Island Sound salt marsh clone SAT_3G9 (FJ655695)

Brightlingsea 2cm clone E09-BR2-1 (HG001337)
Yellow River Delta sediment cloneHSZ-W98 (HQ267303)

Yellow River Delta sediment clone HSZ-R23 (HQ267276)
Alresford 2cm clone G06-AR2-1 (HG001358) (3 clones)

Brightlingsea 2cm clone D02-BR2-1 (HG001338)
Whale fall sediment clone R51_0d_A5 (EU084521)
Cenarchaeum symbiosum (U51469)

Soil clone SCA1154 (U62814)
Alresford 2cm clone H04-AR2-2 (HG001359)
Fen soil clone archaea_27 (EU753451)

Shule River permafrost clone TP-SL-A-4 HQ738971)
Hythe 2cm clone H10-HY2-2 (HG001383)
Soil clone SCA1175 (U62819)
Severn Estuary sediment slurry clone 12CSRZ-A21 (FN424310)

Alresford 2cm clone C09-AR2-1 (HG001360)
Fen soil clone archaea_14 (EU753440)

Nitrososphaera gargensis (GU797786)
Salt marsh clone COSAS-G4 (EU284615)
Hythe 2cm clone D09-HY2-1 (HG001384)
Fen soil clone archaea_08 (EU753480)
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Figure 4. Continued.

archaeal OTUs compared with AR2 and HY2. The deeper sedi-
ment site HY30 also showed a reduced species richness, when
compared with HY2. This difference in species richness was fur-
ther supported by Shannon’s and Simpson’s indices of diversity
(Table 3), which also suggested high archaeal diversity at AR2.
High archaeal 16S rRNA gene diversity at this mid-estuary site
could be due to the location and dynamic conditions influenced
by both marine and freshwater inputs. Similar observations of
high archaeal diversity were found in sediments from the Man-
dovi Estuary and a tidal marsh in south-eastern Connecticut;
both influenced by strong tides and elevated land drainage (Nel-
son, Moin and Bernhard 2009; Singh et al., 2010), as well as
sediments from mid-locations in the Pearl River Estuary (Xie
et al., 2014). In addition, high diversity at AR could be associated
with the high numbers of diverse MCG sequences at this site
(Fig. 4a), possibly indicating a high degree of metabolic diversity
(Kubo et al., 2012; Lloyd et al., 2013b) necessary for such dynamic
conditions.

Archaeal 16S rRNA gene diversity by tag sequencing
To compare the large-fragment 16S rRNA gene library results
with alternative sequencing approaches with higher sequence
throughput and different variable regions of the 16S rRNA gene,
16474 archaeal V6 16S rRNA gene tags were analyzed from HY2,
and 7010 and 10381 archaeal V4-V5 16S rRNA gene tags were
analyzed from BR2 and AR2, respectively, (Fig. 3) with a sample
coverage of 98–99% at the species level (Table 3). Taxonomic as-
signments suggested that the overall archaeal community struc-
ture in Colne Estuary sediments at the phylum/major group
level was already well represented by sequencing of 39–44 ran-
dom clones, since the taxonomic profile obtained by both meth-
ods of tag sequencing was similar to that by conventional PCR
cloning of the V2–V5 region (Fig. 3). However, some additional
Euryarchaeota groups were identified by tag sequencing belong-
ing to the Halobacteriales (0.03–2.5%) and the methanogen or-
ders Methanobacteriales (0.2–0.9%), Methanococcales (0.01–0.02%)
and Methanocellales (0.01%). Similar good agreement between

Archaea phylum/major group level profiles obtained by tag se-
quencing and PCR cloning was also reported for other sedi-
mentary environments including Gulf of Mexico seeps (Lloyd
et al., 2010) and Guaymas Basin hydrothermal sediments (Bid-
dle et al., 2011), suggesting that within marine sediments at
least, the full range of major Archaea phyla and groups are al-
ready well represented in molecular surveys. Further analysis of
the 16S rRNA gene tags revealed that, although the overall di-
versity at the phylum level was similar, large differences in di-
versity at the species and genus level were apparent (Table 3).
For example, the number of unique archaeal OTUs estimated by
16S rRNA gene tag sequences was ∼10-fold higher than by PCR
cloning and this high species richness, detected by tag sequenc-
ing, was supported by all diversity estimates (Table 3) highlight-
ing that River Colne estuarine sediments have a much greater
archaeal species richness than previously reported (Munson,
Nedwell and Embley 1997). It should be noted that such di-
rect comparisons of Archaea species richness and diversity us-
ing datasets derived by different 16S rRNA gene PCR primers
should be treated with caution, as they may have different am-
plification biases. However, it has been shown that apart from
regions V1–V2, taxonomic comparisons of other 16S rRNA vari-
able regions are comparable, and metagenomic analyses do not
indicate significant discrepancies with PCR-derived databases
(Yarza et al., 2014).

