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12/15-Lipoxygenase (LOX) enzymatically generates oxidized phospholipids in monocytes and macro-
phages. Herein, we show that cells deficient in 12/15-LOX contain defective mitochondria and numerous
cytoplasmic vacuoles containing electron dense material, indicating defects in autophagy or membrane
processing, However, both LC3 expression and lipidation were normal both basally and on chloroquine
treatment. A LOX-derived oxidized phospholipid, 12-hydroxyeicosatetraenoic acid-phosphatidylethano-
lamine (12-HETE-PE) was found to be a preferred substrate for yeast Atg8 lipidation, versus native PE,
while both native and oxidized PE were effective substrates for LC3 lipidation. Last, phospholipidomics
demonstrated altered levels of several phospholipid classes. Thus, we show that oxidized phospholipids
generated by 12/15-LOX can act as substrates for key proteins required for effective autophagy and that
cells deficient in this enzyme show evidence of autophagic dysfunction. The data functionally link
phospholipid oxidation with autophagy for the first time.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
Introduction

Murine 12/15-lipoxygenase (LOX) and its human homolog 15-
LOX have long been known as generators of free acid eicosanoids,
primarily 12- and 15-hydroxyeicosatetraenoic acids (HETEs), re-
spectively. More recently, we showed these enzymes directly
oxidize intact phospholipid, generating phosphatidylethanolamine
(PE)-esterified forms that can dampen Toll-like receptor 4 signal-
ing in human monocytes [1,2]. Analogous lipids are generated by
neutrophil 5-LOX and platelet 12-LOX, including phosphati-
dylcholine (PC) esterified homologs that can stimulate coagulation
and regulate leukocyte anti-bacterial actions [3,4]. Since HETE-PEs
remain cell associated following their generation, we sought to
examine whether they could be involved in membrane regulatory
processes.

Autophagy is the process by which cells remove ageing orga-
nelles and damaged cellular structures [5]. There are three defined
types of autophagy: macro-, micro-, and chaperone-mediated, all
of which promote proteolytic degradation of cytosolic components
at the lysosome. Autophagy begins with an isolation membrane,
also known as a phagophore that is likely derived from lipid
B.V. This is an open access article
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bilayer contributed by the endoplasmic reticulum (ER) and/or the
trans-Golgi and endosomes. This expands to engulf intracellular
cargo, sequestering it in a double-membraned autophagosome.
This matures through lysosome fusion, promoting degradation of
autophagosomal contents by lysosomal hydrolases. Lysosomal
permeases and transporters export amino acids and other by-
products of degradation back out to the cytoplasm, where they are
re-used for cellular processes [6]. One particular type of autop-
hagy, mitophagy, which removes old and damaged mitochondria,
comprises several different processes termed Types 1–3 [7]. Sev-
eral recent studies have highlighted a role for redox changes being
pre-requisite or closely associated with autophagy, including ele-
vated oxidative stress, lipofuscin formation, activation by terminal
lipid oxidation products and changes in cellular thiol status [8–11].
During phagophore formation, lipidation of cytoplasmic LC3-I to
LC3-II by conjugation with PE is considered an essential event [12].
Currently, the specific PEs that conjugate with LC3 in mammalian
cells are not known, although di-oleoyl-PE is commonly used as
substrate with recombinant LC3 and its yeast homolog, Atg8 [13].
Of relevance to this, 15-LOX is induced during reticulocyte ma-
turation where it was proposed to play a role in degradation of
intracellular organelles, specifically mitochondria [14,15]. During
this, high levels of the enzyme are induced and cellular mem-
branes contain detectable levels of oxidized lipid. Mitochondrial
degradation has been shown to be reliant on the expression of
under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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15-LOX in reticulocytes, with a spike in 15-LOX expression im-
mediately before organelle degradation. It’s been shown that 15-
LOX integrates into the membranes of organelles, allowing release
of proteins from the organelle lumen and access of proteases to
both lumenal and integral membrane proteins [15]. Whether LOXs
are involved in autophagy or other membrane processing events is
currently unknown, although previous studies have shown that
12/15-LOX-deficient cells show defective phagocytosis linked to
altered actin polymerization in mice [16].

In this study, we examine membrane ultrastructure and LC3
expression and lipidation in macrophages from mice lacking 12/
15-LOX, and determine the ability of oxidized phospholipids to act
as substrates for LC3 lipidation in vitro. The results suggest a role
for the pathway in regulating dynamic membrane alternations in
mammalian cells.
Materials and methods

Isolation of mouse macrophages

All animal experiments were performed in accordance to the
United Kingdom Home Office Animals (Scientific Procedures) Act
of 1986. C57BL/6 wild type (from Charles River) and 12/15-LOX� /�

mice (8–12 weeks) were kept in constant temperature cages (20–
22 °C) and given free access to water and standard chow, and
killed using CO2 asphyxiation. Peritoneal lavages were carried out
using 2 ml PBS. Lavages were pooled, pelleted by centrifugation
and re-suspended in media (RPMI media, 10% (v/v) fetal bovine
serum, 100 mg/ml penicillin, 100 mg/ml streptomycin, and 2 mM
glutamine). Cells were either used directly or seeded in flasks at
100�106 cells/ml to isolate the macrophages, by adhesion (2 h at
37 °C). Macrophages washed once with RPMI media, fresh mono-
cyte media was added to the flasks and the macrophages were
then released by gentle scraping. Macrophages were pelleted as
described above, washed and pelleted in PBS, re-suspended in
Krebs buffer, counted, and diluted to 4�106 cells/ml for
experiments.

Transmission electron microscopy of macrophages

Murine macrophage pellets were submerged in cacodylate
buffer containing 2.5% glutaraldehyde and stored at 4 °C up to
4 weeks. Samples were washed twice for 15 min with 0.1 M ca-
codylate buffer then re-suspended in 1% osmium tetroxide in
0.2 M cacodylate buffer and incubated at 21 °C for 1 h. Samples
were washed 4� for 15 min with H2O then stained with 0.5%
uranyl acetate in dH2O for 1 h at 21 °C. Samples were dehydrated
by re-suspending in increasing percentages of ethanol, for 15 min
each: 50%, 70%, 80%, and 90% followed by 3 times with 100%
ethanol. Samples were transferred to glass vials and re-suspended
in propyl oxide. Resin infiltration was carried out by re-suspending
samples in 1:1 pre-mixed embedding resin and propyl oxide
overnight, at room temperature, leaving vials open. Cell samples
were immersed further with fresh embedding resin and trans-
ferred into plastic molds. Cell pellets were allowed to settle, fol-
lowing 2 h at 21 °C, samples were transferred to 60 °C for 48 h.
90 nm sections were cut from 3 different pellet locations using a
Reichert-Jung Ultracut E microtome. Sections were mounted onto
naked grids which were stained using 2% uranyl acetate for
10 min, washed twice with distilled water followed by staining
with Reynold's lead citrate for 5 min and an additional two washes
with dH2O. Samples were dried on filter paper then analyzed by
transmission electron microscopy, on a Philips EM208. Kodak EM
2289 film (Agar Scientific, Stansted, Essex, UK) were developed for
3.5 min, at 20 °C in Kodak D-19 developer, diluted 1:2 with H2O.
Films were fixed for 30 s in an acetic acid, followed by 4 min in
Ilford Hypam fixer, diluted 1:3 with H2O, rinsed then dried.

Phospholipid profiling of macrophage lipids

Macrophages were suspended in 0.5 ml Krebs buffer and the
lipids extracted using 1 M acetic acid:2-propanol:hexane (2:20:30)
containing internal standards (10 ng/ml sample volume, listed
below), and extracted as previously described [1]. Extracts were
suspended in methanol and stored at �70 °C until analysis.
Phospholipids were profiled by LC/ESI/MS/MS on a 4000 Q-Trap
(AB Sciex, Warrington). Phospholipids were separated using 50–
100% B over 10 min then 100% B for 30 min at 200 ml/min (A is the
methanol:acetonitrile:water at 6:2:2 with 1 mM ammonium
acetate; B is the methanol with 1 mM ammonium acetate), using
the specific parent to daughter transitions shown in Supplemen-
tary Tables 1–6. Relative levels of lipids were determined by
comparison to internal standards with the following parent to
daughter transitions m/z 634–227 (DMPE) [M�H]� , 678–184
(DMPC) [MþH]þ , 591–227 (DMPA) [M�H]� and 665–227
(DMPG) [M-H]� . PS-phospholipid profiling was carried out by
flow injection using the phospholipid solvent system running at
50:50 A:B, 1 ml/min for 6 min. Products were profiled using an
internal standard, with parent to daughter transition of m/z 678–
227 (DMPS) [M�H]� .