Major archaeal phyla of the Colne Estuary

‘Bathyarchaeota’
Detailed phylogenetic analysis of the archaeal 16S rRNA gene
(V2–V5) libraries (Fig. 4) revealed that the majority of the Archaea
in the Colne Estuary belonged to clades with no cultured iso-
lates, although representatives of these groups are common in
molecular surveys of marine sediments (Fry et al., 2008; Teske
and Sørensen 2008). Members of the newly proposed deeply
branching phylum ‘Bathyarchaeota’ or MCG (Meng et al., 2014),
formerly of the Crenarchaeota, were the most abundant of all
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 Methanosarcina vacuolata DSM1232 (FR733661) 
 Methanosarcina acetivorans C2A (AE010299) 
 Methanosarcina siciliae DSM3028 (FR733698) 
 Rice root clone LARR20 (AJ699137) 
 Hythe 2cm clone A09-HY2-1 (HG001385) 

 Riverbank soil clone LL1Soil_37 (AM495407) 
 Fen clone MHLsu47_B1A (EU155897) 
 Peatland soil clone LH-04 (AY175383) 
 Alresford 2cm clone D01-AR2-1 (HG001361) 
 Hythe 30cm clone F05-HY30-1 (HG001411) 
 Peatland soil clone MB-09 (AY175397) 

 Hythe 2cm clone A06-HY2-1 (HG001386) 
 Methanosarcina sp. MO-MS1 (AB598272) 
 Methanosarcina lacustris ZS (AF432127) 

 Eel River Basin sediment clone Eel-36a2A4 (AF354128) 
 Santa Barbara Basin sediment clone SB-24a1C12 (AF354138) 

 Gulf of Mexico sediment clone GoM_GC232_4463_Arch71 (AM745257) 
 Hydrate Ridge sediment clone Hyd24-Arch17 (AJ578113) 
 Skan Bay sediment clone SBAK-deep-13 (DQ522907) 

 Colne Point saltmarsh clone 2C83 (AF015977) 
 Colne Point saltmarsh clone 2MT7 (AF015991) 

 Hythe 2cm clones D07-HY2-1 (HG001387) (2 clones) 
 Okinawa Trough sediment clone OT-A17.11 (AB252424) 
 Hythe 30cm clone H07-HY30-2 (HG001403) (2 clones) 

 Hythe 30cm clone E05-HY30-1 (HG001404) 
 Oil-polluted soil clone OuO-10 (AJ556519) 
 Hythe 30cm clone H05-HY30-2 (HG001405) 
 Alaskan petroleum reservoir clone D003011I03 (EU721747) 
 Hythe 2cm clone F10-HY2-1 (HG001388) 
 Alaskan petroleum reservoir clone NS2_19K23 (EU722019) 
 Methanosaeta harundinacea 6Ac (AY970347) 

 Alresford 2cm clone G11-AR2-1 (HG001362) 
 Hythe 30cm D07-HY30-1 (HG001406) (7 clones) 

 Fen clone MHLsu47_4B (EU155900) 
 Colne Estuary sediment clone EHB12 (AF374282) 

 Middle Island sinkhole sediment clone F11 (EU910619) 
 Methanosaeta concilii DSM2139 (NR_028242) 
 Hythe 2cm clone E08-HY2-1 (HG001389) (6 clones) 
 Colne Estuary sediment clone EHB76 (AF374280) 
 Fen clone MHLsu47_B8F (EU155906) 

 Hythe 30cm clone F11-HY30-1 (HG001407) 
 Gulf of Mexico sediment clone SMI1-GC205-Arc9a (DQ521776) 
 Hythe 2cm clone D06-HY2-1 (HG001390) 

 Black Sea seep clone BS-K-E9 (AJ578125) 
 Gulf of Mexico sediment clone MC118_36A9 (HM601394) 

 Methanogenium organophilum DSM3596 (M59131) 
 Methanogenium frigidum DSM16458 (FR749908) 

 Methanogenium marinum DSM15558 (NR_028225) 
 Kazan MV sediment clone KZNMV-25-A23 (FJ712382)  

 Methanoplanus petrolearius DSM11571 (NR_028240) 
 Methanoplanus sp. MobH (AB370246) 

 Hythe 2cm clone F08-HY2-1 (HG001391) (3 clones) 
 Colne Estuary sediment clone EHB154 (AF374278) 

 Methanoculleus bourgensis MS2 (AY196674) 
 Methanoculleus receptaculi ZC-2 (DQ787476) 

 Methanoculleus marisnigri (AF028693) 
 Methanoculleus submarinus OCM780 (NR_028856) 

 Colne Point saltmarsh clone 2C174 (AF015970) 
 Methanosphaerula palustris DSM19958 (CP001338) 

 Colne Estuary sediment clone EHB158 (AF374277) 
 Hythe 30cm clone H10-HY30-2 (HG001408) (3 clones) 

 Hythe 2cm clone H02-HY2-2 (HG001392) (2 clones) 
 Hydrate Ridge sediment clone Hyd24-Arch03 (AJ578110) 

 Gulf of Mexico sediment clone GoM_GC232_4463_Ar67 (AM745239) 
 Gulf of Mexico sediment clone IODP1320A92.12 (AB433027) 

 Amsterdam MV sediment clone AMSMV-20-A34 (HQ588673) 
 Carpathian Mountain MV clonePMMV-Arc186 (AJ937683) 
 Alresford 2cm clone G04-AR2-1 (HG001363) 