Cholesteryl ester profiling of macrophage lipids

Precursor mass spectra were obtained operating in positive
mode. Samples were introduced at 10 ml/min in methanol using a
Hamilton syringe. The de-clustering potential and collision energy
were �140 and �45 V respectively. Spectra were obtained from
m/z 100 to 1000 amu over 12 s with 10 MCA scans acquired.
Cholesteryl esters were then detected by LC/MS/MS, having
adapted a method described by Ferreira et al. [17]. Cholesteryl
esters were separated on a C18 ODS2, 5 mM, 150�4.6 mm2 column
(Waters Ltd., Elstree, Hertfordshire, UK) using an isocratic method
with mobile phase propan-2-ol:acetonitrile:ammonium acetate
(60:40:4) at 1 ml/min. Products were profiled by LC/ESI/MS/MS
using the specific parent to daughter transitions of m/z 668, 666,
682, 690, 706, 642, 640, 670,708, 714 and 730–369.1 (cholesterol)
([MþNH4]þ) (Supplementary Scheme 1). The collision energy for
cholesteryl esters was �33 V and the declustering potential,
�91 V.

Inhibition of autophagy post-initiation and Western blotting of LC3-I
and -II

Murine peritoneal macrophages were isolated from male WT
and 12/15-LOX�/� mice and cells from two mice from each group
were pooled. 9�105 cells were incubated in a 24 well plate with
and without chloroquine (100 mM) for 20 h. Supernatants were
removed and cells washed gently with PBS twice to remove serum.
Cells were lysed in 50 ml lysis buffer (Stock: 200 ml 2% Ipegal CA-
630, 40 ml 0.5 M EDTA, 1 ml 1.5 M NaCl, 100 ml 1 M Tris–CL, 0.5%
(w/v) sodium deoxycholate, and 8.46 ml distilled water), 100 ml
10� protease inhibitor cocktail on ice for 15 min, followed by
vortexing and further 10 min incubation on ice. Lysates were then
centrifuged for 15 min at 13,000 rpm and supernatants removed
to new tubes. Lysates were reduced and boiled at 80 °C for 10 min.
Protein concentration was quantified using a BCA test to ensure
equal loading. Protein extracts were separated by SDS-PAGE using
a gradient polyacrylamide gel (4–12%) (Invitrogen), and subse-
quently transferred to a 0.45 mM nitrocellulose (Amersham™ Hy-
bond ECL, GE Healthcare, Life Sciences). Membrane was blocked
for 1 h in PBS/0.05% Tween/5% milk, and then probed overnight
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with a polyclonal anti-mouse LC3 (1 mg/ml) (sigma L8918) and
subsequently an anti-mouse actin (clone C4, Millipore, Temecula,
CA92590, and MAB1501R), in PBS/0.05% Tween/1% BSA. Blot was
Fig. 1. Macrophages from 12/15-LOX deficient mice show altered membrane structure on
and 12/15 LOX� /� peritoneal macrophages. Peritoneal cells from wild type mice were
magnification. Lower panels. Cells were analyzed by TEM at 20,000� magnification. Arr
15-LOX�/�) (green), and numerous autophagosomes (blue), lysosomal storage bodies (r
similar LC3 levels to wild type. Macrophages were stimulated overnight using chloroqu
from three representative gels, with one shown as illustration. Each gel had n¼3 for both
divided by the actin loading control density, thus the graph represents a combined n¼
then probed with a polyclonal goat anti-rabbit coupled to HRP
(Dako (PO448)) and incubated with ECL (Pierce). Blot was exposed
for 1 min onto x-ray film.
electron microscopy but LC3 expression is similar. Panel A. EM analysis of wild type
analyzed using TEM as described in Section “Materials and methods” at 10,000�
ows indicate healthy mitochondria (in WT) (black), abnormal mitochondria (in 12/
ed) and vacuoles (yellow). Panel B. Macrophages from 12/15-LOX� /� mice express
ine (100 mM), before LC3-I and -II analysis using Western blot. Data are combined
WT and 12/15-LOX�/� mice. Relative density was determined for LC3-I and -II, then
9, mean7SEM.
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Enzymatic lipidation of Atg8 and LC3

All proteins were purified from Escherichia coli. However, pur-
ified LC3B, hs (Homo sapiens) Atg7, and hsAtg3 are kind gifts from
Nobuo N. Noda, Institute of Microbial Chemistry, Tokyo 141-0021,
Japan. In vitro lipidation reactions of Atg8 and LC3 were performed
using buffer containing 50 mM Tris–HCl pH 8.0, 100 mM NaCl,
1 mM MgCl2, and 0.2 mM DTT. Purified Atg7 (1 mM), Atg3 (1 mM),
and Atg8 (5 mM) were incubated at 30 °C with liposomes (350 mM)
composed of 55 mol% PE (di-oleoyl: DOPE, 1-stearoyl-2-arachido-
nyl: SAPE, or HETE-PE), 35 mol% 1-palmitoyl-2-oleoyl-phosphati-
dylcholine (POPC), and 10 mol% yeast phosphatidylinositol (PI) in
the presence of 1 mM ATP for the indicated time periods, followed
by urea-SDS-PAGE and CBB-staining. Purified hsAtg7 (1 mM),
hsAtg3 (2 mM), and LC3 (5 mM) were incubated at 37 °C with
liposomes (350 mM) composed of 55 mol% PE, 35 mol% POPC,
10 mol% yeast PI or 10 mol% PE, 80 mol% POPC, 10 mol% yeast PI in
the presence of 1 mM ATP for the indicated time periods, followed
by SDS-PAGE and CBB-staining.
Results

Macrophages deficient in 12/15-LOX show altered ultrastructure

Peritoneal cells from naïve mice were analyzed using trans-
mission EM. Representative macrophages from three separate
pooled isolates is shown in Fig. 1A. Healthy-looking mitochondria
(small, compact, and with well-defined cristae) are seen in wild
type cells. In contrast, 12/15-LOX�/� macrophages are swollen and
granular. 12/15-LOX� /� macrophages also demonstrate a large
A

B

Fig. 2. Atg8 and LC3 can be conjugated to 12-HETE-PE. Panel A. Atg7, Atg3, and Atg8 w
35 mol % POPC, and 10 mol% yeast PI, with 1 mM ATP for the indicated time periods, fol
Atg8 lipidation was calculated by dividing the intensities of Atg8-PE by those of total Atg8
nnnpo0.001, HETE-PE versus SAPE, Student's t-test). Panel B. Purified hsAtg7, hsAtg3, an
POPC, 10 mol% yeast PI (left panel) or 10 mol% PE, 80 mol% POPC, 10 mol% yeast PI (right p
PAGE and CBB-staining.
number of vacuoles (yellow arrows) and potential lysosomal sto-
rage bodies, visible as dark inclusions (red arrows). Some have
double membranes, suggestive of autophagosomes (blue arrows).
Far lower numbers of vacuoles and suspected lysosomal storage
bodies are seen in wild type macrophages.

LC3 expression and lipidation in 12/15-LOX-deficient macrophages is
unchanged

Macrophages from both WT and 12/15-LOX� /� mice show low
levels of LC3-I and II by the Western blot. To inhibit the turnover of
autophagosomes, cells were incubated with chloroquine, which
raises the lysosomal pH, and leads to inhibition of both fusion of
autophagosome with lysosome and lysosomal protein degrada-
tion. As a result, we see an accumulation of LC3-II which is the
membrane associated lipidated form. Macrophages from 12/15-
LOX� /� mice contained similar amounts of LC3-I and LC3-II to
wild type controls, although there was a high degree of variability
between mice (Fig. 1B).

12-HETE-PE is an effective substrate for lipidation of both Atg8 and
LC3

To examine whether Atg8 is conjugated to HETE-PE or SAPE, in
vitro conjugation reactions using liposomes composed of mixed
PE/PC and yeast PI, where the PE consisted of DOPE, SAPE or 15-
HETE-PE, were undertaken. DOPE is shown for comparison, as this
is the usual lipid used for Atg8 conjugation reactions, rather than
SAPE [18]. As shown in Fig. 2A, Atg8 was conjugated to HETE-PE
more efficiently than SAPE. In addition, the mobility of Atg8-HETE-
PE/SAPE and Atg8-DOPE was different, specifically the mobility of
ere incubated with liposomes composed of 55 mol% PE (DOPE, SAPE, or HETE-PE),
lowed by urea-SDS-PAGE and Coomassie brilliant blue (CBB)-staining. Efficiency of
. The graph shows results of three independent experiments (mean7SD, nnpo0.01,
d LC3 were incubated at 37 °C with liposomes composed of 55 mol% PE, 35 mol %
anel) in the presence of 1 mM ATP for the indicated time periods, followed by SDS-