 Alresford 2cm clone F08-AR2-1 (HG001364) 
 Zeebrugge Port sediment clone Zeebrugge_A62 (HM598515) 

 Mackenzie River clone CaS1s.41 (EF014573) 
 Mackenzie River clone mrR2.49 (DQ310464) 
 Thermoplasma acidophilum DSM1728 (M38637) 

 Picrophilus oshimae (X84901) 
 Skan Bay sediment clone SBAK-shallow-10 (DQ640156) 
 Alresford 2cm clone A02-AR2-1 (HG001365) 
 Capt. Arutyunov MV sediment clone CAVMV301A980 (DQ004669) 
 Hythe 30cm clone H01-HY30-2 (HG001409) 

 Severn Estuary sediment slurry clone 13CSRZ-A2 
 Brightlingsea 2cm clone G05-BR2-1 (HG001339) 
 Atlantic Ocean sediment clone CRA12-27cm (AF119123) 

 Long Island Sound saltmarsh clone SAS_3B3 (FJ655701) 
 Mtoni Creek sediment clone MMS_111 (FJ477307) 
 Alresford 2cm clone H01-AR2-2 (HG001366) 
 Skan Bay sediment clone SBAK-mid-31 (DQ640149) 
 Black Sea seep clone BS-S-316 (AJ578149) 

 Pilzweg sulphidic spring clone PILK13 (AJ631256) 
 Lake Taihu sediment clone LT-SA-A47 (FJ755713) 

 Aarhus Bay sediment clone ArchSMTZ_12D (FR695330) 
 Brightlingsea 2cm clone C03-BR2-1 (HG001340) 

 SM1 archaeon clone (AJ296315) 
 Lake Taihu sediment clone LT-SA-A74 (FJ755717) 

 Mackenzie River clone mrR1.30 (DQ310391) 
 Alresford 2cm clone B12-AR2-1 (HG001367) 

 Zeebrugge Port sediment clone Zeebrugge_A27 (HM598489) 
 Brightlingsea 2cm clone C12-BR2-1 (HG001341) 

 Brightlingsea 2cm clone B01-BR2-1 (HG001342) 
 Brightlingsea 2cm clone B02-BR2-1 (HG001343) 
 Okinawa Trough microbial mat clone HTM1036Pn-A131 (AB611456) 

 Gulf of Mexico sediment clone GoM_5202R-15 (AY324539) 
 Hythe 30cm clone C10-HY30-1 (HG001410) 
 Salton Sea sediment clone SS043 (EU329780) 84 
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Figure 4. Continued.

archaeal phyla in the Colne sediment 16S rRNA gene libraries
(41% by PCR cloning, 49% by V4–V5-tag sequencing and 36% by
V6-tag sequencing; Figs 3 and 4a). All MCG were widespread
throughout the sediment sites and their presence did not re-
late to any identifiable geographical or environmental condition
measured within this study.

The ‘Bathyarchaeota’ or MCG comprises a large number of
phylogenetically diverse phylotypes from anoxic environments
that can be split into 17 subgroups (Kubo et al., 2012), and re-
cently phylogenomic evidence has shown MCG to branch sep-
arately from the Crenarchaeota (Fig. 4a) and locate at a deep
branching position with the Thaumarchaeota and ‘Aigarchaeota’
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Table 3. Diversity indices for Colne Estuary sediment Archaea 16S rRNA and mcrA gene libraries using genus and species-level groupings
(% similarity).

Gene library Number of Unique OTUs Good’s Simpson’s Shannon’s SChao1 SACE
(% similarity) clones coverage (%) diversity index (1-D) diversity index (H’)

16S rRNA
BR2 (97) 46 20 65 0.71 2.08 50.79 72.57
BR2 (95) 17 72 0.69 1.90 42.23 60.60
AR2 (97) 39 27 44 0.94 3.10 103.20 109.76
AR2 (95) 22 57 0.92 2.80 91.18 72.50
HY2 (97) 44 27 55 0.94 3.05 74.98 85.90
HY2 (95) 24 66 0.93 2.95 45.74 51.18
HY30 (97) 47 19 77 0.90 2.60 36.61 37.20
HY30 (95) 17 79 0.89 2.43 32.19 34.21

mcrA
BR2 (89) 37 8 95 0.74 1.63 8.25 10.36
AR2 (89) 30 12 77 0.85 2.16 33.65 23.18
HY2 (89) 33 10 82 0.69 1.65 17.95 21.44
HY30 (89) 28 9 78 0.71 1.61 17.71 32.40

16S rRNA V6-tag
HY2 (97) 16474 259 98 0.96 5.39 328.04 ND
HY2 (94) 217 99 0.95 5.20 259.30 ND

16S rRNA V4–V5-tag
BR2 (97) 7010 216 99 0.76 3.61 241.00 255.66
BR2 (94) 133 99 0.73 3.05 151.86 157.73
AR2 (97) 10381 327 99 0.89 4.56 334.25 346.14
AR2 (94) 200 99 0.86 3.74 205.45 214.30

BR2, BR 0–2 cm depth; AR2, AR 0–2 cm depth; HY2, HY 0- 2 cm depth; HY30, HY 28–30 cm depth.
OTU, operational taxonomic unit; ND, not determined.
SChao1 and SACE represent the expected number of OTUs present in an environment if sampling were complete.
Shannon’s and Simpson’s indices are measures of species diversity and both increase with increasing genetic diversity.