Fig. 3. Lipidomic profiling reveals altered phospholipid and cholesteryl esters in 12/15-LOX deficiency. Lipids were extracted from macrophages, and analyzed as described
in Section “Materials and methods” (n¼8, mean7S.E.). *Student's t-test, po0.05. The overall differences between WT and 12/15-LOX data sets is significant following
analysis by one-way ANOVA with a Tukey' post-hoc test, po0.05 (except for cholesteryl esters).
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Atg8-HETE-PE/SAPE was slightly lower than that of Atg8-DOPE.
This is likely due to the longer fatty acid chain length at the sn2
position of SAPE/HETE-PE. A comparison of SAPE-PE versus HETE-
PE was conducted three times, and densitometry scanning aver-
aged, clearly showing HETE-PE as a preferred substrate at all time
points tested versus SAPE (Fig. 2A, right panel). This indicates that
oxidized phospholipids can be conjugated to Atg8, and that in-
troduction of the –OH at C15 leads to a more effective substrate.

Next, the ability of HETE-PE to act as a substrate for the
mammalian LC3 was tested using recombinant proteins. In these
experiments, it was initially seen that 55 mol% SAPE and HETE-PE
were similarly conjugated over 30 min (Fig. 2B, left panel). Thus,
we also tested a lower substrate concentration (10 mol% PE) and
shorter time course, in case the enzyme system was already sa-
turated, but no differences were found between the lipids (Fig. 2B,
right panel). DOPE conjugation to LC3 is shown as comparison
(Fig. 3B). The results demonstrate that oxidized PE is an effective
substrate for LC3 lipidation, although in this case, it is equally ef-
fective as the unoxidized parent lipid.

Macrophages deficient in 12/15-LOX show modified cellular phos-
pholipid content

To examine for changes in cellular lipid profiles resulting from
12/15-LOX deficiency, lipidomics profiling of all phospholipid
classes and cholesteryl esters was undertaken on lipid extracts
from macrophages obtained from naïve wild type and 12/15-
LOX� /� macrophages. There was a tendency overall for increased
PE, PI and cholesteryl esters, but decreased PC in 12/15-LOX defi-
ciency. On the other hand, PA, PS and PG were not different. This
suggests that loss of the enzyme results in a selective defect in
particular phospholipid classes at the expense of others (Fig. 3).
Discussion

Herein, we show that deficiency of the lipid-oxidizing enzyme,
12/15-LOX, is associated with altered cellular membrane structure.
We also demonstrate that a LOX-derived oxidized phospholipid is
an effective substrate for lipidation of both LC3 and Atg8, being
preferred over the unoxidized analog in the case of the yeast
homolog. This is suggestive of this pathway being involved in
regulation of membrane dynamics. Last, we show altered phos-
pholipid content in murine macrophages deficient in 12/15-LOX.
Our observations of double membrane structures suggestive of
autophagosomes propose a role in autophagy. Normal LC3 ex-
pression and lipidation indicate that the defect in the 12/15-LOX� /

� macrophages is likely to be upstream of LC3 activity itself.
12/15-LOX was first described as the human homolog, 15-LOX1,

as being highly induced in bleeding anemia in rabbits, inducing
significant peroxidation of intracellular membranes that coincided
with disappearance of organelles [19–23]. Thus, it was proposed as
being critically required for reticulocyte maturation into ery-
throcytes. However subsequent to this, mice deficient in the
functional homolog, 12/15-LOX were shown to have normal red
cell counts, and interest in this pathway waned [24]. This does not
exclude that the knockout mice have developed a compensatory
mechanism, and that the enzyme still plays a role in normal
turnover of organelles during homeostasis. In support of a role for
LOX in processes that involve membrane remodeling, previous
studies have shown that 12/15-LOX� /� macrophages are unable to
undergo a full phagocytosis response towards apoptotic thymo-
cytes [25].