(Guy and Ettema 2011; Lloyd et al., 2013b; Meng et al., 2014). The
broad range of habitats in which MCG phylotypes have been
reported, including terrestrial palaeosol, freshwater lakes, ma-
rine sediments, hot springs and hydrothermal vents (Teske and
Sørensen 2008), indicates the versatility of this group, and is
consistent with them dominating the overall Colne Estuary sed-
iment archaeal community. The characteristics that result in
such dominance by MCG species are unknown, although re-
cent evidence obtained by single cell genomics has shown that
some members of the MCG degrade detrital proteins in subsur-
face sediments (Lloyd et al., 2013b), compounds that are abun-
dant in River Colne sediments (Agedah et al., 2009). Some MCG
have also been shown to incorporate 13C-acetate by DNA-SIP in
sediments from the Severn Estuary (Webster et al., 2010), sup-
porting other reports indicating that they are heterotrophic and
utilize buried organic carbon (Biddle et al., 2006). Such findings
are consistent with them being detected as a major component
in other organic-rich estuarine sediments (Roussel et al., 2009;
Jiang et al., 2011). In addition, Meng et al. (2014) reported that
genes involved in protocatechuate degradation were present
in a MCG fosmid, and subsequent expression of a putative 4-
carboxymuconolactone decarboxylase in sediment microcosms
supplemented with protocatechuate suggested that some MCG
degrade aromatic compounds.

Thaumarchaeota
Overall, the Thaumarchaeota represented 25% of archaeal 16S
rRNA gene sequences from Colne Estuary sediments and
29% of tags (Fig. 3), with the majority of sequences cluster-
ing within the ‘marine’ group I.1a (alternatively called MG-I;

Teske and Sørensen 2008). However, in contrast to the ‘Bath-
yarchaeota’, phylogenetic analysis of Thaumarchaeota sequences
(Fig. 4b) suggest that this phylum’s distribution may be linked
to changes in sediment depth, location and/or salinity gradi-
ent along the estuary. For example, Thaumarchaeota sequences
were only in surface (2 cm) sediments (i.e. absent in HY30), all
Thaumarchaeota sequences from BR2 belonged to the ‘marine’
group I.1a, and no ‘soil’ group I.1b were found in this high-
salinity/sulphate (marine) environment by PCR cloning (only
0.5% of V4–V5 tags). Sequences belonging to ‘soil’ group I.1b
were primarily in sediments with reduced salinity/sulphate
(AR and HY; Figs 3 and 4b), whereas ‘marine’ group I.1a were
present at all sites. In addition, sequences of ‘marine’ group
I.1a reduce in frequency away from the estuary mouth as
salinity decreases, representing 49–57% of 16S rRNA gene se-
quences and tags in BR2, 11–19% in AR2 and 11–20% in HY2
samples.

Thaumarchaeota, ubiquitous in marine and freshwater, soils
and sediments, represent a large prokaryotic biomass involved
in nitrification (Wuchter et al., 2006; Prosser and Nicol 2008). To
date, all cultured representatives of Thaumarchaeaota are aero-
bic autotrophic ammonia oxidizers (Könneke et al., 2005; Tourna
et al., 2011), accounting for their unique distribution within the
surface sediments of the Colne Estuary. In addition, the domi-
nance of ‘marine’ group I.1a at BR may also be explained by cul-
tured representatives of this group having an high affinity for
ammonia (Könneke et al., 2005; Tourna et al., 2011), an important
factor in Colne Estuarymarine sediments that have low concen-
trations of ammonia (Dong et al., 2000; Thornton et al., 2002).
Salinity has also been emphasized as being an important
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factor governing the spatial distribution of ammonia oxidizers in
other estuarine environments (Sahan and Muyzer 2008), and of-
ten the water column/sediment amoA group (equivalent to ‘ma-
rine’ group I.1a) are the most abundant archaeal amoA genes in
estuarine sediments (Bernhard and Bollmann 2010). Similarly,
the present study provides strong evidence that ‘marine’ group
I.1a are dominant in high-salinity marine sediments, whereas,
the ‘soil’ group I.1b are found less frequently and only detected
in areas of the estuary which have a strong influence of freshwa-
ter and soil run-off, similar to that observed by Dang et al. (2008)
in the Changjiang Estuary. Although salinity is often identified
as a key factor in regulating ammonia oxidizer community com-
position and abundance (Sahan and Muyzer 2008), it is probable
that it is not the only factor. For example, Archaea ammonia oxi-
dizer abundance has also been related to pH, clay content, heavy
metals and sulphide concentrations, factorswhich often co-vary
with salinity (Bernhard and Bollmann 2010). Alternatively, the
reduction in Thaumarchaeota 16S rRNA genes at AR2 and HY2
(Fig. 3) may be linked with increased ammonia in surface sed-
iments at the estuary head (Thornton et al., 2002), as it is known
that Betaproteobacteria ammonia oxidizers out-compete Archaea
ammonia oxidizers under high ammonia conditions (Bouskill
et al., 2011) and that amoA genes in the Colne Estuary are domi-
nated by Betaproteobacteria ammonia oxidizers (Li et al., 2014).

Euryarchaeota
Sequences belonging to the Euryarchaeota comprised 27% of all
archaeal 16S rRNA genes by PCR cloning and 18% by tag sequenc-
ing, with at least 10 distinct major taxa (Figs 3 and 4c) and four
potentially new clades (Fig. 4c).

Apart from methanogens (see below), Euryarchaeota se-
quences in the marine sediments of BR2 belonged to unculti-
vated groups and were either MBG-D/Themoplasmatales or novel
groups loosely associated (<80% sequence similarity) with SM1
Archaea found in cold sulphidic springs (Rudolph et al., 2004). Re-
cently, some single cell genomes of MBG-D have shown them to
contain genes that encode extracellular protein-degrading en-
zymes that could enable them to survive on sedimentary detrital
proteins (Lloyd et al., 2013b). Similarly, MBG-D have been main-
tained in heterotrophic enrichment cultures from sediments of
Aarhus Bay (Webster et al., 2011). Whereas, other reports suggest
that some members of the Thermoplasmatales and related Eur-
yarchaeota lineages may represent a novel order of methanogens
(Paul et al., 2012; Borrel et al., 2013) that can utilize methylamine
(Poulsen et al., 2013). Novel Euryarchaeota sequences were also
present at HY and AR, but these were often theminority, as were
sequences belonging to Rice Cluster V (RC-V), MBG-D and the
anaerobic methanotrophic Archaea (ANME) groups ANME-1 and
2a (Figs 3 and 4c). The ANME are a diverse group of Euryarchaeota
related to the methanogen orders Methanosarcinales and Metha-
nomicrobiales which gain energy exclusively from anaerobic oxi-
dation ofmethane (AOM) coupledwith bacterial sulphate reduc-
tion (Knittel and Boetius 2009).

Methanosarcinales and Methanomicrobiales were the most
abundant methanogen groups (e.g. 16% of all clones, 25%
of 16S rRNA gene tags at HY2) and representatives of these
orders increased in frequency towards the estuary head
(Fig. 3; Table S1, Supporting Information). For example, few
methanogen 16S rRNA gene phylotypes were present at BR2
(only 0.3% and V4–45 tags belonged toMethanosarcinales), but se-
quences related to Methanosarcina, Methanosaeta (Methanosarci-
nales), Methanogenium, Methanoculleus (Methanomicrobiales) and
a novel Methanomicrobiales-related group were numerous in li-
braries from brackish sediments at HY (HY2 and HY30). Rela-

tively low numbers of Methanosarcinales/Methanomicrobiales se-
quences and tags were obtained from the mid-estuary site
AR (Fig. 3). Hybridization of the Archaea 16S rRNA gene li-
braries with the specific Methanosarcinales/Methanomicrobiales
probe P335 (Table 2) clearly confirmed the increased abundance
of methanogens towards the estuary head, and with increas-
ing depth at HY (Table 2). This correlates with the increasing
methane concentrations (Fig. 2c) and rates of methanogenesis
(O’Sullivan et al., 2013). High numbers of methanogens at HY
supports previous findings that anaerobic terminal organic car-
bon degradation in Colne Estuary sediments changes from be-
ing dominated by sulphate reduction at the marine end to being
methanogenesis-driven at the freshwater head (Nedwell, Emb-
ley and Purdy 2004). This is presumably due to reduced com-
petition for electron donors with sulphate limitation (Liu and
Whitman 2008) and the reported increase in DOC (Thornton
et al., 2002), providing a range of substrates to support ametabol-
ically diverse population of methanogens.

The presence of a diverse population of methanogens within
the Colne Estuary was confirmed by analysis of mcrA genes. All
diversity parameters for mcrA gene libraries suggested a higher
level of coverage (77–95%) and mcrA gene diversity was low (Ta-
ble 3), although at AR, mcrA gene diversity was higher than at
the other two sites. The majority of mcrA sequences (Fig. 5; Ta-
ble S2, Supporting Information) in Colne Estuary sedimentswere
assigned to Methanosarcinales, Methanomicrobiales, Methanobac-
teriales and the closely related methanotrophic ANME mcrA
group e (thought to be ANME-2a; Knittel and Boetius 2009).
Methanogen mcrA gene phylotypes increased in frequency with
respect to a decrease in ANME mcrA gene phylotypes (Fig. 5)
as salinity and sulphate concentrations decreased away from
the estuary mouth (Fig. 2; 54% at BR, 89–97% at HY). This in-
crease in methanogen mcrA gene phylotypes coincided with
the observed increase in methanogen 16S rRNA genes towards
the estuary head (Fig. 3; Table 2). Whereas, the decrease in
the number of ANME mcrA sequences (Fig. 5) was probably
linked to the methanotrophic Archaea being associated with
marine sediments and sulphate-dependent AOM (Knittel and
Boetius 2009).