The multiple differences between wild type and 12/15-LOX� /�

macrophages seen, including abnormal mitochondria, multiple
lysosomal storage bodies and suspected autophagosomes are
consistent with LSDs [26–29]. Lysosomes are small vesicular or-
ganelles, their primary function being to merge with late endo-
somes to digest their content [30–32]. Endosomal degradation is
carried out by numerous lipid and protein hydrolases. Mutations
in these can cause build-up of undigested cellular content seen as
dark inclusions, and similar structures were seen herein in 12/15-
LOX� /� macrophages [30,33].

Lysosomes participate in autophagy, required for rapid clear-
ance of oxidized proteins and organelles [34,35]. Both lysosomes
and autophagy are important regulators of mitochondrial turn-
over, with those in 12/15-LOX� /� macrophages appearing swollen
and granular, suggesting they are ‘old’ and damaged, and should
have undergone autophagy. The phenotype of cells showing signs
of LSD resembles that of aged cells, with abnormal mitochondria
and lysosomal storage bodies [30]. There are several common
dysfunctions leading to LSDs, including of relevance, the mutation
in glucocerebrosidase (Gaucher's disease) where the lipid gluco-
sylceramide accumulates in several cells, and is characterized by
macrophages containing high levels of lysosomal lipid [36]. Of
relevance, splenomegaly is also a feature of Gaucher’s disease, also
previously observed in mice with 12/15-LOX� /� deficiency [37].

Preventing autophagy leads to mitochondrial damage to the
cells due to oxidative stress [38]. A progressive increase in au-
tophagic vacuoles is in accordance with disproportionate organelle
damage and degradation, recognized as ‘autophagic stress’, and is
consistent with the phenotype of 12/15-LOX�/� macrophages
seen herein [39]. In this study, autophagosomes were seen as in-
clusions with double membranes (Fig. 1). Primary LSDs are com-
monly associated with ‘swirls’ in cells, but they were not present
in 12/15-LOX� /� macrophages [40]. This suggests that the dark
inclusions, identified as storage bodies, are not the primary storage
compartment for this undigested material.

LC3 and its yeast homolog Atg8 are considered important
markers and effectors of autophagy, undergoing covalent linkage
of the C-terminus to the PE headgroup, leading to anchoring on
the cytoplasmic and luminal sides of autophagic vesicles. Cur-
rently, the identity of the specific molecular species of PE that are
conjugated to LC3/Atg8 are unknown and herein our observation
that HETE-PE can be conjugated to these proteins, and indeed is a
preferred substrate in the yeast system, functionally links phos-
pholipid oxidation with autophagy for the first time (Figs. 2 and 3).
We note that levels of LC3-I and -II appeared normal in 12/15-
LOX� /� mice however, suggesting that the defect in these cells is
upstream of this protein. 12/15-LOX generates oxidized phospho-
lipids that remain cell associated in macrophages, including deri-
vatives that contain reactive carbonyl groups termed keto-eico-
satetraenoic acid-PEs (KETE-PEs) [41]. We previously showed
these can form Michael adducts with proteins, and herein, that
one of them is an effective substrate for LC3 lipidation [41] (Fig. 1).
Thus, the absence of these in the knockout could lead to loss of
function of key autophagy proteins, required for effective clear-
ance of aged organelles. We did not examine in this study whether
other LC3 family members, for example GATE-16, GABARAP, or
GABARAPL1 could also act as substrates for HETE-PE conjugation.
Exactly how 12/15-LOX deficiency results in altered lysosomes is
also not known and will be the subject of future studies.

Interestingly, mice deficient in 12/15-LOX are generally healthy,
only showing a phenotype when challenged (protected against
several inflammatory diseases) [42,43]. As 12/15-LOX and its hu-
man homolog 15-LOX is only expressed in selected immune cells,
including resident macrophages, Th2-cytokine challenged mono-
cytes, eosinophils and also epithelia, a role in specialized autop-
hagy-related processes is more likely. In the case of macrophages,
this would include phagocytosis, recently shown to also involve
the autophagy machinery, including LC3 [44].
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In summary, this study demonstrates that deficiency in 12/15-
LOX results in a lysosomal storage disorder phenotype, impacting
on membrane processing, organelle clearance and autophagy in
murine macrophages. The ability of oxidized phospholipids to act
as LC3/Atg8 lipidation substrates links phospholipid oxidation, a
key event in innate immunity and atherosclerosis with normal
cellular processes required for cellular turnover and homeostasis.
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