Other deeply branching Archaea
Small numbers of Marine Benthic Group-B (MBG-B) and the
Marine Hydrothermal Vent Group (MHVG) were also found in
Colne Estuary sediments (Fig. 4a). Members of these two deeply
branching groups of Archaea have previously been identified in
estuarine sediments (Webster et al., 2010; Jiang et al., 2011). Iso-
topic data from archaeal cell membranes suggests that MBG-
B can assimilate recalcitrant carbon (Biddle et al., 2006), while
other studies propose that MBG-B benefit directly or indirectly
from methane cycling (Inagaki et al., 2006; Teske and Sørensen
2008). This association with methane cycling could account for
the slight increase in their frequency within sediments at HY,
which have increased methane, high methanogenesis and evi-
dence of AOM (Fig. 2c; O’Sullivan et al., 2013) and high organic
carbon (Thornton et al., 2002).

Methanosarcinales and Methanomicrobiales are
important members of the Colne Estuary

Several reports have shown that members of the Methanosarci-
nales and Methanomicrobiales are the most commonly found
methanogens in estuarine sediments (Purdy et al., 2002; Banning
et al., 2005; Jiang et al., 2011; Li et al., 2012; O’Sullivan et al., 2013;
Chen et al., 2014), and in this study sequences (16S rRNA and
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Figure 5. Diversity of mcrA gene sequences from Colne Estuary sediments derived by PCR cloning (BR2, AR2, HY2 and HY30). Numbers of clones in each gene library
are shown in parentheses.

mcrA genes) belonging to these two orders were the predomi-
nantmethanogen phylotypes throughout the Colne Estuary sed-
iments.Methanosarcinales andMethanomicrobiales are often found
together apparently because members of these two orders dif-
fer in their substrate utilization (Liu and Whitman 2008). Gen-
erally, Methanomicrobiales only use H2/CO2 as a substrate for
methanogenesis, while members of the Methanosarcinales can
utilize a number of different substrates (e.g. Methanosarcina uti-
lize H2/CO2, methyl compounds and/or acetate, Methanosaeta
use acetate and Methanococcoides utilize methyl compounds
(Ferry 2010).

In estuarine sediments along a salinity/sulphate gradient,
the availability of specific methanogen substrates can vary due
to competition from sulphate-reducing bacteria (SRB) result-
ing in methanogen populations being niche partitioned de-
pending on their substrate usage (Purdy et al., 2002). For ex-
ample, all members of the Methanosarcinales identified at BR by
mcrA gene sequencing (Fig. 5; Table S2, Supporting Information)
belonged to Methanococcoides, Methanolobus and Methanosarcina,
species that are able to utilize non-competitive substrates, such
as methanol and methylated amines that most SRB cannot use
(Oremland, Marsh and Polcin 1982). 16S rRNA gene qPCR of the
methylotrophicMethanococcoides species also showed that these
methanogens were much more abundant in the top 10 cm and
constituted a larger fraction of the overall archaeal population at
BR (Fig. 2a) than at HY (Fig. 2c), and this is supported by previous
studies in which Methanococcoides were readily detectable at BR
and nearby Colne Point (Purdy et al., 2002; O’Sullivan et al., 2013).
Interestingly, at BR (and AR) Methanococcoides 16S rRNA genes
(100% sequence similarity to M. burtonii; Table S3, Supporting
Information) progressively increased as a proportion of the Ar-
chaea (2–20%) with depths down to 10 cm (Fig. 2), after which
their abundance rapidly declined to < 1% of Archaea. This sup-
ports that their presence directly relates to higher availability of
non-competitive methylated substrates near the sediment sur-
face (King 1984). Furthermore, the Methanococcoides qPCR depth

profiles in this study match closely the changes in methanogen
DGGEpatterns presented inO’Sullivan et al. (2013). These first es-
timates of the abundance of Methanococcoides species (0.02–1.5%
of prokaryotes; Fig. 2) in estuarine sediments clearly demon-
strate that they represent a significant population and suggest
that methylotrophic methanogenesis may contribute more to
methane and nitrogen cycling in marine sediments than pre-
viously thought (Ferry and Lessner 2008).

In the low-salinity/sulphate sediments at HY the majority
of Methanosarcinales 16S rRNA genes were closely related to
the acetotrophic methanogens, Methanosaeta concilii and M.
harundinacea. However, no Methanosaeta-like mcrA genes were
found at HY; insteadMethanosarcinales mcrA sequences belonged
to Methanosarcina (93% sequence similarity to Methanosarcina
mazei). Such inconsistencies in the frequency of observed
marker genes for the same archaeal group may reflect their low
abundance within the archaeal community or biases imposed
by different gene primers and/or from the use of nested PCR.
Recently, specific mcrA and 16S rRNA gene primers and re-
peated PCR amplifications have been used to study the ecology
of Methanosaeta in the Colne Estuary (Carbonero et al., 2012;
Oakley et al., 2012). However, despite these discrepancies, the
detection of methanogens that can utilize acetate (Methanosaeta
and Methanosarcina) and the detection of low acetate concen-
trations (Fig. S1, Supporting Information), and high rates of
acetotrophic methanogenesis (O’Sullivan et al., 2013) supports
findings that acetate could be an important substrate for
methanogenesis in low-salinity estuarine sediments (Purdy
et al., 2002, 2003; O’Sullivan et al., 2013). HY sediments also
contained large numbers of novel Methanomicrobiales mcrA
gene sequences (Fig. 5; Table S2, Supporting Information)
assigned to the so-called ‘Fen Cluster’ (Galand et al., 2002),
which increased with depth (58% of HY2 and 89% of HY30).
These mcrA gene sequences are often associated with fresh-
water environments, such as river bank soils, peats and
oligotrophic fens (Galand et al., 2002; Conrad et al., 2008;
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Steinberg and Regan 2008) and are related to the hy-
drogenotrophic methanogen Methanoregula boonei isolated
from an acidic peat bog (Bräuer et al., 2006). Methanomicro-
biales 16S rRNA genes closely related to other hydrogenotrophic
Methanoplanus andMethanosphaerulawere also identified (Fig. 4c)
and coupled with the Methanomicrobiales mcrA genes supports
the relatively high rates of hydrogenotrophic methanogenesis
previously reported at this site (O’Sullivan et al., 2013). Curi-
ously, high sulphate reduction rates were also present in HY
sediments (O’Sullivan et al., 2013), despite low concentrations
of sulphate (Fig. 2c), and this is thought to be due to SRB popu-
lations that are able to respond rapidly to the occasional tidal
incursion (Purdy et al., 2003; O’Sullivan et al., 2013). However,
since this site has generally low concentrations of sulphate and
high concentrations of organic matter (Thornton et al., 2002),
it provides conditions that are suitable for the co-existence of
competitivemethanogenesis and sulphate reduction (Oremland
and Polcin 1982).

Interestingly, surface sediments at AR, which had lower rates
of methanogenesis than HY, but higher rates than surface sed-
iments at BR (O’Sullivan et al., 2013), contained a mixture of
methylotrophic (Methanosarcina, Methanococcoides), acetotrophic
(Methanosarcina, Methanosaeta) and hydrogenotrophic (novel
Methanomicrobiales ‘Fen cluster’) methanogens, as well as some
Methanobacteriales sequences related to the hydrogenotrophic
Methanobrevibacter (Fig. 5; Table S2, Supporting Information).
This may provide further indication that archaeal populations
at AR are a reflection of their mid-estuarine position.

SUMMARY

River Colne estuarine sediments are hypernutrified and con-
tain a diverse population of Archaea, represented throughout by
phylotypes from all of the main phyla, with many sequences
from novel and uncultivated lineages, and some assigned
groups with known or putative physiologies; e.g. methanogens,
methanotrophs (Euryarchaeota), ammonia oxidizers (Thaumar-
chaeota) and heterotrophic protein degraders (‘Bathyarchaeota’
MCG). Some archaeal lineages, notably the MCG, are widespread
throughout the estuary, whereas others (e.g. methanogens and
ammonia oxidizers) are more localized, and may have been se-
lected for by specific conditions along the estuarine gradient.
For example, clear differences between themarine and brackish
archaeal communities are evident, comparing estuary mouth
(BR) and estuary head (HY) sediments. This difference inArchaea
composition suggests niche separation linked to differences
in salinity, sulphate, organic carbon and ammonia gradients
(Thornton et al., 2002; Xie et al., 2014). More specifically, results
presented here show that the composition of Thaumarchaeota
variedwith salinity, as only ‘marine’ group I.1awas found inma-
rine sediments (BR) and that methanogenic Euryarchaeota (16S
rRNA and mcrA phylotypes) increased proportionally with de-
creasing salinity and sulphate gradients. Methanogen popula-
tions in brackish sediments (HY) are dominated by obligately
hydrogenotrophic and acetoclastic (Methanosaeta) methanogen
types, with a few potentially versatile Methanosarcina species.
Conversely, marine surface sediments (BR) had a high pro-
portion of Methanococcoides, Methanolobus and Methanosarcina
species, which are all able to utilize non-competitive methyl
substrates. This study extends our understanding of some of the
important environmental factors that structure archaeal assem-
blages under natural conditions and suggests that salinity and
other associated factors may be a significant feature controlling
the distribution and abundance of estuarine sediment Archaea.

SUPPLEMENTARY DATA

Supplementary data is available at FEMSEC online.
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of Marennes-Oléron Bay (France). Geomicrobiol J 2009;26:
31–43.

Rudolph C, Moissl C, Henneberger R, et al. Ecology and microbial
structures of archaeal/bacterial strings-of-pearls communi-
ties and archaeal relatives thriving in cold sulfidic springs.
FEMS Microbiol Ecol 2004;50:1–11.

Sahan E, Muyzer G. Diversity and spatio-temporal distribu-
tion of ammonia-oxidizing archaea and bacteria in sediments
of the Westerschelde estuary. FEMS Microbiol Ecol 2008;64:
175–86.

Schleper C, Jurgens G, Jonuscheit M. Genomic studies of uncul-
tivated Archaea. Nat Rev Microbiol 2005;3:479–88.

Schloss PD, Handelsman J. Status of the microbial census.Micro-
biol Mol Biol R 2004;68:686–91.

Senior E, Lindström EB, Banat IM, et al. Sulfate reduction
and methanogenesis in the sediment of a saltmarsh on
the east coast of the United Kingdom. Appl Environ Microb
1982;43:987–96.

Singh SK, Verma P, Ramaiah N, et al. Phylogenetic diversity of ar-
chaeal 16S rRNA and ammonia monooxygenase genes from
tropical estuarine sediments on the central west coast of In-
dia. Res Microbiol 2010;161:177–86.

Smith CJ, Nedwell DB, Dong LF, et al. Diversity and abundance
of nitrate reductase genes (narG and napA), nitrite reductase
genes (nirS and nrfA), and their transcripts in estuarine sed-
iments. Appl Environ Microb 2007;73:3612–22.

 by guest on N
ovem

ber 20, 2015
http://fem

sec.oxfordjournals.org/
D

ow
nloaded from

 

http://femsec.oxfordjournals.org/


18 FEMS Microbiology Ecology, 2015, Vol. 91, No. 2

Sogin ML, Morrison HG, Huber JA, et al.Microbial diversity in the
deep sea and the underexplored “rare biosphere”. P Natl Acad
Sci USA 2006;103:12115–20.

Stein JL, Simon MI. Archaeal ubiquity. P Natl Acad Sci USA
1996;93:6228–30.

Steinberg LM, Regan JM. Phylogenetic comparison of the
methanogenic communities from an acidic, oligotrohic fen
and an anaerobic digester treating municipal wastewater
sludge. Appl Environ Microb 2008;74:6663–71.

Tamura K, Dudley J, Nei M, et al.MEGA4: molecular evolutionary
genetics analysis (MEGA) software version 4.0. Mol Biol Evol
2007;24:1596–9.

Teske A, Hinrichs KU, Edgcomb V, et al.Microbial diversity of hy-
drothermal sediments in the Guaymas Basin: evidence for
anaerobic methantrophic communities. Appl Environ Microb
2002;68:1994–2007.

Teske AP, Sørensen KB. Uncultured archaea in deep marine sub-
surface sediments: Have we caught them all? ISME J 2008;2:
3–18.

Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL X
windows interface: flexible strategies for multiple sequence
alignment aided by quality analysis tools. Nucleic Acids Res
1997;25:4876–82.

Thornton DCO, Dong LF, Underwood GJC, et al. Factors affect-
ing microphytobenthic biomass, species composition and
production in the Colne estuary (UK). Aquat Microb Ecol
2002;27:285–300.

TournaM, Stieglmeier M, Spang A, et al. Nitrososphaera viennensis,
an ammonia oxidizing archaeon from soil. PNatl Acad Sci USA
2011;108:8420–5.

Untergasser A, Nijveen H, Rao X, et al. Primer3Plus, an en-
hanced web interface to Primer3. Nucleic Acids Res 2007;35:
W71–4.

Vetriani C, Jannasch HW, MacGregor BJ, et al. Population struc-
ture and phylogenetic characterization of marine ben-
thic archaea in deep-sea sediments. Appl Environ Microb
1999;65:4375–84.

Vieira RP, Clementino MM, Cardoso AM, et al. Archaeal com-
munities in a tropical estuarine ecosystem: Guanabara Bay,
Brazil. Microb Ecol 2007;54:460–8.

Vila-Costa M, Barberan A, Auguet JC, et al. Bacterial and ar-
chaeal community structure in the surface microlayer of
high mountain lakes examined under two atmospheric

aerosol loading scenarios. FEMS Microbiol Ecol 2013;84:
387–97.

Watkins AJ, Roussel EG, Webster G, et al. Choline and
N, N-dimethylethanolamine as direct substrates for
methanogens. Appl Environ Microb 2012;78:8298–303.

Webster G, Blazejak A, Cragg BA, et al. Subsurface microbiology
and biogeochemistry of a deep, cold-water carbonatemound
from the Porcupine Seabight (IODP Expedition 307). Environ
Microbiol 2009;11:239–57.

Webster G, Newberry CJ, Fry JC, et al. Assessment of bacterial
community structure in the deep sub-seafloor biosphere by
16S rDNA-based techniques: a cautionary tale. J Microbiol
Meth 2003;55:155–64.

Webster G, Parkes RJ, Cragg BA, et al. Prokaryotic community
composition and biogeochemical processes in deep sub-
seafloor sediments from the Peru Margin. FEMS Microbiol Ecol
2006;58:65–85.

Webster G, Rinna J, Roussel EG, et al. Prokaryotic functional di-
versity in different biogeochemical depth zones in tidal sed-
iments of the Severn estuary, UK, revealed by stable-isotope
probing. FEMS Microbiol Ecol 2010;72:179–97.

Webster G, Sass H, Cragg BA, et al. Enrichment and cultiva-
tion of prokaryotes associated with the sulphate-methane
transition zone of diffusion-controlled sediments of Aarhus
Bay, Denmark, under heterotrophic conditions. FEMS Micro-
biol Ecol 2011;77:248–63.
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